These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Delivery Order 9 enhanced preliminary assessment, Woodbridge Research Facility, Virginia. Final report, Dec 91-Mar 92  

SciTech Connect

An enhanced preliminary assessment was conducted at Woodbridge Research Facility (WRF) in Woodbridge, Virginia. WRF is a 579-acre facility located 22 miles southeast of Washington, D.C. It is operated by Harry Diamond Laboratory (HDL) at Adelphi, Maryland for the U.S. Army Laboratory Command. Its mission is to support HDL in a variety of programs involving nuclear weapons effects and Army systems survivability. Based on information obtained during and subsequent to a site visit (18 through 20 September 1991), 27 areas requiring environmental evaluation (AREE) were identified, including landfills, a pistol range, oil-contaminated areas, waste handling areas, storage areas, test areas, underground storage tanks, transformers, oil/water separators, asbestos, drainage ditches and spill areas. This report presents a summary of findings for each AREE and recommendations for further action.

Shimko, R.G.; Turner, R.E.

1992-03-01

2

Woodbridge Army Research Facility RI/FS; volume 1. Field sampling plan. Report for 1995-1996  

SciTech Connect

U.S. Army Woodbridge Research Facility (WRF) was used in the past as a major military communications center and a research and development laboratory where electromagnetic pulse energy was tested on military and other equipment. WRF is presently an inactive facility pursuant to the 1991 Base Realignment and Closure list. Past investigation activities indicate that polychlorinated biphenyl compounds (PCBs) are primary chemicals of concern. The WRF is presently in the process of being turned over to the United States Fish and Wildlife Service (USFWS) to be used as a wildlife refuge and training facility. This task calls for provision of the necessary staff and equipment to provide remedial investigation/feasibility support for the USAEC BRAC Program investigation at WRF. The scope of work includes Focused Feasibility Studies, Remedial Investigations, Feasibility Studies, ecological assessments, risk assessments, proposed plans, RODs, and community relations support. This Field Sampling Plan contains a description of the site, sample location rationale, technical approach to field operations, site safety procedures, and methods for ecological assessments, analyses of samples, data management, and disposal of investigation-derived wastes. Information contained in other plans which accompany this submittal is identified.

Choynowski, J.; Ehlers, M.; Elias, M.; Garcia, M.; Henry, C.

1996-02-01

3

Woodbridge research facility remedial investigation/feasibility study. Health and safety plan. Final report  

SciTech Connect

The requirements set forth in 29 CFR 1910.120(f), shall be met for all employees performing or supervising hazardous waste operations. Medical exams shall be conducted as soon as possible upon notification by an employee that he/she has developed signs or symptoms indicating possible health hazards or overexposure to hazardous substances. Subcontractor personnel shall provide documentation of current status of participation in a medical surveillance program as required by 29 CFR 1910.120(f). Subcontractors unable to provide such documentation shall have successfully completed a medical examination as described in the above referenced OSHA standard prior to beginning work in a contaminated zone. Specific protocols for medical examinations are designed by an occupational physician. Common components include: (a) medical history and physical examination; (b) dipstick urinalysis, vision screen and vital signs; (c) spirometry ;(d) audiometry; (e) blood chemistry (complete blood count, liver function, kidney function, lipid metabolism, carbohydrate metabolism); (f) resting EkG (with approval); (g) chest radiograph (P/A). No project-specific medical examinations, or biological monitoring is required for this project.

Thompson, P.; McKown, G.; Waugh, J.; Houser, W.; Joy, G.

1995-09-01

4

Sentinel Event Notification System for Occupational Risks (SENSOR): Recommendations for control of silica exposure at Woodbridge Sanitary Pottery Corporation, Woodbridge, New Jersey  

SciTech Connect

An in-depth survey of exposure to silica dust at the Woodbridge Sanitary Pottery Corporation, Woodbridge, New Jersey was conducted as a part of the Sentinel Event Notification System for Occupational Risks (SENSOR) cooperative effort. The facility manufactured vitreous china products, including toilet bowls and lavatories. Personal and area atmospheric sampling showed that personal exposure to respirable crystalline silica dust ranged from 0.12 to 0.18 mg/m{sup 3} with at least half the samples exceeding the NIOSH recommended exposure limit of 0.05 mg/m{sup 3} for crystalline silica. The workers in the Slip House suffered the highest exposures, where area concentrations averaged 0.38 mg/m{sup 3}. Of the other three areas, casting, glaze spraying, and glaze preparation, the highest personal exposures were in the glaze-spraying areas where 67% of the personal samples exceeded the OSHA permissible exposure limits for respirable dust. Ergonomic evaluations were conducted to determine lifting hazards at several workstations. The authors conclude that there were excessive exposures to respirable silica dust and respirable dust. There was also a high risk of lost time in injuries from manual handling of heavy loads. Improvements should be made in the design and maintenance of ventilation control systems, work stations, and work practices.

Caplan, P.E.; Valiante, D.; Cooper, T.C.; Crouch, K.G.; Gideon, J.A.

1989-06-01

5

Research and test facilities  

NASA Technical Reports Server (NTRS)

A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

1993-01-01

6

Guide to research facilities  

SciTech Connect

This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

Not Available

1993-06-01

7

THE INCINERATION RESEARCH FACILITY  

EPA Science Inventory

The Cincinnati-based Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. EPA operates the Incineration Research Facility (IRF) in Jefferson, Arkansas. his facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liqui...

8

INCINERATION RESEARCH FACILITY  

EPA Science Inventory

The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...

9

METC Combustion Research Facility  

SciTech Connect

The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

Halow, J.S.; Maloney, D.J.; Richards, G.A.

1993-11-01

10

Kimballton Underground Research Facility  

NASA Astrophysics Data System (ADS)

A new deep underground research facility is open and operating only 30 minutes from the Virginia Tech campus. It is located in an operating limestone mine, and has drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' x 20+'; the current lab is 35' x 22' x 100'), and is located where there is a 1700' overburden. The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ˜0.004 muons per square meter, per second, per steradian. There are currently six projects using the facility: mini-LENS - Low Energy Neutrino Spectroscopy (Virginia Tech, Louisiana State University, BNL); Neutron Spectrometer (University of Maryland, NIST); Double Beta Decay to Excited States (Duke University); HPGe Low-Background Screening (North Carolina State University, University of North Carolina, Virginia Tech); MALBEK - Majorana neutrinoless double beta decay (University of North Carolina); Ar-39 Depleted Argon (Princeton University). I will summarize the current program and exciting potential for the future.

Rountree, S. Derek; Vogelaar, R. Bruce

2012-03-01

11

Kimballton Underground Research Facility  

NASA Astrophysics Data System (ADS)

A new deep underground research facility is open and operating only 30 minutes from the Virginia Tech campus. It is located in an operating limestone mine, and has drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' x 20' x 100'; the current lab is 35'x100'x22'), and is located where there is a 1700' overburden. The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ˜ 0.004 muons per square meter, per second, per steradian. There are currently six projects using the facility: mini-LENS - Low Energy Neutrino Spectroscopy (Virginia Tech, Louisiana State University, BNL); Neutron Spectrometer (University of Maryland, NIST); Double Beta Decay to Excited States (Duke University); HPGe Low-Background Screening (North Carolina State University, University of North Carolina, Virginia Tech); MALBEK - Majorana neutrinoless double beta decay (University of North Carolina); Ar-39 Depleted Argon (Princeton University). I will summarize the current program, and exciting plans for the future.

Vogelaar, R. Bruce

2011-10-01

12

Nano Research Facility Lab Safety Manual Nano Research Facility  

E-print Network

1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer rules and procedures (a) Accidents and spills for chemicals Not containing Nano-Materials Spills of non for chemicals Containing Nano-Materials In a fume hood small spills of nano-materials in a liquid may

Subramanian, Venkat

13

Biotechnology Facility: An ISS Microgravity Research Facility  

NASA Technical Reports Server (NTRS)

The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

Gonda, Steve R.; Tsao, Yow-Min

2000-01-01

14

Ship handling research facility  

Microsoft Academic Search

A major new ship handling research capability will be embodied in the Maritime Research Simulator now being built by the Maritime Administration. Human engineering research related to ship handling will be possible to a degree not previously available. The relationships of operator action, ship dynamics, instrumentation, bridge crew duty assignments, and the outside world environment (including harbor configuration, visibility, other

V. Rinehart; T. Hutchison

1974-01-01

15

Accelerator Facilities for Radiation Research  

NASA Technical Reports Server (NTRS)

HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

Cucinotta, Francis A.

1999-01-01

16

A Curriculum for a Three Year High School Science Research Program  

Microsoft Academic Search

A three-year high school science research program has been taught in Woodbridge Township School District - Woodbridge, New Jersey, since 1987. The program's focus is to foster originial science research projects for high school students that have shown an aptitude and an interest in science. Students are instructed in basic research skills, including developing and conducting original research projects, statistical

F. Darytichen; J. Danch

2003-01-01

17

The Radiological Research Accelerator Facility  

SciTech Connect

The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

Hall, E.J.

1992-05-01

18

The Radiological Research Accelerator Facility  

SciTech Connect

The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

Hall, E.J.; Marino, S.A.

1993-05-01

19

The Biological Flight Research Facility  

NASA Technical Reports Server (NTRS)

NASA Ames Research Center is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately 30 years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially, the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5-m diam centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

Johnson, Catherine C.

1991-01-01

20

The Biological Flight Research Facility  

NASA Technical Reports Server (NTRS)

NASA Ames Research Center (ARC) is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately thirty years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5 meter diameter centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. Included in the facility are a service unit for providing clean chambers for the specimens and a glovebox for manipulating the plant and animal specimens and for performing experimental protocols. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

Johnson, Catherine C.

1993-01-01

21

NASA Wallops Flight Facility Air-Sea Interaction Research Facility  

NASA Technical Reports Server (NTRS)

This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

Long, Steven R.

1992-01-01

22

The Holifield Heavy Ion Research Facility  

Microsoft Academic Search

Development of the Holifield facility has continued with resulting improvements in the number of ion species provided, ion energy for tandem-only operations, and utilization efficiency. The Holifield Heavy Ion Research Facility (HHIRF) is located at the Oak Ridge National Laboratory and operated as a national user facility for research in heavy ion science. The facility operates two accelerators: an NEC

C. M. Jones; G. D. Alton; J. B. Ball; J. A. Biggerstaff; D. T. Dowling; K. A. Erb; D. L. Haynes; D. E. Hoglund; E. D. Hudson; R. C. Juras

1987-01-01

23

Sandia National Laboratories Combustion Research Facility  

E-print Network

Laboratories Combustion Research Facility Charter · Sandia's H2 program objective: Provide engineering driven by Defense Programs ­ Work involves science, engineering, modeling, & systems analysis ­ Gas Laboratories Combustion Research Facility Skill Set ­ People (not all inclusive) · Analysts currently working

24

Research facility access & science education  

SciTech Connect

As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

1994-10-01

25

Microsporidiosis in Zebrafish Research Facilities  

PubMed Central

Pseudoloma neurophilia (Microsporidia) is the most common pathogen detected in zebrafish (Danio rerio) from research facilities. The parasite infects the central nervous system and muscle and may be associated with emaciation and skeletal deformities. However, many fish exhibit sub-clinical infections. Another microsporidium, Pleistophora hyphessobryconis, has recently been detected in a few zebrafish facilities. Here, we review the methods for diagnosis and detection, modes of transmission, and approaches used to control microsporidia in zebrafish, focusing on P. neurophilia. The parasite can be readily transmitted by feeding spores or infected tissues, and we show that cohabitation with infected fish is also an effective means of transmission. Spores are released from live fish in various manners, including through the urine, feces, and sex products during spawning. Indeed, P. neurophilia infects both the eggs and ovarian tissues, where we found concentrations ranging from 12,000 to 88,000 spores per ovary. Hence, various lines of evidence support the conclusion that maternal transmission is a route of infection: spores are numerous in ovaries and developing follicles in infected females, spores are present in spawned eggs and water from spawning tanks based on polymerase chain reaction tests, and larvae are very susceptible to the infection. Furthermore, egg surface disinfectants presently used in zebrafish laboratories are ineffective against microsporidian spores. At this time, the most effective method for prevention of these parasites is avoidance. PMID:23382342

Sanders, Justin L.; Watral, Virginia; Kent, Michael L.

2014-01-01

26

Radiological Research Accelerator Facility Service Request Form  

E-print Network

Radiological Research Accelerator Facility Service Request Form National Institute of Biomedical(s) to control for this experiment (if more than one, please prioritize): Radiological Research Accelerator/LET: ____________ Dose:_____________ Dose Rate:_________ Other (please specify): Radiological Research Accelerator

27

Facilities for animal research in space  

NASA Technical Reports Server (NTRS)

The animal facilities used aboard or designed for various spacecraft research missions are described. Consideration is given to the configurations used in Cosmos-1514 (1983) and Cosmos-1887 (1987) missions; the reusable Biosatellite capsule flown three times by NASA between 1966 and 1969; the NASA's Lifesat spacecraft that is being currently designed; the Animal Enclosure Module flown on Shuttle missions in 1983 and 1984; the Research Animal Holding Facility developed for Shuttle-Spacelab missions; the Rhesus Research Facility developed for a Spacelab mission; and the Japanese Animal Holding Facility for the Space Station Freedom. Special attention is given to the designs of NASA's animal facilities developed for Space Station Freedom and the details of various subsystems of these facilities. The main characteristics of the rodent and the primate habitats provided by these various facilities are discussed.

Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.

1991-01-01

28

Water Sciences Research Facility Open Here Soon  

E-print Network

Water Sciences Research Facility Open Here Soon Water Center Director Comes Here From CSRS special circumstances, qualified individuals will have access to direct participation in laboratory, it is not a total water analysis facility, and researchers should be aware of the capabilities of the above

Nebraska-Lincoln, University of

29

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY  

E-print Network

-segment facility. Samples are treated with graded doses of radical scavengers to observe changes in the cluster sizes of damaged DNA. Large numbers of samples are required because of the number of radiation dose/scavenger

30

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY  

E-print Network

: Stephen A. Marino, M.S. Chief Physicist: Gerhard Randers-Pehrson, Ph.D. Funding During this year, we were delighted that NIH funding for continued development of our single-particle microbeam facility was renewed and awards from NIH, DOE, and NASA. Brief descriptions of these experiments are given here: Studies

31

Environmental practices for biomedical research facilities.  

PubMed Central

As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12. PMID:11121360

Medlin, E L; Grupenhoff, J T

2000-01-01

32

The National Transonic Facility: A Research Retrospective  

NASA Technical Reports Server (NTRS)

An overview of the National Transonic Facility (NTF) from a research utilization perspective is provided. The facility was born in the 1970s from an internationally recognized need for a high Reynolds number test capability based on previous experiences with preflight predictions of aerodynamic characteristics and an anticipated need in support of research and development for future aerospace vehicle systems. Selection of the cryogenic concept to meet the need, unique capabilities of the facility, and the eventual research utilization of the facility are discussed. The primary purpose of the paper is to expose the range of investigations that have used the NTF since being declared operational in late 1984; limited research results are included, though many more can be found in the references.

Wahls, R. A.

2001-01-01

33

University of Nebraska Animal Research Facilities  

E-print Network

University of Nebraska Animal Research Facilities Policy on Photography and Videography in Areas with Animals Purpose: Contact between visitors to the University and animals used in Research and teaching can animals, to protect the health of research animals, to protect the confidentiality and integrity

Farritor, Shane

34

9 CFR 2.37 - Federal research facilities.  

Code of Federal Regulations, 2010 CFR

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2010-01-01

35

9 CFR 2.37 - Federal research facilities.  

Code of Federal Regulations, 2012 CFR

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2012-01-01

36

9 CFR 2.37 - Federal research facilities.  

Code of Federal Regulations, 2013 CFR

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2013-01-01

37

9 CFR 2.37 - Federal research facilities.  

Code of Federal Regulations, 2011 CFR

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2011-01-01

38

9 CFR 2.37 - Federal research facilities.  

Code of Federal Regulations, 2014 CFR

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2014-01-01

39

69 FR 33923 - Integrated Research Facility Record of Decision  

Federal Register 2010, 2011, 2012, 2013, 2014

...of Health Integrated Research Facility Record of Decision...making its decision. Social Resources Additional...proposed Integrated Research Facility includes up...from escaped agents. Qualitative and quantitative risk...specifically the Integrated Research Facility from a...

2004-06-17

40

The F-18 systems research aircraft facility  

NASA Technical Reports Server (NTRS)

To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

Sitz, Joel R.

1992-01-01

41

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility  

E-print Network

: Stephen A. Marino, M.S. Chief Physicist: Gerhard Randers-Pehrson, Ph.D. Research Using RARAF numbers of particles 1.0 76 A. Xu, T.K. Hei CRR Biology Mutation at the S1 locus of human- hamster hybrid.5 101 K. Komatsu (Zhou) Hiroshima Univ. Biology Bystander effect of Ataxia Telangiecta- sia cells 1

42

Program of Study Research Facilities  

E-print Network

· Geospatial semantic wed · Multimodal spatial cognition and interface design · Distributed spatial computing of mobile, spatial, and context-aware technologies, the building of interoperable coordinated information, computer processing, research methods, information systems design, and multimedia communications

Thomas, Andrew

43

Research highlights from the Holifield Heavy Ion Research Facility  

Microsoft Academic Search

The purpose of this paper is to present the scope of research carried out at the new Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge. This will be accomplished with reference to several research projects currently underway. The areas of research represented are microscopic and macroscopic aspects of nuclear reactions and nuclear structure. In view of the scope of

Plasil

1982-01-01

44

AMF-3 ARM Climate Research Facility  

NASA Astrophysics Data System (ADS)

The U.S. Department of Energy (DOE) provides scientific infrastructure and data archives to the international Arctic research community through a national user facility. (www.arm.gov). A New ARM Climate Research Facility AMF-3 (ARM Mobile Facility 3) will be located on the North Slope of Alaska, at Oliktok Point. The infrastructure at Oliktok will be designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF-3 instruments include: scanning precipitation radar, scanning cloud radar, Raman lidar, eddy correlation flux systems, upgraded ceilometer, Balloon sounding system, AERI, micropulse lidar, millimeter cloud radar along with all the standard metrological measurements. Unmanned Aerial Systems operations and tethered balloons in the Oliktok area will also be supported. Data from these instruments will be placed in the ARM data archives and available to the international research community.

Helsel, F.; Cook, R.; Lucero, D.; Yellowhorse, L.; Zirzow, J.

2013-12-01

45

The Sanford underground research facility at Homestake  

NASA Astrophysics Data System (ADS)

The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the Majorana Demonstrator neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

Heise, J.

2014-06-01

46

International Space Station -- Human Research Facility (HRF)  

NASA Technical Reports Server (NTRS)

Arn Harris Hoover of Lockheed Martin Company demonstrates an engineering mockup of the Human Research Facility (HRF) that will be installed in Destiny, the U.S. Laboratory Module on the International Space Station (ISS). Using facilities similar to research hardware available in laboratories on Earth, the HRF will enable systematic study of cardiovascular, musculoskeletal, neurosensory, pulmonary, radiation, and regulatory physiology to determine biomedical changes resulting from space flight. Research results obtained using this facility are relevant to the health and the performance of the astronaut as well as future exploration of space. Because this is a mockup, the actual flight hardware may vary as desings are refined. (Credit: NASA/Marshall Space Flight Center)

2000-01-01

47

Zero Gravity Research Facility User's Guide  

NASA Technical Reports Server (NTRS)

The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.

Thompson, Dennis M.

1999-01-01

48

The Sanford underground research facility at Homestake  

SciTech Connect

The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

Heise, J. [Sanford Underground Research Facility, 630 East Summit Street, Lead, SD 57754 (United States)

2014-06-24

49

Low Emissions Combustor Test and Research Facility  

SciTech Connect

The Morgantown Energy Technology Center (METC) recently built and began operation of a Low Emissions Combustor Test and Research (LECTR) facility with the primary objective of providing test facilities and engineering support to METC customers through programs such as the Advanced Turbine Systems (ATS) University-Industry Consortium and through CRADA participation with industrial partners. The LECTR is a versatile test facility with capabilities for evaluating a variety of low emissions combustion concepts at temperatures and pressures representative of gas turbine applications. The LECTR design incorporates a set of flanged sections or modules including an inlet plelnum, combustor test sections, a gas sampling section, and a quench section. The high pressure and mass flow capabilities of the LECTR facility make it uniquely suited for evaluation of advanced combustion concepts at combustion scales up to 3 MW (10 MMBtu/h).

Casleton, K.H.; Maloney, D.J.; Norton, T.S.

1996-12-31

50

Unique life sciences research facilities at NASA Ames Research Center  

NASA Technical Reports Server (NTRS)

The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

1994-01-01

51

Impact Dynamics Landing Facility - Lunar Landing Research Facility  

NASA Technical Reports Server (NTRS)

Construction of backstop. Originally intended for use in conjunction with one of the various apparatuses used to simulate astronauts walking on the moon, this backstop was eventually used as a backdrop for the various aircraft crashworthiness studies. By 1972 the Lunar Landing Research Facility was no longer in use for its original purpose. The 23 story structure was swiftly modified to allow engineers to study the dynamics of aircraft crashes. The 'backstop' with its painted grid has become a backdrop for films and videos of numerous crash tests.

2002-01-01

52

Impact Landing Dynamics Facility - Lunar Landing Research Facility  

NASA Technical Reports Server (NTRS)

Construction of backstop. Originally intended for use in conjunction with one of the various apparatus used to simulate astronauts walking on the moon, this backstop was eventually used as a backdrop for the various aircraft crashworthiness studies. By 1972 the Lunar Landing Research Facility was no longer in use for its original purpose. The 23 story structure was swiftly modified to allow engineers to study the dynamics of aircraft crashes. The 'backstop' with its painted grid has become a backdrop for films and videos of numerous crash tests.

1966-01-01

53

The Sanford Underground Research Facility at Homestake  

E-print Network

The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

Jaret Heise

2015-03-05

54

Field Campaign Guidelines (ARM Climate Research Facility)  

SciTech Connect

The purpose of this document is to establish a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking database tool and are tailored to meet the scope of each specific field campaign.

Voyles, JW

2011-01-17

55

Information Technology and the Human Research Facility  

NASA Technical Reports Server (NTRS)

This slide presentation reviews how information technology supports the Human Research Facility (HRF) and specifically the uses that contractor has for the information. There is information about the contractor, the HRF, some of the experiments that were performed using the HRF on board the Shuttle, overviews of the data architecture, and software both commercial and specially developed software for the specific experiments.

Klee, Margaret

2002-01-01

56

Moon Park: A research and educational facility  

NASA Technical Reports Server (NTRS)

Moon Park has been proposed as an International Space Year (ISY) event for international cooperative efforts. Moon Park will serve as a terrestrial demonstration of a prototype lunar base and provide research and educational opportunities. The kind of data that can be obtained in the Moon Park facilities is examined taking the minimum number of lunar base residents as an example.

Kuriki, Kyoichi; Saito, Takao; Ogawa, Yukimasa

1992-01-01

57

Holifield Heavy Ion Research Facility: Users handbook  

SciTech Connect

The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given. (LEW)

Auble, R.L. (ed.)

1987-01-01

58

78 FR 16868 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-National Warheads...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Applied Research Associates, Albuquerque, NM; Capco, Inc., Grand Junction, CO; Design West Technologies, Inc., Tustin, CA; DHPC Technologies, Inc., Woodbridge, NJ; DSE, Inc., Tampa, FL; Excet, Inc., Springfield, VA;...

2013-03-19

59

Ballistocraft: a novel facility for microgravity research.  

PubMed

One of ESA's aims is to provide the microgravity research community with various microgravity exposure facilities. Those facilities include drop towers, sounding rockets, and parabolic flights on board aircraft, in addition to orbital spacecraft. Microgravity flights are usually achieved using large aircraft like the French 'Caravelle' that offer a large payload volume and where a person can be present to perform the experiments and to participate as a human test-subject. However, the microgravity community is also very interested in a flexible, complementary facility that would allow frequent and repetitive exposure to microgravity for a laboratory-type of payload. ESA has therefore undertaken a study of the potential of using a 'ballistocraft', a small unmanned aircraft, to provide a low-cost facility for short-duration (30-40 seconds) microgravity experimentation. Fokker Space & Systems performed the study under an ESA contract, supported by Dutch national funding. To assess the ballistocraft, a simple breadboard of the facility was built and flight tests were performed. The ability of the on-board controller to achieve automated parabolic flights was demonstrated, and the performance of the controller in one-g level flights, and in flights with both zero-g and partial-g setpoints, was evaluated. The partial-g flights are a unique and valuable feature of the facility. PMID:14971373

Mesland, D; Paris, D; Huijser, R; Lammertse, P; Postema, R

1995-05-01

60

The Holifield Heavy Ion Research Facility  

SciTech Connect

Development of the Holifield facility has continued with resulting improvements in the number of ion species provided, ion energy for tandem-only operations, and utilization efficiency. The Holifield Heavy Ion Research Facility (HHIRF) is located at the Oak Ridge National Laboratory and operated as a national user facility for research in heavy ion science. The facility operates two accelerators: an NEC pelletron tandem accelerator designed to operate at terminal potentials up to 25 MV and the Oak Ridge Isochronous Cyclotron (ORIC) which has been modified to serve as an energy booster for beams from the tandem accelerator. The principal experimental devices of the facility include a broad range spectrograph (ME/q/sup 2/ = 225) equipped with a vertical drift chamber detector system, a 4..pi.. spin spectrometer equipped with 72 NaI detectors (Ge detectors and BGO compton-suppression units can be used in place of the NaI detectors), a time-of-flight spectrometer, a 1.6-m scattering chamber, a heavy-ion/light-ion detector (HILI) which will be used for studying inverse reactions, a split-pole spectrograph, and a velocity filter. In this report, we will discuss our recent development activities, operational experience, and future development plans.

Jones, C.M.; Alton, G.D.; Ball, J.B.; Biggerstaff, J.A.; Dowling, D.T.; Erb, K.A.; Haynes, D.L.; Hoglund, D.E.; Hudson, E.D.; Juras, R.C.

1987-01-01

61

New Mexico energy research resource registry. Researchers and facilities  

NASA Technical Reports Server (NTRS)

Human resources and facilities in New Mexico available for application to energy research and development are listed. Information regarding individuals with expertise in the environmental, socio-economic, legal, and management and planning areas of the energy effort is included as well as those scientists, engineers, and technicians involved directly in energy research and development.

1975-01-01

62

Animal research facility for Space Station Freedom  

NASA Technical Reports Server (NTRS)

An integrated animal research facility is planned by NASA for Space Station Freedom which will permit long-term, man-tended experiments on the effects of space conditions on vertebrates. The key element in this facility is a standard type animal habitat which supports and maintains the animals under full bioisolation during transport and during the experiment. A holding unit accommodates the habitats with animals to be maintained at zero gravity; and a centrifuge, those to be maintained at artificial gravity for control purposes or for gravity threshold studies. A glovebox permits handling of the animals for experimental purposes and for transfer to a clean habitat. These facilities are described, and the aspects of environmental control, monitoring, and bioisolation are discussed.

Bonting, Sjoerd L.

1992-01-01

63

Lewis Research Center R and D Facilities  

NASA Technical Reports Server (NTRS)

The NASA Lewis Research Center (LeRC) defines and develops advanced technology for high priority national needs. The work of the Center is directed toward new propulsion, power, and communications technologies for application to aeronautics and space, so that U.S. leadership in these areas is ensured. The end product is knowledge, usually in a report, that is made fully available to potential users--the aircraft engine industry, the energy industry, the automotive industry, the space industry, and other NASA centers. In addition to offices and laboratories for almost every kind of physical research in such fields as fluid mechanics, physics, materials, fuels, combustion, thermodynamics, lubrication, heat transfer, and electronics, LeRC has a variety of engineering test cells for experiments with components such as compressors, pumps, conductors, turbines, nozzles, and controls. A number of large facilities can simulate the operating environment for a complete system: altitude chambers for aircraft engines; large supersonic wind tunnels for advanced airframes and propulsion systems; space simulation chambers for electric rockets or spacecraft; and a 420-foot-deep zero-gravity facility for microgravity experiments. Some problems are amenable to detection and solution only in the complete system and at essentially full scale. By combining basic research in pertinent disciplines and generic technologies with applied research on components and complete systems, LeRC has become one of the most productive centers in its field in the world. This brochure describes a number of the facilities that provide LeRC with its exceptional capabilities.

1991-01-01

64

MYRRHA: A multipurpose nuclear research facility  

NASA Astrophysics Data System (ADS)

MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

2014-12-01

65

Aerial Flyover of New Research Facilities  

SciTech Connect

The Idaho National Laboratory is focused on continued development of its primary campus areas, including our Idaho Falls campus, to enable the INL to meet DOE expectations as the nations lead nuclear energy laboratory. This video identifies some of the existing Idaho Falls campus facilities and highlights planned and potential future development to support campus growth. You can learn more about INL's energy research projects at http://www.facebook.com/idahonationallaboratory.

None

2010-01-01

66

Science Research Facilities - Versatility for Space Station  

NASA Technical Reports Server (NTRS)

The Space Station Science Lab Module (SLM) and its interfaces are designed to minimize complexity and maximize user accommodations. The facilities provided encompass life sciences research, the control of external payloads, the servicing of customer equipment, and general scientific investigations. The SLM will have the unprecedented ability to diagnose, service, and replace equipment while in orbit. In addition, the SLM will have significant operational advantages over previous spacecraft in terms of available volume, power, and crew interaction possibilities.

Giannovario, J. A.; Schelkopf, J. D.; Massey, K.; Solly, M.

1986-01-01

67

Aerial Flyover of New Research Facilities  

ScienceCinema

The Idaho National Laboratory is focused on continued development of its primary campus areas, including our Idaho Falls campus, to enable the INL to meet DOE expectations as the nations lead nuclear energy laboratory. This video identifies some of the existing Idaho Falls campus facilities and highlights planned and potential future development to support campus growth. You can learn more about INL's energy research projects at http://www.facebook.com/idahonationallaboratory.

None

2013-05-28

68

The Sanford Underground Research Facility at Homestake  

E-print Network

The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-sea...

Heise, Jaret

2015-01-01

69

Outreach facilities within a research center  

NASA Astrophysics Data System (ADS)

Worldwide, volunteers from student associations and non-profit organizations carry out outreach activities with high school students in their classrooms. Most of the time, these activities highlight optical phenomena but do not provide information about the reality of researchers in companies and universities. To address this issue, Université Laval's OSA and SPIE student chapters set up a demonstration laboratory dedicated to outreach, located in a research center. In this paper, we list the advantages of this type of facility as well as the steps leading to the creation of the laboratory, and we give an overview of the demonstration laboratory.

Zambon, V.; Thériault, G.; Poulin-Girard, A.-S.

2012-10-01

70

Community outreach at biomedical research facilities.  

PubMed Central

For biomedical researchers to fulfill their responsibility for protecting the environment, they must do more than meet the scientific challenge of reducing the number and volume of hazardous materials used in their laboratories and the engineering challenge of reducing pollution and shifting to cleaner energy sources. They must also meet the public relations challenge of informing and involving their neighbors in these efforts. The experience of the Office of Community Liaison of the National Institutes of Health (NIH) in meeting the latter challenge offers a model and several valuable lessons for other biomedical research facilities to follow. This paper is based on presentations by an expert panel during the Leadership Conference on Biomedical Research and the Environment held 1--2 November 1999 at NIH, Bethesda, Maryland. The risks perceived by community members are often quite different from those identified by officials at the biomedical research facility. The best antidote for misconceptions is more and better information. If community organizations are to be informed participants in the decision-making process, they need a simple but robust mechanism for identifying and evaluating the environmental hazards in their community. Local government can and should be an active and fully informed partner in planning and emergency preparedness. In some cases this can reduce the regulatory burden on the biomedical research facility. In other cases it might simplify and expedite the permitting process or help the facility disseminate reliable information to the community. When a particular risk, real or perceived, is of special concern to the community, community members should be involved in the design, implementation, and evaluation of targeted risk assessment activities. Only by doing so will the community have confidence in the results of those activities. NIH has involved community members in joint efforts to deal with topics as varied as recycling and soil testing. These ad hoc efforts are more likely to succeed if community members and groups have also been included in larger and longer term advisory committees. These committees institutionalize the outreach process. This can provide the facility with vocal and influential allies who create an independent line of communication with the larger community. PMID:11124126

Goldman, M; Hedetniemi, J N; Herbert, E R; Sassaman, J S; Walker, B C

2000-01-01

71

Community outreach at biomedical research facilities.  

PubMed

For biomedical researchers to fulfill their responsibility for protecting the environment, they must do more than meet the scientific challenge of reducing the number and volume of hazardous materials used in their laboratories and the engineering challenge of reducing pollution and shifting to cleaner energy sources. They must also meet the public relations challenge of informing and involving their neighbors in these efforts. The experience of the Office of Community Liaison of the National Institutes of Health (NIH) in meeting the latter challenge offers a model and several valuable lessons for other biomedical research facilities to follow. This paper is based on presentations by an expert panel during the Leadership Conference on Biomedical Research and the Environment held 1--2 November 1999 at NIH, Bethesda, Maryland. The risks perceived by community members are often quite different from those identified by officials at the biomedical research facility. The best antidote for misconceptions is more and better information. If community organizations are to be informed participants in the decision-making process, they need a simple but robust mechanism for identifying and evaluating the environmental hazards in their community. Local government can and should be an active and fully informed partner in planning and emergency preparedness. In some cases this can reduce the regulatory burden on the biomedical research facility. In other cases it might simplify and expedite the permitting process or help the facility disseminate reliable information to the community. When a particular risk, real or perceived, is of special concern to the community, community members should be involved in the design, implementation, and evaluation of targeted risk assessment activities. Only by doing so will the community have confidence in the results of those activities. NIH has involved community members in joint efforts to deal with topics as varied as recycling and soil testing. These ad hoc efforts are more likely to succeed if community members and groups have also been included in larger and longer term advisory committees. These committees institutionalize the outreach process. This can provide the facility with vocal and influential allies who create an independent line of communication with the larger community. PMID:11124126

Goldman, M; Hedetniemi, J N; Herbert, E R; Sassaman, J S; Walker, B C

2000-12-01

72

Solar Energy Research Center Instrumentation Facility  

SciTech Connect

SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR DEVICE FABRICATION LABORATORY DEVELOPMENT The space allocated for this laboratory was �¢����shell space�¢��� that required an upfit in order to accommodate nano-fabrication equipment in a quasi-clean room environment. This construction project (cost $279,736) met the non-federal cost share requirement of $250,000 for this award. The central element of the fabrication laboratory is a new $400,000+ stand-alone system, funded by other sources, for fabricating and characterizing photovoltaic devices, in a state-of-the-art nanofabrication environment. This congressionally directed project also included the purchase of an energy dispersive x-ray analysis (EDX) detector for a pre-existing transmission electron microscope (TEM). This detector allows elemental analysis and elemental mapping of materials used to fabricate solar energy devices which is a key priority for our research center. TASK 2: SOLAR ENERGY SPECTROSCOPY LABORATORY DEVELOPMENT (INSTRUMENTATION) This laboratory provides access to modern spectroscopy and photolysis instrumentation for characterizing devices, materials and components on time scales ranging from femtoseconds to seconds and for elucidating mechanisms. The goals of this congressionally directed project included the purchase and installation of spectroscopy and photolysis instrumentation that would substantially and meaningfully enhance the capabilities of this laboratory. Some changes were made to the list of equipment proposed in the original budget. These changes did not represent a change in scope, approach or aims of this project. All of the capabilities and experiments represented in the original budget were maintained. The outcome of this Congressionally Directed Project has been the development of world-class fabrication and spectroscopy user facilities for solar fuels research at UNC-CH. This award has provided a significant augmentation of our pre-existing instrumentation capabilities which were funded by earlier UNC SERC projects, including the Energy Frontier

Meyer, Thomas, J.; Papanikolas, John, P.

2011-11-11

73

Antarctic Research Facility of Florida State University  

NSDL National Science Digital Library

The Antarctic Research Facility, part of the Florida State University Department of Geology, is a repository of polar geological core and dredge samples collected from the Antarctic and the subantarctic marine regions. Types of rock and sedimentary materials cores include piston, trigger, phleger, gravity, and rotary cores. The cores come from over ten different projects and cruises including USNS Eltanin surveys, International Weddell Sea Oceanographic Expeditions, and the Ross Ice Shelf Project. Users can search samples via two methods: a core or sample search. A core search allows the user to search for a core using criteria such as latitude or water depth. The sample search allows users to view how often a core has been sampled and by whom. Samples of the cores are available to National Science Foundation funded researchers usually upon receipt and to non-NSF-funded researchers upon approval by Antarctic geoscientists. Descriptions of material cores are available free of charge upon request; a sample request form is available online. Information about staff members and the facility location is provided in addition to related links.

1997-01-01

74

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents  

E-print Network

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents RARAF Professional Staff-Doctoral Research Scientist Oleksandra Lyulko, Pre-Doctoral Research Scientist 100 #12;CENTER FOR RADIOLOGICAL RESEARCH ANNUAL REPORT 2009 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE

75

Glass Furnace Combustion and Melting Research Facility.  

SciTech Connect

The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the solution of proprietary glass production problems. As a consequence of the substantial increase in scale and scope of the initial furnace concept in response to industry recommendations, constraints on funding of industrial programs by DOE, and reorientation of the Department's priorities, the OIT Glass Program is unable to provide the support for construction of such a facility. However, it is the present investigators' hope that a group of industry partners will emerge to carry the project forward, taking advantage of the detailed furnace design presented in this report. The engineering, including complete construction drawings, bill of materials, and equipment specifications, is complete. The project is ready to begin construction as soon as the quotations are updated. The design of the research melter closely follows the most advanced industrial practice, firing by natural gas with oxygen. The melting area is 13 ft x 6 ft, with a glass depth of 3 ft and an average height in the combustion space of 3 ft. The maximum pull rate is 25 tons/day, ranging from 100% batch to 100% cullet, continuously fed, with variable batch composition, particle size distribution, and raft configuration. The tank is equipped with bubblers to control glass circulation. The furnace can be fired in three modes: (1) using a single large burner mounted on the front wall, (2) by six burners in a staggered/opposed arrangement, three in each breast wall, and (3) by down-fired burners mounted in the crown in any combination with the front wall or breast-wall-mounted burners. Horizontal slots are provided between the tank blocks and tuck stones and between the breast wall and skewback blocks, running the entire length of the furnace on both sides, to permit access to the combustion space and the surface of the glass for optical measurements and sampling probes. Vertical slots in the breast walls provide additional access for measurements and sampling. The furnace and tank are to be fully instrumented with standard measuring equipment, such as flow meters, thermocouples, continuous gas composition

Connors, John J. (PPG Industries, Inc., Pittsburgh, PA); McConnell, John F. (JFM Consulting, Inc., Pittsburgh, PA); Henry, Vincent I. (Henry Technology Solutions, LLC, Ann Arbor, MI); MacDonald, Blake A.; Gallagher, Robert J.; Field, William B. (Lilja Corp., Livermore, CA); Walsh, Peter M.; Simmons, Michael C. (Lilja Corp., Livermore, CA); Adams, Michael E. (Lilja Corp., Rochester, NY); Leadbetter, James M. (A.C. Leadbetter and Son, Inc., Toledo, OH); Tomasewski, Jack W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Operacz, Walter J. (A.C. Leadbetter and Son, Inc., Toledo, OH); Houf, William G.; Davis, James W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Marvin, Bart G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Gunner, Bruce E. (A.C. Leadbetter and Son, Inc., Toledo, OH); Farrell, Rick G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Bivins, David P. (PPG Industries, Inc., Pittsburgh, PA); Curtis, Warren (PPG Industries, Inc., Pittsburgh, PA); Harris, James E. (PPG Industries, Inc., Pittsburgh, PA)

2004-08-01

76

Europlanet Research Infrastructure: Planetary Sample Analysis Facilities  

NASA Astrophysics Data System (ADS)

EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the third TNA: Planetary Sample Analysis Facilities. The modular infrastructure represents a major commitment of analytical instrumentation by three institutes and together forms a state-of-the-art analytical facility of unprecedented breadth. These centres perform research in the fields of geochemistry and cosmochemistry, studying fluids and rocks in order to better understand the keys cof the universe. Europlanet Research Infrastructure Facilities: Ion Probe facilities at CRPG and OU The Cameca 1270 Ion microprobe is a CNRS-INSU national facility. About a third of the useful analytical time of the ion probe (about 3 months each year) is allocated to the national community. French scientists have to submit their projects to a national committee for selection. The selected projects are allocated time in the following 6 months twice a year. About 15 to 20 projects are run each year. There are only two such instruments in Europe, with cosmochemistry only performed at CRPG. Different analyses can be performed on a routine basis, such as U-Pb dating on Zircon, Monazite or Pechblende, Li, B, C, O, Si isotopic ratios determination on different matrix, 26Al, 60Fe extinct radioactivity ages, light and trace elements contents . The NanoSIMS 50L - producing element or isotope maps with a spatial resolution down to ?50nm. This is one of the cornerstone facilities of UKCAN, with 75% of available instrument time funded and committed to UK cosmochemical activity - but the remainder is free for other applications and users. The UK activity is managed by the UKCAN management committee and vetted through a local working group. Management of the remaining 25% of other activity will be organised through the local working group. This is the newest, and most advanced of three instruments of this type in Europe which routinely address cosmochemical analyses. The instrument is capable of providing high spatial resolution (down to 50nm) elemental and isotope distribution maps for a wide range of elements from across the periodic table. It is also capable of high precision (per mil) isotopic spot measurements with a spatial resolution of a few microns for a range of elements including C, N, O, S, Si, Mg, etc. Noble Gases facilities at CRPG and OU Ar/Ar Nu Instruments Noblesse is coupled with an ultra-low volume extraction line and with a choice of 213 nm UV laser or 1090 nm IR lasers, providing a wide range of analytical capability in Ar/Ar dating of lunar and meteorite samples. This instrument is unique with a mass resolution of 3000, and with the UV laser it has the capability to measure Ar isotope variation on a ca. 30 -micron resolution enabling detailed mapping of age and apparent age variation within minerals. The 1090 nm laser provides the capability to step-heat small samples. The laboratory is fully supported by sample preparation facilities and technical expertise in lunar and meteorite Ar/Ar analysis. Helium isotope facility. Analysis of the isotopes of helium in rocks and minerals. Determining the origin of gases in meteorites and ET return samples, dating surface exposure with cosmogenic 3He using the latest He isotope mass spectrometer, the GV Helix SFT, the first instrument installed in Europe. CRPG is an European leader in this domain. Non-Traditional stable Isotopes and radiogenic isotopes at VUA and CRPG The specific facility proposed for the TNA is the geochemistry labs used for the study of long (e.g. Rb- Sr, Sm-Nd…) and short-lived radioisotope (e.g. Mg- Al, Hf-W..), inc

Cloquet, C.; Mason, N. J.; Davies, G. R.; Marty, B.

2008-09-01

77

Space technology test facilities at the NASA Ames Research Center  

NASA Technical Reports Server (NTRS)

The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

Gross, Anthony R.; Rodrigues, Annette T.

1990-01-01

78

High temperature aircraft research furnace facilities  

NASA Technical Reports Server (NTRS)

Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

Smith, James E., Jr.; Cashon, John L.

1992-01-01

79

Research Activities At The RCNP Cyclotron Facility  

SciTech Connect

The Research Center for Nuclear Physics (RCNP) cyclotron cascade system has been operated to provide high quality beams for various experiments. In order to increase the physics research opportunities, the Azimuthally Varying Field (AVF) cyclotron facility was upgraded recently. A flat-topping system and an 18-GHz superconducting Electron Cyclotron Resonance (ECR) ion source were introduced to improve the beam's quality and intensity. A new beam line was installed to diagnose the characteristics of the beam to be injected into the ring cyclotron and to bypass the ring cyclotron and directly transport low energy beams from the AVF cyclotron to experimental halls. A separator is equipped to provide RI beams produced by fusion reactions at low energy and by projectile fragmentations at high energy. Development has continued to realize the designed performance of these systems.

Hatanaka, Kichiji [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, 567-0047 Osaka (Japan)

2010-05-12

80

Research opportunities with the Centrifuge Facility  

NASA Technical Reports Server (NTRS)

The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.

Funk, Glenn A.

1992-01-01

81

Sea-ice Environmental Research Facility  

NASA Astrophysics Data System (ADS)

The Sea-ice Environmental Research Facility (SERF) is the first experimental sea-ice facility in Canada. Located in Winnipeg on the campus of the University of Manitoba, the main feature of SERF is an outdoor seawater pool (60 feet long, 30 feet wide and 8 feet deep) with a movable roof, numerous in situ sensors and instruments, and an on site trailer laboratory. Sea ice can be created at the pool under various controlled conditions (e.g., seawater chemistry, snow cover, heating) with the additions of chemical, isotopic and/or microbiological tracers. During the 2011-2012 inaugural year of operation, several types of sea ice including pancake ice and frost flowers were successfully created at the SERF pool. Real-time monitoring was carried out on surface and optical properties and on the evolution of temperature, salinity, dissolved oxygen, pH, alkalinity, pCO2, and mercury in and across the sea ice environment. The results demonstrate that SERF could provide a unique research platform for hypothesis-driven, mesocosm-scale studies to examine geophysical properties and biogeochemical processes in the sea ice environment.

Rysaard, S.; Wang, F.; Papakyriakou, T. N.; Barber, D. G.

2012-12-01

82

NSTX: Facility/Research Highlights and Near Term Facility Plans  

SciTech Connect

The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

M. Ono

2008-11-19

83

Research Reactors and Radiation Facilities for Joint Use Program  

E-print Network

Research Reactors and Radiation Facilities for Joint Use Program Kyoto University Research Reactor at the Hida Observatory The Kyoto University Research Reactor Institute (KURRI) was established in 1963 of nuclear energy and radiation application. The main facility, called the Kyoto University Research Reactor

Takada, Shoji

84

In Vivo Radiobioassay and Research Facility  

SciTech Connect

Bioassay monitoring for intakes of radioactive material is an essential part of the internal dosimetry program for radiation workers at the Department of Energy’s (DOE) Hanford Site. This monitoring program includes direct measurements of radionuclides in the body by detecting photons that exit the body and analyses of radionuclides in excreta samples. The specialized equipment and instrumentation required to make the direct measurements of these materials in the body are located at the In Vivo Radiobioassay and Research Facility (IVRRF). The IVRRF was originally built in 1960 and was designed expressly for the in vivo measurement of radioactive material in Hanford workers. Most routine in vivo measurements are performed annually and special measurements are performed as needed. The primary source terms at the Hanford Site include fission and activation products (primarily 137Cs and 90Sr), uranium, uranium progeny, and transuranic radionuclides. The facility currently houses five shielded counting systems, men’s and women’s change rooms and an instrument maintenance and repair shop. Four systems include high purity germanium detectors and one system utilizes large sodium iodide detectors. These systems are used to perform an average of 7,000 measurements annually. This includes approximately 5000 whole body measurements analyzed for fission and activation products and 2000 lung measurements analyzed for americium, uranium, and plutonium. Various other types of measurements are performed periodically to estimate activity in wounds, the thyroid, the liver, and the skeleton. The staff maintains the capability to detect and quantify activity in essentially any tissue or organ. The in vivo monitoring program that utilizes the facility is accredited by the Department of Energy Laboratory Accreditation Program for direct radiobioassay.

Lynch, Timothy P.

2011-02-01

85

Europlanet Research Infrastructure: Planetary Simulation Facilities  

NASA Astrophysics Data System (ADS)

EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of pressures and temperatures and through provision of external UV light and or electrical discharge can be used to form the well known Titan Aerosol species, which can subsequently be analysed using one of several analytical techniques (UV-Vis, FTIR and mass spectrometry). Simulated surfaces can be produced (icy surfaces down to 15K) and subjected to a variety of light and particles (electron and ion) sources. Chemical and physical changes in the surface may be explored using remote spectroscopy. Planetary Simulation chamber for low density atmospheres INTA-CAB The planetary simulation chamber-ultra-high vacuum equipment (PSC-UHV) has been designed to study planetary surfaces and low dense atmospheres, space environments or any other hypothetic environment at UHV. Total pressure ranges from 7 mbar (Martian conditions) to 5x10-9 mbar. A residual gas analyzer regulates gas compositions to ppm precision. Temperature ranges from 4K to 325K and most operations are computer controlled. Radiation levels are simulated using a deuterium UV lamp, and ionization sources. 5 KV electron and noble-gas discharge UV allows measurement of IR and UV spectra and chemical compositions are determined by mass spectroscopy. Planetary Simulation chamber for high density planetary atmospheres at INTA-CAB The facility allows experimental study of planetary environments under high pressure, and was designed to include underground, seafloor and dense atmosphere environments. Analytical capabilities include Raman spectra, physicochemical properties of materials, e.a. thermal conductivity. P-T can be controlled as independent variables to allow monitoring of the tolerance of microorganisms and the stability of materials and their phase changes. Planetary Simulation chamber for icy surfaces at INTA-CAB This chamber is being developed to the growth of ice samples to simulate the chemical and physical properties of ices found on both planetary bodies and their moons. The goal is to allow measurement of the physical properties of ice samples formed under planetary conditions to assess how rheolo

Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

2008-09-01

86

Characterizing User Communities of Large Multi-Disciplinary Research Facilities  

NASA Astrophysics Data System (ADS)

Large-scale multi-user research facilities are a critical component of the federal science and engineering research enterprise. Developing infrastructure for multidisciplinary research requires large investments over long periods of time and typically involves partnerships across many institutions. Consequently, multiple policy questions surround federal investments in large research facilities including what is the best way to maximize scientific productivity? How should investments in infrastructure be balanced with support for individual or small group research? For many facilities, the answers to these questions become focused on the activities of the users: the individuals who are interacting with the facility for furthering scientific research and/or education. This independent study provides the first known analysis of facility utilization. Four facilities supported by the National Science Foundation (NSF) are used as case studies to create a conceptual framework for characterizing facility utilization, to examine changes in facility use over time, and to define how lessons learned can be applied to facility management and planning. Results show that there is a broad spectrum of users who interact with each facility in different ways and that for some facilities, unanticipated users are driving new areas of research. This work also shows that cyberinfrastructure-enabled facilities are experiencing rapid increases in data use and in some cases, the next generation of facility users appears to be developing new skills for working in an increasingly data-intensive research environment. Characterizing and quantifying large facility use will likely become increasingly important as the federal government continues to focus on developing metrics and evaluation tools for its investments in science and engineering research. This work establishes a foundation for assessing facility utilization and shows that this area is ripe for future work that may include portfolio-wide analyses, network or community mapping, and applications to other research investments.

Ludwig, K. A.

2012-12-01

87

Space Station life science research facility - The vivarium/laboratory  

NASA Technical Reports Server (NTRS)

Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

Hilchey, J. D.; Arno, R. D.

1985-01-01

88

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents  

E-print Network

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 75 RARAF - Table of Contents RARAF Professional Jenkins-Baker, B.A. - Biology Technician RARAF Staff (l-r): Bottom row: Guy Garty and Alan Bigelow; 2nd FOR RADIOLOGICAL RESEARCH · ANNUAL REPORT 2005 76 The Radiological Research Accelerator Facility AN NIH

89

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents  

E-print Network

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 65 RARAF - Table of Contents RARAF Professional Gloria Jenkins-Baker, B.A. - Biology Technician RARAF Staff (l-r): Guy Garty, Yanping Xu, Andrew Harken FOR RADIOLOGICAL RESEARCH · ANNUAL REPORT 2006 66 The Radiological Research Accelerator Facility AN NIH

90

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents  

E-print Network

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 117 RARAF - Table of Contents RARAF Professional-Pehrson. Not shown: Antonella Bertucci, Brian Ponnaiya, Helen Turner and Gary Johnson. #12;CENTER FOR RADIOLOGICAL RESEARCH · ANNUAL REPORT 2010 118 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE

91

A Facility and Architecture for Autonomy Research  

NASA Technical Reports Server (NTRS)

Autonomy is a key enabling factor in the advancement of the remote robotic exploration. There is currently a large gap between autonomy software at the research level and software that is ready for insertion into near-term space missions. The Mission Simulation Facility (MST) will bridge this gap by providing a simulation framework and suite of simulation tools to support research in autonomy for remote exploration. This system will allow developers of autonomy software to test their models in a high-fidelity simulation and evaluate their system's performance against a set of integrated, standardized simulations. The Mission Simulation ToolKit (MST) uses a distributed architecture with a communication layer that is built on top of the standardized High Level Architecture (HLA). This architecture enables the use of existing high fidelity models, allows mixing simulation components from various computing platforms and enforces the use of a standardized high-level interface among components. The components needed to achieve a realistic simulation can be grouped into four categories: environment generation (terrain, environmental features), robotic platform behavior (robot dynamics), instrument models (camera/spectrometer/etc.), and data analysis. The MST will provide basic components in these areas but allows users to plug-in easily any refined model by means of a communication protocol. Finally, a description file defines the robot and environment parameters for easy configuration and ensures that all the simulation models share the same information.

Pisanich, Greg; Clancy, Daniel (Technical Monitor)

2002-01-01

92

Urban Watershed Research Facility at Edison Environmental Center  

EPA Science Inventory

The Urban Watershed Research Facility (UWRF) is an isolated, 20-acre open space within EPA?s 200 acre Edison facility established to develop and evaluate the performance of stormwater management practices under controlled conditions. The facility includes greenhouses that allow ...

93

A Transonic Axial Compressor Facility for Fundamental Research  

E-print Network

A Transonic Axial Compressor Facility for Fundamental Research and Flow Control Development Joshua in the the current generation of aero-gas turbine engines. The compressor stage and facility were designed, IN, 46556, USA A single-stage transonic axial compressor facility has been constructed

Morris, Scott C.

94

Sanford Underground Research Facility - The United State's Deep Underground Research Facility  

NASA Astrophysics Data System (ADS)

The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser/LIDAR), surveying instruments, and surveying benchmarks and optical survey points. Currently an array of single and multipoint extensometers monitors the Davis Campus. A facility-wide micro seismic monitoring system is anticipated to be deployed during the latter half of 2012. This system is designed to monitor minor events initiated within the historical mined out portions of the facility. The major science programs for the coming five years consist of the MAJORANA DEMONSTRATOR (MJD) neutrinoless double beta decay experiment; the Large Underground Xenon (LUX) dark matter search, the Center for Ultralow Background Experiments at DUSEL (CUBED), numerous geoscience installations, Long-Baseline Neutrino Experiment (LBNE), a nuclear astrophysics program involving a low energy underground particle accelerator, second and third generation dark matter experiments, and additional low background counting facilities. The Sanford Lab facility is an active, U.S. based, deep underground research facility dedicated to science, affording the science community the opportunity to conduct unprecedented scientific research in a broad range of physics, biology and geoscience fields at depth. SURF is actively interested in hosting additional research collaborations and provides resources for full facility design, cost estimation, excavation, construction and support management services.

Vardiman, D.

2012-12-01

95

Neuroscience at Royal Holloway Research Facilities  

E-print Network

-performance liquid chromatography (HPLC) systems with a wide range of detectors, · Gas Chromatography presentation and data analysis facilities) About Neuroscience at Royal Holloway Royal Holloway is a constituent

Royal Holloway, University of London

96

Northwestern University Facility for Clean Catalytic Process Research  

SciTech Connect

Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

Marks, Tobin Jay [Northwestern University

2013-05-08

97

Charter for the ARM Climate Research Facility Science Board  

SciTech Connect

The objective of the ARM Science Board is to promote the Nation’s scientific enterprise by ensuring that the best quality science is conducted at the DOE’s User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.

Ferrell, W

2013-03-08

98

Cutting-Edge Experimental Equipment Facilities for High Quality Research  

E-print Network

's state-of-the-art laboratories and research facilities provide students and researchers with the hands. Recently, a state-of-the-art hybrid operation room called a next-generation hybrid OR was builtPS Cell Therapy And the iPS Cell Stock Project. The Facility for iPS Cell Therapy (FiT), a cell processing

Takada, Shoji

99

Scientific and Engineering Research Facilities at Universities and Colleges: 1988.  

ERIC Educational Resources Information Center

A comprehensive national database on key quantitative and qualitative aspects of scientific and engineering research facilities at universities and colleges is presented. This study was conducted in response to a Congressional request for systematic information on the status of academic research facilities. The National Science Foundation (NSF)…

Westat, Inc., Rockville, MD.

100

Research facility for the study of power system magnetic fields  

Microsoft Academic Search

A magnetic field research facility was constructed at EPRI's High Voltage Transmission Research Center (HVTRC) for the purpose of reproducing power system magnetic fields under controlled conditions. The facility includes a 1200' overhead distribution line that can be configured in different ways and a water distribution system that can be connected in different ways to the neutral wires. The distribution

L. E. Zaffanella; G. B. Rauch; G. B. Johnson

1991-01-01

101

Research highlights from the Holifield Heavy Ion Research Facility  

SciTech Connect

The purpose of this paper is to present the scope of research carried out at the new Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge. This will be accomplished with reference to several research projects currently underway. The areas of research represented are microscopic and macroscopic aspects of nuclear reactions and nuclear structure. In view of the scope of this conference, emphasis will be placed on nuclear reactions. A brief description of HHIRF is given, together with its current status. Microscopic aspects of reactions between nuclei are discussed with reference to the prospects for the study of giant resonances by means of heavy ions, and to studies of elastic and inelastic scattering of /sup 60/Ni nuclei. Macroscopic aspects of nuclear reactions are illustrated by means of the study of collisions between /sup 58/Ni nuclei at 15.1 MeV/u and by means of Spin Spectrometer (crystal ball) studies of the /sup 19/F + /sup 159/Tb reaction. Results are presented for lifetime measurements of high-spin states in ytterbium nuclei. (WHK)

Plasil, F.

1982-01-01

102

1Airborne Sensor Facility Ames Research Center  

E-print Network

(Wildfire) Global Hawk Payload Data System Network Server Interface Panels Telemetry and Payload Computer) Global Hawk (operational 2010) SIERRA UAS (operational 2009) G.A. Altair UAS #12;9 NASA Facility

103

National space test centers - Lewis Research Center Facilities  

NASA Technical Reports Server (NTRS)

The Lewis Research Center, NASA, presently has a number of test facilities that constitute a significant national space test resource. It is expected this capability will continue to find wide application in work involving this country's future in space. Testing from basic research to applied technology, to systems development, to ground support will be performed, supporting such activities as Space Station Freedom, the Space Exploration Initiative, Mission to Planet Earth, and many others. The major space test facilities at both Cleveland and Lewis' Plum Brook Station are described. Primary emphasis is on space propulsion facilities; other facilities of importance in space power and microgravity are also included.

Roskilly, Ronald R.

1990-01-01

104

Biomass Gasification Research Facility Final Report  

SciTech Connect

While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-02GO12024 and DE-FC36-03GO13175) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. The primary objectives of Cooperative Agreement DE-FC36-02GO12024 were the selection, acquisition, and application of a suite of gas analyzers capable of providing near real-time gas analyses to suitably conditioned syngas streams. A review was conducted of sampling options, available analysis technologies, and commercially available analyzers, that could be successfully applied to the challenging task of on-line syngas characterization. The majority of thermochemical process streams comprise multicomponent gas mixtures that, prior to crucial, sequential cleanup procedures, include high concentrations of condensable species, multiple contaminants, and are often produced at high temperatures and pressures. Consequently, GTI engaged in a concurrent effort under Cooperative Agreement DE-FC36-03GO13175 to develop the means to deliver suitably prepared, continuous streams of extracted syngas to a variety of on-line gas analyzers. The review of candidate analysis technology also addressed safety concerns associated with thermochemical process operation that constrain the location and configuration of potential gas analysis equipment. Initial analyzer costs, reliability, accuracy, and operating and maintenance costs were also considered prior to the assembly of suitable analyzers for this work. Initial tests at GTI’s Flex-Fuel Test Facility (FFTF) in late 2004 and early 2005 successfully demonstrated the transport and subsequent analysis of a single depressurized, heat-traced syngas stream to a single analyzer (an Industrial Machine and Control Corporation (IMACC) Fourier-transform infrared spectrometer (FT-IR)) provided by GTI. In March 2005, our sampling approach was significantly expanded when this project participated in the U.S. DOE’s Novel Gas Cleaning (NGC) project. Syngas sample streams from three process locations were transported to a distribution manifold for selectable analysis by the IMACC FT-IR, a Stanford Research Systems QMS300 Mass Spectrometer (SRS MS) obtained under this Cooperative Agreement, and a Varian micro gas chromatograph with thermal conductivity detector (?GC) provided by GTI. A syngas stream from a fourth process location was transported to an Agilent Model 5890 Series II gas chromatograph for highly sensitive gas analyses. The on-line analyses made possible by this sampling system verified the syngas cleaning achieved by the NGC process. In June 2005, GTI collaborated with Weyerhaeuser to characterize the ChemrecTM black liquor gasifier at Weyerhaeuser’s New Bern, North Carolina pulp mill. Over a ten-day period, a broad range of process operating conditions were characterized with the IMACC FT-IR, the SRS MS, the Varian ?GC, and an integrated Gas Chromatograph, Mass Selective Detector, Flame Ionization Detector and Sulfur Chemiluminescence Detector (GC/MSD/FID/SCD) system acquired under this Cooperative Agreement from Wasson-ECE. In this field application, a single sample stream was extracted from this low-pressure, low-temperature process and successfully analyzed by these devices. In late 2005,

Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

2007-09-30

105

Materials sciences research. [research facilities, research projects, and technical reports of materials tests  

NASA Technical Reports Server (NTRS)

Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.

1973-01-01

106

A study of the operation of selected national research facilities  

NASA Technical Reports Server (NTRS)

The operation of national research facilities was studied. Conclusions of the study show that a strong resident scientific staff is required for successful facility operation. No unique scheme of scientific management is revealed except for the obvious fact that the management must be responsive to the users needs and requirements. Users groups provide a convenient channel through which these needs and requirements are communicated.

Eisner, M.

1974-01-01

107

The Holifield Heavy Ion Research Facility  

SciTech Connect

Development of the Holified facility has continued with resulting improvements in the number of ion species provided, ion energy for tandem-only operations, and utilization efficiency. In this report, we describe our recent operational experience, development activities, and future development plans.

Jones, C.M.; Alton, G.D.; Ball, J.B.; Biggerstaff, J.A.; Dowling, D.T.; Erb, K.A.; Haynes, D.L.; Hoglund, D.E.; Hudson, E.D.; Juras, R.C.

1987-01-01

108

National remote computational flight research facility  

NASA Technical Reports Server (NTRS)

The extension of the NASA Ames-Dryden remotely augmented vehicle (RAV) facility to accommodate flight testing of a hypersonic aircraft utilizing the continental United States as a test range is investigated. The development and demonstration of an automated flight test management system (ATMS) that uses expert system technology for flight test planning, scheduling, and execution is documented.

Rediess, Herman A.

1989-01-01

109

NETL- High-Pressure Combustion Research Facility  

SciTech Connect

NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

None

2013-07-08

110

NETL- High-Pressure Combustion Research Facility  

ScienceCinema

NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

None

2014-06-26

111

A facility for using cluster research to study environmental problems  

SciTech Connect

This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

Not Available

1991-11-01

112

Users Guide for the National Transonic Facility Research Data System  

NASA Technical Reports Server (NTRS)

The National Transonic Facility is a complex cryogenic wind tunnel facility. This report briefly describes the facility, the data systems, and the instrumentation used to acquire research data. The computational methods and equations are discussed in detail and many references are listed for those who need additional technical information. This report is intended to be a user's guide, not a programmer's guide; therefore, the data reduction code itself is not documented. The purpose of this report is to assist personnel involved in conducting a test in the National Transonic Facility.

Foster, Jean M.; Adcock, Jerry B.

1996-01-01

113

ORGANIZATIONAL CULTURE, SAFETY CULTURE, AND SAFETY PERFORMANCE AT RESEARCH FACILITIES.  

SciTech Connect

Organizational culture surveys of research facilities conducted several years ago and archival occupational injury reports were used to determine whether differences in safety performance are related to general organizational factors or to ''safety culture'' as reflected in specific safety-related dimensions. From among the organizations surveyed, a pair of facilities was chosen that were similar in size and scientific mission while differing on indices of work-related injuries. There were reliable differences in organizational style between the facilities, especially among workers in environment, safety, and health functions; differences between the facilities (and among job categories) on the safety scale were more modest and less regular.

BROWN,W.S.

2000-07-30

114

Nuclear Science Research Facilities Nuclear Science User Guide  

E-print Network

/Bragg Edge Diffraction 32 1FP12 Fundamental Physics/Instrument Development 33 1FP14 DANCE ­ Neutron Capture-cold neutrons for fundamental physics research. Users of the facility span a broad spectrum of scientific

115

77 FR 6172 - Discretionary Bus and Bus Facilities Program and National Research Program Funds.  

Federal Register 2010, 2011, 2012, 2013, 2014

...Bus and Bus Facilities Program and National Research Program Funds...Bus and Bus Facilities Program and...5312 National Research Program Funds...Bus and Bus Facilities Program and...5312 National Research Program....

2012-02-07

116

NIST Automated Manufacturing Research Facility (AMRF): March 1987  

NASA Technical Reports Server (NTRS)

The completion and advances to the NIST Automated Manufacturing Research Facility (AMRF) is described in this video. The six work stations: (1) horizontal machining; (2) vertical machining; (3) turning machinery; (4) cleaning and deburring; (5) materials handling; and (6) inspection are shown and uses for each workstation are cited. Visiting researchers and scientists within NIST describe the advantages of each of the workstations, what the facility is used for, future applications for the technological advancements from the AMRF, including examples of how AMRF technology is being transferred to the U.S. Navy industry and discuss future technological goals for the facility.

Herbert, Judith E. (editor); Kane, Richard (editor)

1987-01-01

117

The NASA Lewis Research Center Water Tunnel Facility  

NASA Technical Reports Server (NTRS)

A water tunnel facility specifically designed to investigate internal fluid duct flows has been built at the NASA Research Center. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints for future test hardware. The inlet chamber flow conditioning approach is also detailed. Instrumentation and data acquisition capabilities are discussed. The incoming flow quality has been documented for about one quarter of the current facility operating range. At that range, there is some scatter in the data in the turbulent boundary layer which approaches 10 percent of the duct radius leading to a uniform core.

Wasserbauer, Charles A.

1997-01-01

118

Research Animal Holding Facility Prevents Space Lab Contamination  

NASA Technical Reports Server (NTRS)

Healthy environment for both rodents and human researchers maintained. Research animal holding facility (RAHF) and rodent cage prevent solid particles (feces, food bits, hair), micro-organisms, ammonia, and odors from escaping into outside environment during spaceflight. Rodent cage contains compartments for two animals. Provides each drinking-water dispenser, feeding alcove, and activity-monitoring port. Feeding and waste trays removable.

Savage, P. D., Jr.; Jahns, G. C.; Dalton, B. P.; Hogan, R. P.; Wray, A. E.

1991-01-01

119

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents  

E-print Network

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 113 RARAF - Table of Contents RARAF Professional Bharat Patel, B.S., B.A. - Technician B RARAF Staff (l-r): Front row: Helen Turner, Alan Bigelow, Sasha. Not shown: Brian Ponnaiya, Kenichi Tanaka and Gloria Jenkins-Baker. #12;CENTER FOR RADIOLOGICAL RESEARCH

120

Scientific and Engineering Research Facilities at Universities and Colleges: 1992.  

ERIC Educational Resources Information Center

Academic research makes a key contribution to the viability and competitiveness of U.S. technology in the new global markets, as well as to the quality of life of citizens. This report provides a broad quantitative picture of the cost, availability, and the condition of existing research facilities. Data on current spending, sources of support,…

National Science Foundation, Washington, DC. Div. of Science Resources Studies.

121

Facilities for Biological Research Aboard the International Space Station  

NASA Technical Reports Server (NTRS)

A centrifuge designed as part of an integrated biological facility for installation onboard the International Space Station is presented. The requirements for the 2.5 m diameter centrifuge, which is designed for the support of biological experiments are discussed. The scientific objectives of the facility are to: provide a means of conducting fundamental studies in which gravitational acceleration is a controllable variable; provide a 1g control; determine the threshold acceleration for physiological response, and determine the value of centrifugation as a potential countermeasure for the biomedical problems associated with space flight. The implementation of the facility is reported on, and the following aspects of the facility are described: the host resources systems supply requirements such as power and data control; the habitat holding rack; the life sciences glove box; the centrifuge; the different habitats for cell culture, aquatic studies, plant research and insect research; the egg incubator, and the laboratory support equipment.

Souza, Kenneth A.; Yost, Bruce D.; Berry, William E.; Johnson, Catherine C.

1996-01-01

122

Biomass Gasification Research Facility Final Report  

SciTech Connect

While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-03GO13175 and DE-FC36-02GO12024) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. This multi-year effort to develop methods to effectively monitor gaseous species produced in thermochemical process streams resulted in a sampling and analysis approach that is continuous, sensitive, comprehensive, accurate, reliable, economical, and safe. The improved approach for sampling thermochemical processes that GTI developed and demonstrated in its series of field demonstrations successfully provides continuous transport of vapor-phase syngas streams extracted from the main gasification process stream to multiple, commercially available analyzers. The syngas stream is carefully managed through multiple steps to successfully convey it to the analyzers, while at the same time bringing the stream to temperature and pressure conditions that are compatible with the analyzers. The primary principle that guides the sample transport is that throughout the entire sampling train, the temperature of the syngas stream is maintained above the maximum condensation temperature of the vapor phase components of the conveyed sample gas. In addition, to minimize adsorption or chemical changes in the syngas components prior to analysis, the temperature of the transported stream is maintained as hot as is practical, while still being cooled only as much necessary prior to entering the analyzer(s). The successful transport of the sample gas stream to the analyzer(s) is accomplished through the managed combination of four basic gas conditioning methods that are applied as specifically called for by the process conditions, the gas constituent concentrations, the analyzer requirements, and the objectives of the syngas analyses: 1) removing entrained particulate matter from the sample stream; 2) maintaining the temperature of the sample gas stream; 3) lowering the pressure of the sample gas stream to decrease the vapor pressures of all the component vapor species in the sample stream; and 4) diluting the gas stream with a metered, inert gas, such as nitrogen. Proof-of-concept field demonstrations of the sampling approach were conducted for gasification process streams from a black liquor gasifier, and from the gasification of biomass and coal feedstocks at GTI’s Flex-Fuel Test Facility. In addition to the descriptions and data included in this Final Report, GTI produced a Special Topical Report, Design and Protocol for Monitoring Gaseous Species in Thermochemical Processes, that explains and describes in detail the objectives, principles, design, hardware, installation, operation and representative data produced during this successful developmental effort. Although the specific analyzers used under Cooperative Agreement DE-FC36-02GO12024 were referenced in the Topical Report and this Final Report, the sampling interface design they present is generic enough to adapt to other analyzers that may be more appropriate to alternate process streams or facilities.

Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

2007-09-30

123

ARM Climate Research Facility Annual Report 2004  

SciTech Connect

Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

Voyles, J.

2004-12-31

124

Research Supports Value of Updated School Facilities  

ERIC Educational Resources Information Center

Two recent peer-reviewed studies support the need to update the traditional school design model that has remained fundamentally unchanged for over a century. In a 2011 study published by the American Educational Research Journal, entitled "Problem-Based Learning in K-12 Education," Clarice Wirkala and Deanna Kuhn document a 200-500 percent…

Fielding, Randall

2012-01-01

125

Space facilities: Meeting future needs for research, development, and operations  

NASA Technical Reports Server (NTRS)

The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

1994-01-01

126

The Radiological Research Accelerator THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY  

E-print Network

nuclei in the lung are ever traversed by more than one particle. Cells treated with the same stain used for the microbeam were irradiated using the track segment facility #12;85 and a UV source to confirm that the stain

127

48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.  

Code of Federal Regulations, 2010 CFR

...proposed use of the research facility is to conduct essential Government research which requires the new or expanded...institution for the research facility to determine...research effort which results in the special use...

2010-10-01

128

NASA Lewis Research Center's combustor test facilities and capabilities  

NASA Technical Reports Server (NTRS)

NASA Lewis Research Center (LeRC) presently accommodates a total of six combustor test facilities with unique capabilities. The facilities are used to evaluate combustor and afterburner concepts for future engine applications, and also to test the survivability and performance of innovative high temperature materials, new instrumentation, and engine components in a realistic jet engine environment. The facilities provide a variety of test section interfaces and lengths to allow for flametube, sector and component testing. The facilities can accommodate a wide range of operating conditions due to differing capabilities in the following areas: inlet air pressure, temperature, and flow; fuel flow rate, pressure, and fuel storage capacity; maximum combustion zone temperature; cooling water flow rate and pressure; types of exhaust - atmospheric or altitude; air heater supply pressure; and types of air heaters - vitiated or nonvitiated. All of the facilities have provisions for standard gas (emissions) analysis, and a few of the facilities are equipped with specialized gas analysis equipment, smoke and particle size measurement devices, and a variety of laser systems. This report will present some of the unique features of each of the high temperature/high pressure combustor test facilities at NASA LeRC.

Bianco, Jean

1995-01-01

129

Earthquake research for the safer siting of critical facilities  

SciTech Connect

The task of providing the necessities for living, such as adequate electrical power, water, and fuel, is becoming more complicated with time. Some of the facilities that provide these necessities would present potential hazards to the population if serious damage were to occur to them during earthquakes. Other facilities must remain operable immediately after an earthquake to provide life-support services to people who have been affected. The purpose of this report is to recommend research that will improve the information available to those who must decide where to site these critical facilities, and thereby mitigate the effects of the earthquake hazard. The term critical facility is used in this report to describe facilities that could seriously affect the public well-being through loss of life, large financial loss, or degradation of the environment if they were to fail. The term critical facility also is used to refer to facilities that, although they pose a limited hazard to the public, are considered critical because they must continue to function in the event of a disaster so that they can provide vital services.

Cluff, J.L. (ed.)

1980-01-01

130

Safety Culture And Best Practices At Japan's Fusion Research Facilities  

SciTech Connect

The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

Rule, K. [Princeton Plasma Physics Lab., Princeton, NJ (United States); King, M. [General Atomics, San Diego, CA (United States); Takase, Y. [Univ. of Tokyo (Japan); Oshima, Y. [Univ. of Tokyo (Japan); Nishimura, K. [National Institute for Fusion Science, Toki (Japan); Sukegawa, A. [Japan Atomic Energy Agency, Naka (Japan)

2014-04-01

131

Safety Culture and Best Practices at Japan's Fusion Research Facilities  

SciTech Connect

The Safety Monitor Joint Working Group (JWG) is one of the magnetic fusion research collaborations between the US Department of Energy and the government of Japan. Visits by occupational safety personnel are made to participating institutions on a biennial basis. In the 2013 JWG visit of US representatives to Japan, the JWG members noted a number of good safety practices in the safety walkthroughs. These good practices and safety culture topics are discussed in this paper. The JWG hopes that these practices for worker safety can be adopted at other facilities. It is a well-known, but unquantified, safety principle that well run, safe facilities are more productive and efficient than other facilities (Rule, 2009). Worker safety, worker productivity, and high quality in facility operation all complement each other (Mottel, 1995).

Rule, Keith [PPPL

2014-05-01

132

Sandia National Laboratories shock thermodynamics applied research (STAR) facility  

SciTech Connect

The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

Asay, J.R.

1981-08-01

133

RADIOFREQUENCY RADIATION EXPOSURE FACILITIES FOR BIO-EFFECTS RESEARCH AT THE HEALTH EFFECTS RESEARCH LABORATORY, RESEARCH TRIANGLE PARK, NORTH CAROLINA  

EPA Science Inventory

The report describes the multi-user radiofrequency radiation exposure facilities for bio-effects research in use at the Health Effects Research Laboratory, Research Triangle Park, NC. Four facilities are described: (1) a 100 MHz CW exposure system, (2) a 2450 MHz CW exposure syst...

134

Research Support Facility (RSF): Leadership in Building Performance (Brochure)  

SciTech Connect

This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

Not Available

2011-09-01

135

Research and construction progress of SG-III laser facility  

NASA Astrophysics Data System (ADS)

SG-III laser facility is now the largest under-construction laser driver for inertial confinement fusion (ICF) research in China, whose 48 beams will deliver 180kJ/3ns/3? energy to target in one shot. Till the summer of 2014, 4 bundle of lasers have finished their engineering installation and testing, and the A1 laser testing is undergoing. A round of physics experiment is planned in Oct. 2014 with 5 bundle of lasers, which means the facility must be prepared for a near-full-capability operation before the last quarter of 2014. This paper will briefly introduce the latest progress of the engineering and research progress of SG-III laser facility.

Deng, Xuewei; Zhu, Qihua; Zheng, Wanguo; Wei, Xiaofeng; Jing, Feng; Hu, Dongxia; Zhou, Wei; Feng, Bin; Wang, Jianjun; Peng, Zhitao; Liu, Lanqin; Chen, Yuanbin; Ding, Lei; Lin, Donghui; Guo, Liangfu; Dang, Zhao

2014-11-01

136

BIOPACK: the ground controlled late access biological research facility.  

PubMed

Future Space Shuttle flights shall be characterized by activities necessary to further build the International Space Station, ISS. During these missions limited resources are available to conduct biological experiments in space. The Shuttles' Middeck is a very suitable place to conduct science during the ISS assembly missions or dedicated science missions. The BIOPACK, which flew its first mission during the STS-107, provides a versatile Middeck Locker based research tool for gravitational biology studies. The core facility occupies the space of only two Middeck Lockers. Experiment temperatures are controlled for bacteria, plant, invertebrate and mammalian cultures. Gravity levels and profiles can be set ranging from 0 to 2.0 x g on three independent centrifuges. This provides the experimenter with a 1.0 x g on-board reference and intermediate hypogravity and hypergravity data points to investigate e.g. threshold levels in biological responses. Temperature sensitive items can be stored in the facilities' -10 degrees C and +4 degrees C stowage areas. During STS-107 the facility also included a small glovebox (GBX) and passive temperature controlled units (PTCU). The GBX provides the experimenter with two extra levels of containment for safe sample handling. This biological research facility is a late access (L-10 hrs) laboratory, which, when reaching orbit, could automatically be starting up reducing important experiment lag-time and valuable crew time. The system is completely telecommanded when needed. During flight system parameters like temperatures, centrifuge speeds, experiment commanding or sensor readouts can be monitored and changed when needed. Although ISS provides a wide range of research facilities there is still need for an STS-based late access facility such as the BIOPACK providing experimenters with a very versatile research cabinet for biological experiments under microgravity and in-flight control conditions. PMID:16145804

van Loon, Jack J W A

2004-03-01

137

Design review of the TEXT Fusion Plasma Research Facility  

Microsoft Academic Search

The TEXT Tokamak Fusion Plasma Research Facility at the University of Texas at Austin is intended to provide a hot well-confined plasma suitable for studies of atomic physics, diagnostics development, heating processes, and transport. Operation is scheduled to begin in 1980. Topics discussed in the design review include design considerations, overall design features, the toroidal field system, the ohmic heating,

K. Gentle; D. Brower; G. Caldwell; G. Cardwell; J. Floyd; W. Harris; S. Hutchins; D. Patterson; P. Wildi

1977-01-01

138

A Survey on Facilities for Experimental Internet of Things Research  

E-print Network

1 A Survey on Facilities for Experimental Internet of Things Research Alexander Gluhak , Srdjan The initial vision of the Internet of Things (IoT) was of a world in which all physical objects are tagged Internet of Things, Experimental environment, Testbed 1 INTRODUCTION The IoT is a multidisciplinary domain

Paris-Sud XI, Université de

139

Animal, Land and Facilities Use Form Location of Research  

E-print Network

MAFES Animal, Land and Facilities Use Form Location of Research: Today's Date: Trial Start Date Number: CRIS Number: Funding Area: Course Number: Extension Activity: DESCRIPTION OF ANIMALS REQUESTED Type: Breed: Sex: Age: Weight: Number Needed: Male: Female: Health of animals needed: If specific

Ray, David

140

The PIRATE Facility: at the crossroads of research and teaching  

NASA Astrophysics Data System (ADS)

I describe the Open University-owned 0.43m robotic observatory PIRATE, based in Mallorca. PIRATE is a cost-effective facility contributing to topical astrophysical research and an inspiring platform for distance education students to learn practical science.

Kolb, U.

2014-12-01

141

Virginia's Smart Road: an intelligent transportation systems research facility  

NASA Astrophysics Data System (ADS)

The smart road is an experimental highway currently under construction in Virginia. It is being built from the ground up with ITS testing and evaluation in mind. Embedded research support infrastructure will include underground conduits, underground junction bunkers, power, a fiber optic data network, embedded pavement sensors, snow making capability, and experimental lighting. The facility will be utilized for a number of research areas including safety and human factors, snow and ice control, pavement research, bridge and structures research, ITS sensor development and evaluation, and roadside to vehicle communications.

Amanna, Ashwin; Crawford, Charles

1998-01-01

142

ARM Climate Research Facility Monthly Instrument Report September 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-10-18

143

ARM Climate Research Facility Instrumentation Status and Information December 2009  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2010-12-30

144

ARM Climate Research Facility Monthly Instrument Report August 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-09-28

145

ARM Climate Research Facility Instrumentation Status and Information March 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-04-19

146

ARM Climate Research Facility Instrumentation Status and Information April 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-05-15

147

ARM Climate Research Facility Instrumentation Status and Information January 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2010-02-28

148

ARM Climate Research Facility Monthly Instrument Report July 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-08-18

149

ARM Climate Research Facility Monthly Instrument Report June 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-07-13

150

ARM Climate Research Facility Instrumentation Status and Information February 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-03-25

151

ARM Climate Research Facility Monthly Instrument Report May 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-06-21

152

ARM Climate Research Facility Instrumentation Status and Information October 2009  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-10-01

153

Neutron scattering facilities at the Australian replacement research reactor  

Microsoft Academic Search

The 20-MW Australian Replacement Research Reactor represents possibly the greatest single research infrastructure investment in Australia's history. Construction of the facility has commenced, following award of the construction contract in July 2000, and the construction license in April 2002. In addition to good thermal beams, the construction project includes a large state-of-the-art liquid deuterium coldneutron source and supermirror guides feeding

R. A. Robinson; S. J. Kennedy

2003-01-01

154

Novel neutron sources at the Radiological Research Accelerator Facility.  

PubMed

Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons.We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target.A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the (7)Li(p,n)(7)Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components. PMID:22545061

Xu, Yanping; Garty, Guy; Marino, Stephen A; Massey, Thomas N; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

2012-03-16

155

Novel neutron sources at the Radiological Research Accelerator Facility  

NASA Astrophysics Data System (ADS)

Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

Xu, Y.; Garty, G.; Marino, S. A.; Massey, T. N.; Randers-Pehrson, G.; Johnson, G. W.; Brenner, D. J.

2012-03-01

156

Supporting core service facilities for biotechnology research by faculty, student, government, and  

E-print Network

Supporting core service facilities for biotechnology research by faculty, student, government, and industry scientists. Developed by the Office of Biotechnology and the Office of the Vice President for Research. Office of Biotechnology Core Instrumentation Service Facilities advancing biotechnology research

Mayfield, John

157

48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.  

Code of Federal Regulations, 2011 CFR

...false Special use allowances for research facilities acquired by educational...SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.015-70 Special use allowances for research facilities acquired by...

2011-10-01

158

10 CFR 50.21 - Class 104 licenses; for medical therapy and research and development facilities.  

Code of Federal Regulations, 2010 CFR

...for medical therapy and research and development facilities. 50.21...for medical therapy and research and development facilities. A class...useful in the conduct of research and development activities of the...

2010-01-01

159

10 CFR 50.21 - Class 104 licenses; for medical therapy and research and development facilities.  

Code of Federal Regulations, 2011 CFR

...for medical therapy and research and development facilities. 50.21...for medical therapy and research and development facilities. A class...useful in the conduct of research and development activities of the...

2011-01-01

160

National facilities study. Volume 5: Space research and development facilities task group  

NASA Technical Reports Server (NTRS)

With the beginnings of the U.S. space program, there was a pressing need to develop facilities that could support the technology research and development, testing, and operations of evolving space systems. Redundancy in facilities that was once and advantage in providing flexibility and schedule accommodation is instead fast becoming a burden on scarce resources. As a result, there is a clear perception in many sectors that the U.S. has many space R&D facilities that are under-utilized and which are no longer cost-effective to maintain. At the same time, it is clear that the U.S. continues to possess many space R&D facilities which are the best -- or among the best -- in the world. In order to remain world class in key areas, careful assessment of current capabilities and planning for new facilities is needed. The National Facility Study (NFS) was initiated in 1992 to develop a comprehensive and integrated long-term plan for future aerospace facilities that meets current and projected government and commercial needs. In order to assess the nation's capability to support space research and development (R&D), a Space R&D Task Group was formed. The Task Group was co-chaired by NASA and DOD. The Task Group formed four major, technologically- and functionally- oriented working groups: Human and Machine Operations; Information and Communications; Propulsion and Power; and Materials, Structures, and Flight Dynamics. In addition to these groups, three supporting working groups were formed: Systems Engineering and Requirements; Strategy and Policy; and Costing Analysis. The Space R&D Task Group examined several hundred facilities against the template of a baseline mission and requirements model (developed in common with the Space Operations Task Group) and a set of excursions from the baseline. The model and excursions are described in Volume 3 of the NFS final report. In addition, as a part of the effort, the group examined key strategic issues associated with space R&D facilities planning for the U.S., and these are discussed in Section 4 of this volume.

1994-01-01

161

Development of an integrated set of research facilities for the support of research flight test  

NASA Technical Reports Server (NTRS)

The Ames-Dryden Flight Research Facility (DFRF) serves as the site for high-risk flight research on many one-of-a-kind test vehicles like the X-29A advanced technology demonstrator, F-16 advanced fighter technology integration (AFTI), AFTI F-111 mission adaptive wing, and F-18 high-alpha research vehicle (HARV). Ames-Dryden is on a section of the historic Muroc Range. The facility is oriented toward the testing of high-performance aircraft, as shown by its part in the development of the X-series aircraft. Given the cost of research flight tests and the complexity of today's systems-driven aircraft, an integrated set of ground support experimental facilities is a necessity. In support of the research flight test of highly advanced test beds, the DFRF is developing a network of facilities to expedite the acquisition and distribution of flight research data to the researcher. The network consists of an array of experimental ground-based facilities and systems as nodes and the necessary telecommunications paths to pass research data and information between these facilities. This paper presents the status of the current network, an overview of current developments, and a prospectus on future major enhancements.

Moore, Archie L.; Harney, Constance D.

1988-01-01

162

International Space Station Research and Facilities for Life Sciences  

NASA Technical Reports Server (NTRS)

Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

Robinson, Julie A.; Ruttley, Tara M.

2009-01-01

163

OPERATION AND RESEARCH AT THE USEPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY91  

EPA Science Inventory

The U.S. Environmental Protection Agency's Incineration Research Facility (IRF) in Jefferson, Arkansas, is an experimental facility that houses two pilot-scale incinerators and the associated waste handling, emission control, process control, and safety equipment; as well as onsi...

164

Rain Garden Research at EPA's Urban Watershed Research Facility  

EPA Science Inventory

I have been invited to give a presentation at the 2009 National Erosion Conference in Hartford, CT, on October 27-28, 2009. My presentation discusses the research on sizing of rain gardens that is being conducted using the large, parking lot rain gardens on-site. I discuss the ...

165

Aeroacoustic research facilities at NASA Langley Research Center: Description and operational characteristics  

NASA Technical Reports Server (NTRS)

A number of facilities were developed which provide unique test capabilities for aeroacoustic research. Information regarding physical layouts, dimensions, construction features, and operating capabilities of these facilities is compiled. Possible research applications include the behavior of such noise sources as jets, rotors, and propellers in simulated forward motion; studies of noise due to the interactions of aerodynamic flows with solid surfaces and bodies; sound propagation in ducts with airflow; and the evaluation of acoustical materials.

Hubbard, H. H.; Manning, J. C.

1983-01-01

166

The crop growth research chamber: A ground-based facility for CELSS research  

NASA Technical Reports Server (NTRS)

A ground based facility for the study of plant growth and development under stringently controlled environments is being developed by the Closed Ecological Life Support System (CELSS) program at the Ames Research Center. Several Crop Growth Research Chambers (CGRC) and laboratory support equipment provide the core of this facility. The CGRC is a closed (sealed) system with a separate recirculating atmosphere and nutrient delivery systems. The atmospheric environment, hydroponic environment, systems controls, and data acquisition are discussed.

Bubenheim, David L.

1990-01-01

167

NASA superconducting magnetic mirror facility. [for thermonuclear research  

NASA Technical Reports Server (NTRS)

The design details and initial test results of a superconducting magnetic mirror facility that has been constructed at NASA Lewis Research Center for use in thermonuclear research are summarized. The magnet system consists of four solenoidal coils which are individually rated at 5.0 T. Each coll is composed of an inner, middle, and outer winding. The inner winding is wound of stabilized Nb3Sn superconducting ribbon, and the middle and outer windings are wound of stabilized Nb-Ti superconducting wire. When arranged in the mirror geometry, the four coils will produce 8.7 T at the mirrors and a 1.8 mirror ratio. The magnet has a 41-cm diameter clear bore which is open to atmosphere. Distance between the mirrors is 111 cm. Presently there are only three magnets in the facility; the fourth magnet is being rebuilt.

Reinmann, J. J.; Swanson, M. C.; Nichols, C. R.; Bloy, S. J.; Nagy, L. A.; Brady, F. J.

1973-01-01

168

EUFAR, the European Facility for Airborne Research, becomes 10  

NASA Astrophysics Data System (ADS)

Instrumented aircraft are essential tools in environmental and geo-sciences. Many European countries operate their own research aircraft, but access across national boundaries is difficult and not all researchers are familiar with the potential advantages of airborne experiments. Two Framework Programme 6 (FP6) initiatives i) HYRESSA, HYperspectral REmote Sensing in Europe Specific support Action, and ii) EUFAR, EUropean Facility for Airborne Research in Environmental and Geo-sciences, have joined forces in Framework Programme (FP7). The FP7 EUFAR project (2008- 2012) is now a network of 33 European airborne data providers and experts in airborne measurements and aims at providing and improving the access to airborne facilities (i.e. aircraft, airborne instruments, data processing centers) through Trans-national Access (TA) Activities, Networking Activities (NA) and Joint Research Activities (JRA). Its aim is to integrate the airborne community to ensure that researchers in environmental and geo-sciences may have access to infrastructure most suited to their needs, irrespective of the location of the infrastructure. EUFAR will celebrate its 10th anniversary during the ICARE International Conference on Airborne Research for the Environment including international air show which will be held in Toulouse, France) from 25-31 October 2010.

Reusen, I.; Brenguier, J.-L.

2010-10-01

169

Investigation of otolith responses using ground based vestibular research facility  

NASA Technical Reports Server (NTRS)

The general goal was to examine tilt sensitivity of horizontal semicircular canal afferents. Computer programs were tested which controlled the short axis centrifuge at the Vestibular Research Facility, acquired action potentials and produced data reduction analyses including histograms and gain and phase calculations. A pre-amplifier was also developed for the acquisition of action potentials. The data were gathered that can be used to contribute toward the understanding of the tilt sensitivity of semicircular canal afferents in the unanesthetized gerbil preparation.

Correia, Manning J.; TABARACCI

1989-01-01

170

Burning plasma regime for Fussion-Fission Research Facility  

Microsoft Academic Search

The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R\\/a=4\\/1 m\\/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create

Leonid E. Zakharov

2010-01-01

171

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007  

SciTech Connect

This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

LR Roeder

2007-12-01

172

36 CFR 1254.22 - Do I need to register when I visit a NARA facility for research?  

Code of Federal Regulations, 2010 CFR

...register when I visit a NARA facility for research? 1254...register when I visit a NARA facility for research? (a...b) NARA facilities in the Washington...contain several research rooms; you...research room you visit on a...

2010-07-01

173

Development of an Extreme Environment Materials Research Facility at Princeton  

SciTech Connect

The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m^3) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m^2) to 14 MeV neutrons at a fluence in excess of 10^13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m2 for durations of 1-15 seconds are planned... The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new materials, and the investigation of repair mechanisms. Effects on materials will be analyzed with in situ beam probes and instrumentation as the target is exposed to radiation, thermal fluxes and other stresses. Photon and monochromatic neutron fluxes, produced using a variable-energy (4-45 MeV) electron linac and the highly asymmetric electron-positron collisions technique used in high-energy physics research, can provide non-destructive, deep-penetrating structural analysis of materials while they are undergoing testing. The same beam lines will also be able to generate neutrons from photonuclear interactions using existing Bremsstrahlung and positrons on target quasi-monochromatic gamma rays. Other diagnostics will include infrared cameras, residual gas analyzer (RGA), and thermocouples; additional diagnostic capability will be added.

Cohen, A B; Tully, C G; Austin, R; Calaprice, F; McDonald, K; Ascione, G; Baker, G; Davidson, R; Dudek, L; Grisham, L; Kugel, H; Pagdon, K; Stevenson, T; Woolley, R

2010-11-17

174

Research objectives, opportunities, and facilities for microgravity science  

NASA Technical Reports Server (NTRS)

Microgravity Science in the U.S.A. involves research in fluids science, combustion science, materials science, biotechnology, and fundamental physics. The purpose is to achieve a thorough understanding of the effects of gravitational body forces on physical phenomena relevant to those disciplines. This includes the study of phenomena which are usually overwhelmed by the presence of gravitational body forces and, therefore, chiefly manifested when gravitational forces are weak. In the pragmatic sense, the research involves gravity level as an experimental parameter. Calendar year 1992 is a landmark year for research opportunities in low earth orbit for Microgravity Science. For the first time ever, three Spacelab flights will fly in a single year: IML-1 was launched on January 22; USML-1 was launched on June 25; and, in September, SL-J will be launched. A separate flight involving two cargo bay carriers, USMP-1, will be launched in October. From the beginning of 1993 up to and including the Space Station era (1997), nine flights involving either Spacelab or USMP carriers will be flown. This will be augmented by a number of middeck payloads and get away specials flying on various flights. All of this activity sets the stage for experimentation on Space Station Freedom. Beginning in 1997, experiments in Microgravity Science will be conducted on the Space Station. Facilities for doing experiments in protein crystal growth, solidification, and biotechnology will all be available. These will be joined by middeck-class payloads and the microgravity glove box for conducting additional experiments. In 1998, a new generation protein crystal growth facility and a facility for conducting combustion research will arrive. A fluids science facility and additional capability for conducting research in solidification, as well as an ability to handle small payloads on a quick response basis, will be added in 1999. The year 2000 will see upgrades in the protein crystal growth and fluids science facilities. From the beginning of 1997 to the fall of 1999 (the 'man-tended capability' era), there will be two or three utilization flights per year. Plans call for operations in Microgravity Science during utilization flights and between utilization flights. Experiments conducted during utilization flights will characteristically require crew interaction, short duration, and less sensitivity to perturbations in the acceleration environment. Operations between utilization flights will involve experiments that can be controlled remotely and/or can be automated. Typically, the experiments will require long times and a pristine environment. Beyond the fall of 1999 (the 'permanently-manned capability' era), some payloads will require crew interaction; others will be automated and will make use of telescience.

Bayuzick, Robert J.

1992-01-01

175

Status of CHESS facility and research programs: 2010  

NASA Astrophysics Data System (ADS)

CHESS is a hard X-ray synchrotron radiation national facility located at Cornell University and funded by the National Science Foundation. It is open to all scientists by peer-reviewed proposal and serves 500-1000 visitors each year. The CHESS scientific and technical staff develops forefront research tools and X-ray instrumentation and methods and supports 12 experimental stations delivering high intensity X-ray beams produced at 5.3 GeV and 250 mA. The facility consists of a mix of dedicated and flexible experimental stations that are easily configured for general X-ray diffraction (wide- and small-angle), spectroscopy, imaging applications, etc. Dedicated stations support high-pressure powder X-ray diffraction, pulsed-laser deposition for layer-by-layer growth of surfaces, and three dedicated stations for protein crystallography. Specialized resource groups at the laboratory include: an X-ray detector group; MacCHESS, an NIH-supported research resource for protein crystallography; the G-line division, which primarily organizes graduate students and Cornell faculty members around three X-ray stations; a high-pressure diamond-anvil cell support laboratory; and a monocapillary drawing facility for making microbeam X-ray optics. Research is also ongoing to upgrade CHESS to a first-ever 5 GeV, 100 mA Energy Recovery Linac (ERL) hard X-ray source. This source will provide ultra-high spectral-brightness and <100 fs short-pulse capability at levels well in advance of those possible with existing storage rings. It will produce diffraction-limited X-rays beams of up to 10 keV energy and be capable of providing 1 nm round beams. Prototyping for this facility is under way now to demonstrate critical DC photoelectron injector and superconducting linac technologies needed for the full-scale ERL.

Fontes, Ernest; Bilderback, Donald H.; Gruner, Sol M.

2011-09-01

176

Capsule review of the DOE research and development and field facilities  

SciTech Connect

A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses, and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)

None

1980-09-01

177

Research and test facilities for development of technologies and experiments with commercial applications  

NASA Technical Reports Server (NTRS)

One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.

1989-01-01

178

Major Facilities for Materials Research and Related Disciplines.  

ERIC Educational Resources Information Center

This report presents priorities for new facilities and new capabilities at existing facilities with initial costs of at least $5 million. The new facilities in order of priority are: (1) a 6 GeV synchrotron radiation facility; (2) an advanced steady state neutron facility; (3) a 1 to 2 GeV synchrotron radiation facility; and (4) a high intensity…

National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

179

Upgrades at the NASA Langley Research Center National Transonic Facility  

NASA Technical Reports Server (NTRS)

Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

Paryz, Roman W.

2012-01-01

180

First Materials Science Research Facility Rack Capabilities and Design Features  

NASA Astrophysics Data System (ADS)

The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

Cobb, S. D.; Higgins, D. B.; Kitchens, L.

2002-01-01

181

Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006  

SciTech Connect

This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: • Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia • Successfully deploying the ARM Mobile Facility in Niger, Africa • Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements • Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes • Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

LR Roeder

2005-11-30

182

Radiological Characterization and Final Facility Status Report Tritium Research Laboratory  

SciTech Connect

This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC&FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate.

Garcia, T.B.; Gorman, T.P.

1996-08-01

183

Description of the HAARP Gakona ionosphere radio science research facility and recent research results  

Microsoft Academic Search

The High Frequency Active Auroral Research Program is completing the development of a facility in Gakona Alaska to include a 3600 kW high-frequency HF transmitter for active research and a suite of radio and optical diagnostic instruments to study physical processes in the ionosphere resulting from interactions with high power radio waves A description of the major components of the

P. Kossey; J. Battis; S. Basu

2006-01-01

184

Overview of the NASA Dryden Flight Research Facility aeronautical flight projects  

NASA Technical Reports Server (NTRS)

Several principal aerodynamics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.

Meyer, Robert R., Jr.

1992-01-01

185

BASIC RESEARCH DIRECTIONS for User Science at the National Ignition Facility  

E-print Network

BASIC RESEARCH DIRECTIONS for User Science at the National Ignition Facility Report on the National at the National Ignition Facility #12;#12;BASIC RESEARCH DIRECTIONS FOR USER SCIENCE AT THE NATIONAL IGNITION on Basic Research Directions on User Science at the National Ignition Facility Chairs: John Sarrao, Los

Stewart, Sarah T.

186

DESCRIPTION OF THE HAARP GAKONA FACILITY WITH SOME RESULTS FROM RECENT RESEARCH  

Microsoft Academic Search

The High Frequency Active Auroral Research Program has constructed a new interactive ionospheric research facility in Gakona, Alaska. We present a description of the major components of the facility including technical detail of its current and planned performance capabilities and recent measurements of its operating characteristics. The facility has been used during numerous research campaigns since reaching its current level

E. J. Kennedy; P. Kossey

187

A Tether-Based Variable-Gravity Research Facility Concept  

NASA Technical Reports Server (NTRS)

The recent announcement of a return to the Moon and a mission to Mars has made the question of human response to lower levels of gravity more important. Recent advances in tether technology spurred by NASA s research in MXER tethers has led to a re-examination of the concept of a variable-gravity research facility (xGRF) for human research in low Earth orbit. Breakthroughs in simplified inertial tracking have made it possible to consider eliminating the despun section of previous designs. This, in turn, improves the prospect of a facility based entirely around a tether, with the human module on one end and a countermass on the other. With such a configuration, propellantless spinup and spindown is also possible based on the conservation of angular momentum from a gravity-gradient configuration to a spinning configuration. This not only saves large amounts of propellant but vastly simplifies crew and consumable resupply operations, since these can now be done in a microgravity configuration. The importance of the science to be obtained and the performance improvements in this new design argue strongly for further investigation.

Sorensen, Kirk

2006-01-01

188

Cosmic muon flux measurements at the Kimballton Underground Research Facility  

NASA Astrophysics Data System (ADS)

In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

2014-08-01

189

Cosmic Muon Flux Measurements at the Kimballton Underground Research Facility  

E-print Network

In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

Kalousis, L N; Link, J M; Mariani, C; Pelkey, R

2014-01-01

190

Cosmic Muon Flux Measurements at the Kimballton Underground Research Facility  

E-print Network

In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

L. N. Kalousis; E. Guarnaccia; J. M. Link; C. Mariani; R. Pelkey

2014-09-12

191

Highlighting High Performance: The Solar Energy Research Facility, Golden, Colorado  

SciTech Connect

The National Renewable Energy Laboratory's Solar Energy Research Facility in Golden, Colorado, uses a stair-step configuration to allow daylight and heat into the office areas, while the laboratories in the back of the building are in a more controlled environment where tight levels of ventilation, humidity, temperature, and light are critical. A unique mechanical system makes the most of the natural environment and the building's design to efficiently heat and cool the building at an annual utility bill savings of almost $200,000 per year.

Torcellini, P.; Epstein, K.

2001-06-26

192

Congressional hearing reviews NSF major research and facilities projects  

NASA Astrophysics Data System (ADS)

An 8 March congressional hearing about the U.S. National Science Foundation's Major Research Equipment and Facilities Construction (NSF MREFC) account focused on fiscal management and accountability of projects in that account and reviewed concerns raised by NSF's Office of Inspector General (OIG). NSF established the MREFC account in 1995 to better plan and manage investments in major equipment and facilities projects, which can cost from tens of millions to hundreds of millions of dollars, and the foundation has funded 17 MREFC projects since then. The Obama administration's proposed fiscal year (FY) 2013 budget includes funding for four MREFC projects: Advanced Laser Gravitational-Wave Observatory (AdvLIGO), Advanced Technology Solar Telescope (ATST), National Ecological Observatory (NEON), and Ocean Observatories Initiative (OOI). The hearing, held by a subcommittee of the House of Representatives' Committee on Science, Space, and Technology, reviewed management oversight throughout the life cycles of MREFC projects and concerns raised in recent OIG reports about the use of budget contingency funds. NSF's February 2012 manual called “Risk management guide for large facilities” states that cost contingency is “that portion of the project budget required to cover ‘known unknowns,’” such as planning and estimating errors and omissions, minor labor or material price fluctuations, and design developments and changes within the project scope. Committee members acknowledged measures that NSF has made to improve the MREFC oversight process, but they also urged the agency to continue to take steps to ensure better project management.

Showstack, Randy

2012-03-01

193

The Sondrestrom Research Facility All-sky Imagers  

NASA Astrophysics Data System (ADS)

The Sondrestrom Upper Atmospheric Research Facility is located near Kangerlussuaq, Greenland, just north of the Arctic Circle and 100 km inland from the west coast of Greenland. The facility is operated by SRI International in Menlo Park, California, under the auspices of the U.S. National Science Foundation. Operating in Greenland since 1983, the Sondrestrom facility is host to more than 20 instruments, the majority of which provide unique and complementary information about the arctic upper atmosphere. Together these instruments advance our knowledge of upper atmospheric physics and determine how the tenuous neutral gas interacts with the charged space plasma environment. The suite of instrumentation supports many disciplines of research - from plate tectonics to auroral physics and space weather. The Sondrestrom facility has recently acquired two new all-sky imagers. In this paper, we present images from both new imagers, placing them in context with other instruments at the site and detailing to the community how to gain access to this new data set. The first new camera replaces the intensified auroral system which has been on site for nearly three decades. This new all-sky imager (ASI), designed and assembled by Keo Scientific Ltd., employs a medium format 180° fisheye lens coupled to a set of five 3-inch narrowband interference filters. The current filter suite allows operation at the following wavelengths: 750 nm, 557.7 nm, 777.4 nm, 630.0 nm, and 732/3 nm. Monochromatic images from the ASI are acquired at a specific filter and integration time as determined by a unique configuration file. Integrations as short as 0.5 sec can be commanded for exceptionally bright features. Preview images are posted to the internet in near real-time, with final images posted weeks later. While images are continuously collected in a "patrol mode," users can request special collection sequences for targeted experiments. The second new imager installed at the Sondrestrom facility is a color all-sky imager (CASI). The CASI instrument is a low-cost Keo Scientific Ltd. system similar to cameras designed for the THEMIS satellite ground-based imaging network. This camera captures all visible wavelengths simultaneously at a higher data rate than the ASI. While it is not possible to resolve fine spectral features as with narrowband filters on the ASI, this camera provides context on wavelengths not covered by other imagers, and makes it much simpler to distinguish clouds from airglow and aurora. As with the ASI, this imager collects data during periods of dark skies and the images are posted to the web for community viewing.

Kendall, E. A.; Grill, M.; Gudmundsson, E.; Stromme, A.

2010-12-01

194

NASA LEWIS RESEARCH CENTER WATER JET PUMP TEST FACILITY IN TEST CELL SE-12 IN THE ENGINE RESEARCH BU  

NASA Technical Reports Server (NTRS)

NASA LEWIS RESEARCH CENTER WATER JET PUMP TEST FACILITY IN TEST CELL SE-12 IN THE ENGINE RESEARCH BUILDING ERB - ALKALI METAL LOW PRESSURE PUMP FACILITY AND ALKALI METAL HIGH PRESSURE PUMP FACILITY IN CELL W-6 OF THE COMPRESSOR & TURBINE WING C&T

1963-01-01

195

Ames Research Center The Hypervelocity Free-Flight Facilities  

E-print Network

: Chuck Cornelison Senior Facilities Technologist, Thermophysics Facilities Branch (650) 604-3443 charles include: aerodynamic parameters (i.e. lift, drag & pitching moment coefficients, dynamic stability

196

Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans  

NASA Astrophysics Data System (ADS)

The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

Pogorelsky, I. V.; Ben-Zvi, I.

2014-08-01

197

Brain Cancer in Workers Employed at a Laboratory Research Facility  

PubMed Central

Background An earlier study of research facility workers found more brain cancer deaths than expected, but no workplace exposures were implicated. Methods Adding four additional years of vital-status follow-up, we reassessed the risk of death from brain cancer in the same workforce, including 5,284 workers employed between 1963, when the facility opened, and 2007. We compared the work histories of the brain cancer decedents in relationship to when they died and their ages at death. Results As in most other studies of laboratory and research workers, we found low rates of total mortality, total cancers, accidents, suicides, and chronic conditions such as heart disease and diabetes. We found no new brain cancer deaths in the four years of additional follow-up. Our best estimate of the brain cancer standardized mortality ratio (SMR) was 1.32 (95% confidence interval [95% CI] 0.66–2.37), but the SMR might have been as high as 1.69. Deaths from benign brain tumors and other non-malignant diseases of the nervous system were at or below expected levels. Conclusion With the addition of four more years of follow-up and in the absence of any new brain cancers, the updated estimate of the risk of brain cancer death is smaller than in the original study. There was no consistent pattern among the work histories of decedents that indicated a common causative exposure. PMID:25493437

Collins, James J.; Bender, Thomas John; Bonner, Eileen M.; Bodner, Kenneth M.; Kreft, Alisa M.

2014-01-01

198

Quality Assurance of ARM Program Climate Research Facility Data  

SciTech Connect

This report documents key aspects of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) data quality assurance program as it existed in 2008. The performance of ACRF instruments, sites, and data systems is measured in terms of the availability, usability, and accessibility of the data to a user. First, the data must be available to users; that is, the data must be collected by instrument systems, processed, and delivered to a central repository in a timely manner. Second, the data must be usable; that is, the data must be inspected and deemed of sufficient quality for scientific research purposes, and data users must be able to readily tell where there are known problems in the data. Finally, the data must be accessible; that is, data users must be able to easily find, obtain, and work with the data from the central repository. The processes described in this report include instrument deployment and calibration; instrument and facility maintenance; data collection and processing infrastructure; data stream inspection and assessment; the roles of value-added data processing and field campaigns in specifying data quality and haracterizing the basic measurement; data archival, display, and distribution; data stream reprocessing; and engineering and operations management processes and procedures. Future directions in ACRF data quality assurance also are presented.

RA Peppler; KE Kehoe; KL Sonntag; CP Bahrmann; SJ Richardson; SW Christensen; RA McCord; DJ Doty; R Wagener; RC Eagan; JC Lijegren; BW Orr; DL Sisterson; TD Halter; NN Keck; CN Long; MC Macduff; JH Mather; RC Perez; JW Voyles; MD Ivey; ST Moore; DL Nitschke; BD Perkins; DD Turner

2008-03-01

199

Desiccant contamination research: Report on the desiccant contamination test facility  

SciTech Connect

The activity in the cooling systems research involves research on high performance dehumidifiers and chillers that can operate efficiently with the variable thermal outputs and delivery temperatures associated with solar collectors. It also includes work on advanced passive cooling techniques. This report describes the work conducted to improve the durability of solid desiccant dehumidifiers by investigating the causes of degradation of desiccant materials from airborne contaminants and thermal cycling. The performance of a dehumidifier strongly depends on the physical properties and durability of the desiccant material. To make durable and reliable dehumidifiers, an understanding is needed of how and to what degree the performance of a dehumidifier is affected by desiccant degradation. This report, an account of work under Cooling Systems Research, documents the efforts to design and fabricate a test facility to investigate desiccant contamination based on industry and academia recommendations. It also discusses the experimental techniques needed for obtaining high-quality data and presents plans for next year. Researchers of the Mechanical and Industrial Technology Division performed this work at the Solar Energy Research Institute in FY 1988 for DOE's Office of Solar Heat Technologies. 7 refs., 19 figs., 1 tab.

Pesaran, A.A.; Bingham, C.E.

1991-07-01

200

OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY89  

EPA Science Inventory

The Environmental Protection Agency's Incineration Research Facility in Jefferson, Arkansas, is an experimental facility which houses two pilot-scale incinerators and the associated waste handling emission control, process control, and safety equipment, as well as onsite laborato...

201

OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY92  

EPA Science Inventory

The U.S. Environmental Protection Agency's Incineration Research Facility (IRF) in Jefferson, Arkansas, is an experimental facility that houses two pilotscale incinerators and the associated waste handling, emission control, process control, and safety equipment; as well as onsit...

202

CSU's MWV Observatory: A Facility for Research, Education and Outreach  

NASA Astrophysics Data System (ADS)

The Mead Westvaco Observatory (MWVO), located in Columbus State University's Coca-Cola Space Science Center, is dedicated to education and research in astronomy through hands-on engagement and public participation. The MWVO has recently received funding to upgrade from a 16-inch Meade LX-200 telescope to a PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. This and other technological upgrades will allow this observatory to stream live webcasts for astronomical events, allowing a worldwide public audience to become a part of the growing astronomical community. This poster will explain the upgrades that are currently in progress as well as the results from the current calibrations. The goal of these upgrades is to provide facilities capable of both research-class projects and widespread use in education and public outreach. We will present our initial calibration and tests of the observatory equipment, as well as its use in webcasts of astronomical events, in solar observing through the use of specialized piggy-backed telescopes, and in research into such topics as asteroids, planetary and nebula imaging. We will describe a pilot research project on asteroid orbit refinement and light curves, to be carried out by Columbus State University students. We will also outline many of the K-12 educational and public outreach activities we have designed for these facilities. Support and funding for the acquisition and installation of the new PlaneWave CDK 24 has been provided by the International Museum and Library Services via the Museums for America Award.

Hood, John; Carpenter, N. D.; McCarty, C. B.; Samford, J. H.; Johnson, M.; Puckett, A. W.; Williams, R. N.; Cruzen, S. T.

2014-01-01

203

The NASA integrated test facility and its impact on flight research  

NASA Technical Reports Server (NTRS)

The Integrated Test Facility (ITF), being built at NASA Ames-Dryden Flight Research Facility, will provide new test capabilities for emerging research aircraft. An overview of the ITF and the challenges being addressed by this unique facility are outlined. The current ITF capabilities, being developed with the X-29 Forward Swept Wing Program, are discussed along with future ITF activities.

Mackall, D. A.; Pickett, M. D.; Schilling, L. J.; Wagner, C. A.

1988-01-01

204

Cold neutron PGAA facility developments at university research reactors in the USA  

Microsoft Academic Search

Summary  The PGAA applications can be enhanced by using subthermal neutrons, cold neutrons at university research reactors. Only two cold neutron beam facilities were developed at the U.S. university research reactors, namely at Cornell University and the University of Texas at Austin. Both facilities used mesitylene moderator. The mesitylene moderator in the Cornell Cold Neutron Beam Facility (CNBF) was cooled by

K. Ünlü; C. Ríos-Martínez

2005-01-01

205

Test facilities of the structural dynamics branch of NASA Lewis Research Center  

NASA Technical Reports Server (NTRS)

The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.

Montague, Gerald T.; Kielb, Robert E.

1988-01-01

206

ADVANCED COAL & ENERGY RESEARCH FACILITY (ACERF) Washington University in St. Louis  

E-print Network

ADVANCED COAL & ENERGY RESEARCH FACILITY (ACERF) Washington University in St. Louis Overview The Advanced Coal and Energy Research Facility provides for pilot-scale research and development of new b d Ongoing Research Activities Oxy-coal combustion faculty and students within the U.S. and abroad

Subramanian, Venkat

207

Review of the National Research Council report ''Major Facilities for Materials Research and Related Disciplines''  

SciTech Connect

The National Research Council-National Academy of Sciences report on ''Major Facilities for Materials Research and Related Disciplines'' recommends that new facilities and upgrades of existing facilities are very important to the nation. At the request of the Secretary of Energy, the Energy Research Advisory Board has reviewed this report and finds that the Department of Energy is responsible for the majority of these projects to carry out its missions in energy, national defense, and science and technology. Therefore, we recommend that the Department should place a high priority on requesting the new funds necessary to fulfill these responsibilities in the next decade. The energy and defense missions of the Department will be best served by this approach. This responsibility requires strong coordination with other funding agencies through a shared advisory and decision-making process. The review recommends immediate implementation of new capabilities at existing DOE facilities (the neutron experimental halls at Brookhaven and Los Alamos and the new synchrotron insertion devices at Stanford and Brookhaven) as a cost effective way of maintaining the Nation's leading role in neutron scattering and synchrotron radiation research. It also recommends the immediate initiation of non-site-specific research and development for the proposed 6 GeV synchrotron and advanced steady state neutron source. This pre-construction work should be sufficient to ensure that these facilities will be constructed in a timely fashion at design goals and with well identified costs. Other recommendations concern advancing the Nation's leading capabilities in synchrotron produced ultraviolet radiation and spallation neutron research. A budget scenario is developed.

Not Available

1985-06-01

208

A Summary of DOD-Sponsored Research Performed at NASA Langley's Impact Dynamics Research Facility  

NASA Technical Reports Server (NTRS)

The Impact Dynamics Research Facility (IDRF) is a 240-ft.-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The IDRF was originally built in the early 1960's for use as a Lunar Landing Research Facility. As such, the facility was configured to simulate the reduced gravitational environment of the Moon, allowing the Apollo astronauts to practice lunar landings under realistic conditions. In 1985, the IDRF was designated a National Historic Landmark based on its significant contributions to the Apollo Moon Landing Program. In the early 1970's the facility was converted into its current configuration as a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft, airframe components, and space vehicles in support of the General Aviation (GA) aircraft industry, the U.S. Department of Defense (DOD), the rotorcraft industry, and the NASA Space program. The objectives of this paper are twofold: to describe the IDRF facility and its unique capabilities for conducting structural impact testing, and to summarize the impact tests performed at the IDRF in support of the DOD. These tests cover a time period of roughly 2 1/2 decades, beginning in 1975 with the full-scale crash test of a CH-47 Chinook helicopter, and ending in 1999 with the external fuel system qualification test of a UH-60 Black Hawk helicopter. NASA officially closed the IDRF in September 2003; consequently, it is important to document the past contributions made in improved human survivability and impact tolerance through DOD-sponsored research performed at the IDRF.

Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

2004-01-01

209

Space Propulsion Research Facility (B-2): An Innovative, Multi-Purpose Test Facility  

NASA Technical Reports Server (NTRS)

The Space Propulsion Research Facility, commonly referred to as B-2, is designed to hot fire rocket engines or upper stage launch vehicles with up to 890,000 N force (200,000 lb force), after environmental conditioning of the test article in simulated thermal vacuum space environment. As NASA s third largest thermal vacuum facility, and the largest designed to store and transfer large quantities of propellant, it is uniquely suited to support developmental testing associated with large lightweight structures and Cryogenic Fluid Management (CFM) systems, as well as non-traditional propulsion test programs such as Electric and In-Space propulsion. B-2 has undergone refurbishment of key subsystems to support the NASA s future test needs, including data acquisition and controls, vacuum, and propellant systems. This paper details the modernization efforts at B-2 to support the Nation s thermal vacuum/propellant test capabilities, the unique design considerations implemented for efficient operations and maintenance, and ultimately to reduce test costs.

Hill, Gerald M.; Weaver, Harold F.; Kudlac, Maureen T.; Maloney, Christian T.; Evans, Richard K.

2011-01-01

210

Summary of informal workshop on state of ion beam facilities for atomic physics research  

SciTech Connect

The present state of ion beam facilities for atomic physics research in the United States is assessed by means of a questionnaire and informal workshop. Recommendations for future facilities are given. 3 refs.

Jones, K.W.; Cocke, C.L.; Datz, S.; Kostroun, V.

1984-11-13

211

EnergySolution's Clive Disposal Facility Operational Research Model - 13475  

SciTech Connect

EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operated waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)

Nissley, Paul; Berry, Joanne [EnergySolutions, 2345 Stevens Dr. Richland, WA 99354 (United States)] [EnergySolutions, 2345 Stevens Dr. Richland, WA 99354 (United States)

2013-07-01

212

The Safety and Tritium Applied Research (STAR) Facility: Status-2004*  

SciTech Connect

The purpose of this paper is to present the current status of the development of the Safety and Tritium Applied Research (STAR) Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). Designated a National User Facility by the US DOE, the primary mission of STAR is to provide laboratory infrastructure to study tritium science and technology issues associated with the development of safe and environmentally friendly fusion energy. Both tritium and non-tritium fusion safety research is pursued along three key thrust areas: (1) plasma-material interactions of plasma-facing component (PFC) materials exposed to energetic tritium and deuterium ions, (2) fusion safety concerns related to PFC material chemical reactivity and dust/debris generation, activation product mobilization, and tritium behavior in fusion systems, and (3) molten salts and fusion liquids for tritium breeder and coolant applications. STAR comprises a multi-room complex with operations segregated to permit both tritium and non-tritium activities in separately ventilated rooms. Tritium inventory in STAR is limited to 15,000 Ci to maintain its classification as a Radiological Facility. Experiments with tritium are typically conducted in glovebox environments. Key components of the tritium infrastructure have been installed and tested. This includes the following subsystems: (1) a tritium Storage and Assay System (SAS) that uses two 50-g depleted uranium beds for tritium storage and PVT/beta-scintillation analyses for tritium accountability measurements, (2) a Tritium Cleanup System (TCS) that uses catalytic oxidation and molecular sieve water absorption to remove tritiated species from glovebox atmosphere gases and gaseous effluents from experiment and process systems, and (3) tritium monitoring instrumentation for room air, glovebox atmosphere and stack effluent tritium concentration measurements. Integration of the tritium infrastructure subsystems with the experimental and laboratory process systems is planned for early in 2004. Following an operational readiness review, tritium operations will be initiated in the summer of 2004. Summary results of the performance testing of the tritium infrastructure subsystems and their integration into the laboratory operations will be presented at this conference. Current research activity includes plasma-material interaction studies with the Tritium Plasma Experiment (TPE) and tritium/chemistry interactions in the molten salt designated as Flibe (2·LiF-BeF2). The implementation of these capabilities in STAR will be described.

R. A. Anderl; G. R. Longhurst; R. J. Pawelko; J. P. Sharpe; S. T. Schuetz; D. A. Petti

2004-09-01

213

The development of a Space Shuttle Research Animal Holding Facility  

NASA Technical Reports Server (NTRS)

The ability to maintain the well being of experiment animals is of primary importance to the successful attainment of life sciences flight experiment goals. To assist scientists in the conduct of life sciences flight experiments, a highly versatile Research Animal Holding Facility (RAHF) is being developed for use on Space Shuttle/Spacelab missions. This paper describes the design of the RAHF system, which in addition to providing general housing for various animal species, approximating the environment found in ground based facilities, is designed to minimize disturbances of the specimens by vehicle and mission operations. Life-sustaining capabilities such as metabolic support and environmental control are provided. RAHF is reusable and is a modular concept to accommodate animals of different sizes. The basic RAHF system will accommodate a combination of 24 500-g rats or 144 mice or a mixed number of rats and mice. An alternative design accommodates four squirrel monkeys. The entire RAHF system is housed in a single ESA rack. The animal cages are in drawers which are removable for easy access to the animals. Each cage contains a waste management system, a feeding system and a watering system all of which will operate in zero or one gravity.

Jagow, R. B.

1980-01-01

214

Overview of NSTX Facility Upgrades Status and Research Plans  

NASA Astrophysics Data System (ADS)

The National Spherical Torus eXperiment (NSTX) is undergoing a major facility upgrade. The major mission of NSTX-U is to develop physics basis for an ST-based Fusion Nuclear Science Facility (FNSF). The ST-based FNSF has a promise of achieving high neutron fluence needed for reactor component testing with a relatively modest tritium consumption. At the same time, the unique operating regimes of NSTX-U provide high leverage to address several important issues in the physics of burning plasmas to optimize the performance of ITER. The NSTX-U program further aims to determine the attractiveness of the compact ST for addressing key research needs on the path toward a fusion demonstration power plant (Demo). The upgrade project will double the toroidal field, plasma current, and NBI heating power and increase the pulse length from 1-1.5s to 5-8s. More tangential NBI system is designed to attain full non-inductive operation. Innovative plasma start-up and ramp-up techniques without the central solenoid operation which is needed for a compact FNSF design will be explored. With higher fields and heating power, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the transport trend toward the low collisionality regimes expected in FNSF, ITER, and Demo.

Ono, M.

2012-10-01

215

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008  

SciTech Connect

The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

LR Roeder

2008-12-01

216

Laidlaw Honey Bee Research Facility: Who We Are The Harry H. Laidlaw Jr. Honey Bee Research Facility is a nexus for diverse bee research  

E-print Network

Pollen Hoarding Selection Program at the UC Davis Honey Bee Research Facility under the direction of Dr. Robert E. Page Jr., Arizona State University. Pollen is the sole protein source for honey bees and is necessary for brood rearing and maintenance of within hive bee populations. Pollen is not available though

Ishida, Yuko

217

Updated - Research Support Facility (RSF) construction time lapse  

SciTech Connect

Haselden Construction and RNL built the 222,000 square-foot Research Support Facility (RSF) for the U.S. Department of Energy (DOE) on the National Renewable Energy Laboratory (NREL) campus. This time lapse video begins on July 23, 2009 and the last shot was taken in June 2010. The building is designed to be a model for sustainable, high-performance building design, and will provide DOE-owned work space for administrative staff who currently occupy leased space in the nearby Denver West Office Park. The engineers and scientists from NREL's Building Technology Program set the energy criteria and the energy design strategies that are making it possible for the RSF to use no more carbon-based energy than is produced by renewables. The RSF was designed by RNL. Stantec Consulting served as the project's engineering, energy modeling and sustainability consultant.

None

2010-11-16

218

Project definition study for research facility access and science education  

SciTech Connect

This UTA/SMU project definition study describes critical customer services and research programs which draw upon SSC assets to meet regional needs in two major components: Science Education; Academic/Small Business R and D Facility Access. The location of the SSC in Texas constituted a significant stimulus to R and D activities in Texas, encouraging new initiatives in high energy physics, as well as stimulating other areas of physics and related sciences. An important aspect of maximizing the utility of the investment in the SSC should be to re-allocate SSC assets in ways that maintain that momentum. This study addresses several ways to achieve that end, extending benefits to all of physics, the sciences in general and particularly, to science education.

Rosen, S.P. [Univ. of Texas, Arlington, TX (United States). Coll. of Science; Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

1994-10-01

219

International Space University variable gravity research facility design  

NASA Astrophysics Data System (ADS)

A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness, and loss of bone calcium. A variable gravity research facility (VGRF) that will be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. This report describes the VGRF design that was developed by international participants specializing in the following areas: the politics of international cooperation; engineering, architecture; in-space physiological, materials, and life science experimentation; data communications; and business and management.

Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

1994-03-01

220

The International Space University's variable gravity research facility design  

NASA Astrophysics Data System (ADS)

A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.

Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

1991-09-01

221

The International Space University's variable gravity research facility design  

NASA Technical Reports Server (NTRS)

A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.

Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

1991-01-01

222

Positron beam facility at Kyoto University Research Reactor  

NASA Astrophysics Data System (ADS)

A positron beam facility is presently under construction at the Kyoto University Research Reactor (KUR), which is a light-water moderated tank-type reactor operated at a rated thermal power of 5 MW. A cadmium (Cd) - tungsten (W) source similar to that used in NEPOMUC was chosen in the KUR because Cd is very efficient at producing ?-rays when exposed to thermal neutron flux, and W is a widely used in converter and moderator materials. High-energy positrons are moderated by a W moderator with a mesh structure. Electrical lenses and a solenoid magnetic field are used to extract the moderated positrons and guide them to a platform outside of the reactor, respectively. Since Japan is an earthquake-prone country, a special attention is paid for the design of the in-pile positron source so as not to damage the reactor in the severe earthquake.

Xu, Q.; Sato, K.; Yoshiie, T.; Sano, T.; Kawabe, H.; Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T.; Oshima, N.; Kinomura, A.; Shirai, Y.

2014-04-01

223

DOE ARM Climate Research Facility - Providing Research Quality Data Products for Climate Model Evaluation and Advancement  

NASA Astrophysics Data System (ADS)

The Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national scientific user facility, has recently enhanced its observational capabilities at its fixed and mobile sites as well as its aerial facility. New capabilities include scanning radars, several types of lidars, an array of aerosol instruments, and in situ cloud probes. All ARM sites have been equipped with dual frequency scanning cloud radars that will provide three-dimensional observations of cloud fields for analysis of cloud field evolution. Sites in Oklahoma, Alaska, and Papua New Guinea have also received scanning centimeter wavelength radars for observing precipitation fields. This combination of radars will provide the means to study the interaction of clouds and precipitation. New lidars include a Raman lidar in Darwin, Australia and High Spectral Resolution Lidars in Barrow and with the second ARM Mobile Facility. Each of these lidars will provide profiles of aerosol extinction while the Raman will also measure profiles of water vapor. Scanning Doppler Lidars have been added to our Southern Great Plains, Darwin, and our first Mobile Facility. ARM has also expanded its capabilities in the realm of aerosol observations. ARM is adding Aerosol Observing Systems to its sites in Darwin and the second mobile facility. These aerosol systems principally provided measurements of aerosol optical properties. Additionally, a new Mobile Aerosol Observing System has been developed that includes a variety of instruments to provide information about aerosol chemistry and size distributions. Many of these aerosol instruments are also available for the ARM Aerial Facility. The Aerial Facility also now includes a variety of cloud probes for measuring size distribution and water content. Building on these new capabilities, ARM is adding two new research sites based on our expanded observational strategy and multidimensional measurements. A permanent research site will be added in the Azores and a third Mobile Facility will be deployed at Oliktok Point, Alaska. The new array of ARM instruments and sites are intended to build upon the existing ARM capabilities to better study the interactions among aerosol, clouds, and precipitation. Data from these instruments are now available and the development of advanced data products is underway.

Voyles, J.; Mather, J. H.

2012-12-01

224

Pleistophora hyphessobryconis (Microsporidia) infecting zebrafish Danio rerio in research facilities.  

PubMed

Zebrafish Danio rerio are important models for biomedical research, and thus, there is an increased concern about diseases afflicting them. Here we describe infections by Pleistophora hyphessobryconis (Microsporidia) in zebrafish from 3 laboratories. As reported in other aquarium fishes, affected zebrafish exhibited massive infections in the skeletal muscle, with no involvement of smooth or cardiac muscle. In addition, numerous spores within macrophages were observed in the visceral organs, including the ovaries. Transmission studies and ribosomal RNA (rRNA) gene sequence comparisons confirmed that the parasite from zebrafish was P. hyphessobryconis as described from neon tetra Paracheirodon innesi. Ten 15 d old zebrafish were exposed to P. hyphessobryconis collected from 1 infected neon tetra, and 7 of 10 fish became infected. Comparison of P. hyphessobryconis small subunit rRNA gene sequence from neon tetra with that obtained from zebrafish was nearly identical, with < 1% difference. Given the severity of infections, P. hyphessobryconis should be added to the list of pathogens that should be avoided in zebrafish research facilities, and it would be prudent to avoid mixing zebrafish used in research with other aquarium fishes. PMID:20853741

Sanders, Justin L; Lawrence, Christian; Nichols, Donald K; Brubaker, Jeffrey F; Peterson, Tracy S; Murray, Katrina N; Kent, Michael L

2010-07-26

225

Pleistophora hyphessobryconis (Microsporidia) infecting zebrafish (Danio rerio) in research facilities  

PubMed Central

Zebrafish (Danio rerio) are important models for biomedical research, and thus there is an increased concern about diseases afflicting them. Here we describe infections by Pleistophora hyphessobryconis (Microsporidia) in zebrafish from three laboratories. As reported in other aquarium fishes, affected zebrafish exhibited massive infections in the skeletal muscle, with no involvement of smooth or cardiac muscle. In addition, numerous spores within macrophages were observed in the visceral organs, including the ovaries. Transmission studies and ribosomal RNA (rRNA) gene sequence comparisons confirmed that the parasite from zebrafish was P. hyphessobryconis as described from neon tetra Paracheirodon innesi. Ten 15-day-old zebrafish were exposed to P. hyphessobryconis collected from one infected neon tetra, and 7 of 10 fish became infected. Comparison of P. hyphessobryconis small subunit rRNA gene sequence from neon tetra with that obtained from zebrafish was nearly identical, with < 1% difference. Given the severity of infections, P. hyphessobryconis should be added to the list of pathogens that should be avoided in zebrafish research facilities, and it would be prudent to not mix zebrafish used in research with other aquarium fishes. PMID:20853741

Sanders, Justin L; Lawrence, Christian; Nichols, Donald K; Brubaker, Jeffrey F.; Peterson, Tracy S; Murray, Katrina N.; Kent, Michael L

2014-01-01

226

Spacelab Life Sciences 3 biomedical research using the Rhesus Research Facility  

NASA Technical Reports Server (NTRS)

In 1985, a letter of agreement was signed between the French space agency, CNES, and NASA, formally initiating a joint venture called the RHESUS Project. The goal of this project is to provide a facility to fly rhesus monkeys (Macaca mulatta) to support spaceflight experiments which are applicable but not practical to carry out on human subjects. Biomedical investigations in behavior/performance, immunology/microbiology, muscle physiology, cardiopulmonary physiology, bone/calcium physiology, regulatory physiology, and neurophysiology disciplines will be performed. The Rhesus Research Facility, hardware capable of supporting two adult rhesus monkeys in a microgravity environment, is being developed for a first flight on Spacelab Life Sciences in early 1996.

Ballard, R. W.; Searby, N. D.; Stone, L. S.; Hogan, R. P.; Viso, M.; Venet, M.

1992-01-01

227

Research opportunities at the upgraded HI?S facility  

NASA Astrophysics Data System (ADS)

The High Intensity ?-ray Source (HI?S) is a joint project between the Triangle Universities Nuclear Laboratory (TUNL) and the Duke Free Electron Laser Laboratory (DFELL). This facility utilizes intra-cavity back-scattering of the FEL light in order to produce intense ?-ray beams. An upgrade which allows for the production of ?-rays up to energies of about 100 MeV having total intensities in excess of 108/s is essentially complete. The primary component of the upgrade is a 1.2 GeV booster-injector which makes it possible to replace lost electrons at full energy. In addition, an upgrade of the present linear undulator to a helical system has made it possible to produce nearly 100% linear and circularly polarized beams. The full system was commissioned in the early part of 2007. A nuclear physics research program using beams at energies below 50 MeV commenced in the fall of 2007. The proposed experimental program includes low-energy studies of nuclear reactions of importance in nuclear astrophysics as well as studies of nuclear structure using the technique of nuclear resonance fluorescence (NRF). Few-body nuclear physics problems will also be addressed by studying photodisintegration of d, 3He and 4He. Future double-polarization experiments include a study of the Gerasimov Drell Hearn Sum Rule for the deuteron and 3He, and an extensive Compton scattering program designed to probe the internal structure of the nucleon. A major focus of these studies will be the measurement of the electric and magnetic polarizabilities as well as the spin-polarizabilities of the proton and the neutron. This review will describe the principles of operation of the upgraded facility, followed by a description of the performance which has been achieved to date, and a projection of the performance anticipated in the near future. Following this, we will review several of the research areas of nuclear physics which are accessible using this facility, and describe both the results to date and proposed experiments being developed for the future.

Weller, Henry R.; Ahmed, Mohammad W.; Gao, Haiyan; Tornow, Werner; Wu, Ying K.; Gai, Moshe; Miskimen, Rory

2009-01-01

228

National facilities study. Volume 2: Task group on aeronautical research and development facilities report  

NASA Technical Reports Server (NTRS)

The Task Group on Aeronautics R&D Facilities examined the status and requirements for aeronautics facilities against the competitive need. Emphasis was placed on ground-based facilities for subsonic, supersonic and hypersonic aerodynamics, and propulsion. Subsonic and transonic wind tunnels were judged to be most critical and of highest priority. Results of the study are presented.

1994-01-01

229

WADING BIRD MANAGEMENT AND RESEARCH ON NORTH AMERICAN AQUACULTURE FACILITIES  

Microsoft Academic Search

Aquaculture in North America varies geographically with respect to species cultured, annual production, size, complexity, and spatial arrangement of facilities. Species assemblages of predacious birds using aquaculture facilities also vary with many of these industry characteristics. Wading birds are highly adaptable, relatively ubiquitous throughout the aquaculture industry, and often associated with fish depredation problems at aquaculture facilities. Suitability of information

BRIAN DORR; JIMMY D. TAYLOR

230

Engine component instrumentation development facility at NASA Lewis Research Center  

NASA Technical Reports Server (NTRS)

The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

1992-01-01

231

A study of trends and techniques for space base electronics. [research facilities  

NASA Technical Reports Server (NTRS)

The research facilities of the Mississippi State University devoted to microelectronics are described. The fabrication and processing capabilities, computer aided design, and experimental evaluation capabilities are discussed.

Trotter, J. D.; Wade, T. E.

1979-01-01

232

Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and  

E-print Network

CMR Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry analytical chemistry and metallurgy. In 1952, the first LANL CMR facility was completed. At that time chemistry and metallurgy. Upgrades to the original CMR were completed in 2002. In 2012, the CMR facility

233

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

Microsoft Academic Search

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can

H. J. Dahlke; D. A. Johnson; J. K. Rawlins; D. K. Searle; G. W. Wachs

1994-01-01

234

FY-80 RESEARCH PLAN FOR IERL-CI ACTIVITIES AT THE T AND E FACILITY  

EPA Science Inventory

The Office of Research and Development of the U.S. Environmental Protection Agency has recently begun (March 1, 1979) operation of a new facility in Cincinnati, Ohio known as the Test and Evaluation (T&E) Facility. The purpose of this facility is to house a variety of bench- and ...

235

An outlook of plasma physics research on heavy ion research facility at Lanzhou, China  

Microsoft Academic Search

Since the successful completion of the Cooling Storage Ring (CSR) Project at the end of 2007, high qualitative heavy ion beams with energy ranging from keV to GeV\\/mu have been possible on HIRFL (Heavy Ion Research Facility at Lanzhou). More than 109 1 GeV\\/mu C6+ particles or 108 235 MeV\\/mu Xe27+ particles can be storied on the CSR main-ring and

Yongtao Zhao; Guoqing Xiao; Hushan Xu; Ming Xie; Hong wei Zhao; Wenlong Zhan

2008-01-01

236

An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities  

NASA Technical Reports Server (NTRS)

The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

1971-01-01

237

Atmospheric Radiation Measurement program climate research facility operations quarterly report.  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period April 1 through June 30, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The third quarter comprises a total of 2,184 hours. For all fixed sites (especially the TWP locale) and the AMF, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the third quarter of fiscal year (FY) 2006.

Sisterson, D. L.; Decision and Information Sciences

2006-09-06

238

Shock Tube and Ballistic Range Facilities at NASA Ames Research Center  

NASA Technical Reports Server (NTRS)

The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

2010-01-01

239

The Radiological Research Accelerator Facility. Progress report, December 1, 1993--November 30, 1994  

SciTech Connect

This document begins with a general description of the facility to include historical and up-to-date aspects of design and operation. A user`s guide and a review of research using the facility follows. Next the accelerator utilization and operation and the development of the facilities is given. Personnel currently working at the facility are listed. Lastly, recent publications and literature cited are presented.

Hall, E.J.; Marino, S.A.

1994-04-01

240

Burning plasma regime for Fussion-Fission Research Facility  

NASA Astrophysics Data System (ADS)

The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.

Zakharov, Leonid E.

2010-11-01

241

NMT-7 APPROACH TO WASTE MANAGEMENT AT LOS ALAMOS NATIONAL LABORATORY'S CHEMISTRY AND METALLURGY RESEARCH FACILITY  

Microsoft Academic Search

The Chemistry and Metallurgy Research (CMR) Facility at Los Alamos National Laboratory (LANL) is a 550,000-square-foot building that was constructed in 1952, to house research and experimental facilities for analytical chemistry, plutonium and uranium chemistry, metallurgy, engineering design and drafting, electronics, and other support functions. Operations conducted within this diverse facility generate significant volumes of a wide range of hazardous,

Edward D. Derr; Ronald E. Wieneke

2000-01-01

242

ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY  

Microsoft Academic Search

The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly

Michael E. Cournoyer; Juan Corpion; Timothy O. Nelson

2003-01-01

243

Arc jet testing in NASA Ames Research Center thermophysics facilities  

NASA Technical Reports Server (NTRS)

The Arc Jet Complex facilities at NASA Ames and their performance capabilities and support systems are presented. An overview of the typical testing procedures is provided. Attention is focused on a basic understanding of the types of facilities available at Ames for aerothermodynamic testing.

Balter-Peterson, Aliza; Nichols, Frank; Mifsud, Brian; Love, Wendell

1992-01-01

244

Joint Actinide Shock Physics Experimental Research (JASPER) Facility Update  

SciTech Connect

The JASPER Facility utilizes a Two-Stage Light Gas Gun to conduct equation-of-state(EOS) experiments on plutonium and other special nuclear materials. The overall facility will be discussed with emphasis on the Two-Stage Light Gas Gun characteristics and control interfaces and containment. The containment systems that were developed for this project will be presented.

C. H. Conrad; J. Miller; M. Cowan; M. Martinez; B. Whitcomb

2003-10-01

245

The NASA Lewis Research Center Internal Fluid Mechanics Facility  

NASA Technical Reports Server (NTRS)

An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity.

Porro, A. R.; Hingst, W. R.; Wasserbauer, C. A.; Andrews, T. B.

1991-01-01

246

YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).  

SciTech Connect

The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

2010-04-28

247

Implementation Plans for a Systems Microbiology and Extremophile Research Facility  

SciTech Connect

Introduction Biological organisms long ago solved many problems for which scientists and engineers seek solutions. Microbes in particular offer an astonishingly diverse set of capabilities that can help revolutionize our approach to solving many important DOE problems. For example, photosynthetic organisms can generate hydrogen from light while simultaneously sequestering carbon. Others can produce enzymes that break down cellulose and other biomass to produce liquid fuels. Microbes in water and soil can capture carbon and store it in the earth and ocean depths. Understanding the dynamic interaction between living organisms and the environment is critical to predicting and mitigating the impacts of energy-production-related activities on the environment and human health. Collectively, microorganisms contain most of the biochemical diversity on Earth and they comprise nearly one-half of its biomass. They primary impact the planet by acting as catalysts of biogeochemical cycles; they capture light energy and fix CO2 in the worlds oceans, they degrade plant polymers and convert them to humus in soils, they weather rocks and facilitate mineral precipitation. Although the ability of selected microorganisms to participate in these processes is known, they rarely live in monoculture but rather function within communities. In spite of this, little is known about the composition of microbial communities and how individual species function within them. We lack an understanding of the nature of the individual organisms and their genes, how they interact to perform complex functions such as energy and materials exchange, how they sense and respond to their environment and how they evolve and adapt to environmental change. Understanding these aspects of microbes and their communities would be transformational with far-reaching impacts on climate, energy and human health. This knowledge would create a foundation for predicting their behavior and, ultimately, manipulating them to solve DOE problems. Recent advances in whole-genome sequencing for a variety of organisms and improvements in high-throughput instrumentation have contributed to a rapid transition of the biological research paradigm towards understanding biology at a systems level. As a result, biology is evolving from a descriptive to a quantitative, ultimately predictive science where the ability to collect and productively use large amounts of biological data is crucial. Understanding how the ensemble of proteins in cells gives rise to biological outcomes is fundamental to systems biology. These advances will require new technologies and approaches to measure and track the temporal and spatial disposition of proteins in cells and how networks of proteins and other regulatory molecules give rise to specific activities. The DOE has a strong interest in promoting the application of systems biology to understanding microbial function and this comprises a major focus of its Genomics:GTL program. A major problem in pursuing what has been termed “systems microbiology” is the lack of the facilities and infrastructure for conducting this new style of research. To solve this problem, the Genomics:GTL program has funded a number of large-scale research centers focused on either mission-oriented outcomes, such as bioenergy, or basic technologies, such as gene sequencing, high-throughput proteomics or the identification of protein complexes. Although these centers generate data that will be useful to the research community, their scientific goals are relatively narrow and are not designed to accommodate the general community need for advanced capabilities for systems microbiology research.

Wiley, H. S.

2009-04-20

248

Joint Actinide Shock Physics Experimental Research (JASPER) Facility Overview  

SciTech Connect

The JASPER Facility will utilize a Two-Stage Light Gas Gun to conduct equation-of-state (EOS) experiments of plutonium and other special nuclear materials. The overall facility will be discussed with emphasis on the Two-Stage Light Gas Gun characteristics and mission. The primary and secondary containment systems that were developed for this project will be presented. Primary gun diagnostics and timing will also be discussed.

C.H. Konrad; R.W. Braddy; Mark Martinez

2001-09-01

249

OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY90  

EPA Science Inventory

The U.S. Environmental Protection Agency's Incineration Research Facility in Jefferson, Arkansas, is an experimental facility that houses two pilot.scale incinerators and the associated waste handling, emission control, process control, and safety equipment; as well as onsite lab...

250

Recent Developments at the NASA Langley Research Center National Transonic Facility  

NASA Technical Reports Server (NTRS)

Several upgrade projects have been completed or are just getting started at the NASA Langley Research Center National Transonic Facility. These projects include a new high capacity semi-span balance, model dynamics damping system, semi-span model check load stand, data acquisition system upgrade, facility automation system upgrade and a facility reliability assessment. This presentation will give a brief synopsis of each of these efforts.

Paryz, Roman W.

2011-01-01

251

Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities  

SciTech Connect

This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

Not Available

1993-09-30

252

The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory  

SciTech Connect

HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

Not Available

1992-01-01

253

The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory  

SciTech Connect

HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy & image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

Not Available

1992-12-01

254

Reference Mission Operational Analysis Document (RMOAD) for the Life Sciences Research Facilities  

NASA Technical Reports Server (NTRS)

The space station will be constructed during the next decade as an orbiting, low-gravity, permanent facility. The facility will provide a multitude of research opportunities for many different users. The pressurized research laboratory will allow life scientists to study the effects of long-term exposure to microgravity on humans, animals, and plants. The results of these studies will increase our understanding of this foreign environment on basic life processes and ensure the safety of man's long-term presence in space. This document establishes initial operational requirements for the use of the Life Sciences Research Facility (LSRF) during its construction.

1987-01-01

255

Measurement and Control Systems of Tritium Facilities for Scientific Research  

SciTech Connect

The technical approach, equipment and software developed during the creation of measurement and control systems for two complexes are described. The first one is a complex that prepares the gas mixture and targets of the 'TRITON' facility. The 'TRITON' facility is designed for studying muon catalyzed fusion reactions in triple mixtures of H/D/T hydrogen isotopes over wide ranges of temperature and pressure. The second one is 'ACCULINNA' - the liquid tritium target designed to investigate the neutron overloaded hydrogen and helium nuclei. These neutron-overloaded nuclei are produced in reactions of tritium beams on a heavy hydrogen and tritium target.

Vinogradov, Yu.I.; Kuryakin, A.V.; Yukhimchuk, A.A. [Russian Federal Nuclear Center-All-Russian Scientific Research Institute of Experimental Physics (Russian Federation)

2005-07-15

256

Conceptualization and design of a variable-gravity research facility  

NASA Technical Reports Server (NTRS)

The goal is to provide facilities for the study of the effects of variable-gravity levels in reducing the physiological stresses upon the humans of long-term stay time in zero-g. The designs studied include: twin-tethered two module system with a central despun module with docking port and winch gear; and rigid arm tube facility using shuttle external tanks. Topics examined included: despun central capsule configuration, docking clearances, EVA requirements, crew selection, crew scheduling, food supply and preparation, waste handling, leisure use, biomedical issues, and psycho-social issues.

1987-01-01

257

Scientific user facilities at Oak Ridge National Laboratory: New research capabilities and opportunities  

NASA Astrophysics Data System (ADS)

Over the past decade, Oak Ridge National Laboratory (ORNL) has transformed its research infrastructure, particularly in the areas of neutron scattering, nanoscale science and technology, and high-performance computing. New facilities, including the Spallation Neutron Source, Center for Nanophase Materials Sciences, and Leadership Computing Facility, have been constructed that provide world-leading capabilities in neutron science, condensed matter and materials physics, and computational physics. In addition, many existing physics-related facilities have been upgraded with new capabilities, including new instruments and a high- intensity cold neutron source at the High Flux Isotope Reactor. These facilities are operated for the scientific community and are available to qualified users based on competitive peer-reviewed proposals. User facilities at ORNL currently welcome more than 2,500 researchers each year, mostly from universities. These facilities, many of which are unique in the world, will be reviewed including current and planned research capabilities, availability and operational performance, access procedures, and recent research results. Particular attention will be given to new neutron scattering capabilities, nanoscale science, and petascale simulation and modeling. In addition, user facilities provide a portal into ORNL that can enhance the development of research collaborations. The spectrum of partnership opportunities with ORNL will be described including collaborations, joint faculty, and graduate research and education.

Roberto, James

2011-10-01

258

The ARM Climate Research Facility - New Capabilities and the Expected Impacts on Climate Science and Modeling  

NASA Astrophysics Data System (ADS)

The ARM Climate Research Facility is a Department of Energy national scientific user facility. Research sites include fixed and mobile facilities, which collect research quality data for climate research. Through the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy’s Office of Science allocated $60 million to the ARM Climate Research Facility for the purchase of instruments and improvement of research sites. With these funds, ARM is in the process of deploying a broad variety of new instruments that will greatly enhance the measurement capabilities of the facility. New instruments being purchased include dual-frequency scanning cloud radars, scanning precipitation radars, Doppler lidars, a mobile Aerosol Observing System and many others. A list of instruments being purchased is available at http://www.arm.gov/about/recovery-act. Orders for all instruments have now been placed and activities are underway to integrate these new systems with our research sites. The overarching goal is to provide instantaneous and statistical measurements of the climate that can be used to advance the physical understanding and predictive performance of climate models. The Recovery Act investments enable the ARM Climate Research Facility to enhance existing and add new measurements, which enable a more complete understanding of the 3-dimensional evolution of cloud processes and related atmospheric properties. Understanding cloud processes are important globally, to reduce climate-modeling uncertainties and help improve our nation’s ability to manage climate impacts. Domer Plot of W-Band Reflectivity

Voyles, J.; Mather, J. H.

2010-12-01

259

Characterization of the fast neutron irradiation facility of the Portuguese Research Reactor after core conversion.  

PubMed

The fast neutron irradiation facility of the Portuguese Research Reactor was characterized after the reduction in uranium enrichment and rearrangement of the core configuration. In this work we report on the determination of the hardness parameter and the 1MeV equivalent neutron flux along the facility, in the new irradiation conditions, following ASTM E722 standard. PMID:21071234

Marques, J G; Sousa, M; Santos, J P; Fernandes, A C

2011-08-01

260

http://vetmed.tamu.edu/graduate New CVM ReseaRCh FaCilities  

E-print Network

http://vetmed.tamu.edu/graduate New CVM ReseaRCh FaCilities · The Texas A&M Institute that can be undertaken with the equipment in this facility. It will have implications for veterinary and Graduate Education PubliCatioNs The CVM faculty and students/postdocs have generated a number

261

FORMALIZATION OF WASTE MANAGEMENT PROGRAMS IN SUPPORT OF THE CHEMISTRY AND METALLURGY RESEARCH FACILITY AUTHORIZATION BASIS  

Microsoft Academic Search

The Chemistry and Metallurgy Research (CMR) Facility conducts analytical operations that are vital to the Stockpile Stewardship Program at Los Alamos National Laboratory (LANL). From 1952 to the early 1990s, this facility operated without a Safety Analysis Report (SAR) and bounded the risks associated with its diverse operations. An Interim Safety Analysis Report (ISAR) prepared in 1992, served until further

Richard C. Stupka; Lisa P. Stringfield

2000-01-01

262

An axial flow research compressor facility designed for flow measurement in rotor passages  

Microsoft Academic Search

An axial flow research compressor facility, which is designed for relative flow measurement, is described in this paper. The facility has a rotating probe traverse mechanism which is capable of traversing hot wire, pitot and other probes at 0.09 deg intervals across the rotor blade passage. The data transmission system includes rotating transducers, pressure transfer device, ten-channel mercury slip ring

B. Lakshminarayana

1980-01-01

263

Design of a Transonic Research Turbine Facility Ruolong Ma*  

E-print Network

and performance of modern gas-turbine engines. A detailed address of the various opportunities for flow control of this turbine rig is to provide an environment for the development of performance enhancing flow control axial turbines can be tested in this facility at a pressure ratio of 2.1. I. Introduction Recent

Morris, Scott C.

264

ERDA/Lewis research center photovoltaic systems test facility  

NASA Technical Reports Server (NTRS)

A national photovoltaic power systems test facility (of initial 10-kW peak power rating) is described. It consists of a solar array to generate electrical power, test-hardware for several alternate methods of power conversion, electrical energy storage systems, and an instrumentation and data acquisition system.

Forestieri, A. F.; Johnson, J. A.; Knapp, W. D.; Rigo, H.; Stover, J.; Suhay, R.

1977-01-01

265

Medical Direction in Skilled Nursing Facilities. NCHSR Research Summary Series.  

ERIC Educational Resources Information Center

Regulations instituted by the Department of Health, Education, and Welfare effective in 1976 require skilled nursing facilities (SNF) to provide either a physician serving as medical director, or to have an organized medical staff. This report describes how SNFs responded, and what the effects were on their operations. Descriptive data were…

Ricci, Edmund; Tessaro, Edward

266

A facility for using cluster research to study environmental problems. Workshop proceedings  

SciTech Connect

This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

Not Available

1991-11-01

267

Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility  

SciTech Connect

This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography. (LSP)

Gmuer, N.F.; Thomlinson, W.

1990-02-01

268

32 CFR 22.310 - Statutes concerning certain research, development, and facilities construction grants.  

Code of Federal Regulations, 2013 CFR

...research, development, and facilities construction grants. 22.310 Section 22.310 National Defense...Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS DoD GRANTS AND AGREEMENTS-AWARD AND ADMINISTRATION...

2013-07-01

269

32 CFR 22.310 - Statutes concerning certain research, development, and facilities construction grants.  

Code of Federal Regulations, 2010 CFR

...research, development, and facilities construction grants. 22.310 Section 22.310 National Defense...Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS DoD GRANTS AND AGREEMENTS-AWARD AND ADMINISTRATION...

2010-07-01

270

32 CFR 22.310 - Statutes concerning certain research, development, and facilities construction grants.  

Code of Federal Regulations, 2012 CFR

...research, development, and facilities construction grants. 22.310 Section 22.310 National Defense...Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS DoD GRANTS AND AGREEMENTS-AWARD AND ADMINISTRATION...

2012-07-01

271

32 CFR 22.310 - Statutes concerning certain research, development, and facilities construction grants.  

Code of Federal Regulations, 2014 CFR

...research, development, and facilities construction grants. 22.310 Section 22.310 National Defense...Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS DoD GRANTS AND AGREEMENTS-AWARD AND ADMINISTRATION...

2014-07-01

272

32 CFR 22.310 - Statutes concerning certain research, development, and facilities construction grants.  

Code of Federal Regulations, 2011 CFR

...research, development, and facilities construction grants. 22.310 Section 22.310 National Defense...Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS DoD GRANTS AND AGREEMENTS-AWARD AND ADMINISTRATION...

2011-07-01

273

Evaluation of an Indoor Sonic Boom Subjective Test Facility at NASA Langley Research Center  

NASA Technical Reports Server (NTRS)

A sonic boom simulator at NASA Langley Research Center has been constructed for research on human response to low-amplitude sonic booms heard indoors. Research in this facility will ultimately lead to development of a psychoacoustic model for single indoor booms. The first subjective test was designed to explore indoor human response to variations in sonic boom rise time and amplitude. Another goal was to identify loudness level variability across listener locations within the facility. Finally, the test also served to evaluate the facility as a laboratory research tool for studying indoor human response to sonic booms. Subjects listened to test sounds and were asked to rate their annoyance relative to a reference boom. Measurements of test signals were conducted for objective analysis and correlation with subjective responses. Results confirm the functionality of the facility and effectiveness of the test methods and indicate that loudness level does not fully describe indoor annoyance to the selected sonic boom signals.

Loubeau, Alexandra; Rathsam, Jonathan; Klos, Jacob

2011-01-01

274

Office of the Vice President for Research UGA IACUC Policy for Satellite Animal Facilities and  

E-print Network

Office of the Vice President for Research UGA IACUC Policy for Satellite Animal Facilities Animals or the FASS Guide for the Care and Use of Agricultural Animals in Research and Teaching for the Care and Use of Agricultural Animals in Research and Teaching. In general: · The room should have

Arnold, Jonathan

275

Direct sunlight facility for testing and research in HCPV  

NASA Astrophysics Data System (ADS)

A facility for testing different components for HCPV application has been developed in the framework of "Fotovoltaico ad Alta Efficienza" (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

Sciortino, Luisa; Agnello, Simonpietro; Barbera, Marco; Bonsignore, Gaetano; Buscemi, Alessandro; Candia, Roberto; Cannas, Marco; Collura, Alfonso; Di Cicca, Gaspare; Gelardi, Franco Mario; Cicero, Ugo Lo; Montagnino, Fabio Maria; Napoli, Gianluca; Paredes, Filippo; Spallino, Luisa; Varisco, Salvo

2014-09-01

276

Direct sunlight facility for testing and research in HCPV  

SciTech Connect

A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA (Italy); Barbera, Marco [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA, Italy and Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy); Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo [IDEA s.r.l., Contrada Molara, Zona Industriale III Fase, 90018 Termini Imerese (Panama) (Italy); Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy)

2014-09-26

277

research in space Facilities on the International Space Station  

E-print Network

Neuroscience, Cardiovascular, Musculoskeletal and Exercise Equipment, Radiation Sensors Physical Science Boxes Biological Research: 25 Incubators, Growth Chambers, and Centrifuges Human Physiology Research: 31 knowledge in the areas of human physiology, biology, material and physical sciences, and translating

278

Spectral Diagnostics for Plasma Research at the GOL-3 Facility  

Microsoft Academic Search

A complex of visible-region spectral diagnostics for studying high-temperature plasma at the GOL-3 facility is described. The complex includes three spectral instruments with different spectral resolutions, apertures of optics, and spatial resolutions. These instruments are equipped with digital recording units that make it possible, depending on the task being performed, to obtain highly resolved plasma-radiation spectra with either temporal or

R. Yu. Akent'ev; A. V. Burdakov; I. A. Ivanov; S. V. Polosatkin; V. V. Postupaev; A. F. Rovenskikh; A. A. Shoshin

2004-01-01

279

On the geodetic stability of the Goddard Optical Research Facility  

NASA Technical Reports Server (NTRS)

Seismic observations of earthquakes and blasts, geologic analysis of Landsat images, and a search of the historical record was examined. However, no evidence for tectonic motion was found. Some faulting is present in the area but no evidence of seismic activity was found. No elastic resonances in the range from 0.3 to 15 Hz were found. It is concluded that, except for ground water induced changes, the facility is stable at least to the 0.5 cm level.

Webster, W. J., Jr.; Lowman, P. D., Jr.; Allenby, R. J.

1981-01-01

280

Phytochrome-mediated responses: Implications for controlled environment research facilities  

NASA Technical Reports Server (NTRS)

Light is undoubtedly the most important environmental variable for plant growth and development; plants not only use radiant energy in photosynthesis, they also respond to the quantity, quality, direction and timing of incident radiation through photomorphogenic response that can have huge effects on the rate of growth and the pattern of development. It is surprising, therefore, that the manufacturers and suppliers of controlled environment facilities have been singularly uninventive in the design of the lighting assemblies they provide. The consumer has one choice only - a lighting assembly that provides irradiance levels usually only a fraction of sunlight, and a control system that is limited to regulating the timing of the on-off switch. The reasons for these limitations are partly technological, but in the main they result from ignorance on the part of both the consumer and the manufacturer. A specific and powerful example of this ignorance relates to the importance of the so-called far-red wavelengths (FR = 700-800 nm). Because the human eye can hardly detect wavelengths above 700 nm, and photosynthesis also cuts off at about 700 nm, the majority of plant and crop physiologists are still almost completely unaware that FR radiation can have massive effects on growth rate and development. In consequence, most growth cabinets have light sources based on fluorescent tubes, and provide very little FR apart from that emitted by a token number of small incandescent bulbs. Larger growth facilities often use broader spectrum light sources, but growth facilities that provide the capability to vary the FR incident upon the plants are about as abundant as seals in the Sahara. This article sets the background of the significance of FR radiation in the natural environment and its importance for plant growth and development in the hope that it might inform intelligently those concerned with improving the design of plant growth facilities.

Smith, Harry

1994-01-01

281

ANI (American Nuclear Insurers) support and research facility nuclear liability insurance inspection program  

SciTech Connect

American Nuclear Insurers (ANI), a voluntary association of insurance companies, provides property and nuclear liability insurance protection to the nuclear industry. It generally offers insurance coverage to nuclear facilities, suppliers, and transporters for the following: (1) their liability for damages because of bodily injury and/or property damage caused by the nuclear energy hazard, and (2) all-risk damage to nuclear facilities. Among the range of facilities and suppliers insured by ANI are (a) operators of nuclear power plants that supply electricity for the general public, (b) operators of nuclear testing and research reactors, (c) fuel fabricators that manufacture fuel for use in reactors, (d) operators of facilities that dispose of nuclear waste that cannot be salvaged, (e) facilities that maintain and repair equipment used at nuclear facilities, (f) nuclear laundries, and (g) low-level-waste processors. The fundamental goal of the ANI nuclear engineering inspection program is to provide protection to pool members' assets by reducing insurance risk.

Ernst, B.

1988-01-01

282

An inventory of aeronautical ground research facilities. Volume 2: Air breathing engine test facilities  

NASA Technical Reports Server (NTRS)

The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.

Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

1971-01-01

283

Project Management Actions Demolition of a Research Facility Building 431  

SciTech Connect

The Demolition of B431 is required to achieve the mission of LLNL and the NNSA FIRP objectives by: (1) Supporting the NNSA Infrastructure Plan goal to ''demolish excess facilities as early as possible''; (2) Banking square footage that allows continued application of advanced science and nuclear technology to the Nation's defense; and (3) Helping maintain and enhance the safety, security, and reliability of the weapons stockpile. A significant effort has been put into the demolition concept in order to ensure that it is well thought out and represents best-value to the government for the money.

Collins, W L

2005-09-06

284

Fire-protection research for DOE facilities: FY 82 year-end report  

SciTech Connect

We summarize our research in FY 82 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies for energy technology facilities to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are concurrently advancing three major task areas: (1) the identification of fire hazards unique to current fusion energy facilities; (2) the evaluation of accepted fire-management measures to meet and negate hazards; and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Priante, S.J.; Foote, K.L.

1983-09-02

285

Status report on the Holifield Heavy Ion Research Facility  

SciTech Connect

At Oak Ridge we are now in the final stages of completion of our heavy ion project. The facility, has as its centerpiece the 25MV Pelletron built by National Electrostatics Corporation. At the time of this writing (March 1982), the only tasks remaining for completion are the acceptance tests with beam to be performed at the design rating of 25MV on terminal. Along with the 20MV machine at Tokai and the 20MV machine at Buenos Aires, this trio of accelerators represents the new generation of Super-tandems presently in various stages of completion by NEC. In this paper, I shall review briefly some of the history of the work on the 25MV accelerator at Oak Ridge. In doing so, I will try to bring out those points that I feel are most illustrative of what may be expected as installation proceeds on the machine here in Argentina. Finally, as time permits, I'll discuss some of the other features of the Holifield Facility.

Ball, J.B.

1982-01-01

286

Design and construction of an urban runoff research facility.  

PubMed

As the urban population increases, so does the area of irrigated urban landscape. Summer water use in urban areas can be 2-3x winter base line water use due to increased demand for landscape irrigation. Improper irrigation practices and large rainfall events can result in runoff from urban landscapes which has potential to carry nutrients and sediments into local streams and lakes where they may contribute to eutrophication. A 1,000 m(2) facility was constructed which consists of 24 individual 33.6 m(2) field plots, each equipped for measuring total runoff volumes with time and collection of runoff subsamples at selected intervals for quantification of chemical constituents in the runoff water from simulated urban landscapes. Runoff volumes from the first and second trials had coefficient of variability (CV) values of 38.2 and 28.7%, respectively. CV values for runoff pH, EC, and Na concentration for both trials were all under 10%. Concentrations of DOC, TDN, DON, PO??P, K(+), Mg(2+), and Ca(2+) had CV values less than 50% in both trials. Overall, the results of testing performed after sod installation at the facility indicated good uniformity between plots for runoff volumes and chemical constituents. The large plot size is sufficient to include much of the natural variability and therefore provides better simulation of urban landscape ecosystems. PMID:25146420

Wherley, Benjamin G; White, Richard H; McInnes, Kevin J; Fontanier, Charles H; Thomas, James C; Aitkenhead-Peterson, Jacqueline A; Kelly, Steven T

2014-01-01

287

Research at the BNL Tandem Van de Graaff Facility, 1980  

SciTech Connect

Research programs at the Brookhaven Van de Graaff accelerators are summarized. Major accomplishments of the laboratory are discussed including quasielastic reactions, high-spin spectroscopy, yrast spectra, fusion reactions, and atomic physics. The outside user program at the Laboratory is discussed. Research proposed for 1981 is outlined. (GHT)

Not Available

1981-03-01

288

NSTX Report on FES Joint Facilities Research Milestone 2010  

SciTech Connect

Annual Target: Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape-off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER. The divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer will be measured in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality ?*, beta ?, parallel heat flux q||, and divertor geometry). Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation.

Maingi, R.; Ahn, J- W.; Gray, T. K.; McLean, A. G.; Soukhanovskii, V. A.

2011-03-24

289

NATIONAL INSTITUTES OF HEALTH Office of Research Facilities (ORF)  

E-print Network

& RESEARCH SERVICES DIRECTORY Spill Reporting (non-emergency) 301-496-7775 Toxic Chemical Reduction 301 Preparedness 301-496-1985 Evacuation/Shelter-in-Place 301-496-1985 Hazardous Material Spills 911 Medical

Baker, Chris I.

290

NATIONAL BALLOON FACILITY TATA INSTITUTE OF FUNDAMENTAL RESEARCH  

E-print Network

/Sub millimeter /Particle Astrophysics (b) Upper Atmospheric Research (c ) Test Flight (d) Any other: * Tick mark NBF environmental test chamber requirements NETWORK AND IT REQUIREMENTS Number if IP addresses: Static

Udgaonkar, Jayant B.

291

GUIDES TO POLLUTION PREVENTION: RESEARCH AND EDUCATIONAL FACILITIES  

EPA Science Inventory

This document provides research and educations institutions with guidelines and options to minimize both hazardous and nonhazardous wastes, identifies techniques that allow these institutions to reduce wastes, and provides a set of self-audit checklists to assist institutional st...

292

Research Opportunities at the Upgraded HI?S Facility  

NASA Astrophysics Data System (ADS)

The High Intensity ?-ray Source (HI?S) is a joint project between TUNL and the Duke Free Electron Laser Laboratory (DFELL). This facility utilizes intracavity back-scattering of the FEL light in order to produce intense ?-ray beams. An upgrade which will allow for the production of ?-rays up to energies of about 160 MeV having total intensities in excess of 108/sec is essentially completed. The primary component of the upgrade is a 1.2 GeV booster-injector which will make it possible to replace lost electrons at full energy. In addition, an upgrade of the present linear undulator to a helical system will provide nearly 100% linear and circularly polarized beams. The full system, including the booster injector, will be ready in 2007. The proposed experimental program includes low-energy studies of nuclear reactions of importance in nuclear astrophysics as well as studies of nuclear structure using the technique of nuclear resonance fluorescence (NRF). Future double-polarization experiments include a study of the Gerasimov-Drell-Hearn Sum Rule for the deuteron and 3He, and an extensive Compton scattering program designed to probe the internal structure of the nucleon. A major focus of these studies will be the measurement of the spin-polarizabilities of the proton and the neutron. Studies at pion-threshold designed to observe Isospin-symmetry breaking effects are also being planned. A description of the anticipated facility following the present upgrades will be given in this talk, along with a description of some of the planned experiments.

Weller, H. R.

2007-10-01

293

Facility Design Considerations for Select Agent Animal Research  

Microsoft Academic Search

The events of September 11, 2001, have piqued US interest and investment in infectious disease research and the facili- ties that support the research. Since 1999, federal grants for biosafety level (BSL)-3, -3 agricultural (Ag), and -4 re- search have increased by more than 900%—to $13.1B in the fiscal years 2002 to 2004 compared with $1.2B from 1999 to 2001.

Dan Frasier; Jeff Talka

294

Restoration of the Hypersonic Tunnel Facility at NASA Glenn Research Center, Plum Brook Station  

NASA Technical Reports Server (NTRS)

The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF), located at the Plum Brook Station in Sandusky, Ohio, is a non-vitiated, free-jet facility, capable of testing large-scale propulsion systems at Mach Numbers from 5 to 7. As a result of a component failure in September of 1996, a restoration project was initiated in mid- 1997 to repair the damage to the facility. Following the 2-1/2 year effort, the HTF has been returned to an operational condition. Significant repairs and operational improvements have been implemented in order to ensure facility reliability and personnel safety. As of January 2000, this unique, state-of-the-art facility was ready for integrated systems testing.

Woodling, Mark A.

2000-01-01

295

IRIS - A Community-Based Facility to Support Research in Seismology  

Microsoft Academic Search

The IRIS Consortium was established in 1984 in response to growing pressure from the research community for enhanced facilities in global and lithospheric seismology. At the same time, the National Science Foundation was encouraging improvements in technology and infrastructure that were sorely needed to ensure the future health of the nation's research endeavors. The governance of IRIS and growth of

S. Ingate; T. Ahern; R. Butler; J. Fowler; D. Simpson; J. Taber; G. van der Vink

2002-01-01

296

ARM Climate Research Facility Quarterly Instrument Report Fourth Quarter: October 1–December 30, 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

Voyles, JW

2011-01-17

297

Radioactive ion beam production challenges at the Holifield Heavy Ion Research Facility  

Microsoft Academic Search

The radioactive ion beam (RIB) project at the Holifield Heavy Ion Research Facility (HHIRF) will provide for reconfiguration of the HHIRF accelerator system to enable provision of low-intensity RIBs for nuclear and astrophysics research. As we have progressed with the design of the reconfiguration, we have encountered several challenges that were not immediately obvious when first contemplating the project. The

M. J. Meigs; G. D. Alton; D. T. Dowling; D. L. Haynes; C. M. Jones; R. C. Juras; G. D. Mills; S. W. Mosko; D. K. Olsen; B. A. Tatum

1992-01-01

298

Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JW Voyles

2008-01-30

299

ONGOING FUNDAMENTAL HAZARDOUS WASTE INCINERATION RESEARCH AT EPA/RTP FACILITY  

EPA Science Inventory

The paper describes five combustors, results of some completed research, and plans for future studies at EPA/AEERL's RCRA-permitted facility at Research Triangle Park, NC. esearch is conducted to examine the effect of operating parameters such as residence time, temperature, turb...

300

Facilities to assist people to research into stammered speech  

PubMed Central

The purpose of this article is to indicate how access can be obtained, through Stammering Research, to audio recordings and transcriptions of spontaneous speech data from speakers who stammer. Selections of the first author’s data are available in several formats. We describe where to obtain free software for manipulation and analysis of the data in their respective formats. Papers reporting analyses of these data are invited as submissions to this section of Stammering Research. It is intended that subsequent analyses that employ these data will be published in Stammering Research on an on-going basis. Plans are outlined to provide similar data from young speakers (ones developing fluently and ones who stammer), follow-up data from speakers who stammer, data from speakers who stammer who do not speak English and from speakers who have other speech disorders, for comparison, all through the pages of Stammering Research. The invitation is extended to those promulgating evidence-based practice approaches (see the Journal of Fluency Disorders, volume 28, number 4 which is a special issue devoted to this topic) and anyone with other interesting data related to stammering to prepare them in a form that can be made accessible to others via Stammering Research. PMID:18418475

Howell, Peter; Huckvale, Mark

2008-01-01

301

White Mountain Research Station: 25 years of high-altitude research. [organization and functions of test facility for high altitude research  

NASA Technical Reports Server (NTRS)

The organization and functions of a test facility for conducting research projects at high altitudes are discussed. The projects conducted at the facility include the following: (1) bird physiology, (2) cardiorespiratory physiology, (3) endocrinological studies, (4) neurological studies, (5) metabolic studies, and (6) geological studies.

Pace, N.

1973-01-01

302

RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY  

SciTech Connect

The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

Sexton, L.; Fuller, Kenneth

2013-07-09

303

NASA's GreenLab Research Facility: A Guide for a Self-Sustainable Renewable Energy Ecosystem  

NASA Technical Reports Server (NTRS)

There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The sustainability of humanity, as we know it, directly depends on the ability to secure affordable fuel, food, and freshwater. NASA Glenn Research Center (Glenn) has initiated a laboratory pilot study on using biofuels as viable alternative fuel resources for the field of aviation, as well as utilizing wind and solar technology as alternative renewable energy resources. The GreenLab Research Facility focuses on optimizing biomass feedstock using algae and halophytes as the next generation of renewable aviation fuels. The unique approach in this facility helps achieve optimal biomass feedstock through climatic adaptation of balanced ecosystems that do not use freshwater, compete with food crops, or use arable land. In addition, the GreenLab Research Facility is powered, in part, by alternative and renewable energy sources, reducing the major environmental impact of present electricity sources. The ultimate goal is to have a 100 percent clean energy laboratory that, when combined with biomass feedstock research, has the framework in place for a self-sustainable renewable energy ecosystem that can be duplicated anywhere in the world and can potentially be used to mitigate the shortage of food, fuel, and water. This paper describes the GreenLab Research Facility at Glenn and its power and energy sources, and provides recommendations for worldwide expansion and adoption of the facility s concept.

Bomani, B. M. McDowell; Hendricks, R. C.; Elbuluk, Malik; Okon, Monica; Lee, Eric; Gigante, Bethany

2011-01-01

304

The Advanced Neutron Source (ANS) project: A world-class research reactor facility  

Microsoft Academic Search

This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5Ã10¹⁹m⁻²·sec⁻¹. Within the reflector region will be one hot source which will serve 2

P. B. Thompson; W. E. Meek

1993-01-01

305

The concept of a facility for cosmic dust research on the International Space Station  

NASA Technical Reports Server (NTRS)

A proposal for the development of a permanently operating facility for the experimental investigation of cosmic dust-related phenomena onboard the International Space Station (ISS) is presented. Potential applications for this facility are the convection-free nucleation of dust grains, studies of coagulation and aggregation phenomena in a microgravity environment, investigations of heat transport through, and dust emissions from, high-porosity cometary analogs, and experiments on the interaction of very fluffy dust grains with electromagnetic radiation and with low pressure gas flows. Possible extensions of such a facility are towards aerosol science and colloidal plasma research.

Blum, Juergen; Cabane, Michel; Fonda, Mark; Giovane, Frank; Gustafson, Bo A. S.; Keller, Horst U.; Markiewicz, Wojciech J.; Levasseur-Regourd, Any-Chantal; Worms, Jean-Claude; Nuth, Joseph A.; Rogers, Fred

1996-01-01

306

Aifira: An ion beam facility for multidisciplinary research  

NASA Astrophysics Data System (ADS)

During the last decade, the CENBG (Centre d'Études Nucléaires de Bordeaux Gradignan) commissioned a new facility called AIFIRA (Applications Interdisciplinaires des Faisceaux d'ions en Région Aquitaine). It allowed the development of a multidisciplinary activity based on the "in-house" expertise of CENBG in ion beam analysis. The great flexibility offered by the five beam lines confers a lot of possibilities for chemical analysis and nuclear physics. Indeed, not only the macrobeam and the external beam lines provide the full set of IBA techniques for routine sample analysis but an additional beam line is devoted to the production of monoenergetic neutrons through the interaction of the incoming ion with selected targets. In addition, the two high-resolution microbeam lines are used for chemical analyses, 2D/3D imaging, and targeted cell irradiation. Besides, the combination of the nanobeam line flexibility, the uniqueness of the micro-irradiation design completed by the internal CENBG expertise confers a great specificity to AIFIRA in biomedical field. After a detailed technical overview of the platform, the article focuses on the two high-resolution lines as they tap most of the activity. Thus a quick overview of the most significant results concerning biomedical samples is proposed in order to highlight the analytical possibilities of AIFIRA microbeam lines. A summary of the development status of the micro-irradiation line is also done.

Sorieul, S.; Alfaurt, Ph.; Daudin, L.; Serani, L.; Moretto, Ph.

2014-08-01

307

Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama  

SciTech Connect

This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

Not Available

1992-09-01

308

Pedestrian Facilities in South Africa: Research and Practice  

Microsoft Academic Search

An overview of the pedestrian accident problem in South Africa is given, and the engineering solutions implemented to improve pedestrian safety are discussed. The pedestrian problem accounts for part of the road safety problem in South Africa. In recent years there has been a reduction in the number of pedestrian fatalities and injuries. Research findings in the early 1980s showed

Hubrecht Ribbens

1996-01-01

309

Research Needs in the Field of Educational Facility Planning.  

ERIC Educational Resources Information Center

Although the physical environment of schools seems to affect the attitude and behavior of students and teachers, there is little scientific proof to support this belief. Two substantial studies have attempted to synthesize available research on the topic. First, an effort by Carol Weinstein has gathered significant data concerning spatial behavior…

Earthman, Glen I.

310

MICROCOMPUTER CONTROL OF AN ESTUARINE RESEARCH MESOCOSM FACILITY  

EPA Science Inventory

The paper describes the application of microcomputer technology to laboratory-oriented ecosystem research. The instrumentation offers the ability to monitor and manipulate variables of interest on a 'real time' basis. The microcomputer oontrol system was found to be reliable and ...

311

Offshore hydrodynamics. [Engineering design and research needs for offshore facilities  

SciTech Connect

In this paper, the author presents several applied as well as fundamental research problems related to the future needs of the offshore engineering. The paper starts out with a detailed discussion of the current uncertainties and constraints. Then, specific research issues on environmental input conditions, on the role of computational fluid dynamics, and on damping and dynamic response are presented. It is suggested that an appreciation of the input parameters, acquisition of extensive data to properly characterize the ocean environment, development of new methods and tools to acquire relevant data, extensive use of the computational methods, basic/applied research on the dynamic response and damping of structures, use of new materials, science-and-technology transfer from sister disciplines (e.g., aerospace industry, keeping in mind the complexities brought about by the presence of the air-water interface), and other related research will significantly enhance ones ability to design and build a variety of safer and economical offshore structures in deeper waters as well as over marginal fields in the next few decades. This herculean effort will require several decades of complementary experimental, numerical and analytical studies of ocean-structure interaction which will serve to elucidate the basic as well as applied fluid mechanics phenomena relevant to the offshore mechanics.

Sarpkaya, T. (Naval Postgraduate School, Monterrey, CA (United States). Dept. of Mechanical Engineering)

1993-02-01

312

The University of Missouri Research Reactor facility can melter system  

Microsoft Academic Search

At the University of Missouri Research Reactor (MURR), a waste compacting system for reducing the volume of radioactive aluminum cans has been designed, built and put into operation. In MURR's programs of producing radioisotopes and transmutation doping of silicon, a large volume of radioactive aluminum cans is generated. The Can Melter System (CMS) consists of a sorting station, a can

C. B. Jr. Edwards; O. L. Olson; R. Stevens; R. M. Brugger

1987-01-01

313

Conditions of Confinement: Juvenile Detention and Corrections Facilities. Research Summary.  

ERIC Educational Resources Information Center

The most comprehensive nationwide research ever conducted on the juvenile detention and corrections field was a study by the Office of Juvenile Justice and Delinquency Prevention (OJJDP) assessing conditions of confinement for juveniles and determining the extent to which those conditions conform to recognized national professional standards. The…

Parent, Dale G.; And Others

314

Disposal of radioactive waste from nuclear research facilities  

E-print Network

Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

Maxeiner, H; Kolbe, E

2003-01-01

315

Instrumentation complex for Langley Research Center's National Transonic Facility  

NASA Technical Reports Server (NTRS)

The instrumentation discussed in the present paper was developed to ensure reliable operation for a 2.5-meter cryogenic high-Reynolds-number fan-driven transonic wind tunnel. It will incorporate four CPU's and associated analog and digital input/output equipment, necessary for acquiring research data, controlling the tunnel parameters, and monitoring the process conditions. Connected in a multipoint distributed network, the CPU's will support data base management and processing; research measurement data acquisition and display; process monitoring; and communication control. The design will allow essential processes to continue, in the case of major hardware failures, by switching input/output equipment to alternate CPU's and by eliminating nonessential functions. It will also permit software modularization by CPU activity and thereby reduce complexity and development time.

Russell, C. H.; Bryant, C. S.

1977-01-01

316

The universe in the laboratory - Nuclear astrophysics opportunity at the facility for antiproton and ion research  

SciTech Connect

In the next years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzze-ntrum für Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and pathbreaking research in hadronic, nuclear, and atomic physics as well as in applied sciences. This manuscript will discuss some of these research opportunities, with a focus on supernova dynamics and nucleosynthesis.

Langanke, K. [GSI Helmholtzzentrum für Schwerionenforschung, Technische Universität Darmstadt, Frankfurt Institute of Advanced Studies, D-64291 Darmstadt (Germany)

2014-05-09

317

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

SciTech Connect

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

1994-10-01

318

Development of a High Resolution Precipitation Research Facility in the Northern Plains  

NASA Astrophysics Data System (ADS)

The Department of Atmospheric Science at the University of North Dakota is developing a high resolution precipitation research facility in the northern plains. The site is located about 60 km south-southeast of Grand Forks, North Dakota. The research site resides on the Nature Conservancy Glacial Ridge Prairie Restoration Project, a 24,000 acre property that is currently being restored to natural prairie and wetlands from existing farmland. The extensive area of the property provides a unique opportunity to study precipitation variability over temporal scales of seconds to an annual time frame and spatial scales ranging from meters to tens of kilometers. The research facility will include a dense network of rain gauges, several disdrometers, a vertical wind profiler, snow sensors, and microwave radiometer. Other measurements including longwave/shortwave radiation, aerosol, and surface boundary conditions are also planned for the site. The research facility is designed to compliment existing hydrologic research activities at Glacial Ridge. The site is ideally located to provide surface precipitation observations for radar studies using the UND C-Band polarimetric Doppler weather radar located in Grand Forks and with the Mayville WSR-88D Doppler weather radar located in Mayville, North Dakota. An overview of the facility, planned research activities, and observations will be given in the presentation.

Kucera, P. A.

2005-05-01

319

LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012  

SciTech Connect

Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

Yelick, Kathy

2012-01-01

320

Los Alamos National Laboratory case studies on decommissioning of research reactors and a small nuclear facility  

SciTech Connect

Approximately 200 contaminated surplus structures require decommissioning at Los Alamos National Laboratory. During the last 10 years, 50 of these structures have undergone decommissioning. These facilities vary from experimental research reactors to process/research facilities contaminated with plutonium-enriched uranium, tritium, and high explosives. Three case studies are presented: (1) a filter building contaminated with transuranic radionuclides; (2) a historical water boiler that operated with a uranyl-nitrate solution; and (3) the ultra-high-temperature reactor experiment, which used enriched uranium as fuel.

Salazar, M.D.

1998-12-01

321

Research Support Facility Data Center: An Example of Best Practices Implementation (Brochure)  

SciTech Connect

This brochure details the design and operations of the Research Support Facility (RSF) data center. The National Renewable Energy Laboratory (NREL) is world-renowned for its commitment to green building construction. To further this commitment to green building and leading by example, NREL included an ultra-energy-efficient data center in the laboratory's new Research Support Facility (RSF), which recently received a Leadership in Energy and Environmental Design{reg_sign} (LEED) Platinum designation from the U.S. Green Building Council.

Not Available

2011-10-01

322

LBNL Computational Research & Theory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012  

ScienceCinema

Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

Yelick, Kathy

2013-05-29

323

Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use  

NASA Technical Reports Server (NTRS)

The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.

Morse, S. F.; Roper, A. T.

1975-01-01

324

LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012  

ScienceCinema

Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

Yelick, Kathy

2013-05-29

325

NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility  

NASA Technical Reports Server (NTRS)

The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

2004-01-01

326

The Radiological Research Accelerator Facility. Progress report, December 1, 1991--November 30, 1992  

SciTech Connect

The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described.

Hall, E.J.

1992-05-01

327

The Radiological Research Accelerator Facility. Progress report, December 1, 1992--November 30, 1993  

SciTech Connect

The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

Hall, E.J.; Marino, S.A.

1993-05-01

328

OPERATIONS AND RESEARCH AT THE U.S. EPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY94  

EPA Science Inventory

The U.S. Environmental Protection Agency?s Incineration Research Facility (IRF) in Jefferson, Arkansas, is an experimental facifity that houses a pilot-scale rotary kiln incineration system (RKS) and the associated waste handling, emission control, process control, and safety equ...

329

36 CFR 1254.6 - Do I need a researcher identification card to use archival materials at a NARA facility?  

Code of Federal Regulations, 2011 CFR

... Do I need a researcher identification card to use archival materials at a NARA facility... Do I need a researcher identification card to use archival materials at a NARA facility...Yes, you need a researcher identification card to use original archival materials at...

2011-07-01

330

36 CFR 1254.6 - Do I need a researcher identification card to use archival materials at a NARA facility?  

Code of Federal Regulations, 2010 CFR

... Do I need a researcher identification card to use archival materials at a NARA facility... Do I need a researcher identification card to use archival materials at a NARA facility...Yes, you need a researcher identification card to use original archival materials at...

2010-07-01

331

36 CFR 1254.6 - Do I need a researcher identification card to use archival materials at a NARA facility?  

Code of Federal Regulations, 2014 CFR

... Do I need a researcher identification card to use archival materials at a NARA facility... Do I need a researcher identification card to use archival materials at a NARA facility...Yes, you need a researcher identification card to use original archival materials at...

2014-07-01

332

36 CFR 1254.6 - Do I need a researcher identification card to use archival materials at a NARA facility?  

Code of Federal Regulations, 2012 CFR

... Do I need a researcher identification card to use archival materials at a NARA facility... Do I need a researcher identification card to use archival materials at a NARA facility...Yes, you need a researcher identification card to use original archival materials at...

2012-07-01

333

36 CFR 1254.6 - Do I need a researcher identification card to use archival materials at a NARA facility?  

Code of Federal Regulations, 2013 CFR

... Do I need a researcher identification card to use archival materials at a NARA facility... Do I need a researcher identification card to use archival materials at a NARA facility...Yes, you need a researcher identification card to use original archival materials at...

2013-07-01

334

Environmental assessment of the Carlsbad Environmental Monitoring and Research Center Facility  

SciTech Connect

This Environmental Assessment has been prepared to determine if the Carlsbad Environmental Monitoring and Research Center (the Center), or its alternatives would have significant environmental impacts that must be analyzed in an Environmental Impact Statement. DOE`s proposed action is to continue funding the Center. While DOE is not funding construction of the planned Center facility, operation of that facility is dependent upon continued funding. To implement the proposed action, the Center would initially construct a facility of approximately 2,300 square meters (25,000 square feet). The Phase 1 laboratory facilities and parking lot will occupy approximately 1.2 hectares (3 acres) of approximately 8.9 hectares (22 acres) of land which were donated to New Mexico State University (NMSU) for this purpose. The facility would contain laboratories to analyze chemical and radioactive materials typical of potential contaminants that could occur in the environment in the vicinity of the DOE Waste Isolation Pilot Plant (WIPP) site or other locations. The facility also would have bioassay facilities to measure radionuclide levels in the general population and in employees of the WIPP. Operation of the Center would meet the DOE requirement for independent monitoring and assessment of environmental impacts associated with the planned disposal of transuranic waste at the WIPP.

NONE

1995-10-01

335

Life Science Research Facility materials management requirements and concepts  

NASA Technical Reports Server (NTRS)

The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

Johnson, Catherine C.

1986-01-01

336

A facility for accelerator research and education at Fermilab  

SciTech Connect

Fermilab is currently constructing the 'SRF Test Accelerator at the New Muon Lab' (NML). NML consists of a photo-emitted RF electron gun, followed by a bunch compressor, low energy test beamlines, SCRF accelerating structures, and high energy test beamlines. The initial primary purpose of NML will be to test superconducting RF accelerating modules for the ILC and for Fermilab's 'Project X' - a proposal for a high intensity proton source. The unique capability of NML will be to test these modules under conditions of high intensity electron beams with ILC-like beam parameters. In addition NML incorporates a photoinjector which offers significant tunability and especially the possibility to generate a bright electron beam with brightness comparable to state-of-the-art accelerators. This opens the exciting possibility of also using NML for fundamental beams research and tests of new concepts in beam manipulations and acceleration, instrumentation, and the applications of beams.

Church, Mike; Nagaitsev, Sergei; /Fermilab

2009-01-01

337

Conceptual design and programmatics studies of space station accommodations for Life Sciences Research Facilities (LSRF)  

NASA Technical Reports Server (NTRS)

Conceptual designs and programmatics of the space station accommodations for the Life Sciences Research Facilities (LSRF) are presented. The animal ECLSS system for the LSRF provides temperature-humidity control, air circulation, and life support functions for experimental subjects. Three ECLSS were studied. All configurations presented satisfy the science requirements for: animal holding facilities with bioisolation; facilities interchangeable to hold rodents, small primates, and plants; metabolic cages interchangeable with standard holding cages; holding facilities adaptable to restrained large primates and rodent breeding/nesting cages; volume for the specified instruments; enclosed ferm-free workbench for manipulation of animals and chemical procedures; freezers for specimen storage until return; and centrifuge to maintain animals and plants at fractional g to 1 g or more, with potential for accommodating humans for short time intervals.

1985-01-01

338

Development of the advanced life support Systems Integration Research Facility at NASA's Johnson Space Center  

NASA Technical Reports Server (NTRS)

Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center. The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures. This paper provides an overview of the SIRF project, a top-level description of test facilities to support the project, conceptual illustrations of integrated test article configurations for each of the three SIRF systems, and a phased project schedule denoting projected activities and milestones through the next several years.

Tri, Terry O.; Thompson, Clifford D.

1992-01-01

339

Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility  

NASA Technical Reports Server (NTRS)

The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

1986-01-01

340

Texas Experimental Tokamak, a plasma research facility: Technical progress report  

SciTech Connect

In the year just past, the authors made major progress in understanding turbulence and transport in both core and edge. Development of the capability for turbulence measurements throughout the poloidal cross section and intelligent consideration of the observed asymmetries, played a critical role in this work. In their confinement studies, a limited plasma with strong, H-mode-like characteristics serendipitously appeared and received extensive study though a diverted H-mode remains elusive. In the plasma edge, they appear to be close to isolating a turbulence drive mechanism. These are major advances of benefit to the community at large, and they followed from incremental improvements in diagnostics, in the interpretation of the diagnostics, and in TEXT itself. Their general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The work here demonstrates a continuing dedication to the problems of plasma transport which continue to plague the community and are an impediment to the design of future devices. They expect to show here that they approach this problem consistently, systematically, and effectively.

Wootton, A.J.

1995-08-01

341

ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY  

SciTech Connect

The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy, and cost effectiveness. These efforts partially fulfill expectations of the DOE, other federal agencies, and the State of New Mexico for waste minimization. If the improvements discussed here are implemented, an estimated 1.8 million dollars in cost savings is expected.

Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

2003-02-27

342

NASA's plans for life sciences research facilities on a Space Station  

NASA Technical Reports Server (NTRS)

A Life Sciences Research Facility on a Space Station will contribute to the health and well-being of humans in space, as well as address many fundamental questions in gravitational and developmental biology. Scientific interests include bone and muscle attrition, fluid and electrolyte shifts, cardiovascular deconditioning, metabolism, neurophysiology, reproduction, behavior, drugs and immunology, radiation biology, and closed life-support system development. The life sciences module will include a laboratory and a vivarium. Trade-offs currently being evaluated include (1) the need for and size of a 1-g control centrifuge; (2) specimen quantities and species for research; (3) degree of on-board analysis versus sample return and ground analysis; (4) type and extent of equipment automation; (5) facility return versus on-orbit refurbishment; (6) facility modularity, isolation, and system independence; and (7) selection of experiments, design, autonomy, sharing, compatibility, and integration.

Arno, R.; Heinrich, M.; Mascy, A.

1984-01-01

343

Biomedical neutron research at the Californium User Facility for neutron science  

SciTech Connect

The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact {sup 252}Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with {sup 252}Cf sources. Three projects at the CUF that demonstrate the versatility of {sup 252}Cf for biological and biomedical neutron-based research are described: future establishment of a {sup 252}Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded {sup 252}Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy.

Martin, R.C. [Oak Ridge National Lab., TN (United States); Byrne, T.E. [Roane State Community College, Harriman, TN (United States); Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States)

1997-04-01

344

Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility  

SciTech Connect

Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce the duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility.

Korbin, G.; Wollenberg, H.; Wilson, C.; Strisower, B.; Chan, T.; Wedge, D.

1981-09-01

345

High-temperature test facility at the NASA Lewis engine components research laboratory  

NASA Technical Reports Server (NTRS)

The high temperature test facility (HTTF) at NASA-Lewis Engine Components Research Laboratory (ECRL) is presently used to evaluate the survivability of aerospace materials and the effectiveness of new sensing instrumentation in a realistic afterburner environment. The HTTF has also been used for advanced heat transfer studies on aerospace components. The research rig uses pressurized air which is heated with two combustors to simulate high temperature flow conditions for test specimens. Maximum airflow is 31 pps. The HTTF is pressure rated for up to 150 psig. Combustors are used to regulate test specimen temperatures up to 2500 F. Generic test sections are available to house test plates and advanced instrumentation. Customized test sections can be fabricated for programs requiring specialized features and functions. The high temperature test facility provides government and industry with a facility for testing aerospace components. Its operation and capabilities are described.

Colantonio, Renato O.

1990-01-01

346

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01

347

{open_quotes}Airborne Research Australia (ARA){close_quotes} a new research aircraft facility on the southern hemisphere  

SciTech Connect

{open_quotes}Airborne Research Australia{close_quotes} (ARA) is a new research aircraft facility in Australia. It will serve the scientific community of Australia and will also make its aircraft and expertise available for commercial users. To cover the widest possible range of applications, the facility will operate up to five research aircraft, from a small, low-cost platform to medium-sized multi-purpose aircraft, as well as a unique high altitude aircraft capable of carrying scientific loads to altitudes of up to 15km. The aircraft will be equipped with basic instrumentation and data systems, as well as facilities to mount user-supplied instrumentation and systems internally and externally on the aircraft. The ARA operations base consisting of a hangar, workshops, offices, laboratories, etc. is currently being constructed at Parafield Airport near Adelaide/South Australia. The following text reports about the current state of development of the facility. An update will be given in a presentation at the Conference. 6 figs.

Hacker, J.M. [Flinders Univ. of South Australia, Adelaide (Australia)

1996-11-01

348

Synchrotron radiation A general overview and a review of storage rings, research facilities, and insertion devices  

NASA Astrophysics Data System (ADS)

Synchrotron radiation, the electromagnetic radiation given off by electrons in circular motion, is revolutionizing many branches of science and technology by offering beams of vacuum ultraviolet light and x rays of immense flux and brightness. In the past decade there has been an explosion of interest in these applications leading activity to construct new research facilities based on advanced storage rings and insertion device sources. Applications include basic and applied research in biology, chemistry, medicine, and physics plus many areas of technology. In this article we present a general overview of the field of synchrotron radiation research, its history, the present status and future prospects of storage rings and research facilities, and the development of wiggler and undulator insertion devices as sources of synchrotron radiation.

Winick, Herman

1989-04-01

349

Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

L. Harvego; Brion Bennett

2011-11-01

350

An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility  

NASA Astrophysics Data System (ADS)

The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.

2011-10-01

351

An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility  

SciTech Connect

The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

P. Calderoni; P. Sharpe; M. Shimada

2009-09-01

352

Acoustics in Research Facilities--Control of Wanted and Unwanted Sound. Laboratory Design Notes.  

ERIC Educational Resources Information Center

Common and special acoustics problems are discussed in relation to the design and construction of research facilities. Following a brief examination of design criteria for the control of wanted and unwanted sound, the technology for achieving desired results is discussed. Emphasis is given to various design procedures and materials for the control…

Newman, Robert B.

353

THE ARGONAUT REACTOR: A GENERALIZED REACTOR FACILITY FOR NUCLEAR TECHNOLOGY TRAINING AND RESEARCH  

Microsoft Academic Search

S>Argonaut is a 10-kw (max.) thermal reactor moderated by water and ; reflected by graphite. It is a flexible, low-cost facility designed primarily ; for instruction and research in reactor technology. Plate-type fuel elements are ; spaced with graphite wedges to form an angular core; thus various fuel patterns, ; from pseudoslab to multiple groups, can be effected. With 20%

D. H. Lennox; B. I. Spinrad; C. N. Kelber; R. H. Armstrong; W. L. Kolb

1958-01-01

354

Integrating real-time digital signal processing capability into a large research and development facility  

Microsoft Academic Search

The Instrumentation and Controls Division at Oak Ridge National Laboratory recently developed and installed a large scale, real-time measurement system for the world's largest pressurized water tunnel. This water tunnel, the Large Cavitation Channel (LCC) provides a research and development facility for the study of acoustic phenomena to aid in model testing of new naval ship and submarine designs. The

W. W. Manges; J. T. Mallinak-Glassell; J. E. Breeding; J. M. Jansen Jr.; R. M. Tate; R. R. Bentz

1992-01-01

355

EPA?s Experimental Stream Facility: Design and Research Supporting Watershed Management  

EPA Science Inventory

The EPA?s Experimental Stream Facility (ESF) represents an important tool in research that is underway to further understanding of the relative importance of stream ecosystems and the services they provide for effective watershed management. The ESF is operated under the goal of ...

356

Research Support Facility - A Model of Super Efficiency (RSF) (Fact Sheet)  

SciTech Connect

This fact sheet published by the National Renewable Energy Laboratory discusses the lab's newest building, the Research Support Facility (RSF). The RSF is a showcase for ultra-efficient workplaces. Various renewable energy and energy efficiency features have been employed so that the building achieves a Leadership in Energy and Environmental Design (LEED) Platinum rating from the U.S. Green Building Council.

Not Available

2010-08-01

357

DISTRIBUTION OF TRACE ELEMENT EMISIONS FROM THE LIQUID INJECTION INCINERATOR COMBUSTION RESEARCH FACILITY  

EPA Science Inventory

A series of tests was conducted at EPA's Combustion Research Facility (CRF) to investigate the fate of volatile trace elements in liquid injection hazardous waste incineration. In these tests, arsenic in the form of arsenic trioxide and antimony in the form of antimony trichlorid...

358

Design-Build Process for the Research Support Facility (RSF) (Book)  

SciTech Connect

An in-depth look at how the U.S. DOE and NREL used a performance-based design-build contract to build the Research Support Facility (RSF); one of the most energy efficient office buildings in the world.

Not Available

2012-06-01

359

Background-Oriented Schlieren Applications in NASA Glenn Research Center's Ground Test Facilities  

NASA Technical Reports Server (NTRS)

This is a presentation for an invited session at the 2015 SciTech Conference 53rd AIAA Aerospace Sciences Meeting. The presentation covers the recent applications of Background-Oriented Schlieren in NASA Glenn Research Center's ground test facilities, such as the 8x6 SWT, open jet rig, and AAPL.

Clem, Michelle M.; Woike, Mark R.

2015-01-01

360

ARM Climate Research Facility Quarterly Value-Added Product Report January 1–March 30, 2011  

SciTech Connect

The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, and (3) future VAPs that have been recently approved.

Sivaraman, C

2011-06-14

361

A possible biomedical facility at the European Organization for Nuclear Research (CERN)  

PubMed Central

A well-attended meeting, called “Brainstorming discussion for a possible biomedical facility at CERN”, was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990

Dosanjh, M; Myers, S

2013-01-01

362

EMSL Research and Capability Development Proposals Facility-Wide Management and Storage for Scientific Data  

E-print Network

EMSL Research and Capability Development Proposals Facility-Wide Management and Storage solution, with the requisite costs in time, money, and resources. In this case, the true issues at hand as prototypes in the myEMSL lab-wide data management infrastructure. This system will not only provide EMSL

363

President Obama Visits Research Facilities in the Penn State Department of Architectural Engineering  

E-print Network

President Obama Visits Research Facilities in the Penn State Department of Architectural Engineering On Thursday, Feb. 3, 2011 President Barack Obama was on the Penn State University Park campus agencies, and community colleges. During his visit, Obama focused on the importance of work being done

Yener, Aylin

364

Ten megacoulomb switching operation for the Air Force battery powered inductive storage launcher research facility  

Microsoft Academic Search

Operation of the battery powered inductive energy storage research facility (BPS) presents unique switching problems. The energy storage system switch must be capable of conducting a peak current in excess of 2 MA for as long as five seconds. It must be capable of opening with microsecond precision timing, to synchronize current commutation with the operation of various electromechanical and

R. B. Klug; R. D. Ford; D. J. Jenkins; W. H. Lupton

1991-01-01

365

Ten megacoulomb switching operation for the Air Force battery powered inductive storage launcher research facility  

Microsoft Academic Search

Operation of the battery powered inductive energy storage research facility (BPS) presents unique switching problems. The energy storage system switch must be capable of conducting a peak current in excess of 2 MA for as long as five seconds, and of opening with microsecond precision timing, to synchronize current commutation with the operation of various electromechanical and electrical load components.

R. B. Klug; R. D. Ford; D. J. Jenkins; W. H. Lupton

1991-01-01

366

Case Studies of Child Play Areas and Child Support Facilities: Travel and Field Research Report.  

ERIC Educational Resources Information Center

This report describes and evaluates 50 facilities and settings for play, child care, and early childhood development. Objectives of the research were to (1) sensitize the U.S. Army to the role of the physical environment in child play, care and development; (2) comparatively document and assess a sample of both military and civilian care…

Cohen, Uriel; And Others

367

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility  

E-print Network

-duty diesel and gasoline dilution tunnel and related emissions measuring equipment. The emissions testBus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility Objective Measure the tail pipe emissions, including particulates, carbon monoxide, oxides of nitrogen

Lee, Dongwon

368

An Overview of the Antenna Measurement Facilities at the NASA Glenn Research Center  

NASA Technical Reports Server (NTRS)

For the past twenty years, the NASA Glenn Research Center (formerly Lewis Research Center) in Cleveland, Ohio, has developed and maintained facilities for the evaluation of antennas. This effort has been in support of the work being done at the center in the research and development of space communication systems. The wide variety of antennas that have been considered for these systems resulted in a need for several types of antenna ranges at the Glenn Research Center. Four ranges, which are part of the Microwave Systems Laboratory, are the responsibility of the staff of the Applied RF Technology Branch. A general description of these ranges is provided in this paper.

Lambert, Kevin M.; Anzic, Godfrey; Zakrajsek, Robert J.; Zaman, Afroz J.

2002-01-01

369

Development and validation of the crew-station system-integration research facility  

NASA Technical Reports Server (NTRS)

The various issues associated with the use of integrated flight management systems in aircraft were discussed. To address these issues a fixed base integrated flight research (IFR) simulation of a helicopter was developed to support experiments that contribute to the understanding of design criteria for rotorcraft cockpits incorporating advanced integrated flight management systems. A validation experiment was conducted that demonstrates the main features of the facility and the capability to conduct crew/system integration research.

Nedell, B.; Hardy, G.; Lichtenstein, T.; Leong, G.; Thompson, D.

1986-01-01

370

Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs  

SciTech Connect

High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

Drewmark Communications; Sartor, Dale; Wilson, Mark

2010-07-01

371

Research Opportunities on the Low Temperature Microgravity Physics Facility (LTMPF) on the International Space Station  

NASA Technical Reports Server (NTRS)

The Low Temperature Microgravity Physics Facility (LTMPF) is a state-of-the-art facility for long duration science Investigations whose objectives can only be achieved in microgravity and at low temperature. LTMPF consists of two reusable, cryogenic facilities with self-contained electronics, software and communication capabilities. The Facility will be first launched by Japanese HIIA Rocket in 2003 and retrieved by the Space Shuttle, and will have at least five months cryogen lifetime on the Japanese Experiment Module Exposed Facility (JEM EF) of the International Space Station. A number of high precision sensors of temperature, pressure and capacitance will be available, which can be further tailored to accommodate a wide variety of low temperature experiments. This paper will describe the LTMPF and its goals and design requirements. Currently there are six candidate experiments in the flight definition phase to fly on LTMPF. Future candidate experiments will be selected through the NASA Research Announcement process. Opportunities for utilization and collaboration with international partners will also be discussed. This work is being carried out by the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. The work was funded by NASA Microgravity Research Division.

Liu, Feng-Chuan; Adriaans, Mary Jayne; Pensinger, John; Israelsson, Ulf

2000-01-01

372

IPY to Mark Expansion of Research Facilities on the North Slope of Alaska  

NASA Astrophysics Data System (ADS)

The Barrow Global Climate Change Research Facility will open to researchers on the North Slope of Alaska during the 2007-08 anniversary of the first IPY. Between 1949 and 1980, arctic researchers were very active on the North Slope and in nearby waters largely because of the Naval Arctic Research Laboratory (NARL) at Barrow. NARL provided easy access, laboratories and logistical support. NARL was closed in 1981, but particularly during this past decade, Barrow-based arctic research projects have been back on the upswing. The National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory (CMDL) Barrow station was founded during the 1970s, and continues as part of NOAA's five station global network for monitoring atmospheric composition. The North Slope Borough's Department of Wildlife Management (DWM) has for the past 20 years conducted its own research. The DWM also served as logistical provider for growing numbers of arctic researchers without other logistical support. In the late 1990s, the Department of Energy Atmospheric Radiation Measurement program (ARM: DOE's principal climate change research effort) created a Cloud and Radiation Testbed on the North Slope with atmospheric instrumentation at Barrow and Atqasuk. It is now part of the ARM Climate Research Facility, a National User Facility. In response to growing researcher needs, the Barrow Arctic Science Consortium (BASC) was formed in the late 1990s as a non-profit logistical support and community coordinating organization, and received the endorsement of Ukpeagvik Inupiat Corporation (UIC), NSB and the local community college. BASC provides logistical support to National Science Foundation (NSF) researchers through a cooperative agreement, and to others on a fee for service basis. UIC also dedicated 11 square miles of its land as the Barrow Environmental Observatory (BEO), and charged BASC with management of the BEO. This land that has been used for research for more than 50 years, and now is available to the larger research community through BASC. It has been protected from development by the NSB Assembly as a Scientific Research District. Since 1981, the remains of the old NARL infrastructure sustained the scientific enterprise on the North Slope. But now, as a result of the rapid ongoing changes in the Arctic, these old inadequate facilities are about to be replaced. The new Barrow facility, although smaller than the old NARL, will serve the needs of modern researchers with first class laboratories, information technology and lodging. It is being designed by the arctic research community itself through a series of workshops held over this past year, and through ongoing feedback (http://scifac.arcticscience.org). Research on the North Slope capitalizes on the history of collaboration between the Native Inupiat Eskimo people and scientists going back to the first IPY. Local native people have served in many support capacities for scientists in the past, and currently serve as managers and technicians for projects like ARM. It is this history of collaboration with scientists that inspired the creation of BASC, of the BEO, and that made the new facility possible. This paper reviews the status of planning for the new Barrow facility. Feedback can be provided through the web site and through the authors, who serve BASC respectively as chairs of advisory committees, Executive Director and President.

Zak, B. D.; Eicken, H.; Sheehan, G. W.; Glenn, R.

2004-12-01

373

Integrating real-time digital signal processing capability into a large research and development facility  

SciTech Connect

The Instrumentation and Controls Division at Oak Ridge National Laboratory recently developed and installed a large scale, real-time measurement system for the world`s largest pressurized water tunnel. This water tunnel, the Large Cavitation Channel (LCC) provides a research and development facility for the study of acoustic phenomena to aid in model testing of new naval ship and submarine designs. The LCC design required the development of a near-field beamformer in addition to extending the range of real-time processing capability to frequencies unavailable at other facilities. The beamformer acquires and processes time-domain acoustic data at 9.5 MB/s from up to 45 hydrophones while. The acoustic processing software provides for the real-time analysis of acoustic data. Up to 128 facility sensors are sampled, time stamped, and stored at 600 kB/s. The system generates information for acoustic phenomena and facility measurements in real time so that the operator can make facility adjustments to control the running experiment This real-time control of facility conditions requires that the measurement system integrate facility and acoustic data for simultaneous display to the operator in engineering units via high-end workstations. A dual-host minicomputer configuration with high-end workstations connected via an Ethernet networking cluster controls and integrates measurement and display subsystems. The system architecture integrates high-performance array processors, matrix switches, signal conditioning amplifiers, antialiasing filter subsystems, high-precision analog-to-digital subsystems, high-performance data disks, and support equipment The hardware and software architecture with its distributed computers and distributed real-time data base, the signal processing algorithms and architecture, and the flexible user interface for facility and measurements integration are described in this paper.

Manges, W.W.; Mallinak-Glassell, J.T.; Breeding, J.E.; Jansen, J.M. Jr.; Tate, R.M.; Bentz, R.R.

1992-12-31

374

Integrating real-time digital signal processing capability into a large research and development facility  

SciTech Connect

The Instrumentation and Controls Division at Oak Ridge National Laboratory recently developed and installed a large scale, real-time measurement system for the world's largest pressurized water tunnel. This water tunnel, the Large Cavitation Channel (LCC) provides a research and development facility for the study of acoustic phenomena to aid in model testing of new naval ship and submarine designs. The LCC design required the development of a near-field beamformer in addition to extending the range of real-time processing capability to frequencies unavailable at other facilities. The beamformer acquires and processes time-domain acoustic data at 9.5 MB/s from up to 45 hydrophones while. The acoustic processing software provides for the real-time analysis of acoustic data. Up to 128 facility sensors are sampled, time stamped, and stored at 600 kB/s. The system generates information for acoustic phenomena and facility measurements in real time so that the operator can make facility adjustments to control the running experiment This real-time control of facility conditions requires that the measurement system integrate facility and acoustic data for simultaneous display to the operator in engineering units via high-end workstations. A dual-host minicomputer configuration with high-end workstations connected via an Ethernet networking cluster controls and integrates measurement and display subsystems. The system architecture integrates high-performance array processors, matrix switches, signal conditioning amplifiers, antialiasing filter subsystems, high-precision analog-to-digital subsystems, high-performance data disks, and support equipment The hardware and software architecture with its distributed computers and distributed real-time data base, the signal processing algorithms and architecture, and the flexible user interface for facility and measurements integration are described in this paper.

Manges, W.W.; Mallinak-Glassell, J.T.; Breeding, J.E.; Jansen, J.M. Jr.; Tate, R.M.; Bentz, R.R.

1992-01-01

375

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2010  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Sisterson, DL

2010-07-09

376

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1–September 30, 2010  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Sisterson, DL

2010-10-15

377

Design strategies for the International Space University's variable gravity research facility  

NASA Technical Reports Server (NTRS)

A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.

Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

1990-01-01

378

New Instruments and Data Inversion Methods Development, Operation and Applications of an Aerosol Generation, Calibration and Research Facility  

Microsoft Academic Search

An aerosol generation, calibration, and research facility has been developed with the major purpose of evaluating aerosol in- strumentation, including quality assurance testing, intercompari- son, performance evaluation, and calibration of aerosol sizing, bulk, and speciated mass-measuring instruments. The aerosol facility also provides excellent opportunities for basic aerosol research. Polydisperse test aerosols are generated most often through spray atomization of solutions.

Olga Hogrefe; Frank Drewnick; G. Garland Lala; James J. Schwab; Kenneth L. Demerjian

379

Recommendations for control of pathogens and infectious diseases in fish research facilities?  

PubMed Central

Concerns about infectious diseases in fish used for research have risen along with the dramatic increase in the use of fish as models in biomedical research. In addition to acute diseases causing severe morbidity and mortality, underlying chronic conditions that cause low-grade or subclinical infections may confound research results. Here we present recommendations and strategies to avoid or minimize the impacts of infectious agents in fishes maintained in the research setting. There are distinct differences in strategies for control of pathogens in fish used for research compared to fishes reared as pets or in aquaculture. Also, much can be learned from strategies and protocols for control of diseases in rodents used in research, but there are differences. This is due, in part, the unique aquatic environment that is modified by the source and quality of the water provided and the design of facilities. The process of control of pathogens and infectious diseases in fish research facilities is relatively new, and will be an evolving process over time. Nevertheless, the goal of documenting, detecting, and excluding pathogens in fish is just as important as in mammalian research models. PMID:18755294

Kent, Michael L.; Feist, Stephen W.; Harper, Claudia; Hoogstraten-Miller, Shelley; Mac Law, J.; Sánchez-Morgado, José M.; Tanguay, Robert L.; Sanders, George E.; Spitsbergen, Jan M.; Whipps, Christopher M.

2012-01-01

380

Recommendations for control of pathogens and infectious diseases in fish research facilities  

USGS Publications Warehouse

Concerns about infectious diseases in fish used for research have risen along with the dramatic increase in the use of fish as models in biomedical research. In addition to acute diseases causing severe morbidity and mortality, underlying chronic conditions that cause low-grade or subclinical infections may confound research results. Here we present recommendations and strategies to avoid or minimize the impacts of infectious agents in fishes maintained in the research setting. There are distinct differences in strategies for control of pathogens in fish used for research compared to fishes reared as pets or in aquaculture. Also, much can be learned from strategies and protocols for control of diseases in rodents used in research, but there are differences. This is due, in part, the unique aquatic environment that is modified by the source and quality of the water provided and the design of facilities. The process of control of pathogens and infectious diseases in fish research facilities is relatively new, and will be an evolving process over time. Nevertheless, the goal of documenting, detecting, and excluding pathogens in fish is just as important as in mammalian research models. ?? 2008.

Kent, M.L.; Feist, S.W.; Harper, C.; Hoogstraten-Miller, S.; Law, J.M.; Sanchez-Morgado, J. M.; Tanguay, R.L.; Sanders, G.E.; Spitsbergen, J.M.; Whipps, C.M.

2009-01-01

381

Aircraft ground vibration testing at NASA Ames-Dryden Flight Research Facility  

NASA Technical Reports Server (NTRS)

At the NASA Ames Research Center's Dryden Flight Research Facility at Edwards Air Force Base, California, a variety of ground vibration test techniques has been applied to an assortment of new or modified aerospace research vehicles. This paper presents a summary of these techniques and the experience gained from various applications. The role of ground vibration testing in the qualification of new and modified aircraft for flight is discussed. Data are presented for a wide variety of aircraft and component tests, including comparisons of sine-dwell, single-input random, and multiple-input random excitation methods on a JetStar airplane.

Kehoe, Michael W.

1987-01-01

382

Ongoing fundamental hazardous-waste-incineration research at EPA/RTP facility  

SciTech Connect

The paper describes five combustors, results of some completed research, and plans for future studies at EPA/AEERL's RCRA-permitted facility at Research Triangle Park, NC. Research is conducted to examine the effect of operating parameters such as residence time, temperature, turbulence, and waste characteristics on incineration of principal organic hazardous constituents (POHCs), the formation of products of incomplete combustion (PICs), and the transformation of trace metals. The five combustion systems include a rotary kiln incinerator simulator, a package boiler simulator, a horizontal tunnel combustor, a two-stage fluidized-bed combustor, and a commercial package boiler.

Hall, R.E.; Lemieux, P.M.; Linak, W.P.; Wasser, J.H.

1991-01-01

383

Facilities for animal research in space with special reference to Space Station Freedom  

NASA Technical Reports Server (NTRS)

The facilities being planned for animal research on Space Station Freedom are considered in the context of the development of animal habitats from early ballistic and orbital flights to long-term missions aimed at more detailed scientific studies of the effects of space conditions on the vertebrate organism. Animal habitats are becoming more elaborate, requiring systems for environmental control, waste management, physiological monitoring, as well as ancillary facilities such as a 1-G control centrifuge and a glovebox. Habitats in use or to be used in various types of manned and unmanned spacecraft, and particularly those planned for Space Station Freedom, are described. The characteristics of the habitats are compared with each other and with current standards for animal holding facilities on the ground.

Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.

1990-01-01

384

Lessons learned from a hydrogen explosion at a photovoltaic research facility  

SciTech Connect

At the Institute of Energy Conversion (IEC), University of Delaware, a hydrogen explosion occurred an September 1, 1992. A formal investigation was conducted. Suggestions provided by the Accident Investigation Team formed the basis for a complete review and upgrade of the compressed gas handling systems and procedures. In this paper, the causes of the explosion are discussed along with resulting modifications made to the gas handling system, facility, and procedures to prevent a recurrence of this type of incident and to improve the safety of this facility. Lessons learned from this incident and the resulting investigation and response are highlighted, including the need to regularly review both hardware and procedures to ensure that all aspects of the research program and facilities are up-to-date.

Moskowitz, P. [Brookhaven National Lab., Upton, NY (United States); Buchanan, W.; Shafarman, W. [Univ. of Delaware, Newark, DE (United States). Institute of Energy Conversion

1995-02-01

385

Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities  

NASA Technical Reports Server (NTRS)

Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

2003-01-01

386

Operating capability and current status of the reactivated NASA Lewis Research Center Hypersonic Tunnel Facility  

NASA Technical Reports Server (NTRS)

The NASA Lewis Research Center's Hypersonic Tunnel Facility (HTF) is a free-jet, blowdown propulsion test facility that can simulate up to Mach-7 flight conditions with true air composition. Mach-5, -6, and -7 nozzles, each with a 42 inch exit diameter, are available. Previously obtained calibration data indicate that the test flow uniformity of the HTF is good. The facility, without modifications, can accommodate models approximately 10 feet long. The test gas is heated using a graphite core induction heater that generates a nonvitiated flow. The combination of clean-air, large-scale, and Mach-7 capabilities is unique to the HTF and enables an accurate propulsion performance determination. The reactivation of the HTF, in progress since 1990, includes refurbishing the graphite heater, the steam generation plant, the gaseous oxygen system, and all control systems. All systems were checked out and recertified, and environmental systems were upgraded to meet current standards. The data systems were also upgraded to current standards and a communication link with NASA-wide computers was added. In May 1994, the reactivation was complete, and an integrated systems test was conducted to verify facility operability. This paper describes the reactivation, the facility status, the operating capabilities, and specific applications of the HTF.

Thomas, Scott R.; Trefny, Charles J.; Pack, William D.

1995-01-01

387

Safeguards systems analysis research and development and the practice of safeguards at DOE facilities  

SciTech Connect

Los Alamos Safeguards Systems Group personnel interact with Department of Energy (DOE) nuclear materials processing facilities in a number of ways. Among them are training courses, formal technical assistance such as developing information management or data analysis software and informal ad hoc assistance especially in reviewing and commenting on existing facility safeguards technology and procedures. These activities are supported by the DOE Office of Safeguards and Security, DOE Operations Offices, and contractor organizations. Because of the relationships with the Operations Office and facility personnel, the Safeguards Systems Group research and development (R D) staff have developed an understanding of the needs of the entire complex. Improved safeguards are needed in areas such as materials control activities, accountability procedures and techniques, systems analysis and evaluation methods, and material handling procedures. This paper surveys the generic needs for efficient and cost effective enhancements in safeguards technologies and procedures at DOE facilities, identifies areas where existing safeguards R D products are being applied or could be applied, and sets a direction for future systems analysis R D to address practical facility safeguards needs.

Zack, N.R.; Thomas, K.E.; Markin, J.T.; Tape, J.W.

1991-01-01

388

An assessment of research opportunities and the need for synchrotron radiation facilities  

SciTech Connect

The workshop focused on six topics, all of which are areas of active research: (1) speciation, reactivity and mobility of contaminants in aqueous systems, (2) the role of surfaces and interfaces in molecular environmental science, (3) the role of solid phases in molecular environmental science, (4) molecular biological processes affecting speciation, reactivity, and mobility of contaminants in the environment, (5) molecular constraints on macroscopic- and field-scale processes, and (6) synchrotron radiation facilities and molecular environmental sciences. These topics span a range of important issues in molecular environmental science. They focus on the basic knowledge required for understanding contaminant transport and fate and for the development of science-based remediation and waste management technologies. Each topic was assigned to a working group charged with discussing recent research accomplishments, significant research opportunities, methods required for obtaining molecular-scale information on environmental contaminants and processes, and the value of synchrotron x-ray methods relative to other methods in providing this information. A special working group on synchrotron radiation facilities was convened to provide technical information about experimental facilities at the four DOE-supported synchrotron radiation sources in the US (NSLS, SSRL, AS and UPS) and synchrotron- based methods available for molecular environmental science research. Similar information on the NSF-funded Cornell High Energy synchrotron Source (CHESS) was obtained after the workshop was held.

NONE

1995-12-31

389

Design and Validation of Control Room Upgrades Using a Research Simulator Facility  

SciTech Connect

Since 1981, the United States (U.S.) Nuclear Regulatory Commission (NRC) [1] requires a plant- specific simulator facility for use in training at U.S. nuclear power plants (NPPs). These training simulators are in near constant use for training and qualification of licensed NPP operators. In the early 1980s, the Halden Man-Machine Laboratory (HAMMLab) at the Halden Reactor Project (HRP) in Norway first built perhaps the most well known set of research simulators. The HRP offered a high- fidelity simulator facility in which the simulator is functionally linked to a specific plant but in which the human-machine interface (HMI) may differ from that found in the plant. As such, HAMMLab incorporated more advanced digital instrumentation and controls (I&C) than the plant, thereby giving it considerable interface flexibility that researchers took full advantage of when designing and validating different ways to upgrade NPP control rooms. Several U.S. partners—the U.S. NRC, the Electrical Power Research Institute (EPRI), Sandia National Laboratories, and Idaho National Laboratory (INL) – as well as international members of the HRP, have been working with HRP to run control room simulator studies. These studies, which use crews from Scandinavian plants, are used to determine crew behavior in a variety of normal and off-normal plant operations. The findings have ultimately been used to guide safety considerations at plants and to inform advanced HMI design—both for the regulator and in industry. Given the desire to use U.S. crews of licensed operators on a simulator of a U.S. NPP, there is a clear need for a research simulator facility in the U.S. There is no general-purpose reconfigurable research oriented control room simulator facility in the U.S. that can be used for a variety of studies, including the design and validation of control room upgrades.

Ronald L. Boring; Vivek Agarwal; Jeffrey C. Joe; Julius J. Persensky

2012-11-01

390

Research opportunities and facilities at ORNL`s residual stress user center  

SciTech Connect

The High Temperature Materials Laboratory (HTML) User Program at ORNL was established to help solve high-temperature materials problems that limit the efficiency and reliability of advanced energy-conversion systems. Both proprietary and nonproprietary research can be conducted within the user program. The facilities are open to researchers in US industry, universities, and federal laboratories. The Residual Stress User Center (RSUC), one of the six HTML user centers, was recently established and consists of two high precision x-ray diffraction systems for measurement of residual strain and texture. Both biaxial and triaxial residual strain data can be collected. Attachments to the diffraction system include a position sensitive detector and a laser specimen positioning system. The RSUC has capabilities for electropolishing and strain measurement with strain gauges. A complementary neutron diffraction facility has recently been developed and demonstrated at the High Flux Isotope Reactor at ORNL. The neutron diffraction facility enables mapping of macro residual stresses throughout the volume of a component, complementing the near surface stress measurements available by x-ray diffraction. The neutron facility has been proposed as an addition to the RSUC.

Hubbard, C.R.; Watkins, T.R.; Kozaczek, K.; Wang, X.-L.; Spooner, S.

1994-09-01

391

Green Infrastructure Research at NRMRL?s Urban Watershed Research Facility  

EPA Science Inventory

USEPA?s National Risk Management Research Laboratory (NRMRL) examined several options for completing water quality research supporting the Clean Water Act and the Safe Drinking Water Act. NRMRL concluded that developing and understanding the engineering unit processes within gre...

392

The international Facility for Antiproton and Ion Research FAIR: Challenges and Opportunities  

SciTech Connect

The status of FAIR, the planned 'Facility for Antiproton and Ion Research', is presented in this contribution. FAIR will be a world unique particle accelerator facility to be built as a joint project by - as of today - 16 member countries. FAIR, which is planned for construction adjacent to the GSI site in Germany, is an integrated system of particle accelerators, 2 superconducting synchrotrons and 8 storage rings, which will provide high energy and high intensity beams of ions from hydrogen to uranium with unprecedented quality and in full parallel mode. In addition highest luminosity secondary beams of rare isotopes and beams of antiprotons will be available. FAIR will combine physics research topics from different communities, i.e. nuclear physics, hadron physics, heavy-ion physics, plasma physics, atomic physics and accelerator development. Details of FAIR and the physics projects will be presented in this contribution.

Hoehne, C. [GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

2009-12-17

393

Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2012-04-13

394

Spin spectrometer at the holified heavy-ion research facility and some planned experiments  

Microsoft Academic Search

The 4..pi.. multidetector ..gamma..-ray spectrometer at the Holified Heavy-ion Research Facility (HHIRF) is described in some detail. The following important features of this spectrometer are discussed: (a) the geometric arrangement, (b) the actual performance of the individual detector elements, (c) the associated electronics and data acquisition system, and (d) the response of the system to input ..gamma..-cascades including the effect

D. G. Sarantites; M. Jaaskelainen; J. T. Hood; R. Woodward; J. H. Barker; D. C. Hensley; M. L. Halbert; Y. D. Chan

1980-01-01

395

Control System for the ORNL Multicharged Ion Research Facility High-Voltage Platform  

Microsoft Academic Search

A control system for the 250-kV platform and beamlines for accelerating and transporting ions produced by an all-permanent-magnet ECR ion source has been developed at the ORNL Multicharged Ion Research Facility. This system utilizes the Experimental Physics and Industrial Control System (EPICS) software to manipulate a programmable logic controller (PLC) and its associated I\\/O points. Additional control points are accessed

M. E. Bannister; F. W. Meyer; J. Sinclair

2005-01-01

396

The AMS facility at the Japan Atomic Energy Research Institute (JAERI)  

Microsoft Academic Search

A new AMS facility has been set up at the Japan Atomic Energy Research Institute (JAERI) in 1997 and 14C as well as 129I will be used for marine environmental studies. The 3 MV AMS system is able to perform high-precision 14C as well as heavy element AMS. The 14C-AMS section of the system has been accepted and its precision

T. Aramaki; T. Mizushima; Y. Mizutani; T. Yamamoto; O. Togawa; S. Kabuto; T. Kuji; A. Gottdang; M. Klein; D. J. W Mous

2000-01-01

397

Research Opportunities in High Energy Density Laboratory Plasmas on the NDCX-II Facility  

SciTech Connect

Intense beams of heavy ions offer a very attractive tool for fundamental research in high energy density physics and inertial fusion energy science. These applications build on the significant recent advances in the generation, compression and focusing of intense heavy ion beams in the presence of a neutralizing background plasma. Such beams can provide uniform volumetric heating of the target during a time-scale shorter than the hydrodynamic response time, thereby enabling a significant suite of experiments that will elucidate the underlying physics of dense, strongly-coupled plasma states, which have been heretofore poorly understood and inadequately diagnosed, particularly in the warm dense matter regime. The innovations, fundamental knowledge, and experimental capabilities developed in this basic research program is also expected to provide new research opportunities to study the physics of directly-driven ion targets, which can dramatically reduce the size of heavy ion beam drivers for inertial fusion energy applications. Experiments examining the behavior of thin target foils heated to the warm dense matter regime began at the Lawrence Berkeley National Laboratory in 2008, using the Neutralized Drift Compression Experiment - I (NDCX-I) facility, and its associated target chamber and diagnostics. The upgrade of this facility, called NDCX-II, will enable an exciting set of scientific experiments that require highly uniform heating of the target, using Li{sup +} ions which enter the target with kinetic energy in the range of 3 MeV, slightly above the Bragg peak for energy deposition, and exit with energies slightly below the Bragg peak. This document briefly summarizes the wide range of fundamental scientific experiments that can be carried out on the NDCX-II facility, pertaining to the two charges presented to the 2008 Fusion Energy Science Advisory Committee (FESAC) panel on High Energy Density Laboratory Plasmas (HEDLP). These charges include: (1) Identify the compelling scientific opportunities for research in fundamental HEDLP that could be investigated using existing and planned facilities in support of the Office of Fusion Energy Sciences and the National Nuclear Security Administration/Defense Program missions; and (2) Identify the scientific issues of implosion and target design that need to be addressed to make the case for inertial fusion energy as a potential future energy source. Compelling research opportunities of high intellectual value that can be carried out on the NDCX-II experimental facility are briefly summarized below, grouped into four main research areas. Page 4 lists several national and internationally-attended user workshops that have provided much of the input for the experimental campaigns describe below. More detailed information can be provided upon request.

Barnard, John; Cohen, Ron; Friedman, Alex; Grote, Dave; Lund, Steven; Sharp, Bill; Bieniosek, Frank; Ni, Pavel; Roy, Prabir; Henestroza, Enrique; Jung, Jin-Young; Kwan, Joe; Lee, Ed; Leitner, Matthaeus; Lidia, Steven; Logan, Grant; Seidl, Peter; Vay, Jean-Luc; Waldron, Will

2009-03-23

398

Designing a Virtual Research Facility to motivate Professional-Citizen Collaboration  

NASA Astrophysics Data System (ADS)

In order to handle the onslaught of data spilling from telescopes on the Earth and on orbit, CosmoQuest has created a virtual research facility that allows the public to collaborate with science teams on projects that would otherwise lack the necessary human resources. This second-generation citizen science site goes beyond asking people to click on images to also engaging them in taking classes, attending virtual seminars, and participating in virtual star parties. These features were introduced to try and expand the diversity of motivations that bring people to the project and to keep them engaged overtime - just as a research center seeks to bring a diversity of people together to work and learn over time. In creating the CosmoQuest Virtual Research Facility, we sought to answer the question, “What would happen if we provided the public with the same kinds of facilities scientists have, and invite them to be our collaborators?” It had already been observed that the public readily attends public science lectures, open houses at science facilities, and education programs such as star parties. It was hoped that by creating a central facility, we could build a community of people learning and doing science in a productive manner. In order to be successful, we needed to first create the facility, then test if people were coming both to learn and to do science, and finally to verify that people were doing legitimate science. During the past 18 months of operations, we have continued to work through each of these stages, as discussed talk. At this early date, progress is on-going, and much research remains to be done, but all indications show that we are on our way to building a community of people learning and doing science. During 2013-2014, a series of studies looked at the motivations of CosmoQuest users, as well as their forms of site interactions. During this talk, we will review these results, as well as the demographics of our user population.

Gay, Pamela

399

Designing a Virtual Research Facility to motivate Professional-Citizen Collaboration (Invited)  

NASA Astrophysics Data System (ADS)

In order to handle the onslaught of data spilling from telescopes on the Earth and on orbit, CosmoQuest has created a virtual research facility that allows the public to collaborate with science teams on projects that would otherwise lack the necessary human resources. This second-generation citizen science site goes beyond asking people to click on images to also engaging them in taking classes, attending virtual seminars, and participating in virtual star parties. These features were introduced to try and expand the diversity of motivations that bring people to the project and to keep them engaged overtime - just as a research center seeks to bring a diversity of people together to work and learn over time. In creating the CosmoQuest Virtual Research Facility, we sought to answer the question, 'What would happen if we provided the public with the same kinds of facilities scientists have, and invite them to be our collaborators?' It had already been observed that the public readily attends public science lectures, open houses at science facilities, and education programs such as star parties. It was hoped that by creating a central facility, we could build a community of people learning and doing science in a productive manner. In order to be successful, we needed to first create the facility, then test if people were coming both to learn and to do science, and finally to verify that people were doing legitimate science. During the past 18 months of operations, we have continued to work through each of these stages, as discussed talk. At this early date, progress is on-going, and much research remains to be done, but all indications show that we are on our way to building a community of people learning and doing science. During 2013, a series of studies looked at the motivations of CosmoQuest users, as well as their forms of site interactions. During this talk, we will review these results, as well as the demographics of our user population.

Gay, P.

2013-12-01

400

A facility for high resolution spectroscopy: Laboratory and ground based observations in support of upper atmospheric research  

NASA Technical Reports Server (NTRS)

This research task consists of operating a facility for making spectroscopic observations in support of upper atmospheric research. The facility responds to the needs and interests of the visiting investigators. Therefore, the research objectives are not predetermined except in broad outline. The emphasis is on studies that take advantage of the particular strengths of the Fourier Transform Spectrometer on Kitt Peak: high spectral resolution combined with wide spectral range and low noise.

Brault, J. W.; Brown, L. R.; Cohen, E.; Margolis, J. S.; Pickett, H.; Poynter, R.; Toth, R.; Rinsland, Curtis P.; Smith, Mary Ann H.; Hillman, J. J.

1990-01-01

401

The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

2011-01-01

402

The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

2011-01-01

403

Holifield Radioactive Ion Beam Facility A leading international facility with unique capabilities for research in nuclear structure  

E-print Network

HRIBF Holifield Radioactive Ion Beam Facility A leading international facility with unique (+26 more unaccelerated) · 32 proton-rich species · 143 neutron-rich species The Holifield Radioactive a dedicated user program in nuclear physics using exotic beams. Radioactive species are produced by intense

404

Establishing an Environmental Simulation Facility For Complex (Dusty) Space Plasma Research  

NASA Astrophysics Data System (ADS)

Over the past decade, investigations into complex dusty plasmas have improved our under-standing of planetary environments, moons (including Earth's Moon), ring systems and comets. They have also been instrumental in the advancement of semiconductor development, nanofab-rication and are proving helpful in mitigating the dust contamination problems found within nuclear fusion devices such as ITER. Recently, the Lunar Exploration Analysis Group (LEAG) identified a need for research on the lunar dust and plasma environment. As part of its goal to expand current research capability in this area, the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University and its partners plan to establish a highly flexible space plasma environment simulation facility. This facility will consist of an adjustable inductively-heated plasma generator (IPG) coupled to a variety of systems allowing the introduction of the additional components (e.g. levitating or accelerated dust, UV light, ionized particles) necessary to accurately simulate a given plasma environment. Potential re-search for such a device includes investigations of complex (dusty) plasma effects on the surface of planets, moons and comets, interactions between complex (dusty) plasma and spacecraft materials and components, in-situ instrument development and testing as well as research and development for industrial applications. All of these will be discussed.

Laufer, Rene; Matthews, Lorin; Herdrich, Georg; Srama, Ralf; Roeser, Hans-Peter

405

Overview of Innovative PMI Research on NSTX-U and Associated PMI Facilities at PPPL  

SciTech Connect

Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTXU, the PMI research has received a strong emphasis. With ~ 15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2 . To support the PMI research, a comprehensive set of PMI diagnostic tools are being implemented. The snow-flake configuration can produce exceptionally high divertor flux expansion of up to ~ 50. Combined with the radiative divertor concept, the snow-flake configuration has reduced the divertor heat flux by an order of magnitude in NSTX. Another area of active PMI investigation is the effect of divertor lithium coating (both in solid and liquid phases). The overall NSTX lithium PFC coating results suggest exciting opportunities for future magnetic confinement research including significant electron energy confinement improvements, Hmode power threshold reduction, the control of Edge Localized Modes (ELMs), and high heat flux handling. To support the NSTX-U/PPPL PMI research, there are also a number of associated PMI facilities implemented at PPPL/Princeton University including the Liquid Lithium R&D facility, Lithium Tokamak Experiment, and Laboratories for Materials Characterization and Surface Chemistry.

M. Ono, M. Jaworski, R. Kaita, C. N. Skinner, J.P. Allain, R. Maingi, F. Scotti, V.A. Soukhanovskii, and the NSTX-U Team

2012-09-19

406

Design and construction of the NMSU Geothermally Heated Greenhouse Research Facility: Final technical report  

SciTech Connect

This report describes the design, construction, and performance of the New Mexico State University (NMSU) Geothermal Greenhouse Research Facility. Two 6000-square-foot greenhouses were built on the NMSU campus and supplied with geothermal energy for heating. The geothermal water is pumped from one of three wells producing water at temperatures from 141/degree/F to 148/degree/F. Heat is delivered to the greenhouse space by means of overhead fan-coil unit heaters. The two greenhouses are double-glazed on roof and wall surfaces employing a total of four different film materials: Tedlar/Reg Sign/, Melinex/Reg Sign/, Softglass/Reg Sign/, and Agrifilm/Reg Sign/. One greenhouse is cooled using a traditional fan and pad cooling system. The second greenhouse is cooled with a high-pressure fog system and natural ventilation through roof and side vents. A 2400-square-foot metal building next to the greenhouses provides office, work, and storage space for the facility. The greenhouse facility was leased to two commerical tenants who produced a variety of crops. The performance of the greenhouses was monitored and reported both qualitatively and quantitatively. Results from the tenant's pilot-scale studies in the NMSU greenhouse facility were transferred and applied to two commercial greenhouse ranges that were built in southern New Mexico during 1986/87. 9 figs., 5 tabs.

Schoenmackers, R.

1988-11-01

407

Hydrogeologic investigation of the Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama  

SciTech Connect

This document describes the geology and hydrogeology at the former Advanced Coal Liquefaction Research and Development (ACLR&D) facility in Wilsonville, Alabama. The work was conducted by personnel from the Oak Ridge National Laboratory Grand Junction office (ORNL/GJ) for the U.S. Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC). Characterization information was requested by PETC to provide baseline environmental information for use in evaluating needs and in subsequent decision-making for further actions associated with the closeout of facility operations. The hydrogeologic conceptual model presented in this report provides significant insight regarding the potential for contaminant migration from the ACLR&D facility and may be useful during other characterization work in the region. The ACLR&D facility is no longer operational and has been dismantled. The site was characterized in three phases: the first two phases were an environmental assessment study and a sod sampling study (APCO 1991) and the third phase the hydraulic assessment. Currently, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation (RI) to address the presence of contaminants on the site is underway and will be documented in an RI report. This technical memorandum addresses the hydrogeologic model only.

Gardner, F.G.; Kearl, P.M.; Mumby, M.E.; Rogers, S.

1996-09-01

408

MEDES clinical research facility as a tool to prepare ISSA space flights  

NASA Astrophysics Data System (ADS)

This new multi-disciplinary medical experimentation center provides the ideal scientific, medical and technical environment required for research programs and to prepare international space station Alpha (ISSA) missions, where space and healthcare industries can share their expertise. Different models are available to simulate space flight effects (bed-rest, confinement,…). This is of particular interest for research in Human psychology, physiology, physiopathology and ergonomics, validation of biomedical materials and procedures, testing of drugs, and other healthcare related products. This clinical research facility (CRF) provides valuable services in various fields of Human research requiring healthy volunteers. CRF is widely accessible to national and international, scientific, medical and industrial organisations. Furthermore, users have at their disposal the multi-disciplinary skills of MEDES staff and all MEDES partners on a single site.

Maillet, A.; Traon, A. Pavy-Le

409

Establishing a Cosmic Ray Station and Other Space Research Facilities in Ethiopia  

NASA Astrophysics Data System (ADS)

This paper describes the potential of Ethiopia in establishing space research facilities and conducting collaborative research and training. It also describes the goals and objectives of a proposed cosmic ray station in Ethiopia which would greatly improve the abilities of the existing worldwide network for heliospheric and cosmic ray research. The station will be located at the geomagentic equator, which is a very unique place for geomagnetic and heliospheric studies. Moreover, the paper presents an overview of the research and training activities in space physics and the successful collaborative project between Ethiopia and Finland, which facilitated the installation of a pulsation magnetometer and a photometer at Entoto Mountain in a suburb of the Ethiopian capital, Addis Ababa.

Damtie, B.; Bosinger, T.; Usoskin, I.

410

Construction of a Solid State Research Facility, Building 3150. Environmental Assessment  

SciTech Connect

The Department of Energy (DOE) proposes to construct a new facility to house the Materials Synthesis Group (MSG) and the Semiconductor Physics Group (SPG) of the Solid State Division, Oak Ridge National Laboratory (ORNL). The location of the proposed action is Roane County, Tennessee. MSG is involved in the study of crystal growth and the preparation and characterization of advanced materials, such as high-temperature superconductors, while SPG is involved in semiconductor physics research. All MSG and a major pardon of SPG research activities are now conducted in Building 2000, a deteriorating structure constructed in the 1940. The physical deterioration of the roof; the heating, ventilation, and air conditioning (HVAC) system; and the plumbing make this building inadequate for supporting research activities. The proposed project is needed to provide laboratory and office space for MSG and SPG and to ensure that research activities can continue without interruption due to deficiencies in the building and its associated utility systems.

Not Available

1993-07-01

411

Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)  

NASA Technical Reports Server (NTRS)

Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2 s support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed 4 decades ago to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Instrumental in this task is understanding the present facility capabilities and identifying what reasonable changes can be implemented. A variety of approaches and analytical tools are being employed to gain this understanding. This paper discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

Edwards, Daryl A.

2007-01-01

412

The National High Magnetic Field Laboratory, A user facility in support of research in high magnetic fields  

SciTech Connect

The National High Magnetic Field Laboratory (NHMFL) develops and operates high magnetic field facilities at its main location at Florida State University, Tallahassee, as well as a pulsed magnetic field facility at Los Alamos National Laboratory. A number of specialized facilities are also available to collaborators at the University of Florida for research at ultra-low temperatures, advanced magnetic resonance imaging, and materials sciences. The NHMFL is supported by the United States National Science Foundation (NSF) and by the State of Florida. It is a user facility available to qualified users through a peer review proposal process. The facilities and staff support research and development at the extremes of parameter space. A part of its activities is devoted to the advancement of the state of the art of superconducting, pulsed, resistive, and hybrid magnets. This involves cryogenic materials research, the development of high strength, high conductivity conductors, and the development of low and ultra low temperature systems.

Crow, J.E.; Schneider-Muntau, H.J. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Laboratory; Parkin, D. [Los Alamos National Lab., NM (United States); Sullivan, N.S. [Florida Univ., Gainesville, FL (United States). Dept. of Physics

1993-09-01

413

The ARM Climate Research Facility: New measurements, data products, and services  

NASA Astrophysics Data System (ADS)

The DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility is undergoing a number of changes to enhance the data made available for climate research. Many new instruments have been added across the Facility including measurements of aerosol, cloud, and precipitation properties. Among the additions have been radars and lidars to obtain better measurements of cloud microphysical and macrophysical characteristics. Over the past year there has been work done to refine the application of these instruments including the development of data products and calibration procedures. While data product development has tended to focus on the new instruments, there have also been efforts to develop products using more traditional ARM instruments including a consolidation of several cloud property retrievals using vertically pointing remote sensors. The goal of this product is to characterize uncertainty in cloud property retrievals and ultimately to work toward a best estimate of cloud properties. ARM is also looking forward to further enhancements in its measurement capabilities with the planned addition of two new sites this year. A new permanent site will be stationed on Graciosa Island in the Azores and a third mobile facility will see its first deployment in Oliktok, Alaska adjacent to the Arctic Ocean. To adapt to this expanding set of measurements, ARM has just rolled out a new interface for discovering and ordering data and is making other enhancements to its data infrastructure. The purpose of this presentation is to provide an update to these and other recent ARM developments with a focus on cloud measurements.

Mather, James; Voyles, Jimmy

2013-04-01

414

FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I  

SciTech Connect

The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

Abdou, M.

1984-10-01

415

The Illinois Accelerator Research Center, or IARC, will provide a state-of-the-art facility for accelerator  

E-print Network

The Illinois Accelerator Research Center, or IARC, will provide a state-of-the-art facility and Illinois univer- sities will work side by side with industrial partners to develop breakthroughs and discovery science. Funding for the IARC facility is provided by the Illinois Department of Commerce

Quigg, Chris

416

Rain Garden Research at NRMRL?s Urban Watershed Research Facility: Evaluating Pollutant Removal Performance  

EPA Science Inventory

This slide was displayed on a TV screen along with slides from other ORD postdocs at the EPA Science Forum Postdoc Exhibit, May 20-22. The slide illustrated the rain garden research I am working on at UWMB....

417

Status of aerial applications research in the Langley vortex research facility and the Langley full-scale wind tunnel  

NASA Technical Reports Server (NTRS)

Small scale models of agricultural airplanes were tested and numerical methods were utilized to study interactions between the airplane wake and the dispersed spray and granular materials. Methods were developed to measure and predict dispersal transport and wake characteristics and dispersal techniques to obtain interactions more favorable to wide, uniform deposition patterns and reduced drift. In the full scale wind tunnel, full scale agricultural airplanes and dispersal systems for both liquid and solid applications were evaluated to improve aircraft aerodynamics and dispersal systems efficiency. The program status in these two facilities is reported with emphasis on wake interactions and dispersal systems research.

Jordan, F. L., Jr.; Mclemore, H. C.; Bragg, M. B.

1978-01-01

418

Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels  

NASA Technical Reports Server (NTRS)

A computational algorithm has been developed which can be employed to determine the flow properties of an arbitrary real (virial) gas in a wind tunnel. A multiple-coefficient virial gas equation of state and the assumption of isentropic flow are used to model the gas and to compute flow properties throughout the wind tunnel. This algorithm has been used to calculate flow properties for the wind tunnels of the Aerothermodynamics Facilities Complex at the NASA Langley Research Center, in which air, CF4. He, and N2 are employed as test gases. The algorithm is detailed in this paper and sample results are presented for each of the Aerothermodynamic Facilities Complex wind tunnels.

Hollis, Brian R.

1996-01-01

419

First operation of the medical research facility at the NSLS for coronary angiography  

SciTech Connect

The Synchrotron Medical Research Facility (SMERF) at the National Synchrotron Light Source has been completed and is operational for human coronary angiography experiments. The imaging system and hardware have been brought to SMERF from the Stanford Synchrotron Radiation Laboratory where prior studies were carried out. SMERF consists of a suite of rooms at the end of the high-field superconducting wiggler X17 beam line and is classified as an Ambulatory Health Care Facility. Since October of 1990 the coronary arteries of five patients have been imaged. Continuously improving image quality has shown that a large part of both the right coronary artery and the left anterior descending coronary artery can be imaged following a venous injection of contrast agent.

Thomlinson, W.; Gmuer, N.; Chapman, D.; Garrett, R.; Lazarz, N.; Moulin, H. (Brookhaven National Laboratory, Upton, New York 11973 (United States)); Thompson, A.C. (Center for X-Ray Optics, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Zeman, H.D. (Department of Biomedical Engineering, University of Tennessee, Memphis, Tennessee 38163 (United States)); Brown, G.S. (Stanford Synchrotron Radiation Laboratory, Stanford, California 94305 (United States)); Morrison, J.; Reiser, P.; Padmanabahn, V.; Ong, L.; Green, S. (North Shore University Hospital, Manhasset, New York 11030 (United States)); Giacomini, J.; Gordon, H. (Palo Alto Veterans Administration Hospital, Palo Alto, California 94305 (United States)); Rubenstein, E. (Stanford Medical School, Stanford University, Stanford, California 94305 (United States))

1992-01-01

420

Low-Background gamma counting at the Kimballton Underground Research Facility  

E-print Network

The next generation of low-background physics experiments, such as neutrinoless double- beta decay and dark matter searches, will require the use of materials which have unprece- dented radiopurity. A gamma-counting laboratory at the Kimballton Underground Research Facility (KURF) has been commissioned for the purpose of initial screening of materials for radioactivity primarily from nuclides in the 238U and 232Th decay chains, as well as 40K and cosmic-ray induced isotopes. Sensitivity to these isotopes was increased by moving to an underground location. Backgrounds are further reduced through the use of passive shielding, radiopure detector and shield components, and radon mitigation. This paper describes the facility, detector systems, analysis techniques and selected assay results.

Finnerty, P; Back, H O; Henning, R; Long, A; Macon, K T; Strain, J; Lindstrom, R M; Vogelaar, R B

2010-01-01

421

Facility for Antiproton and Ion Research, FAIR, at the GSI site  

SciTech Connect

FAIR is a new large-scale particle accelerator facility to be built at the GSI site in Germany. The research pursued at FAIR will cover a wide range of topics in nuclear and hadron physics, as well as high density plasma physics, atomic and antimatter physics, and applications in condensed matter physics and biology. The working horse of FAIR will be a 1.1km circumference double ring of rapidly cycling 100 and 300Tm synchrotrons, which will be used to produce high intensity secondary beams of short-lived radioactive ions or antiprotons. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experimental facilities are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations.

Rosner, Guenther [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom)

2006-11-17

422

Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility  

SciTech Connect

To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

2010-01-11

423

First operation of the medical research facility at the NSLS for coronary angiography  

SciTech Connect

The Synchrotron Medical Research Facility (SMERF) at the National Synchrotron Light Source has been completed and is operational for human coronary angiography experiments. The imaging system and hardware have been brought to SMERF from the Stanford Synchrotron Radiation Laboratory where prior studies were carried out. SMERF consists of a suite of rooms at the end of the high field superconducting wiggler X17 beamline and is classified as an Ambulatory health Care Facility. Since October of 1990 the coronary arteries of five patients have been imaged. Continuously improving image quality has shown that a large part of both the right coronary artery and the left anterior descending coronary artery can be imaged following a venous injection of contrast agent. 16 refs., 4 figs.

Thomlinson, W.; Gmuer, N.; Chapman, D.; Garrett, R.; Lazarz, N.; Moulin, H. (Brookhaven National Lab., Upton, NY (United States)); Thompson, A.C. (Lawrence Berkeley Lab., CA (United States)); Zeman, H.D. (Dept. of Biomedical Engineering, University of Tennessee, Memphis, Tennessee, 38163 (US)); Brown, G.S. (Stanford Univ., CA (United States). Stanford Synchrotron Radiation Lab.); Morrison, J.; Reiser, P

1991-01-01

424

Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2011-10-10

425

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2008-09-30

426

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2009-03-17

427

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

DL Sisterson

2006-07-01

428

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2007-10-01

429

Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2012-01-09

430

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1–December 31, 2009  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2010-01-15

431

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2011  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Sisterson, DL

2011-04-11

432

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2007-04-01

433

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2009-01-15

434

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2006  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

DL Sisterson

2006-10-01

435

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2008-04-01

436

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2009-10-15

437

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2008-06-01

438

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2007-07-01

439

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Sisterson, DL

2011-03-02

440

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2011  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2011-07-25

441

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2008-01-08

442

System Security Authorization Agreement (SSAA) for the WIRE Archive and Research Facility  

NASA Technical Reports Server (NTRS)

The Wide-Field Infrared Explorer (WIRE) Archive and Research Facility (WARF) is operated and maintained by the Department of Physics, USAF Academy. The lab is located in Fairchild Hall, 2354 Fairchild Dr., Suite 2A103, USAF Academy, CO 80840. The WARF will be used for research and education in support of the NASA Wide Field Infrared Explorer (WIRE) satellite, and for related high-precision photometry missions and activities. The WARF will also contain the WIRE preliminary and final archives prior to their delivery to the National Space Science Data Center (NSSDC). The WARF consists of a suite of equipment purchased under several NASA grants in support of WIRE research. The core system consists of a Red Hat Linux workstation with twin 933 MHz PIII processors, 1 GB of RAM, 133 GB of hard disk space, and DAT and DLT tape drives. The WARF is also supported by several additional networked Linux workstations. Only one of these (an older 450 Mhz PIII computer running Red Hat Linux) is currently running, but the addition of several more is expected over the next year. In addition, a printer will soon be added. The WARF will serve as the primary research facility for the analysis and archiving of data from the WIRE satellite, together with limited quantities of other high-precision astronomical photometry data from both ground- and space-based facilities. However, the archive to be created here will not be the final archive; rather, the archive will be duplicated at the NSSDC and public access to the data will generally take place through that site.

2002-01-01

443

In Situ Resource Utilization Technology Research and Facilities Supporting the NASA's Human Systems Research and Technology Life Support Program  

NASA Technical Reports Server (NTRS)

The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.

Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck

2005-01-01

444

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP locale has historically had a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. Beginning this quarter, the SGP began a transition to a smaller footprint (150 km x 150 km) by rearranging the original and new instrumentation made available through the American Recovery and Reinvestment Act (ARRA). The central facility and 4 extended facilities will remain, but there will be up to 16 surface new characterization facilities, 4 radar facilities, and 3 profiler facilities sited in the smaller domain. This new configuration will provide observations at scales more appropriate to current and future climate models. The TWP locale has the Manus, Nauru, and Darwin sites. These sites will also have expanded measurement capabilities with the addition of new instrumentation made available through ARRA funds. It is anticipated that the new instrumentation at all the fixed sites will be in place within the next 12 months. The AMF continues its 20-month deployment in Graciosa Island, Azores, Portugal, that started May 1, 2009. The AMF will also have additional observational capabilities within the next 12 months. Users can participate in field experiments at the sites and mobile facility, or they can participate remotely. Therefore, a variety of mechanisms are provided to users to access site information. Users who have immediate (real-time) needs for data access can request a research account on the local site data systems. This access is particularly useful to users for quick decisions in executing time-dependent activities associated with field campaigns at the fixed sites and mobile facility locations. T

D. L. Sisterson

2010-01-12

445

The Mothball, Sustainment, and Proposed Reactivation of the Hypersonic Tunnel Facility (HTF) at NASA Glenn Research Center Plum Brook Station  

NASA Technical Reports Server (NTRS)

The Hypersonic Tunnel Facility (HTF) located at the NASA Glenn Research Center s Plum Brook Station in Sandusky, Ohio, is the nation s only large-scale, non-vitiated, hypersonic propulsion test facility. The HTF, with its 4-story graphite induction heater, is capable of duplicating Mach 5, 6, and 7 flight conditions. This unique propulsion system test facility has experienced several standby and reactivation cycles. The intent of the paper is to overview the HTF capabilities to the propulsion community, present the current status of HTF, and share the lessons learned from putting a large-scale facility into mothball status for a later restart

Thomas, Scott R.; Lee, Jinho; Stephens, John W.; Hostler, Robert W., Jr.; VonKamp, William D.

2010-01-01

446

Computer program development specification for the air traffic control subsystem of the Man-Vehicle Systems Research Facility.  

E-print Network

Functional summary: The Air Traffic Control (ATC) Subsystem of the Man-Vehicle System Research Facility (MVSRF) is a hardware/software complex which provides the MVSRF with the capability of simulating the multi-aircraft, ...

Massachusetts Institute of Technology. Flight Transportation Laboratory

1982-01-01

447

Towards an Experimental Testbed Facility for Cyber-Physical Security Research  

SciTech Connect

Cyber-Physical Systems (CPSs) are under great scrutiny due to large Smart Grid investments and recent high profile security vulnerabilities and attacks. Research into improved security technologies, communication models, and emergent behavior is necessary to protect these systems from sophisticated adversaries and new risks posed by the convergence of CPSs with IT equipment. However, cyber-physical security research is limited by the lack of access to universal cyber-physical testbed facilities that permit flexible, high-fidelity experiments. This paper presents a remotely-configurable and community-accessible testbed design that integrates elements from the virtual, simulated, and physical environments. Fusing data between the three environments enables the creation of realistic and scalable environments where new functionality and ideas can be exercised. This novel design will enable the research community to analyze and evaluate the security of current environments and design future, secure, cyber-physical technologies.

Edgar, Thomas W.; Manz, David O.; Carroll, Thomas E.

2012-01-07

448

Measurement system support at the JAERI-CRT Facility: pressure transducers. [Containment Research Testing  

SciTech Connect

As part of a continuing liaison between the US NRC and foreigh full scale containment research programs, measurements assistance in the form of the loan of 30 flush diaphram pressure transducers has been provided to the JAERI-CRT MK II research program at Tokai-Mura, Japan. Procedures developed earlier at the Lawrence Livermore National Laboratory (LLNL) under similar research work sponsored by the US NRC were used by LLNL to successfully complete final installation and in-situ end-to-end calibration of the transducers in the CRT facility. The results from this calibration showed a very close agreement between sensitivities and linearities calculated at LLNL and the ones calculated at JAERI and indicate the transducers should give valid data during future testing.

Shay, W.M. Jr.; McCauley, E.W.

1981-11-01

449

Research activities at the Loma Linda University and Proton Treatment Facility--an overview  

NASA Technical Reports Server (NTRS)

The Loma Linda University (LLU) Radiobiology Program coordinates basic research and proton beam service activities for the university and extramural communities. The current focus of the program is on the biological and physical properties of protons and the operation of radiobiology facilities for NASA-sponsored projects. The current accelerator, supporting facilities and operations are described along with a brief review of extramural res