These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Delivery Order 9 enhanced preliminary assessment, Woodbridge Research Facility, Virginia. Final report, Dec 91-Mar 92  

SciTech Connect

An enhanced preliminary assessment was conducted at Woodbridge Research Facility (WRF) in Woodbridge, Virginia. WRF is a 579-acre facility located 22 miles southeast of Washington, D.C. It is operated by Harry Diamond Laboratory (HDL) at Adelphi, Maryland for the U.S. Army Laboratory Command. Its mission is to support HDL in a variety of programs involving nuclear weapons effects and Army systems survivability. Based on information obtained during and subsequent to a site visit (18 through 20 September 1991), 27 areas requiring environmental evaluation (AREE) were identified, including landfills, a pistol range, oil-contaminated areas, waste handling areas, storage areas, test areas, underground storage tanks, transformers, oil/water separators, asbestos, drainage ditches and spill areas. This report presents a summary of findings for each AREE and recommendations for further action.

Shimko, R.G.; Turner, R.E.

1992-03-01

2

Woodbridge Army Research Facility RI/FS; volume 1. Field sampling plan. Report for 1995-1996  

SciTech Connect

U.S. Army Woodbridge Research Facility (WRF) was used in the past as a major military communications center and a research and development laboratory where electromagnetic pulse energy was tested on military and other equipment. WRF is presently an inactive facility pursuant to the 1991 Base Realignment and Closure list. Past investigation activities indicate that polychlorinated biphenyl compounds (PCBs) are primary chemicals of concern. The WRF is presently in the process of being turned over to the United States Fish and Wildlife Service (USFWS) to be used as a wildlife refuge and training facility. This task calls for provision of the necessary staff and equipment to provide remedial investigation/feasibility support for the USAEC BRAC Program investigation at WRF. The scope of work includes Focused Feasibility Studies, Remedial Investigations, Feasibility Studies, ecological assessments, risk assessments, proposed plans, RODs, and community relations support. This Field Sampling Plan contains a description of the site, sample location rationale, technical approach to field operations, site safety procedures, and methods for ecological assessments, analyses of samples, data management, and disposal of investigation-derived wastes. Information contained in other plans which accompany this submittal is identified.

Choynowski, J.; Ehlers, M.; Elias, M.; Garcia, M.; Henry, C.

1996-02-01

3

*Conceptualizing Woodbridge 2011 WSU MUP Capstone Recommendations. August 9, 2011  

E-print Network

with kids #12;· 2000 · 1990 Source: US Census 1990 2000, American Community-up friendly businesses would do well in Woodbridge #12;*Town Hall Meeting *29 Residents Attended (5 CDC of businesses development would you like to see? *What activities or initiatives would spark your civic

Baskaran, Mark

4

Research and test facilities  

NASA Technical Reports Server (NTRS)

A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

1993-01-01

5

THE INCINERATION RESEARCH FACILITY  

EPA Science Inventory

The Cincinnati-based Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. EPA operates the Incineration Research Facility (IRF) in Jefferson, Arkansas. his facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liqui...

6

USACE Field Research Facility  

NSDL National Science Digital Library

North Carolina facility conducts coastal research and regional monitoring projects. Take a virtual tour of the facility or access recent measurements of local wave, wind, tide and current conditions. Learn about ACE research projects, instrument engineering and operations. Access archived data and graphs of shoreline conditions, as well as research data and reports from studies on shoreline erosion, bathymetry, sediment movement and other monitoring research.

7

INCINERATION RESEARCH FACILITY  

EPA Science Inventory

The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...

8

Kimballton Underground Research Facility  

NASA Astrophysics Data System (ADS)

A new deep underground research facility is open and operating only 30 minutes from the Virginia Tech campus. It is located in an operating limestone mine, and has drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' x 20' x 100'; the current lab is 35'x100'x22'), and is located where there is a 1700' overburden. The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only 0.004 muons per square meter, per second, per steradian. There are currently six projects using the facility: mini-LENS - Low Energy Neutrino Spectroscopy (Virginia Tech, Louisiana State University, BNL); Neutron Spectrometer (University of Maryland, NIST); Double Beta Decay to Excited States (Duke University); HPGe Low-Background Screening (North Carolina State University, University of North Carolina, Virginia Tech); MALBEK - Majorana neutrinoless double beta decay (University of North Carolina); Ar-39 Depleted Argon (Princeton University). I will summarize the current program, and exciting plans for the future.

Vogelaar, R. Bruce

2011-10-01

9

Nano Research Facility Lab Safety Manual Nano Research Facility  

E-print Network

1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer rules and procedures (a) Accidents and spills for chemicals Not containing Nano-Materials Spills of non for chemicals Containing Nano-Materials In a fume hood small spills of nano-materials in a liquid may

Subramanian, Venkat

10

An ion source research facility  

SciTech Connect

As an ion source developer, D-Pace frequently faces the issue of needing access to a research facility to be able to test equipment or to develop our existing technology further. The closest facility to perform such tasks is hundreds of kilometers away, at TRIUMF, and it is not always feasible to make use of it on a timely basis. With a growing demand and a desire to enhance our products, the idea to create an ion source research facility in our region evolved. In this paper, we will discuss the approach that was chosen to reach our goal, the status of the project, the principle layout of the facility, and the different ways this facility could be utilized.

Roeder, M.; Dehnel, M.; Jackle, P.; Stewart, T.; Theroux, J. [D-Pace, Inc., P.O. Box 201, Nelson, British Columbia V1L 5P9 (Canada)

2008-02-15

11

An ion source research facility.  

PubMed

As an ion source developer, D-Pace frequently faces the issue of needing access to a research facility to be able to test equipment or to develop our existing technology further. The closest facility to perform such tasks is hundreds of kilometers away, at TRIUMF, and it is not always feasible to make use of it on a timely basis. With a growing demand and a desire to enhance our products, the idea to create an ion source research facility in our region evolved. In this paper, we will discuss the approach that was chosen to reach our goal, the status of the project, the principle layout of the facility, and the different ways this facility could be utilized. PMID:18315134

Roeder, M; Dehnel, M; Jackle, P; Stewart, T; Theroux, J

2008-02-01

12

The Radiological Research Accelerator Facility  

SciTech Connect

The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). Fifteen different experiments were run during these 12 months, approximately the same as the previous two years. Brief summaries of each experiment are included. Accelerator usage is summarized and development activities are discussed. 7 refs., 4 tabs.

Hall, E.J.; Marino, S.A.

1990-07-01

13

Accelerator Facilities for Radiation Research  

NASA Technical Reports Server (NTRS)

HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

Cucinotta, Francis A.

1999-01-01

14

The Radiological Research Accelerator Facility  

SciTech Connect

The Radiological Research Accelerator Facility (RARAF) is based on 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Brief summaries of research experiments are included. Accelerator usage is summarized and development activities are discussed. 8 refs., 8 tabs.

Hall, E.J.; Marino, S.A.

1991-05-01

15

The Biological Flight Research Facility  

NASA Technical Reports Server (NTRS)

NASA Ames Research Center is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately 30 years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially, the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5-m diam centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

Johnson, Catherine C.

1991-01-01

16

Developing a Shared Research Facility.  

ERIC Educational Resources Information Center

Planning, creation, and current operation of the Transgenic Mouse Research Facility at the New York University Kaplan Cancer Center are discussed. The university considered need, space, funding, supervision, and marketing and followed a logical and structured management process embodying both scientific and administrative input. (Author/MSE)

Goodman, Ira S.; Newcomb, Elizabeth W.

1990-01-01

17

The Biological Flight Research Facility  

NASA Technical Reports Server (NTRS)

NASA Ames Research Center (ARC) is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately thirty years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5 meter diameter centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. Included in the facility are a service unit for providing clean chambers for the specimens and a glovebox for manipulating the plant and animal specimens and for performing experimental protocols. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

Johnson, Catherine C.

1993-01-01

18

The Radiological Research Accelerator Facility  

SciTech Connect

The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well characterized radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Data obtained from experiments using RARAF have been of pragmatic value to radiation protection and neutron therapy. At a more fundamental level, the research protection and neutron therapy. At a more fundamental level, the research at RARAF has provided insight into the biological action of radiation and especially its relation to energy distribution in the cell. High-LET radiations are an agent of special importance because measurable cellular effects can be caused by single particles, eliminating some of the complexities of multievent action and more clearly disclosing basic features. This applies particularly to radiation carcinogenesis.

Hall, E.J.

1989-07-01

19

Book review: Elizabeth E. Watson, 2009, Living Terraces in Ethiopia Konso Landscape, Culture & Development, Woodbridge and New York: James Currey  

E-print Network

1 Book review: Elizabeth E. Watson, 2009, Living Terraces in Ethiopia ­ Konso Landscape, Culture & Development, Woodbridge and New York: James Currey (an imprint of Boydell and Brewer) Eastern Africa Series'Ethiopie. Quotation: Demeulenaere, Elise. 2010. "Book review of Watson E. E., 2009, 'Living Terraces in Ethiopia

Paris-Sud XI, Université de

20

NASA Wallops Flight Facility Air-Sea Interaction Research Facility  

NASA Technical Reports Server (NTRS)

This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

Long, Steven R.

1992-01-01

21

Supplemental multilayer insulation research facility  

NASA Technical Reports Server (NTRS)

The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3 x 10(exp -4) Newton/sq meter (1 x 10(exp -6) torr). Warm side boundary temperatures can be maintained constant between 111 K (200 R) and 361 K (650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 cu meter (120 gallon) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH2 and LN2 ground storage dewars.

Dempsey, P. J.; Stochl, R. J.

1995-01-01

22

Research facility access & science education  

SciTech Connect

As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

1994-10-01

23

Major Facilities for Materials Research  

E-print Network

Neutron Facility. The new capabilities at existing facilities in order of pri- ority are: centers for cold Neutron Source: upgrading of the National Magnet Laboratory: and enriched pulsed neutron targets State Neutron Facility; a 1 to 2 GeV Synchrotron Radi- ation Facility: and a High Intensity Pulsed

Kemner, Ken

24

Microsporidiosis in Zebrafish Research Facilities  

PubMed Central

Pseudoloma neurophilia (Microsporidia) is the most common pathogen detected in zebrafish (Danio rerio) from research facilities. The parasite infects the central nervous system and muscle and may be associated with emaciation and skeletal deformities. However, many fish exhibit sub-clinical infections. Another microsporidium, Pleistophora hyphessobryconis, has recently been detected in a few zebrafish facilities. Here, we review the methods for diagnosis and detection, modes of transmission, and approaches used to control microsporidia in zebrafish, focusing on P. neurophilia. The parasite can be readily transmitted by feeding spores or infected tissues, and we show that cohabitation with infected fish is also an effective means of transmission. Spores are released from live fish in various manners, including through the urine, feces, and sex products during spawning. Indeed, P. neurophilia infects both the eggs and ovarian tissues, where we found concentrations ranging from 12,000 to 88,000 spores per ovary. Hence, various lines of evidence support the conclusion that maternal transmission is a route of infection: spores are numerous in ovaries and developing follicles in infected females, spores are present in spawned eggs and water from spawning tanks based on polymerase chain reaction tests, and larvae are very susceptible to the infection. Furthermore, egg surface disinfectants presently used in zebrafish laboratories are ineffective against microsporidian spores. At this time, the most effective method for prevention of these parasites is avoidance. PMID:23382342

Sanders, Justin L.; Watral, Virginia; Kent, Michael L.

2014-01-01

25

Facilities for animal research in space  

NASA Technical Reports Server (NTRS)

The animal facilities used aboard or designed for various spacecraft research missions are described. Consideration is given to the configurations used in Cosmos-1514 (1983) and Cosmos-1887 (1987) missions; the reusable Biosatellite capsule flown three times by NASA between 1966 and 1969; the NASA's Lifesat spacecraft that is being currently designed; the Animal Enclosure Module flown on Shuttle missions in 1983 and 1984; the Research Animal Holding Facility developed for Shuttle-Spacelab missions; the Rhesus Research Facility developed for a Spacelab mission; and the Japanese Animal Holding Facility for the Space Station Freedom. Special attention is given to the designs of NASA's animal facilities developed for Space Station Freedom and the details of various subsystems of these facilities. The main characteristics of the rodent and the primate habitats provided by these various facilities are discussed.

Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.

1991-01-01

26

Neuroscience at Royal Holloway Research Facilities  

E-print Network

1 Neuroscience at Royal Holloway #12;2 Research Facilities The neuroscience group at Royal Holloway presentation and data analysis facilities) About Neuroscience at Royal Holloway Royal Holloway is a constituent group at Royal Holloway consists of about 20 members of academic staff and members of their research

Royal Holloway, University of London

27

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY  

E-print Network

: Stephen A. Marino, M.S. Chief Physicist: Gerhard Randers-Pehrson, Ph.D. Funding During this year, we were delighted that NIH funding for continued development of our single-particle microbeam facility was renewed and awards from NIH, DOE, and NASA. Brief descriptions of these experiments are given here: Studies

28

Radiological Research Accelerator Facility Service Request Form  

E-print Network

: What cell culture or animal facilities will you need: 3 yes #12;National Institute of BiomedicalRadiological Research Accelerator Facility Service Request Form National Institute of Biomedical #:_____________________________ Grant Title: 1 #12;National Institute of Biomedical Imaging and Bioengineering Discuss the technical

29

Environmental practices for biomedical research facilities.  

PubMed Central

As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12. PMID:11121360

Medlin, E L; Grupenhoff, J T

2000-01-01

30

Environmental practices for biomedical research facilities.  

PubMed

As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12. PMID:11121360

Medlin, E L; Grupenhoff, J T

2000-12-01

31

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility  

E-print Network

the NCRR to the National Institute of Biomedical Imaging and Bioengi- neering (NIBIB). Research Using RARAF from the NIH, the National Aeronautics and Space Admini- stration (NASA), the National Science Foundation (NSF) and the Ministry of Education, Science, Sports and Culture of Japan. Brief descriptions

32

University of Nebraska Animal Research Facilities  

E-print Network

University of Nebraska Animal Research Facilities Policy on Photography and Videography in Areas with Animals Purpose: Contact between visitors to the University and animals used in Research and teaching can animals, to protect the health of research animals, to protect the confidentiality and integrity

Farritor, Shane

33

Continuous Commissioning of a Medical Research Facility  

E-print Network

This paper presents a case study for Continuous Commissioning (CC)of a 520,000 square foot medical research facility. All of the primary energy using systems in the building were investigated to determine their existing condition and operation...

Turner, W. D.; Baltazar-Cervantes, J. C.; Zeig, G.; Wei, G.

2007-01-01

34

9 CFR 2.37 - Federal research facilities.  

Code of Federal Regulations, 2011 CFR

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2011-01-01

35

9 CFR 2.37 - Federal research facilities.  

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2014-01-01

36

9 CFR 2.37 - Federal research facilities.  

Code of Federal Regulations, 2010 CFR

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2010-01-01

37

9 CFR 2.37 - Federal research facilities.  

Code of Federal Regulations, 2012 CFR

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2012-01-01

38

9 CFR 2.37 - Federal research facilities.  

Code of Federal Regulations, 2013 CFR

...false Federal research facilities...Section 2.37 Animals and Animal Products...AGRICULTURE ANIMAL WELFARE REGULATIONS Research Facilities ...Each Federal research facility shall...Institutional Animal Care and...

2013-01-01

39

NREL Research Support Facility (RSF) Documentary  

SciTech Connect

he ideas and innovations that define NREL are now shaping the next generation of commercial office buildings. DOE's Research Support Facility at NREL, will set a new benchmark for affordable, sustainable commercial design and construction. The unique form of the RSF is driven by energy-saving strategies, many researched and advanced at NREL.

None

2010-01-01

40

Science and Engineering Research Facilities at Colleges and Universities: 1996  

NSF Publications Database

... Facilities at Colleges and Universities: 1996 Hypertext Format Scientific and Engineering Research ... 1996 Portable Document Format (.pdf) Scientific and Engineering Research Facilities at Colleges and ...

41

The Sanford Underground Research Facility at Homestake  

E-print Network

The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

J. Heise

2014-01-05

42

International Space Station -- Human Research Facility (HRF)  

NASA Technical Reports Server (NTRS)

Arn Harris Hoover of Lockheed Martin Company demonstrates an engineering mockup of the Human Research Facility (HRF) that will be installed in Destiny, the U.S. Laboratory Module on the International Space Station (ISS). Using facilities similar to research hardware available in laboratories on Earth, the HRF will enable systematic study of cardiovascular, musculoskeletal, neurosensory, pulmonary, radiation, and regulatory physiology to determine biomedical changes resulting from space flight. Research results obtained using this facility are relevant to the health and the performance of the astronaut as well as future exploration of space. Because this is a mockup, the actual flight hardware may vary as desings are refined. (Credit: NASA/Marshall Space Flight Center)

2000-01-01

43

The Sanford Underground Research Facility at Homestake  

E-print Network

The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

Heise, J

2014-01-01

44

Zero Gravity Research Facility User's Guide  

NASA Technical Reports Server (NTRS)

The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.

Thompson, Dennis M.

1999-01-01

45

Guidelines for Setting Priority for Major Research Facilities  

NSF Publications Database

... facility could help answer. The National Science Board approves all large facility projects, as ... a facility project for approval, the Board reviews the need for such a facility, the research that ...

46

Paying for University Research Facilities and Administration.  

ERIC Educational Resources Information Center

In 1998, Congress directed the White House Office of Science and Technology Policy (OSTP) to conduct an analysis of issues related to the ways universities recover the facilities and administrative costs (also known as indirect costs) they incur when performing research under federal grants and contracts. At OSTP's request, the RAND Science and

Goldman, Charles A.; Williams, T.

47

Information Technology and the Human Research Facility  

NASA Technical Reports Server (NTRS)

This slide presentation reviews how information technology supports the Human Research Facility (HRF) and specifically the uses that contractor has for the information. There is information about the contractor, the HRF, some of the experiments that were performed using the HRF on board the Shuttle, overviews of the data architecture, and software both commercial and specially developed software for the specific experiments.

Klee, Margaret

2002-01-01

48

Field Campaign Guidelines (ARM Climate Research Facility)  

SciTech Connect

The purpose of this document is to establish a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking database tool and are tailored to meet the scope of each specific field campaign.

Voyles, JW

2011-01-17

49

Holifield Heavy Ion Research Facility: Users handbook  

SciTech Connect

The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given. (LEW)

Auble, R.L. (ed.)

1987-01-01

50

New Mexico energy research resource registry. Researchers and facilities  

NASA Technical Reports Server (NTRS)

Human resources and facilities in New Mexico available for application to energy research and development are listed. Information regarding individuals with expertise in the environmental, socio-economic, legal, and management and planning areas of the energy effort is included as well as those scientists, engineers, and technicians involved directly in energy research and development.

1975-01-01

51

Animal research facility for Space Station Freedom  

NASA Technical Reports Server (NTRS)

An integrated animal research facility is planned by NASA for Space Station Freedom which will permit long-term, man-tended experiments on the effects of space conditions on vertebrates. The key element in this facility is a standard type animal habitat which supports and maintains the animals under full bioisolation during transport and during the experiment. A holding unit accommodates the habitats with animals to be maintained at zero gravity; and a centrifuge, those to be maintained at artificial gravity for control purposes or for gravity threshold studies. A glovebox permits handling of the animals for experimental purposes and for transfer to a clean habitat. These facilities are described, and the aspects of environmental control, monitoring, and bioisolation are discussed.

Bonting, Sjoerd L.

1992-01-01

52

OTEC research and the seacoast test facility  

NASA Astrophysics Data System (ADS)

OTEC mariculture, and other developing research programs at the Natural Energy Laboratory at Keahole Point, Hawaii are reviewed. The installation is designed to feature both onshore and offshore facilities, including cold water intakes and discharge pipelines, warm water intake and discharge pipelines, a pumping station, constant head tanks, laboratories, and support facilities. The Seacoast Test Facility for OTEC development is being constructed to have a ten year lifetime, a 50-ft depth warm water intake, 2100-ft cold water intake, uninterrupted flow from the intakes, cold water temperature rise limited to 1 C, degassing capability for the cold water, and biologically inert pipeline materials. An additional 250 gpm cold water pipeline is being fabricated for mariculture experimentation. Heat transfer monitors, biofouling and corrosion test sections are also being constructed.

Hallanger, L. W.

53

Aerial Flyover of New Research Facilities  

ScienceCinema

The Idaho National Laboratory is focused on continued development of its primary campus areas, including our Idaho Falls campus, to enable the INL to meet DOE expectations as the nations lead nuclear energy laboratory. This video identifies some of the existing Idaho Falls campus facilities and highlights planned and potential future development to support campus growth. You can learn more about INL's energy research projects at http://www.facebook.com/idahonationallaboratory.

None

2013-05-28

54

The Oliktok Point Arctic Research Facility (OPARF)  

NASA Astrophysics Data System (ADS)

For the past year, the US Department of Energy, through Sandia National Laboratories, has operated a Designated User Facility at Oliktok Point Alaska, on the Arctic Ocean coast near the western end of the Prudhoe Bay oil fields. The primary purpose of this user facility is to accommodate and support manned and unmanned airborne measurement platforms over the Arctic Ocean and adjacent coastline as the arctic sea ice recedes. The speed at which the sea ice is receding exceeds model-projected speeds considerably for reasons that are not fully understood. The ultimate objective is to incorporate improved understanding of the radiative and other processes impacting sea ice recession into the relevant climate models. OPARF is based at a USAF Long Range Radar Station, an old Distant Early Warning (DEW) radar station built during the height of the Cold War, but continuing to be operated to track air traffic over the pole. The USAF has graciously granted Sandia and DOE use of selected facilities at Oliktok on a non-interference basis. DOE also maintains FAA-granted Restricted Airspace over Oliktok Point and adjacent ocean. In addition, DOE has also requested that the FAA establish a Warning Area over international waters 30 miles wide and 700 miles long stretching from near Oliktok towards the North Pole. That request is currently being processed by the FAA, with the public comment period now closed. This paper will update OPARF developments for potential users of the Oliktok user facility and other interested researchers.

Zak, B. D.; Ivey, M.

2011-12-01

55

Solar Energy Research Center Instrumentation Facility  

SciTech Connect

SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR DEVICE FABRICATION LABORATORY DEVELOPMENT The space allocated for this laboratory was ?¢????shell space?¢??? that required an upfit in order to accommodate nano-fabrication equipment in a quasi-clean room environment. This construction project (cost $279,736) met the non-federal cost share requirement of $250,000 for this award. The central element of the fabrication laboratory is a new $400,000+ stand-alone system, funded by other sources, for fabricating and characterizing photovoltaic devices, in a state-of-the-art nanofabrication environment. This congressionally directed project also included the purchase of an energy dispersive x-ray analysis (EDX) detector for a pre-existing transmission electron microscope (TEM). This detector allows elemental analysis and elemental mapping of materials used to fabricate solar energy devices which is a key priority for our research center. TASK 2: SOLAR ENERGY SPECTROSCOPY LABORATORY DEVELOPMENT (INSTRUMENTATION) This laboratory provides access to modern spectroscopy and photolysis instrumentation for characterizing devices, materials and components on time scales ranging from femtoseconds to seconds and for elucidating mechanisms. The goals of this congressionally directed project included the purchase and installation of spectroscopy and photolysis instrumentation that would substantially and meaningfully enhance the capabilities of this laboratory. Some changes were made to the list of equipment proposed in the original budget. These changes did not represent a change in scope, approach or aims of this project. All of the capabilities and experiments represented in the original budget were maintained. The outcome of this Congressionally Directed Project has been the development of world-class fabrication and spectroscopy user facilities for solar fuels research at UNC-CH. This award has provided a significant augmentation of our pre-existing instrumentation capabilities which were funded by earlier UNC SERC projects, including the Energy Frontier

Meyer, Thomas, J.; Papanikolas, John, P.

2011-11-11

56

Antarctic Research Facility of Florida State University  

NSDL National Science Digital Library

The Antarctic Research Facility, part of the Florida State University Department of Geology, is a repository of polar geological core and dredge samples collected from the Antarctic and the subantarctic marine regions. Types of rock and sedimentary materials cores include piston, trigger, phleger, gravity, and rotary cores. The cores come from over ten different projects and cruises including USNS Eltanin surveys, International Weddell Sea Oceanographic Expeditions, and the Ross Ice Shelf Project. Users can search samples via two methods: a core or sample search. A core search allows the user to search for a core using criteria such as latitude or water depth. The sample search allows users to view how often a core has been sampled and by whom. Samples of the cores are available to National Science Foundation funded researchers usually upon receipt and to non-NSF-funded researchers upon approval by Antarctic geoscientists. Descriptions of material cores are available free of charge upon request; a sample request form is available online. Information about staff members and the facility location is provided in addition to related links.

1997-01-01

57

An overview of SERI solar thermal research facilities  

NASA Astrophysics Data System (ADS)

A brief overview of the four Solar Energy Research Institute in-house solar thermal research laboratories is presented, including advanced component research and mid-temperature collector research field facilities, which have been combined into a single unit, the Thermal Conversion Research Station. The facility for solar energy research and applications in process heat, which is currently under construction, is also described.

Kreith, F.

1980-12-01

58

ARM Climate Research Facility Annual Report 2005  

SciTech Connect

Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

J. Voyles

2005-12-31

59

Europlanet Research Infrastructure: Planetary Sample Analysis Facilities  

NASA Astrophysics Data System (ADS)

EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the third TNA: Planetary Sample Analysis Facilities. The modular infrastructure represents a major commitment of analytical instrumentation by three institutes and together forms a state-of-the-art analytical facility of unprecedented breadth. These centres perform research in the fields of geochemistry and cosmochemistry, studying fluids and rocks in order to better understand the keys cof the universe. Europlanet Research Infrastructure Facilities: Ion Probe facilities at CRPG and OU The Cameca 1270 Ion microprobe is a CNRS-INSU national facility. About a third of the useful analytical time of the ion probe (about 3 months each year) is allocated to the national community. French scientists have to submit their projects to a national committee for selection. The selected projects are allocated time in the following 6 months twice a year. About 15 to 20 projects are run each year. There are only two such instruments in Europe, with cosmochemistry only performed at CRPG. Different analyses can be performed on a routine basis, such as U-Pb dating on Zircon, Monazite or Pechblende, Li, B, C, O, Si isotopic ratios determination on different matrix, 26Al, 60Fe extinct radioactivity ages, light and trace elements contents . The NanoSIMS 50L - producing element or isotope maps with a spatial resolution down to ?50nm. This is one of the cornerstone facilities of UKCAN, with 75% of available instrument time funded and committed to UK cosmochemical activity - but the remainder is free for other applications and users. The UK activity is managed by the UKCAN management committee and vetted through a local working group. Management of the remaining 25% of other activity will be organised through the local working group. This is the newest, and most advanced of three instruments of this type in Europe which routinely address cosmochemical analyses. The instrument is capable of providing high spatial resolution (down to 50nm) elemental and isotope distribution maps for a wide range of elements from across the periodic table. It is also capable of high precision (per mil) isotopic spot measurements with a spatial resolution of a few microns for a range of elements including C, N, O, S, Si, Mg, etc. Noble Gases facilities at CRPG and OU Ar/Ar Nu Instruments Noblesse is coupled with an ultra-low volume extraction line and with a choice of 213 nm UV laser or 1090 nm IR lasers, providing a wide range of analytical capability in Ar/Ar dating of lunar and meteorite samples. This instrument is unique with a mass resolution of 3000, and with the UV laser it has the capability to measure Ar isotope variation on a ca. 30 -micron resolution enabling detailed mapping of age and apparent age variation within minerals. The 1090 nm laser provides the capability to step-heat small samples. The laboratory is fully supported by sample preparation facilities and technical expertise in lunar and meteorite Ar/Ar analysis. Helium isotope facility. Analysis of the isotopes of helium in rocks and minerals. Determining the origin of gases in meteorites and ET return samples, dating surface exposure with cosmogenic 3He using the latest He isotope mass spectrometer, the GV Helix SFT, the first instrument installed in Europe. CRPG is an European leader in this domain. Non-Traditional stable Isotopes and radiogenic isotopes at VUA and CRPG The specific facility proposed for the TNA is the geochemistry labs used for the study of long (e.g. Rb- Sr, Sm-Nd) and short-lived radioisotope (e.g. Mg- Al, Hf-W..), inc

Cloquet, C.; Mason, N. J.; Davies, G. R.; Marty, B.

2008-09-01

60

High temperature aircraft research furnace facilities  

NASA Technical Reports Server (NTRS)

Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

Smith, James E., Jr.; Cashon, John L.

1992-01-01

61

Sea-ice Environmental Research Facility  

NASA Astrophysics Data System (ADS)

The Sea-ice Environmental Research Facility (SERF) is the first experimental sea-ice facility in Canada. Located in Winnipeg on the campus of the University of Manitoba, the main feature of SERF is an outdoor seawater pool (60 feet long, 30 feet wide and 8 feet deep) with a movable roof, numerous in situ sensors and instruments, and an on site trailer laboratory. Sea ice can be created at the pool under various controlled conditions (e.g., seawater chemistry, snow cover, heating) with the additions of chemical, isotopic and/or microbiological tracers. During the 2011-2012 inaugural year of operation, several types of sea ice including pancake ice and frost flowers were successfully created at the SERF pool. Real-time monitoring was carried out on surface and optical properties and on the evolution of temperature, salinity, dissolved oxygen, pH, alkalinity, pCO2, and mercury in and across the sea ice environment. The results demonstrate that SERF could provide a unique research platform for hypothesis-driven, mesocosm-scale studies to examine geophysical properties and biogeochemical processes in the sea ice environment.

Rysaard, S.; Wang, F.; Papakyriakou, T. N.; Barber, D. G.

2012-12-01

62

Research opportunities with the Centrifuge Facility  

NASA Technical Reports Server (NTRS)

The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.

Funk, Glenn A.

1992-01-01

63

NSTX: Facility/Research Highlights and Near Term Facility Plans  

SciTech Connect

The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

M. Ono

2008-11-19

64

In Vivo Radiobioassay and Research Facility  

SciTech Connect

Bioassay monitoring for intakes of radioactive material is an essential part of the internal dosimetry program for radiation workers at the Department of Energys (DOE) Hanford Site. This monitoring program includes direct measurements of radionuclides in the body by detecting photons that exit the body and analyses of radionuclides in excreta samples. The specialized equipment and instrumentation required to make the direct measurements of these materials in the body are located at the In Vivo Radiobioassay and Research Facility (IVRRF). The IVRRF was originally built in 1960 and was designed expressly for the in vivo measurement of radioactive material in Hanford workers. Most routine in vivo measurements are performed annually and special measurements are performed as needed. The primary source terms at the Hanford Site include fission and activation products (primarily 137Cs and 90Sr), uranium, uranium progeny, and transuranic radionuclides. The facility currently houses five shielded counting systems, mens and womens change rooms and an instrument maintenance and repair shop. Four systems include high purity germanium detectors and one system utilizes large sodium iodide detectors. These systems are used to perform an average of 7,000 measurements annually. This includes approximately 5000 whole body measurements analyzed for fission and activation products and 2000 lung measurements analyzed for americium, uranium, and plutonium. Various other types of measurements are performed periodically to estimate activity in wounds, the thyroid, the liver, and the skeleton. The staff maintains the capability to detect and quantify activity in essentially any tissue or organ. The in vivo monitoring program that utilizes the facility is accredited by the Department of Energy Laboratory Accreditation Program for direct radiobioassay.

Lynch, Timothy P.

2011-02-01

65

Facilities involved in adaptive wall research  

NASA Technical Reports Server (NTRS)

During the first meeting of the Working Group, it was apparent that the assessment and interpretation of the current level of the technology could be achieved most easily provided the information in a common format. This would also minimize any danger of misinterpretation by third parties of existing published information. As a result, the Group developed a questionnaire and distributed it to all involved in adaptive wall research. The questionnaire solicited information on the mechanical details of the facilities as well as details of the adaptation strategy itself. The scope of testing accomplished and future plans were included. The information contained in the responses is summarized. This information was the source for much of the data. Because some of the data contained in these questionnaires is not discussed elsewhere, they are reproduced in their entirety as an Appendix. The questionnaire is also presented to serve as a guide to the written responses.

Ladson, Charles L. (editor)

1990-01-01

66

Research Reactors and Radiation Facilities for Joint Use Program  

E-print Network

Research Reactors and Radiation Facilities for Joint Use Program Kyoto University Research Reactor at the Hida Observatory The Kyoto University Research Reactor Institute (KURRI) was established in 1963 of nuclear energy and radiation application. The main facility, called the Kyoto University Research Reactor

Takada, Shoji

67

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents  

E-print Network

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 118 RARAF Table of Contents RARAF Professional. Not shown: Brian Ponnaiya, Kenichi Tanaka and Gloria Jenkins-Baker. #12;CENTER FOR RADIOLOGICAL RESEARCH ANNUAL REPORT 2008 119 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE CENTER

68

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents  

E-print Network

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 113 RARAF - Table of Contents RARAF Professional. Not shown: Brian Ponnaiya, Kenichi Tanaka and Gloria Jenkins-Baker. #12;CENTER FOR RADIOLOGICAL RESEARCH · ANNUAL REPORT 2007 114 The Radiological Research Accelerator Facility AN NIH-SUPPORTED RESOURCE CENTER

69

NATIONAL BALLOON FACILITY TATA INSTITUTE OF FUNDAMENTAL RESEARCH  

E-print Network

NATIONAL BALLOON FACILITY TATA INSTITUTE OF FUNDAMENTAL RESEARCH ECIL PO., HYDERABAD-500062 (AP), INDIA CONVENTIONAL BALLOON SUPPORT APPLICATION Date: Payload Acronym: _____________________________________________________ Payload Name: _____________________________________________________________ The Conventional Balloon

Udgaonkar, Jayant B.

70

Charter for the ARM Climate Research Facility Science Board  

SciTech Connect

The objective of the ARM Science Board is to promote the Nations scientific enterprise by ensuring that the best quality science is conducted at the DOEs User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.

Ferrell, W

2013-03-08

71

Cutting-Edge Experimental Equipment Facilities for High Quality Research  

E-print Network

's state-of-the-art laboratories and research facilities provide students and researchers with the hands. Recently, a state-of-the-art hybrid operation room called a next-generation hybrid OR was builtPS Cell Therapy And the iPS Cell Stock Project. The Facility for iPS Cell Therapy (FiT), a cell processing

Takada, Shoji

72

Materials sciences research. [research facilities, research projects, and technical reports of materials tests  

NASA Technical Reports Server (NTRS)

Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.

1973-01-01

73

Biomass Gasification Research Facility Final Report  

SciTech Connect

While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-02GO12024 and DE-FC36-03GO13175) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. The primary objectives of Cooperative Agreement DE-FC36-02GO12024 were the selection, acquisition, and application of a suite of gas analyzers capable of providing near real-time gas analyses to suitably conditioned syngas streams. A review was conducted of sampling options, available analysis technologies, and commercially available analyzers, that could be successfully applied to the challenging task of on-line syngas characterization. The majority of thermochemical process streams comprise multicomponent gas mixtures that, prior to crucial, sequential cleanup procedures, include high concentrations of condensable species, multiple contaminants, and are often produced at high temperatures and pressures. Consequently, GTI engaged in a concurrent effort under Cooperative Agreement DE-FC36-03GO13175 to develop the means to deliver suitably prepared, continuous streams of extracted syngas to a variety of on-line gas analyzers. The review of candidate analysis technology also addressed safety concerns associated with thermochemical process operation that constrain the location and configuration of potential gas analysis equipment. Initial analyzer costs, reliability, accuracy, and operating and maintenance costs were also considered prior to the assembly of suitable analyzers for this work. Initial tests at GTIs Flex-Fuel Test Facility (FFTF) in late 2004 and early 2005 successfully demonstrated the transport and subsequent analysis of a single depressurized, heat-traced syngas stream to a single analyzer (an Industrial Machine and Control Corporation (IMACC) Fourier-transform infrared spectrometer (FT-IR)) provided by GTI. In March 2005, our sampling approach was significantly expanded when this project participated in the U.S. DOEs Novel Gas Cleaning (NGC) project. Syngas sample streams from three process locations were transported to a distribution manifold for selectable analysis by the IMACC FT-IR, a Stanford Research Systems QMS300 Mass Spectrometer (SRS MS) obtained under this Cooperative Agreement, and a Varian micro gas chromatograph with thermal conductivity detector (?GC) provided by GTI. A syngas stream from a fourth process location was transported to an Agilent Model 5890 Series II gas chromatograph for highly sensitive gas analyses. The on-line analyses made possible by this sampling system verified the syngas cleaning achieved by the NGC process. In June 2005, GTI collaborated with Weyerhaeuser to characterize the ChemrecTM black liquor gasifier at Weyerhaeusers New Bern, North Carolina pulp mill. Over a ten-day period, a broad range of process operating conditions were characterized with the IMACC FT-IR, the SRS MS, the Varian ?GC, and an integrated Gas Chromatograph, Mass Selective Detector, Flame Ionization Detector and Sulfur Chemiluminescence Detector (GC/MSD/FID/SCD) system acquired under this Cooperative Agreement from Wasson-ECE. In this field application, a single sample stream was extracted from this low-pressure, low-temperature process and successfully analyzed by these devices. In late 2005,

Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

2007-09-30

74

National remote computational flight research facility  

NASA Technical Reports Server (NTRS)

The extension of the NASA Ames-Dryden remotely augmented vehicle (RAV) facility to accommodate flight testing of a hypersonic aircraft utilizing the continental United States as a test range is investigated. The development and demonstration of an automated flight test management system (ATMS) that uses expert system technology for flight test planning, scheduling, and execution is documented.

Rediess, Herman A.

1989-01-01

75

6 Research Activities 2012 Domestic Facilities  

E-print Network

. Ogata Wave Observatory, Niigata (D.P.R.I.) 4. Kiso Biological Research Institute, Fukushima, Nagano (Sci of the university's academic activities. Abbreviations D.P.R.I. --- Disaster Prevention Research Institute Sci

Takada, Shoji

76

A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility  

NASA Technical Reports Server (NTRS)

The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.

Jackson, K. E.; Fasanella, E. L.

2003-01-01

77

NSTX Program Governance, Research Support and Facility Operation  

E-print Network

NSTX Program Governance, Research Support and Facility Operation Office of Science M.G. Bell, PPPL and performance of the direct program management Assess the current performance of facility operations at a top level #12;NSTX 2009-13 5 year Plan ­ Governance, Support and Operation (Bell) 3July 28, 2008 NSTX

Princeton Plasma Physics Laboratory

78

A study of the operation of selected national research facilities  

NASA Technical Reports Server (NTRS)

The operation of national research facilities was studied. Conclusions of the study show that a strong resident scientific staff is required for successful facility operation. No unique scheme of scientific management is revealed except for the obvious fact that the management must be responsive to the users needs and requirements. Users groups provide a convenient channel through which these needs and requirements are communicated.

Eisner, M.

1974-01-01

79

A facility for using cluster research to study environmental problems  

SciTech Connect

This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

Not Available

1991-11-01

80

Creating nursing research opportunities in rural healthcare facilities.  

PubMed

Advanced practice registered nurses, and clinical nurse specialists in particular, play a critical role in creating an institutional research culture and developing nurses' knowledge about the research process, implementing evidence-based care, and participating in continuous quality improvement initiatives. This article focuses on creating nursing research opportunities in small healthcare facilities located in rural settings. PMID:15077834

Bushy, Angeline

2004-01-01

81

Scientific and Engineering Research Facilities, 1999. Detailed Statistical Tables.  

ERIC Educational Resources Information Center

The data in these tables are collected biennially through the National Science Foundation's (NSF's) Congressionally mandated Survey of Scientific and Engineering Research Facilities. The 1999 survey was sent to research-performing colleges and universities in the United States and to U.S. biomedical research institutions that received National

National Science Foundation, Arlington, VA. Div. of Science Resources Studies.

82

ORGANIZATIONAL CULTURE, SAFETY CULTURE, AND SAFETY PERFORMANCE AT RESEARCH FACILITIES.  

SciTech Connect

Organizational culture surveys of research facilities conducted several years ago and archival occupational injury reports were used to determine whether differences in safety performance are related to general organizational factors or to ''safety culture'' as reflected in specific safety-related dimensions. From among the organizations surveyed, a pair of facilities was chosen that were similar in size and scientific mission while differing on indices of work-related injuries. There were reliable differences in organizational style between the facilities, especially among workers in environment, safety, and health functions; differences between the facilities (and among job categories) on the safety scale were more modest and less regular.

BROWN,W.S.

2000-07-30

83

Users Guide for the National Transonic Facility Research Data System  

NASA Technical Reports Server (NTRS)

The National Transonic Facility is a complex cryogenic wind tunnel facility. This report briefly describes the facility, the data systems, and the instrumentation used to acquire research data. The computational methods and equations are discussed in detail and many references are listed for those who need additional technical information. This report is intended to be a user's guide, not a programmer's guide; therefore, the data reduction code itself is not documented. The purpose of this report is to assist personnel involved in conducting a test in the National Transonic Facility.

Foster, Jean M.; Adcock, Jerry B.

1996-01-01

84

Laidlaw Honey Bee Research Facility: Who We Are The Harry H. Laidlaw Jr. Honey Bee Research Facility is a nexus for diverse bee research  

E-print Network

Laidlaw Honey Bee Research Facility: Who We Are The Harry H. Laidlaw Jr. Honey Bee Research Facility is a nexus for diverse bee research and scientists from around the world. We provide cuttingedge research on basic bee biology, genetics, pollination and conservation. We address international concerns

Ishida, Yuko

85

(ARI) Academic Research Infrastructure Program Facilities Modernization  

NSF Publications Database

... Conditions NSF Org: OD / OGC Date : August 23, 1996 File : ari ACADEMIC RESEARCH INFRASTRUCTURE ... a. Project costs incurred prior to March 15, 1996; b. Any costs charged to the grant that exceed the ...

86

Space Chemical Propulsion Test Facilities at NASA Lewis Research Center  

NASA Technical Reports Server (NTRS)

The NASA Lewis Research Center, located in Cleveland, Ohio, has a number of space chemical propulsion test facilities which constitute a significant national space testing resource. The purpose of this paper is to make more users aware of these test facilities and to encourage their use through cooperative agreements between the government, industry, and universities. Research which is of interest to the government is especially encouraged and often can be done in a cooperative manner that best uses the resources of all parties. An overview of the Lewis test facilities is presented.

Urasek, Donald C.; Calfo, Frederick D.

1993-01-01

87

Biomass Gasification Research Facility Final Report  

SciTech Connect

While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-03GO13175 and DE-FC36-02GO12024) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. This multi-year effort to develop methods to effectively monitor gaseous species produced in thermochemical process streams resulted in a sampling and analysis approach that is continuous, sensitive, comprehensive, accurate, reliable, economical, and safe. The improved approach for sampling thermochemical processes that GTI developed and demonstrated in its series of field demonstrations successfully provides continuous transport of vapor-phase syngas streams extracted from the main gasification process stream to multiple, commercially available analyzers. The syngas stream is carefully managed through multiple steps to successfully convey it to the analyzers, while at the same time bringing the stream to temperature and pressure conditions that are compatible with the analyzers. The primary principle that guides the sample transport is that throughout the entire sampling train, the temperature of the syngas stream is maintained above the maximum condensation temperature of the vapor phase components of the conveyed sample gas. In addition, to minimize adsorption or chemical changes in the syngas components prior to analysis, the temperature of the transported stream is maintained as hot as is practical, while still being cooled only as much necessary prior to entering the analyzer(s). The successful transport of the sample gas stream to the analyzer(s) is accomplished through the managed combination of four basic gas conditioning methods that are applied as specifically called for by the process conditions, the gas constituent concentrations, the analyzer requirements, and the objectives of the syngas analyses: 1) removing entrained particulate matter from the sample stream; 2) maintaining the temperature of the sample gas stream; 3) lowering the pressure of the sample gas stream to decrease the vapor pressures of all the component vapor species in the sample stream; and 4) diluting the gas stream with a metered, inert gas, such as nitrogen. Proof-of-concept field demonstrations of the sampling approach were conducted for gasification process streams from a black liquor gasifier, and from the gasification of biomass and coal feedstocks at GTIs Flex-Fuel Test Facility. In addition to the descriptions and data included in this Final Report, GTI produced a Special Topical Report, Design and Protocol for Monitoring Gaseous Species in Thermochemical Processes, that explains and describes in detail the objectives, principles, design, hardware, installation, operation and representative data produced during this successful developmental effort. Although the specific analyzers used under Cooperative Agreement DE-FC36-02GO12024 were referenced in the Topical Report and this Final Report, the sampling interface design they present is generic enough to adapt to other analyzers that may be more appropriate to alternate process streams or facilities.

Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

2007-09-30

88

6 Research Activities 2012 Domestic Facilities  

E-print Network

Disasters (D.P.R.C.) 7. Laboratory of Crop Evolution (Agr.) Area [Hokkaido Prefecture] 1. Hokkaido Forest, Fukushima, Nagano (Sci.) 5. Kamitakara Earthquake Prediction Observatory, Gifu(D.P.R.I.) 6. Hodaka of the university's academic activities. Abbreviations D.P.R.I. : Disaster Prevention Research Institute Sci

Takada, Shoji

89

6 Research Activities 2012 Domestic Facilities  

E-print Network

Disasters (D.P.R.C.) 7. Laboratory of Crop Evolution (Agr.) Area [Hokkaido Prefecture] 1. Hokkaido Forest, Fukushima, Nagano (Sci.) 5. Kamitakara Earthquake Prediction Observatory, Gifu(D.P.R.I.) 6. Hodaka for the expansion of the university's academic activities. Abbreviations D.P.R.I. : Disaster Prevention Research

Takada, Shoji

90

ARM Climate Research Facility Annual Report 2004  

SciTech Connect

Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

Voyles, J.

2004-12-31

91

NASA Lewis Research Center's Preheated Combustor and Materials Test Facility  

NASA Technical Reports Server (NTRS)

The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.

Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith

1995-01-01

92

Using a Dining Facility as an Introductory Psychology Research Laboratory.  

ERIC Educational Resources Information Center

Describes different research activities that can be used in a college dining facility to make it a real-life laboratory where students can apply research skills and learn about the scientific method. Offers evidence that the experience provides an effective tool to teach the scientific method. (CMK)

Koschmann, Nancy; Wesp, Richard

2001-01-01

93

Simulation at Dryden Flight Research Facility from 1957 to 1982  

NASA Technical Reports Server (NTRS)

The Dryden Flight Research Facility has been a leader in developing simulation as an integral part of flight test research. The history of that effort is reviewed, starting in 1957 and continuing to the present time. The contributions of the major program activities conducted at Dryden during this 25-year period to the development of a simulation philosophy and capability is explained.

Smith, John P.; Schilling, Lawrence J.; Wagner, Charles A.

1989-01-01

94

Space syntax in healthcare facilities research: a review.  

PubMed

Space Syntax is a theory and method that has been developing for the last 40 years. Originally conceived as a theory of "society and space," it has expanded to other areas. An important aspect of this is technical; it allows the quantification of layouts, and unit spaces within a layout, so that the environment itself can produce independent variables in quantitative research. Increasingly, it is being used to study healthcare facilities. Space Syntax has thereby become relevant to healthcare facilities researchers and designers. This paper attempts to explain Space Syntax to a new audience of healthcare designers, administrators, and researchers; it provides a literature review on the use of Space Syntax in healthcare facility research and suggests some possibilities for future application. PMID:23224810

Haq, Saif; Luo, Yang

2012-01-01

95

Space facilities: Meeting future needs for research, development, and operations  

NASA Technical Reports Server (NTRS)

The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

1994-01-01

96

NASA Lewis Research Center's combustor test facilities and capabilities  

NASA Technical Reports Server (NTRS)

NASA Lewis Research Center (LeRC) presently accommodates a total of six combustor test facilities with unique capabilities. The facilities are used to evaluate combustor and afterburner concepts for future engine applications, and also to test the survivability and performance of innovative high temperature materials, new instrumentation, and engine components in a realistic jet engine environment. The facilities provide a variety of test section interfaces and lengths to allow for flametube, sector and component testing. The facilities can accommodate a wide range of operating conditions due to differing capabilities in the following areas: inlet air pressure, temperature, and flow; fuel flow rate, pressure, and fuel storage capacity; maximum combustion zone temperature; cooling water flow rate and pressure; types of exhaust - atmospheric or altitude; air heater supply pressure; and types of air heaters - vitiated or nonvitiated. All of the facilities have provisions for standard gas (emissions) analysis, and a few of the facilities are equipped with specialized gas analysis equipment, smoke and particle size measurement devices, and a variety of laser systems. This report will present some of the unique features of each of the high temperature/high pressure combustor test facilities at NASA LeRC.

Bianco, Jean

1995-01-01

97

Sandia National Laboratories shock thermodynamics applied research (STAR) facility  

SciTech Connect

The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

Asay, J.R.

1981-08-01

98

Chemistry Research Instrumentation and Facilities : Cyberinfrastructure and Research Facilities (CRIF:CRF)  

NSF Publications Database

... Requirements Proposal Review Information NSF Proposal Review Process Review Protocol and Associated ... funds to research organizations and consortia of research organizations to build a foundation for ...

99

Rain Garden Research at EPA's Urban Watershed Research Facility  

EPA Science Inventory

I have been invited to give a presentation at the 2009 National Erosion Conference in Hartford, CT, on October 27-28, 2009. My presentation discusses the research on sizing of rain gardens that is being conducted using the large, parking lot rain gardens on-site. I discuss the ...

100

Virginia's Smart Road: an intelligent transportation systems research facility  

NASA Astrophysics Data System (ADS)

The smart road is an experimental highway currently under construction in Virginia. It is being built from the ground up with ITS testing and evaluation in mind. Embedded research support infrastructure will include underground conduits, underground junction bunkers, power, a fiber optic data network, embedded pavement sensors, snow making capability, and experimental lighting. The facility will be utilized for a number of research areas including safety and human factors, snow and ice control, pavement research, bridge and structures research, ITS sensor development and evaluation, and roadside to vehicle communications.

Amanna, Ashwin; Crawford, Charles

1998-01-01

101

Integrated Research Facility National Institute of Allergy and Infectious Diseases  

E-print Network

Ci3R Integrated Research Facility National Institute of Allergy and Infectious Diseases Center for Infection and Inflammation Im Johns Hopkins University School o Center for Infectious Disease Imaging aging Challenges in Infectious Disease: Need for Imaging Sanjay K. Jain, MD, Johns Hopkins University 09:00-09:25a

102

ADVANCED PHOTON SOURCE A NATIONAL SYNCHROTRON RADIATION RESEARCH FACILITY  

E-print Network

THE ADVANCED PHOTON SOURCE A NATIONAL SYNCHROTRON RADIATION RESEARCH FACILITY ANL/APS/TB-25-Rev and the Advanced Photon Source. When the Department of Energy received Congressional funding to construct the Advanced Photon Source, the proposed date for operation was summer of 1996. After budget constraints forced

Kemner, Ken

103

International Space University variable gravity research facility design  

Microsoft Academic Search

A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness, and loss of bone calcium. A variable gravity research facility (VGRF) that will

Sheila G. Bailey; Francis P. Chiaramonte; Kenneth J. Davidian

1994-01-01

104

The International Space University's variable gravity research facility design  

Microsoft Academic Search

A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would

Sheila G. Bailey; Francis P. Chiaramonte; Kenneth J. Davidian

1991-01-01

105

Part-time employees in the research facility.  

PubMed

As the "eyes and ears" of the biomedical research team, laboratory animal technicians perform functions essential to maintaining the health of the laboratory animals, and advocate their welfare. The author describes a program that allows part-time employees to perform some of the laboratory animal technician responsibilities when facilities are understaffed and low on funds. PMID:11381214

Douglas, F A; Hays, J T

2000-05-01

106

Virginia's Smart Road: an intelligent transportation systems research facility  

Microsoft Academic Search

The smart road is an experimental highway currently under construction in Virginia. It is being built from the ground up with ITS testing and evaluation in mind. Embedded research support infrastructure will include underground conduits, underground junction bunkers, power, a fiber optic data network, embedded pavement sensors, snow making capability, and experimental lighting. The facility will be utilized for a

Ashwin Amanna; Charles Crawford

1998-01-01

107

Animal, Land and Facilities Use Form Location of Research  

E-print Network

MAFES Animal, Land and Facilities Use Form Location of Research: Today's Date: Trial Start Date Number: CRIS Number: Funding Area: Course Number: Extension Activity: DESCRIPTION OF ANIMALS REQUESTED Type: Breed: Sex: Age: Weight: Number Needed: Male: Female: Health of animals needed: If specific

Ray, David

108

A Survey on Facilities for Experimental Internet of Things Research  

E-print Network

1 A Survey on Facilities for Experimental Internet of Things Research Alexander Gluhak , Srdjan The initial vision of the Internet of Things (IoT) was of a world in which all physical objects are tagged Internet of Things, Experimental environment, Testbed 1 INTRODUCTION The IoT is a multidisciplinary domain

Paris-Sud XI, Université de

109

Nuclear Science Research Facilities Nuclear Science User Guide  

E-print Network

LANSCE User Guide Nuclear Science Research Facilities #12;#12;Nuclear Science User Guide Table techniques 8 Nuclear Science User Program 11 Proposal Process 13 Information for Prospective Users 14 disciplines and institutions in the U.S. and abroad. As described below, our proposal process provides access

110

Research and measurement program at the ANTARES AMS facility  

NASA Astrophysics Data System (ADS)

The ANTARES AMS facility is fully operational and supports a research program in environmental science, with emphasis on global climate change and nuclear safeguards. A measurement program for external projects involving Australian and overseas institutions is also carried out, mainly in Quaternary science studies.

Tuniz, C.; Fink, D.; Hotchkis, M. A. C.; Jacobsen, G. E.; Lawson, E. M.; Smith, A. M.; Hua, Q.

1997-03-01

111

ARM Climate Research Facility Monthly Instrument Report September 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-10-18

112

ARM Climate Research Facility Instrumentation Status and Information February 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-03-25

113

ARM Climate Research Facility Instrumentation Status and Information October 2009  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2009-10-01

114

ARM Climate Research Facility Instrumentation Status and Information December 2009  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2010-12-30

115

ARM Climate Research Facility Instrumentation Status and Information January 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

JW Voyles

2010-02-28

116

ARM Climate Research Facility Instrumentation Status and Information April 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-05-15

117

ARM Climate Research Facility Instrumentation Status and Information March 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-04-19

118

ARM Climate Research Facility Monthly Instrument Report May 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-06-21

119

ARM Climate Research Facility Monthly Instrument Report June 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-07-13

120

ARM Climate Research Facility Monthly Instrument Report August 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

Voyles, JW

2010-09-28

121

Novel neutron sources at the Radiological Research Accelerator Facility  

NASA Astrophysics Data System (ADS)

Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

Xu, Y.; Garty, G.; Marino, S. A.; Massey, T. N.; Randers-Pehrson, G.; Johnson, G. W.; Brenner, D. J.

2012-03-01

122

Novel neutron sources at the Radiological Research Accelerator Facility  

PubMed Central

Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 1020 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components. PMID:22545061

Xu, Yanping; Garty, Guy; Marino, Stephen A.; Massey, Thomas N.; Randers-Pehrson, Gerhard; Johnson, Gary W.; Brenner, David J.

2012-01-01

123

A Heated Tube Facility for Rocket Coolant Channel Research  

NASA Technical Reports Server (NTRS)

The capabilities of a heated tube facility used for testing rocket engine coolant channels at the NASA Lewis Research Center are presented. The facility uses high current, low voltage power supplies to resistively heat a test section to outer wall temperatures as high as 730 C (1350 F). Liquid or gaseous nitrogen, gaseous helium, or combustible liquids can be used as the test section coolant. The test section is enclosed in a vacuum chamber to minimize heat loss to the surrounding system. Test section geometry, size, and material; coolant properties; and heating levels can be varied to generate heat transfer and coolant performance data bases.

Green, James M.; Pease, Gary M.; Meyer, Michael L.

1995-01-01

124

Man-vehicle systems research facility: Design and operating characteristics  

NASA Technical Reports Server (NTRS)

The Man-Vehicle Systems Research Facility (MVSRF) provides the capability of simulating aircraft (two with full crews), en route and terminal air traffic control and aircrew interactions, and advanced cockpit (1995) display representative of future generations of aircraft, all within the full mission context. The characteristics of this facility derive from research, addressing critical human factors issues that pertain to: (1) information requirements for the utilization and integration of advanced electronic display systems, (2) the interaction and distribution of responsibilities between aircrews and ground controllers, and (3) the automation of aircrew functions. This research has emphasized the need for high fidelity in simulations and for the capability to conduct full mission simulations of relevant aircraft operations. This report briefly describes the MVSRF design and operating characteristics.

1983-01-01

125

OPERATION AND RESEARCH AT THE USEPA INCINERATION RESEARCH FACILITY: ANNUAL REPORT FOR FY91  

EPA Science Inventory

The U.S. Environmental Protection Agency's Incineration Research Facility (IRF) in Jefferson, Arkansas, is an experimental facility that houses two pilot-scale incinerators and the associated waste handling, emission control, process control, and safety equipment; as well as onsi...

126

National facilities study. Volume 5: Space research and development facilities task group  

NASA Technical Reports Server (NTRS)

With the beginnings of the U.S. space program, there was a pressing need to develop facilities that could support the technology research and development, testing, and operations of evolving space systems. Redundancy in facilities that was once and advantage in providing flexibility and schedule accommodation is instead fast becoming a burden on scarce resources. As a result, there is a clear perception in many sectors that the U.S. has many space R&D facilities that are under-utilized and which are no longer cost-effective to maintain. At the same time, it is clear that the U.S. continues to possess many space R&D facilities which are the best -- or among the best -- in the world. In order to remain world class in key areas, careful assessment of current capabilities and planning for new facilities is needed. The National Facility Study (NFS) was initiated in 1992 to develop a comprehensive and integrated long-term plan for future aerospace facilities that meets current and projected government and commercial needs. In order to assess the nation's capability to support space research and development (R&D), a Space R&D Task Group was formed. The Task Group was co-chaired by NASA and DOD. The Task Group formed four major, technologically- and functionally- oriented working groups: Human and Machine Operations; Information and Communications; Propulsion and Power; and Materials, Structures, and Flight Dynamics. In addition to these groups, three supporting working groups were formed: Systems Engineering and Requirements; Strategy and Policy; and Costing Analysis. The Space R&D Task Group examined several hundred facilities against the template of a baseline mission and requirements model (developed in common with the Space Operations Task Group) and a set of excursions from the baseline. The model and excursions are described in Volume 3 of the NFS final report. In addition, as a part of the effort, the group examined key strategic issues associated with space R&D facilities planning for the U.S., and these are discussed in Section 4 of this volume.

1994-01-01

127

The crop growth research chamber: A ground-based facility for CELSS research  

NASA Technical Reports Server (NTRS)

A ground based facility for the study of plant growth and development under stringently controlled environments is being developed by the Closed Ecological Life Support System (CELSS) program at the Ames Research Center. Several Crop Growth Research Chambers (CGRC) and laboratory support equipment provide the core of this facility. The CGRC is a closed (sealed) system with a separate recirculating atmosphere and nutrient delivery systems. The atmospheric environment, hydroponic environment, systems controls, and data acquisition are discussed.

Bubenheim, David L.

1990-01-01

128

48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.  

Code of Federal Regulations, 2013 CFR

...false Special use allowances for research facilities acquired by educational...SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.015-70 Special use allowances for research facilities acquired by...

2013-10-01

129

48 CFR 235.015-70 - Special use allowances for research facilities acquired by educational institutions.  

Code of Federal Regulations, 2012 CFR

...false Special use allowances for research facilities acquired by educational...SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 235.015-70 Special use allowances for research facilities acquired by...

2012-10-01

130

NASA superconducting magnetic mirror facility. [for thermonuclear research  

NASA Technical Reports Server (NTRS)

The design details and initial test results of a superconducting magnetic mirror facility that has been constructed at NASA Lewis Research Center for use in thermonuclear research are summarized. The magnet system consists of four solenoidal coils which are individually rated at 5.0 T. Each coll is composed of an inner, middle, and outer winding. The inner winding is wound of stabilized Nb3Sn superconducting ribbon, and the middle and outer windings are wound of stabilized Nb-Ti superconducting wire. When arranged in the mirror geometry, the four coils will produce 8.7 T at the mirrors and a 1.8 mirror ratio. The magnet has a 41-cm diameter clear bore which is open to atmosphere. Distance between the mirrors is 111 cm. Presently there are only three magnets in the facility; the fourth magnet is being rebuilt.

Reinmann, J. J.; Swanson, M. C.; Nichols, C. R.; Bloy, S. J.; Nagy, L. A.; Brady, F. J.

1973-01-01

131

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007  

SciTech Connect

This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

LR Roeder

2007-12-01

132

Development of an Extreme Environment Materials Research Facility at Princeton  

SciTech Connect

The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m^3) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m^2) to 14 MeV neutrons at a fluence in excess of 10^13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m2 for durations of 1-15 seconds are planned... The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new materials, and the investigation of repair mechanisms. Effects on materials will be analyzed with in situ beam probes and instrumentation as the target is exposed to radiation, thermal fluxes and other stresses. Photon and monochromatic neutron fluxes, produced using a variable-energy (4-45 MeV) electron linac and the highly asymmetric electron-positron collisions technique used in high-energy physics research, can provide non-destructive, deep-penetrating structural analysis of materials while they are undergoing testing. The same beam lines will also be able to generate neutrons from photonuclear interactions using existing Bremsstrahlung and positrons on target quasi-monochromatic gamma rays. Other diagnostics will include infrared cameras, residual gas analyzer (RGA), and thermocouples; additional diagnostic capability will be added.

Cohen, A B; Tully, C G; Austin, R; Calaprice, F; McDonald, K; Ascione, G; Baker, G; Davidson, R; Dudek, L; Grisham, L; Kugel, H; Pagdon, K; Stevenson, T; Woolley, R

2010-11-17

133

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility  

E-print Network

Facility Layout #12;Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility Federal Transit Administration Mr. Marcel Belanger, Program Manager Equipment Overview The facility

Lee, Dongwon

134

Research objectives, opportunities, and facilities for microgravity science  

NASA Technical Reports Server (NTRS)

Microgravity Science in the U.S.A. involves research in fluids science, combustion science, materials science, biotechnology, and fundamental physics. The purpose is to achieve a thorough understanding of the effects of gravitational body forces on physical phenomena relevant to those disciplines. This includes the study of phenomena which are usually overwhelmed by the presence of gravitational body forces and, therefore, chiefly manifested when gravitational forces are weak. In the pragmatic sense, the research involves gravity level as an experimental parameter. Calendar year 1992 is a landmark year for research opportunities in low earth orbit for Microgravity Science. For the first time ever, three Spacelab flights will fly in a single year: IML-1 was launched on January 22; USML-1 was launched on June 25; and, in September, SL-J will be launched. A separate flight involving two cargo bay carriers, USMP-1, will be launched in October. From the beginning of 1993 up to and including the Space Station era (1997), nine flights involving either Spacelab or USMP carriers will be flown. This will be augmented by a number of middeck payloads and get away specials flying on various flights. All of this activity sets the stage for experimentation on Space Station Freedom. Beginning in 1997, experiments in Microgravity Science will be conducted on the Space Station. Facilities for doing experiments in protein crystal growth, solidification, and biotechnology will all be available. These will be joined by middeck-class payloads and the microgravity glove box for conducting additional experiments. In 1998, a new generation protein crystal growth facility and a facility for conducting combustion research will arrive. A fluids science facility and additional capability for conducting research in solidification, as well as an ability to handle small payloads on a quick response basis, will be added in 1999. The year 2000 will see upgrades in the protein crystal growth and fluids science facilities. From the beginning of 1997 to the fall of 1999 (the 'man-tended capability' era), there will be two or three utilization flights per year. Plans call for operations in Microgravity Science during utilization flights and between utilization flights. Experiments conducted during utilization flights will characteristically require crew interaction, short duration, and less sensitivity to perturbations in the acceleration environment. Operations between utilization flights will involve experiments that can be controlled remotely and/or can be automated. Typically, the experiments will require long times and a pristine environment. Beyond the fall of 1999 (the 'permanently-manned capability' era), some payloads will require crew interaction; others will be automated and will make use of telescience.

Bayuzick, Robert J.

1992-01-01

135

Status of CHESS facility and research programs: 2010  

NASA Astrophysics Data System (ADS)

CHESS is a hard X-ray synchrotron radiation national facility located at Cornell University and funded by the National Science Foundation. It is open to all scientists by peer-reviewed proposal and serves 500-1000 visitors each year. The CHESS scientific and technical staff develops forefront research tools and X-ray instrumentation and methods and supports 12 experimental stations delivering high intensity X-ray beams produced at 5.3 GeV and 250 mA. The facility consists of a mix of dedicated and flexible experimental stations that are easily configured for general X-ray diffraction (wide- and small-angle), spectroscopy, imaging applications, etc. Dedicated stations support high-pressure powder X-ray diffraction, pulsed-laser deposition for layer-by-layer growth of surfaces, and three dedicated stations for protein crystallography. Specialized resource groups at the laboratory include: an X-ray detector group; MacCHESS, an NIH-supported research resource for protein crystallography; the G-line division, which primarily organizes graduate students and Cornell faculty members around three X-ray stations; a high-pressure diamond-anvil cell support laboratory; and a monocapillary drawing facility for making microbeam X-ray optics. Research is also ongoing to upgrade CHESS to a first-ever 5 GeV, 100 mA Energy Recovery Linac (ERL) hard X-ray source. This source will provide ultra-high spectral-brightness and <100 fs short-pulse capability at levels well in advance of those possible with existing storage rings. It will produce diffraction-limited X-rays beams of up to 10 keV energy and be capable of providing 1 nm round beams. Prototyping for this facility is under way now to demonstrate critical DC photoelectron injector and superconducting linac technologies needed for the full-scale ERL.

Fontes, Ernest; Bilderback, Donald H.; Gruner, Sol M.

2011-09-01

136

Upgrades at the NASA Langley Research Center National Transonic Facility  

NASA Technical Reports Server (NTRS)

Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.

Paryz, Roman W.

2012-01-01

137

Major Facilities for Materials Research and Related Disciplines.  

ERIC Educational Resources Information Center

This report presents priorities for new facilities and new capabilities at existing facilities with initial costs of at least $5 million. The new facilities in order of priority are: (1) a 6 GeV synchrotron radiation facility; (2) an advanced steady state neutron facility; (3) a 1 to 2 GeV synchrotron radiation facility; and (4) a high intensity

National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

138

Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006  

SciTech Connect

This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia Successfully deploying the ARM Mobile Facility in Niger, Africa Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

LR Roeder

2005-11-30

139

Cosmic muon flux measurements at the Kimballton Underground Research Facility  

NASA Astrophysics Data System (ADS)

In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

Kalousis, L. N.; Guarnaccia, E.; Link, J. M.; Mariani, C.; Pelkey, R.

2014-08-01

140

Cosmic Muon Flux Measurements at the Kimballton Underground Research Facility  

E-print Network

In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

Kalousis, L N; Link, J M; Mariani, C; Pelkey, R

2014-01-01

141

Cosmic Muon Flux Measurements at the Kimballton Underground Research Facility  

E-print Network

In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ~ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC.

L. N. Kalousis; E. Guarnaccia; J. M. Link; C. Mariani; R. Pelkey

2014-06-10

142

Proton and heavy ion acceleration facilities for space radiation research  

NASA Technical Reports Server (NTRS)

The particles and energies commonly used for medium energy nuclear physics and heavy charged particle radiobiology and radiotherapy at particle accelerators are in the charge and energy range of greatest interest for space radiation health. In this article we survey some of the particle accelerator facilities in the United States and around the world that are being used for space radiation health and related research, and illustrate some of their capabilities with discussions of selected accelerator experiments applicable to the human exploration of space.

Miller, Jack

2003-01-01

143

Congressional hearing reviews NSF major research and facilities projects  

NASA Astrophysics Data System (ADS)

An 8 March congressional hearing about the U.S. National Science Foundation's Major Research Equipment and Facilities Construction (NSF MREFC) account focused on fiscal management and accountability of projects in that account and reviewed concerns raised by NSF's Office of Inspector General (OIG). NSF established the MREFC account in 1995 to better plan and manage investments in major equipment and facilities projects, which can cost from tens of millions to hundreds of millions of dollars, and the foundation has funded 17 MREFC projects since then. The Obama administration's proposed fiscal year (FY) 2013 budget includes funding for four MREFC projects: Advanced Laser Gravitational-Wave Observatory (AdvLIGO), Advanced Technology Solar Telescope (ATST), National Ecological Observatory (NEON), and Ocean Observatories Initiative (OOI). The hearing, held by a subcommittee of the House of Representatives' Committee on Science, Space, and Technology, reviewed management oversight throughout the life cycles of MREFC projects and concerns raised in recent OIG reports about the use of budget contingency funds. NSF's February 2012 manual called Risk management guide for large facilities states that cost contingency is that portion of the project budget required to cover known unknowns, such as planning and estimating errors and omissions, minor labor or material price fluctuations, and design developments and changes within the project scope. Committee members acknowledged measures that NSF has made to improve the MREFC oversight process, but they also urged the agency to continue to take steps to ensure better project management.

Showstack, Randy

2012-03-01

144

Research and test facilities for development of technologies and experiments with commercial applications  

NASA Technical Reports Server (NTRS)

One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.

1989-01-01

145

Overview of the NASA Dryden Flight Research Facility aeronautical flight projects  

NASA Technical Reports Server (NTRS)

Several principal aerodynamics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.

Meyer, Robert R., Jr.

1992-01-01

146

Overview of the NASA Dryden Flight Research Facility aeronautical flight projects testing  

NASA Technical Reports Server (NTRS)

Several principal aeronautics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.

Meyer, Robert R., Jr.

1992-01-01

147

Experimental digester facility modifications and digester gas upgrading research  

SciTech Connect

The Institute of Gas Technology (IGT) has been participating in an experimental program at the Community Waste Research Facility (CWRF) located at the Walt Disney World Resort Complex, Orlando, Florida. Four institutions have formed a team to provide solutions to community waste treatment and disposal programs. Of primary importance to this research effort is the implementation of low-cost, energy-efficient waste treatment and recovery technologies and the net production of energy (methane) from biomass and waste resources. The production of methane is being studied in a novel, high-rate digester. During 1988, we were responsible for modifying the Experimental Test Unit (ETU) to permit dry solids feeding of refuse-derived fuel (RDF) and for conducting bench-scale experiments to evaluate techniques for efficient removal of carbon dioxide produced during anaerobic digestion.

Srivastava, V.J.; Biljetina, R.; Akin, C.

1989-01-01

148

RESEARCH Open Access Spatial accessibility to specific sport facilities and  

E-print Network

, few studies have examined the relationships between the spatial accessibility to sport facilities educational disparities in sport practice. Keywords: Sports facilities, Spatial accessibility, Physical on physical activity have highlighted the positive influence that the presence of sport facilities may have

149

Walter C. Williams Research Aircraft Integration Facility (RAIF)  

NASA Technical Reports Server (NTRS)

The NASA-Dryden Integrated Test Facility (ITF), also known as the Walter C. Williams Research Aircraft Integration Facility (RAIF), provides an environment for conducting efficient and thorough testing of advanced, highly integrated research aircraft. Flight test confidence is greatly enhanced by the ability to qualify interactive aircraft systems in a controlled environment. In the ITF, each element of a flight vehicle can be regulated and monitored in real time as it interacts with the rest of the aircraft systems. Testing in the ITF is accomplished through automated techniques in which the research aircraft is interfaced to a high-fidelity real-time simulation. Electric and hydraulic power are also supplied, allowing all systems except the engines to function as if in flight. The testing process is controlled by an engineering workstation that sets up initial conditions for a test, initiates the test run, monitors its progress, and archives the data generated. The workstation is also capable of analyzing results of individual tests, comparing results of multiple tests, and producing reports. The computers used in the automated aircraft testing process are also capable of operating in a stand-alone mode with a simulation cockpit, complete with its own instruments and controls. Control law development and modification, aerodynamic, propulsion, guidance model qualification, and flight planning -- functions traditionally associated with real-time simulation -- can all be performed in this manner. The Remotely Augmented Vehicles (RAV) function, now located in the ITF, is a mainstay in the research techniques employed at Dryden. This function is used for tests that are too dangerous for direct human involvement or for which computational capacity does not exist onboard a research aircraft. RAV provides the researcher with a ground-based computer that is radio linked to the test aircraft during actual flight. The Ground Vibration Testing (GVT) system, formerly housed in the Thermostructural Laboratory, now also resides in the ITF. In preparing a research aircraft for flight testing, it is vital to measure its structural frequencies and mode shapes and compare results to the models used in design analysis. The final function performed in the ITF is routine aircraft maintenance. This includes preflight and post-flight instrumentation checks and the servicing of hydraulics, avionics, and engines necessary on any research aircraft. Aircraft are not merely moved to the ITF for automated testing purposes but are housed there throughout their flight test programs.

1996-01-01

150

LLNL/UC AMS facility and research program  

NASA Astrophysics Data System (ADS)

The Lawrence Livermore National Laboratory (LLNL) and the University of California (UC) now have in operation a large AMS spectrometer built as part of a new multiuser laboratory centered on an FN tandem. AMS measurements are expected to use half of the beam time of the accelerator. LLNL use of AMS is in research on consequences of energy usage. Examples include global warming, geophysical site characterization, radiation biology and dosimetry, and study of mutagenic and carcinogenic processes. UC research activities are in clinical applications, archaeology and anthropology, oceanography, and geophysical and geochemical research. Access is also possible for researchers outside the UC system. The technological focus of the laboratory is on achieving high rates of sample throughput, unattended operation, and advances in sample preparation methods. Because of the expected growth in the research programs and the other obligations of the present accelerator, we are designing a follow-on dedicated facility for only AMS and microprobe analysis that will contain at least two accelerators with multiple spectrometers.

Davis, J. C.; Proctor, I. D.; Southon, J. R.; Caffee, M. W.; Heikkinen, D. W.; Roberts, M. L.; Moore, T. L.; Turteltaub, K. W.; Nelson, D. E.; Loyd, D. H.; Vogel, J. S.

1990-12-01

151

Quality Assurance of ARM Program Climate Research Facility Data  

SciTech Connect

This report documents key aspects of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) data quality assurance program as it existed in 2008. The performance of ACRF instruments, sites, and data systems is measured in terms of the availability, usability, and accessibility of the data to a user. First, the data must be available to users; that is, the data must be collected by instrument systems, processed, and delivered to a central repository in a timely manner. Second, the data must be usable; that is, the data must be inspected and deemed of sufficient quality for scientific research purposes, and data users must be able to readily tell where there are known problems in the data. Finally, the data must be accessible; that is, data users must be able to easily find, obtain, and work with the data from the central repository. The processes described in this report include instrument deployment and calibration; instrument and facility maintenance; data collection and processing infrastructure; data stream inspection and assessment; the roles of value-added data processing and field campaigns in specifying data quality and haracterizing the basic measurement; data archival, display, and distribution; data stream reprocessing; and engineering and operations management processes and procedures. Future directions in ACRF data quality assurance also are presented.

RA Peppler; KE Kehoe; KL Sonntag; CP Bahrmann; SJ Richardson; SW Christensen; RA McCord; DJ Doty; R Wagener; RC Eagan; JC Lijegren; BW Orr; DL Sisterson; TD Halter; NN Keck; CN Long; MC Macduff; JH Mather; RC Perez; JW Voyles; MD Ivey; ST Moore; DL Nitschke; BD Perkins; DD Turner

2008-03-01

152

CSU's MWV Observatory: A Facility for Research, Education and Outreach  

NASA Astrophysics Data System (ADS)

The Mead Westvaco Observatory (MWVO), located in Columbus State University's Coca-Cola Space Science Center, is dedicated to education and research in astronomy through hands-on engagement and public participation. The MWVO has recently received funding to upgrade from a 16-inch Meade LX-200 telescope to a PlaneWave CDK 24-inch Corrected Dall-Kirkham Astrograph telescope. This and other technological upgrades will allow this observatory to stream live webcasts for astronomical events, allowing a worldwide public audience to become a part of the growing astronomical community. This poster will explain the upgrades that are currently in progress as well as the results from the current calibrations. The goal of these upgrades is to provide facilities capable of both research-class projects and widespread use in education and public outreach. We will present our initial calibration and tests of the observatory equipment, as well as its use in webcasts of astronomical events, in solar observing through the use of specialized piggy-backed telescopes, and in research into such topics as asteroids, planetary and nebula imaging. We will describe a pilot research project on asteroid orbit refinement and light curves, to be carried out by Columbus State University students. We will also outline many of the K-12 educational and public outreach activities we have designed for these facilities. Support and funding for the acquisition and installation of the new PlaneWave CDK 24 has been provided by the International Museum and Library Services via the Museums for America Award.

Hood, John; Carpenter, N. D.; McCarty, C. B.; Samford, J. H.; Johnson, M.; Puckett, A. W.; Williams, R. N.; Cruzen, S. T.

2014-01-01

153

Chemistry Research Instrumentation and Facilities: Departmental Multi-User Instrumentation (CRIF:MU)  

NSF Publications Database

... development of cyber-enabled chemical research, or regional or national instrumentation facilities ... academic institutions, non-profit research organizations, industry, government laboratories, or ...

154

Review of the National Research Council report ''Major Facilities for Materials Research and Related Disciplines''  

SciTech Connect

The National Research Council-National Academy of Sciences report on ''Major Facilities for Materials Research and Related Disciplines'' recommends that new facilities and upgrades of existing facilities are very important to the nation. At the request of the Secretary of Energy, the Energy Research Advisory Board has reviewed this report and finds that the Department of Energy is responsible for the majority of these projects to carry out its missions in energy, national defense, and science and technology. Therefore, we recommend that the Department should place a high priority on requesting the new funds necessary to fulfill these responsibilities in the next decade. The energy and defense missions of the Department will be best served by this approach. This responsibility requires strong coordination with other funding agencies through a shared advisory and decision-making process. The review recommends immediate implementation of new capabilities at existing DOE facilities (the neutron experimental halls at Brookhaven and Los Alamos and the new synchrotron insertion devices at Stanford and Brookhaven) as a cost effective way of maintaining the Nation's leading role in neutron scattering and synchrotron radiation research. It also recommends the immediate initiation of non-site-specific research and development for the proposed 6 GeV synchrotron and advanced steady state neutron source. This pre-construction work should be sufficient to ensure that these facilities will be constructed in a timely fashion at design goals and with well identified costs. Other recommendations concern advancing the Nation's leading capabilities in synchrotron produced ultraviolet radiation and spallation neutron research. A budget scenario is developed.

Not Available

1985-06-01

155

A Summary of DOD-Sponsored Research Performed at NASA Langley's Impact Dynamics Research Facility  

NASA Technical Reports Server (NTRS)

The Impact Dynamics Research Facility (IDRF) is a 240-ft.-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The IDRF was originally built in the early 1960's for use as a Lunar Landing Research Facility. As such, the facility was configured to simulate the reduced gravitational environment of the Moon, allowing the Apollo astronauts to practice lunar landings under realistic conditions. In 1985, the IDRF was designated a National Historic Landmark based on its significant contributions to the Apollo Moon Landing Program. In the early 1970's the facility was converted into its current configuration as a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft, airframe components, and space vehicles in support of the General Aviation (GA) aircraft industry, the U.S. Department of Defense (DOD), the rotorcraft industry, and the NASA Space program. The objectives of this paper are twofold: to describe the IDRF facility and its unique capabilities for conducting structural impact testing, and to summarize the impact tests performed at the IDRF in support of the DOD. These tests cover a time period of roughly 2 1/2 decades, beginning in 1975 with the full-scale crash test of a CH-47 Chinook helicopter, and ending in 1999 with the external fuel system qualification test of a UH-60 Black Hawk helicopter. NASA officially closed the IDRF in September 2003; consequently, it is important to document the past contributions made in improved human survivability and impact tolerance through DOD-sponsored research performed at the IDRF.

Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

2004-01-01

156

National scientific facilities and their science impact on nonbiomedical research  

PubMed Central

The h index proposed by Hirsch [Hirsch JE (2005) Proc Natl Acad Sci USA 102:1656916573] is a good indicator of the impact of a scientist's research and has the advantage of being objective. When evaluating departments, institutions, or laboratories, the importance of the h index can be further enhanced when it is properly calibrated for the size of the group. Particularly acute is the issue of federally funded facilities whose number of actively publishing scientists frequently dwarfs that of academic departments. Recently, Molinari and Molinari [Molinari JF, Molinari A (2008) Scientometrics, in press] developed a methodology that shows that the h index has a universal growth rate for large numbers of papers, allowing for meaningful comparisons between institutions. An additional challenge when comparing large institutions is that fields have distinct internal cultures, with different typical rates of publication and citation; biology is more highly cited than physics, for example. For this reason, the present study has focused on the physical sciences, engineering, and technology and has excluded biomedical research. Comparisons between individual disciplines are reported here to provide a framework. Generally, it was found that the universal growth rate of Molinari and Molinari holds well across the categories considered, testifying to the robustness of both their growth law and our results. The goal here is to set the highest standard of comparison for federal investment in science. Comparisons are made of the nation's preeminent private and public institutions. We find that many among the national science facilities compare favorably in research impact with the nation's leading universities. PMID:17991781

Kinney, A. L.

2007-01-01

157

The Safety and Tritium Applied Research (STAR) Facility: Status-2004*  

SciTech Connect

The purpose of this paper is to present the current status of the development of the Safety and Tritium Applied Research (STAR) Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). Designated a National User Facility by the US DOE, the primary mission of STAR is to provide laboratory infrastructure to study tritium science and technology issues associated with the development of safe and environmentally friendly fusion energy. Both tritium and non-tritium fusion safety research is pursued along three key thrust areas: (1) plasma-material interactions of plasma-facing component (PFC) materials exposed to energetic tritium and deuterium ions, (2) fusion safety concerns related to PFC material chemical reactivity and dust/debris generation, activation product mobilization, and tritium behavior in fusion systems, and (3) molten salts and fusion liquids for tritium breeder and coolant applications. STAR comprises a multi-room complex with operations segregated to permit both tritium and non-tritium activities in separately ventilated rooms. Tritium inventory in STAR is limited to 15,000 Ci to maintain its classification as a Radiological Facility. Experiments with tritium are typically conducted in glovebox environments. Key components of the tritium infrastructure have been installed and tested. This includes the following subsystems: (1) a tritium Storage and Assay System (SAS) that uses two 50-g depleted uranium beds for tritium storage and PVT/beta-scintillation analyses for tritium accountability measurements, (2) a Tritium Cleanup System (TCS) that uses catalytic oxidation and molecular sieve water absorption to remove tritiated species from glovebox atmosphere gases and gaseous effluents from experiment and process systems, and (3) tritium monitoring instrumentation for room air, glovebox atmosphere and stack effluent tritium concentration measurements. Integration of the tritium infrastructure subsystems with the experimental and laboratory process systems is planned for early in 2004. Following an operational readiness review, tritium operations will be initiated in the summer of 2004. Summary results of the performance testing of the tritium infrastructure subsystems and their integration into the laboratory operations will be presented at this conference. Current research activity includes plasma-material interaction studies with the Tritium Plasma Experiment (TPE) and tritium/chemistry interactions in the molten salt designated as Flibe (2LiF-BeF2). The implementation of these capabilities in STAR will be described.

R. A. Anderl; G. R. Longhurst; R. J. Pawelko; J. P. Sharpe; S. T. Schuetz; D. A. Petti

2004-09-01

158

The development of a Space Shuttle Research Animal Holding Facility  

NASA Technical Reports Server (NTRS)

The ability to maintain the well being of experiment animals is of primary importance to the successful attainment of life sciences flight experiment goals. To assist scientists in the conduct of life sciences flight experiments, a highly versatile Research Animal Holding Facility (RAHF) is being developed for use on Space Shuttle/Spacelab missions. This paper describes the design of the RAHF system, which in addition to providing general housing for various animal species, approximating the environment found in ground based facilities, is designed to minimize disturbances of the specimens by vehicle and mission operations. Life-sustaining capabilities such as metabolic support and environmental control are provided. RAHF is reusable and is a modular concept to accommodate animals of different sizes. The basic RAHF system will accommodate a combination of 24 500-g rats or 144 mice or a mixed number of rats and mice. An alternative design accommodates four squirrel monkeys. The entire RAHF system is housed in a single ESA rack. The animal cages are in drawers which are removable for easy access to the animals. Each cage contains a waste management system, a feeding system and a watering system all of which will operate in zero or one gravity.

Jagow, R. B.

1980-01-01

159

Overview of NSTX Facility Upgrades Status and Research Plans  

NASA Astrophysics Data System (ADS)

The National Spherical Torus eXperiment (NSTX) is undergoing a major facility upgrade. The major mission of NSTX-U is to develop physics basis for an ST-based Fusion Nuclear Science Facility (FNSF). The ST-based FNSF has a promise of achieving high neutron fluence needed for reactor component testing with a relatively modest tritium consumption. At the same time, the unique operating regimes of NSTX-U provide high leverage to address several important issues in the physics of burning plasmas to optimize the performance of ITER. The NSTX-U program further aims to determine the attractiveness of the compact ST for addressing key research needs on the path toward a fusion demonstration power plant (Demo). The upgrade project will double the toroidal field, plasma current, and NBI heating power and increase the pulse length from 1-1.5s to 5-8s. More tangential NBI system is designed to attain full non-inductive operation. Innovative plasma start-up and ramp-up techniques without the central solenoid operation which is needed for a compact FNSF design will be explored. With higher fields and heating power, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the transport trend toward the low collisionality regimes expected in FNSF, ITER, and Demo.

Ono, M.

2012-10-01

160

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008  

SciTech Connect

The Importance of Clouds and Radiation for Climate Change: The Earths surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earths energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

LR Roeder

2008-12-01

161

Pleistophora hyphessobryconis (Microsporidia) infecting zebrafish Danio rerio in research facilities.  

PubMed

Zebrafish Danio rerio are important models for biomedical research, and thus, there is an increased concern about diseases afflicting them. Here we describe infections by Pleistophora hyphessobryconis (Microsporidia) in zebrafish from 3 laboratories. As reported in other aquarium fishes, affected zebrafish exhibited massive infections in the skeletal muscle, with no involvement of smooth or cardiac muscle. In addition, numerous spores within macrophages were observed in the visceral organs, including the ovaries. Transmission studies and ribosomal RNA (rRNA) gene sequence comparisons confirmed that the parasite from zebrafish was P. hyphessobryconis as described from neon tetra Paracheirodon innesi. Ten 15 d old zebrafish were exposed to P. hyphessobryconis collected from 1 infected neon tetra, and 7 of 10 fish became infected. Comparison of P. hyphessobryconis small subunit rRNA gene sequence from neon tetra with that obtained from zebrafish was nearly identical, with < 1% difference. Given the severity of infections, P. hyphessobryconis should be added to the list of pathogens that should be avoided in zebrafish research facilities, and it would be prudent to avoid mixing zebrafish used in research with other aquarium fishes. PMID:20853741

Sanders, Justin L; Lawrence, Christian; Nichols, Donald K; Brubaker, Jeffrey F; Peterson, Tracy S; Murray, Katrina N; Kent, Michael L

2010-07-26

162

International Space University variable gravity research facility design  

NASA Astrophysics Data System (ADS)

A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness, and loss of bone calcium. A variable gravity research facility (VGRF) that will be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. This report describes the VGRF design that was developed by international participants specializing in the following areas: the politics of international cooperation; engineering, architecture; in-space physiological, materials, and life science experimentation; data communications; and business and management.

Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

1994-03-01

163

The International Space University's variable gravity research facility design  

NASA Astrophysics Data System (ADS)

A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.

Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

1991-09-01

164

The International Space University's variable gravity research facility design  

NASA Technical Reports Server (NTRS)

A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.

Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

1991-01-01

165

Spacelab Life Sciences 3 biomedical research using the Rhesus Research Facility  

NASA Technical Reports Server (NTRS)

In 1985, a letter of agreement was signed between the French space agency, CNES, and NASA, formally initiating a joint venture called the RHESUS Project. The goal of this project is to provide a facility to fly rhesus monkeys (Macaca mulatta) to support spaceflight experiments which are applicable but not practical to carry out on human subjects. Biomedical investigations in behavior/performance, immunology/microbiology, muscle physiology, cardiopulmonary physiology, bone/calcium physiology, regulatory physiology, and neurophysiology disciplines will be performed. The Rhesus Research Facility, hardware capable of supporting two adult rhesus monkeys in a microgravity environment, is being developed for a first flight on Spacelab Life Sciences in early 1996.

Ballard, R. W.; Searby, N. D.; Stone, L. S.; Hogan, R. P.; Viso, M.; Venet, M.

1992-01-01

166

Space Propulsion Research Facility (B-2): An Innovative, Multi-Purpose Test Facility  

NASA Technical Reports Server (NTRS)

The Space Propulsion Research Facility, commonly referred to as B-2, is designed to hot fire rocket engines or upper stage launch vehicles with up to 890,000 N force (200,000 lb force), after environmental conditioning of the test article in simulated thermal vacuum space environment. As NASA s third largest thermal vacuum facility, and the largest designed to store and transfer large quantities of propellant, it is uniquely suited to support developmental testing associated with large lightweight structures and Cryogenic Fluid Management (CFM) systems, as well as non-traditional propulsion test programs such as Electric and In-Space propulsion. B-2 has undergone refurbishment of key subsystems to support the NASA s future test needs, including data acquisition and controls, vacuum, and propellant systems. This paper details the modernization efforts at B-2 to support the Nation s thermal vacuum/propellant test capabilities, the unique design considerations implemented for efficient operations and maintenance, and ultimately to reduce test costs.

Hill, Gerald M.; Weaver, Harold F.; Kudlac, Maureen T.; Maloney, Christian T.; Evans, Richard K.

2011-01-01

167

ADVANCED COAL & ENERGY RESEARCH FACILITY (ACERF) Washington University in St. Louis  

E-print Network

ADVANCED COAL & ENERGY RESEARCH FACILITY (ACERF) Washington University in St. Louis Overview The Advanced Coal and Energy Research Facility provides for pilot-scale research and development of new b d Ongoing Research Activities Oxy-coal combustion faculty and students within the U.S. and abroad

Subramanian, Venkat

168

Test facilities of the structural dynamics branch of NASA Lewis Research Center  

NASA Technical Reports Server (NTRS)

The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.

Montague, Gerald T.; Kielb, Robert E.

1988-01-01

169

Summary of informal workshop on state of ion beam facilities for atomic physics research  

SciTech Connect

The present state of ion beam facilities for atomic physics research in the United States is assessed by means of a questionnaire and informal workshop. Recommendations for future facilities are given. 3 refs.

Jones, K.W.; Cocke, C.L.; Datz, S.; Kostroun, V.

1984-11-13

170

WADING BIRD MANAGEMENT AND RESEARCH ON NORTH AMERICAN AQUACULTURE FACILITIES  

Microsoft Academic Search

Aquaculture in North America varies geographically with respect to species cultured, annual production, size, complexity, and spatial arrangement of facilities. Species assemblages of predacious birds using aquaculture facilities also vary with many of these industry characteristics. Wading birds are highly adaptable, relatively ubiquitous throughout the aquaculture industry, and often associated with fish depredation problems at aquaculture facilities. Suitability of information

BRIAN DORR; JIMMY D. TAYLOR

171

A rapid prototyping facility for flight research in advanced systems concepts  

NASA Technical Reports Server (NTRS)

The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

Duke, Eugene L.; Brumbaugh, Randal W.; Disbrow, James D.

1989-01-01

172

Rapid prototyping facility for flight research in artificial-intelligence-based flight systems concepts  

NASA Technical Reports Server (NTRS)

The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

Duke, E. L.; Regenie, V. A.; Deets, D. A.

1986-01-01

173

Integrated flight propulsion control research results using the NASA F-15 HIDEC Flight Research Facility  

NASA Technical Reports Server (NTRS)

Over the last two decades, NASA has conducted several flight research experiments in integrated flight propulsion control. Benefits have included increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. These flight programs were flown at NASA Dryden Flight Research Facility. This paper presents the basic concepts for control integration, examples of implementation, and benefits of integrated flight propulsion control systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real time, onboard optimization of engine, inlet, and flight control variables; a self repairing flight control system; and an engines only control concept for emergency control. The flight research programs and the resulting benefits are described for the F-15 research.

Stewart, James F.

1992-01-01

174

Atmospheric Radiation Measurement program climate research facility operations quarterly report.  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period April 1 through June 30, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The third quarter comprises a total of 2,184 hours. For all fixed sites (especially the TWP locale) and the AMF, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the third quarter of fiscal year (FY) 2006.

Sisterson, D. L.; Decision and Information Sciences

2006-09-06

175

Burning plasma regime for Fussion-Fission Research Facility  

NASA Astrophysics Data System (ADS)

The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.

Zakharov, Leonid E.

2010-11-01

176

SCARF - The Swarm Satellite Constellation Application and Research Facility  

NASA Astrophysics Data System (ADS)

Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, has been launched in November 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, which will bring new insights into the Earth system by improving our understanding of the Earth's interior and environment. In order to take advantage of the unique constellation aspect of Swarm, considerably advanced data analysis tools have been developed. Scientific users will also benefit significantly from derived products, the so-called Level-2 products, that take into account the features of the constellation. The Swarm SCARF (Satellite Constellation Application and Research Facility), a consortium of several research institutions, has been established with the goal of deriving Level-2 products by combination of data from the three satellites, and of the various instruments. A number of Level-2 data products will be offered by this consortium, including various models of the core and lithospheric field, as well as of the ionospheric and magnetospheric field. In addition, derived parameters like mantle conductivity, thermospheric mass density and winds, field-aligned currents, an ionospheric plasma bubble index, the ionospheric total electron content and the dayside equatorial zonal electrical field will be calculated. This service is expected to be operational for a period of at least 5 years. The present paper describes the Swarm input data products (Level-1b and auxiliary data) used by SCARF, the various processing chains of SCARF, and the Level-2 output data products determined by SCARF.

Olsen, Nils

2014-05-01

177

A study of trends and techniques for space base electronics. [research facilities  

NASA Technical Reports Server (NTRS)

The research facilities of the Mississippi State University devoted to microelectronics are described. The fabrication and processing capabilities, computer aided design, and experimental evaluation capabilities are discussed.

Trotter, J. D.; Wade, T. E.

1979-01-01

178

An inventory of aeronautical ground research facilities. Volume 4: Engineering flight simulation facilities  

NASA Technical Reports Server (NTRS)

The general purpose capabilities of government and industry in the area of real time engineering flight simulation are discussed. The information covers computer equipment, visual systems, crew stations, and motion systems, along with brief statements of facility capabilities. Facility construction and typical operational costs are included where available. The facilities provide for economical and safe solutions to vehicle design, performance, control, and flying qualities problems of manned and unmanned flight systems.

Pirrello, C. J.; Hardin, R. D.; Capelluro, L. P.; Harrison, W. D.

1971-01-01

179

Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and  

E-print Network

CMR Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry analytical chemistry and metallurgy. In 1952, the first LANL CMR facility was completed. At that time chemistry and metallurgy. Upgrades to the original CMR were completed in 2002. In 2012, the CMR facility

180

Acoustic facilities for human factors research at NASA Langley Research Center: Description and operational capabilities  

NASA Technical Reports Server (NTRS)

A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.

Hubbard, H. H.; Powell, C. A.

1981-01-01

181

The NASA Lewis Research Center Internal Fluid Mechanics Facility  

NASA Technical Reports Server (NTRS)

An experimental facility specifically designed to investigate internal fluid duct flows is described. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints of future test hardware. The plenum flow conditioning approach is also detailed. Available instrumentation and data acquisition capabilities are discussed. The incoming flow quality was documented over the current facility operating range. The incoming flow produces well behaved turbulent boundary layers with a uniform core. For the calibration duct used, the boundary layers approached 10 percent of the duct radius. Freestream turbulence levels at the various operating conditions varied from 0.64 to 0.69 percent of the average freestream velocity.

Porro, A. R.; Hingst, W. R.; Wasserbauer, C. A.; Andrews, T. B.

1991-01-01

182

Shock Tube and Ballistic Range Facilities at NASA Ames Research Center  

NASA Technical Reports Server (NTRS)

The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

2010-01-01

183

Precipitation and DSD Variability Studies at the GPM Precipitation Research Facility at NASA Wallops Flight Facility  

NASA Astrophysics Data System (ADS)

Precipitation estimates from satellite instruments such as the TRMM Precipitation Radar (PR) and the future GPM Dual-frequency Precipitation Radar (DPR) are often biased by non-uniform precipitation structure within the satellite footprint. For both the PR and DPR, at nadir, the footprint is roughly 5 km. In support of GPM Ground Validation, a Precipitation Research Facility (PRF) is being developed to address this and other common sources of uncertainty in satellite precipitation estimates. In Phase I, currently underway, a high-density network of 25 gauge platforms, each with two individual gauges, has been deployed over a 5 km x 5 km area near Nassawadox, VA. Although the complete network of 25 platforms was fully deployed in May 2012, several interesting events have already been observed that provide key insight into the sub-footprint variability of precipitation. Additionally, a network (2-5) of Two-Dimensional Video Disdrometers (2DVD) has been deployed on the Wallops main base, with separation distances on the order of 1-2 km. These data can also be used to characterize the variability of Drop Size Distribution (DSD) as well as other integral parameter such as the median drop diameter D0, liquid water content, etc. We will provide some early results on the variability of both rain rate (via the gauge network) and DSD (via 2DVD) and will discuss future plans for the PRF, including the planned Phase II, in which we will deploy multiple disdrometers (Parsivel, Joss, 2DVD) within the gauge network, as well as high-resolution scanning by NASAs NPOL (S-band, dual-polarimetric), D3R (dual-frequency, dual-polarization, Doppler), TOGA (C-band, Doppler) and SPANDAR (S-band, pencil beam, dual-polarization) radars over the gauge and disdrometer networks.

Wolff, D. B.

2012-12-01

184

www.its.umn.edu ITS Institute Research Facilities  

E-print Network

, a snowplow, a state highway patrol car, and a transit bus. The ability to develop, test, and integrate of unsupervised operation. In-house facilities such as a virtual traffic control center, the Geo- graphic

Levinson, David M.

185

YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).  

SciTech Connect

The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

2010-04-28

186

A PACIFIC-WIDE GEOTHERMAL RESEARCH LABORATORY: THE PUNA GEOTHERMAL RESEARCH FACILITY  

SciTech Connect

The Hawaii Geothermal Project (HGP-A) well, located in the Kilauea volcano east rift zone, was drilled to a depth of 6450 feet in 1976. It is considered to be one of the hot-test producing geothermal wells in the world. This single well provides 52,800 pounds per hour of 371 F and 160 pounds per square inch-absolute (psia) steam to a 3-megawatt power plant, while the separated brine is discharged in percolating ponds. About 50,000 pounds per hour of 368 F and 155 psia brine is discharged. Geothermal energy development has increased steadily in Hawaii since the completion of HGP-A in 1976: (1) a 3 megawatt power plant at HGP-A was completed and has been operating since 1981; (2) Hawaiian Electric Company (HECO) has requested that their next increment in power production be from geothermal steam; (3) three development consortia are actively, or in the process of, drilling geothermal exploration wells on the Big Island; and (4) engineering work on the development of a 400 megawatt undersea cable for energy transmission is continuing, with exploratory discussions being initiated on other alternatives such as hydrogen. The purpose for establishing the Puna Geothermal Research Facility (PGRF) is multifold. PGRF provides a facility in Puna for high technology research, development, and demonstration in geothermal and related activities; initiate an industrial park development; and examine multi-purpose dehydration and biomass applications related to geothermal energy utilization.

Takahashi, P.; Seki, A.; Chen, B.

1985-01-22

187

NASA Glenn Research Center Creek Road ComplexCryogenic Testing Facilities  

NASA Astrophysics Data System (ADS)

Due to expansion at neighboring Cleveland Hopkins Airport, several NASA Glenn Research Center (GRC) facilities have been relocated to the Creek Road Complex. The complex consists of the Small Scale Multi-purpose Research Facility (SMiRF), Cryogenic Components Lab Cell 7 (CCL-7), and a shop building. The facilities have been updated and include state-of-the art technology. SMiRF is a liquid hydrogen/liquid nitrogen (LH 2/LN 2) test facility used to conduct research in a 7400 L vacuum chamber. The chamber simulates space environment and launch vehicle ascent profile. SMiRF handles 5680 L of LH 2. CCL is a LH 2/LN 2 facility to perform small scale proof of concept tests for components and processes. It handles 1130 L of liquid hydrogen. Both facilities handle cryogens at sub-atmospheric pressures.

Jurns, John M.; Kudlac, Maureen T.

2006-02-01

188

BFL Research Greenhouse Guidelines (BFLRG) Contact: All emails regarding facilities, facilities equipment, supplies at facilities, or watering  

E-print Network

sanitized in the appropriate location. Supplies: Requests for supplies ordered by greenhouse staff must equipment, supplies at facilities, or watering concerns to both the greenhouse manager, Shane Merrell the problem is the ultimate goal. Sinks: Absolutely no food waste is to be placed into the sinks. Try

189

Review of drop tube and drop tower facilities and research  

NASA Technical Reports Server (NTRS)

Drop tubes and drop towers providing the capability for performing low-gravity materials experiments in an earth-based laboratory are described. Although processing times are short, the experiments can be reproduced easily and economically. These facilities can be used as precursors to space flight programs or can be self-sufficient, without the need for more advanced processing.

Robinson, Michael B.; Bayuzick, Robert J.; Hofmeister, William H.

1990-01-01

190

ERDA/Lewis research center photovoltaic systems test facility  

NASA Technical Reports Server (NTRS)

A national photovoltaic power systems test facility (of initial 10-kW peak power rating) is described. It consists of a solar array to generate electrical power, test-hardware for several alternate methods of power conversion, electrical energy storage systems, and an instrumentation and data acquisition system.

Forestieri, A. F.; Johnson, J. A.; Knapp, W. D.; Rigo, H.; Stover, J.; Suhay, R.

1977-01-01

191

High School Education in Correctional Facilities. Research Brief  

ERIC Educational Resources Information Center

With the advent of "Get tough on crime" and "Three strikes" in the 1980s and 1990s, correctional facilities have become overloaded with prisoners who are often repeat offenders. 51% of those imprisoned have a GED or high school diploma. Out of the remaining 49%, 36% of inmates had not completed the ninth grade and approximately a quarter of them

Walker, Karen

2006-01-01

192

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF Table of Contents  

E-print Network

Bigelow, Guy Garty and Helen Turner. Not shown: Gary Johnson. David J. Brenner, Ph.D., D.Sc. CRR Director Scientist Helen Turner, Ph.D. Associate Research Scientist Andrew D. Harken, Ph.D. Post-Doctoral Research

193

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY RARAF -Table of Contents  

E-print Network

.D. - Associate Research Scientist Brian Ponnaiya, Ph.D. - Associate Research Scientist Helen Turner, Ph-Pehrson. Not shown: Antonella Bertucci, Brian Ponnaiya, Helen Turner and Gary Johnson. #12;CENTER FOR RADIOLOGICAL

194

The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory  

SciTech Connect

HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

Not Available

1992-01-01

195

The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory  

SciTech Connect

HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy & image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

Not Available

1992-12-01

196

Direct sunlight facility for testing and research in HCPV  

NASA Astrophysics Data System (ADS)

A facility for testing different components for HCPV application has been developed in the framework of "Fotovoltaico ad Alta Efficienza" (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

Sciortino, Luisa; Agnello, Simonpietro; Barbera, Marco; Bonsignore, Gaetano; Buscemi, Alessandro; Candia, Roberto; Cannas, Marco; Collura, Alfonso; Di Cicca, Gaspare; Gelardi, Franco Mario; Cicero, Ugo Lo; Montagnino, Fabio Maria; Napoli, Gianluca; Paredes, Filippo; Spallino, Luisa; Varisco, Salvo

2014-09-01

197

Phytochrome-mediated responses: Implications for controlled environment research facilities  

NASA Technical Reports Server (NTRS)

Light is undoubtedly the most important environmental variable for plant growth and development; plants not only use radiant energy in photosynthesis, they also respond to the quantity, quality, direction and timing of incident radiation through photomorphogenic response that can have huge effects on the rate of growth and the pattern of development. It is surprising, therefore, that the manufacturers and suppliers of controlled environment facilities have been singularly uninventive in the design of the lighting assemblies they provide. The consumer has one choice only - a lighting assembly that provides irradiance levels usually only a fraction of sunlight, and a control system that is limited to regulating the timing of the on-off switch. The reasons for these limitations are partly technological, but in the main they result from ignorance on the part of both the consumer and the manufacturer. A specific and powerful example of this ignorance relates to the importance of the so-called far-red wavelengths (FR = 700-800 nm). Because the human eye can hardly detect wavelengths above 700 nm, and photosynthesis also cuts off at about 700 nm, the majority of plant and crop physiologists are still almost completely unaware that FR radiation can have massive effects on growth rate and development. In consequence, most growth cabinets have light sources based on fluorescent tubes, and provide very little FR apart from that emitted by a token number of small incandescent bulbs. Larger growth facilities often use broader spectrum light sources, but growth facilities that provide the capability to vary the FR incident upon the plants are about as abundant as seals in the Sahara. This article sets the background of the significance of FR radiation in the natural environment and its importance for plant growth and development in the hope that it might inform intelligently those concerned with improving the design of plant growth facilities.

Smith, Harry

1994-01-01

198

On the geodetic stability of the Goddard Optical Research Facility  

NASA Technical Reports Server (NTRS)

Seismic observations of earthquakes and blasts, geologic analysis of Landsat images, and a search of the historical record was examined. However, no evidence for tectonic motion was found. Some faulting is present in the area but no evidence of seismic activity was found. No elastic resonances in the range from 0.3 to 15 Hz were found. It is concluded that, except for ground water induced changes, the facility is stable at least to the 0.5 cm level.

Webster, W. J., Jr.; Lowman, P. D., Jr.; Allenby, R. J.

1981-01-01

199

FAIR - An International Accelerator Facility for Research with Ions and Antiprotons  

SciTech Connect

An overview is given on the international Facility for Antiproton and Ion Research (FAIR) at GSI, its science motivation and goals, the facility lay-out and characteristics, the accelerator design challenges, the schedule for construction, and the international interest/participation in the project.

Henning, Walter [Gesellschaft fuer Schwerionenforschung mbH, Planckstr.1, D-64291 Darmstadt (Germany)

2005-06-08

200

Atmospheric Radiation Measurement Program Climate Research Facility Operation quarterly report July 1 - September 30, 2010  

Microsoft Academic Search

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For

Sisterson

2010-01-01

201

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009  

Microsoft Academic Search

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available

D. L. Sisterson

2010-01-01

202

Maintaining the surgical research facility: the role of the surgical technician.  

PubMed

Building a well-equipped surgical facility is only half the battle. By ensuring that these facilities and their equipment are kept clean and well maintained, and that clear and thorough documentation is kept, research staff can protect both the quality of their work and the well-being of their animal patients. PMID:15179438

Lewis, Angie; Talcott, Michael

2004-06-01

203

Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2007  

Microsoft Academic Search

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available

Sisterson

2008-01-01

204

A facility for using cluster research to study environmental problems. Workshop proceedings  

SciTech Connect

This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

Not Available

1991-11-01

205

Research at the BNL Tandem Van de Graaff Facility, 1980  

SciTech Connect

Research programs at the Brookhaven Van de Graaff accelerators are summarized. Major accomplishments of the laboratory are discussed including quasielastic reactions, high-spin spectroscopy, yrast spectra, fusion reactions, and atomic physics. The outside user program at the Laboratory is discussed. Research proposed for 1981 is outlined. (GHT)

Not Available

1981-03-01

206

32 CFR 22.310 - Statutes concerning certain research, development, and facilities construction grants.  

Code of Federal Regulations, 2013 CFR

...Statutes concerning certain research, development, and facilities...entitiesnew grants for research and development (i) General...the case of a new grant for research and development to an entity...and (B) Report on such matters to the Congress or any...

2013-07-01

207

32 CFR 22.310 - Statutes concerning certain research, development, and facilities construction grants.  

Code of Federal Regulations, 2011 CFR

...Statutes concerning certain research, development, and facilities...entitiesnew grants for research and development (i) General...the case of a new grant for research and development to an entity...and (B) Report on such matters to the Congress or any...

2011-07-01

208

32 CFR 22.310 - Statutes concerning certain research, development, and facilities construction grants.  

Code of Federal Regulations, 2012 CFR

...Statutes concerning certain research, development, and facilities...entitiesnew grants for research and development (i) General...the case of a new grant for research and development to an entity...and (B) Report on such matters to the Congress or any...

2012-07-01

209

32 CFR 22.310 - Statutes concerning certain research, development, and facilities construction grants.  

Code of Federal Regulations, 2010 CFR

...Statutes concerning certain research, development, and facilities...entitiesnew grants for research and development (i) General...the case of a new grant for research and development to an entity...and (B) Report on such matters to the Congress or any...

2010-07-01

210

Office of the Vice President for Research UGA IACUC Policy for Satellite Animal Facilities and  

E-print Network

Office of the Vice President for Research UGA IACUC Policy for Satellite Animal Facilities Animals or the FASS Guide for the Care and Use of Agricultural Animals in Research and Teaching for the Care and Use of Agricultural Animals in Research and Teaching. In general: � The room should have

Arnold, Jonathan

211

A 4MJ mobile pulse power facility for electrothermal-chemical gun research  

Microsoft Academic Search

In support of advanced electric gun research in progress within the US Army, a mobile pulsed power system has been developed and made operational as part of the Army Research Laboratory (ARL) electric gun research facility. This mobile system has a maximum energy storage capability of 4 MJ, and it can deliver gigawatt levels of pulsed power over time periods

Gary L. Katulka; M. DelGuercio; R. Pastore; D. Singh; R. J. Burdalski

1995-01-01

212

Expenditures on S&E Research Facilities At Historically Black Colleges and Universities Continue to Decline  

NSF Publications Database

Data Expenditures on S&E Research Facilities At Historically Black Colleges and Universities ... 10, 1995) This report is available in multiple formats. See Help for more information about viewing ...

213

Research Facility Climate change and environmental stresses placed by humans on plants,  

E-print Network

Research Facility Climate change and environmental stresses placed by humans on plants, animals: Biomes, Earth Science, Imaging, Insects, Microbiology, Plants and Algae, Plant Productivity and Transgenic Plants · Will lead to significant contributions in the areas of sustainable agriculture

Denham, Graham

214

Xerox' Canadian Research Facility: The Multinational and the "Offshore" Laboratory.  

ERIC Educational Resources Information Center

The history, logistics, and strategy behind the Xerox Corporation's Canadian research laboratory, a subsidiary firm located outside the United States for reasons of manpower, tax incentives, and quality of life, are described. (MSE)

Marchessault, R. H.; Myers, M. B.

1986-01-01

215

GUIDES TO POLLUTION PREVENTION: RESEARCH AND EDUCATIONAL FACILITIES  

EPA Science Inventory

This document provides research and educations institutions with guidelines and options to minimize both hazardous and nonhazardous wastes, identifies techniques that allow these institutions to reduce wastes, and provides a set of self-audit checklists to assist institutional st...

216

research in space Facilities on the International Space Station  

E-print Network

sciences, to technology advancement, to research on the effects of long-duration spaceflight on the human (CSA) Ms. Simonetta Di Pippo Director of Human Spaceflight European Space Agency (ESA) Mr. Koichi

217

NSTX Report on FES Joint Facilities Research Milestone 2010  

SciTech Connect

Annual Target: Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape-off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER. The divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer will be measured in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality ?*, beta ?, parallel heat flux q||, and divertor geometry). Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation.

R. Maingi, J-W. Ahn, T.K. Gray, A.G. McLean, V.A. Soukhanovskii

2011-03-24

218

Practical considerations for disaster preparedness and continuity management in research facilities.  

PubMed

Many research facility managers, veterinarians and directors are familiar with the principles of Good Laboratory Practice, requirements of the Association for Assessment and Accreditation of Laboratory Animal Care International, tenets of biosecurity and standards of animal welfare and housing but may be less familiar with the ideas of business continuity. But business continuity considerations are as applicable to research facilities as they are to other institutions. The authors discuss how business continuity principles can be applied in the research context and propose that such application, or 'research continuity management,' enables a focused but wide-reaching approach to disaster preparedness. PMID:24051650

Mortell, Norman; Nicholls, Sam

2013-10-01

219

Fire protection research for DOE facilities: FY 83 year-end report  

SciTech Connect

We summarize our research in FY 83 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies of energy technology facilities in order to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are currently advancing three major task areas: (1) the identification of fire hazards unique to fusion energy facilities, (2) the evaluation of accepted fire-management measures to meet the negate hazards, and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.; Stagge, K.

1984-08-02

220

Fire-protection research for DOE facilities: FY 82 year-end report  

SciTech Connect

We summarize our research in FY 82 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies for energy technology facilities to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are concurrently advancing three major task areas: (1) the identification of fire hazards unique to current fusion energy facilities; (2) the evaluation of accepted fire-management measures to meet and negate hazards; and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Priante, S.J.; Foote, K.L.

1983-09-02

221

Aifira: An ion beam facility for multidisciplinary research  

NASA Astrophysics Data System (ADS)

During the last decade, the CENBG (Centre d'tudes Nuclaires de Bordeaux Gradignan) commissioned a new facility called AIFIRA (Applications Interdisciplinaires des Faisceaux d'ions en Rgion Aquitaine). It allowed the development of a multidisciplinary activity based on the "in-house" expertise of CENBG in ion beam analysis. The great flexibility offered by the five beam lines confers a lot of possibilities for chemical analysis and nuclear physics. Indeed, not only the macrobeam and the external beam lines provide the full set of IBA techniques for routine sample analysis but an additional beam line is devoted to the production of monoenergetic neutrons through the interaction of the incoming ion with selected targets. In addition, the two high-resolution microbeam lines are used for chemical analyses, 2D/3D imaging, and targeted cell irradiation. Besides, the combination of the nanobeam line flexibility, the uniqueness of the micro-irradiation design completed by the internal CENBG expertise confers a great specificity to AIFIRA in biomedical field. After a detailed technical overview of the platform, the article focuses on the two high-resolution lines as they tap most of the activity. Thus a quick overview of the most significant results concerning biomedical samples is proposed in order to highlight the analytical possibilities of AIFIRA microbeam lines. A summary of the development status of the micro-irradiation line is also done.

Sorieul, S.; Alfaurt, Ph.; Daudin, L.; Serani, L.; Moretto, Ph.

2014-08-01

222

Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama  

SciTech Connect

This report presents the results of Run 260 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville. The run was started on July 17, 1990 and continued until November 14, 1990, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). Both thermal/catalytic and catalytic/thermal tests were performed to determine the methods for reducing solids buildup in a subbituminous coal operation, and to improve product yields. A new, smaller interstage separator was tested to reduce solids buildup by increasing the slurry space velocity in the separator. In order to obtain improved coal and resid conversions (compared to Run 258) full-volume thermal reactor and 3/4-volume catalytic reactor were used. Shell 324 catalyst, 1/16 in. cylindrical extrudate, at a replacement rate of 3 lb/ton of MF coal was used in the catalytic stage. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run. (TNPS was the sulfiding agent.)

Not Available

1992-01-01

223

A Recoil Mass Spectrometer for the HHIRF (Holifield Heavy Ion Research Facility) facility  

Microsoft Academic Search

A Recoil Mass Spectrometer (RMS) is to be built that will carry out a broad research program in heavy-ion physics. The RMS will make possible the study of otherwise inaccessible exotic nuclei. Careful attention has been given to match the RMS to all the beams available from the HHIRF accelerators, including those beams with the highest energy as well as

J. D. Cole; T. M. Cormier; J. H. Hamilton

1989-01-01

224

White Mountain Research Station: 25 years of high-altitude research. [organization and functions of test facility for high altitude research  

NASA Technical Reports Server (NTRS)

The organization and functions of a test facility for conducting research projects at high altitudes are discussed. The projects conducted at the facility include the following: (1) bird physiology, (2) cardiorespiratory physiology, (3) endocrinological studies, (4) neurological studies, (5) metabolic studies, and (6) geological studies.

Pace, N.

1973-01-01

225

Needs and opportunities for improving the health, safety, and productivity of medical research facilities.  

PubMed

Medical research facilities, indeed all the nation's constructed facilities, must be designed, operated, and maintained in a manner that supports the health, safety, and productivity of the occupants. The National Construction Goals, established by the National Science and Technology Council, envision substantial improvements in occupant health and worker productivity. The existing research and best practices case studies support this conclusion, but too frequently building industry professionals lack the knowledge to design, construct, operate, and maintain facilities at these optimum levels. There is a need for more research and more collaborative efforts between medical and facilities engineering researchers and practitioners in order to attain the National Construction Goals. Such collaborative efforts will simultaneously support attainment of the National Health Goals. This article is the summary report of the Healthy Buildings Committee for the Leadership Conference: Biomedical Facilities and the Environment sponsored by the National Institutes of Health, the National Association of Physicians for the Environment, and the Association of Higher Education Facilities Officers on 1--2 November 1999 in Bethesda, Maryland, USA. PMID:11124125

Hodgson, M; Brodt, W; Henderson, D; Loftness, V; Rosenfeld, A; Woods, J; Wright, R

2000-12-01

226

Needs and opportunities for improving the health, safety, and productivity of medical research facilities.  

PubMed Central

Medical research facilities, indeed all the nation's constructed facilities, must be designed, operated, and maintained in a manner that supports the health, safety, and productivity of the occupants. The National Construction Goals, established by the National Science and Technology Council, envision substantial improvements in occupant health and worker productivity. The existing research and best practices case studies support this conclusion, but too frequently building industry professionals lack the knowledge to design, construct, operate, and maintain facilities at these optimum levels. There is a need for more research and more collaborative efforts between medical and facilities engineering researchers and practitioners in order to attain the National Construction Goals. Such collaborative efforts will simultaneously support attainment of the National Health Goals. This article is the summary report of the Healthy Buildings Committee for the Leadership Conference: Biomedical Facilities and the Environment sponsored by the National Institutes of Health, the National Association of Physicians for the Environment, and the Association of Higher Education Facilities Officers on 1--2 November 1999 in Bethesda, Maryland, USA. PMID:11124125

Hodgson, M; Brodt, W; Henderson, D; Loftness, V; Rosenfeld, A; Woods, J; Wright, R

2000-01-01

227

Radiation hazard test facilities at the Denver Research Center. Information circular/1984  

SciTech Connect

The Bureau of Mines has developed test facilities for use in a research program that deals with radiation hazards in mining. This report describes the radon test chamber located at the Denver Research Center and the Twilight experimental mine located near Uravan, CO.

Droullard, R.F.; Davis, T.H.; Smith, E.E.; Holub, R.F.

1984-01-01

228

ARM Climate Research Facility Quarterly Instrument Report Fourth Quarter: October 1December 30, 2010  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

Voyles, JW

2011-01-17

229

Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)  

SciTech Connect

The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

JW Voyles

2008-01-30

230

Restoration of the Hypersonic Tunnel Facility at NASA Glenn Research Center, Plum Brook Station  

NASA Technical Reports Server (NTRS)

The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF), located at the Plum Brook Station in Sandusky, Ohio, is a non-vitiated, free-jet facility, capable of testing large-scale propulsion systems at Mach Numbers from 5 to 7. As a result of a component failure in September of 1996, a restoration project was initiated in mid- 1997 to repair the damage to the facility. Following the 2-1/2 year effort, the HTF has been returned to an operational condition. Significant repairs and operational improvements have been implemented in order to ensure facility reliability and personnel safety. As of January 2000, this unique, state-of-the-art facility was ready for integrated systems testing.

Woodling, Mark A.

2000-01-01

231

NASA's GreenLab Research Facility: A Guide for a Self-Sustainable Renewable Energy Ecosystem  

NASA Technical Reports Server (NTRS)

There is a large gap between the production and demand for energy from alternative fuel and alternative renewable energy sources. The sustainability of humanity, as we know it, directly depends on the ability to secure affordable fuel, food, and freshwater. NASA Glenn Research Center (Glenn) has initiated a laboratory pilot study on using biofuels as viable alternative fuel resources for the field of aviation, as well as utilizing wind and solar technology as alternative renewable energy resources. The GreenLab Research Facility focuses on optimizing biomass feedstock using algae and halophytes as the next generation of renewable aviation fuels. The unique approach in this facility helps achieve optimal biomass feedstock through climatic adaptation of balanced ecosystems that do not use freshwater, compete with food crops, or use arable land. In addition, the GreenLab Research Facility is powered, in part, by alternative and renewable energy sources, reducing the major environmental impact of present electricity sources. The ultimate goal is to have a 100 percent clean energy laboratory that, when combined with biomass feedstock research, has the framework in place for a self-sustainable renewable energy ecosystem that can be duplicated anywhere in the world and can potentially be used to mitigate the shortage of food, fuel, and water. This paper describes the GreenLab Research Facility at Glenn and its power and energy sources, and provides recommendations for worldwide expansion and adoption of the facility s concept.

Bomani, B. M. McDowell; Hendricks, R. C.; Elbuluk, Malik; Okon, Monica; Lee, Eric; Gigante, Bethany

2011-01-01

232

A facility for accelerator research and education at Fermilab  

SciTech Connect

Fermilab is currently constructing the 'SRF Test Accelerator at the New Muon Lab' (NML). NML consists of a photo-emitted RF electron gun, followed by a bunch compressor, low energy test beamlines, SCRF accelerating structures, and high energy test beamlines. The initial primary purpose of NML will be to test superconducting RF accelerating modules for the ILC and for Fermilab's 'Project X' - a proposal for a high intensity proton source. The unique capability of NML will be to test these modules under conditions of high intensity electron beams with ILC-like beam parameters. In addition NML incorporates a photoinjector which offers significant tunability and especially the possibility to generate a bright electron beam with brightness comparable to state-of-the-art accelerators. This opens the exciting possibility of also using NML for fundamental beams research and tests of new concepts in beam manipulations and acceleration, instrumentation, and the applications of beams.

Church, Mike; Nagaitsev, Sergei; /Fermilab

2009-01-01

233

Beaumont health system biobank: a multidisciplinary biorepository and translational research facility.  

PubMed

The Beaumont BioBank model is a multidisciplinary facility that is designed to provide access and opportunity for research-minded clinicians to become involved in research without the need for their own research infrastructure, thus increasing the research effort across the Health System. We describe a biobank model that works primarily in operating rooms for tissue collection and utilizes a generic consent process to facilitate rapid and accurate collection of biospecimens. The model combines both a biorepository that collects specimens based on clinical questions and also a translational research facility that undertakes biomarker-based research on those specimens in a seamless and efficient process. We believe that the Beaumont BioBank model would be readily applicable and reproducible in other academic healthcare systems. PMID:24845589

Akervall, Jan; Pruetz, Barbara L; Geddes, Timothy J; Larson, Dianna; Felten, David J; Wilson, George D

2013-08-01

234

Texas Experimental Tokamak, a plasma research facility: Technical progress report  

SciTech Connect

In the year just past, the authors made major progress in understanding turbulence and transport in both core and edge. Development of the capability for turbulence measurements throughout the poloidal cross section and intelligent consideration of the observed asymmetries, played a critical role in this work. In their confinement studies, a limited plasma with strong, H-mode-like characteristics serendipitously appeared and received extensive study though a diverted H-mode remains elusive. In the plasma edge, they appear to be close to isolating a turbulence drive mechanism. These are major advances of benefit to the community at large, and they followed from incremental improvements in diagnostics, in the interpretation of the diagnostics, and in TEXT itself. Their general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The work here demonstrates a continuing dedication to the problems of plasma transport which continue to plague the community and are an impediment to the design of future devices. They expect to show here that they approach this problem consistently, systematically, and effectively.

Wootton, A.J.

1995-08-01

235

The universe in the laboratory - Nuclear astrophysics opportunity at the facility for antiproton and ion research  

NASA Astrophysics Data System (ADS)

In the next years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzze-ntrum fr Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and pathbreaking research in hadronic, nuclear, and atomic physics as well as in applied sciences. This manuscript will discuss some of these research opportunities, with a focus on supernova dynamics and nucleosynthesis.

Langanke, K.

2014-05-01

236

Critical EMI and RFI challenges in nanotechnology and research facilities  

NASA Astrophysics Data System (ADS)

High resolution imaging systems (i.e., SEM, TEM, FIB, etc.), diagnostic medical equipment (i.e., EEG, EKG, EMG, MRI, etc.), scientific instruments and computer equipment are all susceptible to various sources of electromagnetic and radiofrequency interference (EMI & RFI). Simply stated, optimal tool performance is the requisite practice in nanotechnology, medical and research environments. Compromised and degraded performance due to elevated ambient EMI/RFI environments that exceed the instrument's susceptibility thresholds is clearly not acceptable. In the United States uniform EMI/RFI susceptibility testing methods and procedures are not mandated by law. Although the FCC, Part 15, regulates RF interference with radio services and electric equipment from intentional and unintentional sources, it does not address susceptibility issues directly. Therefore, confusion abounds as each manufacturer presents their unique method to measure and document the ambient EMI/RFI environment to ensure optimal performance. VitaTech will examine the various frequency bands and waveforms of non-ionizing electromagnetic (EM) spectrum, review basic near and far-field EM theory, identify problematic EMI and RFI sources, and address the units of measurement and susceptibility. Examples of EMI/RFI instrument susceptibility will be presented for analysis with actual EMI/RFI site surveys and power frequency simulations. The paper examines several EMI/RFI industry standards including SEMI E33-94 and European Union EN 61000-6-1 and EN 61000-6-2. Finally, corrective strategies and costs to attenuate and control elevated EMI/RFI environments will be presented such as magnetic and RF shielding systems, active cancellation systems, RGS/EMT conduits for electrical power distribution, self-canceling MI cable systems and other mitigation techniques.

Vitale, Louis S.

2005-08-01

237

Summary of informal meeting on ''facilities for atomic physics research with highly ionized atoms''  

SciTech Connect

An informal meeting to discuss ''Facilities for Atomic Physics Research with Highly Ionized Atoms'' was held during the APS DEAP meeting at the University of Connecticut on May 30, 1984. The meeting was motivated by the realization that the status of facilities for studies of highly ionized atoms is unsettled and that it might be desirable to take action to ensure adequate resources for research over the whole range of charge states and energies of interest. It was assumed that the science to be done with these beams has been amply documented in the literature.

Cocke, C.L.; Jones, K.W.

1984-01-01

238

LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012  

SciTech Connect

Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.

Yelick, Kathy

2012-01-01

239

Environmental assessment of the Carlsbad Environmental Monitoring and Research Center Facility  

SciTech Connect

This Environmental Assessment has been prepared to determine if the Carlsbad Environmental Monitoring and Research Center (the Center), or its alternatives would have significant environmental impacts that must be analyzed in an Environmental Impact Statement. DOE`s proposed action is to continue funding the Center. While DOE is not funding construction of the planned Center facility, operation of that facility is dependent upon continued funding. To implement the proposed action, the Center would initially construct a facility of approximately 2,300 square meters (25,000 square feet). The Phase 1 laboratory facilities and parking lot will occupy approximately 1.2 hectares (3 acres) of approximately 8.9 hectares (22 acres) of land which were donated to New Mexico State University (NMSU) for this purpose. The facility would contain laboratories to analyze chemical and radioactive materials typical of potential contaminants that could occur in the environment in the vicinity of the DOE Waste Isolation Pilot Plant (WIPP) site or other locations. The facility also would have bioassay facilities to measure radionuclide levels in the general population and in employees of the WIPP. Operation of the Center would meet the DOE requirement for independent monitoring and assessment of environmental impacts associated with the planned disposal of transuranic waste at the WIPP.

NONE

1995-10-01

240

Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility  

NASA Technical Reports Server (NTRS)

The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

1986-01-01

241

An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility  

SciTech Connect

The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

P. Calderoni; P. Sharpe; M. Shimada

2009-09-01

242

ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY  

SciTech Connect

The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy, and cost effectiveness. These efforts partially fulfill expectations of the DOE, other federal agencies, and the State of New Mexico for waste minimization. If the improvements discussed here are implemented, an estimated 1.8 million dollars in cost savings is expected.

Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

2003-02-27

243

36 CFR 1254.22 - Do I need to register when I visit a NARA facility for research?  

...register when I visit a NARA facility for research? 1254.22 Section 1254.22 ...RECORDS AND DONATED HISTORICAL MATERIALS Research Room Rules General Procedures 1254...register when I visit a NARA facility for research? (a) Yes, you must register...

2014-07-01

244

High-temperature test facility at the NASA Lewis engine components research laboratory  

NASA Technical Reports Server (NTRS)

The high temperature test facility (HTTF) at NASA-Lewis Engine Components Research Laboratory (ECRL) is presently used to evaluate the survivability of aerospace materials and the effectiveness of new sensing instrumentation in a realistic afterburner environment. The HTTF has also been used for advanced heat transfer studies on aerospace components. The research rig uses pressurized air which is heated with two combustors to simulate high temperature flow conditions for test specimens. Maximum airflow is 31 pps. The HTTF is pressure rated for up to 150 psig. Combustors are used to regulate test specimen temperatures up to 2500 F. Generic test sections are available to house test plates and advanced instrumentation. Customized test sections can be fabricated for programs requiring specialized features and functions. The high temperature test facility provides government and industry with a facility for testing aerospace components. Its operation and capabilities are described.

Colantonio, Renato O.

1990-01-01

245

NASA's plans for life sciences research facilities on a Space Station  

NASA Technical Reports Server (NTRS)

A Life Sciences Research Facility on a Space Station will contribute to the health and well-being of humans in space, as well as address many fundamental questions in gravitational and developmental biology. Scientific interests include bone and muscle attrition, fluid and electrolyte shifts, cardiovascular deconditioning, metabolism, neurophysiology, reproduction, behavior, drugs and immunology, radiation biology, and closed life-support system development. The life sciences module will include a laboratory and a vivarium. Trade-offs currently being evaluated include (1) the need for and size of a 1-g control centrifuge; (2) specimen quantities and species for research; (3) degree of on-board analysis versus sample return and ground analysis; (4) type and extent of equipment automation; (5) facility return versus on-orbit refurbishment; (6) facility modularity, isolation, and system independence; and (7) selection of experiments, design, autonomy, sharing, compatibility, and integration.

Arno, R.; Heinrich, M.; Mascy, A.

1984-01-01

246

The radiological research accelerator facility: Progress report for the period December 1, 1987--November 30, 1988  

SciTech Connect

The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. As such, RARAF is available to all potential users on an equal basis, and scientists outside the RRL are encouraged to submit proposals for experiments at RARAF. Facilities and services are provided to users, but the research projects themselves must be supported separately. Data obtained from experiments using RARAF have been of pragmatic value to radiation protection and to neutron therapy. At a more fundamental level, the research at RARAF has provided insight into the biological action of radiation and especially its relation to energy distribution in the cell. 12 refs., 2 figs., 4 tabs.

Hall, E.J.

1988-07-01

247

An Overview of the Antenna Measurement Facilities at the NASA Glenn Research Center  

NASA Technical Reports Server (NTRS)

For the past twenty years, the NASA Glenn Research Center (formerly Lewis Research Center) in Cleveland, Ohio, has developed and maintained facilities for the evaluation of antennas. This effort has been in support of the work being done at the center in the research and development of space communication systems. The wide variety of antennas that have been considered for these systems resulted in a need for several types of antenna ranges at the Glenn Research Center. Four ranges, which are part of the Microwave Systems Laboratory, are the responsibility of the staff of the Applied RF Technology Branch. A general description of these ranges is provided in this paper.

Lambert, Kevin M.; Anzic, Godfrey; Zakrajsek, Robert J.; Zaman, Afroz J.

2002-01-01

248

A possible biomedical facility at the European Organization for Nuclear Research (CERN)  

PubMed Central

A well-attended meeting, called Brainstorming discussion for a possible biomedical facility at CERN, was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990

Dosanjh, M; Myers, S

2013-01-01

249

CONTROL SYSTEM FOR THE ORNL MULTICHARGED ION RESEARCH FACILITY HIGH-VOLTAGE PLATFORM  

E-print Network

CONTROL SYSTEM FOR THE ORNL MULTICHARGED ION RESEARCH FACILITY HIGH-VOLTAGE PLATFORM M. E. Bannister , F. W. Meyer, and J. Sinclair, ORNL, Oak Ridge, TN 37831-6372, USA Abstract A control system utilizes the Experimental Physics and Industrial Con- trol System (EPICS) software to manipulate a program

250

Neutron spectrum measurements in the aluminum oxide filtered beam facility at the Brookhaven Medical Research Reactor  

Microsoft Academic Search

Neutron spectrum measurements were performed on the aluminum oxide filter installed in the Brookhaven Medical Research Reactor (BMRR). For these measurements, activation foils were irradiated at the exit port of the beam facility. A technique based on dominant resonances in selected activation reactions was used to measure the epithermal neutron spectrum. The fast and intermediate-energy ranges of the neutron spectrum

G. K. Becker; Y. D. Harker; L. G. Miller; R. A. Anderl; F. J. Wheeler

1990-01-01

251

DISTRIBUTION OF TRACE ELEMENT EMISIONS FROM THE LIQUID INJECTION INCINERATOR COMBUSTION RESEARCH FACILITY  

EPA Science Inventory

A series of tests was conducted at EPA's Combustion Research Facility (CRF) to investigate the fate of volatile trace elements in liquid injection hazardous waste incineration. In these tests, arsenic in the form of arsenic trioxide and antimony in the form of antimony trichlorid...

252

TRITIUM RESEARCH FACILITY AND LABORATORY, TRA666 AND TRA666A. CONTEXTUAL VIEW ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

TRITIUM RESEARCH FACILITY AND LABORATORY, TRA-666 AND TRA-666A. CONTEXTUAL VIEW SHOWS SECURITY BUILDING, TRA-621, AT LEFT; TRA-643, AT RIGHT. TRA-666 BUILDING NUMBER IS ON WEST SIDE OF BUILDING. INL NEGATIVE NO. HD46-38-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

253

EPA?s Experimental Stream Facility: Design and Research Supporting Watershed Management  

EPA Science Inventory

The EPA?s Experimental Stream Facility (ESF) represents an important tool in research that is underway to further understanding of the relative importance of stream ecosystems and the services they provide for effective watershed management. The ESF is operated under the goal of ...

254

Finding Tomorrow's Cures Northwestern University Plans for a Medical Research Facility  

E-print Network

Prentice Women's Hospital, 320 E. Huron Street. at site is the linchpin for the combined plans that attracts innovation and entrepreneurship. Construction of the new research facility on the Prentice site-of-the- art in its con guration. Innovation and entrepreneurship can happen in Chicago, just as they do

Contractor, Anis

255

Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility  

E-print Network

system, an alternative vehicle refueling station, and a stationary hydrogen fuel cell power plant, install, and operate an alternative vehicle refueling station, and a stationary hydrogen fuel cell powerResearch and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

256

TTI FacIlITIes For Human FacTors researcH Driving simulator  

E-print Network

. The simulator also provides a platform to evaluate driving distraction and driver interaction with in- formance and handling, visibility, distracted driving, and driver training. TheTTI FacIlITIes For Human FacTors researcH Driving simulator The Texas A&M Transportation Institute

257

New Lidar Remote Sensing Capabilities at the Atmospheric Radiation Measurement Climate Research Facilities (Invited)  

Microsoft Academic Search

In 2009 the US Department of Energy's Atmospheric Radiation Measurement Climate Research Facility (ACRF) was awarded funds through the American Recovery and Reinvestment Act (ARRA) for instrument acquisitions and upgrades. A significant portion of that award is being used to acquire new advanced lidar systems for all of the ACRF sites. Efforts are currently underway to develop the following systems:

R. Newsom; J. M. Comstock; D. D. Turner; R. A. Ferrare; C. Flynn; J. Goldsmith; V. R. Morris; R. Coulter

2009-01-01

258

Case Studies of Child Play Areas and Child Support Facilities: Travel and Field Research Report.  

ERIC Educational Resources Information Center

This report describes and evaluates 50 facilities and settings for play, child care, and early childhood development. Objectives of the research were to (1) sensitize the U.S. Army to the role of the physical environment in child play, care and development; (2) comparatively document and assess a sample of both military and civilian care

Cohen, Uriel; And Others

259

SYSTEMS RELIABILITY AND PERFORMANCE: PILOT-SCALE INCINERATION OF CHLORINATED BENZENES AT THE COMBUSTION RESEARCH FACILITY  

EPA Science Inventory

A series of 34 test burns was conducted between August 1983 and January 1984 in the pilot-scale rotary kiln incineration system at the USEPA Combustion Research Facility (CRF), using chlorinated benzenes as surrogate Principal Organic Hazardous Components (POHCs), over a range of...

260

ARM Climate Research Facility Quarterly Value-Added Product Report January 1March 30, 2011  

SciTech Connect

The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, and (3) future VAPs that have been recently approved.

Sivaraman, C

2011-06-14

261

Honey Bee Haven Garden Harry H. Laidlaw Jr. Honey Bee Research Facility  

E-print Network

Honey Bee Haven Garden Harry H. Laidlaw Jr. Honey Bee Research Facility Design Competition Detail Honey Bee Model Langstroth Lane Honeycomb Lattice Water Source Design Team Thanks! 01 03 10 17 #12 of the Honey Bee Haven garden. Based in the Bay Area, our multidisciplinary team brings together the expertise

Ishida, Yuko

262

A possible biomedical facility at the European Organization for Nuclear Research (CERN).  

PubMed

A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990

Dosanjh, M; Jones, B; Myers, S

2013-05-01

263

Scientific and Engineering Research Facilities at Colleges and Universities, 1998. Topical Report.  

ERIC Educational Resources Information Center

On a biennial basis since 1986, the National Science Foundation (NSF) has collected data on issues related to Science and Engineering (S&E) research facilities at U.S. colleges, universities, and biomedical institutions. This report presents the major findings from the 1998 survey and provides a summary of the changes that took place between the

National Science Foundation, Arlington, VA. Div. of Science Resources Studies.

264

Development and validation of the crew-station system-integration research facility  

NASA Technical Reports Server (NTRS)

The various issues associated with the use of integrated flight management systems in aircraft were discussed. To address these issues a fixed base integrated flight research (IFR) simulation of a helicopter was developed to support experiments that contribute to the understanding of design criteria for rotorcraft cockpits incorporating advanced integrated flight management systems. A validation experiment was conducted that demonstrates the main features of the facility and the capability to conduct crew/system integration research.

Nedell, B.; Hardy, G.; Lichtenstein, T.; Leong, G.; Thompson, D.

1986-01-01

265

Integrating real-time digital signal processing capability into a large research and development facility  

SciTech Connect

The Instrumentation and Controls Division at Oak Ridge National Laboratory recently developed and installed a large scale, real-time measurement system for the world`s largest pressurized water tunnel. This water tunnel, the Large Cavitation Channel (LCC) provides a research and development facility for the study of acoustic phenomena to aid in model testing of new naval ship and submarine designs. The LCC design required the development of a near-field beamformer in addition to extending the range of real-time processing capability to frequencies unavailable at other facilities. The beamformer acquires and processes time-domain acoustic data at 9.5 MB/s from up to 45 hydrophones while. The acoustic processing software provides for the real-time analysis of acoustic data. Up to 128 facility sensors are sampled, time stamped, and stored at 600 kB/s. The system generates information for acoustic phenomena and facility measurements in real time so that the operator can make facility adjustments to control the running experiment This real-time control of facility conditions requires that the measurement system integrate facility and acoustic data for simultaneous display to the operator in engineering units via high-end workstations. A dual-host minicomputer configuration with high-end workstations connected via an Ethernet networking cluster controls and integrates measurement and display subsystems. The system architecture integrates high-performance array processors, matrix switches, signal conditioning amplifiers, antialiasing filter subsystems, high-precision analog-to-digital subsystems, high-performance data disks, and support equipment The hardware and software architecture with its distributed computers and distributed real-time data base, the signal processing algorithms and architecture, and the flexible user interface for facility and measurements integration are described in this paper.

Manges, W.W.; Mallinak-Glassell, J.T.; Breeding, J.E.; Jansen, J.M. Jr.; Tate, R.M.; Bentz, R.R.

1992-12-31

266

Integrating real-time digital signal processing capability into a large research and development facility  

SciTech Connect

The Instrumentation and Controls Division at Oak Ridge National Laboratory recently developed and installed a large scale, real-time measurement system for the world's largest pressurized water tunnel. This water tunnel, the Large Cavitation Channel (LCC) provides a research and development facility for the study of acoustic phenomena to aid in model testing of new naval ship and submarine designs. The LCC design required the development of a near-field beamformer in addition to extending the range of real-time processing capability to frequencies unavailable at other facilities. The beamformer acquires and processes time-domain acoustic data at 9.5 MB/s from up to 45 hydrophones while. The acoustic processing software provides for the real-time analysis of acoustic data. Up to 128 facility sensors are sampled, time stamped, and stored at 600 kB/s. The system generates information for acoustic phenomena and facility measurements in real time so that the operator can make facility adjustments to control the running experiment This real-time control of facility conditions requires that the measurement system integrate facility and acoustic data for simultaneous display to the operator in engineering units via high-end workstations. A dual-host minicomputer configuration with high-end workstations connected via an Ethernet networking cluster controls and integrates measurement and display subsystems. The system architecture integrates high-performance array processors, matrix switches, signal conditioning amplifiers, antialiasing filter subsystems, high-precision analog-to-digital subsystems, high-performance data disks, and support equipment The hardware and software architecture with its distributed computers and distributed real-time data base, the signal processing algorithms and architecture, and the flexible user interface for facility and measurements integration are described in this paper.

Manges, W.W.; Mallinak-Glassell, J.T.; Breeding, J.E.; Jansen, J.M. Jr.; Tate, R.M.; Bentz, R.R.

1992-01-01

267

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1June 30, 2010  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Sisterson, DL

2010-07-09

268

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1September 30, 2010  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Sisterson, DL

2010-10-15

269

An axial flow research compressor facility designed for flow measurement in rotor passages  

NASA Technical Reports Server (NTRS)

An axial flow research compressor facility, which is designed for relative flow measurement, is described in this paper. The facility has a rotating probe traverse mechanism which is capable of traversing hot wire, pitot and other probes at 0.09 deg intervals across the rotor blade passage. The data transmission system includes rotating transducers, pressure transfer device, ten-channel mercury slip ring unit, scanivalve, etc. The instrumentation includes on-line data processing capability. A brief description of probes used as well as some typical data on the rotor blade static pressure, rotor endwall flow and rotor wake characteristics are given in the paper.

Lakshminarayana, B.

1980-01-01

270

Design strategies for the International Space University's variable gravity research facility  

NASA Technical Reports Server (NTRS)

A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.

Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

1990-01-01

271

Development and use of interactive displays in real-time ground support research facilities  

NASA Technical Reports Server (NTRS)

The NASA Western Aeronautical Test Range (WATR) is one of the world's most advanced aeronautical research flight test support facilities. A variety of advanced and often unique real-time interactive displays has been developed for use in the mission control centers (MCC) to support research flight and ground testing. These dispalys consist of applications operating on systems described as real-time interactive graphics super workstations and real-time interactive PC/AT compatible workstations. This paper reviews these two types of workstations and the specific applications operating on each display system. The applications provide examples that demonstrate overall system capability applicable for use in other ground-based real-time research/test facilities.

Rhea, Donald C.; Hammons, Kvin R.; Malone, Jacqueline C.; Nesel, Michael C.

1989-01-01

272

Recommendations for control of pathogens and infectious diseases in fish research facilities?  

PubMed Central

Concerns about infectious diseases in fish used for research have risen along with the dramatic increase in the use of fish as models in biomedical research. In addition to acute diseases causing severe morbidity and mortality, underlying chronic conditions that cause low-grade or subclinical infections may confound research results. Here we present recommendations and strategies to avoid or minimize the impacts of infectious agents in fishes maintained in the research setting. There are distinct differences in strategies for control of pathogens in fish used for research compared to fishes reared as pets or in aquaculture. Also, much can be learned from strategies and protocols for control of diseases in rodents used in research, but there are differences. This is due, in part, the unique aquatic environment that is modified by the source and quality of the water provided and the design of facilities. The process of control of pathogens and infectious diseases in fish research facilities is relatively new, and will be an evolving process over time. Nevertheless, the goal of documenting, detecting, and excluding pathogens in fish is just as important as in mammalian research models. PMID:18755294

Kent, Michael L.; Feist, Stephen W.; Harper, Claudia; Hoogstraten-Miller, Shelley; Mac Law, J.; Snchez-Morgado, Jos M.; Tanguay, Robert L.; Sanders, George E.; Spitsbergen, Jan M.; Whipps, Christopher M.

2012-01-01

273

Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs  

SciTech Connect

High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

Drewmark Communications; Sartor, Dale; Wilson, Mark

2010-07-01

274

Aircraft ground vibration testing at NASA Ames-Dryden Flight Research Facility  

NASA Technical Reports Server (NTRS)

At the NASA Ames Research Center's Dryden Flight Research Facility at Edwards Air Force Base, California, a variety of ground vibration test techniques has been applied to an assortment of new or modified aerospace research vehicles. This paper presents a summary of these techniques and the experience gained from various applications. The role of ground vibration testing in the qualification of new and modified aircraft for flight is discussed. Data are presented for a wide variety of aircraft and component tests, including comparisons of sine-dwell, single-input random, and multiple-input random excitation methods on a JetStar airplane.

Kehoe, Michael W.

1987-01-01

275

Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities  

NASA Technical Reports Server (NTRS)

Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

2003-01-01

276

Rain Garden Research at EPA?s Urban Watershed Research Facility  

EPA Science Inventory

Summary of the ongoing rain garden research at UWMB. The context for the study was described as well as the experimental design for the full-scale study, instrumentation, and stormwater collection system. Supporting bench scale research on hydraulic properties of media and soil...

277

The Facility for Antiproton and Ion Research and the Compressed Baryonic Matter Experiment  

SciTech Connect

The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific activities at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at high densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure both bulk observables with large acceptance and rare diagnostic probes such as charmed particles and vector mesons decaying into lepton pairs. The layout and the physics performance of the proposed CBM experimental facility will be discussed.

Senger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

2010-08-04

278

In-flight simulation studies at the NASA Dryden Flight Research Facility  

NASA Technical Reports Server (NTRS)

Since the late 1950's the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simulation has been used to address a wide variety of flying qualities questions, including low lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the space shuttle; the effects of time delays on controllability of aircraft with digital flight control systems; the causes and cures of pilot-induced oscillation in a variety of aircraft; and flight control systems for such diverse aircraft as the X-15 and the X-29. In-flight simulation has also been used to anticipate problems, avoid them, and solve problems once they appear. This paper presents an account of the in-flight simulation at the Dryden Flight Research Facility and some discussion. An extensive bibliography is included.

Shafer, Mary F.

1994-01-01

279

A research study for the preliminary definition of an aerophysics free-flight laboratory facility  

NASA Technical Reports Server (NTRS)

A renewed interest in hypervelocity vehicles requires an increase in the knowledge of aerodynamic phenomena. Tests conducted with ground-based facilities can be used both to better understand the physics of hypervelocity flight, and to calibrate and validate computer codes designed to predict vehicle performance in the hypervelocity environment. This research reviews the requirements for aerothermodynamic testing and discusses the ballistic range and its capabilities. Examples of the kinds of testing performed in typical high performance ballistic ranges are described. We draw heavily on experience obtained in the ballistics facilities at NASA Ames Research Center, Moffett Field, California. Prospects for improving the capabilities of the ballistic range by using advanced instrumentation are discussed. Finally, recent developments in gun technology and their application to extend the capability of the ballistic range are summarized.

Canning, Thomas N.

1988-01-01

280

Large-scale User Facility Imaging and Scattering Techniques to Facilitate Basic Medical Research  

SciTech Connect

Conceptually, modern medical imaging can be traced back to the late 1960's and into the early 1970's with the advent of computed tomography . This pioneering work was done by 1979 Nobel Prize winners Godfrey Hounsfield and Allan McLeod Cormack which evolved into the first prototype Computed Tomography (CT) scanner in 1971 and became commercially available in 1972. Unique to the CT scanner was the ability to utilize X-ray projections taken at regular angular increments from which reconstructed three-dimensional (3D) images could be produced. It is interesting to note that the mathematics to realize tomographic images was developed in 1917 by the Austrian mathematician Johann Radon who produced the mathematical relationships to derive 3D images from projections - known today as the Radon Transform . The confluence of newly advancing technologies, particularly in the areas of detectors, X-ray tubes, and computers combined with the earlier derived mathematical concepts ushered in a new era in diagnostic medicine via medical imaging (Beckmann, 2006). Occurring separately but at a similar time as the development of the CT scanner were efforts at the national level within the United States to produce user facilities to support scientific discovery based upon experimentation. Basic Energy Sciences within the United States Department of Energy currently supports 9 major user facilities along with 5 nanoscale science research centers dedicated to measurement sciences and experimental techniques supporting a very broad range of scientific disciplines. Tracing back the active user facilities, the Stanford Synchrotron Radiation Lightsource (SSRL) a SLAC National Accelerator Laboratory was built in 1974 and it was realized that its intense x-ray beam could be used to study protein molecular structure. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory was commissioned in 1982 and currently has 60 x-ray beamlines optimized for a number of different measurement techniques including imaging and tomography. The next generation NSLS-II facility is now under construction. The Advanced Light Source (ALS) commissioned in 1993 has one of the world's brightest sources of coherent long wavelength x-rays suitable for probing biological samples in 3D. The Advanced Photon Source at Argonne National Laboratory also has a number of x-ray beamlines dedicated to imaging and tomography suitable for biological and medical imaging research. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) also has a number of beamlines suitable for studying the structure and dynamics of proteins and other biological systems. A neutron imaging and tomography beamline is currently being planned for SNS. Similarly, the High Flux Isotope Reactor (HFIR) also at ORNL has beamlines suitable for examining biological matter and has an operational imaging beamline. In addition, the production of medical isotopes is another important HFIR function. These user facilities have been intended to facilitate basic and applied research and were not explicitly designed with the intention to scan patients the same way a commercial medical imaging scanner does. Oftentimes the beam power is significantly more powerful than those produced by medical scanners. Thus the ionizing radiation effects of these beams must be considered when contemplating how these facilities can contribute to medical research. Suitable research areas involving user facilities include the study of proteins, human and animal tissue sample scanning, and in some cases, the study of non-human vertebrate animals such as various rodent species. The process for scanning biological and animal specimens must be approved by the facility biosafety review board. The national laboratories provide a number of imaging and scattering instruments which can be used to facilitate basic medical research. These resources are available competitively via the scientific peer review process for proposals submitted through the user programs operated by each facility. Imaging human and animal

Miller, Stephen D [ORNL; Bilheux, Jean-Christophe [ORNL; Gleason, Shaun Scott [ORNL; Nichols, Trent L [ORNL; Bingham, Philip R [ORNL; Green, Mark L [ORNL

2011-01-01

281

Depression secondary to anxiety: findings from the McLean Hospital Depression Research Facility  

Microsoft Academic Search

Methodologic issues pertinent to the study of depression secondary to anxiety are reviewed. Data on the frequency and temporal sequence of comorbid DSM-III-R anxiety and depressive disorders in a sample from the McLean Hospital Depression Research Facility are presented. Patients with major depression secondary to anxiety are compared with major depressed patients without anxiety on a variety of demographic and

Alan F. Schatzberg; Jacqueline A. Samson; Anthony J. Rothschild; Monica M. Luciana; R. F. Bruno; Thomas C. Bond

1990-01-01

282

Materials Research Laboratory-UCSB Shared Experimental Facilities SUMMARY OF INDIVIDUAL RATES  

E-print Network

Materials Research Laboratory-UCSB Shared Experimental Facilities SUMMARY OF INDIVIDUAL RATES RATES-Campus Rate (Private/For- Profit)*** T-1 Porosimeter-BET per day $25.00 $38.25 $75.00 T-2 Bruker XRD (Powder Diffractometer) hour $20.00 $30.60 $60.00 T-3 TJA ICP Spectrometer hour $27.00 $41.31 $81.00 T-4 Mettler TGA per

Bigelow, Stephen

283

Neutron Flux Characterization of the Cold Beam PGAA-NIPS Facility at the Budapest Research Reactor  

NASA Astrophysics Data System (ADS)

Reliable flux characterization is essential for facilities using neutron beams. Hence, the NIPS station at the Budapest Research Reactor has recently been equipped with neutron-tomographic equipment. The beam can also be characterized by means of a large surface wire chamber and application of the time-of-flight method. The energy distribution was measured at three horizontal positions with the surface wire chamber in pinhole geometry, while the spatial inhomogeneity was determined by means of our new neutron-tomographic equipment.

Belgya, T.; Kis, Z.; Szentmiklsi, L.

2014-05-01

284

IN-FLIGHT SIMULATION STUDIES AT THE NASA DRYDEN FLIGHT RESEARCH FACILITY  

Microsoft Academic Search

Since the late 1950's the National Aeronautics and Space Administration's Dryden Flight Research Facility has found in-flight simulation to be an invaluable tool. In-flight simula- tion has been used to address a wide variety of flying quali- ties questions, including low-lift-to-drag ratio approach characteristics for vehicles like the X-15, the lifting bodies, and the Space Shuttle; the effects of time

Mary F. Shafer

285

Outline of a proposal for a new neutron source: The pulsed neutron research facility  

SciTech Connect

Accelerator-based, pulsed spallation neutron sources have been performing neutron scattering research for about fifteen years. During this time beam intensities have increased by a factor of 100 and more than 50 spectrometers are now operating on four major sources worldwide. The pulsed sources have proven to be highly effective and complementary to reactor-based sources in that there are important scientific areas for which each type of source has unique capabilities. We describe a proposal for a new pulsed neutron facility based on a Fixed Field Alternating Gradient synchrotron. The specifications for this new machine, which are now only being formulated, are for an accelerator that will produce (100 {divided_by} 200) {mu}A of time-averaged proton current at (500 {divided_by} 1000) MeV, in short pulses at 30 Hz. Appropriate target and moderator systems and an array of scattering instruments will be provided to make the facility a full-blown research installation. The neutron source, named the Pulsed Neutron Research Facility (PNRF), will be as powerful as any pulsed source now operating in the world and will also act as a test bed for the Fixed Field Alternating Gradient Synchrotron concept as a basis for more powerful sources in the future. The peak thermal neutron flux in PNRF will be about 5{center_dot}10{sup 15}n/cm{sup 2}{center_dot}s.

Brown, B.S.; Carpenter, J.M.; Kustom, R.L.

1992-04-01

286

Outline of a proposal for a new neutron source: The pulsed neutron research facility  

SciTech Connect

Accelerator-based, pulsed spallation neutron sources have been performing neutron scattering research for about fifteen years. During this time beam intensities have increased by a factor of 100 and more than 50 spectrometers are now operating on four major sources worldwide. The pulsed sources have proven to be highly effective and complementary to reactor-based sources in that there are important scientific areas for which each type of source has unique capabilities. We describe a proposal for a new pulsed neutron facility based on a Fixed Field Alternating Gradient synchrotron. The specifications for this new machine, which are now only being formulated, are for an accelerator that will produce (100 {divided by} 200) {mu}A of time-averaged proton current at (500 {divided by} 1000) MeV, in short pulses at 30 Hz. Appropriate target and moderator systems and an array of scattering instruments will be provided to make the facility a full-blown research installation. The neutron source, named the Pulsed Neutron Research Facility (PNRF), will be as powerful as any pulsed source now operating in the world and will also act as a test bed for the Fixed Field Alternating Gradient Synchrotron concept as a basis for more powerful sources in the future. The peak thermal neutron flux in PNRF will be about 5{center dot}10{sup 15}n/cm{sup 2}{center dot}s.

Brown, B.S.; Carpenter, J.M.; Kustom, R.L.

1992-04-01

287

Research Opportunities in High Energy Density Laboratory Plasmas on the NDCX-II Facility  

SciTech Connect

Intense beams of heavy ions offer a very attractive tool for fundamental research in high energy density physics and inertial fusion energy science. These applications build on the significant recent advances in the generation, compression and focusing of intense heavy ion beams in the presence of a neutralizing background plasma. Such beams can provide uniform volumetric heating of the target during a time-scale shorter than the hydrodynamic response time, thereby enabling a significant suite of experiments that will elucidate the underlying physics of dense, strongly-coupled plasma states, which have been heretofore poorly understood and inadequately diagnosed, particularly in the warm dense matter regime. The innovations, fundamental knowledge, and experimental capabilities developed in this basic research program is also expected to provide new research opportunities to study the physics of directly-driven ion targets, which can dramatically reduce the size of heavy ion beam drivers for inertial fusion energy applications. Experiments examining the behavior of thin target foils heated to the warm dense matter regime began at the Lawrence Berkeley National Laboratory in 2008, using the Neutralized Drift Compression Experiment - I (NDCX-I) facility, and its associated target chamber and diagnostics. The upgrade of this facility, called NDCX-II, will enable an exciting set of scientific experiments that require highly uniform heating of the target, using Li{sup +} ions which enter the target with kinetic energy in the range of 3 MeV, slightly above the Bragg peak for energy deposition, and exit with energies slightly below the Bragg peak. This document briefly summarizes the wide range of fundamental scientific experiments that can be carried out on the NDCX-II facility, pertaining to the two charges presented to the 2008 Fusion Energy Science Advisory Committee (FESAC) panel on High Energy Density Laboratory Plasmas (HEDLP). These charges include: (1) Identify the compelling scientific opportunities for research in fundamental HEDLP that could be investigated using existing and planned facilities in support of the Office of Fusion Energy Sciences and the National Nuclear Security Administration/Defense Program missions; and (2) Identify the scientific issues of implosion and target design that need to be addressed to make the case for inertial fusion energy as a potential future energy source. Compelling research opportunities of high intellectual value that can be carried out on the NDCX-II experimental facility are briefly summarized below, grouped into four main research areas. Page 4 lists several national and internationally-attended user workshops that have provided much of the input for the experimental campaigns describe below. More detailed information can be provided upon request.

Barnard, John; Cohen, Ron; Friedman, Alex; Grote, Dave; Lund, Steven; Sharp, Bill; Bieniosek, Frank; Ni, Pavel; Roy, Prabir; Henestroza, Enrique; Jung, Jin-Young; Kwan, Joe; Lee, Ed; Leitner, Matthaeus; Lidia, Steven; Logan, Grant; Seidl, Peter; Vay, Jean-Luc; Waldron, Will

2009-03-23

288

Designing a Virtual Research Facility to motivate Professional-Citizen Collaboration  

NASA Astrophysics Data System (ADS)

In order to handle the onslaught of data spilling from telescopes on the Earth and on orbit, CosmoQuest has created a virtual research facility that allows the public to collaborate with science teams on projects that would otherwise lack the necessary human resources. This second-generation citizen science site goes beyond asking people to click on images to also engaging them in taking classes, attending virtual seminars, and participating in virtual star parties. These features were introduced to try and expand the diversity of motivations that bring people to the project and to keep them engaged overtime - just as a research center seeks to bring a diversity of people together to work and learn over time. In creating the CosmoQuest Virtual Research Facility, we sought to answer the question, What would happen if we provided the public with the same kinds of facilities scientists have, and invite them to be our collaborators? It had already been observed that the public readily attends public science lectures, open houses at science facilities, and education programs such as star parties. It was hoped that by creating a central facility, we could build a community of people learning and doing science in a productive manner. In order to be successful, we needed to first create the facility, then test if people were coming both to learn and to do science, and finally to verify that people were doing legitimate science. During the past 18 months of operations, we have continued to work through each of these stages, as discussed talk. At this early date, progress is on-going, and much research remains to be done, but all indications show that we are on our way to building a community of people learning and doing science. During 2013-2014, a series of studies looked at the motivations of CosmoQuest users, as well as their forms of site interactions. During this talk, we will review these results, as well as the demographics of our user population.

Gay, Pamela

289

Design and Certification of Targets for Drop Tests at the NTRC Packaging Research Facility  

SciTech Connect

This report provides documentation of the design and certification of drop pad (targets) at the National Transportation Research Center (NTRC) Packaging Research Facility(PRF). Based on the evaluation performed, it has been demonstrated that the small (interior) drop pad (target) meets the regulatory definition of a flat, essentially unyielding, horizontal surface for packages weighing up to 3,150 lb (1,432 kg). The large (exterior) drop pad (target) meets the regulatory definition of a flat, essentially unyielding, horizontal surface for packages weighing up to 28,184 lb (12,811 kg).

Ludwig, S.B.

2003-06-05

290

Data Quality Assessment and Control for the ARM Climate Research Facility  

SciTech Connect

The mission of the Atmospheric Radiation Measurement (ARM) Climate Research Facility is to provide observations of the earth climate system to the climate research community for the purpose of improving the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their coupling with the Earth's surface. In order for ARM measurements to be useful toward this goal, it is important that the measurements are of a known and reasonable quality. The ARM data quality program includes several components designed to identify quality issues in near-real-time, track problems to solutions, assess more subtle long-term issues, and communicate problems to the user community.

Peppler, R

2012-06-26

291

ECR (Electron Cyclotron Resonance) source for the HHIRF (Holifield Heavy Ion Research Facility) tandem accelerator  

SciTech Connect

Electron Cyclotron Resonance, ECR, ion source technology has developed rapidly since the original pioneering work of R. Geller and his group at Grenoble in the early 1970s. These ion sources are capable of producing intense beams of highly charged positive ions and are used extensively for cyclotron injection, linac injection, and atomic physics research. In this paper, the advantages of using an ECR heavy-ion source in the terminal of the Holifield Heavy Ion Research Facility (HHIRF) 25-MV tandem accelerator is discussed. A possible ECR system for installation in the HHIRF tandem terminal is described.

Olsen, D.K.; Alton, G.D.; Dowling, D.T.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Meigs, M.J.; Mills, G.D.; Mosko, S.W.; Tatum, B.A.

1990-01-01

292

The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

2011-01-01

293

The Development of the Acoustic Design of NASA Glenn Research Center's New Reverberant Acoustic Test Facility  

NASA Technical Reports Server (NTRS)

The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.

2011-01-01

294

Towards a living lab research facility and a ubiquitous computing research programme  

Microsoft Academic Search

experience a ubiquitous computing environment, when they will inhabit it and use it for prolonged periods of time. The slogan of this development, is'Vacation on Campus'. The project is currently at the initiation phase. We have proposed a white paper [1] describing the concept and the research programme, and we are currently working to involve stakeholders from different departments of

Panos Markopoulos

2001-01-01

295

Overview of Innovative PMI Research on NSTX-U and Associated PMI Facilities at PPPL  

SciTech Connect

Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTXU, the PMI research has received a strong emphasis. With ~ 15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2 . To support the PMI research, a comprehensive set of PMI diagnostic tools are being implemented. The snow-flake configuration can produce exceptionally high divertor flux expansion of up to ~ 50. Combined with the radiative divertor concept, the snow-flake configuration has reduced the divertor heat flux by an order of magnitude in NSTX. Another area of active PMI investigation is the effect of divertor lithium coating (both in solid and liquid phases). The overall NSTX lithium PFC coating results suggest exciting opportunities for future magnetic confinement research including significant electron energy confinement improvements, Hmode power threshold reduction, the control of Edge Localized Modes (ELMs), and high heat flux handling. To support the NSTX-U/PPPL PMI research, there are also a number of associated PMI facilities implemented at PPPL/Princeton University including the Liquid Lithium R&D facility, Lithium Tokamak Experiment, and Laboratories for Materials Characterization and Surface Chemistry.

M. Ono, M. Jaworski, R. Kaita, C. N. Skinner, J.P. Allain, R. Maingi, F. Scotti, V.A. Soukhanovskii, and the NSTX-U Team

2012-09-19

296

Construction of a Solid State Research Facility, Building 3150. Environmental Assessment  

SciTech Connect

The Department of Energy (DOE) proposes to construct a new facility to house the Materials Synthesis Group (MSG) and the Semiconductor Physics Group (SPG) of the Solid State Division, Oak Ridge National Laboratory (ORNL). The location of the proposed action is Roane County, Tennessee. MSG is involved in the study of crystal growth and the preparation and characterization of advanced materials, such as high-temperature superconductors, while SPG is involved in semiconductor physics research. All MSG and a major pardon of SPG research activities are now conducted in Building 2000, a deteriorating structure constructed in the 1940. The physical deterioration of the roof; the heating, ventilation, and air conditioning (HVAC) system; and the plumbing make this building inadequate for supporting research activities. The proposed project is needed to provide laboratory and office space for MSG and SPG and to ensure that research activities can continue without interruption due to deficiencies in the building and its associated utility systems.

Not Available

1993-07-01

297

Preliminary Concepts for the Materials Science Research Facility on the International Space Station  

NASA Technical Reports Server (NTRS)

The Materials Science Research Facility (MSRF) is designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF consists of modular autonomous Materials Science Research Racks (MSRR's). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on Utilization Flight 3. Each MSRR is a stand-alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, or multi-user generic processing apparatus Each MSRR will support a wide variety of scientific investigations.

Cobb, S.D.; Szofran, F. R.; Schaefer, D. A.

1999-01-01

298

In Situ Resource Utilization Technology Research and Facilities Supporting the NASA's Human Systems Research and Technology Life Support Program  

NASA Technical Reports Server (NTRS)

The NASA Microgravity Science program has transitioned research required in support of NASA s Vision for Space Exploration. Research disciplines including the Materials Science, Fluid Physics and Combustion Science are now being applied toward projects with application in the planetary utilization and transformation of space resources. The scientific and engineering competencies and infrastructure in these traditional fields developed at multiple NASA Centers and by external research partners provide essential capabilities to support the agency s new exploration thrusts including In-Situ Resource Utilization (ISRU). Among the technologies essential to human space exploration, the production of life support consumables, especially oxygen and; radiation shielding; and the harvesting of potentially available water are realistically achieved for long-duration crewed missions only through the use of ISRU. Ongoing research in the physical sciences have produced a body of knowledge relevant to the extraction of oxygen from lunar and planetary regolith and associated reduction of metals and silicon for use meeting manufacturing and repair requirements. Activities being conducted and facilities used in support of various ISRU projects at the Glenn Research Center and Marshall Space Flight Center will be described. The presentation will inform the community of these new research capabilities, opportunities, and challenges to utilize their materials, fluids and combustion science expertise and capabilities to support the vision for space exploration.

Schlagheck, Ronald A.; Sibille, Laurent; Sacksteder, Kurt; Owens, Chuck

2005-01-01

299

Holifield Radioactive Ion Beam Facility A leading international facility with unique capabilities for research in nuclear structure  

E-print Network

HRIBF Holifield Radioactive Ion Beam Facility A leading international facility with unique (+26 more unaccelerated) · 32 proton-rich species · 143 neutron-rich species The Holifield Radioactive a dedicated user program in nuclear physics using exotic beams. Radioactive species are produced by intense

300

System Security Authorization Agreement (SSAA) for the WIRE Archive and Research Facility  

NASA Technical Reports Server (NTRS)

The Wide-Field Infrared Explorer (WIRE) Archive and Research Facility (WARF) is operated and maintained by the Department of Physics, USAF Academy. The lab is located in Fairchild Hall, 2354 Fairchild Dr., Suite 2A103, USAF Academy, CO 80840. The WARF will be used for research and education in support of the NASA Wide Field Infrared Explorer (WIRE) satellite, and for related high-precision photometry missions and activities. The WARF will also contain the WIRE preliminary and final archives prior to their delivery to the National Space Science Data Center (NSSDC). The WARF consists of a suite of equipment purchased under several NASA grants in support of WIRE research. The core system consists of a Red Hat Linux workstation with twin 933 MHz PIII processors, 1 GB of RAM, 133 GB of hard disk space, and DAT and DLT tape drives. The WARF is also supported by several additional networked Linux workstations. Only one of these (an older 450 Mhz PIII computer running Red Hat Linux) is currently running, but the addition of several more is expected over the next year. In addition, a printer will soon be added. The WARF will serve as the primary research facility for the analysis and archiving of data from the WIRE satellite, together with limited quantities of other high-precision astronomical photometry data from both ground- and space-based facilities. However, the archive to be created here will not be the final archive; rather, the archive will be duplicated at the NSSDC and public access to the data will generally take place through that site.

2002-01-01

301

Enthalpy By Energy Balance for Aerodynamic Heating Facility at NASA Ames Research Center Arc Jet Complex  

NASA Technical Reports Server (NTRS)

The NASA Ames Research Center (ARC) Arc Jet Facilities' Aerodynamic Heating Facility (AHF) has been instrumented for the Enthalpy By Energy Balance (EB2) method. Diagnostic EB2 data is routinely taken for all AHF runs. This paper provides an overview of the EB2 method implemented in the AHF. The chief advantage of the AHF implementation over earlier versions is the non-intrusiveness of the instruments used. For example, to measure the change in cooling water temperature, thin film 1000 ohm Resistance Temperature Detectors (RTDs) are used with an Anderson Current Loop (ACL) as the signal conditioner. The ACL with 1000 ohm RTDs allows for very sensitive measurement of the increase in temperature (Delta T) of the cooling water to the arc heater, which is a critical element of the EB2 method. Cooling water flow rates are measured with non-intrusive ultrasonic flow meters.

Hightower, T. Mark; MacDonald, Christine L.; Martinez, Edward R.; Balboni, John A.; Anderson, Karl F.; Arnold, Jim O. (Technical Monitor)

2002-01-01

302

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2008-06-01

303

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2007-07-01

304

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2008-09-30

305

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2007-10-01

306

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Sisterson, DL

2011-03-02

307

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 March 31, 2007  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2007-04-01

308

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 September 30, 2006  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

DL Sisterson

2006-10-01

309

Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1September 30, 2011  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2011-10-10

310

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1June 30, 2011  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Voyles, JW

2011-07-25

311

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2008-04-01

312

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2009-01-15

313

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2008-01-08

314

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1March 31, 2011  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

Sisterson, DL

2011-04-11

315

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 June 30, 2006  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

DL Sisterson

2006-07-01

316

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1December 31, 2009  

SciTech Connect

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2010-01-15

317

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 September 30, 2009  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2009-10-15

318

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

DL Sisterson

2009-03-17

319

Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility  

SciTech Connect

To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

2010-01-11

320

Mortality among employees at a plastics and resins research and development facility.  

PubMed Central

OBJECTIVES--The study was undertaken to update a previous study of employees from a resins and plastics research and development facility and to further examine the mortality of these employees with particular emphasis on deaths due to pancreatic cancer. METHODS--This retrospective cohort study examined mortality from 1962 to 1992 for 257 men who were employed for at least one year during a 14 year period from 1962 to 1975 at a plastics and resins research and development facility. During the operative period, the primary activities involved applications and process development for polypropylene, polystyrene, epoxy resins, and to a lesser extent high density polyethylene. RESULTS--The cohort was young and was followed up for an average of 26 years. Although mortality for all causes among employees who worked at least one year at this facility was low (standardised mortality ratio (SMR) 0.74), the death rate from cancer was moderately higher than that of the general population (14 observed and 9.4 expected deaths). There were four observed and 0.5 expected deaths from pancreatic cancer among men who worked at this facility for at least one year, which resulted in a statistically increased SMR of 8.88 (95% confidence interval 2.42-22.74). All cases of pancreatic cancer had "laboratory" jobs, and their ages at death were relatively young compared with deaths in the general population from pancreatic cancer. Lung cancer mortality was high but not significant with seven observed and 3.5 expected deaths. There were no deaths due to non-malignant respiratory disease (1.9 expected). CONCLUSIONS--The increased cancer mortality was entirely due to excess deaths from pancreatic and lung cancers. No causative agent or process for these cases of pancreatic cancer has been identified. This study shows no increased colorectal cancer mortality as was found among another group of workers involved in the manufacture of polypropylene. PMID:7849862

Cowles, S R; Tsai, S P; Gilstrap, E L; Ross, C E

1994-01-01

321

Measurement system support at the JAERI-CRT Facility: pressure transducers. [Containment Research Testing  

SciTech Connect

As part of a continuing liaison between the US NRC and foreigh full scale containment research programs, measurements assistance in the form of the loan of 30 flush diaphram pressure transducers has been provided to the JAERI-CRT MK II research program at Tokai-Mura, Japan. Procedures developed earlier at the Lawrence Livermore National Laboratory (LLNL) under similar research work sponsored by the US NRC were used by LLNL to successfully complete final installation and in-situ end-to-end calibration of the transducers in the CRT facility. The results from this calibration showed a very close agreement between sensitivities and linearities calculated at LLNL and the ones calculated at JAERI and indicate the transducers should give valid data during future testing.

Shay, W.M. Jr.; McCauley, E.W.

1981-11-01

322

Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)  

NASA Technical Reports Server (NTRS)

Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2's support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed in the early 1960s to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Exhaust system performance, including understanding the present facility capabilities, is the primary focus of this work. A variety of approaches and analytical tools are being employed to gain this understanding. This presentation discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

Edwards, Daryl A.

2008-01-01

323

Role of Radar Cross Section facilities in a Radar and Electronic Warfare Defence Research and Evaluation capability  

Microsoft Academic Search

Abstract: This paper demonstrates the role of Radar Cross Section (RCS) facilities, consisting of modelling and simulation (M&S), Hardware in the Loop- (HWIL) and field Test and Evaluation (T&E) environments, in a Radar and Electronic Warfare (EW) Defence Research and Evaluation capability. The link between the development and utilisation of radar and EW facilities and the scientific process is illustrated

Ewerlank Pienaar; Thomas Ksel; Pieter Goosen; Christo Cloete; Louis Botha

324

FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I  

SciTech Connect

The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

Abdou, M.

1984-10-01

325

Utilizing the US Lab Nadir Research Window for Remote Sensing Operations with The Window Observational Research Facility (WORF)  

NASA Technical Reports Server (NTRS)

The Window Observational Research Facility (WORF) is an ISPR-based rack facility designed to take advantage of the high optical quality US Lab Nadir research window. The WORF is based on the ISS Expedite the Processing of Experiments to Space Station (EXPRESS) rack mechanical structure and electronic systems. The WORF has a unique payload volume located at the center of the rack that provides access to the window. The interior dimensions of the payload volume are 34-in. (86.36 cm) wide by 33-in. (83.82 cm) high by 23-in. (58.42 cm) deep. This facility supports the deployment of payloads such as 9 in. aerial photography cameras and 12 in. diameter optical equipment. The WORF coupled with the optical quality of the United States Lab window support the deployment of various payload disciplines. The WORF provides payloads with power, data command and control, air cooling, water cooling, and video processing. The WORF's payload mounting surfaces and interfaces include the interior payload mounting shelf and the interior and exterior aircraft-like seat tracks. The payload mounting shelf is limited to a maximum mass of 136 kg (299 pounds). The WORF can accommodate large payloads such as the commonly used Leica-Heerbrug RC-30 aerial photography camera (whose dimensions are 53.3 cm (21-in.) wide by 50.8 cm (20-in.) deep by 76.2 cm (30-in.) long). The performance characteristics of the WORF allow it to support an array of payload disciplines. The WORF provides a maximum of 3 Kw at 28 Vdc and has a maximum data rate of 10 Mbps. The WORF's unique payload volume is designed to be light-tight, down to 2.8 x 10(exp -11) Watts/cm2/steradian, and have low-reflective surfaces. This specially designed WORF interior supports payload investigations that observe low-light-level phenomenon such as aurora. Although the WORF rack does not employ any active rack isolation (i.e., vibration dampening) technology, the rack provides a very stable environment for payload operations (on the order of X microradians). The facility's software is capable of being updated during its period of deployment. The WORF project also includes a Suitcase Simulator to allow for a payload developer to verify data interfaces at his development site, a trainer rack for astronauts to learn how to operate the WORF prior to flight, and the use of the EXPRESS Functional Checkout Units to allow for payload checkout at the KSC prior to launch.

Turner, Richard; Barley, Bryan; Gilbert, Paul A. (Technical Monitor)

2002-01-01

326

Use of the National Ignition Facility for defense, energy, and basic research science  

SciTech Connect

On January 15, 1993, the Department of Energy (DOE) approved the Justification for Mission Need (JMN) for the National Ignition Facility (NIF). This action (Key Decision Zero, or KD0) commenced the conceptual design for the facility, which has resulted in a recently completed Conceptual Design Report (CDR). The JMN document defined the NIF mission elements to include laboratory fusion ignition and energy gain, weapons physics, and nuclear weapons effects testing research (NWET). NIF has a dual benefit by contributing to inertial fusion energy (IFE), industrial technology development, new basic science areas applying high power lasers, and training young scientists for future stewardship activities. For consideration of the next DOE action, Key Decision One (KD1), all mission elements of the NIF as stated in the JMN are consistent with and important to the US stockpile stewardship program, and are expected to continue to be in the vital interest of the United States for the long term. This document provides further information on the utility of NIF for stockpile stewardship, including support for a Comprehensive Test Ban Treaty (CTBT), and specific findings of four national workshops on the NIF utility for weapons physics, NWET, IFE and basic science research. The role of NIF for stockpile stewardship has been refined since a DOE meeting in Albuquerque, NM Feb. 1--2, 1994. The possible compliance of NIF research with anticipated CTBT and NPT limitations was discussed at the DOE Office of Arms Control and Nonproliferation in Washington, DC on March 8, 1994.

Logan, B.G.

1994-07-15

327

National Scientific Facilities and Their Science Impact on Non-Biomedical Research  

E-print Network

H-index, proposed by Hirsch is a good indicator of the impact of a scientist's research. When evaluating departments, institutions or labs, the importance of h-index can be further enhanced when properly calibrated for size. Particularly acute is the issue of federally funded facilities whose number of actively publishing scientists frequently dwarfs that of academic departments. Recently Molinari and Molinari developed a methodology that shows the h-index has a universal growth rate for large numbers of papers, allowing for meaningful comparisons between institutions. An additional challenge when comparing large institutions is that fields have distinct internal cultures, with different typical rates of publication and citation; biology is more highly cited than physics, which is more highly cited than engineering. For this reason, this study has focused on the physical sciences, engineering, and technology, and has excluded bio-medical research. Comparisons between individual disciplines are reported here to provide contextual framework. Generally, it was found that the universal growth rate of Molinari and Molinari holds well across all the categories considered, testifying to the robustness of both their growth law and our results. The overall goal here is to set the highest standard of comparison for federal investment in science; comparisons are made with the nations preeminent private and public institutions. We find that many among the national facilities compare favorably in research impact with the nations leading universities.

A. L. Kinney

2007-05-12

328

Programmatic Need for a Zero Emission Steam Technology (ZEST) Research Facility  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL) is proposing to construct an on-site research facility for a novel electric power generation system that exploits clean-burning fossil fuels. This system, termed Zero Emission Steam Technology (ZEST), offers unique economic and environmental benefits, including: (1) Highly efficient power generation using the most advanced combustion and turbine technologies. (2) Ability to burn a range of fossil fuels, including natural gas, synthetic gas from coal (''coal syngas''), and coal-bed methane. (3) No oxides of nitrogen generated that would contribute to air pollution. (4) No greenhouse gases emitted. (5) Secure geologic sequestration of the carbon dioxide (CO{sub 2}) combustion product. (6) Use of the CO{sub 2} combustion product to enhance oil recovery in mature fields. The proposed research facility will provide a necessary step toward commercialization of ZEST. Despite the technology's promise, it will not be implemented by the U.S. electric power industry unless an agency such as DOE takes on the task of demonstrating its scientific and economic viability. The U.S. electric power industry typically requires 50,000 hours of operational data--nearly six years of continuous duty--before investing in a major new technology. Hence, there is a strong programmatic need for DOE to provide such data for ZEST, to accelerate commercial investment in this technology. The ZEST combustion process is based on rocket engine technology. It burns pure oxygen with a hydrocarbon fuel under stoichiometric conditions to produce power with virtually no oxides of nitrogen generated. The flexibility of ZEST's gas generator, which has independent temperature and pressure control, will allow modular upgrading of turbine systems as new, more efficient technology becomes available. It is envisioned that the ZEST research facility will serve as a testing laboratory for new turbine technology being designed by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Next Generation Turbine Program.

Meltzer, M; Followill, F; Johnson, J

2001-06-30

329

Fixed-bed gasification research using US coals. Volume 1. Program and facility description  

SciTech Connect

The United States Department of Interior, Bureau of Mines, Twin Cities Research Center, Minneapolis, Minnesota is the site of a 6.5 foot diameter Wellman-Galusha gasifier, installed in 1977-1978. This gasifier, combustor/incinerator, and flue gas scrubber system in the past had been operated jointly by Bureau of Mines personnel, personnel from member companies of the Mining and Industrial Fuel Gas Group, and United States Department of Energy personnel-consultants. Numerous tests using a variety of coals have to date been performed. In May of 1982, Black, Sivalls and Bryson, Incorporated (BS and B) was awarded the contract to plan, execute, and report gasification test performance data from this small industrial fixed-bed gasification test facility. BS and B is responsible for program administration, test planning, test execution, and all documentation of program activities and test reports. The University of Minnesota, Particle Technology Laboratory (UMPTL) is subcontractor to BS and B to monitor process parameters, and provide analysis for material inputs and outputs. This report is the initial volume in a series of reports describing the fixed-bed gasification of US coals at the Bureau of Mines, Twin Cities Research Center. A history of the program is given in Section 1 and a thorough description of the facility in Section 2. The operation of the facility is described in Section 3. Monitoring systems and procedures are described in Sections 4 and 5. Data reduction tools are outlined in Section 6. There is no executive summary or conclusions as this volume serves only to describe the research program. Subsequent volumes will detail each gasification test and other pertinent results of the gasification program. 32 references, 23 figures, 15 tables.

Thimsen, D.; Maurer, R.E.; Poole, A.R.; Pui, D.; Liu, B.; Kittleson, D.

1984-10-01

330

A guide to research facilities at the National Renewable Energy Laboratory  

SciTech Connect

The guide is divided into two parts. Topping the pages are descriptions of laboratories at NREL that provide sophisticated experimental equipment, testing capabilities, or processes that may not be available in the private sector. Scientific categories are designated at the top of the pages in blue; individual laboratory descriptions follow alphabetically, along with the names and phone numbers of the laboratory managers. In blue boxes at the bottom of the pages are articles about NREL, our technology transfer program, and our facilities, as well as guidelines for students, researchers, and industrial collaborators who wish to use them. A list of key contacts and a map of the campus follows the laboratory descriptions.

Not Available

1994-04-01

331

Experimental research facility for creep-rupture testing of tantalum alloy T-111  

SciTech Connect

We have developed a research facility for computer-controlled elevated temperature tensile testing of refractory metallic alloys in an inert enviroment. In an application to tantalum alloy T-111, we have determined that a two-hour creep rupture life can be achieved at 1204/sup 0/C (0.45 T/sub m/) and 1300/sup 0/C (0.48 T/sub m/) if the applied true stresses are maintained below 46 ksi (317 MPa) and 36 ksi (248 MPa), respectively.

Kawahara, W.A.; Schoeneman, B.D.; Korellis, J.S.

1984-05-01

332

Evaluation of the Deployable Seismic Verification System at the Pinedale Seismic Research Facility  

SciTech Connect

The intent of this report is to examine the performance of the Deployable Seismic Verification System (DSVS) developed by the Department of Energy (DOE) through its national laboratories to support monitoring of underground nuclear test treaties. A DSVS was installed at the Pinedale Seismic Research Facility (PSRF) near Boulder, Wyoming during 1991 and 1992. This includes a description of the system and the deployment site. System performance was studied by looking at four areas: system noise, seismic response, state of health (SOH) and operational capabilities.

Carr, D.B.

1993-08-01

333

Engineering Support of Microgravity Life Science Research: Development of an Avian Development Facility  

NASA Technical Reports Server (NTRS)

The Avian Development Facility (ADF) is designed to provide a 'window' for the study of embryogenesis in space. It allows researchers to determine and then to mitigate or nullify the forces of altered gravity upon embryos when leaving and re-entering the Earth's gravity. The ADF design will allow investigations to begin their incubation after their experiments have achieved orbit, and shut down the experiment and fix specimens before leaving orbit. In effect, the ADF makes every attempt to minimize launch and re-entry effects in order to isolate and preserve the effects of the experimental variable(s) of the space environment.

Vellinger, J.; Deuser, M.; Hullinger, R.

1995-01-01

334

Spin spectrometer at the holified heavy-ion research facility and some planned experiments  

SciTech Connect

The 4..pi.. multidetector ..gamma..-ray spectrometer at the Holified Heavy-ion Research Facility (HHIRF) is described in some detail. The following important features of this spectrometer are discussed: (a) the geometric arrangement, (b) the actual performance of the individual detector elements, (c) the associated electronics and data acquisition system, and (d) the response of the system to input ..gamma..-cascades including the effect of crystal-to-crystal scattering and the response to neutrons. The first few experiments to be performed are briefly described.

Sarantites, D.G.; Jaaskelainen, M.; Hood, J.T.; Woodward, R.; Barker, J.H.; Hensley, D.C.; Halbert, M.L.; Chan, Y.D.

1980-01-01

335

A new digital pulse power supply in heavy ion research facility in Lanzhou  

NASA Astrophysics Data System (ADS)

To meet the increasing requirements of the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), a new digital pulse power supply, which employs multi-level converter, was designed. This power supply was applied with a multi H-bridge converters series-parallel connection topology. A new control model named digital power supply regulator system (DPSRS) was proposed, and a pulse power supply prototype based on DPSRS has been built and tested. The experimental results indicate that tracking error and ripple current meet the requirements of this design. The achievement of prototype provides a perfect model for HIRFL-CSR power supply system.

Wang, Rongkun; Chen, Youxin; Huang, Yuzhen; Gao, Daqing; Zhou, Zhongzu; Yan, Huaihai; Zhao, Jiang; Shi, Chunfeng; Wu, Fengjun; Yan, Hongbin; Xia, Jiawen; Yuan, Youjin

2013-11-01

336

The determination of some requirements for a helicopter flight research simulation facility  

NASA Technical Reports Server (NTRS)

Important requirements were defined for a flight simulation facility to support Army helicopter development. In particular requirements associated with the visual and motion subsystems of the planned simulator were studied. The method used in the motion requirements study is presented together with the underlying assumptions and a description of the supporting data. Results are given in a form suitable for use in a preliminary design. Visual requirements associated with a television camera/model concept are related. The important parameters are described together with substantiating data and assumptions. Research recommendations are given.

Sinacori, J. B.

1977-01-01

337

Operational evaluation of a proppeller test stand in the quiet flow facility at Langley Research Center  

NASA Technical Reports Server (NTRS)

Operational proof tests of a propeller test stand (PTS) in a quiet flow facility (QFF) are presented. The PTS is an experimental test bed for acoustic propeller research in the quiet flow environment of the QFF. These proof tests validate thrust and torque predictions, examine the repeatability of measurements on the PTS, and determine the effect of applying artificial roughness to the propeller blades. Since a thrusting propeller causes an open jet to contract, the potential flow core was surveyed to examine the magnitude of the contraction. These measurements are compared with predicted values. The predictions are used to determine operational limitations for testing a given propeller design in the QFF.

Block, P. J. W.

1982-01-01

338

MORAL CONSIDERATIONS IN BODY DONATION FOR SCIENTIFIC RESEARCH: A UNIQUE LOOK AT THE UNIVERSITY OF TENNESSEES ANTHROPOLOGICAL RESEARCH FACILITY 1  

Microsoft Academic Search

ABSTRACTThis paper discusses keys to the moral procurement, treatment and disposition of remains used for scientific research, specifically those donated to the University of Tennessees Anthropological Research Facility (ARF). The ARF is an outdoor laboratory dedicated to better understanding the fate of human remains in forensic contexts, and focuses its research on decomposition, time since death estimates, body location and

ANGI M. CHRISTENSEN

2006-01-01

339

Texas A&M AgriLife Research Procedures 41.01.01.A0.01 Use of Texas A&M AgriLife Research Facilities  

E-print Network

(AgriLife Research) facilities are available for use without regard to race, ethnicity, sex, age of no longer than 12 months at normal market rates for the area unless discounted for a justifiable reason

340

The use of an automated flight test management system in the development of a rapid-prototyping flight research facility  

NASA Technical Reports Server (NTRS)

An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

1988-01-01

341

Computer program development specification for the air traffic control subsystem of the Man-Vehicle Systems Research Facility.  

E-print Network

Functional summary: The Air Traffic Control (ATC) Subsystem of the Man-Vehicle System Research Facility (MVSRF) is a hardware/software complex which provides the MVSRF with the capability of simulating the multi-aircraft, ...

Massachusetts Institute of Technology. Flight Transportation Laboratory

1982-01-01

342

Opportunities for single event and other radiation effects testing and research at the Indiana University Cyclotron Facility  

Microsoft Academic Search

The beam line end station, associated instrumentation and dosimetry used at the Indiana University Cyclotron Facility for radiation effects research and testing with up to 200 MeV protons are described

C. C. Foster; S. L. Casey; A. L. Johnson; P. Miesle; N. Sifri; A. H. Skees; K. M. Murray

1996-01-01

343

Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility  

NASA Technical Reports Server (NTRS)

A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

Kobak, J. A.; Rollbuhler, R. J.

1981-01-01

344

Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility  

NASA Astrophysics Data System (ADS)

A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

Kobak, J. A.; Rollbuhler, R. J.

1981-10-01

345

Improved ground calibration results from Southwest Research Institute Ultraviolet Radiometric Calibration Facility (UV-RCF)  

NASA Astrophysics Data System (ADS)

Four compact planetary ultraviolet spectrographs have been built by Southwest Research Institute and successfully operated on different planetary missions. These spectrographs underwent a series of ground radiometric calibrations before delivery to their respective spacecraft. In three of the four cases, the in-flight measured sensitivity was approximately 50% lower than the ground measurement. Recent tests in the Southwest Research Institute Ultraviolet Radiometric Calibration Facility (UV-RCF) explain the discrepancy between ground and flight results. Revised ground calibration results are presented for the Rosetta-Alice, New Horizons-Alice, the Lunar Reconnaissance Orbiter Lyman- Alpha Mapping Project, and Juno-Ultraviolet Spectrograph (UVS) and are then compared to the original ground and flight calibrations. The improved understanding of the calibration system reported here will result in improved ground calibration of the upcoming Jupiter Icy Moons Explorer (JUICE)-UVS.

Davis, Michael W.; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.; Slater, David C.; Stern, S. Alan; Versteeg, Maarten H.

2014-07-01

346

Preparation for Scaling Studies of Ice-Crystal Icing at the NRC Research Altitude Test Facility  

NASA Technical Reports Server (NTRS)

This paper describes experiments conducted at the National Research Council (NRC) of Canadas Research Altitiude Test Facility between March 26 and April 11, 2012. The tests, conducted collaboratively between NASA and NRC, focus on three key aspects in preparation for later scaling work to be conducted with a NACA 0012 airfoil model in the NRC Cascade rig: (1) cloud characterization, (2) scaling model development, and (3) ice-shape profile measurements. Regarding cloud characterization, the experiments focus on particle spectra measurements using two shadowgraphy methods, cloud uniformity via particle scattering from a laser sheet, and characterization of the SEA Multi-Element probe. Overviews of each aspect as well as detailed information on the diagnostic method are presented. Select results from the measurements and interpretation are presented which will help guide future work.

Struk, Peter M.; Bencic, Timothy J.; Tsao, Jen-Ching; Fuleki, Dan; Knezevici, Daniel C.

2013-01-01

347

Source apportionment of stack emissions from research and development facilities using positive matrix factorization  

NASA Astrophysics Data System (ADS)

Research and development (R&D) facility emissions are difficult to characterize due to their variable processes, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compound (VOC) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified between 9 and 11 source-related factors contributing to stack emissions, depending on the building. Similar factors between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions; other factors had similar profiles for two or more buildings but not all four. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit.

Ballinger, Marcel Y.; Larson, Timothy V.

2014-12-01

348

Turning a liability into an asset at Sandia California: The Tritium Research Facility transition  

SciTech Connect

With an investment of $20.9 million, Sandia National Laboratories/California (Sandia/CA) saved the Department of Energy (DOE) an estimated $106.3 million--a 500% return on investment. In cooperation with DOE, Sandia/CA decontaminated and transitioned (D and T) the Tritium Research Laboratory (TRL), a DOE non-reactor Category 2 nuclear facility. In support of the DOE`s Office of Defense Programs, Sandia/CA had conducted advanced research and development experiments at the TRL since 1977. However, in 1991, Sandia/CA scheduled the TRL for shutdown and decommissioning. By October 1996, the TRL`s D and T, rather than decontamination and demolition (D and D), resulted in the reuse of the building. Implementation of innovative D and T process techniques not only saved millions of dollars, but gained non-monetary benefits. First, the savings and benefits will be detailed, followed by descriptions of the decontamination and pollution prevention techniques.

Garcia, T.B.; Raubfogel, S.J.

1997-11-01

349

A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor  

SciTech Connect

The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated.

Emiliano Pozzi; David W. Nigg; Marcelo Miller; Silvia I. Thorp; Amanda E. Schwint; Elisa M. Heber; Veronica A. Trivillin; Leandro Zarza; Guillermo Estryk

2007-11-01

350

Aircraft ground vibration testing at the NASA Dryden Flight Research Facility, 1993  

NASA Technical Reports Server (NTRS)

The NASA Dryden Flight Research Facility performs ground vibration testing to assess the structural characteristics of new and modified research vehicles. This paper updates the research activities, techniques used, and experiences in applying this technology to aircraft since 1987. Test equipment, data analysis methods, and test procedures used for typical test programs are discussed. The data presented illustrate the use of modal test and analysis in flight research programs for a variety of aircraft. This includes a technique to acquire control surface free-play measurements on the X-31 airplane more efficiently, and to assess the effects of structural modifications on the modal characteristics of an F-18 aircraft. In addition, the status and results from current research activities are presented. These data show the effectiveness of the discrete modal filter as a preprocessor to uncouple response measurements into simple single-degree-of-freedom responses, a database for the comparison of different excitation methods on a JetStar airplane, and the effect of heating on modal frequency and damping.

Kehoe, Michael W.; Freudinger, Lawrence C.

1994-01-01

351

Radioactive ion beam production challenges at the Holifield Heavy Ion Research Facility  

SciTech Connect

The radioactive ion beam (RIB) project at the Holifield Heavy Ion Research Facility (HHIRF) will provide for reconfiguration of the HHIRF accelerator system to enable provision of low-intensity RIBs for nuclear and astrophysics research. As we have progressed with the design of the reconfiguration, we have encountered several challenges that were not immediately obvious when first contemplating the project. The challenges do not seem insurmountable but should keep life interesting for those of us doing the work. A brief review of the project will allow a better understanding of the challenges in RIB production. Radioactive ion beams will be produced with the Isotope Separator On-Line (ISOL) postacceleration technique. In particular, radioactive atoms will be produced by reactions in the thick stopping target of an ISOL-type target-ion source assembly using intense beams from the Oak Ridge Isochronous Cyclotron equipped with a light-ion internal source. This ISOL target-ion source assembly will be mounted on a high-voltage platform with a mass separator. The target ion source will operate at potentials up to 50 kV with respect to the high voltage platform. The radioactive atoms produced by nuclear reactions in the target diffuse to the surface of the heated target material, desorb from this surface, and effuse through a heated transfer tube into an ion source where ionization and extraction take place. Two types of ion sources will be initially considered. A Forced Electron Beam Induced Arc Discharge source, similar to those used by the ISOLDE facility at CERN and by the UNISOR facility at ORNL, will be built to produce positive ions. These positive ions will be focused through an alkali vapor charge-exchange canal to produce negative ions for tandem injection. In addition, a direct negative surface ionization addition or modification to the above source will be built and investigated.

Meigs, M.J.; Alton, G.D.; Dowling, D.T.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Mills, G.D.; Mosko, S.W.; Olsen, D.K.; Tatum, B.A.

1992-12-31

352

Radioactive ion beam production challenges at the Holifield Heavy Ion Research Facility  

SciTech Connect

The radioactive ion beam (RIB) project at the Holifield Heavy Ion Research Facility (HHIRF) will provide for reconfiguration of the HHIRF accelerator system to enable provision of low-intensity RIBs for nuclear and astrophysics research. As we have progressed with the design of the reconfiguration, we have encountered several challenges that were not immediately obvious when first contemplating the project. The challenges do not seem insurmountable but should keep life interesting for those of us doing the work. A brief review of the project will allow a better understanding of the challenges in RIB production. Radioactive ion beams will be produced with the Isotope Separator On-Line (ISOL) postacceleration technique. In particular, radioactive atoms will be produced by reactions in the thick stopping target of an ISOL-type target-ion source assembly using intense beams from the Oak Ridge Isochronous Cyclotron equipped with a light-ion internal source. This ISOL target-ion source assembly will be mounted on a high-voltage platform with a mass separator. The target ion source will operate at potentials up to 50 kV with respect to the high voltage platform. The radioactive atoms produced by nuclear reactions in the target diffuse to the surface of the heated target material, desorb from this surface, and effuse through a heated transfer tube into an ion source where ionization and extraction take place. Two types of ion sources will be initially considered. A Forced Electron Beam Induced Arc Discharge source, similar to those used by the ISOLDE facility at CERN and by the UNISOR facility at ORNL, will be built to produce positive ions. These positive ions will be focused through an alkali vapor charge-exchange canal to produce negative ions for tandem injection. In addition, a direct negative surface ionization addition or modification to the above source will be built and investigated.

Meigs, M.J.; Alton, G.D.; Dowling, D.T.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Mills, G.D.; Mosko, S.W.; Olsen, D.K.; Tatum, B.A.

1992-01-01

353

[Complications of Woodbridge tubes (spiral wire tubes)].  

PubMed

Flexometallic (armoured) tubes should have advantages in orofacial surgery and difficult positioning. They still have also the possibilities of tube obstruction, as shown in four case reports. PMID:3740379

Wendt, M; Thy, H; Reinhold, P; Lawin, P

1986-05-01

354

Functional requirements for the man-vehicle systems research facility. [identifying and correcting human errors during flight simulation  

NASA Technical Reports Server (NTRS)

The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included.

Clement, W. F.; Allen, R. W.; Heffley, R. K.; Jewell, W. F.; Jex, H. R.; Mcruer, D. T.; Schulman, T. M.; Stapleford, R. L.

1980-01-01

355

Development and maintenance of a specific pathogen free (SPF) zebrafish research facility for Pseudoloma neurophilia  

PubMed Central

Pseudoloma neurophilia (Microsporidia) is very common in zebrafish research facilities. A new zebrafish facility was established at the Sinnhuber Aquatic Resource Laboratory (SARL) at Oregon State University, and thus we used this as an opportunity to establish a Specific Pathogen Free (SPF) colony of zebrafish for this microsporidium. Progeny from 10 zebrafish lines (n = 2,203) were initially transferred to the SARL facility in 2007 following PCR screening of broodstock and a subpopulation of progeny (258/1,000 fish from each family). Screening of fish within the facility was conducted as follows: 1) Moribund or dead fish were examined by histology 2) Each line was regenerated on a 4 mo. rotation, and for each of these major propagations, a subsample was screened for P. neurophilia by PCR, in which 60 fry from were collected randomly at 10 days post hatch and screened by PCR for P. neurophilia in pools of 10 3) Adult fish from each line were retired and euthanized at approximately 1 year of age. Twenty of these fish were examined by histology and the brains and spinal cords of 60 fish were combined in pools of five and screened by PCR 4) Sentinel fish were held in 4 tanks receiving effluent water from all tanks in the facility (20 fish/tank). Twenty fish were examined by histology and the brains of another 60 fish (in pools of five) were screened by PCR for P. neurophilia and 5) 760 4 mo old fish from a toxicology study conducted within the laboratory were examined by histology. To date, we have evaluated 2,800 fish by PCR and 1, 222 fish by histology and have not detected P. neurophilia. Thus we have established 9 lines of zebrafish SPF for P. neurophilia. However, 26 fish exhibited mycobacteriosis, diagnosed by the presence of acid fast bacteria visualized in tissue sections. Forty-nine other fish exhibited chronic inflammatory lesions, including egg associated inflammation and hyperplasia, in which acid-fast bacteria were not detected. Eight exhibited hepatic megalocytosis or hepatocellular pleomorphism, and three exhibited neoplasia (cholangiocellular carcinoma, and two with seminoma). One of the seminomas occurred in a female, and was classified as ovo-testes. PMID:21797038

Kent, Michael L.; Buchner, Cari; Watral, Virginia G.; Sanders, Justin L; LaDu, Jane; Peterson, Tracy S.; Tanguay, Robert L.

2014-01-01

356

Status and plans for the National Spherical Torus Experimental Research Facility  

SciTech Connect

An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high , non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusionrelevant plasma conditions.

Ono, M. [Princeton Plasma Physics Laboratory (PPPL); Peng, Yueng Kay Martin [ORNL

2005-01-01

357

Status and Plans for the National Spherical Torus Experimental Research Facility  

SciTech Connect

An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.

M. Ono; M.G. Bell; R.E. Bell; J.M. Bialek; T. Bigelow; M. Bitter; plus 148 additional authors

2005-07-27

358

Development of a pollution prevention and energy efficiency clearinghouse for biomedical research facilities.  

PubMed Central

This is the report of the National Association of Physicians for the Environment Committee on Development of a Pollution Prevention and Energy Efficiency Clearinghouse for Biomedical Research Facilities from the Leadership Conference on Biomedical Research and the Environment held at the National Institutes of Health in Bethesda, Maryland, on 1--2 November 1999. A major goal of the conference was the establishment of a World Wide Web-based clearinghouse, which would lend tremendous resources to the biomedical research community by providing access to a database of peer-reviewed articles and references dealing with a host of aspects of biomedical research relating to energy efficiency, pollution prevention, and waste reduction. A temporary website has been established with the assistance of the U.S. Environmental Protection Agency (EPA) Regions III and IV, where a pilot site provides access to the EPA's existing databases on these topics. A system of peer review for articles and promising techniques still must be developed, but a glimpse of topics and search engines is available for comment and review on the EPA Region IV-supported website (http://wrrc.p2pays.org/). PMID:11121361

Barker, L F; Rau, E H; Pfister, E A; Calcagni, J

2000-01-01

359

Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - September 30, 2008.  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The fourth quarter comprises a total of 2,208 hours. The average exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. HFE represents the AMF statistics for the Shouxian, China, deployment in 2008. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; and the DMF at PNNL. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Because of the similarity of ACRF NSA data streams and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period October 1, 2007 - September 30, 2008. Table 2 shows the summary of cumulative users for the period October 1, 2007 - September 30, 2008. For the fourth quarter of FY 2008, the overall number of users is down substantially (about 30%) from last quarter. Most of this decrease resulted from a reduction in the ACRF Infrastructure users (e.g., site visits, research accounts, on-site device accounts, etc.) associated with the AMF China deployment. While users had easy access to the previous AMF deployment in Germany that resulted in all-time high user statistics, physical and remote access to on-site accounts are extremely limited for the AMF deployment in China. Furthermore, AMF data have not yet been released from China to the Data Management Facility for processing, which affects Archive user statistics. However, Archive users are only down about 10% from last quarter. Anothe

Sisterson, D. L.

2008-10-08

360

Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2008.  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2008, for the fixed sites. The AMF is being deployed to China and is not in operation this quarter. The second quarter comprises a total of 2,184 hours. The average as well as the individual site values exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; and the DMF at PNNL. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Because of the similarity of ACRF NSA data streams and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period April 1, 2007 - March 31, 2008. Table 2 shows the summary of cumulative users for the period April 1, 2007 - March 31, 2007. For the second quarter of FY 2008, the overall number of users was nearly as high as the last reporting period, in which a new record high for number of users was established. This quarter, a new record high was established for the number of user days, particularly due to the large number of field campaign activities in conjunction with the AMF deployment in Germany, as well as major field campaigns at the NSA and SGP sites. This quarter, 37% of the Archive users are ARM science-funded principal investigators and 23% of all other facility users are either ARM science-funded principal investigators or ACRF infrastructure personnel. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Time is reported in days instead of hours. I

Sisterson, D. L.

2008-05-22

361

The NSTX Research Program Plan for 2009-2013The NSTX Research Program Plan for 2009-2013 Chapter 7 -The NSTX National Fusion Facility Status and Upgrades  

E-print Network

The NSTX Research Program Plan for 2009-2013The NSTX Research Program Plan for 2009-2013 Chapter 7 is planned to enable operation at a magnetic field up to 1 T, plasma current 2 MA with a 5 s pulse length................................................................................................7.2 7.2 Facility Status and Plan

Princeton Plasma Physics Laboratory

362

Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs  

SciTech Connect

Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

Lynch, J F; Young, J C

1980-09-01

363

A new facility for Quaternary Geochronology in Spain: The National Research Centre for Human Evolution (CENIEH) in Burgos  

Microsoft Academic Search

A new geochronology facility has been recently set up in Burgos, Spain, as part of the recently established National Research Centre for Human Evolution (CENIEH). The CENIEH is sponsored by governmental funding and was established to foster major advances in our understanding of human evolution through multidisciplinary research. As part of this initiative, a modern laboratory complex is emerging as

Josep M. Pars; Mathieu Duval; Lee J. Arnold; Dirk L. Hoffmann

2010-01-01

364

Advanced Technology Airfoil Research, volume 1, part 1. [conference on development of computational codes and test facilities  

NASA Technical Reports Server (NTRS)

A comprehensive review of all NASA airfoil research, conducted both in-house and under grant and contract, as well as a broad spectrum of airfoil research outside of NASA is presented. Emphasis is placed on the development of computational aerodynamic codes for airfoil analysis and design, the development of experimental facilities and test techniques, and all types of airfoil applications.

1979-01-01

365

Preliminary Measurements From A New Flat Plate Facility For Aerodynamic Research  

SciTech Connect

This paper details the design and preliminary measurements used in the characterisation of a new flat plate research facility. The facility is designed specifically to aid in the understanding of entropy generation throughout the boundary layer with special attention given to non-equilibrium flows. Hot-wire measurements were obtained downstream of two turbulence generating grids. The turbulence intensity, integral and dissipation length scale ranges measured are 1.6%-7%, 5mm-17mm and 0.7mm-7mm, respectively. These values compared well to existing correlations. The flow downstream of both grids was found to be homogenous and isotropic. Flow visualisation is employed to determine aerodynamic parameters such as flow 2-dimensionality and the effect of the flap angle on preventing separation at the leading edge. The flow was found to be 2-dimensional over all measurement planes. The non-dimensional pressure distribution of a modern turbine blade suction surface is simulated on the flat plate through the use of a variable upper wall. The Reynolds number range based on wetted plate length and inlet velocity is 70,000-4,000,000.

D. M. McEligot; D. W. Nigg; E. J. Walsh; D. Hernon; M.R.D. Davies

2005-03-01

366

Radioactive Ion Beams with the HHIRF (Holifield Heavy Ion Research Facility) accelerators  

SciTech Connect

Our present understanding of nuclear structure is almost completely based on facts obtained for nuclei that can be produced with stable projectiles and targets which have equilibrated for a significant fraction of the lifetime of the universe. The use of Radioactive Ion Beams (RIB) could overcome this limitation and provide unique opportunities for the study of nuclear structure with nuclei far from stability. These nuclei could answer critical issues concerning some of the most fundamental current nuclear structure themes and allow the study of entirely new phenomena, unobservable with current techniques and not derivable from our present knowledge of nuclear theory. RIB will also open new opportunities for the study of processes taking place at less equilibrated astrophysical sites, such as supernovae, cataclysmic binaries, and accreted shells of neutron stars. Widespread interest in RIB has developed in the last few years and a steering committee has recently been established to consider the construction of a large radioactive beam facility in North America. With this interest in mind, we have performed a feasibility study for a low-cost extension of the Holifield Heavy Ion Research Facility (HHIRF) accelerators which would provide access, on a short time scale, to much of the physics of proton-rich nuclei.

Meigs, M.J.; Alton, G.D.; Baktash, C.; Dowling, D.T.; Garrett, J.D.; Haynes, D.L.; Jones, C.M.; Juras, R.C.; Lane, S.N.; Lee, I.Y.; Mills, G.D.; Mosko, S.W.; Olsen, D.K.; Tatum, B.A.; Toth, K.S. (Oak Ridge National Lab., TN (USA)); Carter, H.K. (Oak Ridge Associated Universities, Inc., TN (USA))

1990-01-01

367

Mach 0.3 Burner Rig Facility at the NASA Glenn Materials Research Laboratory  

NASA Technical Reports Server (NTRS)

This Technical Memorandum presents the current capabilities of the state-of-the-art Mach 0.3 Burner Rig Facility. It is used for materials research including oxidation, corrosion, erosion and impact. Consisting of seven computer controlled jet-fueled combustors in individual test cells, these relatively small rigs burn just 2 to 3 gal of jet fuel per hour. The rigs are used as an efficient means of subjecting potential aircraft engine/airframe advanced materials to the high temperatures, high velocities and thermal cycling closely approximating actual operating environments. Materials of various geometries and compositions can be evaluated at temperatures from 700 to 2400 F. Tests are conducted not only on bare superalloys and ceramics, but also to study the behavior and durability of protective coatings applied to those materials.

Fox, Dennis S.; Miller, Robert A.; Zhu, Dongming; Perez, Michael; Cuy, Michael D.; Robinson, R. Craig

2011-01-01

368

First results from the LUX dark matter experiment at the Sanford Underground Research Facility  

E-print Network

The Large Underground Xenon (LUX) experiment, a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), was cooled and filled in February 2013. We report results of the first WIMP search dataset, taken during the period April to August 2013, presenting the analysis of 85.3 live-days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of $7.6 \\times 10^{-46}$ cm$^{2}$ at a WIMP mass of 33 GeV/c$^2$. We find that the LUX data are in strong disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.

LUX Collaboration; D. S. Akerib; H. M. Araujo; X. Bai; A. J. Bailey; J. Balajthy; S. Bedikian; E. Bernard; A. Bernstein; A. Bolozdynya; A. Bradley; D. Byram; S. B. Cahn; M. C. Carmona-Benitez; C. Chan; J. J. Chapman; A. A. Chiller; C. Chiller; K. Clark; T. Coffey; A. Currie; A. Curioni; S. Dazeley; L. de Viveiros; A. Dobi; J. Dobson; E. M. Dragowsky; E. Druszkiewicz; B. Edwards; C. H. Faham; S. Fiorucci; C. Flores; R. J. Gaitskell; V. M. Gehman; C. Ghag; K. R. Gibson; M. G. D. Gilchriese; C. Hall; M. Hanhardt; S. A. Hertel; M. Horn; D. Q. Huang; M. Ihm; R. G. Jacobsen; L. Kastens; K. Kazkaz; R. Knoche; S. Kyre; R. Lander; N. A. Larsen; C. Lee; D. S. Leonard; K. T. Lesko; A. Lindote; M. I. Lopes; A. Lyashenko; D. C. Malling; R. Mannino; D. N. McKinsey; D. -M. Mei; J. Mock; M. Moongweluwan; J. Morad; M. Morii; A. St. J. Murphy; C. Nehrkorn; H. Nelson; F. Neves; J. A. Nikkel; R. A. Ott; M. Pangilinan; P. D. Parker; E. K. Pease; K. Pech; P. Phelps; L. Reichhart; T. Shutt; C. Silva; W. Skulski; C. J. Sofka; V. N. Solovov; P. Sorensen; T. Stiegler; K. O`Sullivan; T. J. Sumner; R. Svoboda; M. Sweany; M. Szydagis; D. Taylor; B. Tennyson; D. R. Tiedt; M. Tripathi; S. Uvarov; J. R. Verbus; N. Walsh; R. Webb; J. T. White; D. White; M. S. Witherell; M. Wlasenko; F. L. H. Wolfs; M. Woods; C. Zhang

2013-10-30

369

A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology  

NASA Technical Reports Server (NTRS)

A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

1998-01-01

370

Fusion-Fission Research Facility (FFRF) as a Practical Step Toward Hybrids  

SciTech Connect

The project of ASIPP (with PPPL participation), called FFRF, (R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, PDT=50-100 MW, Pfission=80-4000 MW, 1 m thick blanket) is outlined. FFRF stands for the Fusion-Fission Research Facility with a unique fusion mission and a pioneering mission of merging fusion and fission for accumulation of design, experimental, and operational data for future hybrid applications. The design of FFRF will use as much as possible the EAST and ITER design experience. On the other hand, FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China.

L. Zakharov, J. Li and Y. Wu

2010-11-18

371

Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source  

SciTech Connect

FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

Leonid E. Zakharov

2011-06-03

372

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2005  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 2,184 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1,965.6 hours (0.90 2,184), and that for the Tropical Western Pacific (TWP) site is 1,856.4 hours (0.85 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 (0.95 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter

DL Sisterson

2005-06-30

373

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2005  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 2,208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1,987.2 hours (0.90 2,208), and that for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.

DL Sisterson

2005-12-31

374

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January-March 2006  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter for the Southern Great Plains (SGP) site is 2,052 hours (0.95 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944 hours (0.90 2,160), and that for the Tropical Western Pacific (TWP) locale is 1,836 hours (0.85 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,052 hours (0.95 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter.

DL Sisterson

2006-03-31

375

Operation of the 25kW NASA Lewis Research Center Solar Regenerative Fuel Cell Tested Facility  

NASA Technical Reports Server (NTRS)

Assembly of the NASA Lewis Research Center(LeRC)Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25kW photovoltaic solar cell arrays, a 25kW proton exchange membrane (PEM) electrolysis unit, four 5kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition.

Moore, S. H.; Voecks, G. E.

1997-01-01

376

Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2007.  

SciTech Connect

Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1 - December 31, 2007, for the fixed sites and the mobile site. The AMF has been deployed to Germany and this was the final operational quarter. The first quarter comprises a total of 2,208 hours. Although the average exceeded our goal this quarter, a series of severe weather events (i.e., widespread ice storms) disrupted utility services, which affected the SGP performance measures. Some instruments were covered in ice and power and data communication lines were down for more than 10 days in some areas of Oklahoma and Kansas, which resulted in lost data at the SGP site. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. The AMF completed its mission at the end of this quarter in Haselback, Germany (FKB designation). NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request an account on the local site data system. The eight research computers are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; the DMF at PNNL; and the AMF, currently in Germany. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Due to the similarity of ACRF NSA data streams, and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period January 1, 2007 - December 31, 2007. Table 2 shows the summary of cumulative users for the period January 1, 2007 - December 31, 2007. For the first quarter of FY 2008, the overall number of users was up significantly from the last reporting period. For the fourth consecutive reporting period, a record high number of Archive users was recorded. In addition, the number of visitors and visitor days set a new record this reporting period particularly due to the large number of field campaign activities in conjunction with the AMF deployment in Germany. It is interesting to note this quarter that

Sisterson, D. L.

2008-01-24

377

Why the US Needs a Deep Domestic Research Facility: Owning rather than Renting the Education Benefits, Technology Advances, and Scientific Leadership of Underground Physics  

E-print Network

I summarize the status of the Sanford Underground Research Facility in South Dakota and present connections to Energy and Intensity Frontier that benefit from the establishment of SURF and the staging of US-funded experiments in a domestic facility.

Kevin T. Lesko

2013-04-01

378

Investigation and Development of Control Laws for the NASA Langley Research Center Cockpit Motion Facility  

NASA Technical Reports Server (NTRS)

The ability to develop highly advanced simulators is a critical need that has the ability to significantly impact the aerospace industry. The aerospace industry is advancing at an ever increasing pace and flight simulators must match this development with ever increasing urgency. In order to address both current problems and potential advancements with flight simulator techniques, several aspects of current control law technology of the National Aeronautics and Space Administration (NASA) Langley Research Center's Cockpit Motion Facility (CMF) motion base simulator were examined. Preliminary investigation of linear models based upon hardware data were examined to ensure that the most accurate models are used. This research identified both system improvements in the bandwidth and more reliable linear models. Advancements in the compensator design were developed and verified through multiple techniques. The position error rate feedback, the acceleration feedback and the force feedback were all analyzed in the heave direction using the nonlinear model of the hardware. Improvements were made using the position error rate feedback technique. The acceleration feedback compensator also provided noteworthy improvement, while attempts at implementing a force feedback compensator proved unsuccessful.

Coon, Craig R.; Cardullo, Frank M.; Zaychik, Kirill B.

2014-01-01

379

The rodent Research Animal Holding Facility as a barrier to environmental contamination  

NASA Technical Reports Server (NTRS)

The rodent Research Animal Holding Facility (RAHF), developed by NASA Ames Research Center (ARC) to separately house rodents in a Spacelab, was verified as a barrier to environmental contaminants during a 12-day biocompatibility test. Environmental contaminants considered were solid particulates, microorganisms, ammonia, and typical animal odors. The 12-day test conducted in August 1988 was designed to verify that the rodent RAHF system would adequately support and maintain animal specimens during normal system operations. Additional objectives of this test were to demonstrate that: (1) the system would capture typical particulate debris produced by the animal; (2) microorganisms would be contained; and (3) the passage of animal odors was adequately controlled. In addition, the amount of carbon dioxide exhausted by the RAHF system was to be quantified. Of primary importance during the test was the demonstration that the RAHF would contain particles greater than 150 micrometers. This was verified after analyzing collection plates placed under exhaust air ducts and and rodent cages during cage maintenance operations, e.g., waste tray and feeder changeouts. Microbiological testing identified no additional organisms in the test environment that could be traced to the RAHF. Odor containment was demonstrated to be less than barely detectable. Ammonia could not be detected in the exhaust air from the RAHF system. Carbon dioxide levels were verified to be less than 0.35 percent.

Savage, P. D., Jr.; Jahns, G. C.; Dalton, B. P.; Hogan, R. P.; Wray, A. E.

1989-01-01

380

The rodent research animal holding facility as a barrier to environmental contamination  

NASA Technical Reports Server (NTRS)

The rodent Research Animal Holding Facility (RAHF), developed by NASA Ames Research Center (ARC) to separately house rodents in a Spacelab, was verified as a barrier to environmental contaminants during a 12-day biocompatibility test. Environmental contaminants considered were solid particulates, microorganisms, ammonia, and typical animal odors. The 12-day test conducted in August 1988 was designed to verify that the rodent RAHF system would adequately support and maintain animal specimens during normal system operations. Additional objectives of this test were to demonstrate that: (1) the system would capture typical particulate debris produced by the animal; (2) microorganisms would be contained; and (3) the passage of animal odors was adequately controlled. In addition, the amount of carbon dioxide exhausted by the RAHF system was to be quantified. Of primary importance during the test was the demonstration that the RAHF would contain particles greater than 150 micrometers. This was verified after analyzing collection plates placed under exhaust air ducts and rodent cages during cage maintenance operations, e.g., waste tray and feeder changeouts. Microbiological testing identified no additional organisms in the test environment that could be traced to the RAHF. Odor containment was demonstrated to be less than barely detectable. Ammonia could not be detected in the exhaust air from the RAHF system. Carbon dioxide levels were verified to be less than 0.35 percent.

Savage, P. D., Jr.; Jahns, G. C.; Dalton, B. P.; Hogan, R. P.; Wray, A. E.

1989-01-01

381

The F-15B Propulsion Flight Test Fixture: A New Flight Facility For Propulsion Research  

NASA Technical Reports Server (NTRS)

The design and development of the F-15B Propulsion Flight Test Fixture (PFTF), a new facility for propulsion flight research, is described. Mounted underneath an F-15B fuselage, the PFTF provides volume for experiment systems and attachment points for propulsion devices. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. Three-axis forces and moments can be measured in flight for experiments mounted to the force balance. The NASA F-15B airplane is described, including its performance and capabilities as a research test bed aircraft. The detailed description of the PFTF includes the geometry, internal layout and volume, force-balance operation, available instrumentation, and allowable experiment size and weight. The aerodynamic, stability and control, and structural designs of the PFTF are discussed, including results from aerodynamic computational fluid dynamic calculations and structural analyses. Details of current and future propulsion flight experiments are discussed. Information about the integration of propulsion flight experiments is provided for the potential PFTF user.

Corda, Stephen; Vachon, M. Jake; Palumbo, Nathan; Diebler, Corey; Tseng, Ting; Ginn, Anthony; Richwine, David

2001-01-01

382

Conducting Research on the International Space Station Using the EXPRESS Rack Facilities  

NASA Technical Reports Server (NTRS)

Conducting Research on the International Space Station using the EXPRESS Rack Facilities. Sean W. Thompson and Robert E. Lake. NASA Marshall Space Flight Center, Huntsville, AL, USA. Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling (500 W) for two locations, one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.

Thompson, Sean W.; Lake, Robert E.

2013-01-01

383

Recurrent Aspergillus contamination in a biomedical research facility: a case study.  

PubMed

Fungal contamination of biomedical processes and facilities can result in major revenue loss and product delay. A biomedical research facility (BRF) culturing human cell lines experienced recurring fungal contamination of clean room incubators over a 3-year period. In 2010, as part of the plan to mitigate contamination, 20 fungal specimens were isolated by air and swab samples at various locations within the BRF. Aspergillus niger and Aspergillus fumigatus were isolated from several clean-room incubators. A. niger and A. fumigatus were identified using sequence comparison of the 18S rRNA gene. To determine whether the contaminant strains isolated in 2010 were the same as or different from strains isolated between 2007 and 2009, a novel forensic approach to random amplified polymorphic DNA (RAPD) PCR was used. The phylogenetic relationship among isolates showed two main genotypic clusters, and indicated the continual presence of the same A. fumigatus strain in the clean room since 2007. Biofilms can serve as chronic sources of contamination; visual inspection of plugs within the incubators revealed fungal biofilms. Moreover, confocal microscopy imaging of flow cell-grown biofilms demonstrated that the strains isolated from the incubators formed dense biofilms relative to other environmental isolates from the BRF. Lastly, the efficacies of various disinfectants employed at the BRF were examined for their ability to prevent spore germination. Overall, the investigation found that the use of rubber plugs around thermometers in the tissue culture incubators provided a microenvironment where A. fumigatus could survive regular surface disinfection. A general lesson from this case study is that the presence of microenvironments harboring contaminants can undermine decontamination procedures and serve as a source of recurrent contamination. PMID:22143434

Cornelison, Christopher T; Stubblefield, Bryan; Gilbert, Eric; Crow, Sidney A

2012-02-01

384

Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India  

PubMed Central

Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic/transcriptomic data is available at NCBI.

S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali

2014-01-01

385

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 365 days per year) the instruments were operating.

DL Sisterson

2004-12-31

386

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2005  

SciTech Connect

Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for this second quarter for the Southern Great Plains (SGP) site is 2052 hours (0.95 2,160 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1944 hours (0.90 2,160), and that for the Tropical Western Pacific (TWP) site is 1836 hours (0.85 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter.

DL Sisterson

2005-03-31

387

Life sciences space station planning document: A reference payload for the exobiology research facilities  

NASA Technical Reports Server (NTRS)

The Cosmic Dust Collection and Gas Grain Simulation Facilities represent collaborative efforts between the Life Sciences and Solar System Exploration Divisions designed to strengthen a natural exobiology/Planetary Sciences connection. The Cosmic Dust Collection Facility is a Planetary Science facility, with Exobiology a primary user. Conversely, the Gas Grain Facility is an exobiology facility, with Planetary Science a primary user. Requirements for the construction and operation of the two facilities, contained herein, were developed through joint workshops between the two disciplines, as were representative experiments comprising the reference payloads. In the case of the Gas Grain Simulation Facility, the astrophysics Division is an additional potential user, having participated in the workshop to select experiments and define requirements.

1987-01-01

388

Tarleton State University Observatory and Planetarium: A Unique Facility for Education and Research for K-12, Undergraduate and Graduate Students.  

NASA Astrophysics Data System (ADS)

Tarleton State University has acquired a state-of-art digital planetarium and a 32 inch research grade robotic telescope. The funding for the facilities came from Tarleton State University, the 105th United States Congress and The United States Department of Education. The planetarium is complete and now serves the university and secondary educational institutions as well as the general public. The observatory is in its final phase of completion and through the Berkley Hands-on Universe this facility will be available to educational institutions through out the world. In this poster we describe the overall educational and research goals of our program and steps that we have taken to accomplish them. This poster presentation is made possible by funding from Tarleton State University and the Observatory facility.

Goderya, S.; Hibbs, M.

2006-06-01

389

Computational and experimental physics performance characterization of the neutron capture therapy research facility at Washington State Univ  

SciTech Connect

This paper summarizes the results of the final beam characterization measurements for a dual mode epithermal-thermal beam facility for neutron capture therapy research that was recently constructed at the Washington State Univ. TRIGA{sup TM} research reactor. The results show that the performance of the beam facility is consistent with the design computations and with international standards for the intended application. A useful epithermal neutron flux of 1.3 x 10{sup 9} n/cm{sup 2}-s is produced at the irradiation point with the beam in epithermal mode and shaped by a 10-cm circular aperture plate. When the beam is thermalized with approximately 34 cm of heavy water, the useful thermal flux at the irradiation point is approximately 3.5 x 10{sup 8} n/cm{sup 2}-s. The new WSU facility is one of only two such installations currently operating in the US. (authors)

Nigg, D. W. [Idaho National Laboratory, MS 3860, PO Box 1625, Idaho Falls, ID 83415 (United States); Sloan, P. E. [Dept. of Nuclear Engineering, Univ. of Illinois, Champaign-Urbana, IL 61801 (United States); Venhuizen, J. R.; Wemple, C. A. [Idaho National Laboratory, MS 3860, PO Box 1625, Idaho Falls, ID 83415 (United States); Tripard, G. E.; Fox, K.; Corwin, E. [Nuclear Radiation Center, Washington State Univ., Pullman, WA 99164 (United States)

2006-07-01

390

Research Capabilities for Oil-Free Turbomachinery Expanded by New Rotordynamic Simulator Facility  

NASA Technical Reports Server (NTRS)

A new test rig has been developed for simulating high-speed turbomachinery shafting using Oil-Free foil air bearing technology. Foil air journal bearings are self-acting hydrodynamic bearings with a flexible inner sleeve surface using air as the lubricant. These bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. More recently, interest has been growing in applying foil bearings to aircraft gas turbine engines. They offer potential improvements in efficiency and power density, decreased maintenance costs, and other secondary benefits. The goal of applying foil air bearings to aircraft gas turbine engines prompted the fabrication of this test rig. The facility enables bearing designers to test potential bearing designs with shafts that simulate the rotating components of a target engine without the high cost of building actual flight hardware. The data collected from this rig can be used to make changes to the shaft and bearings in subsequent design iterations. The rest of this article describes the new test rig and demonstrates some of its capabilities with an initial simulated shaft system. The test rig has two support structures, each housing a foil air journal bearing. The structures are designed to accept any size foil journal bearing smaller than 63 mm (2.5 in.) in diameter. The bearing support structures are mounted to a 91- by 152-cm (3- by 5-ft) table and can be separated by as much as 122 cm (4 ft) and as little as 20 cm (8 in.) to accommodate a wide range of shaft sizes. In the initial configuration, a 9.5-cm (3.75-in.) impulse air turbine drives the test shaft. The impulse turbine, as well as virtually any number of "dummy" compressor and turbine disks, can be mounted on the shaft inboard or outboard of the bearings. This flexibility allows researchers to simulate various engine shaft configurations. The bearing support structures include a unique bearing mounting fixture that rotates to accommodate a laserbased alignment system. This can measure the misalignment of the bearing centers in each of 2 translational degrees of freedom and 2 rotational degrees of freedom. In the initial configuration, with roughly a 30.5-cm- (12-in.-) long shaft, two simulated aerocomponent disks, and two 50.8-cm (2-in.) foil journal bearings, the rig can operate at 65,000 rpm at room temperature. The test facility can measure shaft displacements in both the vertical and horizontal directions at each bearing location. Horizontal and vertical structural vibrations are monitored using accelerometers mounted on the bearing support structures. This information is used to determine system rotordynamic response, including critical speeds, mode shapes, orbit size and shape, and potentially the onset of instabilities. Bearing torque can be monitored as well to predict the power loss in the foil bearings. All of this information is fed back and forth between NASA and the foil bearing designers in an iterative fashion to converge on a final bearing and shaft design for a given engine application. In addition to its application development capabilities, the test rig offers several unique capabilities for basic bearing research. Using the laser alignment system mentioned earlier, the facility will be used to map foil air journal bearing performance. A known misalignment of increasing severity will be induced to determine the sensitivity of foil bearings to misalignment. Other future plans include oil-free integral starter generator testing and development, and dynamic load testing of foil journal bearings.

Howard, Samuel A.

2004-01-01

391

Free Air CO2 Enrichment (FACE) Research Data from the Nevada Desert FACE Facility (NDFF)  

DOE Data Explorer

DOE has conducted trace gas enrichment experiments since the mid 1990s. The FACE Data Management System is a central repository and archive for Free-Air Carbon Dioxide Enrichment (FACE) data, as well as for the related open-top chamber (OTC) experiments. FACE Data Management System is located at DOEs Carbon Dioxide Information Analysis Center (CDIAC). While the data from the various FACE sites, each one a unique user facility, are centralized at CDIAC, each of the FACE sites presents its own view of its activities and information. For that reason, DOE Data Explorer users are advised to see both the central repository at http://public.ornl.gov/face/index.shtml and the individual home pages of each site.

NDFF whole-ecosystem manipulation is a flagship experiment of the Terrestrial Carbon Process (TCP) research program of the US Dept. of Energy. It is also a core project of the International Geosphere-Biosphere Program (IGBP) and a contribution to the US Global Change Research Program. The NDFF was developed in conjunction with the National Science Foundation (NSF) and DOE-EPSCoR programs.

Current global models predict that carbon dioxide (CO2) levels in the atmosphere will double pre-industrial levels by the year 2050. Increasing atmospheric CO2 may lead to global warming and other climate changes. By the processes of photosynthesis and respiration, CO2 is exchanged between the atmosphere and the land where it is sequestered as wood and other organic forms in the soil. Elevated CO2 also increases productivity particularly in desert ecosystems. Information is needed on the exchange process in order to predict climate change. Will there be changes in the rate at which plants grow over the next hundred years? Will the storage of carbon in the desert ecosystem change? Will water balance change in this arid environment? Will species composition of desert plant communities change? These questions will be answered by using FACE technology in the NDFF's experiment. FACE (Free-Air-Carbon dioxide-Enrichment) technology allows researchers to elevate the carbon dioxide level in large study plots while minimizing ecosystem disturbance. At the NDFF the concentration of CO2 is elevated by 50 percent above the present atmospheric levels in three plots in the Mojave Desert ecosystem. Six other plots remain at the current level. This experimental design provides a large area in which integrated teams of scientists can describe and quantify processes regulating carbon, nutrient, and water balances in desert ecosystems. [Copied from http://www.unlv.edu/Climate_Change_Research/NDFF/NDFF_index.html

392

Neutron spectrum measurements in the aluminum oxide filtered beam facility at the Brookhaven Medical Research Reactor.  

PubMed

Neutron spectrum measurements were performed on the aluminum oxide filter installed in the Brookhaven Medical Research Reactor (BMRR). For these measurements, activation foils were irradiated at the exit port of the beam facility. A technique based on dominant resonances in selected activation reactions was used to measure the epithermal neutron spectrum. The fast and intermediate-energy ranges of the neutron spectrum were measured by threshold reactions and 10B-shielded 235U fission reactions. Neutron spectral data were derived from the activation data by two approaches: (1) a short analysis which yields neutron flux values at the energies of the dominant or primary resonances in the epithermal activation reactions and integral flux data for neutrons above corresponding threshold or pseudo-threshold energies, and (2) the longer analysis which utilized all the activation data in a full-spectrum, unfolding process using the FERRET spectrum adjustment code. This paper gives a brief description of the measurement techniques, analysis methods, and the results obtained. PMID:2268243

Becker, G K; Harker, Y D; Miller, L G; Anderl, R A; Wheeler, F J

1990-01-01

393

Neutron spectrum measurements in the aluminum oxide filtered beam facility at the Brookhaven Medical Research Reactor  

SciTech Connect

Neutron spectrum measurements were performed on the aluminum oxide filter installed in the Brookhaven Medical Research Reactor (BMRR). For these measurements, activation foils were irradiated at the exit port of the beam facility. A technique based on dominant resonances in selected activation reactions was used to measure the epithermal neutron spectrum. The fast and intermediate-energy ranges of the neutron spectrum were measured by threshold reactions and 10B-shielded 235U fission reactions. Neutron spectral data were derived from the activation data by two approaches: (1) a short analysis which yields neutron flux values at the energies of the dominant or primary resonances in the epithermal activation reactions and integral flux data for neutrons above corresponding threshold or pseudo-threshold energies, and (2) the longer analysis which utilized all the activation data in a full-spectrum, unfolding process using the FERRET spectrum adjustment code. This paper gives a brief description of the measurement techniques, analysis methods, and the results obtained.

Becker, G.K.; Harker, Y.D.; Miller, L.G.; Anderl, R.A.; Wheeler, F.J. (Idaho National Engineering Laboratory, Idaho Falls (USA))

1990-01-01

394

Mortality study of a research, engineering, and metal fabrication facility in western New York State  

SciTech Connect

The mortality experience of 8146 male employees of a research, engineering, and metal fabrication facility in Tonawanda, New York state was examined from 1946 to 1981. Potential workplace exposures included welding fumes, cutting oils, asbestos, organic solvents, and environmental ionizing radiation, as the result of disposal of wastes during the Manhattan Project of World War II. External comparisons with the US male population were supplemented by regional comparisons. For the total cohort, deficits were observed for all causes of death (standardized mortality ratio (SMR) = 87) and most non-cancer causes. The observed number of cancer deaths was close to expected (SMR = 99). There was an excess of connective and soft tissue cancer deaths, most notably in hourly employees hired prior to 1946. Among all hourly employees, there was an excess of respiratory cancer, which did not appear to be associated with length of employment. Mesothelioma was recorded as the cause of death for three decedents, two of whom were hourly employees who worked in production areas with high potential for asbestos exposure. The standardized mortality ratio for cirrhosis of the liver was elevated among long-term hourly employees hired prior to 1946. The roles of carbon tetrachloride exposure in the 1940s and alcohol consumption are discussed as possible contributory risk factors for the cirrhosis findings. The data do not provide evidence of radiation-induced cancers within this employee population.

Teta, M.J.; Ott, M.G.

1988-03-01

395

Wiener filtering with a seismic underground array at the Sanford Underground Research Facility  

NASA Astrophysics Data System (ADS)

A seismic array has been deployed at the Sanford Underground Research Facility in the former Homestake mine, South Dakota, USA, to study the underground seismic environment. This includes exploring the advantages of constructing a third-generation gravitational-wave (GW) detector underground. A major noise source for these detectors would be Newtonian noise (NN), which is induced by fluctuations in the local gravitational field. The hope is that a combination of a low-noise seismic environment and coherent noise subtraction using seismometers in the vicinity of the detector could suppress the NN to below the projected noise floor for future GW detectors. In this paper, certain properties of the NN subtraction problem are studied by applying similar techniques to data of a seismic array. We use Wiener filtering techniques to subtract coherent noise in a seismic array in the frequency band 0.051 Hz. This achieves more than an order of magnitude noise cancellation over a majority of this band. The variation in the Wiener-filter coefficients over the course of the day, including how local activities impact the filter, is analyzed. We also study the variation in coefficients over the course of a month, showing the stability of the filter with time. How varying the filter order affects the subtraction performance is also explored. It is shown that optimizing filter order can significantly improve subtraction of seismic noise.

Coughlin, M.; Harms, J.; Christensen, N.; Dergachev, V.; DeSalvo, R.; Kandhasamy, S.; Mandic, V.

2014-11-01

396

Decameter structure in heater-induced airglow at the High frequency Active Auroral Research Program facility  

NASA Astrophysics Data System (ADS)

On 28 October 2008, small-scale rayed artificial airglow was observed at the High frequency Active Auroral Research Program (HAARP) heating facility by the HAARP telescopic imager. This airglow occurred during an experiment at twilight from 0255-1600 UT (1855-2000 LT) and with estimated scale sizes of 100 m (at assumed 225 km altitude) constitutes the smallest structure observed in artificial airglow to date. The rays appeared to be oriented along the geomagnetic field lines. During this period, other instruments, SuperDARN, GPS receivers, stimulated electromagnetic emissions receivers, also recorded unusual data sets with the general characteristic of time scales longer than anticipated for features to form. The experiment took place at the commencement of a small geomagnetic disturbance (Kp of 4.3). This unique observation is as yet unexplained. The airglow features start as large scale structures and then become smaller as heating continues in apparent contradiction to current theories on irregularity development. A thermal gradient instability at boundary of the ionospheric footprint of the plasmapause may be responsible for causing the small-scale structuring. Observations of 427.8 nm N2+ (first negative group) emissions indicate the presence of ionization.

Kendall, Elizabeth; Marshall, Robert; Parris, Richard Todd; Bhatt, Asti; Coster, Anthea; Pedersen, Todd; Bernhardt, Paul; Selcher, Craig

2010-08-01

397

Rat maintenance in the Research Animal Holding Facility during the flight of Space Lab 3  

NASA Technical Reports Server (NTRS)

To test the husbandry capabilities of the Research Animal Holding Facility (RAHF) during space flight, 24 male rats were flown on Spacelab 3 for 7 days. Twelve large rats (400 g, LF), 5 of which had telemetry devices implanted (IF), and 12 small rats (200 g, SF) were housed in the RAHF. Examination 3 hr after landing (R + 3) revealed the rats to be free of injury, well nourished, and stained with urine. At R + 10 the rats were lethargic and atonic with hyperemia of the extremities and well groomed except for a middorsal area stained with urine and food. Both LF and SF rats showed weight gains comparable to their IG controls; IF rats grew less than controls. Food and water consumption were similar for flight and control groups. Plasma concentrations of total protein, sodium, albumin and creatinine did not differ between flight and control groups. LF and SF rats had elevated plasma glucose, and SF rats had increased blood urea nitrogen, potassium and glutamic pyruvic transaminase. These observations indicate that rats maintained in the RAHF were healthy, well nourished and experienced minimal stress; physiological changes in the rats can thus be attributed to the effects of space flight.

Fast, T.; Grindeland, R.; Kraft, L.; Ruder, M.; Vasques, M.

1985-01-01

398

Ion Beam Facility at the University of Chile; Applications and Basic Research  

SciTech Connect

The main characteristics of the ion beam facility based on a 3.75 MeV Van de Graaff accelerator at the University of Chile are described at this work. Current activities are mainly focused on the application of the Ion Beam Analysis techniques for environmental, archaeological, and material science analysis. For instance, Rutherford Backscattering Spectrometry (RBS) is applied to measure thin gold film thickness which are used to determine their resistivity and other electrical properties. At this laboratory the Proton Induced X-Ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) methodologies are extensively used for trace element analysis of urban aerosols (Santiago, Ciudad de Mexico). A similar study is being carried out at the Antarctica Peninsula. Characterization studies on obsidian and vitreous dacite samples using PIXE has been also perform allowing to match some of these artifacts with geological source sites in Chile.Basic physics research is being carried out by measuring low-energy cross section values for the reactions {sup 63}Cu(d,p){sup 64}Cu and {sup Nat}Zn(p,x){sup 67}Ga. Both radionuclide {sup 64}Cu and {sup 67}Ga are required for applications in medicine. Ongoing stopping power cross section measurements of proton and alphas on Pd, Cu, Bi and Mylar are briefly discussed.

Miranda, P. A.; Morales, J. R.; Cancino, S.; Dinator, M. I.; Donoso, N.; Sepulveda, A.; Ortiz, P.; Rojas, S. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile (Chile)

2010-08-04

399

First results from the LUX dark matter experiment at the Sanford underground research facility.  

PubMed

The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments. PMID:24655239

Akerib, D S; Arajo, H M; Bai, X; Bailey, A J; Balajthy, J; Bedikian, S; Bernard, E; Bernstein, A; Bolozdynya, A; Bradley, A; Byram, D; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chapman, J J; Chiller, A A; Chiller, C; Clark, K; Coffey, T; Currie, A; Curioni, A; Dazeley, S; de Viveiros, L; Dobi, A; Dobson, J; Dragowsky, E M; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Flores, C; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C; Hanhardt, M; Hertel, S A; Horn, M; Huang, D Q; Ihm, M; Jacobsen, R G; Kastens, L; Kazkaz, K; Knoche, R; Kyre, S; Lander, R; Larsen, N A; Lee, C; Leonard, D S; Lesko, K T; Lindote, A; Lopes, M I; Lyashenko, A; Malling, D C; Mannino, R; McKinsey, D N; Mei, D-M; Mock, J; Moongweluwan, M; Morad, J; Morii, M; Murphy, A St J; Nehrkorn, C; Nelson, H; Neves, F; Nikkel, J A; Ott, R A; Pangilinan, M; Parker, P D; Pease, E K; Pech, K; Phelps, P; Reichhart, L; Shutt, T; Silva, C; Skulski, W; Sofka, C J; Solovov, V N; Sorensen, P; Stiegler, T; O'Sullivan, K; Sumner, T J; Svoboda, R; Sweany, M; Szydagis, M; Taylor, D; Tennyson, B; Tiedt, D R; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, J T; White, D; Witherell, M S; Wlasenko, M; Wolfs, F L H; Woods, M; Zhang, C

2014-03-01

400

Wiener filtering with a seismic underground array at the Sanford Underground Research Facility  

E-print Network

A seismic array has been deployed at the Sanford Underground Research Facility in the former Homestake mine, South Dakota, to study the underground seismic environment. This includes exploring the advantages of constructing a third-generation gravitational-wave detector underground. A major noise source for these detectors would be Newtonian noise, which is induced by fluctuations in the local gravitational field. The hope is that a combination of a low-noise seismic environment and coherent noise subtraction using seismometers in the vicinity of the detector could suppress the Newtonian noise to below the projected noise floor for future gravitational-wave detectors. In this paper, we use Wiener filtering techniques to subtract coherent noise in a seismic array in the frequency band 0.05 -- 1\\,Hz. This achieves more than an order of magnitude noise cancellation over a majority of this band. We show how this subtraction would benefit proposed future low-frequency gravitational wave detectors. The variation in the Wiener filter coefficients over the course of the day, including how local activities impact the filter, is analyzed. We also study the variation in coefficients over the course of a month, showing the stability of the filter with time. How varying the filter order affects the subtraction performance is also explored. It is shown that optimizing filter order can significantly improve subtraction of seismic noise, which gives hope for future gravitational-wave detectors to address Newtonian noise.

Michael Coughlin; Jan Harms; Nelson Christensen; Vladimir Dergachev; Riccardo DeSalvo; Shivaraj Kandhasamy; Vuk Mandic

2014-03-30

401

Wiener filtering with a seismic underground array at the Sanford Underground Research Facility  

E-print Network

A seismic array has been deployed at the Sanford Underground Research Facility in the former Homestake mine, South Dakota, to study the underground seismic environment. This includes exploring the advantages of constructing a third-generation gravitational-wave detector underground. A major noise source would be Newtonian noise, which is induced by fluctuations in the local gravitational field. The hope is that a combination of a low-noise seismic environment and coherent noise subtraction using seismometers in the vicinity of the detector could suppress the Newtonian noise to required levels. In this paper, we use Wiener filtering techniques to subtract coherent noise in a seismic array in the form of oceanic microseisms. We achieve more than an order of magnitude noise cancellation between about 0.05-0.5 Hz. We examine the variation in the Wiener filter coefficients over the course of the day, showing how local activities impact the filter. We also study the variation in coefficients over the course of a mo...

Coughlin, Michael; Christensen, Nelson; Dergachev, Vladimir; DeSalvo, Riccardo; Kandhasamy, Shivaraj; Mandic, Vuk

2014-01-01

402

The Caater Facility Falcon of the German Aerospace Cente: A multipurpose airborne research Platform  

NASA Astrophysics Data System (ADS)

The DLR research aircraft Falcon D-CMET was available to scientists through an EC-funded IHP-ARI contract. 9 different research projects have been funded by CAATER on the Falcon with an average of about 10 flight hours per project. More than 20 users from 5 countries have benefited from this access project between 1999--2003. As a fan jet the Falcon covers a wide atmospheric range between the boundary layer and the lower stratosphere. Many modifications have been added to the aircraft to provide suitable interfaces for the scientific payload: openings in the fuselage to house large optical windows and inlets for in situ experiments, hard points under wings and fuselage, additional electrical generators and standardized electrical and mechanical interfaces for the installation of scientific instrumentation onboard. The Falcon is equipped with a data acquisition system and a basic instrumentation providing data on aircraft parameters and meteorology for the scientific users. Additional instrumentation is available from the different DLR institutes in Oberpfaffenhofen and can be added to the aircraft. CAATER users have access to an extensive infrastructure on the ground which includes workshops, calibration setups, an environmental simulation chamber and an own user lab. They are supported by several groups within the Facility who lead them through the different steps of an airborne field experiment such as certification and installation of their instruments on the aircraft, campaign and flight planning and the processing and preparation of aircraft data right after a flight. The users have been stimulated to use DLR's Approved Design Organisation status together with its Airworthiness Office to develop and operate new airborne instrumentation . Several new instrument packages have been installed and certified for the first time on the Falcon within CAATER.

Giez, A.; Krautstrunk, M.

2003-04-01

403

PRELIMINARY OPERATION OF THE FLUIDIZED-BED COMBUSTION FACILITY FOR HAZARDOUS WASTE DISPOSAL RESEARCH: TEST RESULTS AND EVALUATION  

EPA Science Inventory

The report describes Phase I of a program to provide research data on the destruction of hazardous wastes in a fluidized-bed combustor (FBC). The report addresses three primary areas of the program: facility operation, sampling and analysis, and health and safety. The FBC was ope...

404

A new facility for Quaternary Geochronology in Spain: The National Research Centre for Human Evolution (CENIEH) in Burgos  

NASA Astrophysics Data System (ADS)

A new geochronology facility has been recently set up in Burgos, Spain, as part of the recently established National Research Centre for Human Evolution (CENIEH). The CENIEH is sponsored by governmental funding and was established to foster major advances in our understanding of human evolution through multidisciplinary research. As part of this initiative, a modern laboratory complex is emerging as an European facility for Geochronology and Geoarchaeology. The Geochronology laboratories include archaeomagnetism, electron spin resonance, luminescence, uranium-series, and a clean laboratory for sample preparation. The facility includes a 2G, 755-4K SRM superconducting magnetometer, a Bruker ESR spectrometer (EMXmicro-6/1 model) associated with a low-temperature control system, allowing ESR measurements at room and liquid nitrogen temperature, two Riso readers with a single-grain and pulsed OSL attachments, a ThermoFinnigan Neptune MC-ICP-MS, with a CETAC Aridus and an ESI Apex sample introduction system, a NewWave UP213 nm laser ablation facility, a NewWave Instr. Micromill and ancillary sample preparation and field equipment. The Geochronology group, GEB (Geochronology rEsearch group in Burgos) is being set up as a facility that provides auxiliary laboratory and general support to the scientific community interested in Quaternary studies, and in archaeological and paleontological sites. Methodological advancements in Quaternary dating, and inter-technique collaborative studies form an integral part of GEBs research activities. Current research projects include the chronology of the oldest human occupation of Europe (Atapuerca and Orce), north-African archaeological sites and integration with Plio-Pleistocene climatic changes, rates of incision and uplift of Cenozoic basins in Spain, and dating of ancient DNA sequences and early human occupation sites across Siberia and North America.

Pars, Josep M.; Duval, Mathieu; Arnold, Lee J.; Hoffmann, Dirk L.

2010-05-01

405

Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management  

SciTech Connect

The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.

Bissani, M; Fischer, R; Kidd, S; Merrigan, J

2006-04-03

406

Molecular environmental science : an assessment of research accomplishments, available synchrotron radiation facilities, and needs.  

SciTech Connect

Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutants at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and their reactions with environmental materials. To achieve this goal, both fundamental and targeted studies of complex environmental systems at a molecular level are needed, and examples of both types of studies are presented herein. These examples illustrate the fact that MES SR studies have led to a revolution in our understanding of the fundamental physical and chemical aspects of natural systems. The MES SR user community has continued to experience strong growth at U.S. SR laboratories, with MES researchers comprising up to 15% of the total user base. Further growth and development of the MES community is being hindered by insufficient resources, including support personnel, materials preparation facilities, and available beam time at U.S. SR laboratories. EnviroSync* recommends the following actions, in cooperation with U.S. SR laboratory directors, to meet the MES community's needs.

Brown, G. E., Jr.; Sutton, S. R.; Bargar, J. R.; Shuh, D. K.; Fenter, P. A.; Kemner, K. M.

2004-10-20

407

Molecular Environmental Science: An Assessment of Research Accomplishments, Available Synchrotron Radiation Facilities, and Needs  

SciTech Connect

Synchrotron-based techniques are fundamental to research in ''Molecular Environmental Science'' (MES), an emerging field that involves molecular-level studies of chemical and biological processes affecting the speciation, properties, and behavior of contaminants, pollutants, and nutrients in the ecosphere. These techniques enable the study of aqueous solute complexes, poorly crystalline materials, solid-liquid interfaces, mineral-aqueous solution interactions, microbial biofilm-heavy metal interactions, heavy metal-plant interactions, complex material microstructures, and nanomaterials, all of which are important components or processes in the environment. Basic understanding of environmental materials and processes at the molecular scale is essential for risk assessment and management, and reduction of environmental pollutants at field, landscape, and global scales. One of the main purposes of this report is to illustrate the role of synchrotron radiation (SR)-based studies in environmental science and related fields and their impact on environmental problems of importance to society. A major driving force for MES research is the need to characterize, treat, and/or dispose of vast quantities of contaminated materials, including groundwater, sediments, and soils, and to process wastes, at an estimated cost exceeding 150 billion dollars through 2070. A major component of this problem derives from high-level nuclear waste. Other significant components come from mining and industrial wastes, atmospheric pollutants derived from fossil fuel consumption, agricultural pesticides and fertilizers, and the pollution problems associated with animal waste run-off, all of which have major impacts on human health and welfare. Addressing these problems requires the development of new characterization and processing technologies--efforts that require information on the chemical speciation of heavy metals, radionuclides, and xenobiotic organic compounds and their reactions with environmental materials. To achieve this goal, both fundamental and targeted studies of complex environmental systems at a molecular level are needed, and examples of both types of studies are presented herein. These examples illustrate the fact that MES SR studies have led to a revolution in our understanding of the fundamental physical and chemical aspects of natural systems. The MES SR user community has continued to experience strong growth at U.S. SR laboratories, with MES researchers comprising up to 15% of the total user base. Further growth and development of the MES community is being hindered by insufficient resources, including support personnel, materials preparation facilities, and available beam time at U.S. SR laboratories. ''EnviroSync'' recommends the following actions, in cooperation with U.S. SR laboratory directors, to meet the MES community's needs.

Brown, G

2004-02-05

408

ENVIRONMENTAL RESEARCH BRIEF: STORAGE/SEDIMENTATION FACILITIES FOR CONTROL OF STORM AND COMBINED SEWER OVERFLOWS  

EPA Science Inventory

This report describes applications of storage facilities in wet-weather flow (WWF) control and presents step-by-step procedures for the analysis and design of storage-treatment facilities. Retention, detention, and sedimentation storage are classified and described. International...

409

Sound field diffusivity in NASA Langley Research Center hardwalled acoustic facilities  

Microsoft Academic Search

Cross correlation measurements were performed to determine the quality of the sound fields in the ANRL reverberation room and the ANRL transmission loss facility. The results indicate the level of sound field diffuseness which may be attained in these hardwalled acoustic facilities.

M. C. McGary

1982-01-01

410

A Guide for Planning Facilities for Occupational Preparation Programs in Data Processing. Interim Report. Research 25.  

ERIC Educational Resources Information Center

This guide lists a series of pivotal questions about the educational program to be offered, and the answers to these questions bear directly on the numbers and kinds of instructional areas needed in the contemplated facilities. Much of the material is presented in a checklist format which allows for consideration of alternatives in facility

McIntosh, William A.

411

Design and Development of a New Facility for Teaching and Research in Clinical Anatomy  

ERIC Educational Resources Information Center

This article discusses factors in the design, commissioning, project management, and intellectual property protection of developments within a new clinical anatomy facility in the United Kingdom. The project was aimed at creating cost-effective facilities that would address widespread concerns over anatomy teaching, and support other activities

Greene, John Richard T.

2009-01-01

412

Cle Elum and Supplementation Research Facility : Monthly Progress Report October 2008.  

SciTech Connect

FISH PRODUCTION: On October 7th the 2008 spawning season was completed. 823 adults were transferred to the facility for the 2008 season. The overall adult mortality was 6.9% (1.3% pre-spawning mortality and 5.6% encountered after sorting). Wild/natural salmon collected included 278 females, 173 males, and 29 jacks for a total 480 fish for the 2008 brood. Supplemented brood stock collected included 149 adults (85 females, 35 males and 29 jacks). Hatchery control brood collected for research included 194 adults (91 females, 68 males and 35 jacks). Eggs will be inventoried in November with an actual summary of eggs numbers to be submitted for the November report. The estimated egg takes (production) for the 2008 season was 1,375,146 eggs with 1,006,063 comprising of W x W crosses and 250,755 eggs of H x H crosses with 118,328 supplement crosses. Total fish on hand for the 2007 brood is 768,751 with an average fish per pound of 30.6 f/lb. FISH CULTURE: The marking and pit-tagging operation started on October 13th. The pit-tagging portion was completed on October 23rd. A total 40,000 juveniles were pit-tagged (2,000 from each of the production ponds and 4,000 each for the hatchery juvenile ponds 9 & 10). Cle Elum staff began shocking, sorting, counting and splitting eggs in incubation. Shocking eggs will separate live eggs from dead eggs. Eggs are treated with formalin three times a week to control fungus. The focus for the culturists during the month of October entail completing the final spawn (egg take) on the 7th, pond cleaning, keeping the marking trailers supplied with fish and end of month sampling. The adult holding ponds were power washed and winterized for the shut down period. Facility crew members Greg Strom and Mike Whitefoot assisted Joe Blodgett and his crew with fish brood collection on the 22nd of October. Fall Chinook and Coho salmon were seined up and put in tanker trucks from Chandler canal and transported to holding ponds for later spawning. Charlie, Simon and Vernon assisted with sorting and spawning Summer Chinook at the Wells hatchery for the Summer Chinook reintroduction program on the lower Yakima River. WATER PRODUCTION: The current combined well and river water supply to the complex is 12,909 gallons/min. Four river pumps (12,400gpm) and one well pump No.2 (509gpm) are supplying water to the facility main head box and the egg incubation building. ACCLIMATION SITES: Easton had much activity in October, the electrical power panel that's switches commercial power operation to generator power (transfer switch) malfunctioned. Charlie called Wallace Electric as well as ASCO Services to trouble shoot the problem which has yet to be determined. Heaters have been turned on in all service buildings at the acclimation sites. Pacific States Marine Fisheries Commission traveled to Easton to install a pole to mount a satellite and a new ups backup system with new monitors and computers for pit tag data recording and transmitting. Brown and Jackson pumped out the septic tanks at Easton and Clark Flat. AMB Tools performed maintenance on the compressors at the acclimation sites as well as Cle Elum (5 total). VEHICLE MAINTENANCE: Day Wireless performed maintenance on all handheld and vehicle radios. Day Wireless repaired radio communications (static noise) on the 6th also. All vehicles mileages and conditions are reported monthly to Toppenish. Cle Elum staff continues to clean and maintain all facility vehicles weekly. MAINTENANCE BUILDING MAINTENANCE: Kevin of Raincountry was called in response to repairs needed to the water chiller system. Cle Elum staff winterized all irrigation as well as shop grounds. Brown and Jackson pumped out the septic tank at the hatchery on the 22nd. HATCHERY BUILDING MAINTENANCE: The incubation room has been set up for transfer of eggs from isolation buckets to vertical stacks, temperature units are recorded daily. RESENTDENTIAL HOUSING: Residents irrigation has been winterized and fall fertilizer was applied to all grass on facility. Four Seasons performed maintenance on all heating sy

Cle Elum Supplementation and Research Facility

2008-12-11

413

Safety evaluation report related to the renewal of the facility license for the research reactor at the Dow Chemical Company  

SciTech Connect

This safety evaluation report for the application filed by the Dow Chemical Company for renewal of facility Operating License R-108 to continue to operate its research reactor at an increased operating power level has been prepared by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission. The facility is located on the grounds of the Michigan Division of the Dow Chemical Company in Midland, Michigan. The staff concludes that the Dow Chemical Company can continue to operate its reactor without endangering the health and safety of the public.

Not Available

1989-04-01

414

An intrinsically safe facility for forefront research and training on nuclear technologies An example of accelerator: the SPES cyclotron  

NASA Astrophysics Data System (ADS)

The SPES project, under construction at INFN, Laboratori Nazionali di Legnaro, is a research facility for nuclear and applied physics, based on a high-current H- cyclotron with two exits. One exit will be devoted to supply an ISOL facility for the production of radioactive beams, the second one can be used as driver for the ADS system. The main characteristics of the cyclotron are described together with the main building designed to operate high-current proton beams according to radioprotection rules.

Maggiore, M.; Lombardi, A.; Piazza, L. A. C.; Prete, G.

2014-04-01

415

Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA  

PubMed Central

The deep subsurface is an enormous repository of microbial life. However, the metabolic capabilities of these microorganisms and the degree to which they are dependent on surface processes are largely unknown. Due to the logistical difficulty of sampling and inherent heterogeneity, the microbial populations of the terrestrial subsurface are poorly characterized. In an effort to better understand the biogeochemistry of deep terrestrial habitats, we evaluate the energetic yield of chemolithotrophic metabolisms and microbial diversity in the Sanford Underground Research Facility (SURF) in the former Homestake Gold Mine, SD, USA. Geochemical data, energetic modeling, and DNA sequencing were combined with principle component analysis to describe this deep (down to 8100 ft below surface), terrestrial environment. SURF provides access into an iron-rich Paleoproterozoic metasedimentary deposit that contains deeply circulating groundwater. Geochemical analyses of subsurface fluids reveal enormous geochemical diversity ranging widely in salinity, oxidation state (ORP 330 to ?328 mV), and concentrations of redox sensitive species (e.g., Fe2+ from near 0 to 6.2 mg/L and ? S2- from 7 to 2778?g/L). As a direct result of this compositional buffet, Gibbs energy calculations reveal an abundance of energy for microorganisms from the oxidation of sulfur, iron, nitrogen, methane, and manganese. Pyrotag DNA sequencing reveals diverse communities of chemolithoautotrophs, thermophiles, aerobic and anaerobic heterotrophs, and numerous uncultivated clades. Extrapolated across the mine footprint, these data suggest a complex spatial mosaic of subsurface primary productivity that is in good agreement with predicted energy yields. Notably, we report Gibbs energy normalized both per mole of reaction and per kg fluid (energy density) and find the later to be more consistent with observed physiologies and environmental conditions. Further application of this approach will significantly expand our understanding of the deep terrestrial biosphere.

Osburn, Magdalena R.; LaRowe, Douglas E.; Momper, Lily M.; Amend, Jan P.

2014-01-01

416

Evaluation of Human Research Facility Ultrasound With the ISS Video System  

NASA Technical Reports Server (NTRS)

Most medical equipment on the International Space Station (ISS) is manifested as part of the U.S. or the Russian medical hardware systems. However, certain medical hardware is also available as part of the Human Research Facility. The HRF and the JSC Medical Operations Branch established a Memorandum of Agreement for joint use of certain medical hardware, including the HRF ultrasound system, the only diagnostic imaging device currently manifested to fly on ISS. The outcome of a medical contingency may be changed drastically, or an unnecessary evacuation may be prevented, if clinical decisions are supported by timely and objective diagnostic information. In many higher-probability medical scenarios, diagnostic ultrasound is a first-choice modality or provides significant diagnostic information. Accordingly, the Clinical Care Capability Development Project is evaluating the HRF ultrasound system for its utility in relevant clinical situations on board ISS. For effective management of these ultrasound-supported ISS medical scenarios, the resulting data should be available for viewing and interpretation on the ground, and bidirectional voice communication should be readily available to allow ground experts (sonographers, physicians) to provide guidance to the Crew Medical Officer. It may also be vitally important to have the capability of real-time guidance via video uplink to the CMO-operator during an exam to facilitate the diagnosis in a timely fashion. In this document, we strove to verify that the HRF ultrasound video output is compatible with the ISS video system, identify ISS video system field rates and resolutions that are acceptable for varying clinical scenaiios, and evaluate the HRF ultrasound video with a commercial, off-the-shelf video converter, and compare it with the ISS video system.

Melton, Shannon; Sargsyan, Ashot

2003-01-01

417

Status report on the cold neutron source of the Garching neutron research facility FRM-II  

NASA Astrophysics Data System (ADS)

The new high flux research reactor of the Technical University of Munich (Technische Universitt Mnchen, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D 2O-reflector tank at 400 mm from the reactor core axis close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 l of liquid deuterium at 25 K, and in the structures, is evacuated by a two-phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10 from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the lifetime of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H 2) to the deuterium (D 2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long-term change of the hydrogen content in the deuterium is avoided by storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo 3Ni 2, the other one with 150 kg of ZrCo 0.8Ni 0.2. Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in <6 min at a pressure <3 bar. The new reactor will have 13 beam tubes, 4 of which are looking at the CNS, including two for very cold (VCN) and ultra-cold neutron (UCN) production. The latter will take place in the horizontal beam tube SR4, which will house an additional cryogenic moderator (e.g. solid deuterium). More than 60% of the experiments foreseen in the new neutron research facility will use cold neutrons from the CNS. The mounting of the hardware components of the CNS into the reactor has started in the spring of 2000. The CNS went into trial operation in the end of year 2000.

Gobrecht, K.; Gutsmiedl, E.; Scheuer, A.

2002-01-01

418

Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes  

NASA Technical Reports Server (NTRS)

The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting "real-time" and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

Grugel, Richard N.; Luz, Paul; Smith, Guy; Spivey, Reggie; Jeter, Linda; Gillies, Donald; Hua, Fay; Anikumar, A. V.

2007-01-01

419

Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes  

NASA Technical Reports Server (NTRS)

The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting real-time and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C.; Hua, F.; Anilkumar, A. V.

2006-01-01

420

ADAM: automated data management for research datasets  

PubMed Central

Existing repositories for experimental datasets typically capture snapshots of data acquired using a single experimental technique and often require manual population and continual curation. We present a storage system for heterogeneous research data that performs dynamic automated indexing to provide powerful search, discovery and collaboration features without the restrictions of a structured repository. ADAM is able to index many commonly used file formats generated by laboratory assays and therefore offers specific advantages to the experimental biology community. However, it is not domain specific and can promote sharing and re-use of working data across scientific disciplines. Availability and implementation: ADAM is implemented using Java and supported on Linux. It is open source under the GNU General Public License v3.0. Installation instructions, binary code, a demo system and virtual machine image and are available at http://www.imperial.ac.uk/bioinfsupport/resources/software/adam. Contact: m.woodbridge@imperial.ac.uk PMID:23109181

Woodbridge, Mark; Tomlinson, Christopher D.; Butcher, Sarah A.

2013-01-01

421

Performance of the Spacecraft Propulsion Research Facility During Altitude Firing Tests of the Delta 3 Upper Stage  

NASA Technical Reports Server (NTRS)

The Spacecraft Propulsion Research Facility at the NASA Lewis Research Center's Plum Brook Station was reactivated in order to conduct flight simulation ground tests of the Delta 3 cryogenic upper stage. The tests were a cooperative effort between The Boeing Company, Pratt and Whitney, and NASA. They included demonstration of tanking and detanking of liquid hydrogen, liquid oxygen and helium pressurant gas as well as 12 engine firings simulating first, second, and third burns at altitude conditions. A key to the success of these tests was the performance of the primary facility systems and their interfaces with the vehicle. These systems included the structural support of the vehicle, propellant supplies, data acquisition, facility control systems, and the altitude exhaust system. While the facility connections to the vehicle umbilical panel simulated the performance of the launch pad systems, additional purge and electrical connections were also required which were unique to ground testing of the vehicle. The altitude exhaust system permitted an approximate simulation of the boost-phase pressure profile by rapidly pumping the test chamber from 13 psia to 0.5 psia as well as maintaining altitude conditions during extended steady-state firings. The performance of the steam driven ejector exhaust system has been correlated with variations in cooling water temperature during these tests. This correlation and comparisons to limited data available from Centaur tests conducted in the facility from 1969-1971 provided insight into optimizing the operation of the exhaust system for future tests. Overall, the facility proved to be robust and flexible for vehicle space simulation engine firings and enabled all test objectives to be successfully completed within the planned schedule.

Meyer, Michael L.; Dickens, Kevin W.; Skaff, Tony F.; Cmar, Mark D.; VanMeter, Matthew J.; Haberbusch, Mark S.

1998-01-01

422

Earth Remote Sensing Facilities for Research and Teaching at the State University of New York  

NASA Technical Reports Server (NTRS)

This final report describes the remote sensing facility that was put into place at the State University of New York (SUNY) through the support obtained from the above referenced NASA award and the associated matching funds from SUNY.

Geller, Marvin; Wa