These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Delivery Order 9 enhanced preliminary assessment, Woodbridge Research Facility, Virginia. Final report, Dec 91Mar 92  

Microsoft Academic Search

An enhanced preliminary assessment was conducted at Woodbridge Research Facility (WRF) in Woodbridge, Virginia. WRF is a 579-acre facility located 22 miles southeast of Washington, D.C. It is operated by Harry Diamond Laboratory (HDL) at Adelphi, Maryland for the U.S. Army Laboratory Command. Its mission is to support HDL in a variety of programs involving nuclear weapons effects and Army

R. G. Shimko; R. E. Turner

1992-01-01

2

Woodbridge Middle School: Getting Better Together  

ERIC Educational Resources Information Center

This article features Woodbridge Middle School, a middle school in Woodbridge, Virginia, which has always celebrated a tradition of excellence. Today's Woodbridge Middle School in no way resembles the school that existed in 2005. Then, the students were mostly White and few qualified for the free and reduced-price meals program; today, there is no…

Principal Leadership, 2012

2012-01-01

3

Guide to research facilities  

SciTech Connect

This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

Not Available

1993-06-01

4

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility  

E-print Network

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through

5

THE INCINERATION RESEARCH FACILITY  

EPA Science Inventory

The Cincinnati-based Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. EPA operates the Incineration Research Facility (IRF) in Jefferson, Arkansas. his facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liqui...

6

Variable gravity research facility  

NASA Technical Reports Server (NTRS)

Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.

Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd

1988-01-01

7

Nano Research Facility Lab Safety Manual Nano Research Facility  

E-print Network

1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer rules and procedures (a) Accidents and spills for chemicals Not containing Nano-Materials Spills of non for chemicals Containing Nano-Materials In a fume hood small spills of nano-materials in a liquid may

Subramanian, Venkat

8

Biotechnology Facility: An ISS Microgravity Research Facility  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

Gonda, Steve R.; Tsao, Yow-Min

2000-01-01

9

A Curriculum for a Three Year High School Science Research Program  

Microsoft Academic Search

A three-year high school science research program has been taught in Woodbridge Township School District - Woodbridge, New Jersey, since 1987. The program's focus is to foster originial science research projects for high school students that have shown an aptitude and an interest in science. Students are instructed in basic research skills, including developing and conducting original research projects, statistical

F. Darytichen; J. Danch

2003-01-01

10

Scientific and Engineering Research Facilities: 1999  

NSF Publications Database

... Scientific and Engineering Research Facilities: 1999 Detailed Statistical Tables Hypertext Format ... Scientific and Engineering Research Facilities: 1999 Portable Document Format (.pdf) Scientific and ...

11

Science and Engineering Research Facilities: 2001  

NSF Publications Database

... Scientific and Engineering Research Facilities 2001 Detailed Statistical Tables Hypertext Format ... Scientific and Engineering Research Facilities: 2001 Portable Document Format (.pdf) Scientific and ...

12

Accelerator Facilities for Radiation Research  

NASA Technical Reports Server (NTRS)

HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

Cucinotta, Francis A.

1999-01-01

13

Research and facilities handbook 1989  

NASA Astrophysics Data System (ADS)

Aims are to provide a readable, nontechnical description of research carried out, to provide scientists with a concise up-to-date description of national facilities and to provide a comprehensive list of publications by members for 1987 and 1988. Research included cosmology, stars, star formation, and Halley's comet. The facilities described include the United Kingdom Infrared Telescope and Schmidt unit Telescope, the James Clerk Maxwell Telescope, and COSMOS (Coordinates, Sizes, Magnitudes, Orientations, Shapes), a high speed, fully automatic, photographic-plate scanning machine.

14

The Biological Flight Research Facility  

NASA Technical Reports Server (NTRS)

NASA Ames Research Center is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately 30 years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially, the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5-m diam centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

Johnson, Catherine C.

1991-01-01

15

The Biological Flight Research Facility  

NASA Technical Reports Server (NTRS)

NASA Ames Research Center (ARC) is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately thirty years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5 meter diameter centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. Included in the facility are a service unit for providing clean chambers for the specimens and a glovebox for manipulating the plant and animal specimens and for performing experimental protocols. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

Johnson, Catherine C.

1993-01-01

16

NASA Wallops Flight Facility Air-Sea Interaction Research Facility  

NASA Technical Reports Server (NTRS)

This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

Long, Steven R.

1992-01-01

17

Holifield Heavy Ion Research Facility  

SciTech Connect

The Holifield Heavy Ion Research Facility has been in routine operation since July 1982. Beams have been provided using both the tandem accelerator alone and a coupled mode in which the Oak Ridge Isochronous Cyclotron is used as an energy booster for tandem beams. The coupled mode has proved to be especially effective and has allowed us to provide a wide range of energetic beams for scheduled experiments. In this report we discuss our operational experience and recent development activities.

Jones, C.M.; Alton, G.D.; Ball, J.B.; Biggerstaff, J.A.; Dowling, D.T.; Erb, K.A.; Haynes, D.L.; Hoglund, D.E.; Hudson, E.D.; Juras, R.C.

1985-01-01

18

Research facility access & science education  

SciTech Connect

As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

1994-10-01

19

Microsporidiosis in Zebrafish Research Facilities  

PubMed Central

Pseudoloma neurophilia (Microsporidia) is the most common pathogen detected in zebrafish (Danio rerio) from research facilities. The parasite infects the central nervous system and muscle and may be associated with emaciation and skeletal deformities. However, many fish exhibit sub-clinical infections. Another microsporidium, Pleistophora hyphessobryconis, has recently been detected in a few zebrafish facilities. Here, we review the methods for diagnosis and detection, modes of transmission, and approaches used to control microsporidia in zebrafish, focusing on P. neurophilia. The parasite can be readily transmitted by feeding spores or infected tissues, and we show that cohabitation with infected fish is also an effective means of transmission. Spores are released from live fish in various manners, including through the urine, feces, and sex products during spawning. Indeed, P. neurophilia infects both the eggs and ovarian tissues, where we found concentrations ranging from 12,000 to 88,000 spores per ovary. Hence, various lines of evidence support the conclusion that maternal transmission is a route of infection: spores are numerous in ovaries and developing follicles in infected females, spores are present in spawned eggs and water from spawning tanks based on polymerase chain reaction tests, and larvae are very susceptible to the infection. Furthermore, egg surface disinfectants presently used in zebrafish laboratories are ineffective against microsporidian spores. At this time, the most effective method for prevention of these parasites is avoidance. PMID:23382342

Sanders, Justin L.; Watral, Virginia; Kent, Michael L.

2014-01-01

20

Chemistry Research Instrumentation and Facilities : Cyberinfrastructure and Research Facilities (CRIF:CRF)  

NSF Publications Database

The Division of Chemistry of the National Science Foundation (NSF), under the umbrella of the Chemistry Research Instrumentation and Facilities Program (CRIF), has provided support to research institutions and consortia for the establishment of regional or national instrumentation facilities, the purchase of departmental research instrumentation, and the development of state-of-the-art equipment. The Chemistry Research Instrumentation and Facilities: Cyberinfrastructure and Research ...

21

Facilities for animal research in space  

NASA Technical Reports Server (NTRS)

The animal facilities used aboard or designed for various spacecraft research missions are described. Consideration is given to the configurations used in Cosmos-1514 (1983) and Cosmos-1887 (1987) missions; the reusable Biosatellite capsule flown three times by NASA between 1966 and 1969; the NASA's Lifesat spacecraft that is being currently designed; the Animal Enclosure Module flown on Shuttle missions in 1983 and 1984; the Research Animal Holding Facility developed for Shuttle-Spacelab missions; the Rhesus Research Facility developed for a Spacelab mission; and the Japanese Animal Holding Facility for the Space Station Freedom. Special attention is given to the designs of NASA's animal facilities developed for Space Station Freedom and the details of various subsystems of these facilities. The main characteristics of the rodent and the primate habitats provided by these various facilities are discussed.

Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.

1991-01-01

22

Neuroscience at Royal Holloway Research Facilities  

E-print Network

1 Neuroscience at Royal Holloway #12;2 Research Facilities The neuroscience group at Royal Holloway presentation and data analysis facilities) About Neuroscience at Royal Holloway Royal Holloway is a constituent college of the University of London. Members of the neuroscience group are based in the Department

Royal Holloway, University of London

23

Radiological Research Accelerator Facility Service Request Form  

E-print Network

#:_____________________________ Grant Title: 1 #12;National Institute of Biomedical Imaging and Bioengineering Discuss the technical Facility Service request form 2 #12;National Institute of Biomedical Imaging and Bioengineering What otherRadiological Research Accelerator Facility Service Request Form National Institute of Biomedical

24

Environmental practices for biomedical research facilities.  

PubMed Central

As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12. PMID:11121360

Medlin, E L; Grupenhoff, J T

2000-01-01

25

The National Transonic Facility: A Research Retrospective  

NASA Technical Reports Server (NTRS)

An overview of the National Transonic Facility (NTF) from a research utilization perspective is provided. The facility was born in the 1970s from an internationally recognized need for a high Reynolds number test capability based on previous experiences with preflight predictions of aerodynamic characteristics and an anticipated need in support of research and development for future aerospace vehicle systems. Selection of the cryogenic concept to meet the need, unique capabilities of the facility, and the eventual research utilization of the facility are discussed. The primary purpose of the paper is to expose the range of investigations that have used the NTF since being declared operational in late 1984; limited research results are included, though many more can be found in the references.

Wahls, R. A.

2001-01-01

26

University of Nebraska Animal Research Facilities  

E-print Network

University of Nebraska Animal Research Facilities Policy on Photography and Videography in Areas with Animals Purpose: Contact between visitors to the University and animals used in Research and teaching can animals, to protect the health of research animals, to protect the confidentiality and integrity

Farritor, Shane

27

The F-18 systems research aircraft facility  

NASA Technical Reports Server (NTRS)

To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

Sitz, Joel R.

1992-01-01

28

9 CFR 2.37 - Federal research facilities.  

Code of Federal Regulations, 2012 CFR

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2012-01-01

29

9 CFR 2.37 - Federal research facilities.  

Code of Federal Regulations, 2011 CFR

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2011-01-01

30

9 CFR 2.37 - Federal research facilities.  

Code of Federal Regulations, 2013 CFR

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2013-01-01

31

9 CFR 2.37 - Federal research facilities.  

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2014-01-01

32

9 CFR 2.37 - Federal research facilities.  

Code of Federal Regulations, 2010 CFR

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2010-01-01

33

NREL Research Support Facility (RSF) Documentary  

ScienceCinema

he ideas and innovations that define NREL are now shaping the next generation of commercial office buildings. DOE's Research Support Facility at NREL, will set a new benchmark for affordable, sustainable commercial design and construction. The unique form of the RSF is driven by energy-saving strategies, many researched and advanced at NREL.

None

2013-05-29

34

NASA Dryden Flight Loads Research Facility  

NASA Technical Reports Server (NTRS)

The Dryden Flight Loads Research Facility (NASA) and the associated equipment for simulating the loading and heating of aircraft or their components are described. Particular emphasis is placed on various fail-safe devices which are built into the equipment to minimize the possibility of damage to flight vehicles. The equipment described includes the ground vibration and moment of inertia equipment, the data acquisition system, and the instrumentation available in the facility for measuring load, position, strain, temperature, and acceleration.

Sefic, W. J.

1981-01-01

35

The Facility for Antiproton and Ion Research  

NASA Astrophysics Data System (ADS)

In the coming years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and path-breaking research in hadronic, nuclear and atomic physics as well as applied sciences. This manuscript will discuss some of these research opportunities, with a focus on nuclear physics related to supernova dynamics and nucleosynthesis.

Langanke, K.

2015-11-01

36

The Sanford underground research facility at Homestake  

SciTech Connect

The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

Heise, J. [Sanford Underground Research Facility, 630 East Summit Street, Lead, SD 57754 (United States)

2014-06-24

37

Neil Armstrong At Lunar Landing Research Facility  

NASA Technical Reports Server (NTRS)

Nearly 25 years ago, on July 20,1969, Neil Armstrong, shown here with NASA Langley Research Centers Lunar Excursion Module (LEM) Simulator, became the first human to walk on the moon after practicing with the simulator in May of 1969. Training with the simulator, part of Langleys Lunar Research Facility, allowed the Apollo astronauts to study and safely overcome problems that could have occurred during the final 150-foot descent to the surface of the moon. NASA needed such a facility in order to explore and develop techniques for landing the LEM on the moons surface, where gravity is only one-sixth as strong as on the Earth, as well as to determine the limits of human piloting capabilities in the new surroundings. This unique facility, completed in 1965 and now a National Historic Landmark, effectively canceled all but one-sixth of Earths gravitational force by using an overhead cable system.

1969-01-01

38

Information Technology and the Human Research Facility  

NASA Technical Reports Server (NTRS)

This slide presentation reviews how information technology supports the Human Research Facility (HRF) and specifically the uses that contractor has for the information. There is information about the contractor, the HRF, some of the experiments that were performed using the HRF on board the Shuttle, overviews of the data architecture, and software both commercial and specially developed software for the specific experiments.

Klee, Margaret

2002-01-01

39

Moon Park: A research and educational facility  

NASA Technical Reports Server (NTRS)

Moon Park has been proposed as an International Space Year (ISY) event for international cooperative efforts. Moon Park will serve as a terrestrial demonstration of a prototype lunar base and provide research and educational opportunities. The kind of data that can be obtained in the Moon Park facilities is examined taking the minimum number of lunar base residents as an example.

Kuriki, Kyoichi; Saito, Takao; Ogawa, Yukimasa

1992-01-01

40

Field Campaign Guidelines (ARM Climate Research Facility)  

SciTech Connect

The purpose of this document is to establish a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking database tool and are tailored to meet the scope of each specific field campaign.

Voyles, JW

2011-01-17

41

Holifield Heavy Ion Research Facility: Users handbook  

SciTech Connect

The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given. (LEW)

Auble, R.L. (ed.)

1987-01-01

42

Ballistocraft: a novel facility for microgravity research.  

PubMed

One of ESA's aims is to provide the microgravity research community with various microgravity exposure facilities. Those facilities include drop towers, sounding rockets, and parabolic flights on board aircraft, in addition to orbital spacecraft. Microgravity flights are usually achieved using large aircraft like the French 'Caravelle' that offer a large payload volume and where a person can be present to perform the experiments and to participate as a human test-subject. However, the microgravity community is also very interested in a flexible, complementary facility that would allow frequent and repetitive exposure to microgravity for a laboratory-type of payload. ESA has therefore undertaken a study of the potential of using a 'ballistocraft', a small unmanned aircraft, to provide a low-cost facility for short-duration (30-40 seconds) microgravity experimentation. Fokker Space & Systems performed the study under an ESA contract, supported by Dutch national funding. To assess the ballistocraft, a simple breadboard of the facility was built and flight tests were performed. The ability of the on-board controller to achieve automated parabolic flights was demonstrated, and the performance of the controller in one-g level flights, and in flights with both zero-g and partial-g setpoints, was evaluated. The partial-g flights are a unique and valuable feature of the facility. PMID:14971373

Mesland, D; Paris, D; Huijser, R; Lammertse, P; Postema, R

1995-05-01

43

The Holifield Heavy Ion Research Facility  

SciTech Connect

Development of the Holifield facility has continued with resulting improvements in the number of ion species provided, ion energy for tandem-only operations, and utilization efficiency. The Holifield Heavy Ion Research Facility (HHIRF) is located at the Oak Ridge National Laboratory and operated as a national user facility for research in heavy ion science. The facility operates two accelerators: an NEC pelletron tandem accelerator designed to operate at terminal potentials up to 25 MV and the Oak Ridge Isochronous Cyclotron (ORIC) which has been modified to serve as an energy booster for beams from the tandem accelerator. The principal experimental devices of the facility include a broad range spectrograph (ME/q/sup 2/ = 225) equipped with a vertical drift chamber detector system, a 4..pi.. spin spectrometer equipped with 72 NaI detectors (Ge detectors and BGO compton-suppression units can be used in place of the NaI detectors), a time-of-flight spectrometer, a 1.6-m scattering chamber, a heavy-ion/light-ion detector (HILI) which will be used for studying inverse reactions, a split-pole spectrograph, and a velocity filter. In this report, we will discuss our recent development activities, operational experience, and future development plans.

Jones, C.M.; Alton, G.D.; Ball, J.B.; Biggerstaff, J.A.; Dowling, D.T.; Erb, K.A.; Haynes, D.L.; Hoglund, D.E.; Hudson, E.D.; Juras, R.C.

1987-01-01

44

Haselden/RNL - Research Support Facility Documentary  

ScienceCinema

The US Department of Energy's (DOE) Research Support Facility (RSF) on the campus of the National Renewable Energy Laboratory is positioned to be one of the most energy efficient buildings in the world. It will demonstrate NREL's role in moving advanced technologies and transferring knowledge into commercial applications. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

None

2013-05-29

45

New Mexico energy research resource registry. Researchers and facilities  

NASA Technical Reports Server (NTRS)

Human resources and facilities in New Mexico available for application to energy research and development are listed. Information regarding individuals with expertise in the environmental, socio-economic, legal, and management and planning areas of the energy effort is included as well as those scientists, engineers, and technicians involved directly in energy research and development.

1975-01-01

46

Animal research facility for Space Station Freedom  

NASA Technical Reports Server (NTRS)

An integrated animal research facility is planned by NASA for Space Station Freedom which will permit long-term, man-tended experiments on the effects of space conditions on vertebrates. The key element in this facility is a standard type animal habitat which supports and maintains the animals under full bioisolation during transport and during the experiment. A holding unit accommodates the habitats with animals to be maintained at zero gravity; and a centrifuge, those to be maintained at artificial gravity for control purposes or for gravity threshold studies. A glovebox permits handling of the animals for experimental purposes and for transfer to a clean habitat. These facilities are described, and the aspects of environmental control, monitoring, and bioisolation are discussed.

Bonting, Sjoerd L.

1992-01-01

47

Lewis Research Center R and D Facilities  

NASA Technical Reports Server (NTRS)

The NASA Lewis Research Center (LeRC) defines and develops advanced technology for high priority national needs. The work of the Center is directed toward new propulsion, power, and communications technologies for application to aeronautics and space, so that U.S. leadership in these areas is ensured. The end product is knowledge, usually in a report, that is made fully available to potential users--the aircraft engine industry, the energy industry, the automotive industry, the space industry, and other NASA centers. In addition to offices and laboratories for almost every kind of physical research in such fields as fluid mechanics, physics, materials, fuels, combustion, thermodynamics, lubrication, heat transfer, and electronics, LeRC has a variety of engineering test cells for experiments with components such as compressors, pumps, conductors, turbines, nozzles, and controls. A number of large facilities can simulate the operating environment for a complete system: altitude chambers for aircraft engines; large supersonic wind tunnels for advanced airframes and propulsion systems; space simulation chambers for electric rockets or spacecraft; and a 420-foot-deep zero-gravity facility for microgravity experiments. Some problems are amenable to detection and solution only in the complete system and at essentially full scale. By combining basic research in pertinent disciplines and generic technologies with applied research on components and complete systems, LeRC has become one of the most productive centers in its field in the world. This brochure describes a number of the facilities that provide LeRC with its exceptional capabilities.

1991-01-01

48

MYRRHA: A multipurpose nuclear research facility  

NASA Astrophysics Data System (ADS)

MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

2014-12-01

49

Evolving criteria for research facilities: vibration  

NASA Astrophysics Data System (ADS)

The paper presents a review of generic vibration criteria used for vibration-sensitive technical facilities. The paper reviews the logic behind and evolution of the Vibration Criterion (VC) curves, originally known as the "BBN" criteria, and discusses the background of a generic criterion in common usage for nanotechnology, currently denoted NIST-A. The criteria are compared with representative types of research equipment and activities.

Amick, Hal; Gendreau, Michael; Busch, Todd; Gordon, Colin

2005-08-01

50

Science Research Facilities - Versatility for Space Station  

NASA Technical Reports Server (NTRS)

The Space Station Science Lab Module (SLM) and its interfaces are designed to minimize complexity and maximize user accommodations. The facilities provided encompass life sciences research, the control of external payloads, the servicing of customer equipment, and general scientific investigations. The SLM will have the unprecedented ability to diagnose, service, and replace equipment while in orbit. In addition, the SLM will have significant operational advantages over previous spacecraft in terms of available volume, power, and crew interaction possibilities.

Giannovario, J. A.; Schelkopf, J. D.; Massey, K.; Solly, M.

1986-01-01

51

Analysis of fit of K-distribution to CSIR sea clutter data M Ritchie, Dr K Woodbridge and Dr A Stove  

E-print Network

, especially for low grazing angles. These developments lead to more complex statistical models being appliedAnalysis of fit of K-distribution to CSIR sea clutter data M Ritchie, Dr K Woodbridge and Dr A Stove University College London, Thales Aerospace UK Abstract: Sea clutter is the backscattered

Haddadi, Hamed

52

Community outreach at biomedical research facilities.  

PubMed Central

For biomedical researchers to fulfill their responsibility for protecting the environment, they must do more than meet the scientific challenge of reducing the number and volume of hazardous materials used in their laboratories and the engineering challenge of reducing pollution and shifting to cleaner energy sources. They must also meet the public relations challenge of informing and involving their neighbors in these efforts. The experience of the Office of Community Liaison of the National Institutes of Health (NIH) in meeting the latter challenge offers a model and several valuable lessons for other biomedical research facilities to follow. This paper is based on presentations by an expert panel during the Leadership Conference on Biomedical Research and the Environment held 1--2 November 1999 at NIH, Bethesda, Maryland. The risks perceived by community members are often quite different from those identified by officials at the biomedical research facility. The best antidote for misconceptions is more and better information. If community organizations are to be informed participants in the decision-making process, they need a simple but robust mechanism for identifying and evaluating the environmental hazards in their community. Local government can and should be an active and fully informed partner in planning and emergency preparedness. In some cases this can reduce the regulatory burden on the biomedical research facility. In other cases it might simplify and expedite the permitting process or help the facility disseminate reliable information to the community. When a particular risk, real or perceived, is of special concern to the community, community members should be involved in the design, implementation, and evaluation of targeted risk assessment activities. Only by doing so will the community have confidence in the results of those activities. NIH has involved community members in joint efforts to deal with topics as varied as recycling and soil testing. These ad hoc efforts are more likely to succeed if community members and groups have also been included in larger and longer term advisory committees. These committees institutionalize the outreach process. This can provide the facility with vocal and influential allies who create an independent line of communication with the larger community. PMID:11124126

Goldman, M; Hedetniemi, J N; Herbert, E R; Sassaman, J S; Walker, B C

2000-01-01

53

Solar Energy Research Center Instrumentation Facility  

SciTech Connect

SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR DEVICE FABRICATION LABORATORY DEVELOPMENT The space allocated for this laboratory was �¢����shell space�¢��� that required an upfit in order to accommodate nano-fabrication equipment in a quasi-clean room environment. This construction project (cost $279,736) met the non-federal cost share requirement of $250,000 for this award. The central element of the fabrication laboratory is a new $400,000+ stand-alone system, funded by other sources, for fabricating and characterizing photovoltaic devices, in a state-of-the-art nanofabrication environment. This congressionally directed project also included the purchase of an energy dispersive x-ray analysis (EDX) detector for a pre-existing transmission electron microscope (TEM). This detector allows elemental analysis and elemental mapping of materials used to fabricate solar energy devices which is a key priority for our research center. TASK 2: SOLAR ENERGY SPECTROSCOPY LABORATORY DEVELOPMENT (INSTRUMENTATION) This laboratory provides access to modern spectroscopy and photolysis instrumentation for characterizing devices, materials and components on time scales ranging from femtoseconds to seconds and for elucidating mechanisms. The goals of this congressionally directed project included the purchase and installation of spectroscopy and photolysis instrumentation that would substantially and meaningfully enhance the capabilities of this laboratory. Some changes were made to the list of equipment proposed in the original budget. These changes did not represent a change in scope, approach or aims of this project. All of the capabilities and experiments represented in the original budget were maintained. The outcome of this Congressionally Directed Project has been the development of world-class fabrication and spectroscopy user facilities for solar fuels research at UNC-CH. This award has provided a significant augmentation of our pre-existing instrumentation capabilities which were funded by earlier UNC SERC projects, including the Energy Frontier

Meyer, Thomas, J.; Papanikolas, John, P.

2011-11-11

54

ARM Climate Research Facility Annual Report 2005  

SciTech Connect

Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

J. Voyles

2005-12-31

55

Europlanet Research Infrastructure: Planetary Sample Analysis Facilities  

NASA Astrophysics Data System (ADS)

EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the third TNA: Planetary Sample Analysis Facilities. The modular infrastructure represents a major commitment of analytical instrumentation by three institutes and together forms a state-of-the-art analytical facility of unprecedented breadth. These centres perform research in the fields of geochemistry and cosmochemistry, studying fluids and rocks in order to better understand the keys cof the universe. Europlanet Research Infrastructure Facilities: Ion Probe facilities at CRPG and OU The Cameca 1270 Ion microprobe is a CNRS-INSU national facility. About a third of the useful analytical time of the ion probe (about 3 months each year) is allocated to the national community. French scientists have to submit their projects to a national committee for selection. The selected projects are allocated time in the following 6 months twice a year. About 15 to 20 projects are run each year. There are only two such instruments in Europe, with cosmochemistry only performed at CRPG. Different analyses can be performed on a routine basis, such as U-Pb dating on Zircon, Monazite or Pechblende, Li, B, C, O, Si isotopic ratios determination on different matrix, 26Al, 60Fe extinct radioactivity ages, light and trace elements contents . The NanoSIMS 50L - producing element or isotope maps with a spatial resolution down to ?50nm. This is one of the cornerstone facilities of UKCAN, with 75% of available instrument time funded and committed to UK cosmochemical activity - but the remainder is free for other applications and users. The UK activity is managed by the UKCAN management committee and vetted through a local working group. Management of the remaining 25% of other activity will be organised through the local working group. This is the newest, and most advanced of three instruments of this type in Europe which routinely address cosmochemical analyses. The instrument is capable of providing high spatial resolution (down to 50nm) elemental and isotope distribution maps for a wide range of elements from across the periodic table. It is also capable of high precision (per mil) isotopic spot measurements with a spatial resolution of a few microns for a range of elements including C, N, O, S, Si, Mg, etc. Noble Gases facilities at CRPG and OU Ar/Ar Nu Instruments Noblesse is coupled with an ultra-low volume extraction line and with a choice of 213 nm UV laser or 1090 nm IR lasers, providing a wide range of analytical capability in Ar/Ar dating of lunar and meteorite samples. This instrument is unique with a mass resolution of 3000, and with the UV laser it has the capability to measure Ar isotope variation on a ca. 30 -micron resolution enabling detailed mapping of age and apparent age variation within minerals. The 1090 nm laser provides the capability to step-heat small samples. The laboratory is fully supported by sample preparation facilities and technical expertise in lunar and meteorite Ar/Ar analysis. Helium isotope facility. Analysis of the isotopes of helium in rocks and minerals. Determining the origin of gases in meteorites and ET return samples, dating surface exposure with cosmogenic 3He using the latest He isotope mass spectrometer, the GV Helix SFT, the first instrument installed in Europe. CRPG is an European leader in this domain. Non-Traditional stable Isotopes and radiogenic isotopes at VUA and CRPG The specific facility proposed for the TNA is the geochemistry labs used for the study of long (e.g. Rb- Sr, Sm-Nd…) and short-lived radioisotope (e.g. Mg- Al, Hf-W..), inc

Cloquet, C.; Mason, N. J.; Davies, G. R.; Marty, B.

2008-09-01

56

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents  

E-print Network

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents RARAF Professional Staff-Doctoral Research Scientist Oleksandra Lyulko, Pre-Doctoral Research Scientist 100 #12;CENTER FOR RADIOLOGICAL RESEARCH ANNUAL REPORT 2009 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE

57

Research opportunities with the Centrifuge Facility  

NASA Technical Reports Server (NTRS)

The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.

Funk, Glenn A.

1992-01-01

58

NSTX: Facility/Research Highlights and Near Term Facility Plans  

SciTech Connect

The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

M. Ono

2008-11-19

59

Europlanet Research Infrastructure: Planetary Simulation Facilities  

NASA Astrophysics Data System (ADS)

EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of pressures and temperatures and through provision of external UV light and or electrical discharge can be used to form the well known Titan Aerosol species, which can subsequently be analysed using one of several analytical techniques (UV-Vis, FTIR and mass spectrometry). Simulated surfaces can be produced (icy surfaces down to 15K) and subjected to a variety of light and particles (electron and ion) sources. Chemical and physical changes in the surface may be explored using remote spectroscopy. Planetary Simulation chamber for low density atmospheres INTA-CAB The planetary simulation chamber-ultra-high vacuum equipment (PSC-UHV) has been designed to study planetary surfaces and low dense atmospheres, space environments or any other hypothetic environment at UHV. Total pressure ranges from 7 mbar (Martian conditions) to 5x10-9 mbar. A residual gas analyzer regulates gas compositions to ppm precision. Temperature ranges from 4K to 325K and most operations are computer controlled. Radiation levels are simulated using a deuterium UV lamp, and ionization sources. 5 KV electron and noble-gas discharge UV allows measurement of IR and UV spectra and chemical compositions are determined by mass spectroscopy. Planetary Simulation chamber for high density planetary atmospheres at INTA-CAB The facility allows experimental study of planetary environments under high pressure, and was designed to include underground, seafloor and dense atmosphere environments. Analytical capabilities include Raman spectra, physicochemical properties of materials, e.a. thermal conductivity. P-T can be controlled as independent variables to allow monitoring of the tolerance of microorganisms and the stability of materials and their phase changes. Planetary Simulation chamber for icy surfaces at INTA-CAB This chamber is being developed to the growth of ice samples to simulate the chemical and physical properties of ices found on both planetary bodies and their moons. The goal is to allow measurement of the physical properties of ice samples formed under planetary conditions to assess how rheolo

Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

2008-09-01

60

In Vivo Radiobioassay and Research Facility  

SciTech Connect

Bioassay monitoring for intakes of radioactive material is an essential part of the internal dosimetry program for radiation workers at the Department of Energy’s (DOE) Hanford Site. This monitoring program includes direct measurements of radionuclides in the body by detecting photons that exit the body and analyses of radionuclides in excreta samples. The specialized equipment and instrumentation required to make the direct measurements of these materials in the body are located at the In Vivo Radiobioassay and Research Facility (IVRRF). The IVRRF was originally built in 1960 and was designed expressly for the in vivo measurement of radioactive material in Hanford workers. Most routine in vivo measurements are performed annually and special measurements are performed as needed. The primary source terms at the Hanford Site include fission and activation products (primarily 137Cs and 90Sr), uranium, uranium progeny, and transuranic radionuclides. The facility currently houses five shielded counting systems, men’s and women’s change rooms and an instrument maintenance and repair shop. Four systems include high purity germanium detectors and one system utilizes large sodium iodide detectors. These systems are used to perform an average of 7,000 measurements annually. This includes approximately 5000 whole body measurements analyzed for fission and activation products and 2000 lung measurements analyzed for americium, uranium, and plutonium. Various other types of measurements are performed periodically to estimate activity in wounds, the thyroid, the liver, and the skeleton. The staff maintains the capability to detect and quantify activity in essentially any tissue or organ. The in vivo monitoring program that utilizes the facility is accredited by the Department of Energy Laboratory Accreditation Program for direct radiobioassay.

Lynch, Timothy P.

2011-02-01

61

Facilities involved in adaptive wall research  

NASA Technical Reports Server (NTRS)

During the first meeting of the Working Group, it was apparent that the assessment and interpretation of the current level of the technology could be achieved most easily provided the information in a common format. This would also minimize any danger of misinterpretation by third parties of existing published information. As a result, the Group developed a questionnaire and distributed it to all involved in adaptive wall research. The questionnaire solicited information on the mechanical details of the facilities as well as details of the adaptation strategy itself. The scope of testing accomplished and future plans were included. The information contained in the responses is summarized. This information was the source for much of the data. Because some of the data contained in these questionnaires is not discussed elsewhere, they are reproduced in their entirety as an Appendix. The questionnaire is also presented to serve as a guide to the written responses.

Ladson, Charles L. (editor)

1990-01-01

62

A Facility and Architecture for Autonomy Research  

NASA Technical Reports Server (NTRS)

Autonomy is a key enabling factor in the advancement of the remote robotic exploration. There is currently a large gap between autonomy software at the research level and software that is ready for insertion into near-term space missions. The Mission Simulation Facility (MST) will bridge this gap by providing a simulation framework and suite of simulation tools to support research in autonomy for remote exploration. This system will allow developers of autonomy software to test their models in a high-fidelity simulation and evaluate their system's performance against a set of integrated, standardized simulations. The Mission Simulation ToolKit (MST) uses a distributed architecture with a communication layer that is built on top of the standardized High Level Architecture (HLA). This architecture enables the use of existing high fidelity models, allows mixing simulation components from various computing platforms and enforces the use of a standardized high-level interface among components. The components needed to achieve a realistic simulation can be grouped into four categories: environment generation (terrain, environmental features), robotic platform behavior (robot dynamics), instrument models (camera/spectrometer/etc.), and data analysis. The MST will provide basic components in these areas but allows users to plug-in easily any refined model by means of a communication protocol. Finally, a description file defines the robot and environment parameters for easy configuration and ensures that all the simulation models share the same information.

Pisanich, Greg; Clancy, Daniel (Technical Monitor)

2002-01-01

63

Space Station life science research facility - The vivarium/laboratory  

NASA Technical Reports Server (NTRS)

Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

Hilchey, J. D.; Arno, R. D.

1985-01-01

64

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents  

E-print Network

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 113 RARAF - Table of Contents RARAF Professional. Not shown: Brian Ponnaiya, Kenichi Tanaka and Gloria Jenkins-Baker. #12;CENTER FOR RADIOLOGICAL RESEARCH · ANNUAL REPORT 2007 114 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE CENTER

65

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents  

E-print Network

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 117 RARAF - Table of Contents RARAF Professional-Pehrson. Not shown: Antonella Bertucci, Brian Ponnaiya, Helen Turner and Gary Johnson. #12;CENTER FOR RADIOLOGICAL RESEARCH · ANNUAL REPORT 2010 118 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE

66

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents  

E-print Network

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 118 RARAF Table of Contents RARAF Professional. Not shown: Brian Ponnaiya, Kenichi Tanaka and Gloria Jenkins-Baker. #12;CENTER FOR RADIOLOGICAL RESEARCH ANNUAL REPORT 2008 119 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE CENTER

67

GRI Metering Research Facility - A status report on facility research and construction  

SciTech Connect

The Gas Research Institute (GRI) Metering Research Facility (MRF), located at Southwest Research Institute, is a high accuracy, natural gas flow calibration laboratory that has been developed to simulate a wide range of operating conditions that are encountered by the production, transmission and distribution segments of the natural gas industry. GRI research in the MRF is directed toward improving the state-of-the-art of gas flow measurement for a broad range of meter types. The MRF`s three flow facilities, the High Pressure Loop (HPL), Low Pressure Loop (LPL) and the Distribution Test Stand (DTS), are also available for commercial use by all segments of the natural gas industry. This paper discusses (1) the MRF physical plant configuration, (2) calibration capabilities including the gravimetric, primary calibration systems as well as the gas composition analysis system, (3) design performance specifications including controllability and accuracy, and (4) topical areas for the 1995 GRI research program. Finally, the process for integrating research results into national industry association standards will be addressed.

Astleford, W.J. [Southwest Research Institute, San Antonio, TX (United States)

1995-08-01

68

Urban Watershed Research Facility at Edison Environmental Center  

EPA Science Inventory

The Urban Watershed Research Facility (UWRF) is an isolated, 20-acre open space within EPA?s 200 acre Edison facility established to develop and evaluate the performance of stormwater management practices under controlled conditions. The facility includes greenhouses that allow ...

69

Annular core research reactor high flux neutron radiography facility  

Microsoft Academic Search

Sandia National Laboratories (SNL) has been performing neutron radiography since 1964. The radiography facilities have evolved from an aperture in a radiation exposure room in the now retired Sandia Engineering Reactor to a divergent collimator radiography facility adjacent to the core of the Annular Core Research Reactor (ACRR). The maximum thermal neutron flux achieved in these facilities has been limited

F. M. McCrory; J. G. Kelly; M. E. Vernon; D. A. Tichenor

1990-01-01

70

Northwestern University Facility for Clean Catalytic Process Research  

SciTech Connect

Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

Marks, Tobin Jay [Northwestern University

2013-05-08

71

Nuclear Science Research Facilities Nuclear Science User Guide  

E-print Network

LANSCE User Guide Nuclear Science Research Facilities #12;#12;Nuclear Science User Guide Table of Contents Introduction 3 Nuclear Science Research Facilities 3 The LANSCE Accelerator 4 Time structure techniques 8 Nuclear Science User Program 11 Proposal Process 13 Information for Prospective Users 14

72

Biomass Gasification Research Facility Final Report  

SciTech Connect

While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-02GO12024 and DE-FC36-03GO13175) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. The primary objectives of Cooperative Agreement DE-FC36-02GO12024 were the selection, acquisition, and application of a suite of gas analyzers capable of providing near real-time gas analyses to suitably conditioned syngas streams. A review was conducted of sampling options, available analysis technologies, and commercially available analyzers, that could be successfully applied to the challenging task of on-line syngas characterization. The majority of thermochemical process streams comprise multicomponent gas mixtures that, prior to crucial, sequential cleanup procedures, include high concentrations of condensable species, multiple contaminants, and are often produced at high temperatures and pressures. Consequently, GTI engaged in a concurrent effort under Cooperative Agreement DE-FC36-03GO13175 to develop the means to deliver suitably prepared, continuous streams of extracted syngas to a variety of on-line gas analyzers. The review of candidate analysis technology also addressed safety concerns associated with thermochemical process operation that constrain the location and configuration of potential gas analysis equipment. Initial analyzer costs, reliability, accuracy, and operating and maintenance costs were also considered prior to the assembly of suitable analyzers for this work. Initial tests at GTI’s Flex-Fuel Test Facility (FFTF) in late 2004 and early 2005 successfully demonstrated the transport and subsequent analysis of a single depressurized, heat-traced syngas stream to a single analyzer (an Industrial Machine and Control Corporation (IMACC) Fourier-transform infrared spectrometer (FT-IR)) provided by GTI. In March 2005, our sampling approach was significantly expanded when this project participated in the U.S. DOE’s Novel Gas Cleaning (NGC) project. Syngas sample streams from three process locations were transported to a distribution manifold for selectable analysis by the IMACC FT-IR, a Stanford Research Systems QMS300 Mass Spectrometer (SRS MS) obtained under this Cooperative Agreement, and a Varian micro gas chromatograph with thermal conductivity detector (?GC) provided by GTI. A syngas stream from a fourth process location was transported to an Agilent Model 5890 Series II gas chromatograph for highly sensitive gas analyses. The on-line analyses made possible by this sampling system verified the syngas cleaning achieved by the NGC process. In June 2005, GTI collaborated with Weyerhaeuser to characterize the ChemrecTM black liquor gasifier at Weyerhaeuser’s New Bern, North Carolina pulp mill. Over a ten-day period, a broad range of process operating conditions were characterized with the IMACC FT-IR, the SRS MS, the Varian ?GC, and an integrated Gas Chromatograph, Mass Selective Detector, Flame Ionization Detector and Sulfur Chemiluminescence Detector (GC/MSD/FID/SCD) system acquired under this Cooperative Agreement from Wasson-ECE. In this field application, a single sample stream was extracted from this low-pressure, low-temperature process and successfully analyzed by these devices. In late 2005,

Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

2007-09-30

73

Materials sciences research. [research facilities, research projects, and technical reports of materials tests  

NASA Technical Reports Server (NTRS)

Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.

1973-01-01

74

Man-Vehicle Systems Research Facility - Design and operating characteristics  

NASA Technical Reports Server (NTRS)

This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.

Shiner, Robert J.; Sullivan, Barry T.

1992-01-01

75

The Holifield Heavy Ion Research Facility  

SciTech Connect

Development of the Holified facility has continued with resulting improvements in the number of ion species provided, ion energy for tandem-only operations, and utilization efficiency. In this report, we describe our recent operational experience, development activities, and future development plans.

Jones, C.M.; Alton, G.D.; Ball, J.B.; Biggerstaff, J.A.; Dowling, D.T.; Erb, K.A.; Haynes, D.L.; Hoglund, D.E.; Hudson, E.D.; Juras, R.C.

1987-01-01

76

NETL- High-Pressure Combustion Research Facility  

SciTech Connect

NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

None

2013-07-08

77

Health Facility Reuse, Retrofit, and Reconfiguration. NCHSR Research Proceedings Series.  

ERIC Educational Resources Information Center

In addition to publishing the papers given at key meetings, this series on health facilities includes discussions and responses. The series is intended to help meet the information needs of health service providers and others who require direct access to concepts and ideas evolving from the exchange of research results. Health facility reuse is an…

National Center for Health Services Research (DHEW/PHS), Hyattsville, MD.

78

A study of the operation of selected national research facilities  

NASA Technical Reports Server (NTRS)

The operation of national research facilities was studied. Conclusions of the study show that a strong resident scientific staff is required for successful facility operation. No unique scheme of scientific management is revealed except for the obvious fact that the management must be responsive to the users needs and requirements. Users groups provide a convenient channel through which these needs and requirements are communicated.

Eisner, M.

1974-01-01

79

A facility for using cluster research to study environmental problems  

SciTech Connect

This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

Not Available

1991-11-01

80

Scientific and Engineering Research Facilities, 1999. Detailed Statistical Tables.  

ERIC Educational Resources Information Center

The data in these tables are collected biennially through the National Science Foundation's (NSF's) Congressionally mandated Survey of Scientific and Engineering Research Facilities. The 1999 survey was sent to research-performing colleges and universities in the United States and to U.S. biomedical research institutions that received National…

National Science Foundation, Arlington, VA. Div. of Science Resources Studies.

81

Users Guide for the National Transonic Facility Research Data System  

NASA Technical Reports Server (NTRS)

The National Transonic Facility is a complex cryogenic wind tunnel facility. This report briefly describes the facility, the data systems, and the instrumentation used to acquire research data. The computational methods and equations are discussed in detail and many references are listed for those who need additional technical information. This report is intended to be a user's guide, not a programmer's guide; therefore, the data reduction code itself is not documented. The purpose of this report is to assist personnel involved in conducting a test in the National Transonic Facility.

Foster, Jean M.; Adcock, Jerry B.

1996-01-01

82

ORGANIZATIONAL CULTURE, SAFETY CULTURE, AND SAFETY PERFORMANCE AT RESEARCH FACILITIES.  

SciTech Connect

Organizational culture surveys of research facilities conducted several years ago and archival occupational injury reports were used to determine whether differences in safety performance are related to general organizational factors or to ''safety culture'' as reflected in specific safety-related dimensions. From among the organizations surveyed, a pair of facilities was chosen that were similar in size and scientific mission while differing on indices of work-related injuries. There were reliable differences in organizational style between the facilities, especially among workers in environment, safety, and health functions; differences between the facilities (and among job categories) on the safety scale were more modest and less regular.

BROWN,W.S.

2000-07-30

83

The design and performance of a centrifugal compressor research facility  

Microsoft Academic Search

The objective of this research has been to develop an advanced high-speed, high performance centrifugal compressor research facility and obtain the baseline performance map. This facility utilizes a Rolls-Royce production model C28 centrifugal compressor from the Rolls-Royce 250 turboshaft engine used on helicopters. The compressor is powered by a 1400 hp AC motor and a variable frequency drive. The high

Ryan Michael Fleming

2010-01-01

84

A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility  

NASA Technical Reports Server (NTRS)

The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.

Jackson, K. E.; Fasanella, E. L.

2003-01-01

85

Radiation applications research and facilities in AECL research company  

NASA Astrophysics Data System (ADS)

In the 60's and 70's Atomic Energy of Canada had a very active R&D program to discover and develop applications of ionizing radiation. Out of this grew the technology underlying the company's current product line of industrial irradiators. With the commercial success of that product line the company turned its R&D attention to other activities. Presently, widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. While many of the applications being considered are straightforward applications of existing knowledge, others depend on more subtle effects including combined effects of two or more agents. Further research is required in these areas. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal adsorbent beds to concentrate the components of gas or liquid waste streams requiring treatment is showing promise as a method of significantly reducing the cost of radiation treatment for some effluents. A number of other projects are described.

Iverson, S. L.

86

ARIES: NASA Langley's Airborne Research Facility  

NASA Technical Reports Server (NTRS)

In 1994, the NASA Langley Research Center (LaRC) acquired a B-757-200 aircraft to replace the aging B-737 Transport Systems Research Vehicle (TSRV). The TSRV was a modified B-737-100, which served as a trailblazer in the development of glass cockpit technologies and other innovative aeronautical concepts. The mission for the B-757 is to continue the three-decade tradition of civil transport technology research begun by the TSRV. Since its arrival at Langley, this standard 757 aircraft has undergone extensive modifications to transform it into an aeronautical research "flying laboratory". With this transformation, the aircraft, which has been designated Airborne Research Integrated Experiments System (ARIES), has become a unique national asset which will continue to benefit the U.S. aviation industry and commercial airline customers for many generations to come. This paper will discuss the evolution of the modifications, detail the current capabilities of the research systems, and provide an overview of the research contributions already achieved.

Wusk, Michael S.

2002-01-01

87

Overview: Scientific and Engineering Research Facilities at Colleges and Universities, 1998  

NSF Publications Database

October 1999 Overview: Scientific and Engineering Research Facilities at Colleges and Universities ... Overview: Scientific and Engineering Research Facilities at Colleges and Universities, 1998 Portable ...

88

NASA Lewis Research Center's Preheated Combustor and Materials Test Facility  

NASA Technical Reports Server (NTRS)

The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.

Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith

1995-01-01

89

Simulation at Dryden Flight Research Facility from 1957 to 1982  

NASA Technical Reports Server (NTRS)

The Dryden Flight Research Facility has been a leader in developing simulation as an integral part of flight test research. The history of that effort is reviewed, starting in 1957 and continuing to the present time. The contributions of the major program activities conducted at Dryden during this 25-year period to the development of a simulation philosophy and capability is explained.

Smith, John P.; Schilling, Lawrence J.; Wagner, Charles A.

1989-01-01

90

COLD NEUTRON IRRADIATION FACILITY FOR THE BRAZILIAN RESEARCH REACTORS  

Microsoft Academic Search

Neutron irradiation in research reactors and accelerators can be realized at appropriated neutron guides or beam holes shared around a cold neutron source (CNS) with neutron of variable intensity and energy. An irradiation facility for multiple applications including an intense CNS was calculated for the three Brazilian research reactors and can be utilized as a first concept for the new

Dante L. Voi; Daniel Ting; Francisco J. O. Ferreira; Luiz H. Claro; Wilson J. Vieira

91

Research Supports Value of Updated School Facilities  

ERIC Educational Resources Information Center

Two recent peer-reviewed studies support the need to update the traditional school design model that has remained fundamentally unchanged for over a century. In a 2011 study published by the American Educational Research Journal, entitled "Problem-Based Learning in K-12 Education," Clarice Wirkala and Deanna Kuhn document a 200-500 percent…

Fielding, Randall

2012-01-01

92

ARM Climate Research Facility Annual Report 2004  

SciTech Connect

Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

Voyles, J.

2004-12-31

93

Facilities for Biological Research Aboard the International Space Station  

NASA Technical Reports Server (NTRS)

A centrifuge designed as part of an integrated biological facility for installation onboard the International Space Station is presented. The requirements for the 2.5 m diameter centrifuge, which is designed for the support of biological experiments are discussed. The scientific objectives of the facility are to: provide a means of conducting fundamental studies in which gravitational acceleration is a controllable variable; provide a 1g control; determine the threshold acceleration for physiological response, and determine the value of centrifugation as a potential countermeasure for the biomedical problems associated with space flight. The implementation of the facility is reported on, and the following aspects of the facility are described: the host resources systems supply requirements such as power and data control; the habitat holding rack; the life sciences glove box; the centrifuge; the different habitats for cell culture, aquatic studies, plant research and insect research; the egg incubator, and the laboratory support equipment.

Souza, Kenneth A.; Yost, Bruce D.; Berry, William E.; Johnson, Catherine C.

1996-01-01

94

Space facilities: Meeting future needs for research, development, and operations  

NASA Technical Reports Server (NTRS)

The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

1994-01-01

95

NASA Lewis Research Center's combustor test facilities and capabilities  

NASA Technical Reports Server (NTRS)

NASA Lewis Research Center (LeRC) presently accommodates a total of six combustor test facilities with unique capabilities. The facilities are used to evaluate combustor and afterburner concepts for future engine applications, and also to test the survivability and performance of innovative high temperature materials, new instrumentation, and engine components in a realistic jet engine environment. The facilities provide a variety of test section interfaces and lengths to allow for flametube, sector and component testing. The facilities can accommodate a wide range of operating conditions due to differing capabilities in the following areas: inlet air pressure, temperature, and flow; fuel flow rate, pressure, and fuel storage capacity; maximum combustion zone temperature; cooling water flow rate and pressure; types of exhaust - atmospheric or altitude; air heater supply pressure; and types of air heaters - vitiated or nonvitiated. All of the facilities have provisions for standard gas (emissions) analysis, and a few of the facilities are equipped with specialized gas analysis equipment, smoke and particle size measurement devices, and a variety of laser systems. This report will present some of the unique features of each of the high temperature/high pressure combustor test facilities at NASA LeRC.

Bianco, Jean

1995-01-01

96

Earthquake research for the safer siting of critical facilities  

SciTech Connect

The task of providing the necessities for living, such as adequate electrical power, water, and fuel, is becoming more complicated with time. Some of the facilities that provide these necessities would present potential hazards to the population if serious damage were to occur to them during earthquakes. Other facilities must remain operable immediately after an earthquake to provide life-support services to people who have been affected. The purpose of this report is to recommend research that will improve the information available to those who must decide where to site these critical facilities, and thereby mitigate the effects of the earthquake hazard. The term critical facility is used in this report to describe facilities that could seriously affect the public well-being through loss of life, large financial loss, or degradation of the environment if they were to fail. The term critical facility also is used to refer to facilities that, although they pose a limited hazard to the public, are considered critical because they must continue to function in the event of a disaster so that they can provide vital services.

Cluff, J.L. (ed.)

1980-01-01

97

Safety Culture And Best Practices At Japan's Fusion Research Facilities  

SciTech Connect

The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

Rule, K. [Princeton Plasma Physics Lab., Princeton, NJ (United States); King, M. [General Atomics, San Diego, CA (United States); Takase, Y. [Univ. of Tokyo (Japan); Oshima, Y. [Univ. of Tokyo (Japan); Nishimura, K. [National Institute for Fusion Science, Toki (Japan); Sukegawa, A. [Japan Atomic Energy Agency, Naka (Japan)

2014-04-01

98

Safety Culture and Best Practices at Japan's Fusion Research Facilities  

SciTech Connect

The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

Rule, Keith [PPPL

2014-05-01

99

RADIOFREQUENCY RADIATION EXPOSURE FACILITIES FOR BIO-EFFECTS RESEARCH AT THE HEALTH EFFECTS RESEARCH LABORATORY, RESEARCH TRIANGLE PARK, NORTH CAROLINA  

EPA Science Inventory

The report describes the multi-user radiofrequency radiation exposure facilities for bio-effects research in use at the Health Effects Research Laboratory, Research Triangle Park, NC. Four facilities are described: (1) a 100 MHz CW exposure system, (2) a 2450 MHz CW exposure syst...

100

Edwin Buzz Aldrin At Lunar Landing Research Facility  

NASA Technical Reports Server (NTRS)

Nearly 25 years ago, on July 20,1969, Edwin Buzz Aldrin, shown here with NASA Langley Research Centers Lunar Excursion Module (LEM) Simulator, became one of the first humans to walk on the moon after practicing with the simulator in May of 1969. Training with the simulator, part of Langleys Lunar Research Facility, allowed the Apollo astronauts to study and safely overcome problems that could have occurred during the final 150-foot descent to the surface of the moon. NASA needed such a facility in order to explore and develop techniques for landing the LEM on the moons surface, where the gravity is only one-sixth as strong as on Earth, as well as to determine the limits of human piloting capabilities in the new surroundings. This unique facility, completed in 1965 and now a National Historic Landmark, effectively canceled all but one-sixth of Earths gravitational force by using an overhead cable system.

1969-01-01

101

Research and construction progress of SG-III laser facility  

NASA Astrophysics Data System (ADS)

SG-III laser facility is now the largest under-construction laser driver for inertial confinement fusion (ICF) research in China, whose 48 beams will deliver 180kJ/3ns/3? energy to target in one shot. Till the summer of 2014, 4 bundle of lasers have finished their engineering installation and testing, and the A1 laser testing is undergoing. A round of physics experiment is planned in Oct. 2014 with 5 bundle of lasers, which means the facility must be prepared for a near-full-capability operation before the last quarter of 2014. This paper will briefly introduce the latest progress of the engineering and research progress of SG-III laser facility.

Deng, Xuewei; Zhu, Qihua; Zheng, Wanguo; Wei, Xiaofeng; Jing, Feng; Hu, Dongxia; Zhou, Wei; Feng, Bin; Wang, Jianjun; Peng, Zhitao; Liu, Lanqin; Chen, Yuanbin; Ding, Lei; Lin, Donghui; Guo, Liangfu; Dang, Zhao

2014-11-01

102

The PIRATE Facility: at the crossroads of research and teaching  

NASA Astrophysics Data System (ADS)

I describe the Open University-owned 0.43m robotic observatory PIRATE, based in Mallorca. PIRATE is a cost-effective facility contributing to topical astrophysical research and an inspiring platform for distance education students to learn practical science.

Kolb, U.

2014-12-01

103

Animal, Land and Facilities Use Form Location of Research  

E-print Network

MAFES Animal, Land and Facilities Use Form Location of Research: Today's Date: Trial Start Date Number: CRIS Number: Funding Area: Course Number: Extension Activity: DESCRIPTION OF ANIMALS REQUESTED Type: Breed: Sex: Age: Weight: Number Needed: Male: Female: Health of animals needed: If specific

Ray, David

104

Shielding studies for the confinement physics research facility  

Microsoft Academic Search

This paper reports on a radiation shielding analysis performed on the Confinement Physics Research Facility (CPRF) under construction at Los Alamos National Laboratory. A reversed-field pinch device, the ZTH, was examined in an effort to obtain an estimate of the spatial distribution of the dose seen by both personnel and electronic components. In the Monte Carlo transport analysis, the MCNP

W. P. Kelleher; J. W. Davidson; G. R. Thayer; D. J. Dudziak

1990-01-01

105

Virginia's Smart Road: an intelligent transportation systems research facility  

Microsoft Academic Search

The smart road is an experimental highway currently under construction in Virginia. It is being built from the ground up with ITS testing and evaluation in mind. Embedded research support infrastructure will include underground conduits, underground junction bunkers, power, a fiber optic data network, embedded pavement sensors, snow making capability, and experimental lighting. The facility will be utilized for a

Ashwin Amanna; Charles Crawford

1998-01-01

106

A Survey on Facilities for Experimental Internet of Things Research  

E-print Network

1 A Survey on Facilities for Experimental Internet of Things Research Alexander Gluhak , Srdjan The initial vision of the Internet of Things (IoT) was of a world in which all physical objects are tagged Internet of Things, Experimental environment, Testbed 1 INTRODUCTION The IoT is a multidisciplinary domain

Paris-Sud XI, Université de

107

ARM Climate Research Facility Monthly Instrument Report August 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-09-28

108

ARM Climate Research Facility Monthly Instrument Report September 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-10-18

109

ARM Climate Research Facility Instrumentation Status and Information December 2009  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2010-12-30

110

ARM Climate Research Facility Monthly Instrument Report July 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-08-18

111

Novel neutron sources at the Radiological Research Accelerator Facility  

NASA Astrophysics Data System (ADS)

Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

Xu, Y.; Garty, G.; Marino, S. A.; Massey, T. N.; Randers-Pehrson, G.; Johnson, G. W.; Brenner, D. J.

2012-03-01

112

Novel neutron sources at the Radiological Research Accelerator Facility  

PubMed Central

Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10–20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components. PMID:22545061

Xu, Yanping; Garty, Guy; Marino, Stephen A.; Massey, Thomas N.; Randers-Pehrson, Gerhard; Johnson, Gary W.; Brenner, David J.

2012-01-01

113

Novel neutron sources at the Radiological Research Accelerator Facility.  

PubMed

Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons.We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target.A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the (7)Li(p,n)(7)Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components. PMID:22545061

Xu, Yanping; Garty, Guy; Marino, Stephen A; Massey, Thomas N; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

2012-03-16

114

Research Facility Director (Asst./Asso./Full Researcher)  

E-print Network

accounting staff with recharge management. · Write funding proposals to support to coordinate funding streams, work schedules, timelines, and supervision of support staff. Preferred: Three years postdoctoral research, demonstrated record of scientific

Bustamante, Carlos

115

A Heated Tube Facility for Rocket Coolant Channel Research  

NASA Technical Reports Server (NTRS)

The capabilities of a heated tube facility used for testing rocket engine coolant channels at the NASA Lewis Research Center are presented. The facility uses high current, low voltage power supplies to resistively heat a test section to outer wall temperatures as high as 730 C (1350 F). Liquid or gaseous nitrogen, gaseous helium, or combustible liquids can be used as the test section coolant. The test section is enclosed in a vacuum chamber to minimize heat loss to the surrounding system. Test section geometry, size, and material; coolant properties; and heating levels can be varied to generate heat transfer and coolant performance data bases.

Green, James M.; Pease, Gary M.; Meyer, Michael L.

1995-01-01

116

National facilities study. Volume 5: Space research and development facilities task group  

NASA Technical Reports Server (NTRS)

With the beginnings of the U.S. space program, there was a pressing need to develop facilities that could support the technology research and development, testing, and operations of evolving space systems. Redundancy in facilities that was once and advantage in providing flexibility and schedule accommodation is instead fast becoming a burden on scarce resources. As a result, there is a clear perception in many sectors that the U.S. has many space R&D facilities that are under-utilized and which are no longer cost-effective to maintain. At the same time, it is clear that the U.S. continues to possess many space R&D facilities which are the best -- or among the best -- in the world. In order to remain world class in key areas, careful assessment of current capabilities and planning for new facilities is needed. The National Facility Study (NFS) was initiated in 1992 to develop a comprehensive and integrated long-term plan for future aerospace facilities that meets current and projected government and commercial needs. In order to assess the nation's capability to support space research and development (R&D), a Space R&D Task Group was formed. The Task Group was co-chaired by NASA and DOD. The Task Group formed four major, technologically- and functionally- oriented working groups: Human and Machine Operations; Information and Communications; Propulsion and Power; and Materials, Structures, and Flight Dynamics. In addition to these groups, three supporting working groups were formed: Systems Engineering and Requirements; Strategy and Policy; and Costing Analysis. The Space R&D Task Group examined several hundred facilities against the template of a baseline mission and requirements model (developed in common with the Space Operations Task Group) and a set of excursions from the baseline. The model and excursions are described in Volume 3 of the NFS final report. In addition, as a part of the effort, the group examined key strategic issues associated with space R&D facilities planning for the U.S., and these are discussed in Section 4 of this volume.

1994-01-01

117

48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.  

Code of Federal Regulations, 2012 CFR

... Special use allowances for research facilities acquired by educational...in this subsection— (1) Research facility means— (i) Real...for the purpose of conducting scientific research under contracts with...

2012-10-01

118

48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.  

Code of Federal Regulations, 2013 CFR

... Special use allowances for research facilities acquired by educational...in this subsection— (1) Research facility means— (i) Real...for the purpose of conducting scientific research under contracts with...

2013-10-01

119

48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.  

...false Special use allowances for research facilities acquired by educational...SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.015-70 Special use allowances for research facilities acquired by...

2014-10-01

120

Supporting core service facilities for biotechnology research by faculty, student, government, and  

E-print Network

Supporting core service facilities for biotechnology research by faculty, student, government, and industry scientists. Developed by the Office of Biotechnology and the Office of the Vice President for Research. Office of Biotechnology Core Instrumentation Service Facilities advancing biotechnology research

Mayfield, John

121

Rain Garden Research at EPA's Urban Watershed Research Facility  

EPA Science Inventory

I have been invited to give a presentation at the 2009 National Erosion Conference in Hartford, CT, on October 27-28, 2009. My presentation discusses the research on sizing of rain gardens that is being conducted using the large, parking lot rain gardens on-site. I discuss the ...

122

NASA superconducting magnetic mirror facility. [for thermonuclear research  

NASA Technical Reports Server (NTRS)

The design details and initial test results of a superconducting magnetic mirror facility that has been constructed at NASA Lewis Research Center for use in thermonuclear research are summarized. The magnet system consists of four solenoidal coils which are individually rated at 5.0 T. Each coll is composed of an inner, middle, and outer winding. The inner winding is wound of stabilized Nb3Sn superconducting ribbon, and the middle and outer windings are wound of stabilized Nb-Ti superconducting wire. When arranged in the mirror geometry, the four coils will produce 8.7 T at the mirrors and a 1.8 mirror ratio. The magnet has a 41-cm diameter clear bore which is open to atmosphere. Distance between the mirrors is 111 cm. Presently there are only three magnets in the facility; the fourth magnet is being rebuilt.

Reinmann, J. J.; Swanson, M. C.; Nichols, C. R.; Bloy, S. J.; Nagy, L. A.; Brady, F. J.

1973-01-01

123

A test matrix sequencer for research test facility automation  

NASA Technical Reports Server (NTRS)

The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

Mccartney, Timothy P.; Emery, Edward F.

1990-01-01

124

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007  

SciTech Connect

This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

LR Roeder

2007-12-01

125

Development of an Extreme Environment Materials Research Facility at Princeton  

SciTech Connect

The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m^3) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m^2) to 14 MeV neutrons at a fluence in excess of 10^13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m2 for durations of 1-15 seconds are planned... The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new materials, and the investigation of repair mechanisms. Effects on materials will be analyzed with in situ beam probes and instrumentation as the target is exposed to radiation, thermal fluxes and other stresses. Photon and monochromatic neutron fluxes, produced using a variable-energy (4-45 MeV) electron linac and the highly asymmetric electron-positron collisions technique used in high-energy physics research, can provide non-destructive, deep-penetrating structural analysis of materials while they are undergoing testing. The same beam lines will also be able to generate neutrons from photonuclear interactions using existing Bremsstrahlung and positrons on target quasi-monochromatic gamma rays. Other diagnostics will include infrared cameras, residual gas analyzer (RGA), and thermocouples; additional diagnostic capability will be added.

Cohen, A B; Tully, C G; Austin, R; Calaprice, F; McDonald, K; Ascione, G; Baker, G; Davidson, R; Dudek, L; Grisham, L; Kugel, H; Pagdon, K; Stevenson, T; Woolley, R

2010-11-17

126

Research objectives, opportunities, and facilities for microgravity science  

NASA Technical Reports Server (NTRS)

Microgravity Science in the U.S.A. involves research in fluids science, combustion science, materials science, biotechnology, and fundamental physics. The purpose is to achieve a thorough understanding of the effects of gravitational body forces on physical phenomena relevant to those disciplines. This includes the study of phenomena which are usually overwhelmed by the presence of gravitational body forces and, therefore, chiefly manifested when gravitational forces are weak. In the pragmatic sense, the research involves gravity level as an experimental parameter. Calendar year 1992 is a landmark year for research opportunities in low earth orbit for Microgravity Science. For the first time ever, three Spacelab flights will fly in a single year: IML-1 was launched on January 22; USML-1 was launched on June 25; and, in September, SL-J will be launched. A separate flight involving two cargo bay carriers, USMP-1, will be launched in October. From the beginning of 1993 up to and including the Space Station era (1997), nine flights involving either Spacelab or USMP carriers will be flown. This will be augmented by a number of middeck payloads and get away specials flying on various flights. All of this activity sets the stage for experimentation on Space Station Freedom. Beginning in 1997, experiments in Microgravity Science will be conducted on the Space Station. Facilities for doing experiments in protein crystal growth, solidification, and biotechnology will all be available. These will be joined by middeck-class payloads and the microgravity glove box for conducting additional experiments. In 1998, a new generation protein crystal growth facility and a facility for conducting combustion research will arrive. A fluids science facility and additional capability for conducting research in solidification, as well as an ability to handle small payloads on a quick response basis, will be added in 1999. The year 2000 will see upgrades in the protein crystal growth and fluids science facilities. From the beginning of 1997 to the fall of 1999 (the 'man-tended capability' era), there will be two or three utilization flights per year. Plans call for operations in Microgravity Science during utilization flights and between utilization flights. Experiments conducted during utilization flights will characteristically require crew interaction, short duration, and less sensitivity to perturbations in the acceleration environment. Operations between utilization flights will involve experiments that can be controlled remotely and/or can be automated. Typically, the experiments will require long times and a pristine environment. Beyond the fall of 1999 (the 'permanently-manned capability' era), some payloads will require crew interaction; others will be automated and will make use of telescience.

Bayuzick, Robert J.

1992-01-01

127

Upgrades at the NASA Langley Research Center National Transonic Facility  

NASA Technical Reports Server (NTRS)

Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

Paryz, Roman W.

2012-01-01

128

10 CFR 50.21 - Class 104 licenses; for medical therapy and research and development facilities.  

Code of Federal Regulations, 2011 CFR

...2011-01-01 false Class 104 licenses; for medical therapy and research and development facilities. 50.21 Section...Licenses § 50.21 Class 104 licenses; for medical therapy and research and development facilities. A...

2011-01-01

129

10 CFR 50.21 - Class 104 licenses; for medical therapy and research and development facilities.  

Code of Federal Regulations, 2013 CFR

...2013-01-01 false Class 104 licenses; for medical therapy and research and development facilities. 50.21 Section...Licenses § 50.21 Class 104 licenses; for medical therapy and research and development facilities. A...

2013-01-01

130

10 CFR 50.21 - Class 104 licenses; for medical therapy and research and development facilities.  

...2014-01-01 false Class 104 licenses; for medical therapy and research and development facilities. 50.21 Section...Licenses § 50.21 Class 104 licenses; for medical therapy and research and development facilities. A...

2014-01-01

131

10 CFR 50.21 - Class 104 licenses; for medical therapy and research and development facilities.  

Code of Federal Regulations, 2012 CFR

...2012-01-01 false Class 104 licenses; for medical therapy and research and development facilities. 50.21 Section...Licenses § 50.21 Class 104 licenses; for medical therapy and research and development facilities. A...

2012-01-01

132

10 CFR 50.21 - Class 104 licenses; for medical therapy and research and development facilities.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 false Class 104 licenses; for medical therapy and research and development facilities. 50.21 Section...Licenses § 50.21 Class 104 licenses; for medical therapy and research and development facilities. A...

2010-01-01

133

Major Facilities for Materials Research and Related Disciplines.  

ERIC Educational Resources Information Center

This report presents priorities for new facilities and new capabilities at existing facilities with initial costs of at least $5 million. The new facilities in order of priority are: (1) a 6 GeV synchrotron radiation facility; (2) an advanced steady state neutron facility; (3) a 1 to 2 GeV synchrotron radiation facility; and (4) a high intensity…

National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

134

Nanotechnology on a dime: building affordable research facilities  

NASA Astrophysics Data System (ADS)

Designing buildings to house nanotechnology research presents a multitude of well-recognized challenges to architectural and engineering design teams, from environmental control to spatial arrangements to operational functionality. These technical challenges can be solved with relative ease on projects with large budgets: designers have the option of selecting leading-edge systems without undue regard for their expense. This is reflected in the construction cost of many nanotechnology research facilities that run well into the hundreds of millions of dollars. Smaller universities and other institutions need not be shut out of the nanotechnology research field simply because their construction budgets are tens of millions of dollars or less. The key to success for these less expensive projects lies with making good strategic decisions: identifying priorities for the facility in terms of what it will is--and will not--provide to the researchers. Making these strategic decisions puts bounds on the tactical, technical problems that the design team at large must address, allowing them to focus their efforts on the key areas for success. The process and challenges of this strategic decision-making process are examined, with emphasis placed on the types of decisions that must be made and the factors that must be considered when making them. Case study examples of projects undertaken at the University of Alberta are used to illustrate how strategic-level decision-making sets the stage for cutting-edge success on a modest budget.

DiBattista, Jeff; Clare, Donna; Lynch, David

2005-08-01

135

First Materials Science Research Facility Rack Capabilities and Design Features  

NASA Technical Reports Server (NTRS)

The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

2002-01-01

136

ARM Climate Research Facility: Outreach Tools and Strategies  

NASA Astrophysics Data System (ADS)

Sponsored by the Department of Energy, the ARM Climate Research Facility is a global scientific user facility for the study of climate change. To publicize progress and achievements and to reach new users, the ACRF uses a variety of Web 2.0 tools and strategies that build off of the program’s comprehensive and well established News Center (www.arm.gov/news). These strategies include: an RSS subscription service for specific news categories; an email “newsletter” distribution to the user community that compiles the latest News Center updates into a short summary with links; and a Facebook page that pulls information from the News Center and links to relevant information in other online venues, including those of our collaborators. The ACRF also interacts with users through field campaign blogs, like Discovery Channel’s EarthLive, to share research experiences from the field. Increasingly, field campaign Wikis are established to help ACRF researchers collaborate during the planning and implementation phases of their field studies and include easy to use logs and image libraries to help record the campaigns. This vital reference information is used in developing outreach material that is shared in highlights, news, and Facebook. Other Web 2.0 tools that ACRF uses include Google Maps to help users visualize facility locations and aircraft flight patterns. Easy-to-use comment boxes are also available on many of the data-related web pages on www.arm.gov to encourage feedback. To provide additional opportunities for increased interaction with the public and user community, future Web 2.0 plans under consideration for ACRF include: evaluating field campaigns for Twitter and microblogging opportunities, adding public discussion forums to research highlight web pages, moving existing photos into albums on FlickR or Facebook, and building online video archives through YouTube.

Roeder, L.; Jundt, R.

2009-12-01

137

The New ORNL Multicharged Ion Research Facility Floating Beamline  

SciTech Connect

We report on the development and implementation of a new beam line at the ORNL Multicharged Ion Research Facility (MIRF) that is floatable at up to -12 kV and injected by a 10 GHz CAPRICE ECR ion source and is part of a major facility upgrade project. With the floating beam line operating at negative high voltage, and the ECR source at ground potential, intense DC beam deceleration into grounded experimental chambers to energies as low as a few eV/q is made possible. The primary application of these ion beams is to study fundamental collisional interactions of multicharged ions with electrons, atoms, and surfaces. Design details of the floating beam line, including source extraction, deceleration optics and voltage isolation will be presented. The novel features of a LABVIEW-based computer control system developed for the floating beam line will be described as well.

Meyer, Fred W [ORNL; Fogle, Mark R. [Oak Ridge National Laboratory (ORNL); Hale, Jerry W [ORNL

2007-01-01

138

Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006  

SciTech Connect

This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: • Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia • Successfully deploying the ARM Mobile Facility in Niger, Africa • Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements • Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes • Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

LR Roeder

2005-11-30

139

Measurement of routinely encountered neutron doses in research facilities  

SciTech Connect

This paper reports on a study performed to determine the accuracy of routine neutron dose equivalent assessments made using portable neutron survey instruments calibrated against two 10-curie PuBe neutron sources. Measurements were made at a research reactor facility and a cyclotron facility using a Victoreen 488A portable survey instrument, a Ludlum Model 15 portable survey instrument, and a Bonner multisphere system. Data from the Bonner multisphere system. Data from the Bonner multisphere system were unfolded using a modified version of the computer program BON31G and were used for comparison as the true dose equivalent by factors of between 3 and 50. The calibration program could be improved by calibrating and moderated PuBe sources and correlating the portable neutron survey instrument readings with data obtained through the use of the Bonner multisphere system.

Schlapper, G.A.; Neff, R.D.; Davis, D.R. (Radiological Health Engineering Program, Nuclear Engineering Dept., Texas A and M Univ., College Station, TX (US)); Sandel, P.S. (Radiological Safety Office, Texas A and M Univ., College Station, TX (US))

1983-10-01

140

Radiological Characterization and Final Facility Status Report Tritium Research Laboratory  

SciTech Connect

This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC&FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate.

Garcia, T.B.; Gorman, T.P.

1996-08-01

141

Overview of the NASA Dryden Flight Research Facility aeronautical flight projects  

NASA Technical Reports Server (NTRS)

Several principal aerodynamics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.

Meyer, Robert R., Jr.

1992-01-01

142

Overview of the NASA Dryden Flight Research Facility aeronautical flight projects testing  

NASA Technical Reports Server (NTRS)

Several principal aeronautics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.

Meyer, Robert R., Jr.

1992-01-01

143

Proton and heavy ion acceleration facilities for space radiation research  

NASA Technical Reports Server (NTRS)

The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

Miller, Jack

2003-01-01

144

Cosmic muon flux measurements at the Kimballton Underground Research Facility  

NASA Astrophysics Data System (ADS)

In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

2014-08-01

145

Congressional hearing reviews NSF major research and facilities projects  

NASA Astrophysics Data System (ADS)

An 8 March congressional hearing about the U.S. National Science Foundation's Major Research Equipment and Facilities Construction (NSF MREFC) account focused on fiscal management and accountability of projects in that account and reviewed concerns raised by NSF's Office of Inspector General (OIG). NSF established the MREFC account in 1995 to better plan and manage investments in major equipment and facilities projects, which can cost from tens of millions to hundreds of millions of dollars, and the foundation has funded 17 MREFC projects since then. The Obama administration's proposed fiscal year (FY) 2013 budget includes funding for four MREFC projects: Advanced Laser Gravitational-Wave Observatory (AdvLIGO), Advanced Technology Solar Telescope (ATST), National Ecological Observatory (NEON), and Ocean Observatories Initiative (OOI). The hearing, held by a subcommittee of the House of Representatives' Committee on Science, Space, and Technology, reviewed management oversight throughout the life cycles of MREFC projects and concerns raised in recent OIG reports about the use of budget contingency funds. NSF's February 2012 manual called “Risk management guide for large facilities” states that cost contingency is “that portion of the project budget required to cover ‘known unknowns,’” such as planning and estimating errors and omissions, minor labor or material price fluctuations, and design developments and changes within the project scope. Committee members acknowledged measures that NSF has made to improve the MREFC oversight process, but they also urged the agency to continue to take steps to ensure better project management.

Showstack, Randy

2012-03-01

146

Safety and licensing program for the proposed irradiation research facility  

SciTech Connect

Atomic Energy of Canada Limited (AECL) proposes to replace NRU with a dual-purpose irradiation-research facility (IRF) to test Canada deuterium uranium (CANDU) fuels and materials and to perform materials research using neutrons. The reference IRF concept was estimated to cost $500 million and would require 87 months to complete. Approval of the IRF project is not expected to occur before 1997, and a favorable decision will be influenced by the estimated cost and confidence in the estimate. Accordingly, AECL has initiated a preproject program that includes code validation, analysis, development and testing, safety and licensing, and concept design activities to reduce uncertainties in the reference IRF project cost and schedule, and to develop cost and schedule reductions.

Lee, A.G.; Gillespie, G.E. [Atomic Energy of Canada Ltd., Pinawa, Manitoba (Canada); Zeng, Y.; Bishop, W.E. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

1996-12-31

147

Walter C. Williams Research Aircraft Integration Facility (RAIF)  

NASA Technical Reports Server (NTRS)

The NASA-Dryden Integrated Test Facility (ITF), also known as the Walter C. Williams Research Aircraft Integration Facility (RAIF), provides an environment for conducting efficient and thorough testing of advanced, highly integrated research aircraft. Flight test confidence is greatly enhanced by the ability to qualify interactive aircraft systems in a controlled environment. In the ITF, each element of a flight vehicle can be regulated and monitored in real time as it interacts with the rest of the aircraft systems. Testing in the ITF is accomplished through automated techniques in which the research aircraft is interfaced to a high-fidelity real-time simulation. Electric and hydraulic power are also supplied, allowing all systems except the engines to function as if in flight. The testing process is controlled by an engineering workstation that sets up initial conditions for a test, initiates the test run, monitors its progress, and archives the data generated. The workstation is also capable of analyzing results of individual tests, comparing results of multiple tests, and producing reports. The computers used in the automated aircraft testing process are also capable of operating in a stand-alone mode with a simulation cockpit, complete with its own instruments and controls. Control law development and modification, aerodynamic, propulsion, guidance model qualification, and flight planning -- functions traditionally associated with real-time simulation -- can all be performed in this manner. The Remotely Augmented Vehicles (RAV) function, now located in the ITF, is a mainstay in the research techniques employed at Dryden. This function is used for tests that are too dangerous for direct human involvement or for which computational capacity does not exist onboard a research aircraft. RAV provides the researcher with a ground-based computer that is radio linked to the test aircraft during actual flight. The Ground Vibration Testing (GVT) system, formerly housed in the Thermostructural Laboratory, now also resides in the ITF. In preparing a research aircraft for flight testing, it is vital to measure its structural frequencies and mode shapes and compare results to the models used in design analysis. The final function performed in the ITF is routine aircraft maintenance. This includes preflight and post-flight instrumentation checks and the servicing of hydraulics, avionics, and engines necessary on any research aircraft. Aircraft are not merely moved to the ITF for automated testing purposes but are housed there throughout their flight test programs.

1996-01-01

148

Desiccant contamination research: Report on the desiccant contamination test facility  

SciTech Connect

The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

Pesaran, A.A.; Bingham, C.E.

1991-07-01

149

Quality Assurance of ARM Program Climate Research Facility Data  

SciTech Connect

This report documents key aspects of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) data quality assurance program as it existed in 2008. The performance of ACRF instruments, sites, and data systems is measured in terms of the availability, usability, and accessibility of the data to a user. First, the data must be available to users; that is, the data must be collected by instrument systems, processed, and delivered to a central repository in a timely manner. Second, the data must be usable; that is, the data must be inspected and deemed of sufficient quality for scientific research purposes, and data users must be able to readily tell where there are known problems in the data. Finally, the data must be accessible; that is, data users must be able to easily find, obtain, and work with the data from the central repository. The processes described in this report include instrument deployment and calibration; instrument and facility maintenance; data collection and processing infrastructure; data stream inspection and assessment; the roles of value-added data processing and field campaigns in specifying data quality and haracterizing the basic measurement; data archival, display, and distribution; data stream reprocessing; and engineering and operations management processes and procedures. Future directions in ACRF data quality assurance also are presented.

RA Peppler; KE Kehoe; KL Sonntag; CP Bahrmann; SJ Richardson; SW Christensen; RA McCord; DJ Doty; R Wagener; RC Eagan; JC Lijegren; BW Orr; DL Sisterson; TD Halter; NN Keck; CN Long; MC Macduff; JH Mather; RC Perez; JW Voyles; MD Ivey; ST Moore; DL Nitschke; BD Perkins; DD Turner

2008-03-01

150

Brain Cancer in Workers Employed at a Laboratory Research Facility  

PubMed Central

Background An earlier study of research facility workers found more brain cancer deaths than expected, but no workplace exposures were implicated. Methods Adding four additional years of vital-status follow-up, we reassessed the risk of death from brain cancer in the same workforce, including 5,284 workers employed between 1963, when the facility opened, and 2007. We compared the work histories of the brain cancer decedents in relationship to when they died and their ages at death. Results As in most other studies of laboratory and research workers, we found low rates of total mortality, total cancers, accidents, suicides, and chronic conditions such as heart disease and diabetes. We found no new brain cancer deaths in the four years of additional follow-up. Our best estimate of the brain cancer standardized mortality ratio (SMR) was 1.32 (95% confidence interval [95% CI] 0.66–2.37), but the SMR might have been as high as 1.69. Deaths from benign brain tumors and other non-malignant diseases of the nervous system were at or below expected levels. Conclusion With the addition of four more years of follow-up and in the absence of any new brain cancers, the updated estimate of the risk of brain cancer death is smaller than in the original study. There was no consistent pattern among the work histories of decedents that indicated a common causative exposure. PMID:25493437

Collins, James J.; Bender, Thomas John; Bonner, Eileen M.; Bodner, Kenneth M.; Kreft, Alisa M.

2014-01-01

151

Central Japan Synchrotron Radiation Research Facility Project-(II)  

SciTech Connect

A synchrotron radiation facility that is used not only for basic research, but also for engineering and industrial research and development has been proposed to be constructed in the Central area of Japan. The key equipment of this facility is a compact electron storage ring that is able to supply hard X-rays. The circumference of the storage ring is 72 m with the energy of 1.2 GeV, the beam current of 300 mA, and the natural emittance of about 53 nm-rad. The configuration of the storage ring is based on four triple bend cells, and four of the twelve bending magnets are 5 T superconducting ones. The bending angle and critical energy are 12 degree and 4.8 keV, respectively. For the top-up operation, the electron beam will be injected from a booster synchrotron with the full energy. Currently, six beamlines are planned for the first phase starting from 2012.

Yamamoto, N.; Takashima, Y.; Hosaka, M.; Takami, K.; Morimoto, H.; Ito, T.; Sakurai, I.; Hara, H.; Okamoto, W.; Watanabe, N.; Takeda, Y. [Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603 (Japan); Katoh, M. [UVSOR, Institute for Molecular Science, Okazaki 444-8585 (Japan); Hori, Y. [High Energy Accelerator Research Organization, Ibaraki 305-0801 (Japan); Sasaki, S. [JASRI/SPring-8, Sayo-gun, Hyogo 679-5198 (Japan); Koda, S. [Saga Light Source, Tosu, Saga 841-0005 (Japan)

2010-06-23

152

Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans  

NASA Astrophysics Data System (ADS)

The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

Pogorelsky, I. V.; Ben-Zvi, I.

2014-08-01

153

CSU's MWV Observatory: A Facility for Research, Education and Outreach  

NASA Astrophysics Data System (ADS)

The Mead Westvaco Observatory (MWVO), located in Columbus State University's Coca-Cola Space Science Center, is dedicated to education and research in astronomy through hands-on engagement and public participation. The MWVO has recently received funding to upgrade from a 16-inch Meade LX-200 telescope to a PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. This and other technological upgrades will allow this observatory to stream live webcasts for astronomical events, allowing a worldwide public audience to become a part of the growing astronomical community. This poster will explain the upgrades that are currently in progress as well as the results from the current calibrations. The goal of these upgrades is to provide facilities capable of both research-class projects and widespread use in education and public outreach. We will present our initial calibration and tests of the observatory equipment, as well as its use in webcasts of astronomical events, in solar observing through the use of specialized piggy-backed telescopes, and in research into such topics as asteroids, planetary and nebula imaging. We will describe a pilot research project on asteroid orbit refinement and light curves, to be carried out by Columbus State University students. We will also outline many of the K-12 educational and public outreach activities we have designed for these facilities. Support and funding for the acquisition and installation of the new PlaneWave CDK 24 has been provided by the International Museum and Library Services via the Museums for America Award.

Hood, John; Carpenter, N. D.; McCarty, C. B.; Samford, J. H.; Johnson, M.; Puckett, A. W.; Williams, R. N.; Cruzen, S. T.

2014-01-01

154

Cold Neutron Research Facility begins operating at NIST  

SciTech Connect

Steady-state neutron beams are generally produced by fission in a nuclear reactor, whereas pulsed beams come from spallation neutron sources. Beams from a reactor have a distribution of wavelengths that is roughly Maxwellian, with a peak wavelength that depends on the temperature of the moderator that surrounds the fuel. Cold neutrons can be selected from the low-energy tail of the distribution, but the flux drops as 1/{lambda}{sup 4}. However, by shifting the whole spectrum to longer wavelengths one can dramatically increase the cold neutron flux. This is achieved by replacing part of the core moderator with a cold moderator, or cold source,' such as liquid deuterium (at about 30 K) or D{sub 2}O ice (at about 40 K). Neutrons lose energy to the moderator through collisions, producing a shifted spectrum from which one can select lower-energy neutrons with a roughly ten-fold improvement in the flux. Neutrons exhibit optical behavior such as refraction and total reflection. Thus one can use neutron guides - analogous to optical fibers - to conduct intense beams of neutrons from the reactor into a large experimental hall, dubbed a guide hall,' where background radiation is low. The Cold Neutron Research Facility was finally funded in 1987 and opened its doors this past June. CNRF is located at the 20-MW NIST research reactor, which began continuous operation in 1969. With some foresight, the designers of the original reactor allowed space for the addition of a cryogenic moderator, which is only now being exploited. NIST will develop 10 experimental stations for use by the research science community. Additional help in financing the facility comes from participating research teams made up of groups from industry, academe and government.

Zeman, E.J.

1991-09-01

155

National scientific facilities and their science impact on nonbiomedical research  

PubMed Central

The “h index” proposed by Hirsch [Hirsch JE (2005) Proc Natl Acad Sci USA 102:16569–16573] is a good indicator of the impact of a scientist's research and has the advantage of being objective. When evaluating departments, institutions, or laboratories, the importance of the h index can be further enhanced when it is properly calibrated for the size of the group. Particularly acute is the issue of federally funded facilities whose number of actively publishing scientists frequently dwarfs that of academic departments. Recently, Molinari and Molinari [Molinari JF, Molinari A (2008) Scientometrics, in press] developed a methodology that shows that the h index has a universal growth rate for large numbers of papers, allowing for meaningful comparisons between institutions. An additional challenge when comparing large institutions is that fields have distinct internal cultures, with different typical rates of publication and citation; biology is more highly cited than physics, for example. For this reason, the present study has focused on the physical sciences, engineering, and technology and has excluded biomedical research. Comparisons between individual disciplines are reported here to provide a framework. Generally, it was found that the universal growth rate of Molinari and Molinari holds well across the categories considered, testifying to the robustness of both their growth law and our results. The goal here is to set the highest standard of comparison for federal investment in science. Comparisons are made of the nation's preeminent private and public institutions. We find that many among the national science facilities compare favorably in research impact with the nation's leading universities. PMID:17991781

Kinney, A. L.

2007-01-01

156

Cold neutron PGAA facility developments at university research reactors in the USA  

Microsoft Academic Search

Summary  The PGAA applications can be enhanced by using subthermal neutrons, cold neutrons at university research reactors. Only two cold neutron beam facilities were developed at the U.S. university research reactors, namely at Cornell University and the University of Texas at Austin. Both facilities used mesitylene moderator. The mesitylene moderator in the Cornell Cold Neutron Beam Facility (CNBF) was cooled by

K. Ünlü; C. Ríos-Martínez

2005-01-01

157

Test facilities of the structural dynamics branch of NASA Lewis Research Center  

NASA Technical Reports Server (NTRS)

The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.

Montague, Gerald T.; Kielb, Robert E.

1988-01-01

158

ADVANCED COAL & ENERGY RESEARCH FACILITY (ACERF) Washington University in St. Louis  

E-print Network

ADVANCED COAL & ENERGY RESEARCH FACILITY (ACERF) Washington University in St. Louis Overview The Advanced Coal and Energy Research Facility provides for pilot-scale research and development of new b d Ongoing Research Activities Oxy-coal combustion faculty and students within the U.S. and abroad

Subramanian, Venkat

159

EnergySolution's Clive Disposal Facility Operational Research Model - 13475  

SciTech Connect

EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operated waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)

Nissley, Paul; Berry, Joanne [EnergySolutions, 2345 Stevens Dr. Richland, WA 99354 (United States)] [EnergySolutions, 2345 Stevens Dr. Richland, WA 99354 (United States)

2013-07-01

160

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008  

SciTech Connect

The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

LR Roeder

2008-12-01

161

The development of a Space Shuttle Research Animal Holding Facility  

NASA Technical Reports Server (NTRS)

The ability to maintain the well being of experiment animals is of primary importance to the successful attainment of life sciences flight experiment goals. To assist scientists in the conduct of life sciences flight experiments, a highly versatile Research Animal Holding Facility (RAHF) is being developed for use on Space Shuttle/Spacelab missions. This paper describes the design of the RAHF system, which in addition to providing general housing for various animal species, approximating the environment found in ground based facilities, is designed to minimize disturbances of the specimens by vehicle and mission operations. Life-sustaining capabilities such as metabolic support and environmental control are provided. RAHF is reusable and is a modular concept to accommodate animals of different sizes. The basic RAHF system will accommodate a combination of 24 500-g rats or 144 mice or a mixed number of rats and mice. An alternative design accommodates four squirrel monkeys. The entire RAHF system is housed in a single ESA rack. The animal cages are in drawers which are removable for easy access to the animals. Each cage contains a waste management system, a feeding system and a watering system all of which will operate in zero or one gravity.

Jagow, R. B.

1980-01-01

162

International Space University variable gravity research facility design  

NASA Astrophysics Data System (ADS)

A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness, and loss of bone calcium. A variable gravity research facility (VGRF) that will be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. This report describes the VGRF design that was developed by international participants specializing in the following areas: the politics of international cooperation; engineering, architecture; in-space physiological, materials, and life science experimentation; data communications; and business and management.

Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

1994-03-01

163

The International Space University's variable gravity research facility design  

NASA Astrophysics Data System (ADS)

A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.

Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

1991-09-01

164

Project definition study for research facility access and science education  

SciTech Connect

This UTA/SMU project definition study describes critical customer services and research programs which draw upon SSC assets to meet regional needs in two major components: Science Education; Academic/Small Business R and D Facility Access. The location of the SSC in Texas constituted a significant stimulus to R and D activities in Texas, encouraging new initiatives in high energy physics, as well as stimulating other areas of physics and related sciences. An important aspect of maximizing the utility of the investment in the SSC should be to re-allocate SSC assets in ways that maintain that momentum. This study addresses several ways to achieve that end, extending benefits to all of physics, the sciences in general and particularly, to science education.

Rosen, S.P. [Univ. of Texas, Arlington, TX (United States). Coll. of Science; Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

1994-10-01

165

Pleistophora hyphessobryconis (Microsporidia) infecting zebrafish (Danio rerio) in research facilities  

PubMed Central

Zebrafish (Danio rerio) are important models for biomedical research, and thus there is an increased concern about diseases afflicting them. Here we describe infections by Pleistophora hyphessobryconis (Microsporidia) in zebrafish from three laboratories. As reported in other aquarium fishes, affected zebrafish exhibited massive infections in the skeletal muscle, with no involvement of smooth or cardiac muscle. In addition, numerous spores within macrophages were observed in the visceral organs, including the ovaries. Transmission studies and ribosomal RNA (rRNA) gene sequence comparisons confirmed that the parasite from zebrafish was P. hyphessobryconis as described from neon tetra Paracheirodon innesi. Ten 15-day-old zebrafish were exposed to P. hyphessobryconis collected from one infected neon tetra, and 7 of 10 fish became infected. Comparison of P. hyphessobryconis small subunit rRNA gene sequence from neon tetra with that obtained from zebrafish was nearly identical, with < 1% difference. Given the severity of infections, P. hyphessobryconis should be added to the list of pathogens that should be avoided in zebrafish research facilities, and it would be prudent to not mix zebrafish used in research with other aquarium fishes. PMID:20853741

Sanders, Justin L; Lawrence, Christian; Nichols, Donald K; Brubaker, Jeffrey F.; Peterson, Tracy S; Murray, Katrina N.; Kent, Michael L

2014-01-01

166

Spacelab Life Sciences 3 biomedical research using the Rhesus Research Facility  

NASA Technical Reports Server (NTRS)

In 1985, a letter of agreement was signed between the French space agency, CNES, and NASA, formally initiating a joint venture called the RHESUS Project. The goal of this project is to provide a facility to fly rhesus monkeys (Macaca mulatta) to support spaceflight experiments which are applicable but not practical to carry out on human subjects. Biomedical investigations in behavior/performance, immunology/microbiology, muscle physiology, cardiopulmonary physiology, bone/calcium physiology, regulatory physiology, and neurophysiology disciplines will be performed. The Rhesus Research Facility, hardware capable of supporting two adult rhesus monkeys in a microgravity environment, is being developed for a first flight on Spacelab Life Sciences in early 1996.

Ballard, R. W.; Searby, N. D.; Stone, L. S.; Hogan, R. P.; Viso, M.; Venet, M.

1992-01-01

167

National facilities study. Volume 2: Task group on aeronautical research and development facilities report  

NASA Technical Reports Server (NTRS)

The Task Group on Aeronautics R&D Facilities examined the status and requirements for aeronautics facilities against the competitive need. Emphasis was placed on ground-based facilities for subsonic, supersonic and hypersonic aerodynamics, and propulsion. Subsonic and transonic wind tunnels were judged to be most critical and of highest priority. Results of the study are presented.

1994-01-01

168

Metering research facility design. Topical report, July 1987-December 1990  

SciTech Connect

The Gas Research Institute (GRI) Metering Research Facility (MRF) has been designed to provide two independent natural gas recirculation flow loops: a Low Pressure Loop (LPL) and High Pressure Loop (HPL). Initially, these loops can accommodate meter sizes of 1 to 6 inches and 6 to 16 inches respectively. Requirements were established for the MRF complex which consists of both loops and a building with a control room, calibration labs, and work areas. All major mechanical and electrical components were specified and engineering designs completed in sufficient detail to provide for construction and fabrication drawings. Construction of the MRF has been proposed in a staged process where each succeeding stage provides new or expanded capabilities. The report primarily concentrates on the design of Stage I of the MRF. Operating ranges for the Stage I LPL are pressures up to 200 psia, temperatures from 40 F to 120 F, flow rates to 6MMSCFD, and Reynolds number to 1.1 million. Corresponding operating ranges for the Stage I HPL are pressures to 1440 psig, temperatures from 20 F to 120 F, flow rates to 165MMSCFD, and Reynolds number in excess of 14 million. In the LPL, a state-of-the-art gyroscopic balance and computer-controlled fast acting flow diversion system provide primary mass flow measurement within an accuracy of better than 0.25%. A similar primary calibration system is planned for Stage II of the HPL.

Johnson, J.E.; Bowles, E.B.; Buckingham, J.C.; Harrell, J.P.; McKee, R.J.

1992-03-01

169

Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and  

E-print Network

CMR Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) building supports research and experimental activities for plutonium and uranium analytical chemistry and metallurgy. In 1952, the first LANL CMR facility was completed. At that time

170

Engine component instrumentation development facility at NASA Lewis Research Center  

NASA Technical Reports Server (NTRS)

The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

1992-01-01

171

The advanced neutron source: A new reactor-based facility for neutron research  

Microsoft Academic Search

The advanced neutron source (ANS) is a new reactor-based research facility planned to meet the need for an intense steady-state source of neutrons, associated instruments, and experimental space. As a user facility, the ANS will be open for use by scientists from universities, industry, and federal laboratories. The scientific case for the new facility and the major requirements (the neutron

1990-01-01

172

Research and Training in Forensic Psychology: National Survey of Forensic Facilities  

Microsoft Academic Search

A survey was sent to the 103 directors of public forensic facilities in the United States. Responses were received from 68, a response rate of 66%. Information on the facilities' involvement in training and research in forensic psychology was obtained. A number of facilities reported involvement in psychology training at different levels; graduate practicum (43%) and predoctoral internship (41%) were

Kirk S. Heilbrun; Lawrence V. Annis

1988-01-01

173

Atmospheric Radiation Measurement program climate research facility operations quarterly report.  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period April 1 through June 30, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The third quarter comprises a total of 2,184 hours. For all fixed sites (especially the TWP locale) and the AMF, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the third quarter of fiscal year (FY) 2006.

Sisterson, D. L.; Decision and Information Sciences

2006-09-06

174

Shock Tube and Ballistic Range Facilities at NASA Ames Research Center  

NASA Technical Reports Server (NTRS)

The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

2010-01-01

175

Arc jet testing in NASA Ames Research Center thermophysics facilities  

NASA Technical Reports Server (NTRS)

The Arc Jet Complex facilities at NASA Ames and their performance capabilities and support systems are presented. An overview of the typical testing procedures is provided. Attention is focused on a basic understanding of the types of facilities available at Ames for aerothermodynamic testing.

Balter-Peterson, Aliza; Nichols, Frank; Mifsud, Brian; Love, Wendell

1992-01-01

176

The NASA Lewis Research Center Internal Fluid Mechanics Facility  

NASA Technical Reports Server (NTRS)

An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity.

Porro, A. R.; Hingst, W. R.; Wasserbauer, C. A.; Andrews, T. B.

1991-01-01

177

ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY  

Microsoft Academic Search

The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly

Michael E. Cournoyer; Juan Corpion; Timothy O. Nelson

2003-01-01

178

FAIR - the Facility for Antiproton and Ion Research: the Universe in the Lab  

NASA Astrophysics Data System (ADS)

As of the year 2018 the Facility for Antiproton and Ion Research (FAIR) will offer access to exotic ion beams and beams of antiproton of unprecedented luminosity. The facility currently under construction in Darmstadt, Germany, adjacent to the existing accelerator at the GSI Helmholtz Centre for Heavy-Ion Research, will serve several collaborations and fields simultaneously: atomic, hadron, nuclear, and plasma physics.

Weissbach, F.

2015-11-01

179

Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities  

NASA Technical Reports Server (NTRS)

A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

Hubbard, H. H.; Powell, C. A.

1981-01-01

180

A neutron tomography facility at a low power research reactor  

NASA Astrophysics Data System (ADS)

Neutron radiography (NR) provides a very efficient tool in the field of non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two-dimensional (2D) imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to the basic law of radiation attenuation. Contrary to X-rays, neutrons can be attenuated by some light materials, as for example, hydrogen and boron, but penetrate many heavy materials. Therefore, NR can yield important information not obtainable by more traditional methods. Nevertheless, there are many aspects of structure, both quantitative and qualitative, that are not accessible from 2D transmission images. Hence, there is an interest in three-dimensional neutron imaging. At the 250 kW TRIGA Mark II reactor of the Atominstitut in Austria a neutron tomography facility has been installed. The neutron flux at this beam position is 1.3×10 5 neutrons/cm 2 s and the beam diameter is 8 cm. For a 3D tomographic reconstruction of the sample interior, transmission images of the object taken from different view angles are required. Therefore, a rotary table driven by a step motor connected to a computerized motion control system has been installed at the sample position. In parallel a suitable electronic imaging device based on a neutron sensitive scintillator screen and a CCD-camera has been designed. It can be controlled by a computer in order to synchronize the software of the detector and of the rotary table with the aim of an automation of measurements. Reasonable exposure times can get as low as 20 s per image. This means that a complete tomography of a sample can be performed within one working day. Calculation of the 3D voxel array is made by using the filtered backprojection algorithm.

Koerner, S.; Schillinger, B.; Vontobel, P.; Rauch, H.

2001-09-01

181

Functional MRI Research Facility The Functional MRI Laboratory is dedicated to supporting research on the structures and functions of  

E-print Network

Functional MRI Research Facility The Functional MRI Laboratory is dedicated to supporting research on functional MRI and associated research tools. The Laboratory's mission is to maintain an environment that will enhance the excellence of research using fMRI and associated technologies by providing a well

Kamat, Vineet R.

182

NASA Glenn Research Center Creek Road Complex—Cryogenic Testing Facilities  

NASA Astrophysics Data System (ADS)

Due to expansion at neighboring Cleveland Hopkins Airport, several NASA Glenn Research Center (GRC) facilities have been relocated to the Creek Road Complex. The complex consists of the Small Scale Multi-purpose Research Facility (SMiRF), Cryogenic Components Lab Cell 7 (CCL-7), and a shop building. The facilities have been updated and include state-of-the art technology. SMiRF is a liquid hydrogen/liquid nitrogen (LH 2/LN 2) test facility used to conduct research in a 7400 L vacuum chamber. The chamber simulates space environment and launch vehicle ascent profile. SMiRF handles 5680 L of LH 2. CCL is a LH 2/LN 2 facility to perform small scale proof of concept tests for components and processes. It handles 1130 L of liquid hydrogen. Both facilities handle cryogens at sub-atmospheric pressures.

Jurns, John M.; Kudlac, Maureen T.

2006-02-01

183

Hardware Development Process for Human Research Facility Applications  

NASA Technical Reports Server (NTRS)

The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. The source of hardware requirements is the science community and HRF program. The HRF Science Working Group, consisting of SCientists from various medical disciplines, defined a basic set of equipment with functional requirements. This established the performance requirements of the hardware. HRF program requirements focus on making the hardware safe and operational in a space environment. This includes structural, thermal, human factors, and material requirements. Science and HRF program requirements are defined in a hardware requirements document which includes verification methods. Once the hardware is fabricated, requirements are verified by inspection, test, analysis, or demonstration. All data is compiled and reviewed to certify the hardware for flight. Obviously, the basis for all hardware development activities is requirement definition. Full and complete requirement definition is ideal prior to initiating the hardware development. However, this is generally not the case, but the hardware team typically has functional inputs as a guide. The first step is for engineers to conduct market research based on the functional inputs provided by scientists. CommerCially available products are evaluated against the science requirements as well as modifications needed to meet program requirements. Options are consolidated and the hardware development team reaches a hardware development decision point. Within budget and schedule constraints, the team must decide whether or not to complete the hardware as an in-house, subcontract with vendor, or commercial-off-the-shelf (COTS) development. An in-house development indicates NASA personnel or a contractor builds the hardware at a NASA site. A subcontract development is completed off-site by a commercial company. A COTS item is a vendor product available by ordering a specific part number. The team evaluates the pros and cons of each development path. For example, in-bouse developments utilize existing corporate knowledge regarding bow to build equipment for use in space. However, technical expertise would be required to fully understand the medical equipment capabilities, such as for an ultrasound system. It may require additional time and funding to gain the expertise that commercially exists. The major benefit of subcontracting a hardware development is the product is delivered as an end-item and commercial expertise is utilized. On the other hand, NASA has limited control over schedule delays. The final option of COTS or modified COTS equipment is a compromise between in-house and subcontracts. A vendor product may exist that meets all functional requirements but req uires in-house modifications for successful operation in a space environment. The HRF utilizes equipment developed using all of the paths described: inhouse, subcontract, and modified COTS.

Bauer, Liz

2000-01-01

184

Finding Tomorrow's Cures Northwestern University Plans for a Medical Research Facility  

E-print Network

Chicago and the city's economic development plans by bringing jobs, research, innovation, technology of Medicine conducts lifesaving research, creates jobs, fuels the Chicago economy and ensures the health of these research and patient care facilities, the hub of a world-class research and development enterprise

Contractor, Anis

185

Fossil Fuels Research Matrix Program. US Environmental Protection Agency\\/Department of Energy Fossil Fuels Research Materials Facility  

Microsoft Academic Search

The Fossil Fuels Research Materials Facility was established by an Interagency Agreement between the US EPA and US DOE to provide support for health and environmental-effects studies of alternate fossil fuels technologies. The Facility provides a common source of a wide range of samples which can be drawn upon for methods development and evaluation, interlaboratory comparison, or determination of chemical

W. H. Griest; M. R. Guerin

1980-01-01

186

OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY90  

EPA Science Inventory

The U.S. Environmental Protection Agency's Incineration Research Facility in Jefferson, Arkansas, is an experimental facility that houses two pilot.scale incinerators and the associated waste handling, emission control, process control, and safety equipment; as well as onsite lab...

187

A PACIFIC-WIDE GEOTHERMAL RESEARCH LABORATORY: THE PUNA GEOTHERMAL RESEARCH FACILITY  

SciTech Connect

The Hawaii Geothermal Project (HGP-A) well, located in the Kilauea volcano east rift zone, was drilled to a depth of 6450 feet in 1976. It is considered to be one of the hot-test producing geothermal wells in the world. This single well provides 52,800 pounds per hour of 371 F and 160 pounds per square inch-absolute (psia) steam to a 3-megawatt power plant, while the separated brine is discharged in percolating ponds. About 50,000 pounds per hour of 368 F and 155 psia brine is discharged. Geothermal energy development has increased steadily in Hawaii since the completion of HGP-A in 1976: (1) a 3 megawatt power plant at HGP-A was completed and has been operating since 1981; (2) Hawaiian Electric Company (HECO) has requested that their next increment in power production be from geothermal steam; (3) three development consortia are actively, or in the process of, drilling geothermal exploration wells on the Big Island; and (4) engineering work on the development of a 400 megawatt undersea cable for energy transmission is continuing, with exploratory discussions being initiated on other alternatives such as hydrogen. The purpose for establishing the Puna Geothermal Research Facility (PGRF) is multifold. PGRF provides a facility in Puna for high technology research, development, and demonstration in geothermal and related activities; initiate an industrial park development; and examine multi-purpose dehydration and biomass applications related to geothermal energy utilization.

Takahashi, P.; Seki, A.; Chen, B.

1985-01-22

188

RADIATION EFFECTS RESEARCH AND TEST FACILITIES AT THE INDIANA UNIVERSITY CYCLOTRON FACILITY  

Microsoft Academic Search

Two nearly identical beam line end stations and a dedicated counting room have been installed and fully instrumented at the Indiana University Cyclotron Facility (IUCF) for the performance of radiation effects tests and studies with high energy protons (up to 200 MeV) on semiconductor and other micro- and opto-electronic devices to be used in space and other radiation environments. These

K. M. Murray

189

Conceptualization and design of a variable-gravity research facility  

NASA Technical Reports Server (NTRS)

The goal is to provide facilities for the study of the effects of variable-gravity levels in reducing the physiological stresses upon the humans of long-term stay time in zero-g. The designs studied include: twin-tethered two module system with a central despun module with docking port and winch gear; and rigid arm tube facility using shuttle external tanks. Topics examined included: despun central capsule configuration, docking clearances, EVA requirements, crew selection, crew scheduling, food supply and preparation, waste handling, leisure use, biomedical issues, and psycho-social issues.

1987-01-01

190

Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities  

SciTech Connect

This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

Not Available

1993-09-30

191

Scientific and Engineering Research Facilities: 2001. Detailed Statistical Tables.  

ERIC Educational Resources Information Center

This report presents information on the amount of science and engineering (S&E) research space existing at U.S. colleges, universities, and nonprofit biomedical research institutions based on research data collected biennially through the National Science Foundation. Data are also provided on the adequacy of this research space to meet current…

National Science Foundation, Arlington, VA. Div. of Science Resources Studies.

192

Reference Mission Operational Analysis Document (RMOAD) for the Life Sciences Research Facilities  

NASA Technical Reports Server (NTRS)

The space station will be constructed during the next decade as an orbiting, low-gravity, permanent facility. The facility will provide a multitude of research opportunities for many different users. The pressurized research laboratory will allow life scientists to study the effects of long-term exposure to microgravity on humans, animals, and plants. The results of these studies will increase our understanding of this foreign environment on basic life processes and ensure the safety of man's long-term presence in space. This document establishes initial operational requirements for the use of the Life Sciences Research Facility (LSRF) during its construction.

1987-01-01

193

Recent Developments at the NASA Langley Research Center National Transonic Facility  

NASA Technical Reports Server (NTRS)

Several upgrade projects have been completed or are just getting started at the NASA Langley Research Center National Transonic Facility. These projects include a new high capacity semi-span balance, model dynamics damping system, semi-span model check load stand, data acquisition system upgrade, facility automation system upgrade and a facility reliability assessment. This presentation will give a brief synopsis of each of these efforts.

Paryz, Roman W.

2011-01-01

194

Biomedical neutron research at the Californium User Facility for Neutron Science  

Microsoft Academic Search

The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium\\u000a Use Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact252Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with252Cf sources. Three projects at the CUF that demonstrate the versatility of252Cf

R. C. Martin; T. E. Byrne; L. F. Miller

1998-01-01

195

Design and Development of a New Facility for Teaching and Research in Clinical Anatomy  

NSDL National Science Digital Library

This article discusses factors in the design, commissioning, project management, and intellectual property protection of developments within a new clinical anatomy facility. The project was aimed at creating cost-effective facilities that would address widespread concerns over anatomy teaching, and support research and community interaction. Discussed are the considerations made to develop a facility that comprises an engaging learning environment, modes to support a range of pedagogies appropriate to the needs of healthcare professionals at different stages of their careers.

2009-02-01

196

Scientific user facilities at Oak Ridge National Laboratory: New research capabilities and opportunities  

NASA Astrophysics Data System (ADS)

Over the past decade, Oak Ridge National Laboratory (ORNL) has transformed its research infrastructure, particularly in the areas of neutron scattering, nanoscale science and technology, and high-performance computing. New facilities, including the Spallation Neutron Source, Center for Nanophase Materials Sciences, and Leadership Computing Facility, have been constructed that provide world-leading capabilities in neutron science, condensed matter and materials physics, and computational physics. In addition, many existing physics-related facilities have been upgraded with new capabilities, including new instruments and a high- intensity cold neutron source at the High Flux Isotope Reactor. These facilities are operated for the scientific community and are available to qualified users based on competitive peer-reviewed proposals. User facilities at ORNL currently welcome more than 2,500 researchers each year, mostly from universities. These facilities, many of which are unique in the world, will be reviewed including current and planned research capabilities, availability and operational performance, access procedures, and recent research results. Particular attention will be given to new neutron scattering capabilities, nanoscale science, and petascale simulation and modeling. In addition, user facilities provide a portal into ORNL that can enhance the development of research collaborations. The spectrum of partnership opportunities with ORNL will be described including collaborations, joint faculty, and graduate research and education.

Roberto, James

2011-10-01

197

High School Education in Correctional Facilities. Research Brief  

ERIC Educational Resources Information Center

With the advent of "Get tough on crime" and "Three strikes" in the 1980s and 1990s, correctional facilities have become overloaded with prisoners who are often repeat offenders. 51% of those imprisoned have a GED or high school diploma. Out of the remaining 49%, 36% of inmates had not completed the ninth grade and approximately a quarter of them…

Walker, Karen

2006-01-01

198

Project Management Actions Demolition of a Research Facility Building 431  

Microsoft Academic Search

The Demolition of B431 is required to achieve the mission of LLNL and the NNSA FIRP objectives by: (1) Supporting the NNSA Infrastructure Plan goal to ''demolish excess facilities as early as possible''; (2) Banking square footage that allows continued application of advanced science and nuclear technology to the Nation's defense; and (3) Helping maintain and enhance the safety, security,

2005-01-01

199

Core Research Facilities Agreement University of Massachusetts Lowell  

E-print Network

by United States patent and copyright law where ownership follows the employer of the inventor or author. 8 Facilities regarding any billing, service or administrative matters. 3. Materials. Where applicable, Client RIGHT. 10. Limitation of Liability. IN NO EVENT SHALL UMASS BE LIABLE FOR ANY LOST PROFITS, LOSS OF USE

Massachusetts at Lowell, University of

200

Medical Direction in Skilled Nursing Facilities. NCHSR Research Summary Series.  

ERIC Educational Resources Information Center

Regulations instituted by the Department of Health, Education, and Welfare effective in 1976 require skilled nursing facilities (SNF) to provide either a physician serving as medical director, or to have an organized medical staff. This report describes how SNFs responded, and what the effects were on their operations. Descriptive data were…

Ricci, Edmund; Tessaro, Edward

201

Characterization of the fast neutron irradiation facility of the Portuguese Research Reactor after core conversion.  

PubMed

The fast neutron irradiation facility of the Portuguese Research Reactor was characterized after the reduction in uranium enrichment and rearrangement of the core configuration. In this work we report on the determination of the hardness parameter and the 1MeV equivalent neutron flux along the facility, in the new irradiation conditions, following ASTM E722 standard. PMID:21071234

Marques, J G; Sousa, M; Santos, J P; Fernandes, A C

2011-08-01

202

Final cleanup of buildings within in legacy French research facilities: strategy, tools and lessons learned  

Microsoft Academic Search

This paper describes the methodology followed by the French Atomic Energy Commission (CEA) to decommission the buildings of former research facilities for demolition or possible reuse. It is a well known fact that the French nuclear safety authority has decided not to define any general release level for the decommissioning of nuclear facilities, thus effectively prohibiting radiological measurement-driven decommissioning. The

C. Le Goaller; C. Doutreluingne; M. A. Berton; O. Doucet

2007-01-01

203

A facility for using cluster research to study environmental problems. Workshop proceedings  

SciTech Connect

This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

Not Available

1991-11-01

204

www.its.umn.edu ITS Institute Research Facilities  

E-print Network

on human factors research, bringing together a core staff of cognitive psychologists: A dedicated system of cameras overlooking the I-94/I-35 Commons, supporting research in crash prevention in transportation through education, research, and technology transfer. The mission of the Institute is "to enhance

Levinson, David M.

205

Who Does What? Office for Research Safety (ORS), Facilities Management (FM), Risk Management (RM), University Police  

E-print Network

you need a service. Question Contact Answer Topic: Laboratory Safety Equipment (hoods, biological safety cabinets, flammable materials storage, emergency showers, emergency eyewashes, fire extinguishersWho Does What? Office for Research Safety (ORS), Facilities Management (FM), Risk Management (RM

Shull, Kenneth R.

206

77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112  

Federal Register 2010, 2011, 2012, 2013

...Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating...Geoffrey Wertz, Office of Nuclear Reactor Regulation, U.S. Nuclear...Policy and Rulemaking, Office of Nuclear Reactor Regulation. [FR Doc....

2012-05-03

207

Research Facility Climate change and environmental stresses placed by humans on plants,  

E-print Network

Research Facility Climate change and environmental stresses placed by humans on plants, animals: Biomes, Earth Science, Imaging, Insects, Microbiology, Plants and Algae, Plant Productivity and Transgenic Plants · Will lead to significant contributions in the areas of sustainable agriculture

Denham, Graham

208

Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility  

SciTech Connect

This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography. (LSP)

Gmuer, N.F.; Thomlinson, W.

1990-02-01

209

BASIC RESEARCH DIRECTIONS for User Science at the National Ignition Facility  

E-print Network

Nuclear Security Administration ­ Office of Science Workshop on Basic Research Directions on User Science FACILITY Report on the National Nuclear Security Administration (NNSA) ­ Office of Science (SC) Workshop................................................................................ 31 Nuclear Physics

Stewart, Sarah T.

210

Expenditures on S&E Research Facilities At Historically Black Colleges and Universities Continue to Decline  

NSF Publications Database

Expenditures on S&E Research Facilities At Historically Black Colleges and Universities Continue to Decline (February 10, 1995) This report is available in multiple formats. See Help for more information about viewing publications in different formats.

211

Evaluation of an Indoor Sonic Boom Subjective Test Facility at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

A sonic boom simulator at NASA Langley Research Center has been constructed for research on human response to low-amplitude sonic booms heard indoors. Research in this facility will ultimately lead to development of a psychoacoustic model for single indoor booms. The first subjective test was designed to explore indoor human response to variations in sonic boom rise time and amplitude. Another goal was to identify loudness level variability across listener locations within the facility. Finally, the test also served to evaluate the facility as a laboratory research tool for studying indoor human response to sonic booms. Subjects listened to test sounds and were asked to rate their annoyance relative to a reference boom. Measurements of test signals were conducted for objective analysis and correlation with subjective responses. Results confirm the functionality of the facility and effectiveness of the test methods and indicate that loudness level does not fully describe indoor annoyance to the selected sonic boom signals.

Loubeau, Alexandra; Rathsam, Jonathan; Klos, Jacob

2011-01-01

212

Office of the Vice President for Research UGA IACUC Policy for Satellite Animal Facilities and  

E-print Network

Office of the Vice President for Research UGA IACUC Policy for Satellite Animal Facilities Animals or the FASS Guide for the Care and Use of Agricultural Animals in Research and Teaching for the Care and Use of Agricultural Animals in Research and Teaching. In general: · The room should have

Arnold, Jonathan

213

Phytochrome-mediated responses: Implications for controlled environment research facilities  

NASA Technical Reports Server (NTRS)

Light is undoubtedly the most important environmental variable for plant growth and development; plants not only use radiant energy in photosynthesis, they also respond to the quantity, quality, direction and timing of incident radiation through photomorphogenic response that can have huge effects on the rate of growth and the pattern of development. It is surprising, therefore, that the manufacturers and suppliers of controlled environment facilities have been singularly uninventive in the design of the lighting assemblies they provide. The consumer has one choice only - a lighting assembly that provides irradiance levels usually only a fraction of sunlight, and a control system that is limited to regulating the timing of the on-off switch. The reasons for these limitations are partly technological, but in the main they result from ignorance on the part of both the consumer and the manufacturer. A specific and powerful example of this ignorance relates to the importance of the so-called far-red wavelengths (FR = 700-800 nm). Because the human eye can hardly detect wavelengths above 700 nm, and photosynthesis also cuts off at about 700 nm, the majority of plant and crop physiologists are still almost completely unaware that FR radiation can have massive effects on growth rate and development. In consequence, most growth cabinets have light sources based on fluorescent tubes, and provide very little FR apart from that emitted by a token number of small incandescent bulbs. Larger growth facilities often use broader spectrum light sources, but growth facilities that provide the capability to vary the FR incident upon the plants are about as abundant as seals in the Sahara. This article sets the background of the significance of FR radiation in the natural environment and its importance for plant growth and development in the hope that it might inform intelligently those concerned with improving the design of plant growth facilities.

Smith, Harry

1994-01-01

214

Project Management Actions Demolition of a Research Facility Building 431  

SciTech Connect

The Demolition of B431 is required to achieve the mission of LLNL and the NNSA FIRP objectives by: (1) Supporting the NNSA Infrastructure Plan goal to ''demolish excess facilities as early as possible''; (2) Banking square footage that allows continued application of advanced science and nuclear technology to the Nation's defense; and (3) Helping maintain and enhance the safety, security, and reliability of the weapons stockpile. A significant effort has been put into the demolition concept in order to ensure that it is well thought out and represents best-value to the government for the money.

Collins, W L

2005-09-06

215

Research at the BNL Tandem Van de Graaff Facility, 1980  

SciTech Connect

Research programs at the Brookhaven Van de Graaff accelerators are summarized. Major accomplishments of the laboratory are discussed including quasielastic reactions, high-spin spectroscopy, yrast spectra, fusion reactions, and atomic physics. The outside user program at the Laboratory is discussed. Research proposed for 1981 is outlined. (GHT)

Not Available

1981-03-01

216

Fire-protection research for DOE facilities: FY 82 year-end report  

SciTech Connect

We summarize our research in FY 82 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies for energy technology facilities to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are concurrently advancing three major task areas: (1) the identification of fire hazards unique to current fusion energy facilities; (2) the evaluation of accepted fire-management measures to meet and negate hazards; and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Priante, S.J.; Foote, K.L.

1983-09-02

217

Fire protection research for DOE facilities: FY 83 year-end report  

SciTech Connect

We summarize our research in FY 83 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies of energy technology facilities in order to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are currently advancing three major task areas: (1) the identification of fire hazards unique to fusion energy facilities, (2) the evaluation of accepted fire-management measures to meet the negate hazards, and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.; Stagge, K.

1984-08-02

218

AIRBORNE RESEARCH & SURVEY FACILITY (ARSF) ANNOUNCEMENT OF OPPORTUNITY -ATMOSPHERIC SCIENCE  

E-print Network

.org.uk/london/asp/news.asp?NewsId=Cleanair). The ARSF Dornier 228-101 research aircraft and core instruments support environmental research, training), an operating ceiling of 25 000ft (oxygen for pilots and 3 operators/observers), DC 28V/225A science power with the AIMMS-20), supplied with 28V DC/115V AC and data cables to allow the control of instruments from inside

219

Facility Design Considerations for Select Agent Animal Research  

Microsoft Academic Search

The events of September 11, 2001, have piqued US interest and investment in infectious disease research and the facili- ties that support the research. Since 1999, federal grants for biosafety level (BSL)-3, -3 agricultural (Ag), and -4 re- search have increased by more than 900%—to $13.1B in the fiscal years 2002 to 2004 compared with $1.2B from 1999 to 2001.

Dan Frasier; Jeff Talka

220

NSTX Report on FES Joint Facilities Research Milestone 2010  

SciTech Connect

Annual Target: Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape-off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER. The divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer will be measured in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality ?*, beta ?, parallel heat flux q||, and divertor geometry). Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation.

R. Maingi, J-W. Ahn, T.K. Gray, A.G. McLean, V.A. Soukhanovskii

2011-03-24

221

Recent LAMPF (Los Alamos Meson Physics Facility) research using muons  

SciTech Connect

In addition to the core programs in nuclear and particle physics, diverse experiments have been carried out that address interdisciplinary and applied topics at the Los Alamos Meson Physics Facility (LAMPF). These include muon-spin-relaxation experiments to study magnetic dynamics in spin glasses and electronic structure in heavy-fermion superconductors; muon channeling experiments to provide information on pion stopping sites in crystals; tomographic density reconstruction studies using proton energy loss; and radiation-effects experiments to explore microstructure evolution and to characterize materials for fusion devices and high-intensity accelerators. Finally, the catalysis of the d-t fusion reaction using negative muons has been extensively investigated with some surprising results including a stronger than linear dependence of the mesomolecular formation rate on target density and the observation of 150 fusions per muon under certain conditions. Recent results in those programs involving pions and muons interacting with matter are discussed.

Bradbury, J.N.

1987-01-01

222

Needs and opportunities for improving the health, safety, and productivity of medical research facilities.  

PubMed Central

Medical research facilities, indeed all the nation's constructed facilities, must be designed, operated, and maintained in a manner that supports the health, safety, and productivity of the occupants. The National Construction Goals, established by the National Science and Technology Council, envision substantial improvements in occupant health and worker productivity. The existing research and best practices case studies support this conclusion, but too frequently building industry professionals lack the knowledge to design, construct, operate, and maintain facilities at these optimum levels. There is a need for more research and more collaborative efforts between medical and facilities engineering researchers and practitioners in order to attain the National Construction Goals. Such collaborative efforts will simultaneously support attainment of the National Health Goals. This article is the summary report of the Healthy Buildings Committee for the Leadership Conference: Biomedical Facilities and the Environment sponsored by the National Institutes of Health, the National Association of Physicians for the Environment, and the Association of Higher Education Facilities Officers on 1--2 November 1999 in Bethesda, Maryland, USA. PMID:11124125

Hodgson, M; Brodt, W; Henderson, D; Loftness, V; Rosenfeld, A; Woods, J; Wright, R

2000-01-01

223

Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012  

SciTech Connect

Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2012-10-10

224

Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012  

SciTech Connect

Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

Voyles, JW

2013-01-11

225

ARM Climate Research Facility Quarterly Instrument Report Fourth Quarter: October 1–December 30, 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

Voyles, JW

2011-01-17

226

EMSL Research and Capability Development Proposals Facility-Wide Management and Storage for Scientific Data  

E-print Network

EMSL Research and Capability Development Proposals Facility-Wide Management and Storage for Scientific Data Project Start Date: Summer 2008 EMSL Lead Investigator Ken Auberry Instrumentation the various possible storage entities becomes more of a burden than the researcher is willing to bear

227

Boise Hydrogeophysical Research Site: Field-Scale Test Facility for Addressing Fundamental Questions of Environmental Science  

Microsoft Academic Search

The Boise Hydrogeophysical Research Site (BHRS) is a research wellfield or field-scale test facility developed in a shallow, coarse, fluvial aquifer with the objectives of supporting (a) development of cost-effective, non- invasive methods for quantitative characterization and imaging methods in heterogeneous aquifers using hydrologic and geophysical techniques; (b) examination of fundamental relationships and processes at multiple scales; (c) testing theories

W. Barrash; P. S. Routh

2006-01-01

228

Restoration of the Hypersonic Tunnel Facility at NASA Glenn Research Center, Plum Brook Station  

NASA Technical Reports Server (NTRS)

The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF), located at the Plum Brook Station in Sandusky, Ohio, is a non-vitiated, free-jet facility, capable of testing large-scale propulsion systems at Mach Numbers from 5 to 7. As a result of a component failure in September of 1996, a restoration project was initiated in mid- 1997 to repair the damage to the facility. Following the 2-1/2 year effort, the HTF has been returned to an operational condition. Significant repairs and operational improvements have been implemented in order to ensure facility reliability and personnel safety. As of January 2000, this unique, state-of-the-art facility was ready for integrated systems testing.

Woodling, Mark A.

2000-01-01

229

LLNL\\/UC AMS facility and research program  

Microsoft Academic Search

The Lawrence Livermore National Laboratory (LLNL) and the University of California (UC) now have in operation a large AMS spectrometer built as part of a new multiuser laboratory centered on an FN tandem. AMS measurements are expected to use half of the beam time of the accelerator. LLNL use of AMS is in research on consequences of energy usage. Examples

J. C. Davis; I. D. Proctor; J. R. Southon; M. W. Caffee; D. W. Heikkinen; M. L. Roberts; T. L. Moore; K. W. Turteltaub; D. E. Nelson; D. H. Loyd; J. S. Vogel

1990-01-01

230

MICROCOMPUTER CONTROL OF AN ESTUARINE RESEARCH MESOCOSM FACILITY  

EPA Science Inventory

The paper describes the application of microcomputer technology to laboratory-oriented ecosystem research. The instrumentation offers the ability to monitor and manipulate variables of interest on a 'real time' basis. The microcomputer oontrol system was found to be reliable and ...

231

Diffraction studies applicable to 60-foot microwave research facilities  

NASA Technical Reports Server (NTRS)

The principal features of this document are the analysis of a large dual-reflector antenna system by vector Kirchhoff theory, the evaluation of subreflector aperture-blocking, determination of the diffraction and blockage effects of a subreflector mounting structure, and an estimate of strut-blockage effects. Most of the computations are for a frequency of 15.3 GHz, and were carried out using the IBM 360/91 and 360/95 systems at Goddard Space Flight Center. The FORTRAN 4 computer program used to perform the computations is of a general and modular type so that various system parameters such as frequency, eccentricity, diameter, focal-length, etc. can be varied at will. The parameters of the 60-foot NRL Ku-band installation at Waldorf, Maryland, were entered into the program for purposes of this report. Similar calculations could be performed for the NELC installation at La Posta, California, the NASA Wallops Station facility in Virginia, and other antenna systems, by a simple change in IBM control cards. A comparison is made between secondary radiation patterns of the NRL antenna measured by DOD Satellite and those obtained by analytical/numerical methods at a frequency of 7.3 GHz.

Schmidt, R. F.

1973-01-01

232

Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama  

SciTech Connect

This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

Not Available

1992-09-01

233

Aifira: An ion beam facility for multidisciplinary research  

NASA Astrophysics Data System (ADS)

During the last decade, the CENBG (Centre d'Études Nucléaires de Bordeaux Gradignan) commissioned a new facility called AIFIRA (Applications Interdisciplinaires des Faisceaux d'ions en Région Aquitaine). It allowed the development of a multidisciplinary activity based on the "in-house" expertise of CENBG in ion beam analysis. The great flexibility offered by the five beam lines confers a lot of possibilities for chemical analysis and nuclear physics. Indeed, not only the macrobeam and the external beam lines provide the full set of IBA techniques for routine sample analysis but an additional beam line is devoted to the production of monoenergetic neutrons through the interaction of the incoming ion with selected targets. In addition, the two high-resolution microbeam lines are used for chemical analyses, 2D/3D imaging, and targeted cell irradiation. Besides, the combination of the nanobeam line flexibility, the uniqueness of the micro-irradiation design completed by the internal CENBG expertise confers a great specificity to AIFIRA in biomedical field. After a detailed technical overview of the platform, the article focuses on the two high-resolution lines as they tap most of the activity. Thus a quick overview of the most significant results concerning biomedical samples is proposed in order to highlight the analytical possibilities of AIFIRA microbeam lines. A summary of the development status of the micro-irradiation line is also done.

Sorieul, S.; Alfaurt, Ph.; Daudin, L.; Serani, L.; Moretto, Ph.

2014-08-01

234

NASA's GreenLab Research Facility: A Guide for a Self-Sustainable Renewable Energy Ecosystem  

NASA Technical Reports Server (NTRS)

There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The sustainability of humanity, as we know it, directly depends on the ability to secure affordable fuel, food, and freshwater. NASA Glenn Research Center (Glenn) has initiated a laboratory pilot study on using biofuels as viable alternative fuel resources for the field of aviation, as well as utilizing wind and solar technology as alternative renewable energy resources. The GreenLab Research Facility focuses on optimizing biomass feedstock using algae and halophytes as the next generation of renewable aviation fuels. The unique approach in this facility helps achieve optimal biomass feedstock through climatic adaptation of balanced ecosystems that do not use freshwater, compete with food crops, or use arable land. In addition, the GreenLab Research Facility is powered, in part, by alternative and renewable energy sources, reducing the major environmental impact of present electricity sources. The ultimate goal is to have a 100 percent clean energy laboratory that, when combined with biomass feedstock research, has the framework in place for a self-sustainable renewable energy ecosystem that can be duplicated anywhere in the world and can potentially be used to mitigate the shortage of food, fuel, and water. This paper describes the GreenLab Research Facility at Glenn and its power and energy sources, and provides recommendations for worldwide expansion and adoption of the facility s concept.

Bomani, B. M. McDowell; Hendricks, R. C.; Elbuluk, Malik; Okon, Monica; Lee, Eric; Gigante, Bethany

2011-01-01

235

RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY  

SciTech Connect

The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

Sexton, L.; Fuller, Kenneth

2013-07-09

236

Disposal of radioactive waste from nuclear research facilities  

E-print Network

Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

Maxeiner, H; Kolbe, E

2003-01-01

237

A neutron tomography facility at a low power research reactor  

Microsoft Academic Search

Neutron radiography (NR) provides a very efficient tool in the field of non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two-dimensional (2D) imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to

S. Koerner; B. Schillinger; P. Vontobel; H. Rauch

2001-01-01

238

The universe in the laboratory - Nuclear astrophysics opportunity at the facility for antiproton and ion research  

SciTech Connect

In the next years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzze-ntrum für Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and pathbreaking research in hadronic, nuclear, and atomic physics as well as in applied sciences. This manuscript will discuss some of these research opportunities, with a focus on supernova dynamics and nucleosynthesis.

Langanke, K. [GSI Helmholtzzentrum für Schwerionenforschung, Technische Universität Darmstadt, Frankfurt Institute of Advanced Studies, D-64291 Darmstadt (Germany)

2014-05-09

239

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

SciTech Connect

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

1994-10-01

240

A facility for accelerator research and education at Fermilab  

SciTech Connect

Fermilab is currently constructing the 'SRF Test Accelerator at the New Muon Lab' (NML). NML consists of a photo-emitted RF electron gun, followed by a bunch compressor, low energy test beamlines, SCRF accelerating structures, and high energy test beamlines. The initial primary purpose of NML will be to test superconducting RF accelerating modules for the ILC and for Fermilab's 'Project X' - a proposal for a high intensity proton source. The unique capability of NML will be to test these modules under conditions of high intensity electron beams with ILC-like beam parameters. In addition NML incorporates a photoinjector which offers significant tunability and especially the possibility to generate a bright electron beam with brightness comparable to state-of-the-art accelerators. This opens the exciting possibility of also using NML for fundamental beams research and tests of new concepts in beam manipulations and acceleration, instrumentation, and the applications of beams.

Church, Mike; Nagaitsev, Sergei; /Fermilab

2009-01-01

241

NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility  

NASA Technical Reports Server (NTRS)

The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

2004-01-01

242

Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use  

NASA Technical Reports Server (NTRS)

The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.

Morse, S. F.; Roper, A. T.

1975-01-01

243

LBNL Computational Research & Theory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012  

ScienceCinema

Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

Yelick, Kathy

2013-05-29

244

Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility  

SciTech Connect

Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

Salazar, M.D.

1998-12-01

245

Research Support Facility Data Center: An Example of Best Practices Implementation (Brochure)  

SciTech Connect

This brochure details the design and operations of the Research Support Facility (RSF) data center. The National Renewable Energy Laboratory (NREL) is world-renowned for its commitment to green building construction. To further this commitment to green building and leading by example, NREL included an ultra-energy-efficient data center in the laboratory's new Research Support Facility (RSF), which recently received a Leadership in Energy and Environmental Design{reg_sign} (LEED) Platinum designation from the U.S. Green Building Council.

Not Available

2011-10-01

246

The Basic Aerodynamics Research Tunnel - A facility dedicated to code validation  

NASA Technical Reports Server (NTRS)

Computational fluid dynamics code validation requirements are discussed together with the need for close interaction between experiment and code development. Code validation experiments require a great deal of data and for the experiments to be successful, a highly-productive research facility is required. A description is provided of the NASA Langley Basic Aerodynamics Research Tunnel (BART); especially the instrumentation and experimental techniques that make the facility ideally suited to code validation experiments. Results are presented from recent tests which illustrate the techniques used in BART.

Sellers, William L., III; Kjelgaard, Scott O.

1988-01-01

247

OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY94  

EPA Science Inventory

The U.S. Environmental Protection Agency?s Incineration Research Facility (IRF) in Jefferson, Arkansas, is an experimental facifity that houses a pilot-scale rotary kiln incineration system (RKS) and the associated waste handling, emission control, process control, and safety equ...

248

A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA3 Research Reactor  

Microsoft Academic Search

The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1)

Emiliano Pozzi; David W. Nigg; Marcelo Miller; Silvia I. Thorp; Amanda E. Schwint; Elisa M. Heber; Veronica A. Trivillin; Leandro Zarza; Guillermo Estryk

2007-01-01

249

Texas Experimental Tokamak, a plasma research facility: Technical progress report  

SciTech Connect

In the year just past, the authors made major progress in understanding turbulence and transport in both core and edge. Development of the capability for turbulence measurements throughout the poloidal cross section and intelligent consideration of the observed asymmetries, played a critical role in this work. In their confinement studies, a limited plasma with strong, H-mode-like characteristics serendipitously appeared and received extensive study though a diverted H-mode remains elusive. In the plasma edge, they appear to be close to isolating a turbulence drive mechanism. These are major advances of benefit to the community at large, and they followed from incremental improvements in diagnostics, in the interpretation of the diagnostics, and in TEXT itself. Their general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The work here demonstrates a continuing dedication to the problems of plasma transport which continue to plague the community and are an impediment to the design of future devices. They expect to show here that they approach this problem consistently, systematically, and effectively.

Wootton, A.J.

1995-08-01

250

Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility  

SciTech Connect

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

2003-02-26

251

36 CFR 1254.6 - Do I need a researcher identification card to use archival materials at a NARA facility?  

Code of Federal Regulations, 2013 CFR

... Do I need a researcher identification card to use archival materials at a NARA facility... Do I need a researcher identification card to use archival materials at a NARA facility...Yes, you need a researcher identification card to use original archival materials at...

2013-07-01

252

36 CFR 1254.6 - Do I need a researcher identification card to use archival materials at a NARA facility?  

... Do I need a researcher identification card to use archival materials at a NARA facility... Do I need a researcher identification card to use archival materials at a NARA facility...Yes, you need a researcher identification card to use original archival materials at...

2014-07-01

253

36 CFR 1254.6 - Do I need a researcher identification card to use archival materials at a NARA facility?  

Code of Federal Regulations, 2011 CFR

... Do I need a researcher identification card to use archival materials at a NARA facility... Do I need a researcher identification card to use archival materials at a NARA facility...Yes, you need a researcher identification card to use original archival materials at...

2011-07-01

254

36 CFR 1254.6 - Do I need a researcher identification card to use archival materials at a NARA facility?  

Code of Federal Regulations, 2010 CFR

... Do I need a researcher identification card to use archival materials at a NARA facility... Do I need a researcher identification card to use archival materials at a NARA facility...Yes, you need a researcher identification card to use original archival materials at...

2010-07-01

255

36 CFR 1254.6 - Do I need a researcher identification card to use archival materials at a NARA facility?  

Code of Federal Regulations, 2012 CFR

... Do I need a researcher identification card to use archival materials at a NARA facility... Do I need a researcher identification card to use archival materials at a NARA facility...Yes, you need a researcher identification card to use original archival materials at...

2012-07-01

256

Description of a 2-Foot Hypersonic Facility at the Langley Research Center  

NASA Technical Reports Server (NTRS)

This report describes the mechanical and aerodynamic features of a two-foot hypersonic facility at the Langley Research Center. The facility provides for the testing of aerodynamic models in the Mach number range between 3 and 7 at approximate Reynolds numbers between 0.5 x 10(exp 6) and 1.0 x 10(exp 6). The facility was designed to obtain the needed pressure ratio through the use of ejector nozzles. Compressors driving the ejectors operate continuously at a pressure ratio of 4 and thus give the facility a continuous running capability. Curves are presented to show the ranges of total temperature, total pressure, Reynolds number dynamic pressure, and static pressure available in the tunnel. The flow in the test section is suitable for model tests at all Mach numbers between 3 and 7, although the nozzle blocks were contoured for a Mach number of 6.

Stokes, George M.

1961-01-01

257

Conceptual design and programmatics studies of space station accommodations for Life Sciences Research Facilities (LSRF)  

NASA Technical Reports Server (NTRS)

Conceptual designs and programmatics of the space station accommodations for the Life Sciences Research Facilities (LSRF) are presented. The animal ECLSS system for the LSRF provides temperature-humidity control, air circulation, and life support functions for experimental subjects. Three ECLSS were studied. All configurations presented satisfy the science requirements for: animal holding facilities with bioisolation; facilities interchangeable to hold rodents, small primates, and plants; metabolic cages interchangeable with standard holding cages; holding facilities adaptable to restrained large primates and rodent breeding/nesting cages; volume for the specified instruments; enclosed ferm-free workbench for manipulation of animals and chemical procedures; freezers for specimen storage until return; and centrifuge to maintain animals and plants at fractional g to 1 g or more, with potential for accommodating humans for short time intervals.

1985-01-01

258

ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY  

SciTech Connect

The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy, and cost effectiveness. These efforts partially fulfill expectations of the DOE, other federal agencies, and the State of New Mexico for waste minimization. If the improvements discussed here are implemented, an estimated 1.8 million dollars in cost savings is expected.

Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

2003-02-27

259

NASA's plans for life sciences research facilities on a Space Station  

NASA Technical Reports Server (NTRS)

A Life Sciences Research Facility on a Space Station will contribute to the health and well-being of humans in space, as well as address many fundamental questions in gravitational and developmental biology. Scientific interests include bone and muscle attrition, fluid and electrolyte shifts, cardiovascular deconditioning, metabolism, neurophysiology, reproduction, behavior, drugs and immunology, radiation biology, and closed life-support system development. The life sciences module will include a laboratory and a vivarium. Trade-offs currently being evaluated include (1) the need for and size of a 1-g control centrifuge; (2) specimen quantities and species for research; (3) degree of on-board analysis versus sample return and ground analysis; (4) type and extent of equipment automation; (5) facility return versus on-orbit refurbishment; (6) facility modularity, isolation, and system independence; and (7) selection of experiments, design, autonomy, sharing, compatibility, and integration.

Arno, R.; Heinrich, M.; Mascy, A.

1984-01-01

260

Radiation dosimetry for NCT facilities at the Brookhaven Medical Research Reactor  

SciTech Connect

Brookhaven Medical Research Reactor (BMRR) is a 3 mega-watt (MW) heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for medical and biological studies and became operational in 1959. Over time, the BMRR was modified to provide thermal and epithermal neutron beams suitable for research studies. NCT studies have been performed at both the epithermal neutron irradiation facility (ENIF) on the east side of the BMRR reactor core and the thermal neutron irradiation facility (TNIF) on the west side of the core. Neutron and gamma-ray dosimetry performed from 1994 to the present in both facilities are described and the results are presented and discussed.

Holden, N.E.; Hu, J.P.; Greenberg, D.D.; Reciniello, R.N.

1998-12-31

261

Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility  

SciTech Connect

Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce the duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility.

Korbin, G.; Wollenberg, H.; Wilson, C.; Strisower, B.; Chan, T.; Wedge, D.

1981-09-01

262

Biomedical neutron research at the Californium User Facility for neutron science  

SciTech Connect

The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact {sup 252}Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with {sup 252}Cf sources. Three projects at the CUF that demonstrate the versatility of {sup 252}Cf for biological and biomedical neutron-based research are described: future establishment of a {sup 252}Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded {sup 252}Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy.

Martin, R.C. [Oak Ridge National Lab., TN (United States); Byrne, T.E. [Roane State Community College, Harriman, TN (United States); Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States)

1997-04-01

263

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01

264

Development Approach for the Accommodation of Materials Science Research for the Materials Science Research Facility on the International Space Station  

NASA Technical Reports Server (NTRS)

The Materials Science Research Facility (MSRF) is a modular facility comprised of autonomous Materials Science Research Racks (MSRR's) for research in the microgravity environment afforded by the International Space Station (ISS). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on the third Utilization Flight (UF-3). The facility will house materials processing apparatus and common subsystems required for operating each device. Each MSRR is a stand alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multiuser generic processing apparatus. Each MSRR will support a wide range of materials science themes in the NASA research program and will use the ISS Active Rack Isolation System (ARIS). MSRF is being developed for the United States Laboratory Module and will provide the apparatus for satisfying near-term and long-range Materials Science Discipline goals and objectives.

Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

2000-01-01

265

An Overview of the Antenna Measurement Facilities at the NASA Glenn Research Center  

NASA Technical Reports Server (NTRS)

For the past twenty years, the NASA Glenn Research Center (formerly Lewis Research Center) in Cleveland, Ohio, has developed and maintained facilities for the evaluation of antennas. This effort has been in support of the work being done at the center in the research and development of space communication systems. The wide variety of antennas that have been considered for these systems resulted in a need for several types of antenna ranges at the Glenn Research Center. Four ranges, which are part of the Microwave Systems Laboratory, are the responsibility of the staff of the Applied RF Technology Branch. A general description of these ranges is provided in this paper.

Lambert, Kevin M.; Anzic, Godfrey; Zakrajsek, Robert J.; Zaman, Afroz J.

2002-01-01

266

An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility  

SciTech Connect

The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

P. Calderoni; P. Sharpe; M. Shimada

2009-09-01

267

Cloud-Aerosol-Precipitation Interactions Research Platform - Eastern North Atlantic (ENA) Graciosa Island ARM Facility  

NASA Astrophysics Data System (ADS)

One source of uncertainty that thwarts accurate and comprehensive representation of the present and future climate processes in the models is the role of the marine stratocumulus clouds that prevails over the eastern subtropical oceans that have been proved plays a critical role in the boundary layer dynamics and in the global climate. The successful deployment of the US Department of Energy Atmospheric Radiation Measurement (ARM) Mobile Facility at Graciosa Island, Azores (2009-2010) in support of the Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP-MBL) field campaign, produced the most extensive (19 months) and comprehensive dataset of marine boundary layer (MBL) clouds to date. Solid preliminary findings and valuable data sets have since been used to promote a true climatology of marine cloud structure over the north Atlantic. From the promising results of this campaign (www.arm.gov), the Azores were identified as having ideal conditions to warrant a fixed site that focuses on the life cycle and characterization of marine stratocumulus clouds and ocean atmosphere interactions which play a critical role in boundary layer dynamics and in the validation and testing of cloud parameterizations for the large-scale computer models and improved climate predictions. As a result, a new fixed facility that became operational on the 1st of October, 2013 has joined the ARM Climate Research Facilities network. Identified broadly as the Eastern North Atlantic (ENA), this facility is located on Graciosa Island (39°N 28°W); the second smallest island of the Archipelago of the Azores, Portugal. The ENA climate research user facility has augmented the facilities measurement capability with the addition of a Ka-/W-Band scanning cloud radar, a X-Band precipitation radar, Doppler lidar and an extensive set of radiometric measurements and routine radiosonde soundings. Besides showcasing the capabilities of this new facility, this presentation will aim to promote discussion about the potential for the facilities use in collaborative efforts in support of atmospheric and climatic sciences and in particular as they may relate to European initiatives. The facility as a designated DOE user facility makes all of its data freely and publicly available. In addition there is limited opportunity for the facility to be used as a deployment platform with instrument accommodation and infrastructure available on request.

Nitschke, Kim; Azevedo, Eduardo; Ortega, Paul; Haruta, Amon

2014-05-01

268

Uses of earth resources data in the NASA/MSC Earth Resources Research Data Facility.  

NASA Technical Reports Server (NTRS)

The operation of the Earth Resources Research Data Facility (ERRDF) in Clear Lake City, Texas, which contains both aircraft and spacecraft gathered information on remote sensing of earth resources, including geology, geography, agriculture, forestry, hydrology, and oceanography, is described in detail. Possible uses of ERRDF data for further studies and applications are discussed.

Zeitler, E. O.; Bratton, R. D.

1971-01-01

269

The Nuclotron-Based Ion Collider fAcility at the Joint Institute for Nuclear Research  

NASA Astrophysics Data System (ADS)

A brief status report on the current development of the Nuclotron-Based Ion Collider fAcility (NICA) and the MultiPurpose Particle Detector (MPD) at the Joint Institute for Nuclear Research (JINR), which gives new prospects for heavy ion collisions and spin physics, is presented.

Nica Collaboration; Sissakian, A. N.; Kekelidze, V. D.; Sorin, A. S.; NICA Collaboration

2009-08-01

270

THE HOLIFIELD HEAVY-ION RESEARCH FACILITY AT OAK RIDGE C. M. JONES  

E-print Network

1353 THE HOLIFIELD HEAVY-ION RESEARCH FACILITY AT OAK RIDGE C. M. JONES Oak Ridge National Laboratory*, Oak Ridge, Tennessee 37830, U.S.A. Résumé. 2014 Un nouveau laboratoire de recherche sur les ions lourds est actuellement en construction au Laboratoire National d'Oak Ridge. Cet exposé présente une

Paris-Sud XI, Université de

271

A Protocol System for Testing Biohazardous Materials in an Impact Biomechanics Research Facility  

Microsoft Academic Search

This article presents a protocol system, comprised of a review process and a series of checklists, that was developed for testing cadaveric tissue in an impact biomechanics research facility. The use of cadaveric tissue may expose personnel to bloodborne pathogens including HIV and hepatitis B, which have been shown to remain virulent in a cadaver for several weeks after death.

Stefan M. Duma; Rodney W. Rudd; Jeff R. Crandall

1999-01-01

272

Research Fortnight, 17 March 201016 view The Science and Technology Facilities Council completed  

E-print Network

Research Fortnight, 17 March 201016 view The Science and Technology Facilities Council completed-year ÂŁ2.4 billion investment strategy in multi-disciplinary science and technology. The process started conflicts were not involved in discussions or decisions on their own project. PPAN and Science Board members

Crowther, Paul

273

CONTROL SYSTEM FOR THE ORNL MULTICHARGED ION RESEARCH FACILITY HIGH-VOLTAGE PLATFORM  

E-print Network

CONTROL SYSTEM FOR THE ORNL MULTICHARGED ION RESEARCH FACILITY HIGH-VOLTAGE PLATFORM M. E. Bannister , F. W. Meyer, and J. Sinclair, ORNL, Oak Ridge, TN 37831-6372, USA Abstract A control system. Performance of the control system during ini- tial experiments using the high-voltage platform will be re

274

SYSTEMS RELIABILITY AND PERFORMANCE: PILOT-SCALE INCINERATION OF CHLORINATED BENZENES AT THE COMBUSTION RESEARCH FACILITY  

EPA Science Inventory

A series of 34 test burns was conducted between August 1983 and January 1984 in the pilot-scale rotary kiln incineration system at the USEPA Combustion Research Facility (CRF), using chlorinated benzenes as surrogate Principal Organic Hazardous Components (POHCs), over a range of...

275

Research Support Facility - A Model of Super Efficiency (RSF) (Fact Sheet)  

SciTech Connect

This fact sheet published by the National Renewable Energy Laboratory discusses the lab's newest building, the Research Support Facility (RSF). The RSF is a showcase for ultra-efficient workplaces. Various renewable energy and energy efficiency features have been employed so that the building achieves a Leadership in Energy and Environmental Design (LEED) Platinum rating from the U.S. Green Building Council.

Not Available

2010-08-01

276

Acoustics in Research Facilities--Control of Wanted and Unwanted Sound. Laboratory Design Notes.  

ERIC Educational Resources Information Center

Common and special acoustics problems are discussed in relation to the design and construction of research facilities. Following a brief examination of design criteria for the control of wanted and unwanted sound, the technology for achieving desired results is discussed. Emphasis is given to various design procedures and materials for the control…

Newman, Robert B.

277

Materials Corrosion and Mitigation Strategies for APT, Weapons Neutron Research Facility Experiments  

E-print Network

Materials Corrosion and Mitigation Strategies for APT, Weapons Neutron Research Facility Experiments: The Effects of 800 MeV Proton Irradiation on the Corrosion of Tungsten, Tantalum, Stainless Steel, and Gold R. Scott Lillard, Darryl P. Butt Materials Corrosion & Environmental Effects Laboratory MST-6

278

1. Cover Sheet Proposal Title: The ARM Climate Research Facility in the Amazon Basin  

E-print Network

, is an isolated urban area within the Amazon Basin (e.g., natural forest for 1000's km in every direction drying and the eventual possible conversion of rain forest to savanna in response to global climate1. Cover Sheet Proposal Title: The ARM Climate Research Facility in the Amazon Basin Date Submitted

279

RESEARCH PAPER Facile synthesis of porous-carbon/LiFePO4 nanocomposites  

E-print Network

Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul. The combination of nanosized active materials and mesoporous carbon is advantageous for facile diffusion of Li iron phosphate has received extensive interest as a promising cathode material since the first report

Park, Byungwoo

280

Lab Specific Safety Training NNIN-Nano Research Facility and EECE-Jens Lab  

E-print Network

Lab Specific Safety Training NNIN-Nano Research Facility and EECE-Jens Lab 2013 #12;Lab Safety Policies Safety for Nanomaterials Safety Quiz #12;Lab Safety Training and Access · All users must first in every lab and should be worn when handling any chemicals. · Safety glasses are available in the labs

Subramanian, Venkat

281

Clinical trial of cancer therapy with heavy ions at heavy ion research facility in lanzhou  

Microsoft Academic Search

With collaborative efforts of scientists from the Institute of Modern Physics (IMP), Chinese Academy of Sciences and hospitals in Gansu, initial clinical trial on cancer therapy with heavy ions has been successfully carried out in China. From November 2006 to December 2007, 51 patients with superficially-placed tumors were treated with carbon ions at Heavy Ion Research Facility in Lanzhou (HIRFL)

Hong Zhang

2008-01-01

282

Scientific and Engineering Research Facilities at Colleges and Universities, 1998. Topical Report.  

ERIC Educational Resources Information Center

On a biennial basis since 1986, the National Science Foundation (NSF) has collected data on issues related to Science and Engineering (S&E) research facilities at U.S. colleges, universities, and biomedical institutions. This report presents the major findings from the 1998 survey and provides a summary of the changes that took place between the…

National Science Foundation, Arlington, VA. Div. of Science Resources Studies.

283

Barriers to communication and cooperation in addressing community impacts of radioactive releases from research facilities  

Microsoft Academic Search

Two instances of research facilities responding to public scrutiny will be discussed. The first concerns emissions from a �tritium labeling facility� operated at Lawrence Berkeley National Laboratory (LBNL); the second deals with releases of plutonium from Lawrence Livermore National Laboratory (LLNL). There are many parallels between these two cases, both of which are still ongoing. In both, the national laboratory

R J Harrach; S Peterson

1999-01-01

284

TRITIUM RESEARCH FACILITY AND LABORATORY, TRA666 AND TRA666A. CONTEXTUAL VIEW ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

TRITIUM RESEARCH FACILITY AND LABORATORY, TRA-666 AND TRA-666A. CONTEXTUAL VIEW SHOWS SECURITY BUILDING, TRA-621, AT LEFT; TRA-643, AT RIGHT. TRA-666 BUILDING NUMBER IS ON WEST SIDE OF BUILDING. INL NEGATIVE NO. HD46-38-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

285

ARRA-funded Cloud Radar Development for the Department of Energy's ARM Climate Research Facility  

E-print Network

ARRA-funded Cloud Radar Development for the Department of Energy's ARM Climate Research Facility six dual frequency cloud radar systems. These radars will be used by the Atmospheric Radiation on the effects of clouds and precipitation on the climate. Four cloud radar systems will be permanently installed

286

DISTRIBUTION OF TRACE ELEMENT EMISIONS FROM THE LIQUID INJECTION INCINERATOR COMBUSTION RESEARCH FACILITY  

EPA Science Inventory

A series of tests was conducted at EPA's Combustion Research Facility (CRF) to investigate the fate of volatile trace elements in liquid injection hazardous waste incineration. In these tests, arsenic in the form of arsenic trioxide and antimony in the form of antimony trichlorid...

287

Supporting core service facilities for biotechnology research by faculty, student, government, and  

E-print Network

, and industry scientists. Developed by the Office of Biotechnology and the Office of the Vice President in the core facilities can assist university, industry, and government researchers at every stage to preset emission ranges determined by fixed filter sets. The optical parametric oscillator expands

Mayfield, John

288

A possible biomedical facility at the European Organization for Nuclear Research (CERN).  

PubMed

A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990

Dosanjh, M; Jones, B; Myers, S

2013-05-01

289

Honey Bee Haven Garden Harry H. Laidlaw Jr. Honey Bee Research Facility  

E-print Network

Honey Bee Haven Garden Harry H. Laidlaw Jr. Honey Bee Research Facility Design Competition Detail Honey Bee Model Langstroth Lane Honeycomb Lattice Water Source Design Team Thanks! 01 03 10 17 #12 of the Honey Bee Haven garden. Based in the Bay Area, our multidisciplinary team brings together the expertise

Ishida, Yuko

290

System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results. Appendix D: Life sciences research facility requirements  

NASA Technical Reports Server (NTRS)

The purpose of this requirements document is to develop the foundation for concept development for the Life Sciences Research Facility (LSRF) on the Space Station. These requirements are developed from the perspective of a Space Station laboratory module outfitter. Science and mission requirements including those related to specimens are set forth. System requirements, including those for support, are detailed. Functional and design requirements are covered in the areas of structures, mechanisms, electrical power, thermal systems, data management system, life support, and habitability. Finally, interface requirements for the Command Module and Logistics Module are described.

Wiley, Lowell F.

1985-01-01

291

Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs  

SciTech Connect

High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

Drewmark Communications; Sartor, Dale; Wilson, Mark

2010-07-01

292

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2010  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Sisterson, DL

2010-07-09

293

Design of Cold Neutron Imaging Facility at China Advanced Research Reactor  

NASA Astrophysics Data System (ADS)

The radiography imaging with cold neutrons is being planned at China Advanced Research Reactor (CARR). The 60MW CARR at China Institute of Atomic Energy (CIAE) has got full power in March, 2012. It is a tank-in-pool type reactor using a D2O reflector for inverse neutron trap, and the expected optimal undisturbed thermal neutron flux is 8 × 1014 n/cm2rad s. Cold neutron imaging facility will be built at the guide hall. At present, its conceptional and physical designs have been finished. The cold neutron imaging facilities will provide an efficient and versatile tool for basic scientific and industrial non-destructive investigation.

Han, Songbai; Wu, Meimei; Wang, Hongli; Hao, Lijie; Wei, Guohai; He, Linfeng; Wang, Yu; Liu, Yuntao; Chen, Dongfeng

294

The gravitational plant physiology facility-Description of equipment developed for biological research in spacelab  

NASA Technical Reports Server (NTRS)

In January 1992, the NASA Suttle mission STS 42 carried a facility designed to perform experiments on plant gravi- and photo-tropic responses. This equipment, the Gravitational Plant Physiology Facility (GPPF) was made up of a number of interconnected units mounted within a Spacelab double rack. The details of these units and the plant growth containers designed for use in GPPF are described. The equipment functioned well during the mission and returned a substantial body of time-lapse video data on plant responses to tropistic stimuli under conditions of orbital microgravity. GPPF is maintained by NASA Ames Research Center, and is flight qualifiable for future spacelab missions.

Heathcote, D. G.; Chapman, D. K.; Brown, A. H.; Lewis, R. F.

1994-01-01

295

Design strategies for the International Space University's variable gravity research facility  

NASA Technical Reports Server (NTRS)

A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.

Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

1990-01-01

296

Recommendations for control of pathogens and infectious diseases in fish research facilities  

USGS Publications Warehouse

Concerns about infectious diseases in fish used for research have risen along with the dramatic increase in the use of fish as models in biomedical research. In addition to acute diseases causing severe morbidity and mortality, underlying chronic conditions that cause low-grade or subclinical infections may confound research results. Here we present recommendations and strategies to avoid or minimize the impacts of infectious agents in fishes maintained in the research setting. There are distinct differences in strategies for control of pathogens in fish used for research compared to fishes reared as pets or in aquaculture. Also, much can be learned from strategies and protocols for control of diseases in rodents used in research, but there are differences. This is due, in part, the unique aquatic environment that is modified by the source and quality of the water provided and the design of facilities. The process of control of pathogens and infectious diseases in fish research facilities is relatively new, and will be an evolving process over time. Nevertheless, the goal of documenting, detecting, and excluding pathogens in fish is just as important as in mammalian research models. ?? 2008.

Kent, M.L.; Feist, S.W.; Harper, C.; Hoogstraten-Miller, S.; Law, J.M.; Sanchez-Morgado, J. M.; Tanguay, R.L.; Sanders, G.E.; Spitsbergen, J.M.; Whipps, C.M.

2009-01-01

297

36 CFR 1254.22 - Do I need to register when I visit a NARA facility for research?  

Code of Federal Regulations, 2010 CFR

...2010-07-01 false Do I need to register when I visit a NARA facility for research...Procedures § 1254.22 Do I need to register when I visit a NARA facility for research? (a) Yes, you must register each day you enter a NARA...

2010-07-01

298

Lessons learned from a hydrogen explosion at a photovoltaic research facility  

SciTech Connect

At the Institute of Energy Conversion (IEC), University of Delaware, a hydrogen explosion occurred an September 1, 1992. A formal investigation was conducted. Suggestions provided by the Accident Investigation Team formed the basis for a complete review and upgrade of the compressed gas handling systems and procedures. In this paper, the causes of the explosion are discussed along with resulting modifications made to the gas handling system, facility, and procedures to prevent a recurrence of this type of incident and to improve the safety of this facility. Lessons learned from this incident and the resulting investigation and response are highlighted, including the need to regularly review both hardware and procedures to ensure that all aspects of the research program and facilities are up-to-date.

Moskowitz, P. [Brookhaven National Lab., Upton, NY (United States); Buchanan, W.; Shafarman, W. [Univ. of Delaware, Newark, DE (United States). Institute of Energy Conversion

1995-02-01

299

Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities  

NASA Technical Reports Server (NTRS)

Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

2003-01-01

300

Facilities for animal research in space with special reference to Space Station Freedom  

NASA Technical Reports Server (NTRS)

The facilities being planned for animal research on Space Station Freedom are considered in the context of the development of animal habitats from early ballistic and orbital flights to long-term missions aimed at more detailed scientific studies of the effects of space conditions on the vertebrate organism. Animal habitats are becoming more elaborate, requiring systems for environmental control, waste management, physiological monitoring, as well as ancillary facilities such as a 1-G control centrifuge and a glovebox. Habitats in use or to be used in various types of manned and unmanned spacecraft, and particularly those planned for Space Station Freedom, are described. The characteristics of the habitats are compared with each other and with current standards for animal holding facilities on the ground.

Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.

1990-01-01

301

Guest research facilities at the Biologische Anstalt Helgoland: Past and present  

NASA Astrophysics Data System (ADS)

The Biologische Anstalt Helgoland (BAH) offers unique possibilities for research and education in marine sciences in the southern part of the North Sea. Besides its own research duties, the Institute provides research facilities and technical assistance for guest scientists, assists in the teaching and education of university student groups, and conducts its own courses. The Institute further supplies universities and research institutions on the mainland with marine organisms. The marine station on Helgoland has 14 laboratories, with a total of 32 working places available for guest scientists. The Wadden Sea Institute in List on the island of Sylt offers 6 laboratories with a total of 18 working places. Furthermore, laboratory classrooms are located on Helgoland and in List for 50 and 20 participants, respectively. For the convenience of the guest researchers staying at the BAH, guest-houses are run on Helgoland (Arthur-Hagmeier-Haus, Wilhelm-Mielk-Haus) und in List (Adolf-Bückmann-Haus). Guest researchers have been welcome since the founding of the Institute in 1892. Heincke gave a brief report on the activities of the first visitors from 1892 to 1897. Only sporadic reports are available for the first 60 years of this century. Guest scientists and their activities have only been recorded in detail in the annual reports of the BAH since 1962. The number of researchers and the length of their visits have increased continuously since 1962. The research facilities on Helgoland, in List and Hamburg have been modernized during the last 20 years. In 1971, four modern laboratories for guest researchers could be opened on Helgoland with financial support of the German Research Foundation (DFG). The number, of guest researchers in List and Hamburg increased after the completion of new buildings in 1979 and 1982. The recent increase in research activities by guest scientists is due to numerous students, from many different universities, using the superb research facilities to do their Masters thesis, or Ph.D. Guest researchers and students either perform their own research or cooperate with scientists of the BAH.

Harms, J.

1995-03-01

302

The ARM Climate Research Facility: A Review of Structure and Capabilities  

SciTech Connect

The Atmospheric Radiation Measurement (ARM) program (www.arm.gov) is a Department of Energy, Office of Science, climate research user facility that provides atmospheric observations from diverse climatic regimes around the world. Use of ARM data is free and available to anyone through the ARM data archive. ARM is approaching 20 years of operations. In recent years, the facility has grown to add two mobile facilities and an aerial facility to its network of fixed-location sites. Over the past year, ARM has enhanced its observational capabilities with a broad array of new instruments at its fixed and mobile sites and the aerial facility. Instruments include scanning millimeter- and centimeter-wavelength radars; water vapor, cloud/aerosol extinction, and Doppler lidars; a suite of aerosol instruments for measuring optical, physical, and chemical properties; instruments including eddy correlation systems to expand measurements of the surface and boundary layer; and aircraft probes for measuring cloud and aerosol properties. Taking full advantage of these instruments will involve the development of complex data products. This work is underway but will benefit from engagement with the broader scientific community. In this article we will describe the current status of the ARM program with an emphasis on developments over the past eight years since ARM was designated a DOE scientific user facility. We will also describe the new measurement capabilities and provide thoughts for how these new measurements can be used to serve the climate research community with an invitation to the community to engage in the development and use of these data products.

Mather, James H.; Voyles, Jimmy W.

2013-03-01

303

An assessment of research opportunities and the need for synchrotron radiation facilities  

SciTech Connect

The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held.

NONE

1995-12-31

304

Operating capability and current status of the reactivated NASA Lewis Research Center Hypersonic Tunnel Facility  

NASA Technical Reports Server (NTRS)

The NASA Lewis Research Center's Hypersonic Tunnel Facility (HTF) is a free-jet, blowdown propulsion test facility that can simulate up to Mach-7 flight conditions with true air composition. Mach-5, -6, and -7 nozzles, each with a 42 inch exit diameter, are available. Previously obtained calibration data indicate that the test flow uniformity of the HTF is good. The facility, without modifications, can accommodate models approximately 10 feet long. The test gas is heated using a graphite core induction heater that generates a nonvitiated flow. The combination of clean-air, large-scale, and Mach-7 capabilities is unique to the HTF and enables an accurate propulsion performance determination. The reactivation of the HTF, in progress since 1990, includes refurbishing the graphite heater, the steam generation plant, the gaseous oxygen system, and all control systems. All systems were checked out and recertified, and environmental systems were upgraded to meet current standards. The data systems were also upgraded to current standards and a communication link with NASA-wide computers was added. In May 1994, the reactivation was complete, and an integrated systems test was conducted to verify facility operability. This paper describes the reactivation, the facility status, the operating capabilities, and specific applications of the HTF.

Thomas, Scott R.; Trefny, Charles J.; Pack, William D.

1995-01-01

305

Research opportunities and facilities at ORNL`s residual stress user center  

SciTech Connect

The High Temperature Materials Laboratory (HTML) User Program at ORNL was established to help solve high-temperature materials problems that limit the efficiency and reliability of advanced energy-conversion systems. Both proprietary and nonproprietary research can be conducted within the user program. The facilities are open to researchers in US industry, universities, and federal laboratories. The Residual Stress User Center (RSUC), one of the six HTML user centers, was recently established and consists of two high precision x-ray diffraction systems for measurement of residual strain and texture. Both biaxial and triaxial residual strain data can be collected. Attachments to the diffraction system include a position sensitive detector and a laser specimen positioning system. The RSUC has capabilities for electropolishing and strain measurement with strain gauges. A complementary neutron diffraction facility has recently been developed and demonstrated at the High Flux Isotope Reactor at ORNL. The neutron diffraction facility enables mapping of macro residual stresses throughout the volume of a component, complementing the near surface stress measurements available by x-ray diffraction. The neutron facility has been proposed as an addition to the RSUC.

Hubbard, C.R.; Watkins, T.R.; Kozaczek, K.; Wang, X.-L.; Spooner, S.

1994-09-01

306

Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2012-04-13

307

In-flight simulation studies at the NASA Dryden Flight Research Facility  

NASA Technical Reports Server (NTRS)

Since the late 1950's the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the space shuttle; the effects of time delays on controllability of aircraft with digital flight control systems; the causes and cures of pilot-induced oscillation in a variety of aircraft; and flight control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems, avoid them, and solve problems once they appear. This paper presents an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.

Shafer, Mary F.

1994-01-01

308

In-flight simulation studies at the NASA Dryden Flight Research Facility  

NASA Technical Reports Server (NTRS)

Since the late 1950's, the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low-lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the Space Shuttle; the effects of time delays on controllability of aircraft with digital flight-control systems, the causes and cures of pilot-induced oscillation in a variety of aircraft, and flight-control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems and to avoid them and to solve problems once they appear. Presented here is an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.

Shafer, Mary F.

1992-01-01

309

Some specialized radiological safety considerations at Argonne National Laboratory's heavy ion research facility  

Microsoft Academic Search

An existing accelerator system at Argonne National Laboratory (ANL) has been upgraded and is being extended to provide heavy ions with energies well above the nuclear binding energies (5-25 MeV\\/A). The final configuration of the system, called the Argonne Tandem-LINAC Accelerator System (ATLAS), is to become a user-oriented national facility for nuclear physics research. ATLAS will produce some specialized radiological

R. H. Cooke; R. A. Wynveen

1983-01-01

310

Introductory remarks. [fluid mechanics research for the National Transonic Facility: theoretical aerodynamics  

NASA Technical Reports Server (NTRS)

Suggested fluid mechanics research to be conducted in the National Transonic Facility include: wind tunnel calibration; flat plate skin friction, flow visualization and measurement techniques; leading edge separation; high angle of attack separation; shock-boundary layer interaction; submarine shapes; low speed studies of cylinder normal to flow; and wall interference effects. These theoretical aerodynamic investigations will provide empirical inputs or validation data for computational aerodynamics, and increase the usefulness of existing wind tunnels.

Gessow, A.

1977-01-01

311

Turning a liability into an asset at Sandia California: The Tritium Research Facility transition  

Microsoft Academic Search

With an investment of $20.9 million, Sandia National Laboratories\\/California (Sandia\\/CA) saved the Department of Energy (DOE) an estimated $106.3 million--a 500% return on investment. In cooperation with DOE, Sandia\\/CA decontaminated and transitioned (D and T) the Tritium Research Laboratory (TRL), a DOE non-reactor Category 2 nuclear facility. In support of the DOE`s Office of Defense Programs, Sandia\\/CA had conducted advanced

T. B. Garcia; S. J. Raubfogel

1997-01-01

312

The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility  

Microsoft Academic Search

This study is an experimental determination of the energy return on investment (EROI) for algal biocrude production at a research\\u000a facility at the University of Texas at Austin (UT). During the period of this assessment, algae were grown at several cultivation\\u000a scales and processed using centrifugation for harvesting, electromechanical cell lysing, and a microporous hollow fiber membrane\\u000a contactor for lipid

Colin M. Beal; Robert E. Hebner; Michael E. Webber; Rodney S. Ruoff; A. Frank Seibert

313

Experimental research facility for creep-rupture testing of tantalum alloy T-111  

Microsoft Academic Search

We have developed a research facility for computer-controlled elevated temperature tensile testing of refractory metallic alloys in an inert enviroment. In an application to tantalum alloy T-111, we have determined that a two-hour creep rupture life can be achieved at 1204°C (0.45 T\\/sub m\\/) and 1300°C (0.48 T\\/sub m\\/) if the applied true stresses are maintained below 46 ksi (317

W. A. Kawahara; B. D. Schoeneman; J. S. Korellis

1984-01-01

314

AgCam: scientific imaging from the ISS Window Observational Research Facility  

Microsoft Academic Search

The agricultural camera (AgCam) is a two-band digital imaging payload that will be operated in the pressurized Window Observational Research Facility (WORF) onboard the International Space Station. Its primary mission is to provide on-demand, high-resolution remote sensing imagery to support precision agriculture and natural resource end-users in the Upper Midwest. The major benefits of AgCam are its ability to provide

Nicholas E. Hulst; Jason B. Barton; Jonathan Carpenter; Christopher Frey; Jeffrey Hammes; Arnold F. Johnson; Douglas R. Olsen; Richard R. Schultz; Benjamin W. Scilley; George A. Seielstad; William H. Semke; Scott Threinen; Paul Ubbi; Richard Voeller; W. J. Wambsganss; Adam Webster; Chang-Hee Won; Austin Zeller

2004-01-01

315

Neutron Flux Characterization of the Cold Beam PGAA-NIPS Facility at the Budapest Research Reactor  

NASA Astrophysics Data System (ADS)

Reliable flux characterization is essential for facilities using neutron beams. Hence, the NIPS station at the Budapest Research Reactor has recently been equipped with neutron-tomographic equipment. The beam can also be characterized by means of a large surface wire chamber and application of the time-of-flight method. The energy distribution was measured at three horizontal positions with the surface wire chamber in pinhole geometry, while the spatial inhomogeneity was determined by means of our new neutron-tomographic equipment.

Belgya, T.; Kis, Z.; Szentmiklósi, L.

2014-05-01

316

Research Opportunities in High Energy Density Laboratory Plasmas on the NDCX-II Facility  

SciTech Connect

Intense beams of heavy ions offer a very attractive tool for fundamental research in high energy density physics and inertial fusion energy science. These applications build on the significant recent advances in the generation, compression and focusing of intense heavy ion beams in the presence of a neutralizing background plasma. Such beams can provide uniform volumetric heating of the target during a time-scale shorter than the hydrodynamic response time, thereby enabling a significant suite of experiments that will elucidate the underlying physics of dense, strongly-coupled plasma states, which have been heretofore poorly understood and inadequately diagnosed, particularly in the warm dense matter regime. The innovations, fundamental knowledge, and experimental capabilities developed in this basic research program is also expected to provide new research opportunities to study the physics of directly-driven ion targets, which can dramatically reduce the size of heavy ion beam drivers for inertial fusion energy applications. Experiments examining the behavior of thin target foils heated to the warm dense matter regime began at the Lawrence Berkeley National Laboratory in 2008, using the Neutralized Drift Compression Experiment - I (NDCX-I) facility, and its associated target chamber and diagnostics. The upgrade of this facility, called NDCX-II, will enable an exciting set of scientific experiments that require highly uniform heating of the target, using Li{sup +} ions which enter the target with kinetic energy in the range of 3 MeV, slightly above the Bragg peak for energy deposition, and exit with energies slightly below the Bragg peak. This document briefly summarizes the wide range of fundamental scientific experiments that can be carried out on the NDCX-II facility, pertaining to the two charges presented to the 2008 Fusion Energy Science Advisory Committee (FESAC) panel on High Energy Density Laboratory Plasmas (HEDLP). These charges include: (1) Identify the compelling scientific opportunities for research in fundamental HEDLP that could be investigated using existing and planned facilities in support of the Office of Fusion Energy Sciences and the National Nuclear Security Administration/Defense Program missions; and (2) Identify the scientific issues of implosion and target design that need to be addressed to make the case for inertial fusion energy as a potential future energy source. Compelling research opportunities of high intellectual value that can be carried out on the NDCX-II experimental facility are briefly summarized below, grouped into four main research areas. Page 4 lists several national and internationally-attended user workshops that have provided much of the input for the experimental campaigns describe below. More detailed information can be provided upon request.

Barnard, John; Cohen, Ron; Friedman, Alex; Grote, Dave; Lund, Steven; Sharp, Bill; Bieniosek, Frank; Ni, Pavel; Roy, Prabir; Henestroza, Enrique; Jung, Jin-Young; Kwan, Joe; Lee, Ed; Leitner, Matthaeus; Lidia, Steven; Logan, Grant; Seidl, Peter; Vay, Jean-Luc; Waldron, Will

2009-03-23

317

Designing a Virtual Research Facility to motivate Professional-Citizen Collaboration (Invited)  

NASA Astrophysics Data System (ADS)

In order to handle the onslaught of data spilling from telescopes on the Earth and on orbit, CosmoQuest has created a virtual research facility that allows the public to collaborate with science teams on projects that would otherwise lack the necessary human resources. This second-generation citizen science site goes beyond asking people to click on images to also engaging them in taking classes, attending virtual seminars, and participating in virtual star parties. These features were introduced to try and expand the diversity of motivations that bring people to the project and to keep them engaged overtime - just as a research center seeks to bring a diversity of people together to work and learn over time. In creating the CosmoQuest Virtual Research Facility, we sought to answer the question, 'What would happen if we provided the public with the same kinds of facilities scientists have, and invite them to be our collaborators?' It had already been observed that the public readily attends public science lectures, open houses at science facilities, and education programs such as star parties. It was hoped that by creating a central facility, we could build a community of people learning and doing science in a productive manner. In order to be successful, we needed to first create the facility, then test if people were coming both to learn and to do science, and finally to verify that people were doing legitimate science. During the past 18 months of operations, we have continued to work through each of these stages, as discussed talk. At this early date, progress is on-going, and much research remains to be done, but all indications show that we are on our way to building a community of people learning and doing science. During 2013, a series of studies looked at the motivations of CosmoQuest users, as well as their forms of site interactions. During this talk, we will review these results, as well as the demographics of our user population.

Gay, P.

2013-12-01

318

Designing a Virtual Research Facility to motivate Professional-Citizen Collaboration  

NASA Astrophysics Data System (ADS)

In order to handle the onslaught of data spilling from telescopes on the Earth and on orbit, CosmoQuest has created a virtual research facility that allows the public to collaborate with science teams on projects that would otherwise lack the necessary human resources. This second-generation citizen science site goes beyond asking people to click on images to also engaging them in taking classes, attending virtual seminars, and participating in virtual star parties. These features were introduced to try and expand the diversity of motivations that bring people to the project and to keep them engaged overtime - just as a research center seeks to bring a diversity of people together to work and learn over time. In creating the CosmoQuest Virtual Research Facility, we sought to answer the question, “What would happen if we provided the public with the same kinds of facilities scientists have, and invite them to be our collaborators?” It had already been observed that the public readily attends public science lectures, open houses at science facilities, and education programs such as star parties. It was hoped that by creating a central facility, we could build a community of people learning and doing science in a productive manner. In order to be successful, we needed to first create the facility, then test if people were coming both to learn and to do science, and finally to verify that people were doing legitimate science. During the past 18 months of operations, we have continued to work through each of these stages, as discussed talk. At this early date, progress is on-going, and much research remains to be done, but all indications show that we are on our way to building a community of people learning and doing science. During 2013-2014, a series of studies looked at the motivations of CosmoQuest users, as well as their forms of site interactions. During this talk, we will review these results, as well as the demographics of our user population.

Gay, Pamela

319

The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

2011-01-01

320

The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

2011-01-01

321

Veterinary biobank facility: development and management for diagnostic and research purposes.  

PubMed

Biobanking is an essential tool for ensuring easy availability of high-quality biomaterial collections that combine essential samples and epidemiological, clinical, and research data for the scientific community. Specimen collection is an integral part of clinical research. Indeed, every year throughout the world, millions of biological samples are stored for diagnostics and research, but in many fields the lack of biological material and models is a major hindrance for ongoing research. A biobank facility provides suitable samples for large-scale screening studies and database repositories. Software dedicated to biological banks simplify sample registration and identification, the cataloging of sample properties (type of sample/specimen, associated diseases and/or therapeutic protocols, environmental information, etc.), sample tracking, quality assurance, and specimen availability characterized by well-defined features. Biobank facilities must adopt good laboratory practices (GLPs) and a stringent quality control system and also comply with ethical issues, when required.The creation of a veterinary network can be useful under different aspects: the first one is related to the importance of animal sciences itself to improve research and strategies in the different branches of the veterinary area, and the second aspect is related to the possibility of data management harmonization to improve scientific cooperation. PMID:25399087

Lombardo, Tina; Dotti, Silvia; Villa, Riccardo; Cinotti, Stefano; Ferrari, Maura

2015-01-01

322

Overview of Innovative PMI Research on NSTX-U and Associated PMI Facilities at PPPL  

SciTech Connect

Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTXU, the PMI research has received a strong emphasis. With ~ 15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2 . To support the PMI research, a comprehensive set of PMI diagnostic tools are being implemented. The snow-flake configuration can produce exceptionally high divertor flux expansion of up to ~ 50. Combined with the radiative divertor concept, the snow-flake configuration has reduced the divertor heat flux by an order of magnitude in NSTX. Another area of active PMI investigation is the effect of divertor lithium coating (both in solid and liquid phases). The overall NSTX lithium PFC coating results suggest exciting opportunities for future magnetic confinement research including significant electron energy confinement improvements, Hmode power threshold reduction, the control of Edge Localized Modes (ELMs), and high heat flux handling. To support the NSTX-U/PPPL PMI research, there are also a number of associated PMI facilities implemented at PPPL/Princeton University including the Liquid Lithium R&D facility, Lithium Tokamak Experiment, and Laboratories for Materials Characterization and Surface Chemistry.

M. Ono, M. Jaworski, R. Kaita, C. N. Skinner, J.P. Allain, R. Maingi, F. Scotti, V.A. Soukhanovskii, and the NSTX-U Team

2012-09-19

323

Establishing an Environmental Simulation Facility For Complex (Dusty) Space Plasma Research  

NASA Astrophysics Data System (ADS)

Over the past decade, investigations into complex dusty plasmas have improved our under-standing of planetary environments, moons (including Earth's Moon), ring systems and comets. They have also been instrumental in the advancement of semiconductor development, nanofab-rication and are proving helpful in mitigating the dust contamination problems found within nuclear fusion devices such as ITER. Recently, the Lunar Exploration Analysis Group (LEAG) identified a need for research on the lunar dust and plasma environment. As part of its goal to expand current research capability in this area, the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University and its partners plan to establish a highly flexible space plasma environment simulation facility. This facility will consist of an adjustable inductively-heated plasma generator (IPG) coupled to a variety of systems allowing the introduction of the additional components (e.g. levitating or accelerated dust, UV light, ionized particles) necessary to accurately simulate a given plasma environment. Potential re-search for such a device includes investigations of complex (dusty) plasma effects on the surface of planets, moons and comets, interactions between complex (dusty) plasma and spacecraft materials and components, in-situ instrument development and testing as well as research and development for industrial applications. All of these will be discussed.

Laufer, Rene; Matthews, Lorin; Herdrich, Georg; Srama, Ralf; Roeser, Hans-Peter

324

MEDES clinical research facility as a tool to prepare ISSA space flights  

NASA Astrophysics Data System (ADS)

This new multi-disciplinary medical experimentation center provides the ideal scientific, medical and technical environment required for research programs and to prepare international space station Alpha (ISSA) missions, where space and healthcare industries can share their expertise. Different models are available to simulate space flight effects (bed-rest, confinement,…). This is of particular interest for research in Human psychology, physiology, physiopathology and ergonomics, validation of biomedical materials and procedures, testing of drugs, and other healthcare related products. This clinical research facility (CRF) provides valuable services in various fields of Human research requiring healthy volunteers. CRF is widely accessible to national and international, scientific, medical and industrial organisations. Furthermore, users have at their disposal the multi-disciplinary skills of MEDES staff and all MEDES partners on a single site.

Maillet, A.; Traon, A. Pavy-Le

325

Preliminary Concepts for the Materials Science Research Facility on the International Space Station  

NASA Technical Reports Server (NTRS)

The Materials Science Research Facility (MSRF) is designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF consists of modular autonomous Materials Science Research Racks (MSRR's). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on Utilization Flight 3. Each MSRR is a stand-alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, or multi-user generic processing apparatus Each MSRR will support a wide variety of scientific investigations.

Cobb, S.D.; Szofran, F. R.; Schaefer, D. A.

1999-01-01

326

Construction of a Solid State Research Facility, Building 3150. Environmental Assessment  

SciTech Connect

The Department of Energy (DOE) proposes to construct a new facility to house the Materials Synthesis Group (MSG) and the Semiconductor Physics Group (SPG) of the Solid State Division, Oak Ridge National Laboratory (ORNL). The location of the proposed action is Roane County, Tennessee. MSG is involved in the study of crystal growth and the preparation and characterization of advanced materials, such as high-temperature superconductors, while SPG is involved in semiconductor physics research. All MSG and a major pardon of SPG research activities are now conducted in Building 2000, a deteriorating structure constructed in the 1940. The physical deterioration of the roof; the heating, ventilation, and air conditioning (HVAC) system; and the plumbing make this building inadequate for supporting research activities. The proposed project is needed to provide laboratory and office space for MSG and SPG and to ensure that research activities can continue without interruption due to deficiencies in the building and its associated utility systems.

Not Available

1993-07-01

327

Design and construction of the NMSU Geothermally Heated Greenhouse Research Facility: Final technical report  

SciTech Connect

This report describes the design, construction, and performance of the New Mexico State University (NMSU) Geothermal Greenhouse Research Facility. Two 6000-square-foot greenhouses were built on the NMSU campus and supplied with geothermal energy for heating. The geothermal water is pumped from one of three wells producing water at temperatures from 141/degree/F to 148/degree/F. Heat is delivered to the greenhouse space by means of overhead fan-coil unit heaters. The two greenhouses are double-glazed on roof and wall surfaces employing a total of four different film materials: Tedlar/Reg Sign/, Melinex/Reg Sign/, Softglass/Reg Sign/, and Agrifilm/Reg Sign/. One greenhouse is cooled using a traditional fan and pad cooling system. The second greenhouse is cooled with a high-pressure fog system and natural ventilation through roof and side vents. A 2400-square-foot metal building next to the greenhouses provides office, work, and storage space for the facility. The greenhouse facility was leased to two commerical tenants who produced a variety of crops. The performance of the greenhouses was monitored and reported both qualitatively and quantitatively. Results from the tenant's pilot-scale studies in the NMSU greenhouse facility were transferred and applied to two commercial greenhouse ranges that were built in southern New Mexico during 1986/87. 9 figs., 5 tabs.

Schoenmackers, R.

1988-11-01

328

Hydrogeologic investigation of the Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama  

SciTech Connect

This document describes the geology and hydrogeology at the former Advanced Coal Liquefaction Research and Development (ACLR&D) facility in Wilsonville, Alabama. The work was conducted by personnel from the Oak Ridge National Laboratory Grand Junction office (ORNL/GJ) for the U.S. Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC). Characterization information was requested by PETC to provide baseline environmental information for use in evaluating needs and in subsequent decision-making for further actions associated with the closeout of facility operations. The hydrogeologic conceptual model presented in this report provides significant insight regarding the potential for contaminant migration from the ACLR&D facility and may be useful during other characterization work in the region. The ACLR&D facility is no longer operational and has been dismantled. The site was characterized in three phases: the first two phases were an environmental assessment study and a sod sampling study (APCO 1991) and the third phase the hydraulic assessment. Currently, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation (RI) to address the presence of contaminants on the site is underway and will be documented in an RI report. This technical memorandum addresses the hydrogeologic model only.

Gardner, F.G.; Kearl, P.M.; Mumby, M.E.; Rogers, S.

1996-09-01

329

Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)  

NASA Technical Reports Server (NTRS)

Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2 s support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed 4 decades ago to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Instrumental in this task is understanding the present facility capabilities and identifying what reasonable changes can be implemented. A variety of approaches and analytical tools are being employed to gain this understanding. This paper discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

Edwards, Daryl A.

2007-01-01

330

The ARM Climate Research Facility: New measurements, data products, and services  

NASA Astrophysics Data System (ADS)

The DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility is undergoing a number of changes to enhance the data made available for climate research. Many new instruments have been added across the Facility including measurements of aerosol, cloud, and precipitation properties. Among the additions have been radars and lidars to obtain better measurements of cloud microphysical and macrophysical characteristics. Over the past year there has been work done to refine the application of these instruments including the development of data products and calibration procedures. While data product development has tended to focus on the new instruments, there have also been efforts to develop products using more traditional ARM instruments including a consolidation of several cloud property retrievals using vertically pointing remote sensors. The goal of this product is to characterize uncertainty in cloud property retrievals and ultimately to work toward a best estimate of cloud properties. ARM is also looking forward to further enhancements in its measurement capabilities with the planned addition of two new sites this year. A new permanent site will be stationed on Graciosa Island in the Azores and a third mobile facility will see its first deployment in Oliktok, Alaska adjacent to the Arctic Ocean. To adapt to this expanding set of measurements, ARM has just rolled out a new interface for discovering and ordering data and is making other enhancements to its data infrastructure. The purpose of this presentation is to provide an update to these and other recent ARM developments with a focus on cloud measurements.

Mather, James; Voyles, Jimmy

2013-04-01

331

Design of small-animal thermal neutron irradiation facility at the Brookhaven Medical Research Reactor  

SciTech Connect

The broad beam facility (BBF) at the Brookhaven Medical Research Reactor (BMRR) can provide a thermal neutron beam with flux intensity and quality comparable to the beam currently used for research on neutron capture therapy using cell-culture and small-animal irradiations. Monte Carlo computations were made, first, to compare with the dosimetric measurements at the existing BBF and, second, to calculate the neutron and gamma fluxes and doses expected at the proposed BBF. Multiple cell cultures or small animals could be irradiated simultaneously at the so-modified BBF under conditions similar to or better than those individual animals irradiated at the existing thermal neutron irradiation Facility (TNIF) of the BMRR. The flux intensity of the collimated thermal neutron beam at the proposed BBF would be 1.7 {times} 10{sup 10} n/cm{sup 2}{center_dot}s at 3-MW reactor power, the same as at the TNIF. However, the proposed collimated beam would have much lower gamma (0.89 {times} 10{sup {minus}11} cGy{center_dot}cm{sup 2}/n{sub th}) and fast neutron (0.58 {times} 10{sup {minus}11} cGy{center_dot}cm{sup 2}/n{sub th}) contaminations, 64 and 19% of those at the TNIF, respectively. The feasibility of remodeling the facility is discussed.

Liu, H.B. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

1996-09-01

332

The National High Magnetic Field Laboratory, A user facility in support of research in high magnetic fields  

SciTech Connect

The National High Magnetic Field Laboratory (NHMFL) develops and operates high magnetic field facilities at its main location at Florida State University, Tallahassee, as well as a pulsed magnetic field facility at Los Alamos National Laboratory. A number of specialized facilities are also available to collaborators at the University of Florida for research at ultra-low temperatures, advanced magnetic resonance imaging, and materials sciences. The NHMFL is supported by the United States National Science Foundation (NSF) and by the State of Florida. It is a user facility available to qualified users through a peer review proposal process. The facilities and staff support research and development at the extremes of parameter space. A part of its activities is devoted to the advancement of the state of the art of superconducting, pulsed, resistive, and hybrid magnets. This involves cryogenic materials research, the development of high strength, high conductivity conductors, and the development of low and ultra low temperature systems.

Crow, J.E.; Schneider-Muntau, H.J. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Laboratory; Parkin, D. [Los Alamos National Lab., NM (United States); Sullivan, N.S. [Florida Univ., Gainesville, FL (United States). Dept. of Physics

1993-09-01

333

System Security Authorization Agreement (SSAA) for the WIRE Archive and Research Facility  

NASA Technical Reports Server (NTRS)

The Wide-Field Infrared Explorer (WIRE) Archive and Research Facility (WARF) is operated and maintained by the Department of Physics, USAF Academy. The lab is located in Fairchild Hall, 2354 Fairchild Dr., Suite 2A103, USAF Academy, CO 80840. The WARF will be used for research and education in support of the NASA Wide Field Infrared Explorer (WIRE) satellite, and for related high-precision photometry missions and activities. The WARF will also contain the WIRE preliminary and final archives prior to their delivery to the National Space Science Data Center (NSSDC). The WARF consists of a suite of equipment purchased under several NASA grants in support of WIRE research. The core system consists of a Red Hat Linux workstation with twin 933 MHz PIII processors, 1 GB of RAM, 133 GB of hard disk space, and DAT and DLT tape drives. The WARF is also supported by several additional networked Linux workstations. Only one of these (an older 450 Mhz PIII computer running Red Hat Linux) is currently running, but the addition of several more is expected over the next year. In addition, a printer will soon be added. The WARF will serve as the primary research facility for the analysis and archiving of data from the WIRE satellite, together with limited quantities of other high-precision astronomical photometry data from both ground- and space-based facilities. However, the archive to be created here will not be the final archive; rather, the archive will be duplicated at the NSSDC and public access to the data will generally take place through that site.

2002-01-01

334

First operation of the medical research facility at the NSLS for coronary angiography  

NASA Astrophysics Data System (ADS)

The Synchrotron Medical Research Facility (SMERF) at the National Synchrotron Light Source has been completed and is operational for human coronary angiography experiments. The imaging system and hardware have been brought to SMERF from the Stanford Synchrotron Radiation Laboratory where prior studies were carried out. SMERF consists of a suite of rooms at the end of the high-field superconducting wiggler X17 beam line and is classified as an Ambulatory Health Care Facility. Since October of 1990 the coronary arteries of five patients have been imaged. Continuously improving image quality has shown that a large part of both the right coronary artery and the left anterior descending coronary artery can be imaged following a venous injection of contrast agent.

Thomlinson, W.; Gmür, N.; Chapman, D.; Garrett, R.; Lazarz, N.; Moulin, H.; Thompson, A. C.; Zeman, H. D.; Brown, G. S.; Morrison, J.; Reiser, P.; Padmanabahn, V.; Ong, L.; Green, S.; Giacomini, J.; Gordon, H.; Rubenstein, E.

1992-01-01

335

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

DL Sisterson

2006-07-01

336

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2008-06-01

337

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2008-09-30

338

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2007-04-01

339

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2007-10-01

340

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1–December 31, 2009  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2010-01-15

341

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2006  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

DL Sisterson

2006-10-01

342

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2007-07-01

343

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2009-10-15

344

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Sisterson, DL

2011-03-02

345

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2011  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2011-07-25

346

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2011  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Sisterson, DL

2011-04-11

347

Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2012-01-09

348

Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2011-10-10

349

First operation of the medical research facility at the NSLS for coronary angiography  

SciTech Connect

The Synchrotron Medical Research Facility (SMERF) at the National Synchrotron Light Source has been completed and is operational for human coronary angiography experiments. The imaging system and hardware have been brought to SMERF from the Stanford Synchrotron Radiation Laboratory where prior studies were carried out. SMERF consists of a suite of rooms at the end of the high field superconducting wiggler X17 beamline and is classified as an Ambulatory health Care Facility. Since October of 1990 the coronary arteries of five patients have been imaged. Continuously improving image quality has shown that a large part of both the right coronary artery and the left anterior descending coronary artery can be imaged following a venous injection of contrast agent. 16 refs., 4 figs.

Thomlinson, W.; Gmuer, N.; Chapman, D.; Garrett, R.; Lazarz, N.; Moulin, H. (Brookhaven National Lab., Upton, NY (United States)); Thompson, A.C. (Lawrence Berkeley Lab., CA (United States)); Zeman, H.D. (Dept. of Biomedical Engineering, University of Tennessee, Memphis, Tennessee, 38163 (US)); Brown, G.S. (Stanford Univ., CA (United States). Stanford Synchrotron Radiation Lab.); Morrison, J.; Reiser, P

1991-01-01

350

A State-of-the-Art Contamination Effects Research and Test Facility  

NASA Technical Reports Server (NTRS)

In the ongoing effort to better understand various spacecraft contamination phenomena, a new state of the art contamination effects research and test facility was designed, and recently brought on-line at The Aerospace Corporation s Space Materials Laboratory. This high vacuum test chamber employs multiple in-situ analytical techniques, making it possible to study both the qualitative and quantitative aspects of contaminant film formation in the presence or absence of VUV radiation. Adsorption and desorption kinetics, "photo-fixing efficiency", transmission loss of uniform contaminant films, light scatter from non-uniform films, and film morphology have been studied in this facility. This paper describes this new capability in detail and presents data collected from several of the analytical instruments.

Olson, Keith R.; Folgner, Kelsey A.; Barrie, James D.; Villahermosa, Randy M.

2008-01-01

351

Facility for Antiproton and Ion Research, FAIR, at the GSI site  

SciTech Connect

FAIR is a new large-scale particle accelerator facility to be built at the GSI site in Germany. The research pursued at FAIR will cover a wide range of topics in nuclear and hadron physics, as well as high density plasma physics, atomic and antimatter physics, and applications in condensed matter physics and biology. The working horse of FAIR will be a 1.1km circumference double ring of rapidly cycling 100 and 300Tm synchrotrons, which will be used to produce high intensity secondary beams of short-lived radioactive ions or antiprotons. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experimental facilities are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.

Rosner, Guenther [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom)

2006-11-17

352

Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels  

NASA Technical Reports Server (NTRS)

A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.

Hollis, Brian R.

1996-01-01

353

Towards an Experimental Testbed Facility for Cyber-Physical Security Research  

SciTech Connect

Cyber-Physical Systems (CPSs) are under great scrutiny due to large Smart Grid investments and recent high profile security vulnerabilities and attacks. Research into improved security technologies, communication models, and emergent behavior is necessary to protect these systems from sophisticated adversaries and new risks posed by the convergence of CPSs with IT equipment. However, cyber-physical security research is limited by the lack of access to universal cyber-physical testbed facilities that permit flexible, high-fidelity experiments. This paper presents a remotely-configurable and community-accessible testbed design that integrates elements from the virtual, simulated, and physical environments. Fusing data between the three environments enables the creation of realistic and scalable environments where new functionality and ideas can be exercised. This novel design will enable the research community to analyze and evaluate the security of current environments and design future, secure, cyber-physical technologies.

Edgar, Thomas W.; Manz, David O.; Carroll, Thomas E.

2012-01-07

354

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP locale has historically had a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. Beginning this quarter, the SGP began a transition to a smaller footprint (150 km x 150 km) by rearranging the original and new instrumentation made available through the American Recovery and Reinvestment Act (ARRA). The central facility and 4 extended facilities will remain, but there will be up to 16 surface new characterization facilities, 4 radar facilities, and 3 profiler facilities sited in the smaller domain. This new configuration will provide observations at scales more appropriate to current and future climate models. The TWP locale has the Manus, Nauru, and Darwin sites. These sites will also have expanded measurement capabilities with the addition of new instrumentation made available through ARRA funds. It is anticipated that the new instrumentation at all the fixed sites will be in place within the next 12 months. The AMF continues its 20-month deployment in Graciosa Island, Azores, Portugal, that started May 1, 2009. The AMF will also have additional observational capabilities within the next 12 months. Users can participate in field experiments at the sites and mobile facility, or they can participate remotely. Therefore, a variety of mechanisms are provided to users to access site information. Users who have immediate (real-time) needs for data access can request a research account on the local site data systems. This access is particularly useful to users for quick decisions in executing time-dependent activities associated with field campaigns at the fixed sites and mobile facility locations. T

D. L. Sisterson

2010-01-12

355

The Mothball, Sustainment, and Proposed Reactivation of the Hypersonic Tunnel Facility (HTF) at NASA Glenn Research Center Plum Brook Station  

NASA Technical Reports Server (NTRS)

The Hypersonic Tunnel Facility (HTF) located at the NASA Glenn Research Center s Plum Brook Station in Sandusky, Ohio, is the nation s only large-scale, non-vitiated, hypersonic propulsion test facility. The HTF, with its 4-story graphite induction heater, is capable of duplicating Mach 5, 6, and 7 flight conditions. This unique propulsion system test facility has experienced several standby and reactivation cycles. The intent of the paper is to overview the HTF capabilities to the propulsion community, present the current status of HTF, and share the lessons learned from putting a large-scale facility into mothball status for a later restart

Thomas, Scott R.; Lee, Jinho; Stephens, John W.; Hostler, Robert W., Jr.; VonKamp, William D.

2010-01-01

356

Research activities at the Loma Linda University and Proton Treatment Facility--an overview  

NASA Technical Reports Server (NTRS)

The Loma Linda University (LLU) Radiobiology Program coordinates basic research and proton beam service activities for the university and extramural communities. The current focus of the program is on the biological and physical properties of protons and the operation of radiobiology facilities for NASA-sponsored projects. The current accelerator, supporting facilities and operations are described along with a brief review of extramural research projects supported by the program. These include space craft electronic parts and shielding testing as well as tumorigenesis and animal behavior experiments. An overview of research projects currently underway at LLU is also described. These include: 1) acute responses of the C57Bl/6 mouse immune system, 2) modulation of gene expression in the nematode C. elegans and rat thyroid cells, 3) quantitation of dose tolerance in rat CNS microvasculature, 4) behavioral screening of whole body proton and iron ion-irradiated C57Bl/6 mice, and 5) investigation of the role of cell integration into epithelial structures on responses to radiation.

Nelson, G. A.; Green, L. M.; Gridley, D. S.; Archambeau, J. O.; Slater, J. M.

2001-01-01

357

Developing the OORCC: A Multifaceted Astronomical Research and Outreach Facility at the University of Oregon  

NASA Astrophysics Data System (ADS)

The University of Oregon (UO) owns and operates Pine Mountain Observatory (PMO), located in central Oregon on the summit of Pine Mountain at an elevation of 1980 meters. PMO consists of four telescopes ranging in size from 0.35 - 0.8 meters. The Oregon Observatory Remote Control Center (OORCC) is a remote-observing center within the Department of Physics on the UO campus (~140 miles from the observatory) that has a direct connection to PMO through a dedicated fiber-optic cable. With this facility, we will enable UO undergraduate student researchers, UO faculty, and the non-scientific community to fully control and operate a newly installed robotic telescope on the summit of Pine Mountain from Eugene, or any other authorized site in Oregon. In addition to providing undergraduates with instrumentation and engineering experience, we will implement research by photometrically monitoring bright and variable astronomical sources including main belt comets, Herbig Ae/Be stars, and active galactic nuclei in extragalactic systems. The primary objective with the OORCC is to manage a multifaceted astronomy and astrophysics research facility, extending as a state-wide resource for K-12 STEM activities and public outreach programs. With the OORCC, we intend to bring unique and enriching astronomy exposure to many different groups of people throughout the state of Oregon.

Kwan, Teiler J.; Bullis, Jeremy; Gustafsson, Annika; Fisher, Robert Scott

2015-01-01

358

Use of the National Ignition Facility for defense, energy, and basic research science  

SciTech Connect

On January 15, 1993, the Department of Energy (DOE) approved the Justification for Mission Need (JMN) for the National Ignition Facility (NIF). This action (Key Decision Zero, or KD0) commenced the conceptual design for the facility, which has resulted in a recently completed Conceptual Design Report (CDR). The JMN document defined the NIF mission elements to include laboratory fusion ignition and energy gain, weapons physics, and nuclear weapons effects testing research (NWET). NIF has a dual benefit by contributing to inertial fusion energy (IFE), industrial technology development, new basic science areas applying high power lasers, and training young scientists for future stewardship activities. For consideration of the next DOE action, Key Decision One (KD1), all mission elements of the NIF as stated in the JMN are consistent with and important to the US stockpile stewardship program, and are expected to continue to be in the vital interest of the United States for the long term. This document provides further information on the utility of NIF for stockpile stewardship, including support for a Comprehensive Test Ban Treaty (CTBT), and specific findings of four national workshops on the NIF utility for weapons physics, NWET, IFE and basic science research. The role of NIF for stockpile stewardship has been refined since a DOE meeting in Albuquerque, NM Feb. 1--2, 1994. The possible compliance of NIF research with anticipated CTBT and NPT limitations was discussed at the DOE Office of Arms Control and Nonproliferation in Washington, DC on March 8, 1994.

Logan, B.G.

1994-07-15

359

National Scientific Facilities and Their Science Impact on Non-Biomedical Research  

E-print Network

H-index, proposed by Hirsch is a good indicator of the impact of a scientist's research. When evaluating departments, institutions or labs, the importance of h-index can be further enhanced when properly calibrated for size. Particularly acute is the issue of federally funded facilities whose number of actively publishing scientists frequently dwarfs that of academic departments. Recently Molinari and Molinari developed a methodology that shows the h-index has a universal growth rate for large numbers of papers, allowing for meaningful comparisons between institutions. An additional challenge when comparing large institutions is that fields have distinct internal cultures, with different typical rates of publication and citation; biology is more highly cited than physics, which is more highly cited than engineering. For this reason, this study has focused on the physical sciences, engineering, and technology, and has excluded bio-medical research. Comparisons between individual disciplines are reported here to provide contextual framework. Generally, it was found that the universal growth rate of Molinari and Molinari holds well across all the categories considered, testifying to the robustness of both their growth law and our results. The overall goal here is to set the highest standard of comparison for federal investment in science; comparisons are made with the nations preeminent private and public institutions. We find that many among the national facilities compare favorably in research impact with the nations leading universities.

A. L. Kinney

2007-05-12

360

The U.S. Department of Energy's Atmospheric Radiation Measurement Climate Research Facilities on the North Slope of Alaska  

NASA Astrophysics Data System (ADS)

The U.S. Department of Energy (DOE) provides scientific infrastructure and data archives to the international Arctic research community through a national user facility, the ARM Climate Research Facilities (ACRF). One of three fixed ARM Climate Research Facilities is located on the North Slope of Alaska. Since 1998, these facilities near the communities of Barrow and Atqasuk have provided data about cloud and radiative processes at high latitudes. These data are used to refine models and parameterizations related to the Arctic. Data records from the instruments at these facilities and data products are available through web- accessible archives. The ACRF's role is to provide infrastructure support for climate research, including Arctic research, to the global scientific community. DOE's climate research programs, with a focus on clouds and aerosols and their impact on the radiative budget, define the research scope supported by the Facility. In addition to a set of baseline instruments at the two fixed North Slope ACRF locations, temporary or guest instruments are operated as required to support field campaigns. Recent field campaigns have included over-flights by aircraft with cloud and aerosol-sampling instrumentation. To support proposed deployments of unmanned aerial vehicle and unmanned aerial systems on the North Slope of Alaska and over the Arctic Ocean, permissions are being obtained and access arranged for use of a runway and nearby ground support facilities at Oliktok Point, Alaska. In addition to the fixed facilities, ARM Mobile Facilities may be used for high-latitude deployments. Deployments for the ARM Mobile Facilities are selected through a formal process that includes peer review of science-focused proposals. The first ARM Mobile Facility is nearing the end of a deployment in China. Design and development of a second ARM Mobile Facility will begin in late calendar year 2008. This paper discusses the scientific infrastructure, data streams and archives, planned field campaigns, and opportunities for future collaborative research available to members of the international research community on the North Slope of Alaska. An overview of results from recent field campaigns conducted during as part of the International Polar Year will be presented.

Ivey, M. D.; Verlinde, J.; Richardson, S.; Zak, B.; Zirzow, J.

2008-12-01

361

Fixed-bed gasification research using US coals. Volume 1. Program and facility description  

SciTech Connect

The United States Department of Interior, Bureau of Mines, Twin Cities Research Center, Minneapolis, Minnesota is the site of a 6.5 foot diameter Wellman-Galusha gasifier, installed in 1977-1978. This gasifier, combustor/incinerator, and flue gas scrubber system in the past had been operated jointly by Bureau of Mines personnel, personnel from member companies of the Mining and Industrial Fuel Gas Group, and United States Department of Energy personnel-consultants. Numerous tests using a variety of coals have to date been performed. In May of 1982, Black, Sivalls and Bryson, Incorporated (BS and B) was awarded the contract to plan, execute, and report gasification test performance data from this small industrial fixed-bed gasification test facility. BS and B is responsible for program administration, test planning, test execution, and all documentation of program activities and test reports. The University of Minnesota, Particle Technology Laboratory (UMPTL) is subcontractor to BS and B to monitor process parameters, and provide analysis for material inputs and outputs. This report is the initial volume in a series of reports describing the fixed-bed gasification of US coals at the Bureau of Mines, Twin Cities Research Center. A history of the program is given in Section 1 and a thorough description of the facility in Section 2. The operation of the facility is described in Section 3. Monitoring systems and procedures are described in Sections 4 and 5. Data reduction tools are outlined in Section 6. There is no executive summary or conclusions as this volume serves only to describe the research program. Subsequent volumes will detail each gasification test and other pertinent results of the gasification program. 32 references, 23 figures, 15 tables.

Thimsen, D.; Maurer, R.E.; Poole, A.R.; Pui, D.; Liu, B.; Kittleson, D.

1984-10-01

362

Evaluation of the Deployable Seismic Verification System at the Pinedale Seismic Research Facility  

SciTech Connect

The intent of this report is to examine the performance of the Deployable Seismic Verification System (DSVS) developed by the Department of Energy (DOE) through its national laboratories to support monitoring of underground nuclear test treaties. A DSVS was installed at the Pinedale Seismic Research Facility (PSRF) near Boulder, Wyoming during 1991 and 1992. This includes a description of the system and the deployment site. System performance was studied by looking at four areas: system noise, seismic response, state of health (SOH) and operational capabilities.

Carr, D.B.

1993-08-01

363

FAIR Cryogenics — New Tasks on the Cryogenic System for the New Research Facility at GSI  

NASA Astrophysics Data System (ADS)

The Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt, will design and operate FAIR within a few years. The requirements for this new machine, given by the plans for advanced physics research, have been balanced with an economical project plan. The distribution system to supply widely spread users, which will require various helium-flow schemes and cause high dynamic loads, will be the main cryosystem challenge for the new facility. The cryogenic infrastructure will be completed in two steps. In the first step a 4-kW refrigerator will be needed. The second step will add a 15-kW refrigerator. For both steps approximately one third of the refrigeration power is dynamic.

Kauschke, M.; Schroeder, C. H.; Quack, H.

2006-04-01

364

Medical surveillance and biologic monitoring of personnel in semiconductor research facilities  

NASA Astrophysics Data System (ADS)

Semiconductor research facilities have many of the same health and safety hazards as large-scale manufacturing plants. The novel and episodic nature of laboratory activity requires a different perspective for medical surveillance and biologic monitoring. Basic principles of medical surveillance for laboratory personnel are reviewed and analyzed. Approaches to biologic monitoring and the role of biologic exposure indices are discussed. Specific types of hazards including dopants, gallium arsenide, toxic inhalations, and physical hazards are placed in a framework consistent with laboratory exposures. Reproductive effects and carcinogenic potential of selected substances are assessed along with possible monitoring strategies.

Krieger, G.; Cambridge, R.

1988-07-01

365

Engineering Support of Microgravity Life Science Research: Development of an Avian Development Facility  

NASA Technical Reports Server (NTRS)

The Avian Development Facility (ADF) is designed to provide a 'window' for the study of embryogenesis in space. It allows researchers to determine and then to mitigate or nullify the forces of altered gravity upon embryos when leaving and re-entering the Earth's gravity. The ADF design will allow investigations to begin their incubation after their experiments have achieved orbit, and shut down the experiment and fix specimens before leaving orbit. In effect, the ADF makes every attempt to minimize launch and re-entry effects in order to isolate and preserve the effects of the experimental variable(s) of the space environment.

Vellinger, J.; Deuser, M.; Hullinger, R.

1995-01-01

366

A new digital pulse power supply in heavy ion research facility in Lanzhou  

NASA Astrophysics Data System (ADS)

To meet the increasing requirements of the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), a new digital pulse power supply, which employs multi-level converter, was designed. This power supply was applied with a multi H-bridge converters series-parallel connection topology. A new control model named digital power supply regulator system (DPSRS) was proposed, and a pulse power supply prototype based on DPSRS has been built and tested. The experimental results indicate that tracking error and ripple current meet the requirements of this design. The achievement of prototype provides a perfect model for HIRFL-CSR power supply system.

Wang, Rongkun; Chen, Youxin; Huang, Yuzhen; Gao, Daqing; Zhou, Zhongzu; Yan, Huaihai; Zhao, Jiang; Shi, Chunfeng; Wu, Fengjun; Yan, Hongbin; Xia, Jiawen; Yuan, Youjin

2013-11-01

367

A guide to research facilities at the National Renewable Energy Laboratory  

SciTech Connect

The guide is divided into two parts. Topping the pages are descriptions of laboratories at NREL that provide sophisticated experimental equipment, testing capabilities, or processes that may not be available in the private sector. Scientific categories are designated at the top of the pages in blue; individual laboratory descriptions follow alphabetically, along with the names and phone numbers of the laboratory managers. In blue boxes at the bottom of the pages are articles about NREL, our technology transfer program, and our facilities, as well as guidelines for students, researchers, and industrial collaborators who wish to use them. A list of key contacts and a map of the campus follows the laboratory descriptions.

Not Available

1994-04-01

368

Operational evaluation of a proppeller test stand in the quiet flow facility at Langley Research Center  

NASA Technical Reports Server (NTRS)

Operational proof tests of a propeller test stand (PTS) in a quiet flow facility (QFF) are presented. The PTS is an experimental test bed for acoustic propeller research in the quiet flow environment of the QFF. These proof tests validate thrust and torque predictions, examine the repeatability of measurements on the PTS, and determine the effect of applying artificial roughness to the propeller blades. Since a thrusting propeller causes an open jet to contract, the potential flow core was surveyed to examine the magnitude of the contraction. These measurements are compared with predicted values. The predictions are used to determine operational limitations for testing a given propeller design in the QFF.

Block, P. J. W.

1982-01-01

369

Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility  

NASA Astrophysics Data System (ADS)

A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

Kobak, J. A.; Rollbuhler, R. J.

1981-10-01

370

Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2006.  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period October 1 through December 31, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The first quarter comprises a total of 2,208 hours. For all fixed sites, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the first quarter of fiscal year (FY) 2007. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. NIM represents the AMF statistics for the current deployment in Niamey, Niger, Africa. PYE represents the AMF statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request an account on the local site data system. The eight research computers are located at the Barrow and Atqasuk sites; the SGP Central Facility; the TWP Manus, Nauru, and Darwin sites; the DMF at PNNL; and the AMF in Niger. This report provides the cumulative numbers of visitors and user accounts by site for the period January 1, 2006 - December 31, 2006. The U.S. Department of Energy requires national user facilities to report facility use by total visitor days-broken down by institution type, gender, race, citizenship, visitor role, visit purpose, and facility-for actual visitors and for active user research computer accounts. During this reporting period, the ACRF Archive did not collect data on user characteristics in this way. Work is under way to collect and report these data. Table 2 shows the summary of cumulative users for the period January 1, 2006 - December 31, 2006. For the first quarter of FY 2007, the overall number of users is up from the last reporting period. The historical data show that there is an apparent relationship between the total number of users and the 'size' of field campaigns, called Intensive Operation Periods (IOPs): larger IOPs draw more of the site facility resources, which are reflected by the number of site visits and site visit days, research accounts, and device accounts. These types of users typically collect and analyze data in near-real time for a site-specific IOP that is in progress. However, the Archive accounts represent persistent (year-to-year) ACRF data users that often mine from the entire collection of ACRF data, which mostly includes routine data from the fixed and mobile sites, as well as cumulative IOP data sets. Archive data users continue to show a steady growth, which is independent of the size of IOPs. For this quarter, the number of Archive data user accounts was 961, the highest since record-keeping began. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Although the AMF is not officially colle

Sisterson, D. L.

2007-03-14

371

Operation of Cryogenic Facility in e-way at Tata Institute of Fundamental Research, Mumbai, India.  

NASA Astrophysics Data System (ADS)

In an attempt towards the development of modern, model and paperless cryogenic facility, the Low Temperature Facility of Tata Institute of Fundamental Research, at Mumbai, India; carried out many automation works using programmable logic controller (PLC) and other modern electronic tools, with the objective of bringing the entire plant operation to your palm whenever and wherever you are. Efficiency in the plant operation by keeping a watch on the plant healthiness, advance indication about the possible plant problem by means of pre-warning alarms, so that the remedial action can be taken well prior to the actual failure affects the plant operation, reduction in plant down time were achieved by the automation works. Large size in our cryogen production, controlling the complicated helium liquefier, meeting the uninterrupted supply of cryogen to the users on “any time availability basis,” safety in handling cryogens and high pressure gas, effective usage of limited skilled manpower etc., all these requirements call for the definite need of modern electronic gears and gadgets. This paper will describe in details about the automation works carried out at our cryogenic facility at TIFR.

Srinivasan, K. V.

2012-12-01

372

Utilizing the US Lab Nadir Research Window for Remote Sensing Operations with The Window Observational Research Facility (WORF)  

NASA Technical Reports Server (NTRS)

The Window Observational Research Facility (WORF) is an ISPR-based rack facility designed to take advantage of the high optical quality US Lab Nadir research window. The WORF is based on the ISS Expedite the Processing of Experiments to Space Station (EXPRESS) rack mechanical structure and electronic systems. The WORF has a unique payload volume located at the center of the rack that provides access to the window. The interior dimensions of the payload volume are 34-in. (86.36 cm) wide by 33-in. (83.82 cm) high by 23-in. (58.42 cm) deep. This facility supports the deployment of payloads such as 9 in. aerial photography cameras and 12 in. diameter optical equipment. The WORF coupled with the optical quality of the United States Lab window support the deployment of various payload disciplines. The WORF provides payloads with power, data command and control, air cooling, water cooling, and video processing. The WORF's payload mounting surfaces and interfaces include the interior payload mounting shelf and the interior and exterior aircraft-like seat tracks. The payload mounting shelf is limited to a maximum mass of 136 kg (299 pounds). The WORF can accommodate large payloads such as the commonly used Leica-Heerbrug RC-30 aerial photography camera (whose dimensions are 53.3 cm (21-in.) wide by 50.8 cm (20-in.) deep by 76.2 cm (30-in.) long). The performance characteristics of the WORF allow it to support an array of payload disciplines. The WORF provides a maximum of 3 Kw at 28 Vdc and has a maximum data rate of 10 Mbps. The WORF's unique payload volume is designed to be light-tight, down to 2.8 x 10(exp -11) Watts/cm2/steradian, and have low-reflective surfaces. This specially designed WORF interior supports payload investigations that observe low-light-level phenomenon such as aurora. Although the WORF rack does not employ any active rack isolation (i.e., vibration dampening) technology, the rack provides a very stable environment for payload operations (on the order of X microradians). The facility's software is capable of being updated during its period of deployment. The WORF project also includes a Suitcase Simulator to allow for a payload developer to verify data interfaces at his development site, a trainer rack for astronauts to learn how to operate the WORF prior to flight, and the use of the EXPRESS Functional Checkout Units to allow for payload checkout at the KSC prior to launch.

Turner, Richard; Barley, Bryan; Gilbert, Paul A. (Technical Monitor)

2002-01-01

373

Functional requirements for the man-vehicle systems research facility. [identifying and correcting human errors during flight simulation  

NASA Technical Reports Server (NTRS)

The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included.

Clement, W. F.; Allen, R. W.; Heffley, R. K.; Jewell, W. F.; Jex, H. R.; Mcruer, D. T.; Schulman, T. M.; Stapleford, R. L.

1980-01-01

374

Source apportionment of stack emissions from research and development facilities using positive matrix factorization  

NASA Astrophysics Data System (ADS)

Research and development (R&D) facility emissions are difficult to characterize due to their variable processes, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compound (VOC) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified between 9 and 11 source-related factors contributing to stack emissions, depending on the building. Similar factors between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions; other factors had similar profiles for two or more buildings but not all four. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit.

Ballinger, Marcel Y.; Larson, Timothy V.

2014-12-01

375

The Unmanned Research Airplane Facility at the Cyprus Institute: Advanced Atmospheric Observations  

NASA Astrophysics Data System (ADS)

Unmanned Aerial Systems (UASs) have been established as versatile tools for different applications, providing data and observations for atmospheric and Earth-Systems research. They provide an urgently needed link between in-situ ground based measurements and satellite remote sensing observations and are distinguished by significant versatility, flexibility and moderate operational costs. Building on an earlier project (Autonomous Flying Platforms for Atmospheric and Earth Surface Observations project; APAESO) of the Energy, Environment and Water Research Center (EEWRC) at the Cyprus Institute (APAESO is co-financed by the European Development Fund and the Republic of Cyprus through the Cyprus Research Promotion Foundation), we have built up an Unmanned Research Aircraft Facility at The Cyprus Institute (CyI-URAF). The basic components of this facility comprise four CRUISERS airplanes (ET-Air, Slovakia) as UAS platforms, a substantial range of scientific instruments to be flown on these platforms, a mobile Ground Control Station and a well-equipped workshop and calibration laboratory. The APAESO platforms are suitable to carrying out atmospheric and earth-surface observations in the (Eastern) Mediterranean (and elsewhere). They enable 3D measurements for determining physical, chemical and radiative atmospheric properties, aerosol and dust concentrations and atmospheric dynamics as well as 2D investigations into land management practices, vegetation and agricultural mapping, contaminant detection and the monitoring and assessment of hydrological parameters and processes of a given region at high spatial resolution. We will report on some of the essential modifications of the platforms and some of the instrumentation that were instrumental in preparing the research airplanes for a variety of collaborative research projects with. The first scientific mission involved the employment of a DOAS-system (Differential Optical Absorption Spectroscopy) in cooperation with colleagues from Heidelberg and Mainz, Germany and test flights that have been successfully completed. We also engaged in a new research project aimed at measuring vertical profiles of aerosols in the Eastern Mediterranean. This is being achieved in field campaigns employing an innovative aerosol sampler in close collaboration with colleagues from the University of Frankfurt, Germany as well as with colleagues from the Universities of Tel Aviv and the Weizmann Institute (Israel). More recently, we have started to prepare our platforms to carry out research missions in the context of the newly funded EU-BACCHUS project.

Lange, Manfred A.; Argyrides, Marios; Ioannou, Stelios; Keleshis, Christos

2014-05-01

376

Aircraft ground vibration testing at the NASA Dryden Flight Research Facility, 1993  

NASA Technical Reports Server (NTRS)

The NASA Dryden Flight Research Facility performs ground vibration testing to assess the structural characteristics of new and modified research vehicles. This paper updates the research activities, techniques used, and experiences in applying this technology to aircraft since 1987. Test equipment, data analysis methods, and test procedures used for typical test programs are discussed. The data presented illustrate the use of modal test and analysis in flight research programs for a variety of aircraft. This includes a technique to acquire control surface free-play measurements on the X-31 airplane more efficiently, and to assess the effects of structural modifications on the modal characteristics of an F-18 aircraft. In addition, the status and results from current research activities are presented. These data show the effectiveness of the discrete modal filter as a preprocessor to uncouple response measurements into simple single-degree-of-freedom responses, a database for the comparison of different excitation methods on a JetStar airplane, and the effect of heating on modal frequency and damping.

Kehoe, Michael W.; Freudinger, Lawrence C.

1994-01-01

377

Application of FEPs analysis to identify research priorities relevant to the safety case for an Australian radioactive waste facility  

SciTech Connect

The Australian Nuclear Science and Technology Organisation (ANSTO) has established a project to undertake research relevant to the safety case for the proposed Australian radioactive waste facility. This facility will comprise a store for intermediate level radioactive waste, and either a store or a near-surface repository for low-level waste. In order to identify the research priorities for this project, a structured analysis of the features, events and processes (FEPs) relevant to the performance of the facility was undertaken. This analysis was based on the list of 137 FEPs developed by the IAEA project on 'Safety Assessment Methodologies for Near Surface Disposal Facilities' (ISAM). A number of key research issues were identified, and some factors which differ in significance for the store, compared to the repository concept, were highlighted. For example, FEPs related to long-term groundwater transport of radionuclides are considered to be of less significance for a store than a repository. On the other hand, structural damage from severe weather, accident or human interference is more likely for a store. The FEPs analysis has enabled the scientific research skills required for the inter-disciplinary project team to be specified. The outcomes of the research will eventually be utilised in developing the design, and assessing the performance, of the future facility. It is anticipated that a more detailed application of the FEPs methodology will be undertaken to develop the safety case for the proposed radioactive waste management facility. (authors)

Payne, T.E.; McGlinn, P.J. [Australian Nuclear Science and Technology Organisation (Australia)

2007-07-01

378

Small engine components test facility compressor testing cell at NASA Lewis Research Center  

NASA Technical Reports Server (NTRS)

LeRC has designed and constructed a new test facility. This facility, called the Small Engine Components Facility (SECTF) is used to test gas turbines and compressors at conditions similar to actual engine conditions. The SECTF is comprised of a compressor testing cell and a turbine testing cell. Only the compressor testing cell is described. The capability of the facility, the overall facility design, the instrumentation used in the facility, and the data acquisition system are discussed in detail.

Brokopp, Richard A.; Gronski, Robert S.

1992-01-01

379

NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research  

NASA Astrophysics Data System (ADS)

NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources.

Bateman, F. B.; Desrosiers, M. F.; Hudson, L. T.; Coursey, B. M.; Bergstrom, P. M.; Seltzer, S. M.

2003-08-01

380

Gas-grain simulation facility: Aerosol and particle research in microgravity  

NASA Technical Reports Server (NTRS)

This document reports on the proceedings of the Gas-Grain Simulation Facility (GGSF) Science Workshop which was co-hosted by NASA Ames Research Center and Desert Research Institute, University of Nevada System, and held in Las Vegas, Nevada, on May 4-6, 1992. The intent of the workshop was to bring together the science community of potential GGSF experimenters, Science Working Group and staff members, and the Phase A contractor to review the Phase A design with the science participants and to facilitate communication between the science community and the hardware developers. The purpose of this report is to document the information disseminated at the workshop, to record the participants' review of the Phase A GGSF design concept and the current science and technical requirements for the Facility, and to respond to any questions or concerns that were raised at the Workshop. Recommendations for the future based on numerous discussions with the participants are documented, as well as science presentations and poster sessions that were given at the Workshop and a summary of 21 candidate experiments.

Huntington, Judith L. (editor); Greenwald, Ken (editor); Rogers, C. Fred (editor); Stratton, David M. (editor); Simmons, Brenda (editor); Fonda, Mark L. (editor)

1994-01-01

381

Development of the West Virginia University Small Microgravity Research Facility (WVU SMiRF)  

NASA Astrophysics Data System (ADS)

West Virginia University (WVU) has created the Small Microgravity Research Facility (SMiRF) drop tower through a WVU Research Corporation Program to Stimulate Competitive Research (PSCoR) grant on its campus to increase direct access to inexpensive and repeatable reduced gravity research. In short, a drop tower is a tall structure from which experimental payloads are dropped, in a controlled environment, and experience reduced gravity or microgravity (i.e. "weightlessness") during free fall. Currently, there are several methods for conducting scientific research in microgravity including drop towers, parabolic flights, sounding rockets, suborbital flights, NanoSats, CubeSats, full-sized satellites, manned orbital flight, and the International Space Station (ISS). However, none of the aforementioned techniques is more inexpensive or has the capability of frequent experimentation repeatability as drop tower research. These advantages are conducive to a wide variety of experiments that can be inexpensively validated, and potentially accredited, through repeated, reliable research that permits frequent experiment modification and re-testing. Development of the WVU SMiRF, or any drop tower, must take a systems engineering approach that may include the detailed design of several main components, namely: the payload release system, the payload deceleration system, the payload lifting and transfer system, the drop tower structure, and the instrumentation and controls system, as well as a standardized drop tower payload frame for use by those researchers who cannot afford to spend money on a data acquisition system or frame. In addition to detailed technical development, a budgetary model by which development took place is also presented throughout, summarized, and detailed in an appendix. After design and construction of the WVU SMiRF was complete, initial calibration provided performance characteristics at various payload weights, and full-scale checkout via experimentation provided repeatability characteristics of the facility. Based on checkout instrumentation, Initial repeatability results indicated a drop time of 1.26 seconds at an average of 0.06g, with a standard deviation of 0.085g over the period of the drop, and a peak impact load of 28.72g, with a standard deviation of 10.73g, for a payload weight of 113.8 lbs. In order to thoroughly check out the facility, a full-scale, fully operational experiment was developed to create an experience that provides a comprehensive perspective of the end-user experience to the developer, so as to incorporate the details that may have been overlooked to the designer and/or developer, in this case, Kyle Phillips. The experiment that was chosen was to determine the effects of die swell, or extrudate swell, in reduced gravity. Die swell is a viscoelastic phenomenon that occurs when a dilatant, or shear-thickening substance is forced through a sufficient constriction, or "die," such that the substance expands, or "swells," downstream of the constriction, even while forming and maintaining a free jet at ambient sea level conditions. A wide range of dilatants exhibit die swell when subjected to the correct conditions, ranging from simple substances such as ketchup, oobleck, and shampoo to complex specially-formulated substances to be used for next generation body armor and high performance braking systems. To date, very few, if any, have researched the stabilizing effect that gravity may have on the phenomenon of die swell. By studying a fluid phenomenon in a reduced gravity environment, both the effect of gravity can be studied and the predominant forces acting on the fluid can be concluded. Furthermore, a hypothesis describing the behavior of a viscoelastic fluid particle employing the viscous Navier-Stokes Equations was derived to attempt to push the fluid mechanics community toward further integrating more fluid behavior into a unified mathematical model of fluid mechanics. While inconclusive in this experiment, several suggestions for future research were

Phillips, Kyle G.

382

Development and maintenance of a specific pathogen free (SPF) zebrafish research facility for Pseudoloma neurophilia  

PubMed Central

Pseudoloma neurophilia (Microsporidia) is very common in zebrafish research facilities. A new zebrafish facility was established at the Sinnhuber Aquatic Resource Laboratory (SARL) at Oregon State University, and thus we used this as an opportunity to establish a Specific Pathogen Free (SPF) colony of zebrafish for this microsporidium. Progeny from 10 zebrafish lines (n = 2,203) were initially transferred to the SARL facility in 2007 following PCR screening of broodstock and a subpopulation of progeny (258/1,000 fish from each family). Screening of fish within the facility was conducted as follows: 1) Moribund or dead fish were examined by histology 2) Each line was regenerated on a 4 mo. rotation, and for each of these major propagations, a subsample was screened for P. neurophilia by PCR, in which 60 fry from were collected randomly at 10 days post hatch and screened by PCR for P. neurophilia in pools of 10 3) Adult fish from each line were retired and euthanized at approximately 1 year of age. Twenty of these fish were examined by histology and the brains and spinal cords of 60 fish were combined in pools of five and screened by PCR 4) Sentinel fish were held in 4 tanks receiving effluent water from all tanks in the facility (20 fish/tank). Twenty fish were examined by histology and the brains of another 60 fish (in pools of five) were screened by PCR for P. neurophilia and 5) 760 4 mo old fish from a toxicology study conducted within the laboratory were examined by histology. To date, we have evaluated 2,800 fish by PCR and 1, 222 fish by histology and have not detected P. neurophilia. Thus we have established 9 lines of zebrafish SPF for P. neurophilia. However, 26 fish exhibited mycobacteriosis, diagnosed by the presence of acid fast bacteria visualized in tissue sections. Forty-nine other fish exhibited chronic inflammatory lesions, including egg associated inflammation and hyperplasia, in which acid-fast bacteria were not detected. Eight exhibited hepatic megalocytosis or hepatocellular pleomorphism, and three exhibited neoplasia (cholangiocellular carcinoma, and two with seminoma). One of the seminomas occurred in a female, and was classified as ovo-testes. PMID:21797038

Kent, Michael L.; Buchner, Cari; Watral, Virginia G.; Sanders, Justin L; LaDu, Jane; Peterson, Tracy S.; Tanguay, Robert L.

2014-01-01

383

New Lidar Remote Sensing Capabilities at the Atmospheric Radiation Measurement Climate Research Facilities (Invited)  

NASA Astrophysics Data System (ADS)

In 2009 the US Department of Energy’s Atmospheric Radiation Measurement Climate Research Facility (ACRF) was awarded funds through the American Recovery and Reinvestment Act (ARRA) for instrument acquisitions and upgrades. A significant portion of that award is being used to acquire new advanced lidar systems for all of the ACRF sites. Efforts are currently underway to develop the following systems: 1) one Raman lidar for installation at the Tropical West Pacific (TWP) site in Darwin, Australia; 2) two High Spectral Resolution Lidars (HSRL) for deployment at the North Slope of Alaska (NSA) site in Barrow, and with the second mobile facility (AMF2); 3) three coherent Doppler lidars for deployment at the Southern Great Plains (SGP) site in Oklahoma, TWP-Darwin, and with the first mobile facility (AMF1). Additionally, the following systems are being upgraded: 1) laser ceilometers at SGP, TWP, NSA, and mobile facilities; 2) Micropulse Lidars (MPL) at SGP, TWP, NSA, and mobile facilities; 3) the existing Raman lidar at SGP. The new Raman lidar at TWP-Darwin will provide time and height resolved measurements of water vapor mixing ratio, temperature, aerosol extinction, backscatter, and depolarization. The design of this system will closely follow that of the existing Raman lidar at SGP. The SGP Raman system has been operational for well over 10 years and is well proven. Over the years a number of upgrades have been incorporated that have greatly improved performance of the system. Examples include simultaneous photon counting and analog detection electronics, the addition of two rotational Raman channels for temperature profiling, and continuous active boresight alignment. The new system at Darwin will incorporate these features as well. The HSRL systems will improve cloud and aerosol remote sensing at NSA and AMF2 by enabling a direct measurement of extinction. Extinction profiles at these sites are currently being generated as PI data products from MPL data. The HSRL measurement technique obviates the need to assume a constant (or prescribed) backscatter-to-extinction ratio, as is currently the case when using MPL data. The Doppler lidars will help fill a long standing measurement gap within ACRF. These systems will operate in a vertically staring mode to acquire long-term measurements of clear-air vertical velocities in the lower troposphere. These data will be used to investigate statistics of updrafts and downdrafts, and the vertical transport of aerosols. This presentation will discuss the expected performance characteristics of the new ACRF lidar systems and the impact that the new systems are expected to have on the science.

Newsom, R.; Comstock, J. M.; Turner, D. D.; Ferrare, R. A.; Flynn, C.; Goldsmith, J.; Morris, V. R.; Coulter, R.

2009-12-01

384

A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor  

SciTech Connect

The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated.

Emiliano Pozzi; David W. Nigg; Marcelo Miller; Silvia I. Thorp; Amanda E. Schwint; Elisa M. Heber; Veronica A. Trivillin; Leandro Zarza; Guillermo Estryk

2007-11-01

385

Melting of the metallic wastes generated by dismantling retired nuclear research facilities  

SciTech Connect

The decommissioning of nuclear installations results in considerably large amounts of radioactive metallic wastes such as stainless steel, carbon steel, aluminum, copper etc. It is known that the reference 1,000 MWe PWR and 881 MWe PHWR will generate metal wastes of 24,800 ton and 26,500 ton, respectively. In Korea, the D and D of KRR-2 and a UCP at KAERI have been performed. The amount of metallic wastes from the KRR-1 and UCP was about 160 ton and 45 ton, respectively, up to now. These radioactive metallic wastes will induce problems of handling and storing these materials from environmental and economical aspects. For this reason, prompt countermeasures should be taken to deal with the metal wastes generated by dismantling retired nuclear facilities. The most interesting materials among the radioactive metal wastes are stainless steel (SUS), carbon steel (CS) and aluminum wastes because they are the largest portions of the metallic wastes generated by dismantling retired nuclear research facilities. As most of these steels are slightly contaminated, if they are properly treated they are able to be recycled and reused in the nuclear field. In general, the technology of a metal melting is regarded as one of the most effective methods to treat metallic wastes from nuclear facilities. In conclusion: The melting of metal wastes (Al, SUS, carbon steel) from a decommissioning of research reactor facilities was carried out with the use of a radioisotope such as cobalt and cesium in an electric arc furnace. In the aluminum melting tests, the cobalt was captured at up to 75% into the slag phase. Most of the cesium was completely eliminated from the aluminum ingot phase and moved into the slag and dust phases. In the melting of the stainless steel wastes, the {sup 60}Co could almost be retained uniformly in the ingot phase. However, we found that significant amounts of {sup 60}Co remained in the slag at up to 15%. However the removal of the cobalt from the ingot phase was improved by the addition of a CaF{sub 2} slag former at up to 20%. The {sup 137}Cs was partitioned between the slag and the dust phases in the offgas. In the pilot scale melting test, the cobalt mostly remained in the ingot phase and the cesium was mainly found in the quenching water and slag.

Chong-Hun Jung; Pyung-Seob Song; Byung-Youn Min; Wang-Kyu Choi [150, Dukjin-Dong, Yuseong-Gu, Daejeon, 305-353 (Korea, Republic of)

2008-01-15

386

Progress in ICF Research in Support of the National Ignition Facility  

NASA Astrophysics Data System (ADS)

The ICF research in plasma physics, hydrodynamic instabilities, and laser interaction with matter has progressed to the level that there is high confidence in reaching ignition of D-T fuel with the National Ignition Facility (NIF). As a result of the recent openness in ICF research, substantial information on the status of current experiments has been examined and a clear path of further research has been developed^1. This will be accomplished using the Nova laser as the NIF moves toward the construction phase. Details of current experiments and target design projections for the NIF will be discussed^2. Information on the status of the NIF Project is currently being updated on the Internet to keep interested colleagues informed of the progress. The education outreach programs and graduate research opportunities already underway at LLNL are being evaluated with the Nova laser in order to develop a model for a new education project for the NIF. Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract W-7405-ENG-48. This abstract has been reviewed and released by the Patents and Classification offices of Lawrence Livermore National Laboratory. 1. R. R. Johnson, Optics & Photonics News 6, 16-23 (1995) 2. LLNL ICF Quarterly Report, UCRL-LR-105821; www-lasers.llnl.gov

Johnson, Roy

1996-05-01

387

Development of a pollution prevention and energy efficiency clearinghouse for biomedical research facilities.  

PubMed Central

This is the report of the National Association of Physicians for the Environment Committee on Development of a Pollution Prevention and Energy Efficiency Clearinghouse for Biomedical Research Facilities from the Leadership Conference on Biomedical Research and the Environment held at the National Institutes of Health in Bethesda, Maryland, on 1--2 November 1999. A major goal of the conference was the establishment of a World Wide Web-based clearinghouse, which would lend tremendous resources to the biomedical research community by providing access to a database of peer-reviewed articles and references dealing with a host of aspects of biomedical research relating to energy efficiency, pollution prevention, and waste reduction. A temporary website has been established with the assistance of the U.S. Environmental Protection Agency (EPA) Regions III and IV, where a pilot site provides access to the EPA's existing databases on these topics. A system of peer review for articles and promising techniques still must be developed, but a glimpse of topics and search engines is available for comment and review on the EPA Region IV-supported website (http://wrrc.p2pays.org/). PMID:11121361

Barker, L F; Rau, E H; Pfister, E A; Calcagni, J

2000-01-01

388

Status and Plans for the National Spherical Torus Experimental Research Facility  

NASA Astrophysics Data System (ADS)

An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high ?, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high ? Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high ? and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.

Ono, Masayuki; Bell, M. G.; Bell, R. E.; Bernabei, S.; Bialek, J. M.; Bigelow, T.; Bitter, M.; Biewer, T. M.; Blanchard, W.; Boedo, J.; Bush, C.; Chrzanowski, J.; Darrow, D. S.; Dudek, L.; Feder, R.; Ferron, J. R.; Foley, J.; Fredrickson, E. D.; Gates, D. A.; Gettelfinger, G.; Gibney, T.; Harvey, R.; Hatcher, R.; Heidbrink, W.; Jarboe, T. R.; Johnson, D. W.; Kalish, M.; Kaita, R.; Kaye, S. M.; Kessel, C.; Kubota, S.; Kugel, H. W.; Labik, G.; Leblanc, B. P.; Lee, K. C.; Levinton, F. M.; Lowrance, J.; Maingi, R.; Manickam, J.; Maqueda, R.; Marsala, R.; Mastravito, D.; Mazzucato, E.; Medley, S. S.; Menard, J.; Mueller, D.; Munsat, T.; Nelson, B. A.; Neumeyer, C.; Nishino, N.; Park, H. K.; Paul, S. F.; Peebles, T.; Perry, E.; Peng, Y.-K. M.; Phillips, C. K.; Pinsker, R.; Ramakrishnan, S.; Raman, R.; Roney, P.; Roquemore, A. L.; Ryan, P. M.; Sabbagh, S. A.; Schneider, H.; Skinner, C. H.; Smith, D. R.; Sontag, A. C.; Soukhanovskii, V.; Stevenson, T.; Stotler, D.; Stratton, B. C.; Stutman, D.; Swain, D. W.; Synakowski, E.; Takase, Y.; Taylor, G.; Tritz, K. L.; Halle, A. Von; Wilgen, J.; Williams, M.; Wilson, J. R.; Zatz, I.; Zhu, W.; Zweben, S. J.; Akers, R.; Beiersdorfer, P.; Bonoli, P. T.; Bourdelle, C.; Carter, M. D.; Chang, C. S.; Choe, W.; Davis, W.; Diem, S. J.; Domier, C.; Ellis, R.; Efthimion, P. C.; Field, A.; Finkenthal, M.; Fredd, E.; Fu, G. Y.; Glasser, A.; Goldston, R. J.; Grisham, L. R.; Gorelenkov, N.; Guazzotto, L.; Hawryluk, R. J.; Heitzenroeder, P.; Hill, K. W.; Houlberg, W.; Hosea, J. C.; Humphreys, D.; Jun, C.; Kim, J. H.; Krasheninnikov, S.; Lao, L. L.; Lee, S. G.; Lawson, J.; Luhmann, N. C.; Mau, T. K.; Menon, M. M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Pacella, D.; Parsells, R.; Pigarov, A.; Porter, G. D.; Ram, A. K.; Rasmussen, D.; Redi, M.; Rewoldt, G.; Robinson, J.; Ruskov, E.; Schmidt, J.; Semenov, I.; Shaing, K.; Shinohara, K.; Schaffer, M.; Sichta, P.; Tang, X.; Timberlake, J.; Wade, M.; Wampler, W. R.; Wang, Z.; Woolley, R.; Wurden, G. A.; Xu, X.

389

GeoSoilEnviroCARS: A National User Facility for Synchrotron Radiation Research  

NASA Astrophysics Data System (ADS)

GeoSoilEnviroCARS (GSECARS) is a national user facility for frontier research in the earth sciences using synchrotron radiation at the Advanced Photon Source, Argonne National Laboratory. GSECARS provides earth scientists with access to the high-brilliance hard x-rays from this third-generation synchrotron light source. Both an undulator and a bending magnet beamline are available. All principal synchrotron-based analytical techniques in demand by earth scientists are being brought to bear on earth science problems: (1) high-pressure/high-temperature crystallography and spectroscopy using the diamond anvil cell; (2) high-pressure/high-temperature crystallography using the large-volume press; (3) powder, single crystal and interface diffraction; (4) inelastic x-ray scattering; (5) x-ray absorption fine structure (XAFS) spectroscopy; (6) x-ray fluorescence microprobe analysis; and (7) microtomography. The major instrumentation includes 250 and 1000 MN multianvil presses, a double-sided laser heating system, a large general-purpose 5-circle diffractometer, a focused microprobe, and a Raman laboratory. A proposal-based system for beamtime allocation, open to all earth scientists, has been in place since Fall, 1998. Since then, over 450 beamtime proposals have been received and more than 320 outside users have conducted experiments at GSECARS. The research conducted by these investigators has resulted in more than 170 publications. The unique capabilities of the APS and GSECARS have allowed groundbreaking experiments to be conducted. These include: (1) phase transformations in the Mg-Si-O system at mantle conditions; (2) structure of hydrated a-Al2O3 surfaces; (3) alloying properties of silicon in the Earth's core; (4) dynamics of iron-rich melt segregation from silicates during core formation; (5) electronic spin state of FeO at high pressure and temperature; (6) elastic wave velocities of mantle minerals at lower mantle conditions; (7) copper partitioning and speciation in natural hydrothermal fluids; and (8) mechanisms of arsenic sequestration at a Superfund site. The GSECARS mission is to provide a research environment where users receive expert assistance in planning and conducting experiments, and in analyzing data. The facility operation is funded by the NSF EAR Instrumentation and Facilities program and the DOE Geosciences program. Major instrumentation was also provided by the W.M. Keck Foundation. Information and applications for beam time can be found at http://gsecars.org.

Rivers, M. L.; Sutton, S. R.

2002-12-01

390

A hydrologic retention system and water quality monitoring program for a human decomposition research facility: concept and design.  

PubMed

Forensic taphonomy is an essential research field; however, the decomposition of human cadavers at forensic science facilities may lead to nutrient loading and the introduction of unique biological compounds to adjacent areas. The infrastructure of a water retention system may provide a mechanism for the biogeochemical processing and retention of nutrients and compounds, ensuring the control of runoff from forensic facilities. This work provides a proof of concept for a hydrologic retention system and an autonomous water quality monitoring program designed to mitigate runoff from The Southeast Texas Applied Forensic Science (STAFS) Facility. Water samples collected along a sample transect were analyzed for total phosphorous, total nitrogen, NO3-, NO2-, NH4 , F(-) , and Cl(-) . Preliminary water quality analyses confirm the overall effectiveness of the water retention system. These results are discussed with relation to how this infrastructure can be expanded upon to monitor additional, more novel, byproducts of forensic science research facilities. PMID:25041409

Wozniak, Jeffrey R; Thies, Monte L; Bytheway, Joan A; Lutterschmidt, William I

2015-01-01

391

STAR - Research Experiences at National Laboratory Facilities for Pre-Service and Early Career Teachers  

NASA Astrophysics Data System (ADS)

The STEM Teacher and Researcher (STAR) Program provides pre-service and beginning teachers the opportunity to develop identity as both teachers and researchers early in their careers. Founded and implemented by the Center for Excellence in Science and Mathematics Education (CESaME) at California Polytechnic State University on behalf of the California State University (CSU) system, STAR provides cutting edge research experiences and career development for students affiliated with the CSU system. Over the past three summers, STAR has also partnered with the NSF Robert Noyce Teacher Scholarship Program to include Noyce Scholars from across the country. Key experiences are one to three summers of paid research experience at federal research facilities associated with the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Association (NOAA), and the National Optical Astronomy Observatory (NOAO). Anchoring beginning teachers in the research community enhances participant understanding of what it means to be both researchers and effective teachers. Since its inception in 2007, the STAR Program has partnered with 15 national lab facilities to provide 290 research experiences to 230 participants. Several of the 68 STAR Fellows participating in the program during Summer 2012 have submitted abstracts to the Fall AGU Meeting. Through continued partnership with the Noyce Scholar Program and contributions from outside funding sources, the CSU is committed to sustaining the STAR Program in its efforts to significantly impact teacher preparation. Evaluation results from the program continue to indicate program effectiveness in recruiting high quality science and math majors into the teaching profession and impacting their attitudes and beliefs towards the nature of science and teaching through inquiry. Additionally, surveys and interviews are being conducted of participants who are now teaching in the classroom as part of a project to investigate the impact of the STAR Program on teaching practices. Preliminary analyses indicate that STAR fellows have maintained a strong distributed community of support following their summer experience, including continued contact with their research mentors and other fellows. The STAR research experience has also reinforced and strengthened many of the teachers' commitment to teaching. Additionally, teachers report how their STAR experience contributed to specific practices they use in the classroom to help students develop hypotheses, design experiments, and report their findings to the class. The STAR Program was presented to and cited by the Presidential Council of Advisors on Science and Technology (PCAST) as a national model for addressing K-12 science and math teacher workforce needs. It has also been recognized as a uniquely promising model for recruiting, preparing and retaining outstanding STEM teachers in such national publications as the American Association of Colleges and Universities (AAC&U) Peer Review journal and the National Science Teachers Association NSTA Reports. STAR was also recently cited in an editorial in Science (May 4, 2012) as a model teacher-researcher program that enhances professionalism in science teaching.

Keller, J. M.; Rebar, B.; Buxner, S.

2012-12-01

392

Workforce Development Oregon Academic Research Facilities Research Expertise Oregon was the first statein the U.S. to install photovoltaics on its  

E-print Network

tools and faculty expertise aimed at fast-tracking solar technologies and serving solar energy in recruiting and supporting solar energy companies that have open access to our university network of cutting-edge solar research facilities and world-renowned faculty researchers. In addition, Oregon's colleges

Oregon, University of

393

Preliminary Measurements From A New Flat Plate Facility For Aerodynamic Research  

SciTech Connect

This paper details the design and preliminary measurements used in the characterisation of a new flat plate research facility. The facility is designed specifically to aid in the understanding of entropy generation throughout the boundary layer with special attention given to non-equilibrium flows. Hot-wire measurements were obtained downstream of two turbulence generating grids. The turbulence intensity, integral and dissipation length scale ranges measured are 1.6%-7%, 5mm-17mm and 0.7mm-7mm, respectively. These values compared well to existing correlations. The flow downstream of both grids was found to be homogenous and isotropic. Flow visualisation is employed to determine aerodynamic parameters such as flow 2-dimensionality and the effect of the flap angle on preventing separation at the leading edge. The flow was found to be 2-dimensional over all measurement planes. The non-dimensional pressure distribution of a modern turbine blade suction surface is simulated on the flat plate through the use of a variable upper wall. The Reynolds number range based on wetted plate length and inlet velocity is 70,000-4,000,000.

D. M. McEligot; D. W. Nigg; E. J. Walsh; D. Hernon; M.R.D. Davies

2005-03-01

394

Impact dynamics research facility for full-scale aircraft crash testing  

NASA Technical Reports Server (NTRS)

An impact dynamics research facility (IDRF) was developed to crash test full-scale general aviation aircraft under free-flight test conditions. The aircraft are crashed into the impact surface as free bodies; a pendulum swing method is used to obtain desired flight paths and velocities. Flight paths up to -60 deg and aircraft velocities along the flight paths up to about 27.0 m/s can be obtained with a combination of swing-cable lengths and release heights made available by a large gantry. Seven twin engine, 2721-kg aircraft were successfully crash tested at the facility, and all systems functioned properly. Acquisition of data from signals generated by accelerometers on board the aircraft and from external and onboard camera coverage was successful in spite of the amount of damage which occurred during each crash. Test parameters at the IDRF are controllable with flight path angles accurate within 8 percent, aircraft velocity accurate within 6 percent, pitch angles accurate to 4.25 deg, and roll and yaw angles acceptable under wind velocities up to 4.5 m/s.

Vaughan, V. L. J.; Alfaro-Bou, E.

1976-01-01

395

Why the US Needs a Deep Domestic Research Facility: Owning rather than Renting the Education Benefits, Technology Advances, and Scientific Leadership of Underground Physics  

E-print Network

I summarize the status of the Sanford Underground Research Facility in South Dakota and present connections to Energy and Intensity Frontier that benefit from the establishment of SURF and the staging of US-funded experiments in a domestic facility.

Kevin T. Lesko

2013-04-01

396

Why the US Needs a Deep Domestic Research Facility: Owning rather than Renting the Education Benefits, Technology Advances, and Scientific Leadership of Underground Physics  

E-print Network

I summarize the status of the Sanford Underground Research Facility in South Dakota and present connections to Energy and Intensity Frontier that benefit from the establishment of SURF and the staging of US-funded experiments in a domestic facility.

Lesko, Kevin T

2013-01-01

397

A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology  

NASA Technical Reports Server (NTRS)

A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

1998-01-01

398

Thermal analysis of the CPFR (Confinement Physics Research Facility)/ZTH apparatus  

SciTech Connect

The design has been completed for a new-generation Reversed-Field Pinch machine to be assembled at the Los Alamos National Laboratory during FY 1992. The Confinement Physics Research Facility (CPRF) houses the front-end ZTH torus. A series of simulations has been performed to predict temperature levels for various elements within the front end of the CPRF/ZTH apparatus for bakeout conditions and for periodic experiments. A lumped-parameter approach was used to calculate temperatures of various elements as functions of time. Results indicate that temperatures can be held at acceptable levels for 10-min cycles for the 2-MA design condition. The cycle time must be extended to approximately 13 min for 4-MA experiments. Instrumentation temperatures during bakeout were also found to be within acceptable limits. 2 refs., 7 figs., 1 tab.

Schnurr, N.M.

1989-01-01

399

Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory  

NASA Technical Reports Server (NTRS)

This Technical Memorandum presents the current capabilities of the state-of-the-art Mach 0.3 Burner Rig Facility. It is used for materials research including oxidation, corrosion, erosion and impact. Consisting of seven computer controlled jet-fueled combustors in individual test cells, these relatively small rigs burn just 2 to 3 gal of jet fuel per hour. The rigs are used as an efficient means of subjecting potential aircraft engine/airframe advanced materials to the high temperatures, high velocities and thermal cycling closely approximating actual operating environments. Materials of various geometries and compositions can be evaluated at temperatures from 700 to 2400 F. Tests are conducted not only on bare superalloys and ceramics, but also to study the behavior and durability of protective coatings applied to those materials.

Fox, Dennis S.; Miller, Robert A.; Zhu, Dongming; Perez, Michael; Cuy, Michael D.; Robinson, R. Craig

2011-01-01

400

Laser Acceleration Research at the LLNL 100 MeV Linac/FALCON Laser Facility  

NASA Astrophysics Data System (ADS)

A new laboratory for laser acceleration research is being developed at LLNL to investigate promising technologies which may allow the exploitation of the very high accelerating gradients achievable in plasma and laser-based acceleration schemes. The heart of the laboratory will be the new short pulse Ti:Sapphire laser, FALCON, which is designed to provide 5 J per pulse in 50 fs at a high repetition rate ( ~6 Hz.) In addition, the facility also houses a 100 MeV electron linac and a below-ground target cave. The Linac injector will be upgraded with an S-band RF photoinjector, providing pulse trains with low emittance ( ~1 ? mm mrad) and high charge (1 nC in 1 ps.) Construction of the FALCON laser and RF gun upgrade should be completed in 1998 with full power experiments beginning in 1999. Results from preliminary laser acceleration experiments on the PetaWatt laser at LLNL will also be presented.

Cowan, T. E.; Baldis, H. A.; Freeman, R. R.; Hagmann, C. A.; Key, M.; Mugge, M.; Pennington, D.; Perry, M. D.; Shi, X.; van Bibber, K.; White, W. E.; Wilks, S. C.; Yanovsky, V.; Young, P. E.; Hartemann, F.; Lesage, G.; Luhmann, N. C.; Kerman, A. K.; Takahashi, Y.; Fountain, W.; Iyono, A.; Parnell, T.

1997-11-01

401

Fusion-Fission Research Facility (FFRF) as a Practical Step Toward Hybrids  

SciTech Connect

The project of ASIPP (with PPPL participation), called FFRF, (R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, PDT=50-100 MW, Pfission=80-4000 MW, 1 m thick blanket) is outlined. FFRF stands for the Fusion-Fission Research Facility with a unique fusion mission and a pioneering mission of merging fusion and fission for accumulation of design, experimental, and operational data for future hybrid applications. The design of FFRF will use as much as possible the EAST and ITER design experience. On the other hand, FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China.

L. Zakharov, J. Li and Y. Wu

2010-11-18

402

The CELSS Test Facility - A foundation for crop research in space  

NASA Technical Reports Server (NTRS)

Under the NASA Space Biology Initiative, a CELSS Test Facility (CTF) is being planned for installation on Space Station Freedom. The CTF will be used to study the productivity of typical CELSS higher plant crops under the microgravity conditions of the Space Station Freedom (SSF). Such science studies will be supported under the CELSS Space Research Project. The CTF will be used to evaluate fundamental issues of crop productivity, such as the production rates of O2, food and transpired water, and CO2 uptake. A series of precursor tests that are essential to the development of the CTF will be flown on Space Shuttle flights. The tests will be used to validate and qualify technology concepts and to answer specific questions regarding seed germination, root/shoot orientation, water condensation and recycling, nutrient delivery, and liquid/gas phase interactions.

Straight, C. L.; Macelroy, R. D.

1990-01-01

403

Feasibility of using an east coast facility for collaborative research in atmospheric science  

SciTech Connect

This feasibility study examined the effectiveness and potential of a center for collaborative research in atmospheric science and remote sensing. Strongly related to this effort was the development of a telescope facility by Howard University into an atmospheric observatory and remote sensor test-bed. Several remote sensing techniques were evaluated here and the most promising were further developed. Atmospheric assessment concentrated on aerosols, winds, constituent analysis, and the detection of hazardous agents including biologicals. This mission defined the suite of instrumentation. Being a feasibility study, the scope of the project was limited to examining the state of the technology and pushing it when possible. Research performed in applying laser technology lead to the development and subsequent patent application of a new laser heterodyne amplifier, progress toward the development of a laser probe to determine the range resolved size distribution of aerosols, and studies which may lead to the development of a laser induced fluorescence sensing technique for biologicals in the atmosphere. Research in passive atmospheric sensing helped to motivate a field experiment to better understand atmospheric radiance and radiation transport in three-dimensions.

Molitoris, J. D., LLNL

1998-02-09

404

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January-March 2006  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter for the Southern Great Plains (SGP) site is 2,052 hours (0.95 × 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) locale is 1,836 hours (0.85 × 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,052 hours (0.95 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter.

DL Sisterson

2006-03-31

405

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2005  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 × 2,208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1,987.2 hours (0.90 × 2,208), and that for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 × 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 × 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.

DL Sisterson

2005-12-31

406

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2008  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2008 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 ? 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.

DL Sisterson

2008-09-30

407

Long-duration exposure facility - A new capability for space testing and basic research. [satellite-borne experiments  

NASA Technical Reports Server (NTRS)

The reusable Long-Duration Exposure Facility (LDEF), which can accommodate experiments requiring large exposure surface areas, large volumes and/or massive hardware, offers to researchers a new inexpensive opportunity to conduct extended technology and basic research testing in the space environment. Many researchers with interest varying from medical research to astrophysics research will have their experiments performed in the 80 large experiment trays on the first LDEF flight. This paper describes the LDEF and a number of experiments now being developed for the first mission. In particular, this paper illustrates the value of the LDEF features which allow the return of the experiment hardware and repeated flights.

Dibattista, J. D.

1976-01-01

408

The GreenLab Research Facility: A Micro-Grid Integrating Production, Consumption and Storage of Clean Energy  

NASA Technical Reports Server (NTRS)

There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The NASA Glenn Research Center (GRC) has initiated a laboratory-pilot study that concentrates on using biofuels as viable alternative fuel resources for the field of aviation, as well as, utilizing wind and solar technologies as alternative renewable energy resources, and in addition, the use of pumped water for storage of energy that can be retrieved through hydroelectric generation. This paper describes the GreenLab Research Facility and its power and energy sources with .recommendations for worldwide expansion and adoption of the concept of such a facility

McDowell Bomani, Bilal Mark; Elbuluk, Malik; Fain, Henry; Kankam, Mark D.

2012-01-01

409

Green Farm Electric Gun Research and Development Facility: the final chapter  

Microsoft Academic Search

The Green Farm Electric Gun R&D Facility has been operated by Maxwell Technologies Inc. (MTI) for the Defense Threat Reduction Agency (DTRA) since it's inception in 1986. MTI continued to operate this workhorse facility for thirteen years under the technical oversight of DTRA until its closure in 1999. The facility supported a wide variety of both electromagnetic (EM) and electrothermal

Timothy R. Wolfe; Paul Riedy; David Lewis

2001-01-01

410

Jackson State University's Center for Spatial Data Research and Applications: New facilities and new paradigms  

NASA Technical Reports Server (NTRS)

Jackson State University recently established the Center for Spatial Data Research and Applications, a Geographical Information System (GIS) and remote sensing laboratory. Taking advantage of new technologies and new directions in the spatial (geographic) sciences, JSU is building a Center of Excellence in Spatial Data Management. New opportunities for research, applications, and employment are emerging. GIS requires fundamental shifts and new demands in traditional computer science and geographic training. The Center is not merely another computer lab but is one setting the pace in a new applied frontier. GIS and its associated technologies are discussed. The Center's facilities are described. An ARC/INFO GIS runs on a Vax mainframe, with numerous workstations. Image processing packages include ELAS, LIPS, VICAR, and ERDAS. A host of hardware and software peripheral are used in support. Numerous projects are underway, such as the construction of a Gulf of Mexico environmental data base, development of AI in image processing, a land use dynamics study of metropolitan Jackson, and others. A new academic interdisciplinary program in Spatial Data Management is under development, combining courses in Geography and Computer Science. The broad range of JSU's GIS and remote sensing activities is addressed. The impacts on changing paradigms in the university and in the professional world conclude the discussion.

Davis, Bruce E.; Elliot, Gregory

1989-01-01

411

The rodent Research Animal Holding Facility as a barrier to environmental contamination  

NASA Technical Reports Server (NTRS)

The rodent Research Animal Holding Facility (RAHF), developed by NASA Ames Research Center (ARC) to separately house rodents in a Spacelab, was verified as a barrier to environmental contaminants during a 12-day biocompatibility test. Environmental contaminants considered were solid particulates, microorganisms, ammonia, and typical animal odors. The 12-day test conducted in August 1988 was designed to verify that the rodent RAHF system would adequately support and maintain animal specimens during normal system operations. Additional objectives of this test were to demonstrate that: (1) the system would capture typical particulate debris produced by the animal; (2) microorganisms would be contained; and (3) the passage of animal odors was adequately controlled. In addition, the amount of carbon dioxide exhausted by the RAHF system was to be quantified. Of primary importance during the test was the demonstration that the RAHF would contain particles greater than 150 micrometers. This was verified after analyzing collection plates placed under exhaust air ducts and and rodent cages during cage maintenance operations, e.g., waste tray and feeder changeouts. Microbiological testing identified no additional organisms in the test environment that could be traced to the RAHF. Odor containment was demonstrated to be less than barely detectable. Ammonia could not be detected in the exhaust air from the RAHF system. Carbon dioxide levels were verified to be less than 0.35 percent.

Savage, P. D., Jr.; Jahns, G. C.; Dalton, B. P.; Hogan, R. P.; Wray, A. E.

1989-01-01

412

Lunar and Planetary Science XXXV: Undergraduate Education and Research Programs, Facilities, and Information Access  

NASA Technical Reports Server (NTRS)

The titles in this section include: 1) GRIDVIEW: Recent Improvements in Research and Education Software for Exploring Mars Topography; 2) Software and Hardware Upgrades for the University of North Dakota Asteroid and Comet Internet Telescope (ACIT); 3) Web-based Program for Calculating Effects of an Earth Impact; 4) On-Line Education, Web- and Virtual-Classes in an Urban University: A Preliminary Overview; 5) Modelling Planetary Material's Structures: From Quasicrystalline Microstructure to Crystallographic Materials by Use of Mathematica; 6) How We Used NASA Lunar Set in Planetary and Material Science Studies: Textural and Cooling Sequences in Sections of Lava Column from a Thin and a Thick Lava-Flow, from the Moon and Mars with Terrestrial Analogue and Chondrule Textural Comparisons; 7) Classroom Teaching of Space Technology and Simulations by the Husar Rover Model; 8) New Experiments (In Meteorology, Aerosols, Soil Moisture and Ice) on the New Hunveyor Educational Planetary Landers of Universities and Colleges in Hungary; 9) Teaching Planetary GIS by Constructing Its Model for the Test Terrain of the Hunveyor and Husar; 10) Undergraduate Students: An Untapped Resource for Planetary Researchers; 11) Analog Sites in Field Work of Petrology: Rock Assembly Delivered to a Plain by Floods on Earth and Mars; 12) RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility; 13) Full Text Searching and Customization in the NASA ADS Abstract Service.

2004-01-01

413

Investigation and Development of Control Laws for the NASA Langley Research Center Cockpit Motion Facility  

NASA Technical Reports Server (NTRS)

The ability to develop highly advanced simulators is a critical need that has the ability to significantly impact the aerospace industry. The aerospace industry is advancing at an ever increasing pace and flight simulators must match this development with ever increasing urgency. In order to address both current problems and potential advancements with flight simulator techniques, several aspects of current control law technology of the National Aeronautics and Space Administration (NASA) Langley Research Center's Cockpit Motion Facility (CMF) motion base simulator were examined. Preliminary investigation of linear models based upon hardware data were examined to ensure that the most accurate models are used. This research identified both system improvements in the bandwidth and more reliable linear models. Advancements in the compensator design were developed and verified through multiple techniques. The position error rate feedback, the acceleration feedback and the force feedback were all analyzed in the heave direction using the nonlinear model of the hardware. Improvements were made using the position error rate feedback technique. The acceleration feedback compensator also provided noteworthy improvement, while attempts at implementing a force feedback compensator proved unsuccessful.

Coon, Craig R.; Cardullo, Frank M.; Zaychik, Kirill B.

2014-01-01

414

The proton injector for the accelerator facility of antiproton and ion research (FAIR)  

SciTech Connect

The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 × 10{sup 10} cooled pbars per hour. This is equivalent to a primary proton beam current of 2 × 10{sup 16} protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 ?s. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3? mm?mrad (norm., rms)

Ullmann, C., E-mail: c.ullmann@gsi.de; Kester, O. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany) [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Institut für Angewandte Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany); Berezov, R.; Fils, J.; Hollinger, R.; Vinzenz, W. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany)] [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Chauvin, N.; Delferriere, O. [Commissariat ŕ l’Energie Atomique et aux Energies Alternatives, IRFU, F-91191-Gif-sur-Yvette (France)] [Commissariat ŕ l’Energie Atomique et aux Energies Alternatives, IRFU, F-91191-Gif-sur-Yvette (France)

2014-02-15

415

The F-15B Propulsion Flight Test Fixture: A New Flight Facility For Propulsion Research  

NASA Technical Reports Server (NTRS)

The design and development of the F-15B Propulsion Flight Test Fixture (PFTF), a new facility for propulsion flight research, is described. Mounted underneath an F-15B fuselage, the PFTF provides volume for experiment systems and attachment points for propulsion devices. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. Three-axis forces and moments can be measured in flight for experiments mounted to the force balance. The NASA F-15B airplane is described, including its performance and capabilities as a research test bed aircraft. The detailed description of the PFTF includes the geometry, internal layout and volume, force-balance operation, available instrumentation, and allowable experiment size and weight. The aerodynamic, stability and control, and structural designs of the PFTF are discussed, including results from aerodynamic computational fluid dynamic calculations and structural analyses. Details of current and future propulsion flight experiments are discussed. Information about the integration of propulsion flight experiments is provided for the potential PFTF user.

Corda, Stephen; Vachon, M. Jake; Palumbo, Nathan; Diebler, Corey; Tseng, Ting; Ginn, Anthony; Richwine, David

2001-01-01

416

Source Apportionment of Stack Emissions from Research and Development Facilities Using Positive Matrix Factorization  

SciTech Connect

Emissions from research and development (R&D) facilities are difficult to characterize due to the wide variety of processes used, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compounds (VOCs) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified from 9-11 source-related factors contributing to the stack emissions depending on the building. The factors that were similar between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions. Several other factors had similar profiles for two or more buildings but not for all four. One factor for each building was a combination of p/m-xylene, o-xylene and ethylbenzene. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit. Although the PMF model predicted the profiles of the off-shift samples, the percent of total emissions was under-predicted by the model versus the measured data.

Ballinger, Marcel Y.; Larson, Timothy V.

2014-12-01

417

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2010.  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Summary. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1-December 31, 2010, for the fixed sites. Because the AMFs operate episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. This first quarter comprises a total of 2,208 possible hours for the fixed sites and the AMF1 and 1,464 possible hours for the AMF2. The average of the fixed sites exceeded our goal this quarter. The AMF1 has essentially completed its mission and is shutting down to pack up for its next deployment to India. Although all the raw data from the operational instruments are in the Archive for the AMF2, only the processed data are tabulated. Approximately half of the AMF2 instruments have data that was fully processed, resulting in the 46% of all possible data made available to users through the Archive for this first quarter. Typically, raw data is not made available to users unless specifically requested.

Sisterson, D. L.

2011-02-01

418

Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India  

PubMed Central

Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes – prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic/transcriptomic data is available at NCBI.

S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali

2014-01-01

419

Conducting Research on the International Space Station Using the EXPRESS Rack Facilities  

NASA Technical Reports Server (NTRS)

Conducting Research on the International Space Station using the EXPRESS Rack Facilities. Sean W. Thompson and Robert E. Lake. NASA Marshall Space Flight Center, Huntsville, AL, USA. Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling (500 W) for two locations, one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.

Thompson, Sean W.; Lake, Robert E.

2013-01-01

420

Decommissioning and Demolition of a Redundant UK Research Facility at AWE Aldermaston - 12453  

SciTech Connect

The redundant two-storey brick built research facility on the AWE Site at Aldermaston, UK is in the closing stages of decommissioning and demolition. The facility was used for a variety of purposes up to 1995 predominately involving the use of alpha-emitting isotopes. The two main areas of alpha-based contamination have been decommissioned with the removal of hot -boxes and fume cupboards on the ground floor and HEPA filter units and ventilation equipment on the first floor. Many of these activities were undertaken using both airline fed suits, (supplied via a free standing mobile unit), and full face respirators. Asbestos materials were located and cleared from the first floor by specialist contractor. All sections of active drain running from the building to the site active effluent disposal system were removed early in the program using established techniques with specialist monitoring equipment used to provide confidence in the data required for disposal of the decommissioning debris. In particular a dedicated High Resolution Gamma Spectrometer (radioactive materials scanning unit) was utilized to categorise waste drums and wrapped packages. The building has been decommissioned and the monitoring and sampling of the structure was completed in November 2011 - the results demonstrating that the building was clear of contamination in accordance with UK clearance and exemption requirements. The demolition plan was developed and implemented in December with site excavation of foundations and site clearance currently ongoing in preparation for final site backfill activities and project close. A number of useful lessons have been learnt during the operations and are set out at the rear of the main text. (authors)

Pritchard, Paul [Atomic Weapons Establishment, Aldermaston (United Kingdom)

2012-07-01

421

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 365 days per year) the instruments were operating.

DL Sisterson

2004-12-31

422

Free Air CO2 Enrichment (FACE) Research Data from the Nevada Desert FACE Facility (NDFF)  

DOE Data Explorer

DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at the Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site. NDFF whole-ecosystem manipulation is a flagship experiment of the Terrestrial Carbon Process (TCP) research program of the US Dept. of Energy. It is also a core project of the International Geosphere-Biosphere Program (IGBP) and a contribution to the US Global Change Research Program. The NDFF was developed in conjunction with the National Science Foundation (NSF) and DOE-EPSCoR programs. FACE (Free-Air-Carbon dioxide-Enrichment) technology allows researchers to elevate the carbon dioxide level in large study plots while minimizing ecosystem disturbance. At the NDFF the concentration of CO2 was elevated by 50 percent above the present atmospheric levels in three plots in the Mojave Desert ecosystem, while six other plots remained at the current level. This experimental design provided a large area in which integrated teams of scientists could describe and quantify processes regulating carbon, nutrient, and water balances in desert ecosystems.

423

Life sciences space station planning document: A reference payload for the exobiology research facilities  

NASA Technical Reports Server (NTRS)

The Cosmic Dust Collection and Gas Grain Simulation Facilities represent collaborative efforts between the Life Sciences and Solar System Exploration Divisions designed to strengthen a natural exobiology/Planetary Sciences connection. The Cosmic Dust Collection Facility is a Planetary Science facility, with Exobiology a primary user. Conversely, the Gas Grain Facility is an exobiology facility, with Planetary Science a primary user. Requirements for the construction and operation of the two facilities, contained herein, were developed through joint workshops between the two disciplines, as were representative experiments comprising the reference payloads. In the case of the Gas Grain Simulation Facility, the astrophysics Division is an additional potential user, having participated in the workshop to select experiments and define requirements.

1987-01-01

424

Heat transfer results and operational characteristics of the NASA Lewis Research Center Hot Section Cascade Test Facility  

NASA Technical Reports Server (NTRS)

The NASA Lewis Research Center gas turbine hot section test facility has been developed to provide a real-engine environment with well known boundary conditions for the aerothermal performance evaluation/verification of computer design codes. The initial aerothermal research data obtained are presented and the operational characteristics of the facility are discussed. This facility is capable of testing at temperatures and pressures up to 1600 K and 18 atm which corresponds to a vane exit Reynolds number range of 0.5x10(6) to 2.5x10(6) based on vane chord. The component cooling air temperature can be independently modulated between 330 and 700 K providing gas-to-coolant temperature ratios similar to current engine application. Research instrumentation of the test components provide conventional pressure and temperature measurements as well as metal temperatures measured by IR-photography. The primary data acquisition mode is steady state through a 704 channel multiplexer/digitizer. The test facility was configured as an annular cascade of full coverage filmcooled vanes for the initial series of research tests.

Gladden, H. J.; Yeh, F. C.; Fronek, D. L.

1985-01-01

425

Atmospheric Radiation Measurement program climate research facility operations quarterly report April 1 - June 30, 2007.  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2007 for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.6 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.4 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period April 1 through June 30, 2007, for the fixed sites only. The AMF has been deployed to Germany and is operational this quarter. The third quarter comprises a total of 2,184 hours. Although the average exceeded our goal this quarter, there were cash flow issues resulting from Continuing Resolution early in the period that did not allow for timely instrument repairs that kept our statistics lower than past quarters at all sites. The low NSA numbers resulted from missing MFRSR data this spring that appears to be recoverable but not available at the Archive at the time of this report.

Sisterson, D. L.

2007-07-26

426

Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2009.  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,052.00 hours (0.95 x 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944.00 hours (0.90 x 2,160), and for the Tropical Western Pacific (TWP) locale is 1,836.00 hours (0.85 x 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because not all of the metadata have been acquired that are used to generate this metric. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter. Summary. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2009, for the fixed sites. The AMF has completed its mission in China but not all of the data can be released to the public at the time of this report. The second quarter comprises a total of 2,160 hours. The average exceeded our goal this quarter.

Sisterson, D. L.

2009-04-23

427

Atmospheric Radiation Measurement program climate research facilities quarterly report April 1 - June 30, 2009.  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter); for the North Slope Alaska (NSA) locale it is 1,965.60 hours (0.90 x 2,184); and for the Tropical Western Pacific (TWP) locale it is 1,856.40 hours (0.85 x 2,184). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 1390.80 hours (0.95 x 1464). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for April 1 - June 30, 2009, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and are not included in the aggregate average with the fixed sites. The AMF statistics for this reporting period were not available at the time of this report. The third quarter comprises a total of 2,184 hours for the fixed sites. The average well exceeded our goal this quarter.

Sisterson, D. L.

2009-07-14

428

Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - Sep. 30, 2009.  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208) and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 ? 2,208). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive result from downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2009, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The fourth quarter comprises a total of 2,208 hours for the fixed and mobile sites. The average of the fixed sites well exceeded our goal this quarter. The AMF data statistic requires explanation. Since the AMF radar data ingest software is being modified, the data are being stored in the DMF for data processing. Hence, the data are not at the Archive; they are anticipated to become available by the next report.

Sisterson, D. L.

2009-10-15

429

Mortality study of a research, engineering, and metal fabrication facility in western New York State  

SciTech Connect

The mortality experience of 8146 male employees of a research, engineering, and metal fabrication facility in Tonawanda, New York state was examined from 1946 to 1981. Potential workplace exposures included welding fumes, cutting oils, asbestos, organic solvents, and environmental ionizing radiation, as the result of disposal of wastes during the Manhattan Project of World War II. External comparisons with the US male population were supplemented by regional comparisons. For the total cohort, deficits were observed for all causes of death (standardized mortality ratio (SMR) = 87) and most non-cancer causes. The observed number of cancer deaths was close to expected (SMR = 99). There was an excess of connective and soft tissue cancer deaths, most notably in hourly employees hired prior to 1946. Among all hourly employees, there was an excess of respiratory cancer, which did not appear to be associated with length of employment. Mesothelioma was recorded as the cause of death for three decedents, two of whom were hourly employees who worked in production areas with high potential for asbestos exposure. The standardized mortality ratio for cirrhosis of the liver was elevated among long-term hourly employees hired prior to 1946. The roles of carbon tetrachloride exposure in the 1940s and alcohol consumption are discussed as possible contributory risk factors for the cirrhosis findings. The data do not provide evidence of radiation-induced cancers within this employee population.

Teta, M.J.; Ott, M.G.

1988-03-01

430

Ion Beam Facility at the University of Chile; Applications and Basic Research  

SciTech Connect

The main characteristics of the ion beam facility based on a 3.75 MeV Van de Graaff accelerator at the University of Chile are described at this work. Current activities are mainly focused on the application of the Ion Beam Analysis techniques for environmental, archaeological, and material science analysis. For instance, Rutherford Backscattering Spectrometry (RBS) is applied to measure thin gold film thickness which are used to determine their resistivity and other electrical properties. At this laboratory the Proton Induced X-Ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) methodologies are extensively used for trace element analysis of urban aerosols (Santiago, Ciudad de Mexico). A similar study is being carried out at the Antarctica Peninsula. Characterization studies on obsidian and vitreous dacite samples using PIXE has been also perform allowing to match some of these artifacts with geological source sites in Chile.Basic physics research is being carried out by measuring low-energy cross section values for the reactions {sup 63}Cu(d,p){sup 64}Cu and {sup Nat}Zn(p,x){sup 67}Ga. Both radionuclide {sup 64}Cu and {sup 67}Ga are required for applications in medicine. Ongoing stopping power cross section measurements of proton and alphas on Pd, Cu, Bi and Mylar are briefly discussed.

Miranda, P. A.; Morales, J. R.; Cancino, S.; Dinator, M. I.; Donoso, N.; Sepulveda, A.; Ortiz, P.; Rojas, S. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile (Chile)

2010-08-04

431

Rat maintenance in the Research Animal Holding Facility during the flight of Space Lab 3  

NASA Technical Reports Server (NTRS)

To test the husbandry capabilities of the Research Animal Holding Facility (RAHF) during space flight, 24 male rats were flown on Spacelab 3 for 7 days. Twelve large rats (400 g, LF), 5 of which had telemetry devices implanted (IF), and 12 small rats (200 g, SF) were housed in the RAHF. Examination 3 hr after landing (R + 3) revealed the rats to be free of injury, well nourished, and stained with urine. At R + 10 the rats were lethargic and atonic with hyperemia of the extremities and well groomed except for a middorsal area stained with urine and food. Both