Science.gov

Sample records for wscf laboratory complex

  1. Waste sampling and characterization facility (WSCF)

    SciTech Connect

    Not Available

    1994-10-01

    The Waste Sampling and Characterization Facility (WSCF) complex consists of the main structure (WSCF) and four support structures located in the 600 Area of the Hanford site east of the 200 West area and south of the Hanford Meterology Station. WSCF is to be used for low level sample analysis, less than 2 mRem. The Laboratory features state-of-the-art analytical and low level radiological counting equipment for gaseous, soil, and liquid sample analysis. In particular, this facility is to be used to perform Resource Conservation and Recovery Act (RCRA) of 1976 and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 sample analysis in accordance with U.S. Environmental Protection Agency Protocols, room air and stack monitoring sample analysis, waste water treatment process support, and contractor laboratory quality assurance checks. The samples to be analyzed contain very low concentrations of radioisotopes. The main reason that WSCF is considered a Nuclear Facility is due to the storage of samples at the facility. This maintenance Implementation Plan has been developed for maintenace functions associate with the WSCF.

  2. INVESTIGATION OF THE TOTAL ORGANIC HALOGEN ANALYTICAL METHOD AT THE WASTE SAMPLING CHARACTERIZATION FACILITY (WSCF)

    SciTech Connect

    DOUGLAS JG; MEZNARICH HD, PHD; OLSEN JR; ROSS GA; STAUFFER M

    2008-09-30

    Total organic halogen (TOX) is used as a parameter to screen groundwater samples at the Hanford Site. Trending is done for each groundwater well, and changes in TOX and other screening parameters can lead to costly changes in the monitoring protocol. The Waste Sampling and Characterization Facility (WSCF) analyzes groundwater samples for TOX using the United States Environmental Protection Agency (EPA) SW-846 method 9020B (EPA 1996a). Samples from the Soil and Groundwater Remediation Project (S&GRP) are submitted to the WSCF for analysis without information regarding the source of the sample; each sample is in essence a 'blind' sample to the laboratory. Feedback from the S&GRP indicated that some of the WSCF-generated TOX data from groundwater wells had a number of outlier values based on the historical trends (Anastos 2008a). Additionally, analysts at WSCF observed inconsistent TOX results among field sample replicates. Therefore, the WSCF lab performed an investigation of the TOX analysis to determine the cause of the outlier data points. Two causes were found that contributed to generating out-of-trend TOX data: (1) The presence of inorganic chloride in the groundwater samples: at inorganic chloride concentrations greater than about 10 parts per million (ppm), apparent TOX values increase with increasing chloride concentration. A parallel observation is the increase in apparent breakthrough of TOX from the first to the second activated-carbon adsorption tubes with increasing inorganic chloride concentration. (2) During the sample preparation step, excessive purging of the adsorption tubes with oxygen pressurization gas after sample loading may cause channeling in the activated-carbon bed. This channeling leads to poor removal of inorganic chloride during the subsequent wash step with aqueous potassium nitrate. The presence of this residual inorganic chloride then produces erroneously high TOX values. Changes in sample preparation were studied to more effectively

  3. 42 CFR 493.1403 - Condition: Laboratories performing moderate complexity testing; laboratory director.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing moderate complexity testing; laboratory director. 493.1403 Section 493.1403 Public Health CENTERS FOR MEDICARE... LABORATORY REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing Moderate Complexity...

  4. 42 CFR 493.1403 - Condition: Laboratories performing moderate complexity testing; laboratory director.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Condition: Laboratories performing moderate complexity testing; laboratory director. 493.1403 Section 493.1403 Public Health CENTERS FOR MEDICARE... LABORATORY REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing Moderate Complexity...

  5. 42 CFR 493.1403 - Condition: Laboratories performing moderate complexity testing; laboratory director.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Condition: Laboratories performing moderate complexity testing; laboratory director. 493.1403 Section 493.1403 Public Health CENTERS FOR MEDICARE... LABORATORY REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing Moderate Complexity...

  6. 42 CFR 493.1403 - Condition: Laboratories performing moderate complexity testing; laboratory director.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Condition: Laboratories performing moderate complexity testing; laboratory director. 493.1403 Section 493.1403 Public Health CENTERS FOR MEDICARE... LABORATORY REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing Moderate Complexity...

  7. 42 CFR 493.1403 - Condition: Laboratories performing moderate complexity testing; laboratory director.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratories performing moderate complexity testing; laboratory director. 493.1403 Section 493.1403 Public Health CENTERS FOR MEDICARE... LABORATORY REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing Moderate Complexity...

  8. 222-S laboratory complex hazards assessment

    SciTech Connect

    Broz, R.E.

    1994-08-29

    The US Department of Energy (DOE) Order 5500.3A, Emergency Planning and Preparedness for Operational Emergencies, requires that a facility specific hazards assessment be performed to support Emergency Planning activities. The Hazard Assessment establishes the technical basis for the Emergency Action Levels (EALs) and the Emergency Planning Zone (EPZ). Emergency Planning activities are provided under contract to DOE through the Westinghouse Hanford Company (WHC). This document represents the facility specific hazards assessment for the Hanford Site 222-S Laboratories. The primary mission of 222-S is to provide analytic chemistry support to the Waste Management, Chemical Processing, and Environmental programs at the Hanford Site.

  9. 2. View, structures in Systems Integration Laboratory complex, looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View, structures in Systems Integration Laboratory complex, looking north. The Components Test Laboratory (T-27) is located in the immediate foreground. Immediately uphill to the left of T-27 is the Boiler Chiller Plant (T-28H). To the left of T-28H is the Oxidizer Conditioning Structure (T-28D). Behind the T-28D is the Long-Term Oxidizer Silo (T-28B). The twin gantry structure at the left is the Systems Integration Laboratory (T-28). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. Complex Organics from Laboratory Simulated Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.

    2003-01-01

    Many of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. The low temperatures of these ices (T < 50 K) preclude most chemical reactions, but photolysis can drive reactions that produce a suite of new species, many of which are complex organics. We study the UV and proton radiation processing of interstellar ice analogs to explore links between interstellar chemistry, the organics in comets and meteorites, and the origin of life on Earth. The high D/H ratios in some interstellar species, and the knowledge that many of the organics in primitive meteorites are D-enriched, suggest that such links are plausible. Once identified, these species may serve as markers of interstellar heritage of cometary dust and meteorites. Of particular interest are our findings that UV photolysis of interstellar ice analogs produce molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids. Quinones are essential in vital metabolic roles such as electron transport. Studies show that quinones should be made wherever polycyclic aromatic hydrocarbons are photolyzed in interstellar ices. In the case of anthracene-containing ices, we have observed the production of 9-anthrone and 9,10 anthraquinone, both of which have been observed in the Murchison meteorite. Amphiphiles are also made when mixed molecular ices are photolyzed. These amphiphiles self-assemble into fluorescent vesicles when placed in liquid water, as do Murchison extracts. Both have the ability to trap an ionic dye. Photolysis of plausible ices can also produce alanine, serine, and glycine as well as a number of small alcohols and amines. Flash heating of the room temperature residue generated by such experiments generates mass spectral distributions similar to those of IDPs. The detection of high D/H ratios in some interstellar molecular species, and the knowledge that many of the organics, such as hydroxy and amino acids, in primitive meteorites are D

  11. 42 CFR 493.1441 - Condition: Laboratories performing high complexity testing; laboratory director.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity testing; laboratory director. 493.1441 Section 493.1441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION...

  12. 42 CFR 493.1441 - Condition: Laboratories performing high complexity testing; laboratory director.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratories performing high complexity testing; laboratory director. 493.1441 Section 493.1441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION...

  13. 42 CFR 493.1441 - Condition: Laboratories performing high complexity testing; laboratory director.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Condition: Laboratories performing high complexity testing; laboratory director. 493.1441 Section 493.1441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION...

  14. 42 CFR 493.1441 - Condition: Laboratories performing high complexity testing; laboratory director.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Condition: Laboratories performing high complexity testing; laboratory director. 493.1441 Section 493.1441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION...

  15. 42 CFR 493.1441 - Condition: Laboratories performing high complexity testing; laboratory director.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Condition: Laboratories performing high complexity testing; laboratory director. 493.1441 Section 493.1441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION...

  16. 42 CFR 493.1421 - Condition: Laboratories performing moderate complexity testing; testing personnel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... complexity testing; testing personnel. 493.1421 Section 493.1421 Public Health CENTERS FOR MEDICARE... LABORATORY REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing Moderate Complexity Testing § 493.1421 Condition: Laboratories performing moderate complexity testing; testing personnel....

  17. 42 CFR 493.1409 - Condition: Laboratories performing moderate complexity testing; technical consultant.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... complexity testing; technical consultant. 493.1409 Section 493.1409 Public Health CENTERS FOR MEDICARE... LABORATORY REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing Moderate Complexity Testing § 493.1409 Condition: Laboratories performing moderate complexity testing; technical consultant....

  18. Picatinny Arsenal 3000 Area Laboratory Complex Energy Analysis

    SciTech Connect

    Brown, Daryl R.; Goddard, James K.

    2010-05-01

    In response to a request by Picatinny Arsenal, the Pacific Northwest National Laboratory (PNNL) was asked by the Army to conduct an energy audit of the Arsenal’s 3000 Area Laboratory Complex. The objective of the audit was to identify life-cycle cost-effective measures that the Arsenal could implement to reduce energy costs. A “walk-through” audit of the facilities was conducted on December 7-8, 2009. Findings and recommendations are included in this document.

  19. 1. View, structures in Systems Integration Laboratory complex, looking northwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View, structures in Systems Integration Laboratory complex, looking northwest. The twin gantry structure in the center is the Systems Integration Laboratory (T-28). To its immediate left in the foreground is a truck well, concrete retaining wall, piping, and stack associated with the oxidizer vault storage area. To the immediate right of T-28 is the concrete Signal Transfer Building (T-28A). At the extreme right is the Long-Term Hydrazine Silo (T-28E). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  20. Advanced Benchmarking for Complex Building Types: Laboratories as an Exemplar

    SciTech Connect

    Mathew, Paul A.; Clear, Robert; Kircher, Kevin; Webster, Tom; Lee, Kwang Ho; Hoyt, Tyler

    2010-08-01

    Complex buildings such as laboratories, data centers and cleanrooms present particular challenges for energy benchmarking because it is difficult to normalize special requirements such as health and safety in laboratories and reliability (i.e., system redundancy to maintain uptime) in data centers which significantly impact energy use. For example, air change requirements vary widely based on the type of work being performed in each laboratory space. We present methods and tools for energy benchmarking in laboratories, as an exemplar of a complex building type. First, we address whole building energy metrics and normalization parameters. We present empirical methods based on simple data filtering as well as multivariate regression analysis on the Labs21 database. The regression analysis showed lab type, lab-area ratio and occupancy hours to be significant variables. Yet the dataset did not allow analysis of factors such as plug loads and air change rates, both of which are critical to lab energy use. The simulation-based method uses an EnergyPlus model to generate a benchmark energy intensity normalized for a wider range of parameters. We suggest that both these methods have complementary strengths and limitations. Second, we present"action-oriented" benchmarking, which extends whole-building benchmarking by utilizing system-level features and metrics such as airflow W/cfm to quickly identify a list of potential efficiency actions which can then be used as the basis for a more detailed audit. While action-oriented benchmarking is not an"audit in a box" and is not intended to provide the same degree of accuracy afforded by an energy audit, we demonstrate how it can be used to focus and prioritize audit activity and track performance at the system level. We conclude with key principles that are more broadly applicable to other complex building types.

  1. Epigenetics of complex diseases: from general theory to laboratory experiments.

    PubMed

    Schumacher, A; Petronis, A

    2006-01-01

    Despite significant effort, understanding the causes and mechanisms of complex non-Mendelian diseases remains a key challenge. Although numerous molecular genetic linkage and association studies have been conducted in order to explain the heritable predisposition to complex diseases, the resulting data are quite often inconsistent and even controversial. In a similar way, identification of environmental factors causal to a disease is difficult. In this article, a new interpretation of the paradigm of "genes plus environment" is presented in which the emphasis is shifted to epigenetic misregulation as a major etiopathogenic factor. Epigenetic mechanisms are consistent with various non-Mendelian irregularities of complex diseases, such as the existence of clinically indistinguishable sporadic and familial cases, sexual dimorphism, relatively late age of onset and peaks of susceptibility to some diseases, discordance of monozygotic twins and major fluctuations on the course of disease severity. It is also suggested that a substantial portion of phenotypic variance that traditionally has been attributed to environmental effects may result from stochastic epigenetic events in the cell. It is argued that epigenetic strategies, when applied in parallel with the traditional genetic ones, may significantly advance the discovery of etiopathogenic mechanisms of complex diseases. The second part of this chapter is dedicated to a review of laboratory methods for DNA methylation analysis, which may be useful in the study of complex diseases. In this context, epigenetic microarray technologies are emphasized, as it is evident that such technologies will significantly advance epigenetic analyses in complex diseases. PMID:16909908

  2. 42 CFR 493.1487 - Condition: Laboratories performing high complexity testing; testing personnel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity... REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing High Complexity Testing § 493.1487 Condition: Laboratories performing high complexity testing; testing personnel. The laboratory has...

  3. 42 CFR 493.1459 - Condition: Laboratories performing high complexity testing; general supervisor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity... REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing High Complexity Testing § 493.1459 Condition: Laboratories performing high complexity testing; general supervisor. The laboratory must have...

  4. 42 CFR 493.1467 - Condition: Laboratories performing high complexity testing; cytology general supervisor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity... LABORATORY REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing High Complexity Testing § 493.1467 Condition: Laboratories performing high complexity testing; cytology general supervisor. For...

  5. 42 CFR 493.1447 - Condition: Laboratories performing high complexity testing; technical supervisor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity... REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing High Complexity Testing § 493.1447 Condition: Laboratories performing high complexity testing; technical supervisor. The laboratory must have...

  6. 42 CFR 493.1481 - Condition: Laboratories performing high complexity testing; cytotechnologist.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity... REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing High Complexity Testing § 493.1481 Condition: Laboratories performing high complexity testing; cytotechnologist. For the subspecialty...

  7. 42 CFR 493.25 - Laboratories performing tests of high complexity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Laboratories performing tests of high complexity....25 Laboratories performing tests of high complexity. (a) A laboratory must obtain a certificate for tests of high complexity if it performs one or more tests that meet the criteria for tests of...

  8. 42 CFR 493.1415 - Condition: Laboratories performing moderate complexity testing; clinical consultant.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... laboratory must have a clinical consultant who meets the qualification requirements of § 493.1417 of this... complexity testing; clinical consultant. 493.1415 Section 493.1415 Public Health CENTERS FOR MEDICARE... LABORATORY REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing Moderate Complexity...

  9. Summary of Laboratory Capabilities Fact Sheets Waste Sampling and Characterization Facility and 222-S Laboratory Complex

    SciTech Connect

    HADLEY, R.M.

    2002-09-12

    This summary of laboratory capabilities is provided to assist prospective responders to the CH2M HILL Hanford Group, Inc. (CHG) Requests for Proposal (RFP) issued or to be issued. The RFPs solicit development of treatment technologies as categorized in the CHG Requests for Information (RFI): Solid-Liquid Separations Technology - SOL: Reference-Number-CHG01; Cesium and Technetium Separations Technology - SOL: Reference-Number-CHG02; Sulfate Removal Technology - SOL: Reference-Number-CHG03; Containerized Grout Technology - SOL: Reference-Number-CHG04; Bulk Vitrification Technology - SOL: Reference-Number-CHG05; and TRU Tank Waste Solidification for Disposal at the Waste Isolation Pilot Plant - SOL: Reference-Number-CHG06 Hanford Analytical Services, Technology Project Management (TPM), has the capability and directly related experience to provide breakthrough innovations and solutions to the challenges presented in the requests. The 222-S Complex includes the 70,000 sq ft 222-S Laboratory, plus several support buildings. The laboratory has 11 hot cells for handling and analyzing highly radioactive samples, including tank farm waste. Inorganic, organic, and radiochemical analyses are performed on a wide variety of air, liquid, soil, sludge, and biota samples. Capabilities also include development of process technology and analytical methods, and preparation of analytical standards. The TPM staff includes many scientists with advanced degrees in chemistry (or closely related fields), over half of which are PhDs. These scientists have an average 20 years of Hanford experience working with Hanford waste in a hot cell environment. They have hundreds of publications related to Hanford tank waste characterization and process support. These would include, but are not limited to, solid-liquid separations engineering, physical chemistry, particle size analysis, and inorganic chemistry. TPM has had revenues in excess of $1 million per year for the past decade in above

  10. 42 CFR 493.20 - Laboratories performing tests of moderate complexity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... complexity. 493.20 Section 493.20 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF... Provisions § 493.20 Laboratories performing tests of moderate complexity. (a) A laboratory may qualify for a certificate to perform tests of moderate complexity provided that it restricts its test performance to...

  11. 42 CFR 493.1453 - Condition: Laboratories performing high complexity testing; clinical consultant.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Condition: Laboratories performing high complexity testing; clinical consultant. The laboratory must have a... testing; clinical consultant. 493.1453 Section 493.1453 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION...

  12. Complex mixtures, complex responses: Assessing pharmaceutical mixtures using field and laboratory approaches

    USGS Publications Warehouse

    Schoenfuss, Heiko L.; Furlong, Edward T.; Phillips, Patrick J.; Scott, Tia-Marie; Kolpin, Dana W.; Cetkovic-Cvrlje, Marina; Lesteberg, Kelsey E.; Rearick, Daniel C.

    2016-01-01

    Pharmaceuticals are present in low concentrations (<100 ng/L) in most municipal wastewater effluents but may be elevated locally because of factors such as input from pharmaceutical formulation facilities. Using existing concentration data, the authors assessed pharmaceuticals in laboratory exposures of fathead minnows (Pimephales promelas) and added environmental complexity through effluent exposures. In the laboratory, larval and mature minnows were exposed to a simple opioid mixture (hydrocodone, methadone, and oxycodone), an opioid agonist (tramadol), a muscle relaxant (methocarbamol), a simple antidepressant mixture (fluoxetine, paroxetine, venlafaxine), a sleep aid (temazepam), or a complex mixture of all compounds. Larval minnow response to effluent exposure was not consistent. The 2010 exposures resulted in shorter exposed minnow larvae, whereas the larvae exposed in 2012 exhibited altered escape behavior. Mature minnows exhibited altered hepatosomatic indices, with the strongest effects in females and in mixture exposures. In addition, laboratory-exposed, mature male minnows exposed to all pharmaceuticals (except the selective serotonin reuptake inhibitor mixture) defended nest sites less rigorously than fish in the control group. Tramadol or antidepressant mixture exposure resulted in increased splenic T lymphocytes. Only male minnows exposed to whole effluent responded with increased plasma vitellogenin concentrations. Female minnows exposed to pharmaceuticals (except the opioid mixture) had larger livers, likely as a compensatory result of greater prominence of vacuoles in liver hepatocytes. The observed alteration of apical endpoints central to sustaining fish populations confirms that effluents containing waste streams from pharmaceutical formulation facilities can adversely impact fish populations but that the effects may not be temporally consistent. The present study highlights the importance of including diverse biological endpoints spanning

  13. Complex mixtures, complex responses: Assessing pharmaceutical mixtures using field and laboratory approaches.

    PubMed

    Schoenfuss, Heiko L; Furlong, Edward T; Phillips, Pat J; Scott, Tia-Marie; Kolpin, Dana W; Cetkovic-Cvrlje, Marina; Lesteberg, Kelsey E; Rearick, Daniel C

    2016-04-01

    Pharmaceuticals are present in low concentrations (<100 ng/L) in most municipal wastewater effluents but may be elevated locally because of factors such as input from pharmaceutical formulation facilities. Using existing concentration data, the authors assessed pharmaceuticals in laboratory exposures of fathead minnows (Pimephales promelas) and added environmental complexity through effluent exposures. In the laboratory, larval and mature minnows were exposed to a simple opioid mixture (hydrocodone, methadone, and oxycodone), an opioid agonist (tramadol), a muscle relaxant (methocarbamol), a simple antidepressant mixture (fluoxetine, paroxetine, venlafaxine), a sleep aid (temazepam), or a complex mixture of all compounds. Larval minnow response to effluent exposure was not consistent. The 2010 exposures resulted in shorter exposed minnow larvae, whereas the larvae exposed in 2012 exhibited altered escape behavior. Mature minnows exhibited altered hepatosomatic indices, with the strongest effects in females and in mixture exposures. In addition, laboratory-exposed, mature male minnows exposed to all pharmaceuticals (except the selective serotonin reuptake inhibitor mixture) defended nest sites less rigorously than fish in the control group. Tramadol or antidepressant mixture exposure resulted in increased splenic T lymphocytes. Only male minnows exposed to whole effluent responded with increased plasma vitellogenin concentrations. Female minnows exposed to pharmaceuticals (except the opioid mixture) had larger livers, likely as a compensatory result of greater prominence of vacuoles in liver hepatocytes. The observed alteration of apical endpoints central to sustaining fish populations confirms that effluents containing waste streams from pharmaceutical formulation facilities can adversely impact fish populations but that the effects may not be temporally consistent. The present study highlights the importance of including diverse biological endpoints spanning

  14. The Study of a Cobalt Complex--A Laboratory Project.

    ERIC Educational Resources Information Center

    Loehlin, James H.; And Others

    1982-01-01

    Describes an 8-week project involving the synthesis of cobalt compounds. Once synthesized, compounds are qualitatively and quantitatively analyzed. Background information, laboratory procedures, and results/discussion are provided for three project experiments. (Author/JN)

  15. 42 CFR 493.1415 - Condition: Laboratories performing moderate complexity testing; clinical consultant.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... complexity testing; clinical consultant. 493.1415 Section 493.1415 Public Health CENTERS FOR MEDICARE... § 493.1415 Condition: Laboratories performing moderate complexity testing; clinical consultant. The laboratory must have a clinical consultant who meets the qualification requirements of § 493.1417 of...

  16. Bioavailability of a potato chromium complex to the laboratory rat

    SciTech Connect

    Gilbert, H.K.

    1985-01-01

    Research objectives were to study the effect of food source, preparation method and chemical form on bioavailability of chromium. Chromium concentration in potatoes was determined and tubers labeled either intrinsically or extrinsically with radioactive chromate. A labeled chromium complexes was isolated from preparations of raw, baked or fried potatoes and chromatographed on gel permeation media. Availability of the potato chromium complex to the rat was examined in three feeding studies. Animals were dosed with radioactive extrinsically or intrinsically labeled potato extract or with chromate. A labeled chromium complex was isolated from gastrointestinal contents of rats and chromatographed. Potato pulp and peel contained 1.63 and 2.70 ..mu..g Cr/g tissue respectively. True and apparent absorption from extrinsically labeled feedings were 33.4 +/- 4.7 and 29.8 +/- 11.2% respectively, and no differences existed between absorption from raw and cooked potatoes. Absorption from the extrinsic labeled potatoes differed significantly from absorption of inorganic chromatium. Apparent absorption of raw (11.1 +/- 7.9%) and cooked (-0.7 +/- 2.8%) intrinsically labeled feedings differed significantly. Absorption of inorganic chromium was 17.8% (true) and 11.5% (apparent). Examination of the chromium complex isolated from gastrointestinal tract contents showed enlargement of the complex in the stomach after consumption.

  17. Iron-Sulfur-Carbonyl and -Nitrosyl Complexes: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1985-01-01

    Background information, materials needed, procedures used, and typical results obtained, are provided for an experiment on iron-sulfur-carbonyl and -nitrosyl complexes. The experiment involved (1) use of inert atmospheric techniques and thin-layer and flexible-column chromatography and (2) interpretation of infrared, hydrogen and carbon-13 nuclear…

  18. Diamagnetic Anisotropy: Two Iron Complexes as Laboratory Examples

    ERIC Educational Resources Information Center

    Fernandez, Ignacio; Sanchez, Jorge Fernando Fernandez

    2010-01-01

    There are relatively few experiments describing the NMR properties of bis(amine) iron(II) phthalocyanine complexes. Several features make this experiment attractive: First, it nicely illustrates the diamagnetic anisotropy phenomena, providing both students and teachers an opportunity to gain insight into aspects such as phase correction and…

  19. Observations and laboratory simulations of tornadoes in complex topographical regions

    NASA Astrophysics Data System (ADS)

    Karstens, Christopher Daniel

    Aerial photos taken along the damage paths of the Joplin, MO, and Tuscaloosa-Birmingham, AL, tornadoes of 2011 captured and preserved several unique patterns of damage. In particular, a few distinct tree-fall patterns were noted along the Tuscaloosa-Birmingham tornado track that appeared highly influenced by the underlying topography. One such region was the focus of a damage survey and motivated laboratory vortex simulations with a 3-D foam representation of the underlying topography, in addition to simulations performed with idealized 2D topographic features, using Iowa State University's tornado simulator. The purpose of this dissertation is to explore various aspects related to the interaction of a tornado or a tornado-like vortex with its underlying topography. Three topics are examined: 1) Analysis of tornado-induced tree-fall using aerial photography from the Joplin, MO, and Tuscaloosa-Birmingham, AL, tornadoes of 2011, 2) Laboratory investigation of topographical influences on a simulated tornado-like vortex, and 3) On the use of non-standard EF-scale damage indicators to categorize tornadoes.

  20. [The organization of scientific innovative laboratory complex of modern technologies].

    PubMed

    Totskaia, E G; Rozhnova, O M; Mamonova, E V

    2013-01-01

    The article discusses the actual issues of scientific innovative activity during the realization of principles of private-public partnership. The experience of development of model of scientific innovative complex is presented The possibilities to implement research achievements and their application in the area of cell technologies, technologies of regenerative medicine, biochip technologies are demonstrated. The opportunities to provide high level of diagnostic and treatment in practical health care increase of accessibility and quality of medical care and population health promotion are discussed. PMID:23808037

  1. 42 CFR 493.1467 - Condition: Laboratories performing high complexity testing; cytology general supervisor.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... testing; cytology general supervisor. 493.1467 Section 493.1467 Public Health CENTERS FOR MEDICARE....1467 Condition: Laboratories performing high complexity testing; cytology general supervisor. For the subspecialty of cytology, the laboratory must have a general supervisor who meets the...

  2. 42 CFR 493.1467 - Condition: Laboratories performing high complexity testing; cytology general supervisor.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... testing; cytology general supervisor. 493.1467 Section 493.1467 Public Health CENTERS FOR MEDICARE....1467 Condition: Laboratories performing high complexity testing; cytology general supervisor. For the subspecialty of cytology, the laboratory must have a general supervisor who meets the...

  3. 42 CFR 493.1467 - Condition: Laboratories performing high complexity testing; cytology general supervisor.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... testing; cytology general supervisor. 493.1467 Section 493.1467 Public Health CENTERS FOR MEDICARE....1467 Condition: Laboratories performing high complexity testing; cytology general supervisor. For the subspecialty of cytology, the laboratory must have a general supervisor who meets the...

  4. 42 CFR 493.1467 - Condition: Laboratories performing high complexity testing; cytology general supervisor.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... testing; cytology general supervisor. 493.1467 Section 493.1467 Public Health CENTERS FOR MEDICARE....1467 Condition: Laboratories performing high complexity testing; cytology general supervisor. For the subspecialty of cytology, the laboratory must have a general supervisor who meets the...

  5. 42 CFR 493.1453 - Condition: Laboratories performing high complexity testing; clinical consultant.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... testing; clinical consultant. 493.1453 Section 493.1453 Public Health CENTERS FOR MEDICARE & MEDICAID... Condition: Laboratories performing high complexity testing; clinical consultant. The laboratory must have a clinical consultant who meets the requirements of § 493.1455 of this subpart and provides...

  6. [LABORATORY AND EXPERIMENTAL STUDY OF THE COMPLEX PROBIOTIC PREPARATION "BIFILACT-BILS" IN CAPSULATED FORM].

    PubMed

    Neschislyaev, V A; Stolbova, M G; Mokin, P A; Orlova, E V; Ershov, A E

    2016-01-01

    The composition and technology of complex probiotic in hard gelatin capsules was developed in Perm Branch "Biomed" of "Microgen" State Company. The preparation contains three production strains: Lactobacillus plantarum 8P-A3, L. acidophilus K3W24 and Bifidobacterium bifidum 1. Laboratory and experimental (preclinical) study of the probiotic included investigation of the antagonistic activity, "acute" and "chronic" toxicity, the effect of the preparation on histology and hematology of laboratory animals. The result of these studies suggested of the probiotic had high inhibitory activity against pathogenic microflora when compared with probiotic monopreparations and had no toxic effects on laboratory animals. PMID:27301138

  7. Remedial investigation and feasibility study for the Lawrence Livermore National Laboratory Site 300 Pit 7 Complex

    SciTech Connect

    Taffet, M.J. ); Oberdorfer, J.A. ); McIlvride, W.A. )

    1989-10-01

    This report summarizes the results and conclusions of the investigation of tritium and other compounds in ground water in the vicinity of landfills at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. 91 refs., 110 figs., 43 tabs.

  8. A Three-Step Laboratory Sequence to Prepare a Carbene Complex of Silver(I) Chloride

    ERIC Educational Resources Information Center

    Canal, John P.; Ramnial, Taramatee; Langlois, Lisa D.; Abernethy, Colin D.; Clyburne, Jason A. C.

    2008-01-01

    We have developed a multistep inorganic synthesis experiment for our second-year undergraduate teaching laboratory that introduces students to modern organometallic chemistry. The ligands are prepared in two simple steps and the preparation of an air-stable silver carbene complex is accomplished in the third step. The students are introduced to…

  9. Complexation of transuranic ions by humic substances: Application of laboratory results to the natural system

    SciTech Connect

    Czerwinski, K.; Kim, J.

    1997-12-31

    Environmental investigations show transuranic ions sorb to humic substances. The resulting species are often mobile and are expected to be important vectors in the migration of transuranic ions in natural systems. However, these environmental studies yield no quantitative data useful for modeling. Laboratory complexation experiments with transuranic ions and humic substances generate thermodynamic data required for complexation modeling. The data presented in this work are based on the metal ion charge neutralization model, which is briefly described. When a consistent complexation model is used, similar results are obtained from different experimental conditions, techniques, and laboratories. Trivalent transuranic ions (Cm(III), Am(III)) have been extensively studied with respect to pH, ionic strength, origin of humic acid, and mixed species formation. The complexation of Np(V) has been examined over a large pH and metal ion concentration range with different humic acids. Some data does exist on the complexation ion concentration range with different humic acids. Some data does exist on the complexation of plutonium with humic acid, however further work is needed. Calculations on the Gorleben aquifer system using the thermodynamic data are presented. Critical information lacking from the thermodynamic database is identified. 55 refs., 2 figs., 3 tabs.

  10. Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment

    SciTech Connect

    Gerald Sehlke; Paul Wichlacz

    2010-12-01

    This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: • Determination of the design basis flood (DBFL) • Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

  11. A complex systems analysis of stick-slip dynamics of a laboratory fault

    SciTech Connect

    Walker, David M.; Tordesillas, Antoinette; Small, Michael; Behringer, Robert P.; Tse, Chi K.

    2014-03-15

    We study the stick-slip behavior of a granular bed of photoelastic disks sheared by a rough slider pulled along the surface. Time series of a proxy for granular friction are examined using complex systems methods to characterize the observed stick-slip dynamics of this laboratory fault. Nonlinear surrogate time series methods show that the stick-slip behavior appears more complex than a periodic dynamics description. Phase space embedding methods show that the dynamics can be locally captured within a four to six dimensional subspace. These slider time series also provide an experimental test for recent complex network methods. Phase space networks, constructed by connecting nearby phase space points, proved useful in capturing the key features of the dynamics. In particular, network communities could be associated to slip events and the ranking of small network subgraphs exhibited a heretofore unreported ordering.

  12. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.

    PubMed

    Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma. PMID:25768612

  13. Assessment of postsurgical distress and pain in laboratory mice by nest complexity scoring.

    PubMed

    Jirkof, Paulin; Fleischmann, Thea; Cesarovic, Nikola; Rettich, Andreas; Vogel, Johannes; Arras, Margarete

    2013-07-01

    Preliminary studies have suggested a correlation between postsurgical pain and nest building behaviour in laboratory mice. However, there is no standardized measure for estimating pain by means of nest building performance. Here, we investigated nest building under various conditions, and scored nest complexity to assess postsurgical pain. Mice of both sexes, different strains [C57BL/6J, DBA/2J, and B6D2-Tg(Pr-mSMalphaActin)V5rCLR-25], and kept under different housing conditions, showed no differences in their latency to use the offered nest material. Healthy female C57BL/6J mice were engaged 4.3% of the day with nest building and showed three peaks of this behaviour: in the beginning and middle of the light phase, and in the second half of the dark phase. For assessment of postsurgical pain, female C57BL/6J mice underwent a sham embryo transfer +/− different doses of the analgesic carprofen or control treatment. Nest complexity scoring at 9 h after the experimental treatments (i.e. at the end of the light phase) resulted in less than 10% of animals with noticeably manipulated nest material (nestlet) after surgery and more than 75% of healthy mice having built identifiable-to-complex nests or had noticeably manipulated nestlets, while animals after anaesthesia-only showed intermediate nest complexity. Carprofen analgesia resulted in no (5 mg/kg) or only slight (50 mg/kg) improvement of nest complexity after surgery. Thus, nest complexity scoring can be incorporated into daily laboratory routine and can be used in mice as a sensitive tool for detecting reduced wellbeing and general condition, but probably not for determining the efficacy of pain treatment. PMID:23563122

  14. Analysis of Flood Hazards for the Materials and Fuels Complex at the Idaho National Laboratory Site

    SciTech Connect

    Skaggs, Richard; Breithaupt, Stephen A.; Waichler, Scott R.; Kim, Taeyun; Ward, Duane L.

    2010-11-01

    Researchers at Pacific Northwest National Laboratory conducted a flood hazard analysis for the Materials and Fuels Complex (MFC) site located at the Idaho National Laboratory (INL) site in southeastern Idaho. The general approach for the analysis was to determine the maximum water elevation levels associated with the design-basis flood (DBFL) and compare them to the floor elevations at critical building locations. Two DBFLs for the MFC site were developed using different precipitation inputs: probable maximum precipitation (PMP) and 10,000 year recurrence interval precipitation. Both precipitation inputs were used to drive a watershed runoff model for the surrounding upland basins and the MFC site. Outflows modeled with the Hydrologic Engineering Centers Hydrologic Modeling System were input to the Hydrologic Engineering Centers River Analysis System hydrodynamic flood routing model.

  15. Comparison of in situ uranium KD values with a laboratory determined surface complexation model

    USGS Publications Warehouse

    Curtis, G.P.; Fox, P.; Kohler, M.; Davis, J.A.

    2004-01-01

    Reactive solute transport simulations in groundwater require a large number of parameters to describe hydrologic and chemical reaction processes. Appropriate methods for determining chemical reaction parameters required for reactive solute transport simulations are still under investigation. This work compares U(VI) distribution coefficients (i.e. KD values) measured under field conditions with KD values calculated from a surface complexation model developed in the laboratory. Field studies were conducted in an alluvial aquifer at a former U mill tailings site near the town of Naturita, CO, USA, by suspending approximately 10 g samples of Naturita aquifer background sediments (NABS) in 17-5.1-cm diameter wells for periods of 3 to 15 months. Adsorbed U(VI) on these samples was determined by extraction with a pH 9.45 NaHCO3/Na2CO3 solution. In wells where the chemical conditions in groundwater were nearly constant, adsorbed U concentrations for samples taken after 3 months of exposure to groundwater were indistinguishable from samples taken after 15 months. Measured in situ K D values calculated from the measurements of adsorbed and dissolved U(VI) ranged from 0.50 to 10.6 mL/g and the KD values decreased with increasing groundwater alkalinity, consistent with increased formation of soluble U(VI)-carbonate complexes at higher alkalinities. The in situ K D values were compared with KD values predicted from a surface complexation model (SCM) developed under laboratory conditions in a separate study. A good agreement between the predicted and measured in situ KD values was observed. The demonstration that the laboratory derived SCM can predict U(VI) adsorption in the field provides a critical independent test of a submodel used in a reactive transport model. ?? 2004 Elsevier Ltd. All rights reserved.

  16. The effects of enhancing cage complexity on the behaviour and welfare of laboratory rats.

    PubMed

    Abou-Ismail, Usama A; Burman, Oliver H P; Nicol, Christine J; Mendl, Michael

    2010-10-01

    This experiment was carried out to investigate the long-term effects of enhancing cage complexity on behavioural measures of welfare in laboratory rats. We housed 72 rats in groups of four in either 'enriched' or 'unenriched' cages for six weeks. Scan and focal animal sampling were conducted in both the light and dark phase of the second, fourth and sixth weeks. Results revealed that rats in the 'enriched' cages showed longer durations of sleep behaviour, and low levels of agonistic behaviour compared to rats in the 'unenriched' cages. Results importantly demonstrated that the behavioural changes observed in the enriched environment were due to the presence of the enrichments themselves in the cages (indirect effects) and not due merely to rats interacting with the enrichment items in their environment. Thus, enhancing the complexity of conventional laboratory cages can promote behaviour such as longer bouts of sleep that is likely to be indicative of good welfare, and diminish levels of behaviour such as aggression that is likely to lead to poor welfare. PMID:20637270

  17. Effects of borehole design on complex electrical resistivity measurements: laboratory validation and numerical experiments

    NASA Astrophysics Data System (ADS)

    Treichel, A.; Huisman, J. A.; Zhao, Y.; Zimmermann, E.; Esser, O.; Kemna, A.; Vereecken, H.

    2012-12-01

    Geophysical measurements within a borehole are typically affected by the presence of the borehole. The focus of the current study is to quantify the effect of borehole design on broadband electrical impedance tomography (EIT) measurements within boreholes. Previous studies have shown that effects on the real part of the electrical resistivity are largest for boreholes with large diameters and for materials with a large formation factor. However, these studies have not considered the effect of the well casing and the filter gravel on the measurement of the real part of the electrical resistivity. In addition, the effect of borehole design on the imaginary part of the electrical resistivity has not been investigated yet. Therefore, the aim of this study is to investigate the effect of borehole design on the complex electrical resistivity using laboratory measurements and numerical simulations. In order to do so, we developed a high resolution two dimensional axisymmetric finite element model (FE) that enables us to simulate the effects of several key borehole design parameters (e.g. borehole diameter, thickness of PVC well casing) on the measurement process. For the material surrounding the borehole, realistic values for complex resistivity were obtained from a database of laboratory measurements of complex resistivity from the test site Krauthausen (Germany). The slotted PVC well casing is represented by an effective resistivity calculated from the water-filled slot volume and the PVC volume. Measurements with and without PVC well casing were made with a four-electrode EIT logging tool in a water-filled rain barrel. The initial comparison for the case that the logging tool was inserted in the PVC well casing showed a considerable mismatch between measured and modeled values. It was required to consider a complete electrode model instead of point electrodes to remove this mismatch. This validated model was used to investigate in detail how complex resistivity

  18. Standing of nucleic acid testing strategies in veterinary diagnosis laboratories to uncover Mycobacterium tuberculosis complex members

    PubMed Central

    Costa, Pedro; Botelho, Ana; Couto, Isabel; Viveiros, Miguel; Inácio, João

    2014-01-01

    Nucleic acid testing (NAT) designate any molecular approach used for the detection, identification, and characterization of pathogenic microorganisms, enabling the rapid, specific, and sensitive diagnostic of infectious diseases, such as tuberculosis. These assays have been widely used since the 90s of the last century in human clinical laboratories and, subsequently, also in veterinary diagnostics. Most NAT strategies are based in the polymerase chain reaction (PCR) and its several enhancements and variations. From the conventional PCR, real-time PCR and its combinations, isothermal DNA amplification, to the nanotechnologies, here we review how the NAT assays have been applied to decipher if and which member of the Mycobacterium tuberculosis complex is present in a clinical sample. Recent advances in DNA sequencing also brought new challenges and have made possible to generate rapidly and at a low cost, large amounts of sequence data. This revolution with the high-throughput sequencing (HTS) technologies makes whole genome sequencing (WGS) and metagenomics the trendiest NAT strategies, today. The ranking of NAT techniques in the field of clinical diagnostics is rising, and we provide a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis with our view of the use of molecular diagnostics for detecting tuberculosis in veterinary laboratories, notwithstanding the gold standard being still the classical culture of the agent. The complementary use of both classical and molecular diagnostics approaches is recommended to speed the diagnostic, enabling a fast decision by competent authorities and rapid tackling of the disease. PMID:25988157

  19. Standing of nucleic acid testing strategies in veterinary diagnosis laboratories to uncover Mycobacterium tuberculosis complex members.

    PubMed

    Costa, Pedro; Botelho, Ana; Couto, Isabel; Viveiros, Miguel; Inácio, João

    2014-01-01

    Nucleic acid testing (NAT) designate any molecular approach used for the detection, identification, and characterization of pathogenic microorganisms, enabling the rapid, specific, and sensitive diagnostic of infectious diseases, such as tuberculosis. These assays have been widely used since the 90s of the last century in human clinical laboratories and, subsequently, also in veterinary diagnostics. Most NAT strategies are based in the polymerase chain reaction (PCR) and its several enhancements and variations. From the conventional PCR, real-time PCR and its combinations, isothermal DNA amplification, to the nanotechnologies, here we review how the NAT assays have been applied to decipher if and which member of the Mycobacterium tuberculosis complex is present in a clinical sample. Recent advances in DNA sequencing also brought new challenges and have made possible to generate rapidly and at a low cost, large amounts of sequence data. This revolution with the high-throughput sequencing (HTS) technologies makes whole genome sequencing (WGS) and metagenomics the trendiest NAT strategies, today. The ranking of NAT techniques in the field of clinical diagnostics is rising, and we provide a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis with our view of the use of molecular diagnostics for detecting tuberculosis in veterinary laboratories, notwithstanding the gold standard being still the classical culture of the agent. The complementary use of both classical and molecular diagnostics approaches is recommended to speed the diagnostic, enabling a fast decision by competent authorities and rapid tackling of the disease. PMID:25988157

  20. Errors and electronic prescribing: a controlled laboratory study to examine task complexity and interruption effects

    PubMed Central

    Li, Simon Y W; Day, Richard O; Coiera, Enrico

    2010-01-01

    Objective To examine the effect of interruptions and task complexity on error rates when prescribing with computerized provider order entry (CPOE) systems, and to categorize the types of prescribing errors. Design Two within-subject factors: task complexity (complex vs simple) and interruption (interruption vs no interruption). Thirty-two hospital doctors used a CPOE system in a computer laboratory to complete four prescribing tasks, half of which were interrupted using a counterbalanced design. Measurements Types of prescribing errors, error rate, resumption lag, and task completion time. Results Errors in creating and updating electronic medication charts that were measured included failure to enter allergy information; selection of incorrect medication, dose, route, formulation, or frequency of administration from lists and drop-down menus presented by the CPOE system; incorrect entry or omission in entering administration times, start date, and free-text qualifiers; and omissions in prescribing and ceasing medications. When errors occurred, the error rates across the four prescribing tasks ranged from 0.5% (1 incorrect medication selected out of 192 chances for selecting a medication or error opportunities) to 16% (5 failures to enter allergy information out of 32 error opportunities). Any impact of interruptions on prescribing error rates and task completion times was not detected in our experiment. However, complex tasks took significantly longer to complete (F(1, 27)=137.9; p<0.001) and when execution was interrupted they required almost three times longer to resume compared to simple tasks (resumption lag complex=9.6 seconds, SD=5.6; resumption lag simple=3.4 seconds, SD=1.7; t(28)=6.186; p<0.001). Conclusion Most electronic prescribing errors found in this study could be described as slips in using the CPOE system to create and update electronic medication charts. Cues available within the user interface may have aided resumption of interrupted tasks

  1. Photochemistry of iron(III)-carboxylato complexes in aqueous atmospheric particles - Laboratory experiments and modeling studies

    NASA Astrophysics Data System (ADS)

    Weller, C.; Tilgner, A.; Herrmann, H.

    2010-12-01

    Iron is always present in the atmosphere in concentrations from ~10-9 M (clouds, rain) up to ~10-3 M (fog, particles). Sources are mainly mineral dust emissions. Iron complexes are very good absorbers in the UV-VIS actinic region and therefore photo-chemically reactive. Iron complex photolysis leads to radical production and can initiate radical chain reactions, which is related to the oxidizing capacity of the atmosphere. These radical chain reactions are involved in the decomposition and transformation of a variety of chemical compounds in cloud droplets and deliquescent particles. Additionally, the photochemical reaction itself can be a degradation pathway for organic compounds with the ability to bind iron. Iron-complexes of atmospherically relevant coordination compounds like oxalate, malonate, succinate, glutarate, tartronate, gluconate, pyruvate and glyoxalate have been investigated in laboratory experiments. Iron speciation depends on the iron-ligand ratio and the pH. The most suitable experimental conditions were calculated with a speciation program (Visual Minteq). The solutions were prepared accordingly and transferred to a 1 cm quartz cuvette and flash-photolyzed with an excimer laser at wavelengths 308 or 351 nm. Photochemically produced Fe2+ has been measured by spectrometry at 510 nm as Fe(phenantroline)32+. Fe2+ overall effective quantum yields have been calculated with the concentration of photochemically produced Fe2+ and the measured energy of the excimer laser pulse. The laser pulse energy was measured with a pyroelectric sensor. For some iron-carboxylate systems the experimental parameters like the oxygen content of the solution, the initial Iron concentration and the incident laser energy were systematically altered to observe an effect on the overall quantum yield. The dependence of some quantum yields on these parameters allows in some cases an interpretation of the underlying photochemical reaction mechanism. Quantum yields of malonate

  2. Stratigraphy of the unsaturated zone at the radioactive waste management complex, Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Anderson, S.R.; Lewis, B.D.

    1989-01-01

    A complex sequence of layered basalt flows, cinders, and sediment underlies the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory in southeastern Idaho. Wells drilled to 700 ft penetrate a sequence of 10 basalt-flow groups and 7 major sedimentary interbeds that range in age from about 100,000 to 600,000 years old. The 10 flow groups consist of 22 separate lava flows and flow-units. Each flow group is made up of from one to five petrographically similar flows that erupted from common source areas during periods of less than 200 years. Sedimentary interbeds consist of fluvial, lacustrine, and wind-blown deposits of clay, silt, sand, and gravel that accumulated during periods of volcanic inactivity ranging from thousands to hundreds of thousands of years. Flows and sediment are unsaturated to a depth of about 600 ft. Flows and sediment below a depth of 600 ft are saturated and make up the uppermost part of the Snake River Plain aquifer. The areal extent of flow groups and interbeds was determined from well cuttings, cores, geophysical logs, potassium-argon ages, and geomagnetic properties. Stratigraphical control was provided by four sequential basalt flows near the base of the unsaturated zone that have reversed geomagnetic polarity and high emission of natural gamma radiation compared to other flows. Natural gamma logs were used as a primary correlation tool. Natural-gamma emissions, which are generally uniform in related, petrographically similar flows, increase or decrease between petrographically dissimilar flows of different age and source. (USGS)

  3. INDEPENDENT VERIFICATION OF THE CENTRAL CAMPUS AND SOUTHEAST LABORATORY COMPLEX BUILDING SLABS AT OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE

    SciTech Connect

    Weaver, Phyllis C.

    2012-07-24

    Oak Ridge Associated Universities/Oak Ridge Institute for Science and Education (ORAU/ORISE) has completed the independent verification survey of the Central Campus and Southeast Lab Complex Building Slabs. The results of this effort are provided. The objective of this verification survey was to provide independent review and field assessment of remediation actions conducted by SEC, and to independently assess whether the final radiological condition of the slabs met the release guidelines.

  4. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol.

    PubMed

    Prather, Kimberly A; Bertram, Timothy H; Grassian, Vicki H; Deane, Grant B; Stokes, M Dale; Demott, Paul J; Aluwihare, Lihini I; Palenik, Brian P; Azam, Farooq; Seinfeld, John H; Moffet, Ryan C; Molina, Mario J; Cappa, Christopher D; Geiger, Franz M; Roberts, Gregory C; Russell, Lynn M; Ault, Andrew P; Baltrusaitis, Jonas; Collins, Douglas B; Corrigan, Craig E; Cuadra-Rodriguez, Luis A; Ebben, Carlena J; Forestieri, Sara D; Guasco, Timothy L; Hersey, Scott P; Kim, Michelle J; Lambert, William F; Modini, Robin L; Mui, Wilton; Pedler, Byron E; Ruppel, Matthew J; Ryder, Olivia S; Schoepp, Nathan G; Sullivan, Ryan C; Zhao, Defeng

    2013-05-01

    The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60-180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties. PMID:23620519

  5. Smoothed Particle Hydrodynamics simulation and laboratory-scale experiments of complex flow dynamics in unsaturated fractures

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Tartakovsky, A. M.; Pan, W.; Shigorina, E.; Noffz, T.; Geyer, T.

    2015-12-01

    Unsaturated flow in fractured porous media exhibits highly complex flow dynamics and a wide range of intermittent flow processes. Especially in wide aperture fractures, flow processes may be dominated by gravitational instead of capillary forces leading to a deviation from the classical volume effective approaches (Richard's equation, Van Genuchten type relationships). The existence of various flow modes such as droplets, rivulets, turbulent and adsorbed films is well known, however, their spatial and temporal distribution within fracture networks is still an open question partially due to the lack of appropriate modeling tools. With our work we want to gain a deeper understanding of the underlying flow and transport dynamics in unsaturated fractured media in order to support the development of more refined upscaled methods, applicable on catchment scales. We present fracture-scale flow simulations obtained with a parallelized Smoothed Particle Hydrodynamics (SPH) model. The model allows us to simulate free-surface flow dynamics including the effect of surface tension for a wide range of wetting conditions in smooth and rough fractures. Due to the highly efficient generation of surface tension via particle-particle interaction forces the dynamic wetting of surfaces can readily be obtained. We validated the model via empirical and semi-analytical solutions and conducted laboratory-scale percolation experiments of unsaturated flow through synthetic fracture systems. The setup allows us to obtain travel time distributions and identify characteristic flow mode distributions on wide aperture fractures intercepted by horizontal fracture elements.

  6. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol

    PubMed Central

    Prather, Kimberly A.; Bertram, Timothy H.; Grassian, Vicki H.; Deane, Grant B.; Stokes, M. Dale; DeMott, Paul J.; Aluwihare, Lihini I.; Palenik, Brian P.; Azam, Farooq; Seinfeld, John H.; Moffet, Ryan C.; Molina, Mario J.; Cappa, Christopher D.; Geiger, Franz M.; Roberts, Gregory C.; Russell, Lynn M.; Ault, Andrew P.; Baltrusaitis, Jonas; Collins, Douglas B.; Corrigan, Craig E.; Cuadra-Rodriguez, Luis A.; Ebben, Carlena J.; Forestieri, Sara D.; Guasco, Timothy L.; Hersey, Scott P.; Kim, Michelle J.; Lambert, William F.; Modini, Robin L.; Mui, Wilton; Pedler, Byron E.; Ruppel, Matthew J.; Ryder, Olivia S.; Schoepp, Nathan G.; Sullivan, Ryan C.; Zhao, Defeng

    2013-01-01

    The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60–180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties. PMID:23620519

  7. Completion summary for borehole USGS 136 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2012-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water samples, and geophysical data. After these data were collected, borehole USGS 136 was cemented and backfilled between 560 and 1,048 ft BLS. The final construction of borehole USGS 136 required that the borehole be reamed to allow for installation of 6-inch (in.) diameter carbon-steel casing and 5-in. diameter stainless-steel screen; the screened monitoring interval was completed between 500 and 551 ft BLS. A dedicated pump and water-level access line were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Geophysical and borehole video logs were collected after coring and after the completion of the monitor well. Geophysical logs were examined in conjunction with the borehole core to describe borehole lithology and to identify primary flow paths for groundwater, which occur in intervals of fractured and vesicular basalt. A single-well aquifer test was used to define hydraulic characteristics for borehole USGS 136 in the eastern Snake River Plain aquifer. Specific-capacity, transmissivity, and hydraulic conductivity from the aquifer test were at least 975 gallons per minute per foot, 1.4 × 105 feet squared per day (ft2/d), and 254 feet per day, respectively. The amount of measureable drawdown during the aquifer test was about 0.02 ft. The transmissivity for borehole USGS 136 was in the range of values determined from previous aquifer tests conducted in other wells near the Advanced Test Reactor Complex: 9.5 × 103 to 1.9 × 105 ft2/d. Water samples were analyzed for cations, anions, metals, nutrients, total organic

  8. Combining Laboratory and Observational Data to Elucidate the Pathway from Simple to Complex Chemistry

    NASA Astrophysics Data System (ADS)

    Fraser, Helen Jane; Suutarinnen, Aleksi; Dawes, Anita; Noble, Jennifer

    2015-08-01

    CH3OH is the linchpin in many astrochemical reaction schemes between the simple solid-state chemistry and the generation of complex organic molecules (COMS). It provides us with a handle to unravelling gas-ice synergy in star-forming regions, if only we understood exactly where and when in the ice evolutionary cycle CH3OH was formed. To date astrochemical models and ice observations have reached different conclusions.The aim here is to determine the prevalence of methanol ice from a large statistical set of observations, spanning pre-stellar and early YSO evolution, with the data fitting informed by new laboratory spectra. We have exploited 23 AKARI/IRC and 29 VLT/ISAAC near-IR observations. We show that the red component of CO-ice features (previously assigned to CO in water-rich ices) could alternatively be interpreted as CO in a CH3OH rich environment (cf. Cuppen et al (2011)), and that CH3OH column densities constrained this way are entirely commensurate with ice spectral features in the 3 micron region.We hypothesise that more methanol ice could be "hidden" under this H2O ice feature. Having first established how much methanol might have been reported for each of the 52 sources using the "standard" approach (e.g. Brooke et al (1999)), we use concurrent component fitting across both the 4.7 and the 3 micron ice bands to evaluate the column densities of all ices, towards all the examined sources.Our laboratory data show the ice spectroscopy reflects the hydrogen-bonding network, and CH3OH switches between being a proton-donor and proton-acceptor in the water ice. Whilst our column densities are consistent with those reported previously, we detect CH3OH ices much earlier in the pre-stellar phases, aligning the observational constraints more closely with those of astrochemical models. We show that most of the CH3OH is present in the apolar (CO-dominated) ice layer, and that its concentration in H2O-rich ices varies considerably, but cannot exceed ~ 40 %. The

  9. Sampling and analysis plan for sampling of liquid waste streams generated by 222-S Laboratory Complex operations

    SciTech Connect

    Benally, A.B.

    1997-08-14

    This Sampling and Analysis Plan (SAP) establishes the requirements and guidelines to be used by the Waste Management Federal Services of Hanford, Inc. personnel in characterizing liquid waste generated at the 222-S Laboratory Complex. The characterization process to verify the accuracy of process knowledge used for designation and subsequent management of wastes consists of three steps: to prepare the technical rationale and the appendix in accordance with the steps outlined in this SAP; to implement the SAP by sampling and analyzing the requested waste streams; and to compile the report and evaluate the findings to the objectives of this SAP. This SAP applies to portions of the 222-S Laboratory Complex defined as Generator under the Resource Conservation and Recovery Act (RCRA). Any portion of the 222-S Laboratory Complex that is defined or permitted under RCRA as a treatment, storage, or disposal (TSD) facility is excluded from this document. This SAP applies to the liquid waste generated in the 222-S Laboratory Complex. Because the analytical data obtained will be used to manage waste properly, including waste compatibility and waste designation, this SAP will provide directions for obtaining and maintaining the information as required by WAC173-303.

  10. Introductory Physics Laboratories for Life Scientists - Hands on Physics of Complex Systems

    NASA Astrophysics Data System (ADS)

    Losert, Wolfgang; Moore, Kim

    2015-03-01

    We have developed a set of laboratories and hands on activities to accompany a new two-semester interdisciplinary physics course that has been successfully implemented as the required physics course for premeds at the University of Maryland. The laboratories include significant content on physics relevant to cellular scales, from chemical interactions to random motion and charge screening in fluids. We also introduce the students to research-grade equipment and modern physics analysis tools in contexts relevant to biology, while maintaining the pedagogically valuable open-ended laboratory structure of reformed laboratories.

  11. Gibbs Energy Changes during Cobalt Complexation: A Thermodynamics Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    DeGrand, Michael J.; Abrams, M. Leigh; Jenkins, Judith L.; Welch, Lawrence E.

    2011-01-01

    By adding a large quantity of Cl[superscript -] to an aqueous solution of CoCl[subscript 2][multiplied by]6H[subscript 2]O, a mixture containing a red octahedral cobalt complex and a blue tetrahedral complex is produced. When the solution temperature is modified, the equilibrium constant, K[subscript eq], of the complexation reaction is shifted…

  12. Chemical transformations of complex mixtures relevant to atmospheric processes: Laboratory and ambient studies

    NASA Astrophysics Data System (ADS)

    Samy, Shahryar (Shar)

    The study of atmospheric chemistry and chemical transformations, which are relevant to conditions in the ambient atmosphere require the investigation of complex mixtures. In the atmosphere, complex mixtures (e.g. diesel emissions) are continually evolving as a result of physical and chemical transformations. This dissertation examines the transformations of modern diesel emissions (DE) in a series of experiments conducted at the European Outdoor Simulation Chamber (EUPHORE) in Valencia, Spain. Experimental design challenges are addressed, and the development of a NOx removal technology (denuder) is described with results from the application of the newly developed NOx denuder in the most recent EUPHORE campaign (2006). In addition, the data from an ambient aerosol study that examines atmospheric transformation products is presented and discussed. Atmospheric transformations of DE and associated secondary organic aerosol (SOA) production, along with chemical characterization of polar organic compounds (POC) in the EUPHORE experiments, provides a valuable insight on the tranformations of modern DE in environmentally relevant atmospheres. The greatest SOA production occurred in DE with toluene addition experiments (>40%), followed by DE with HCHO (for OH radical generation) experiments. A small amount of SOA (3%) was observed for DE in dark with N2O5 (for NO3 radical production) experiments. Distinct POC formation in light versus dark experiments suggests the role of OH initiated reactions in these chamber atmospheres. A trend of increasing concentrations of dicarboxylic acids in light versus dark experiments was observed when evaluated on a compound group basis. The production of diacids (as a compound group) demonstrates a consistent indicator for photochemical transformation in relation to studies in the ambient atmosphere. The four toluene addition experiments in this study were performed at different [tol]o/[NOx]o ratios and displayed an average SOA %yield (in

  13. Resolving complex research data management issues in biomedical laboratories: Qualitative study of an industry-academia collaboration.

    PubMed

    Myneni, Sahiti; Patel, Vimla L; Bova, G Steven; Wang, Jian; Ackerman, Christopher F; Berlinicke, Cynthia A; Chen, Steve H; Lindvall, Mikael; Zack, Donald J

    2016-04-01

    This paper describes a distributed collaborative effort between industry and academia to systematize data management in an academic biomedical laboratory. Heterogeneous and voluminous nature of research data created in biomedical laboratories make information management difficult and research unproductive. One such collaborative effort was evaluated over a period of four years using data collection methods including ethnographic observations, semi-structured interviews, web-based surveys, progress reports, conference call summaries, and face-to-face group discussions. Data were analyzed using qualitative methods of data analysis to (1) characterize specific problems faced by biomedical researchers with traditional information management practices, (2) identify intervention areas to introduce a new research information management system called Labmatrix, and finally to (3) evaluate and delineate important general collaboration (intervention) characteristics that can optimize outcomes of an implementation process in biomedical laboratories. Results emphasize the importance of end user perseverance, human-centric interoperability evaluation, and demonstration of return on investment of effort and time of laboratory members and industry personnel for success of implementation process. In addition, there is an intrinsic learning component associated with the implementation process of an information management system. Technology transfer experience in a complex environment such as the biomedical laboratory can be eased with use of information systems that support human and cognitive interoperability. Such informatics features can also contribute to successful collaboration and hopefully to scientific productivity. PMID:26652980

  14. Simplifying Complexity: Miriam Blake--Los Alamos National Laboratory Research Library, NM

    ERIC Educational Resources Information Center

    Library Journal, 2004

    2004-01-01

    The holy grail for many research librarians is one-stop searching: seamless access to all the library's resources on a topic, regardless of the source. Miriam Blake, Library Without Walls Project Leader at Los Alamos National laboratory (LANL), is making this vision a reality. Blake is part of a growing cadre of experts: a techie who is becoming a…

  15. Simple & Rapid Generation of Complex DNA Profiles for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Kass, David H.

    2007-01-01

    Deoxyribonucleic acid (DNA) profiles can be generated by a variety of techniques incorporating different types of DNA markers. Simple methods are commonly utilized in the undergraduate laboratory, but with certain drawbacks. In this article, the author presents an advancement of the "Alu" dimorphism technique involving two tetraplex polymerase…

  16. Apollo Experiment Report: Lunar-Sample Processing in the Lunar Receiving Laboratory High-Vacuum Complex

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1976-01-01

    A high-vacuum complex composed of an atmospheric decontamination system, sample-processing chambers, storage chambers, and a transfer system was built to process and examine lunar material while maintaining quarantine status. Problems identified, equipment modifications, and procedure changes made for Apollo 11 and 12 sample processing are presented. The sample processing experiences indicate that only a few operating personnel are required to process the sample efficiently, safely, and rapidly in the high-vacuum complex. The high-vacuum complex was designed to handle the many contingencies, both quarantine and scientific, associated with handling an unknown entity such as the lunar sample. Lunar sample handling necessitated a complex system that could not respond rapidly to changing scientific requirements as the characteristics of the lunar sample were better defined. Although the complex successfully handled the processing of Apollo 11 and 12 lunar samples, the scientific requirement for vacuum samples was deleted after the Apollo 12 mission just as the vacuum system was reaching its full potential.

  17. Future Development Of The Flerov Laboratory Accelerator Complex (Project DRIBs-III)

    NASA Astrophysics Data System (ADS)

    Gulbekian, G. G.; Dmitriev, S. N.; Itkis, M. G.; Oganessian, Yu. Ts.; Popeko, A. G.

    2010-04-01

    Future development of the FLNR accelerator complex (project DRIBs-III) includes modernization of existing cyclotrons, construction of a new experimental hall, creation of a new high current cyclotron and of next generation experimental set-ups. Realization of the project is planned for 2010-2016.

  18. Ultraviolet complex refractive index of Martian dust Laboratory measurements of terrestrial analogs

    NASA Technical Reports Server (NTRS)

    Egan, W. G.; Hilgeman, T.; Pang, K.

    1975-01-01

    The optical complex index of refraction of four candidate Martian surface materials has been determined between 0.185 and 0.4 microns using a modified Kubelka-Munk scattering theory. The cadidate materials were limonite, andesite, montmorillonite, and basalt. The effect of scattering has been removed from the results. Also presented are diffuse reflection and transmission data on these samples.

  19. Laboratory Investigations of the Complex Refractory Organic Material Produced from Irradiation of Pluto Ice Analogs

    NASA Technical Reports Server (NTRS)

    Materese, Christopher K.; Cruikshank, Dale P.; Sanford, Scott A.; Imanaka, Hiroshi

    2014-01-01

    Much of Pluto's surface consists of N2 ice with smaller amounts of CH4 and CO ices. Despite the low temperature (approximately 45K), chemistry can be driven in the surface ices by radiation processing such as cosmic ray bombardment. When cosmic rays strike the surface, much of their energy is dispersed in the form of secondary electrons, which in turn drive much of the resulting chemical reactions. Laboratory experiments designed to simulate the conditions on these icy bodies may provide insight into this chemistry. Significant progress has been made in the laboratory toward understanding the smaller, simple compounds produced in the solid phase by radiation processing of (N2, CH4, CO) ices (Bohn et al. 1994; Moore & Hudson 2003; Hodyss et al. 2011; Kim and Kaiser 2012). Recently Materese et al. (2014) used a variety of techniques to better characterize the refractory materials produced from the UV photo-irradiation of N2:CH4:CO ices. However, because Pluto's atmosphere is optically thick to Lyman-alpha UV radiation it is important to re-examine the results using an alternate radiation source. Our latest work has consisted of the analysis of refractory materials produced from the electron bombardment of low temperature N2(-), CH4(-), and CO(-)containing ices (100:1:1). The ice mixture was chosen to be analogous to the known surface ices on Pluto and the radiation source was chosen to mimic the secondary electrons produced by cosmic rays bombardment. The residues were studied using multiple chemical techniques including, infrared (IR) spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and gas chromatography coupled with mass spectrometry (GC-MS). The organic residues produced in these experiments can be seen as an analog for the refractory component of the surface of Pluto, and are compared with the residues previously obtained from UV photo-irradiation. UV and near- IR spectroscopy of the surfaces of Pluto and Charon during the encounter with

  20. Evolved stars as complex chemical laboratories - the quest for gaseous chemistry

    NASA Astrophysics Data System (ADS)

    Katrien Els Decin, Leen

    2015-08-01

    At the end of their life, most stars lose a large fraction of their mass through a stellar wind. The stellar winds of evolved (super)giant stars are the dominant suppliers for the pristine building blocks of the interstellar medium (ISM). Crucial to the understanding of the chemical life cycle of the ISM is hence a profound insight in the chemical and physical structure governing these stellar winds.These winds are really unique chemical laboratories in which currently more than 70 different molecules and 15 different dust species are detected. Several chemical processes such as neutral-neutral and ion-molecule gas-phase reactions, dust nucleation and growth, and photo-processes determine the chemical content of these winds. However, gas-phase and dust-nucleation chemistry for astronomical environments still faces many challenges. One should realize that only ˜15% of the rate coefficients for gas-phase reactions considered to occur in (inter/circum)stellar regions at temperatures (T) below 300K have been subject to direct laboratory determinations and that the temperature dependence of the rate constants is often not known; only ˜2% have rate constants at T<200K and less than 0.5% at T<100 K. For stellar wind models, an important bottleneck occurs among the reactions involving silicon- and sulfur-bearing species, for which only a few have documented reaction rates. Often, researchers are implementing ‘educated guesses’ for these unknown rates, sometimes forcing the network to yield predictions concurring with (astronomical) observations. Large uncertainties are inherent in this type of ‘optimized’ chemical schemes.Thanks to an ERC-CoG grant, we are now in the position to solve some riddles involved in understanding the gas-phase chemistry in evolved stars. In this presentation, I will demonstrate the need for accurate temperature-dependent gas-phase reaction rate constants and will present our new laboratory equipment built to measure the rate constants

  1. Laboratory Class Project: Using a Cichlid Fish Display Tank to Teach Students about Complex Behavioral Systems

    PubMed Central

    Nolan, Brian C.

    2010-01-01

    Laboratory activities serve several important functions in undergraduate science education. For neuroscience majors, an important and sometimes underemphasized tool is the use of behavioral observations to help inform us about the consequences of changes that are occurring on a neuronal level. To help address this concern, the following laboratory exercise is presented. The current project tested the prediction that the most dominant fish in a tank of cichlids will have gained the most benefits of its position resulting in the greatest growth and hence, become the largest fish. More specifically: (1) is there evidence that a social hierarchy exists among the fish in our tank based on the number of aggressive acts among the four largest fish; (2) if so, does the apparent rank correspond to the size of the fish as predicted by previous studies? Focal sampling and behavior sampling of aggressive acts between fish were utilized in the data collection. Collectively, the data suggest a social dominance hierarchy may be in place with the following rank order from highest to lowest: Fish A > Fish B > Fish D > Fish C. While the largest (Fish A) seems to be at the top, Fish C ended up being ranked lower than Fish D despite the fact that Fish C is larger. Overall, the project was considered a success by the instructor and students. The students offered several suggestions that could improve future versions of this type of project, in particular concerning the process of constructing a poster about the project. The implications of the data and student learning outcomes are discussed. PMID:23493462

  2. Integrating clinical and laboratory data in genetic studies of complex phenotypes: a network-based data management system.

    PubMed

    McMahon, F J; Thomas, C J; Koskela, R J; Breschel, T S; Hightower, T C; Rohrer, N; Savino, C; McInnis, M G; Simpson, S G; DePaulo, J R

    1998-05-01

    The identification of genes underlying a complex phenotype can be a massive undertaking, and may require a much larger sample size than thought previously. The integration of such large volumes of clinical and laboratory data has become a major challenge. In this paper we describe a network-based data management system designed to address this challenge. Our system offers several advantages. Since the system uses commercial software, it obviates the acquisition, installation, and debugging of privately-available software, and is fully compatible with Windows and other commercial software. The system uses relational database architecture, which offers exceptional flexibility, facilitates complex data queries, and expedites extensive data quality control. The system is particularly designed to integrate clinical and laboratory data efficiently, producing summary reports, pedigrees, and exported files containing both phenotype and genotype data in a virtually unlimited range of formats. We describe a comprehensive system that manages clinical, DNA, cell line, and genotype data, but since the system is modular, researchers can set up only those elements which they need immediately, expanding later as needed. PMID:9603614

  3. Irritability Levels of Field and Laboratory Population of Culex pipiens Complex in Tehran to Different Groups of Insecticides

    PubMed Central

    Rahimi, Sara; Vatandoost, Hassan; Abai, Mohammad Reza; Raeisi, Ahmad; Hanafi-Bojd, Ahmad Ali; Rafi, Fatemeh

    2016-01-01

    Background: The irritant effect of some insecticides can cause a proportion of mosquitoes to leave the sprayed rooms before acquiring a lethal dose, so the repeated contact al sub-lethal dose may lead to extent the resistance. Methods: Larvae and pupae of Culex pipiens complex were collected in mass from open canals of waste water in capital city Tehran and reared to obtain the first generation at laboratory. Sugar-fed 2–3 days female mosquitoes were used for the experiments and compared with laboratory strain. The irritability tests of insecticides impregnated papers were measured in plastic conical exposure chambers placed which implemented at controlled conditions according to the method described by WHO. Number of take-offs were counted during 15 minutes of exposure time. Results: DDT had the most irritancy effect against field population of Cx. pipiens. DDT, permethrin and deltamethrin was moderately irritable against laboratory strain, whereas, addition to three previous insecticides, malathion, cyfluthrin and propoxur should be also considered as moderately irritable insecticides for field population of. Irritability level of etofenprox, fenithrothion, bendiocarb, and lambdacyhalothrin did not differ from control group. Conclusion: The irritability response of mosquitoes may have a negative impact on control measures. Periodical execution of irritability tests with insecticides that routinely used in vector control program is highly recommended. PMID:27308276

  4. Aggradational and erosional history of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory

    SciTech Connect

    Dechert, T.V.; McDaniel, P.A.; Falen, A.L.

    1994-09-01

    Long-term performance of the low-level waste disposal site at the Radioactive Waste Management Complex (RWMC) is partially dependent on the stability of the land surface with respect to erosion of cover materials. This document discusses the aggradational and erosional history of the naturally occurring sediments and soils in and around the RWMC, focusing on the late-Pleistocene and Holocene epochs. Other related issues include the ages of the various deposits, the extent to which they have been altered by soil formation and other processes, their relationships to the basalt flows in the area, and the impact of human activity on the materials at the RWMC.

  5. The Laboratory Production of Complex Organic Molecules in Simulated Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.

    2002-01-01

    Much of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. Their low temperatures preclude most chemical reactions, but ionizing radiation can drive reactions that produce a suite of new species, many of which are complex organics. The Astrochemistry Lab at NASA Ames studies the UV radiation processing of interstellar ice analogs to better identify the resulting products and establish links between interstellar chemistry, the organics in meteorites, and the origin of life on Earth. Once identified, the spectral properties of the products can be quantified to assist with the search for these species in space. Of particular interest are findings that UV irradiation of interstellar ice analogs produces molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids.

  6. Future directions in controlling the LAMPF-PSR Accelerator Complex at Los Alamos National Laboratory

    SciTech Connect

    Stuewe, R.; Schaller, S.; Bjorklund, E.; Burns, M.; Callaway, T.; Carr, G.; Cohen, S.; Kubicek, D.; Harrington, M.; Poore, R.; Schultz, D.

    1991-01-01

    Four interrelated projects are underway whose purpose is to migrate the LAMPF-PSR Accelerator Complex control systems to a system with a common set of hardware and software components. Project goals address problems in performance, maintenance and growth potential. Front-end hardware, operator interface hardware and software, computer systems, network systems and data system software are being simultaneously upgraded as part of these efforts. The efforts are being coordinated to provide for a smooth and timely migration to a client-sever model-based data acquisition and control system. An increased use of the distributed intelligence at both the front-end and operator interface is a key element of the projects. 2 refs., 2 figs.

  7. Site characterization program at the radioactive waste management complex of the Idaho National Engineering Laboratory

    SciTech Connect

    McElroy, D.L.; Rawson, S.A.; Hubbell, J.M.; Minkin, S.C.; Baca, R.G.; Vigil, M.J.; Bonzon, C.J.; Landon, J.L.; Laney, P.T.

    1989-07-01

    The Radioactive Waste Management Complex (RWMC) Site Characterization Program is a continuation of the Subsurface Investigation Program (SIP). The scope of the SIP has broadened in response to the results of past work that identified hazardous as well as radionuclide contaminants in the subsurface environment and in response to the need to meet regulatory requirements. Two deep boreholes were cored at the RWMC during FY-1988. Selected sediment samples were submitted for Appendix IX of 40 CFR Part 264 and radionuclide analyses. Detailed geologic logging of archived core was initiated. Stratigraphic studies of the unsaturated zone were conducted. Studies to determine hydrologic properties of sediments and basalts were conducted. Geochemical studies and analyses were initiated to evaluate contaminant and radionuclide speciation and migration in the Subsurface Disposal Area (SDA) geochemical environment. Analyses of interbed sediments in boreholes D15 and 8801D did not confirm the presence of radionuclide contamination in the 240-ft interbed. Analyses of subsurface air and groundwater samples identified five volatile organic compounds of concern: carbon tetrachloride, trichloroethylene, 1,1,1-trichloroethane, chloroform, and tetrachloroethylene. 33 refs., 5 figs., 2 tabs.

  8. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    SciTech Connect

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  9. Laboratory simulation of interstellar grain chemistry and the production of complex organic molecules

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.; Valero, G. J.

    1990-01-01

    During the past 15 years considerable progress in observational techniques has been achieved in the middle infrared (5000 to 500 cm(-1), 2 to 20 microns m), the spectral region most diagnostic of molecular vibrations. Spectra of many different astronomical infrared sources, some deeply embedded in dark molecular clouds, are now available. These spectra provide a powerful probe, not only for the identification of interstellar molecules in both the gas solid phases, but also of the physical and chemical conditions which prevail in these two very different domains. By comparing these astronomical spectra with the spectra of laboratory ices one can determine the composition and abundance of the icy materials frozen on the cold (10K) dust grains present in the interior of molecular clouds. These grains and their ice mantles may well be the building blocks from which comets are made. As an illustration of the processes which can take place as an ice is irradiated and subsequently warmed, researchers present the infrared spectra of the mixture H2O:CH3OH:CO:NH3:C6H14 (100:50:10:10:10). Apart from the last species, the ratio of these compounds is representative of the simplest ices found in interstellar clouds. The last component was incorporated into this particular experiment as a tracer of the behavior of a non-aromatic hydrocarbon. The change in the composition that results from ultraviolet photolysis of this ice mixture using a UV lamp to simulate the interstellar radiation field is shown. Photolysis produces CO, CO2, CH4, HCO, H2CO, as well as a family of moderately volatile hydrocarbons. Less volatile carbonaceous materials are also produced. The evolution of the infrared spectrum of the ice as the sample is warmed up to room temperature is illustrated. Researchers believe that the changes are similar to those which occur as ice is ejected from a comet and warmed up by solar radiation. The warm-up sequence shows that the nitrile or iso-nitrile bearing compound

  10. Elucidating multipollutant exposure across a complex metropolitan area by systematic deployment of a mobile laboratory

    NASA Astrophysics Data System (ADS)

    Levy, I.; Mihele, C.; Lu, G.; Narayan, J.; Hilker, N.; Brook, J. R.

    2014-07-01

    This study evaluates a deployment strategy of a heavily instrumented mobile lab for characterizing multipollutant spatial patterns based upon a limited number of measurement days spread over different seasons. The measurements obtained through this deployment strategy are used to gain insight into average pollutant levels between routine monitoring sites and in relation to emission sources in the region, as well as to assess correlations between pollutant patterns to better understand the nature of urban air pollutant mixtures. A wide range of locations were part of the deployment in order to characterize the distribution of chronic exposures potentially allowing development of exposure models. Comparison of the mobile lab averages to the available adjacent air quality monitoring network stations to evaluate their representativeness showed that they were in reasonable agreement with the annual averages at the monitoring sites, thus providing some evidence that, through the deployment approach, the mobile lab is able to capture the main features of the average spatial patterns. The differences between mobile lab and network averages varied by pollutant with the best agreement for NO2 with a percentage difference of 20%. Sharp differences in the average spatial distribution were found to exist between different pollutants on multiple scales, particularly on the sub-urban scale, i.e., the neighborhood to street scales. For example, NO2 was observed to be 210-265% higher by the main highway in the study region compared to the nearby urban background monitoring site, while black carbon was higher by 180-200% and particle number concentration was 300% higher. The repeated measurements of near-roadway gradients showed that the rate of change differed by pollutant with elevated concentrations detected up to 600-700 m away for some pollutants. These results demonstrate that through systematic deployment mobile laboratory measurements can be used to characterize average or

  11. Cultural Resource Investigation for the Materials and Fuels Complex Wastewater System Upgrade at the Idaho National Laboratory

    SciTech Connect

    Brenda R. Pace; Julie B raun Williams; Hollie Gilbert; Dino Lowrey; Julie Brizzee

    2010-05-01

    The Materials and Fuels Complex (MFC) located in Bingham County at the Idaho National Laboratory (INL) in southeastern Idaho is considering several alternatives to upgrade wastewater systems to meet future needs at the facility. In April and May of 2010, the INL Cultural Resource Management Office conducted archival searches, archaeological field surveys, and coordination with the Shoshone-Bannock Tribes to identify cultural resources that may be adversely affected by the proposed construction and to provide recommendations to protect any resources listed or eligible for listing on the National Register of Historic Places. These investigations showed that one National Register-eligible archaeological site is located on the boundary of the area of potential effects for the wastewater upgrade. This report outlines protective measures to help ensure that this resource is not adversely affected by construction.

  12. Laboratory chamber measurements of the longwave extinction spectra and complex refractive indices of African and Asian mineral dusts

    NASA Astrophysics Data System (ADS)

    Di Biagio, C.; Formenti, P.; Styler, S. A.; Pangui, E.; Doussin, J.-F.

    2014-09-01

    In this study we present the first results from laboratory chamber experiments newly designed to investigate the longwave optical properties of mineral dust. Extinction spectra in the 2-16 µm range have been measured in situ (T = 293 K, RH < 2%) for polydispersed pure dust aerosols generated from natural parent soils from Tunisia, Niger, and the Gobi desert. Data are used in combination with particle size distributions to estimate the complex refractive index of each dust sample. Our results show that the magnitude and spectral dependence of the dust extinction and refractive indices differ according to particle mineralogy, suggesting the necessity for regionally resolved optical properties for modeling dust radiative effects in the longwave. The magnitude of extinction is controlled by the particle size distribution and remains significant down to low coarse particle concentrations, indicating that the longwave effect of mineral dust persists throughout long-range transport and is thus relevant at the global scale.

  13. The Laboratory and Observational Study of 2-BUTANONE as a Test for Organic Chemical Complexity in Various Interstellar Physical Environments

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Weaver, Susanna L. Widicus; Shipman, Steven T.

    2011-06-01

    We have undertaken a combined laboratory, observational, and modeling research program in an attempt to more fully understand the effects that physical environment has on the chemical composition of astronomical sources. To this end, deep millimeter and submillimeter spectral line surveys of multiple interstellar sources with varied physical conditions have been collected. These sources cover a range of physical environments, including hot cores, shocked regions, low-mass star forming regions, and stellar outflows. We have conducted broadband spectral line surveys at λ =1.3 mm of 10 sources at the Caltech Submillimeter Observatory (CSO). These are forerunner observations to our Herschel OT1 program to continue these line surveys at higher frequencies. Only a fraction of the lines observed in the CSO spectra can be assigned to known molecules. Laboratory spectra of many additional candidates for interstellar detection must therefore be collected before these spectral line surveys can be fully-analyzed. One such molecular target is 2-butanone [also known as methyl ethyl ketone (MEK), CH_3COCH_2CH_3], which contains similar functional groups to other known interstellar molecules and is therefore a likely product of interstellar organic chemistry. The microwave spectrum for MEK was collected with the chirped-pulse waveguide Fourier Transform Microwave (FTMW) spectrometer at New College Florida, and the millimeter and submillimeter spectrum was collected using the direct absorption flow cell spectrometer at Emory University. We will report here both on the laboratory characterization of MEK and the analysis of the observational line surveys in the context of the identification of new, complex organic molecules in the ISM.

  14. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  15. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  16. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    SciTech Connect

    Sullivan, R.M.; Knight, P.J.

    1994-05-25

    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazing lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.

  17. How Do Structure and Charge Affect Metal-Complex Binding to DNA? An Upper-Division Integrated Laboratory Project Using Cyclic Voltammetry

    ERIC Educational Resources Information Center

    Kulczynska, Agnieszka; Johnson, Reed; Frost, Tony; Margerum, Lawrence D.

    2011-01-01

    An advanced undergraduate laboratory project is described that integrates inorganic, analytical, physical, and biochemical techniques to reveal differences in binding between cationic metal complexes and anionic DNA (herring testes). Students were guided to formulate testable hypotheses based on the title question and a list of different metal…

  18. A One-Pot Self-Assembly Reaction to Prepare a Supramolecular Palladium(II) Cyclometalated Complex: An Undergraduate Organometallic Laboratory Experiment

    ERIC Educational Resources Information Center

    Fernandez, Alberto; Lopez-Torres, Margarita; Fernandez, Jesus J.; Vazquez-Garcia, Digna; Vila, Jose M.

    2012-01-01

    A laboratory experiment for students in advanced inorganic chemistry is described. Students prepare palladium(II) cyclometalated complexes. A terdentate [C,N,O] Schiff base ligand is doubly deprotonated upon reaction with palladium(II) acetate in a self-assembly process to give a palladacycle with a characteristic tetranuclear structure. This…

  19. Spectrophotometric Determination of 6-Propyl-2-Thiouracil in Pharmaceutical Formulations Based on Prussian Blue Complex Formation: An Undergraduate Instrumental Analysis Laboratory Experiment

    ERIC Educational Resources Information Center

    Zakrzewski, Robert; Skowron, Monika; Ciesielski, Witold; Rembisz, Zaneta

    2016-01-01

    The laboratory experiment challenges students to determine 6-propyl-2-thiouracil (PTU) based on Prussian blue complex formation. Prussian blue is formed by ferricyanide and Fe(II) ions which are generated in situ from Fe(III) ions reduced by PTU. The absorbance of this product was measured at a wavelength of 840 nm, after a reaction time of 30…

  20. Synthesis and Catalytic Activity of Ruthenium-Indenylidene Complexes for Olefin Metathesis: Microscale Experiments for the Undergraduate Inorganic or Organometallic Laboratories

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Hermanson, David L.; Ekerholm, Daniel P.; Lilliquist, Stacie L.; Mekoli, Megan L.

    2007-01-01

    A series of experiments for undergraduate laboratory courses (e.g., inorganic, organometallic or advanced organic) have been developed. These experiments focus on understanding the design and catalytic activity of ruthenium-indenylidene complexes for olefin metathesis. Included in the experiments are the syntheses of two ruthenium-indenylidene…

  1. A laboratory study to estimate pore geometric parameters of sandstones using complex conductivity and nuclear magnetic resonance for permeability prediction

    NASA Astrophysics Data System (ADS)

    Osterman, Gordon; Keating, Kristina; Binley, Andrew; Slater, Lee

    2016-06-01

    We estimate parameters from the Katz and Thompson permeability model using laboratory complex electrical conductivity (CC) and nuclear magnetic resonance (NMR) data to build permeability models parameterized with geophysical measurements. We use the Katz and Thompson model based on the characteristic hydraulic length scale, determined from mercury injection capillary pressure estimates of pore throat size, and the intrinsic formation factor, determined from multisalinity conductivity measurements, for this purpose. Two new permeability models are tested, one based on CC data and another that incorporates CC and NMR data. From measurements made on forty-five sandstone cores collected from fifteen different formations, we evaluate how well the CC relaxation time and the NMR transverse relaxation times compare to the characteristic hydraulic length scale and how well the formation factor estimated from CC parameters compares to the intrinsic formation factor. We find: (1) the NMR transverse relaxation time models the characteristic hydraulic length scale more accurately than the CC relaxation time (R2 of 0.69 and 0.33 and normalized root mean square errors (NRMSE) of 0.16 and 0.21, respectively); (2) the CC estimated formation factor is well correlated with the intrinsic formation factor (NRMSE=0.23). We demonstrate that that permeability estimates from the joint-NMR-CC model (NRMSE=0.13) compare favorably to estimates from the Katz and Thompson model (NRMSE=0.074). This model advances the capability of the Katz and Thompson model by employing parameters measureable in the field giving it the potential to more accurately estimate permeability using geophysical measurements than are currently possible.

  2. RCRA Part B Permit Application for the Idaho National Engineering Laboratory - Volume 5 Radioactive Waste Management Complex

    SciTech Connect

    Pamela R. Cunningham

    1992-07-01

    This section of the Radioactive Waste Management Complex (RWMC) Part B permit application describes the waste characteristics Of the transuranic (TRU) mixed wastes at the RWMC waste management units to be permitted: the Intermediate-Level Transuranic Storage Facility (ILTSF) and the Waste Storage Facility (WSF). The ILTSF is used to store radioactive remote-handled (RH) wastes. The WSF will be used to store radioactive contact-handled (CH) wastes. The Transuranic Storage Area (TSA) was established at the RWMC to provide interim storage of TRU waste. Department of Energy (DOE) Order 5820.2A defines TRU waste as waste contaminated with alpha-emitting transuranium radionuclides with half-lives greater than 20 years in concentrations greater than 100 nanocuries per gram (nCi/g) o f waste material. The TSA serves generators both on and off the Idaho National Engineering Laboratory (INEL). The ILTSF is located at the TSA, and the WSF will be located there also. Most of the wastes managed at the TSA are mixed wastes, which are radioactive wastes regulated under the Atomic Energy Act (AEA) that also contain hazardous materials regulated under the Resource Conservation and Recovery Act (RCRA) and the Idaho Hazardous Waste Management Regulations. These wastes include TRU mixed wastes and some low-level mixed wastes. Accordingly, the TSA is subject to the permitting requirements of RCRA and the Idaho Administrative Procedures Act (IDAPA). Prior to 1982, DOE orders defined TRU wastes as having transuranium radionuclides in concentrations greater than 10 nCi/g, The low-level mixed wastes managed at the TSA are those wastes with 10 to 100 nCi/g of TRU radionuclides that prior to 1982 were considered TRU waste.

  3. Cross-Linking Proteins To Show Complex Formation: A Laboratory That Visually Demonstrates Calmodulin Binding to Calmodulin Kinase II.

    ERIC Educational Resources Information Center

    Porta, Angela R.

    2003-01-01

    Presents a laboratory experiment demonstrating the binding of calcium/calmodulin to calmodulin kinase II, which is important in the metabolic and physiological activities of the cell. Uses SDS polyacrylamide gel electrophoresis (PAGE). (YDS)

  4. Chemical analyses of soil samples collected from the vicinity of the thermal test complex at Sandia National Laboratories, New Mexico environs, 2006.

    SciTech Connect

    Miller, Mark Laverne; Nieto, Danielle M.

    2007-01-01

    In the summer of 2006, the Environmental Programs and Assurance Department of Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM), collected surface soil samples at 37 locations within one mile of the vicinity of the newly constructed Thermal Test Complex (TTC) for the purpose of determining baseline conditions against which potential future impacts to the environs from operations at the facility could be assessed. These samples were submitted to an offsite analytical laboratory for metal-in-soil analyses. This work provided the SNL Environmental Programs and Assurance Department with a sound baseline data reference set against which to assess potential future operational impacts at the TTC. In addition, it demonstrates the commitment that the Laboratories have to go beyond mere compliance to achieve excellence in its operations. This data are presented in graphical format with narrative commentaries on particular items of interest.

  5. Completion summary for boreholes USGS 140 and USGS 141 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2014-01-01

    In 2013, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, drilled and constructed boreholes USGS 140 and USGS 141 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory in southeast Idaho. Borehole USGS 140 initially was cored to collect continuous geologic data, and then re-drilled to complete construction as a monitor well. Borehole USGS 141 was drilled and constructed as a monitor well without coring. Boreholes USGS 140 and USGS 141 are separated by about 375 feet (ft) and have similar geologic layers and hydrologic characteristics based on geophysical and aquifer test data collected. The final construction for boreholes USGS 140 and USGS 141 required 6-inch (in.) diameter carbon-steel well casing and 5-in. diameter stainless-steel well screen; the screened monitoring interval was completed about 50 ft into the eastern Snake River Plain aquifer, between 496 and 546 ft below land surface (BLS) at both sites. Following construction and data collection, dedicated pumps and water-level access lines were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Borehole USGS 140 was cored continuously, starting from land surface to a depth of 543 ft BLS. Excluding surface sediment, recovery of basalt and sediment core at borehole USGS 140 was about 98 and 65 percent, respectively. Based on visual inspection of core and geophysical data, about 32 basalt flows and 4 sediment layers were collected from borehole USGS 140 between 34 and 543 ft BLS. Basalt texture for borehole USGS 140 generally was described as aphanitic, phaneritic, and porphyritic; rubble zones and flow mold structure also were described in recovered core material. Sediment layers, starting near 163 ft BLS, generally were composed of fine-grained sand and silt with a lesser amount of clay; however, between 223 and 228 ft BLS, silt

  6. EVALUATION OF THE COMPLEX TERRAIN DISPERSION MODEL AGAINST LABORATORY OBSERVATIONS: NEUTRAL FLOW OVER 2-D AND 3-D HILLS

    EPA Science Inventory

    A comparison is made of the predictions of the Complex Terrain Dispersion Model (CTDM) with wind-tunnel observations of flow and diffusion in a simulated neutral atmospheric boundary layer over two- and three-dimensional hills. The measure used to evaluate the ability of the mode...

  7. Process Description and Operating History for the CPP-601/-640/-627 Fuel Reprocessing Complex at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect

    E. P. Wagner

    1999-06-01

    The Fuel Reprocessing Complex (FRC) at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory was used for reprocessing spent nuclear fuel from the early 1950's until 1992. The reprocessing facilities are now scheduled to be deactivated. As part of the deactivation process, three Resource Conservation and Recovery Act (RCRA) interim status units located in the complex must be closed. This document gathers the historical information necessary to provide a rational basis for the preparation of a comprehensive closure plan. Included are descriptions of process operations and the operating history of the FRC. A set of detailed tables record the service history and present status of the process vessels and transfer lines.

  8. Performance in a complex multiple-task environment during a laboratory-based simulation of occasional night work.

    PubMed

    Sauer, Jürgen; Wastell, David G; Hockey, G Robert J; Earle, Fiona

    A study was carried out to examine the impact of occasional night work on simulated process control using a complex task environment. The 21 student participants were tested during 2 6-hr simulated shifts (daytime and night). In addition to the primary system management task, the simulation allowed measurement of fault diagnosis behavior, monitoring and control actions, and two secondary tasks--alarm reaction time and system status checks (prospective memory)--as well as subjective state. Consistent with predictions from compensatory control theory, night work did not impair system performance, although monitoring and control were reduced (supported by subjective reports of increased use of risky "corner-cutting" strategies). Secondary tasks showed an increase in alarm reaction time during night work, but there was no effect on prospective memory and no clear pattern of change in subjective state. Actual or potential applications of this research include the design of complex systems for nighttime operation. PMID:15055462

  9. Programmed improvements of the alternating gradient synchrotron complex at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    SciTech Connect

    1994-03-01

    The purpose and need for DOE to undertake the actions described in this document are to improve the efficiency of the Alternating Gradient Synchrotron (AGS) complex. Benefits would include optimization of the AGS scientific program, increased high-energy and nuclear physics experimentation, improved health and safety conditions for workers and users, reduced impact on the environment and the general public, energy conservation, decreased generation of hazardous and radioactive wastes, and completion of actions required to permit the AGS to be the injector to the Relativistic Heavy Ion Collider (RHIC)., Improved efficiency is defined as increasing the AGS`s capabilities to capture and accelerate the proton intensity transferred to the AGS from the AGS booster. Improved capture of beam intensity would reduce the beam losses which equate to lost scientific opportunity for study and increased potential for radiation doses to workers and the general public. The action would also refurbish magnets used in the transfer tunnel which connects the AGS complex to RHIC to permit smooth injection of beam into the RHIC accelerator. These magnets were previously used to direct beam to fixed targets for high energy physics studies but have hot received proper maintenance to be reliable as injectors to RHIC. The document describes alternative actions, the affected environment, and environmental impacts.

  10. Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex

    SciTech Connect

    Samuels, W.D.; Camaioni, D.M.; Babad, H.

    1994-03-01

    The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H{sub 2}, CO, NH{sub 3}, CH{sub 4}, and to changes in the composition of the organic and inorganic components brought about by ``Aging`` processes.

  11. Development of a New Method to Track Multiple Honey Bees with Complex Behaviors on a Flat Laboratory Arena

    PubMed Central

    Kimura, Toshifumi; Ohashi, Mizue; Crailsheim, Karl; Schmickl, Thomas; Okada, Ryuichi; Radspieler, Gerald; Ikeno, Hidetoshi

    2014-01-01

    A computer program that tracks animal behavior, thereby revealing various features and mechanisms of social animals, is a powerful tool in ethological research. Because honeybee colonies are populated by thousands of bees, individuals co-exist in high physical densities and are difficult to track unless specifically tagged, which can affect behavior. In addition, honeybees react to light and recordings must be made under special red-light conditions, which the eyes of bees perceive as darkness. The resulting video images are scarcely distinguishable. We have developed a new algorithm, K-Track, for tracking numerous bees in a flat laboratory arena. Our program implements three main processes: (A) The object (bee's) region is detected by simple threshold processing on gray scale images, (B) Individuals are identified by size, shape and spatiotemporal positional changes, and (C) Centers of mass of identified individuals are connected through all movie frames to yield individual behavioral trajectories. The tracking performance of our software was evaluated on movies of mobile multi-artificial agents and of 16 bees walking around a circular arena. K-Track accurately traced the trajectories of both artificial agents and bees. In the latter case, K-track outperformed Ctrax, well-known software for tracking multiple animals. To investigate interaction events in detail, we manually identified five interaction categories; ‘crossing’, ‘touching’, ‘passing’, ‘overlapping’ and ‘waiting’, and examined the extent to which the models accurately identified these categories from bee's interactions. All 7 identified failures occurred near a wall at the outer edge of the arena. Finally, K-Track and Ctrax successfully tracked 77 and 60 of 84 recorded interactive events, respectively. K-Track identified multiple bees on a flat surface and tracked their speed changes and encounters with other bees, with good performance. PMID:24465422

  12. Soil moisture monitoring results at the radioactive waste management complex of the Idaho National Engineering Laboratory, FY-1993

    SciTech Connect

    McElroy, D.L.

    1993-11-01

    In FY-1993, two tasks were performed for the Radioactive Waste Management Complex (RWMC) Low Level Waste Performance Assessment to estimate net infiltration from rain and snow at the Subsurface Disposal Area (SDA) and provide soil moisture data for hydrologic model calibration. The first task was to calibrate the neutron probe to convert neutron count data to soil moisture contents. A calibration equation was developed and applied to four years of neutron probe monitoring data (November 1986 to November 1990) at W02 and W06 to provide soil moisture estimates for that period. The second task was to monitor the soils at two neutron probe access tubes (W02 and W06) located in the SDA of the RWMC with a neutron probe to estimate soil moisture contents. FY-1993 monitoring indicated net infiltration varied widely across the SDA. Less than 1.2 in. of water drained into the underlying basalts near W02 in 1993. In contrast, an estimated 10.9 in. of water moved through the surficial sediments and into the underlying basalts at neutron probe access tube W06. Net infiltration estimates from the November 1986 to November 1990 neutron probe monitoring data are critical to predictive contaminant transport modeling and should be calculated and compared to the FY-1993 net infiltration estimates. In addition, plans are underway to expand the current neutron probe monitoring system in the SDA to address the variability in net infiltration across the SDA.

  13. Why Model-Based Engineering and Manufacturing Makes Sense for the Plants and Laboratories of the Nuclear Weapon Complex

    SciTech Connect

    Franklin, K W; Howell, L N; Lewis, D G; Neugebauer, C A; O'Brien, D W; Schilling, S A

    2001-05-15

    The purpose of this White Paper is to outline the benefits we expect to receive from Model-Based Engineering and Manufacturing (MBE/M) for the design, analysis, fabrication, and assembly of nuclear weapons for upcoming Life Extension Programs (LEPs). Industry experiences with model-based approaches and the NNSA/DP investments and experiences, discussed in this paper, indicate that model-based methods can achieve reliable refurbished weapons for the stockpile with less cost and time. In this the paper, we list both general and specific benefits of MBE/M for the upcoming LEPs and the metrics for determining the success of model-based approaches. We also present some outstanding issues and challenges to deploying and achieving long-term benefit from the MBE/M. In conclusion, we argue that successful completion of the upcoming LEPs--with very aggressive schedule and funding restrictions--will depend on electronic model-based methods. We ask for a strong commitment from LEP managers throughout the Nuclear Weapons Complex to support deployment and use of MBE/M systems to meet their program needs.

  14. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  15. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect

    Lewis, Mike

    2015-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  16. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect

    David Frederick

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  17. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect

    David B. Frederick

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  18. Laboratory simulation of the photoprocessing and warm-up of cometary and pre-cometary ices - Production and analysis of complex organic molecules

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Allamandola, L. J.; Sandford, S. A.

    1992-01-01

    The recent missions to Comet Halley detected large quantities of organic material on grains as well as organic molecules in the gas phase. A possible origin of these materials is the energetic processing of ice mantles on the grains prior to comet formation, either in the pre-solar nebula or the interstellar medium. This process was simulated in the laboratory by depositing interstellar ice analogs (H2O/CH3OH/CO/NH3) on a cold (10 K) substrate with simultaneous UV irradiation. The material evaporating during warm-up of the photolyzed ice as well as the residue remaining at room temperature was analyzed by a number of techniques. It was found that a large number of organic molecules of various complexity are synthesized during the simulation process, stressing the possible significance of UV photolysis for producing the organic Comet material.

  19. Laboratory simulation of the photoprocessing and warm-up of cometary and pre-cometary ices: Production of complex organic molecules

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Allamandola, L. J.; Sanford, S. A.

    1991-01-01

    The recent missions to Comet Halley detected large quantities of organic material on grains as well as organic molecules in the gas phase. A possible origin of these materials is the energetic processing of ice mantles on the grains prior to comet formation, either in the pre-solar nebula or the interstellar medium. This process was simulated in the laboratory by depositing interstellar ice analogs (H2O/CH3OH/CO/NH3) on a cold (10 K) substrate with simultaneous UV irradiation. The material evaporating during warm-up of the photolyzed ice as well as the residue remaining at room temperature was analyzed by a number of techniques. It was found that a large number of organic molecules of various complexity are synthesized during the simulation process, stressing the possible significance of UV photolysis for producing the organic Comet material.

  20. A Laboratory Approach Relating Complex Resistivity Observations to Flow and Transport in Saturated and Unsaturated Hydrologic Regimes

    SciTech Connect

    Martins, S A; Daily, W D; Ramirez, A L

    2002-01-31

    used to solve for the electrical conductivity distribution in the region bounded by the electrode arrays. Groundwater movement resulting from a leak or surface spill will produce measurable conductivity changes that have been imaged using ERT or EIT. The kind of laboratory scale experiments supported by this work will help us to better understand the connection between imaged conductivity anomalies and the groundwater or contaminant flow that causes them. This work will also help to demonstrate the feasibility or value of doing lab experiments in imaging that can be applied to interpreting field-scale experiments. A secondary objective of this study was to initiate a collaboration with researchers at the Rensselaer Polytechnic Institute (RPI; Troyl NY) who are also participants in the newly created NSF Center for Subsurface Imaging and Sensing Systems (CenSSIS) which is managed in part by RPI. During the course of this study C.R. Carrigan and W. Daily visited the electromagnetic imaging lab at RPI to initiate discussions on subsurface imaging technology with Professors David Isaacson, Jon Newell, Gary Salunier and their research graduate students. A major goal of CenSSIS is to promote collaborations among researchers with imaging backgrounds in different disciplines (geosciences, biomedical, civil engineering and biomedical) that will lead to new solutions of common subsurface imaging problems. The geophysical test section constructed for this study included electrode arrays that resemble biomedical array distributions. Comparing images of the same target produced with the 4-array geophysical approach and with the biomedical imaging approach will help us to better understand differences and advantages that are characteristic of the two imaging methods. Our initial interactions with the researchers at RPI concluded that this was a viable problem to consider. The support for this subsequent research will come from a 3-year Office of Basic Energy Sciences (BES) proposal

  1. Hydrologic and Meteorological Data for an Unsaturdated-Zone Study Area near the Radioactive Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho, 1990-96

    SciTech Connect

    K. S. Perkins, J. R. Nimmo, J. R. Pittman

    1998-01-01

    Trenches and pits at the Radioactive Waste Management Complex (RWMC) Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (formerly known as the Idaho National Engineering Laboratory) have been used for burial of radioactive waste since 1952. In 1985, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, began a multi-phase study of the geohydrology of the RWMC to provide a basis for estimating the extent of and the potential for migration of radionuclides in the unsaturated zone beneath the waste trenches and pits. This phase of the study provides hydrologic and meteorological data collected at a designated test trench area adjacent to the northern boundary of the RWMC SDA from 1990 through 1996. The test trench area was constructed by the USGS in 1985. Hydrologic data presented in this report were collected during 1990-96 in the USGS test trench area. Soil-moisture content measurement from disturbed and undisturbed soil were collected approximately monthly during 1990-96 from 11 neutron-probe access holes with a neutron moisture gage. In 1994, three additional neutron access holes were completed for monitoring. A meteorological station inside the test trench area provided data for determination of evapotranspiration rates. The soil-moisture and meteorological data are contained in files on 3-1/2 inch diskettes (disks 1 and 2) included with this report. The data are presented in simple American Standard Code for Information Interchange (ASCII) format with tab-delimited fields. The files occupy a total of 1.5 megabytes of disk space.

  2. Determination of Background Uranium Concentration in the Snake River Plain Aquifer under the Idaho National Engineering and Environmental Laboratory's Radioactive Waste Management Complex

    SciTech Connect

    Molly K. Leecaster; L. Don Koeppen; Gail L. Olson

    2003-06-01

    Uranium occurs naturally in the environment and is also a contaminant that is disposed of at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory. To determine whether uranium concentrations in the Snake River Plain Aquifer, which underlies the laboratory, are elevated as a result of migration of anthropogenic uranium from the Subsurface Disposal Area in the RWMC, uranium background concentrations are necessary. Guideline values are calculated for total uranium, 234U, 235U, and 238U from analytical results from up to five datasets. Three of the datasets include results of samples analyzed using isotope dilution thermal ionization mass spectrometry (ID-TIMS) and two of the datasets include results obtained using alpha spectrometry. All samples included in the statistical testing were collected from aquifer monitoring wells located within 10 miles of the RWMC. Results from ID-TIMS and alpha spectrometry are combined when the data are not statistically different. Guideline values for total uranium were calculated using four of the datasets, while guideline values for 234U were calculated using only the alpha spectrometry results (2 datasets). Data from all five datasets were used to calculate 238U guideline values. No limit is calculated for 235U because the ID-TIMS results are not useful for comparison with routine monitoring data, and the alpha spectrometry results are too close to the detection limit to be deemed accurate or reliable for calculating a 235U guideline value. All guideline values presented represent the upper 95% coverage 95% confidence tolerance limits for background concentration. If a future monitoring result is above this guideline, then the exceedance will be noted in the quarterly monitoring report and assessed with respect to other aquifer information. The guidelines (tolerance limits) for total U, 234U, and 238U are 2.75 pCi/L, 1.92 pCi/L, and 0.90 pCi/L, respectively.

  3. Hydrological, meteorological and geohydrological data for an unsaturated zone study near the Radioactive Waste Management Complex, Idaho National Engineering Laboratory, Idaho - 1987

    SciTech Connect

    Davis, L.C.; Pittman, J.R. )

    1990-01-01

    Since 1952, radioactive waste has been buried at the RWMC (Radioactive Waste Management Complex) at the Idaho National Engineering Laboratory in southeastern Idaho. In 1985, the US Geological Survey, in cooperation with the US Department of Energy, began a study of the geohydrology of the RWMC to provide a basis for estimating the extent of and the potential for migration of radionuclides in the unsaturated zone beneath the waste burial trenches and pits. This study is being conducted to provide hydrological, meteorological and geohydrological data for the test trench area adjacent to the northern boundary of the RWMC. During 1987, data were collected from the test trench area, where several types of instrumentation were installed in the surficial sediment in 1985. Hydrological data collected from both disturbed and undisturbed soil included measurements, from 28 thermocouple psychrometers placed at selected depths to about 6m. Soil moisture content measurements were collected bi-weekly in 9 neutron-probe access holes with a neutron moisture depth gage. Meteorological data summarized daily included: (1) incoming and emitted long-wave radiation; (2) incoming and reflected short-wave radiation; (3) air temperature; (4) relative humidity; (5) wind speed; (6) wind direction; and (7) precipitation. To describe grain-size distribution with depth, 17 samples were analyzed using sieve and pipette methods. Statistical parameters, carbonate content, color, particle roundness and sphericity, and mineralogic and clastic constituents were determined for each sample. Some samples were analyzed by x-ray diffraction techniques to determine bulk and clay mineralogy.

  4. In situ technology evaluation and functional and operational guidelines for treatability studies at the radioactive waste management complex at the Idaho National Engineering Laboratory

    SciTech Connect

    Hyde, R.A.; Donehey, A.J.; Piper, R.B.; Roy, M.W.; Rubert, A.L.; Walker, S.

    1991-07-01

    The purpose of this document is to provide EG G Idaho's Waste Technology Development Department with a basis for selection of in situ technologies for demonstration at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL) and to provide information for Feasibility Studies to be performed according to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The demonstrations will aid in meeting Environmental Restoration/Waste Management (ER/WM) schedules for remediation of waste at Waste Area Group (WAG) 7. This report is organized in six sections. Section 1, summarizes background information on the sites to be remediated at WAG-7, specifically, the acid pit, soil vaults, and low-level pits and trenches. Section 2 discusses the identification and screening of in situ buried waste remediation technologies for these sites. Section 3 outlines the design requirements. Section 4 discusses the schedule (in accordance with Buried Waste Integrated Demonstration (BWID) scoping). Section 5 includes recommendations for the acid pit, soil vaults, and low-level pits and trenches. A listing of references used to compile the report is given in Section 6. Detailed technology information is included in the Appendix section of this report.

  5. Finding of no significant impact for the interim action for cleanup of Pit 9 at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    SciTech Connect

    Not Available

    1993-10-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0854, for an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The proposed action would be conducted at Pit 9, Operable Unit 7--10, located at the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). The proposed action consists of construction of retrieval and processing buildings, excavation and retrieval of wastes from Pit 9, selective physical separation and chemical extraction, and stabilization of wastes either through thermal processing or by forming a stabilized concentrate. The proposed action would involve limited waste treatment process testing and full-scale waste treatment processing for cleaning up pre-1970 Transuranic (TRU) wastes in Pit 9. The purpose of this interim action is to expedite the overall cleanup at the RWMC and to reduce the risks associated with potential migration of Pit 9 wastes to the Snake River Plain Aquifer.

  6. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  7. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Discussion of the facility’s environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  8. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  9. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Lewis, Mike

    2015-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2013–October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Permit required groundwater monitoring data; Status of compliance activities; Noncompliance issues; and Discussion of the facility’s environmental impacts. During the 2014 permit year, approximately 238 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the downgradient monitoring wells.

  10. Laboratory Animal Facilities. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Jonas, Albert M.

    1965-01-01

    Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…

  11. Laboratory investigation of the contribution of complex aromatic/aliphatic polycyclic hybrid molecular structures to interstellar ultraviolet extinction and infrared emission

    NASA Technical Reports Server (NTRS)

    Arnoult, K. M.; Wdowiak, T. J.; Beegle, L. W.

    2000-01-01

    We have demonstrated by experiment that, in an energetic environment, a simple polycyclic aromatic hydrocarbon (PAH) such as naphthalene will undergo chemical reactions that produce a wide array of more complex species (an aggregate). For a stellar wind of a highly evolved star (post-asymptotic giant branch [post-AGB]), this process would be in addition to what is expected from reactions occurring under thermodynamic equilibrium. A surprising result of that work was that produced in substantial abundance are hydrogenated forms that are hybrids of polycyclic aromatic and polycyclic alkanes. Infrared spectroscopy described here reveals a spectral character for these materials that has much in common with that observed for the constituents of circumstellar clouds of post-AGB stars. It can be demonstrated that a methylene (-CH2-) substructure, as in cycloalkanes, is the likely carrier of the 6.9 microns band emission of dust that has recently been formed around IRAS 22272+5433, NGC 7027, and CPD -56 8032. Ultraviolet spectroscopy previously done with a lower limit of 190 nm had revealed that this molecular aggregate can contribute to the interstellar extinction feature at 2175 angstroms. We have now extended our UV spectroscopy of these materials to 110 nm by a vacuum ultraviolet technique. That work, described here, reveals new spectral characteristics and describes how material newly formed during the late stages of stellar evolution could have produced an extinction feature claimed to exist at 1700 angstroms in the spectrum of HD 145502 and also how the newly formed hydrocarbon material would be transformed/aged in the general interstellar environment. The contribution of this molecular aggregate to the rise in interstellar extinction at wavelengths below 1500 angstroms is also examined. The panspectral measurements of the materials produced in the laboratory, using plasmas of H, He, N, and O to convert the simple PAH naphthalene to an aggregate of complex species

  12. Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex

    SciTech Connect

    Hackett, W.R.; Tullis, J.A.; Smith, R.P.

    1995-09-01

    The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

  13. Skylab mobile laboratory

    NASA Technical Reports Server (NTRS)

    Primeaux, G. R.; Larue, M. A.

    1975-01-01

    The Skylab mobile laboratory was designed to provide the capability to obtain necessary data on the Skylab crewmen 30 days before lift-off, within 1 hour after recovery, and until preflight physiological baselines were reattained. The mobile laboratory complex consisted of six laboratories that supported cardiovascular, metabolic, nutrition and endocrinology, operational medicine, blood, and microbiology experiments; a utility package; and two shipping containers. The objectives and equipment requirements of the Skylab mobile laboratory and the data acquisition systems are discussed along with processes such as permanently mounting equipment in the individual laboratories and methods of testing and transporting the units. The operational performance, in terms of amounts of data collected, and the concept of mobile laboratories for medical and scientific experiments are evaluated. The Skylab mobile laboratory succeeded in facilitating the data collection and sample preservation associated with the three Skylab manned flights.

  14. Dynamics and chemistry of Venus' large and complex cloud system : a science case for an in-situ long-term chemical laboratory

    NASA Astrophysics Data System (ADS)

    Widemann, Thomas; Määttänen, Anni; Wilquet, Valérie; McGouldrick, Kevin; Jessup, Kandis Lea; Wilson, Colin; Limaye, Sanjay; EuroVenus Consortium, the

    2014-05-01

    combine through meso-scale convection. In situ sampling of these aerosols represents a key measurement for constraining their properties, and identifying their role in the sulfurohydrological cycle by means of microphysical models of steadily increasing complexity. A probe/lander making a single descent will lack the spatial, temporal and local time coverage to address the coupling of compositional variations with radiative and dynamical properties of the atmosphere at cloud level, requiring a long duration flight. Establishing a long-term chemical laboratory in the cloud layer which would measure the detailed composition of both gas and liquid phases, and their latitudinal, diurnal and vertical variability using a combination of mass spectrometry, gas chromatography, tunable laser transmission spectrometry, and polar nephelometry would significantly address all of these objectives. It would allow the determination of the size distribution, shape, and real and imaginary refractive indices of the cloud particles, and the measurement of intensity and polarization phase functions. Our target species would include those known to be associated with cloud formation (e.g. H2SO4, SO3, SO2, H2O), as well as species important in stratospheric chemistry (e.g. CO, ClCOx, Ox, HCl, HF) and surface-atmosphere buffering (e.g. CO, OCS, SOx, Ox, H2S).

  15. Standards Laboratory environments

    SciTech Connect

    Braudaway, D.W.

    1990-09-01

    Standards Laboratory environments need to be carefully selected to meet the specific mission of each laboratory. The mission of the laboratory depends on the specific work supported, the measurement disciplines required and the level of uncertainty required in the measurements. This document reproduces the contents of the Sandia National Laboratories Primary Standards Laboratory Memorandum Number 3B (PSLM-3B) which was issued on May 16, 1988, under the auspices of the Department of Energy, Albuquerque Operations Office, to guide the laboratories of the Nuclear Weapons Complex in selecting suitable environments. Because of both general interest and specific interest in Standards Laboratory environments this document is being issued in a more available form. The purpose of this document is to provide guidance in selection of laboratory environments suitable for standards maintenance and calibration operations. It is not intended to mandate a specific environment for a specific calibration but to direct selection of the environment and to offer suggestions on how to extend precision in an existing and/or achievable (practical) environment. Although this documents pertains specifically to standards laboratories, it can be applied to any laboratory requiring environmental control.

  16. Facile Synthesis of a Macrobicyclic Hexaamine Cobalt(III) Complex Based on Tris(Ethylenediamine)Cobalt(III): An Advanced Undergraduate Inorganic Laboratory Experiment.

    ERIC Educational Resources Information Center

    Harrowfield, Jack MacB.; And Others

    1985-01-01

    Background information (including relevant chemical reactions), procedures used, and results obtained are provided for the synthesis and characterization of a macrobicyclic complex. The synthesis can be completed within two to three hours and is inexpensive and safe. Suggestions for further experiments are included. (JN)

  17. Addressing the complexity and diversity of agricultural plant volatiles: a call for the integration of laboratory- and field-based analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the sophistication and sensitivity of chemical instrumentation increases so do the number of applications. Correspondingly, new questions and opportunities for systems previously studied also arise. As with most plants, the emission of volatiles from agricultural products is complex and varies am...

  18. The Intersection of Task-Based Interaction, Task Complexity, and Working Memory: L2 Question Development through Recasts in a Laboratory Setting

    ERIC Educational Resources Information Center

    Kim, YouJin; Payant, Caroline; Pearson, Pamela

    2015-01-01

    The extent to which individual differences in cognitive abilities affect the relationship among task complexity, attention to form, and second language development has been addressed only minimally in the cognition hypothesis literature. The present study explores how reasoning demands in tasks and working memory (WM) capacity predict learners'…

  19. Laboratory simulation of the photoprocessing and warm-up of cometary and pre-cometary ices: production and analysis of complex organic molecules.

    PubMed

    Schutte, W A; Allamandola, L J; Sandford, S A

    1992-01-01

    The possibility that the organic molecules that have been found near comets could have formed by UV photolysis of interstellar ices was investigated by simulating this process in the laboratory. It is found that oxygen rich organics containing C-OH, C-H and C=O groups are readily produced in this way. These results indicate that part of the organic material in comets may have formed by UV irradiation of ices, either in the pre-solar nebula or in the interstellar phase. PMID:11538153

  20. Laboratory Tests

    MedlinePlus

    Laboratory tests check a sample of your blood, urine, or body tissues. A technician or your doctor ... compare your results to results from previous tests. Laboratory tests are often part of a routine checkup ...

  1. Assessment of the BD MGIT TBc Identification Test for the Detection of Mycobacterium tuberculosis Complex in a Network of Mycobacteriology Laboratories

    PubMed Central

    Ramos, Jorge; Couto, Isabel; Narciso, Inácio; Coelho, Elizabeth; Viegas, Sofia

    2014-01-01

    We evaluate the performance of the TBcID assay in a panel of 100 acid-fast bacilli cultures. Sixty-four isolates were TBcID positive for Mycobacterium tuberculosis complex (MTBC), whereas 36 gave negative results. These included 28 nontuberculous mycobacteria, one nonmycobacterial isolate, one M. tuberculosis, and six M. bovis BCG strains. This corresponds to a sensitivity of 90.14%, specificity of 100%, and positive and negative predictive values of 100% and 80.55%, respectively. The test is rapid, easy to perform and interpret, and does not require sample preparation or instrumentation. However, a negative result does not exclude the presence of a strain belonging to MTBC, especially when mutations in mpb64 gene are present or some M. bovis BCG strains are isolated. The TBcID showed potential to assist in the identification of MTBC when the implementation and usage of molecular methods are often not possible, principally in resource-limited countries. PMID:24587985

  2. Laboratory Microcomputing

    PubMed Central

    York, William B.

    1984-01-01

    Microcomputers will play a major role in the laboratory, not only in the calculation and interpretation of clinical test data, but also will have an increasing place of importance in the management of laboratory resources in the face of the transition from revenue generating to the cost center era. We will give you a glimpse of what can be accomplished with the management data already collected by many laboratories today when the data are processed into meaningful reports.

  3. Laboratory Building.

    SciTech Connect

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  4. Single-phase microemulsification of a complex light-nonaqueous-phase-liquid: Laboratory evaluation of several mixtures of surfactant/alcohol solutions

    SciTech Connect

    Rhue, R.D.; Rao, P.S.C.; Annable, M.D.

    1999-08-01

    A recent advance in conventional pump-and-treat technology for aquifer remediation involves the use of surfactant-alcohol mixtures that will form a clear, transparent, thermodynamically stable oil-in-water microemulsion on contact with a residual non-aqueous-phase-liquid (NAPL). An initial screening of 86 commercial-grade surfactants for aqueous solubility resulted in selection of 58 that were further tested in batch experiments to evaluate the capacity to solubilize a complex NAPL waste collected from a Superfund site (Operable Unit OU-1) at Hill AFB, UT. The selected group of 58 surfactants represented six classes of anionic, nine classes of nonionic, and one class of amphoteric surfactants. Batch studies on NAPL solubilization identified a number of surfactants suitable for use in the field demonstration phase of the project; a further criterion in surfactant selection was that the flushing solution had a viscosity <2 cp. The best surfactants among this group had HLB (hydrophilic-lipophilic balance) values between 12 and 13, and solubilized 10 to 20 g L{sup {minus}1} of the OU-1 NAPL when the surfactant concentration was 3%. Column tests using NAPL-coated glass beads showed that the more efficient surfactants could remove >90% of the NAPL after flushing with <10 pore volumes. Brij 97, an ethoxylated alcohol ether surfactant, showed a high capacity for solubilizing the OU-1 NAPL. In a column test using contaminated Hill AFB aquifer material, flushing with a mixture of 3% Brij 97 and 2.5% n-pentanol removed essentially all of the mass of nine target analytes in the NAPL after flushing with <10 pore volumes without mobilizing the NAPL or destabilizing aquifer colloids.

  5. Revised laboratory manual helps solve problems.

    PubMed

    Hardy, R; Grubbs, F C

    1976-11-01

    This paper describes a project to design a laboratory manual which could be easily understood and used by both those who work in and those who utilize the laboratory in a large teaching hospital complex. Results indicated increased employee knowledge of laboratory policies and procedures, and an improved relationship between patient units and the laboratory. PMID:984079

  6. Medical and Clinical Laboratory Technologists and Technicians

    MedlinePlus

    ... examine and identify bacteria and other microorganisms. Molecular biology technologists perform complex protein and nucleic acid tests ... medical laboratory scientist degree, includes courses in chemistry, biology, microbiology, math, and statistics. Coursework emphasizes laboratory skills, ...

  7. Laboratory Tests

    MedlinePlus

    ... Home Medical Devices Products and Medical Procedures In Vitro Diagnostics Lab Tests Laboratory Tests Share Tweet Linkedin ... Approved Home and Lab Tests Find All In Vitro Diagnostic Products and Decision Summaries Since November 2003 ...

  8. An innovative approach that was used to assess the air quality impacts of a large complex facility (Los Alamos National Laboratory) that has the potential to emit hundreds of toxic air pollutants in small quantities

    SciTech Connect

    Soden, J.; Kogan, V.; Gorman-Bates, K.

    1997-12-31

    The Department of Energy is preparing a Sitewide EIS for Los Alamos National Laboratory (LANL) as part of its evaluation of future use for the facility. An air quality analysis is required to estimate the potential impacts of the release of air pollutants from a facility that uses hundreds of toxic chemicals. These chemicals are currently used in 30 separately managed groups of operations or laboratory complexes--known as Technical Areas (TAs). Emission data and stack parameter information are currently not available. Undertaking an emission inventory, which would have been required for a conventional air quality impact analysis, would have been both costly and time consuming. An innovative and cost-effective methodology was therefore developed to assess the potential air quality impacts of the emissions of toxic air pollutants released from this facility. This methodology is based on the use of threshold emission values (TEVs), which are, for the purpose of this study, the maximum rates of each pollutant that could be emitted into the atmosphere from each TA that would not contravene health-related guideline values. TEVs unique to each TA were developed for each of the carcinogenic and non-carcinogenic toxic pollutants emitted from facility using EPA`s ISC3 dispersion model, and prototypical stack and building parameters. Once the TEVs were established for each TA, comparisons were made on a pollutant-specific basis between these values and conservatively estimated potential emissions rates that were based primarily on the purchase rates of these chemicals to identify those pollutants which may cause potentially significant adverse air quality impacts. This approach allowed over 95 percent of the toxic air pollutants to be eliminated from further consideration, and enabled the detailed analysis to focus on the remaining 5 percent.

  9. Laboratory Buildings.

    ERIC Educational Resources Information Center

    Barnett, Jonathan

    The need for flexibility in science research facilities is discussed, with emphasis on the effect of that need on the design of laboratories. The relationship of office space, bench space, and special equipment areas, and the location and distribution of piping and air conditioning, are considered particularly important. This building type study…

  10. Laboratory diagnosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the first major goals of the microbiology laboratory is to isolate or detect clinically significant microorganisms from an affected site and, if more than one type of microorganism is present, to isolate them in approximately the same ratio as occurs in vivo. Whether an isolate is “clinically...

  11. Geology of the Arco-Big Southern Butte area, eastern Snake River Plain, and volcanic hazards to the radioactive waste management complex, and other waste storage and reactor facilities at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Kork, John O.

    1978-01-01

    The Arco-Big Southern Butte area of the eastern Snake River Plain, Idaho, includes a volcanic rift zone and more than 70 Holocene and late Quaternary basalt volcanoes. The Arco volcanic rift zone extends southeast for 50 km from Arco to about 10 km southeast of Big Southern Butte. The rift zone is the locus of extensional faults, graben, fissure basaltic volcanic vents, several rhyolite domes at Big Southern Butte, and a ferrolatite volcano at Cedar Butte. Limited radiometric age data and geological field criteria suggest that all volcanism in the area is younger than 700,000 years; at least 67 separate basaltic eruptions are estimated to have occurred within the last 200,000 years. The average volcanic recurrence interval for the Arco-Big Southern Butte area is approximately one eruption per 3,000 years. Radioactive waste storage and reactor facilities at the Idaho National Engineering Laboratory may be subject to potential volcanic hazards. The geologic history and inferred past volcanic events in the Arco-Big Southern Butte area provide a basis for assessing the volcanic hazard. It is recommended that a radiometric age-dating study be performed on rocks in cored drill holes to provide a more precise estimate of the eruption recurrence interval for the region surrounding and including the Radioactive Waste Management Complex. It is also recommended that several geophysical monitoring systems (dry tilt and seismic) be installed to provide adequate warning of future volcanic eruptions.

  12. Lunar laboratory

    SciTech Connect

    Keaton, P.W.; Duke, M.B.

    1986-01-01

    An international research laboratory can be established on the Moon in the early years of the 21st Century. It can be built using the transportation system now envisioned by NASA, which includes a space station for Earth orbital logistics and orbital transfer vehicles for Earth-Moon transportation. A scientific laboratory on the Moon would permit extended surface and subsurface geological exploration; long-duration experiments defining the lunar environment and its modification by surface activity; new classes of observations in astronomy; space plasma and fundamental physics experiments; and lunar resource development. The discovery of a lunar source for propellants may reduce the cost of constructing large permanent facilities in space and enhance other space programs such as Mars exploration. 29 refs.

  13. U1A Complex

    SciTech Connect

    2014-10-28

    Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

  14. U1A Complex

    ScienceCinema

    None

    2015-01-09

    Some of the most sophisticated experiments in the stockpile stewardship program are conducted in an environmentally safe manner, nearly 1000 feet below the ground at the site. The U1a complex a sprawling underground laboratory and tunnel complex is home to a number of unique capabilities.

  15. Review of the transport of selected radionuclides in the interim risk assessment for the Radioactive Waste Management Complex, Waste Area Group 7 Operable Unit 7-13/14, Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Rousseau, Joseph P.; Landa, Edward R.; Nimmo, John R.; Cecil, L. DeWayne; Knobel, LeRoy L.; Glynn, Pierre D.; Kwicklis, Edward M.; Curtis, Gary P.; Stollenwerk, Kenneth G.; Anderson, Steven R.; Bartholomay, Roy C.; Bossong, Clifford R.; Orr, Brennon R.

    2005-01-01

    The U.S. Department of Energy (DOE) requested that the U.S. Geological Survey conduct an independent technical review of the Interim Risk Assessment (IRA) and Contaminant Screening for the Waste Area Group 7 (WAG-7) Remedial Investigation, the draft Addendum to the Work Plan for Operable Unit 7-13/14 WAG-7 comprehensive Remedial Investigation and Feasibility Study (RI/FS), and supporting documents that were prepared by Lockheed Martin Idaho Technologies, Inc. The purpose of the technical review was to assess the data and geotechnical approaches that were used to estimate future risks associated with the release of the actinides americium, uranium, neptunium, and plutonium to the Snake River Plain aquifer from wastes buried in pits and trenches at the Subsurface Disposal Area (SDA). The SDA is located at the Radioactive Waste Management Complex in southeastern Idaho within the boundaries of the Idaho National Engineering and Environmental Laboratory. Radionuclides have been buried in pits and trenches at the SDA since 1957 and 1952, respectively. Burial of transuranic wastes was discontinued in 1982. The five specific tasks associated with this review were defined in a ?Proposed Scope of Work? prepared by the DOE, and a follow-up workshop held in June 1998. The specific tasks were (1) to review the radionuclide sampling data to determine how reliable and significant are the reported radionuclide detections and how reliable is the ongoing sampling program, (2) to assess the physical and chemical processes that logically can be invoked to explain true detections, (3) to determine if distribution coefficients that were used in the IRA are reliable and if they have been applied properly, (4) to determine if transport model predictions are technically sound, and (5) to identify issues needing resolution to determine technical adequacy of the risk assessment analysis, and what additional work is required to resolve those issues.

  16. Afterglow Complex Plasma

    SciTech Connect

    Samarian, A. A.; Boufendi, L.; Mikikian, M.

    2008-09-07

    The review of the first detailed experimental and theoretical studies of complex plasma in RF discharge afterglow is presented. The studies have been done in a frame of FAST collaborative research project between Complex Plasma Laboratory of the University of Sydney and the GREMI laboratory of Universite d'Orleans. We examined the existing models of plasma decay, presents experimental observations of dust dynamics under different afterglow complex plasma conditions, presents the experimental data obtained (in particular the presence of positively charged particles in discharge afterglow), discusses the use of dust particles as a probe to study the diffusion losses in afterglow plasmas.

  17. Laboratory investigations

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.

    1988-01-01

    Laboratory studies related to cometary grains and the nuclei of comets can be broken down into three areas which relate to understanding the spectral properties, the formation mechanisms, and the evolution of grains and nuclei: (1) Spectral studies to be used in the interpretation of cometary spectra; (2) Sample preparation experiments which may shed light on the physical nature and history of cometary grains and nuclei by exploring the effects on grain emissivities resulting from the ways in which the samples are created; and (3) Grain processing experiments which should provide insight on the interaction of cometary grains with the environment in the immediate vicinity of the cometary nucleus as the comet travels from the Oort cloud through perihelion, and perhaps even suggestions regarding the relationship between interstellar grains and cometary matter. A summary is presented with a different view of lab experiments than is found in the literature, concentrating on measurement techniques and sample preparations especially relevant to cometary dust.

  18. Laboratory Activities

    SciTech Connect

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNL’s Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package – in preparation). Sediment samples and characterization results from PNNL’s Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  19. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  20. Laboratory Astrochemistry: Interstellar PAHs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are thought to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: (1) objectives, (2) approach and techniques adopted, (3) adaptability to the nature of the problem(s), and (4) results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  1. Design and Implementation Issues for Modern Remote Laboratories

    ERIC Educational Resources Information Center

    Guimaraes, E. G.; Cardozo, E.; Moraes, D. H.; Coelho, P. R.

    2011-01-01

    The design and implementation of remote laboratories present different levels of complexity according to the nature of the equipments operated by the remote laboratory, the requirements imposed on the accessing computers, the network linking the user to the laboratory, and the type of experiments the laboratory supports. This paper addresses the…

  2. 42 CFR 493.1445 - Standard; Laboratory director responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard; Laboratory director responsibilities. 493... HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing High Complexity Testing § 493.1445 Standard; Laboratory...

  3. 42 CFR 493.1407 - Standard; Laboratory director responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Standard; Laboratory director responsibilities. 493... HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Personnel for Nonwaived Testing Laboratories Performing Moderate Complexity Testing § 493.1407 Standard; Laboratory...

  4. 10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal Hydraulics Laboratory at Hanford. General Electric Company, Hanford Atomic Products Operation, Richland, Washington, 1961. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA

  5. Chemical Kinetics Laboratory Discussion Worksheet

    PubMed Central

    Demoin, Dustin Wayne; Jurisson, Silvia S.

    2013-01-01

    A laboratory discussion worksheet and its answer key provide instructors and students a discussion model to further the students’ understanding of chemical kinetics. This discussion worksheet includes a section for students to augment their previous knowledge about chemical kinetics measurements, an initial check on students’ understanding of basic concepts, a group participation model where students work on solving complex-conceptual problems, and a conclusion to help students connect this discussion to their laboratory or lecture class. Additionally, the worksheet has a detailed solution to a more advanced problem to help students understand how the concepts they have put together relate to problems they will encounter during later formal assessments. PMID:24092948

  6. FORT Molecular Ecology Laboratory

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Stevens, P.D.

    2011-01-01

    The mission of the U.S. Geological Survey (USGS) at the Fort Collins Science Center Molecular Ecology Laboratory is to use the tools and concepts of molecular genetics to address a variety of complex management questions and conservation issues facing the management of the Nation's fish and wildlife resources. Together with our partners, we design and implement studies to document genetic diversity and the distribution of genetic variation among individuals, populations, and species. Information from these studies is used to support wildlife-management planning and conservation actions. Current and past studies have provided information to assess taxonomic boundaries, inform listing decisions made under the Endangered Species Act, identify unique or genetically depauperate populations, estimate population size or survival rates, develop management or recovery plans, breed wildlife in captivity, relocate wildlife from one location to another, and assess the effects of environmental change.

  7. Los Alamos National Laboratory

    SciTech Connect

    Dogliani, Harold O

    2011-01-19

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  8. Chemistry Laboratory Safety Check

    ERIC Educational Resources Information Center

    Patnoe, Richard L.

    1976-01-01

    An accident prevention/safety check list for chemistry laboratories is printed. Included are checks of equipment, facilities, storage and handling of chemicals, laboratory procedures, instruction procedures, and items to be excluded from chemical laboratories. (SL)

  9. [Theme: Using Laboratories.

    ERIC Educational Resources Information Center

    Pritchard, Jack; Braker, Clifton

    1982-01-01

    Pritchard discusses the opportunities for applied learning afforded by laboratories. Braker describes the evaluation of cognitive, affective, and psychomotor skills in the agricultural mechanics laboratory. (SK)

  10. [Cost performance and TQC in laboratory management from the aspect of a commercial laboratory].

    PubMed

    Takahashi, M

    1995-10-01

    Whereas per capita national income in 1992 remained in 0.3% increase, national fee for medical treatment showed a remarkable increase of 7.6% compared with that of the previous year. A recent technological innovation in laboratory medicine such as nonisotopic immunoassays, biosensors and DNA techniques is another factor to rise up the medical expense. Hospital administrator and laboratory manager must consider the most effective laboratory management according to complexity grading of tests. Nowadays, large numbers of test items are ordered from hospitals or clinics to reference laboratories because of cost-analysis for environmental security, heavy instrumentation, problem for bio-hazards and employee fee, etc. Since 1992, when commercial laboratories were allowed legally to be stationed in hospitals as called "branch laboratories", hospital administrators have been in consideration to introduce this system. Commercial laboratories, on the other hand, have come to be obliged to build a laboratory network from branch laboratory through regional laboratory to main reference laboratory with a strict responsibility of TQA including collecting specimens, transportation, receipt, testing and reporting results with on-line computer system. The most important task in the laboratory site is protection of privacy of patient informations, since recent systematization of laboratory tests has led any person working in medical record office and laboratories to easy access to work stations. PMID:8531398

  11. Laboratory Information Systems.

    PubMed

    Henricks, Walter H

    2015-06-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. PMID:26065785

  12. Laboratory Information Systems.

    PubMed

    Henricks, Walter H

    2016-03-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. PMID:26851660

  13. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    neutrons, liberating a little energy and creating complexity. Then, the expanding universe cooled some more, and neutrons and protons, no longer kept apart by immense temperatures, found themselves unstable and formed helium nuclei. Then, a little more cooling, and atomic nuclei and electrons were no longer kept apart, and the universe became transparent. Then a little more cooling, and the next instability began: gravitation pulled matter together across cosmic distances to form stars and galaxies. This instability is described as a "negative heat capadty" in which extracting energy from a gravitating system makes it hotter -- clearly the 2nd law of thermodynamics does not apply here! (This is the physicist's part of the answer to e e cummings' question: what is the wonder that's keeping the stars apart?) Then, the next instability is that hydrogen and helium nuclei can fuse together to release energy and make stars burn for billions of years. And then at the end of the fuel source, stars become unstable and explode and liberate the chemical elements back into space. And because of that, on planets like Earth, sustained energy flows support the development of additional instabilities and all kinds of complex patterns. Gravitational instability pulls the densest materials into the core of the Earth, leaving a thin skin of water and air, and makes the interior churn incessantly as heat flows outwards. And the heat from the sun, received mostly near the equator and flowing towards the poles, supports the complex atmospheric and oceanic circulations. And because or that, the physical Earth is full of natural chemical laboratories, concentrating elements here, mixing them there, raising and lowering temperatures, ceaselessly experimenting with uncountable events where new instabilities can arise. At least one of them was the new experiment called life. Now that we know that there are at least as many planets as there are stars, it is hard to imagine that nature's ceasess

  14. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    neutrons, liberating a little energy and creating complexity. Then, the expanding universe cooled some more, and neutrons and protons, no longer kept apart by immense temperatures, found themselves unstable and formed helium nuclei. Then, a little more cooling, and atomic nuclei and electrons were no longer kept apart, and the universe became transparent. Then a little more cooling, and the next instability began: gravitation pulled matter together across cosmic distances to form stars and galaxies. This instability is described as a "negative heat capadty" in which extracting energy from a gravitating system makes it hotter -- clearly the 2nd law of thermodynamics does not apply here! (This is the physicist's part of the answer to e e cummings' question: what is the wonder that's keeping the stars apart?) Then, the next instability is that hydrogen and helium nuclei can fuse together to release energy and make stars burn for billions of years. And then at the end of the fuel source, stars become unstable and explode and liberate the chemical elements back into space. And because of that, on planets like Earth, sustained energy flows support the development of additional instabilities and all kinds of complex patterns. Gravitational instability pulls the densest materials into the core of the Earth, leaving a thin skin of water and air, and makes the interior churn incessantly as heat flows outwards. And the heat from the sun, received mostly near the equator and flowing towards the poles, supports the complex atmospheric and oceanic circulations. And because or that, the physical Earth is full of natural chemical laboratories, concentrating elements here, mixing them there, raising and lowering temperatures, ceaselessly experimenting with uncountable events where new instabilities can arise. At least one of them was the new experiment called life. Now that we know that there are at least as many planets as there are stars, it is hard to imagine that nature's ceasess

  15. Estimation of Hydraulic Properties Influencing Recharge and Contaminant Transport through Complex Vadose Zones by Analyzing Perched Water Data from the 1994 Large-Scale Infiltration Test at the Idaho National Laboratory

    NASA Astrophysics Data System (ADS)

    Creasey, K. M.; Nimmo, J. R.

    2014-12-01

    Layers of strong geologic contrast within the vadose zone can control recharge and contaminant transport to underlying aquifers. Above the eastern Snake River Plain Aquifer, multiple sedimentary interbeds are interspersed between fractured basalt. These interbeds have a variety of thicknesses and hydraulic properties, and can impede water flow, which allows perched water to collect on the interbeds. The Large-Scale Infiltration Test (LSIT) of 1994 at the Idaho National Laboratory (INL) maintained a circular pond, 200 meters in diameter, at a constant head for 20 days. Monitoring wells were arranged in circles of different radii around and within the pond, and perched water levels on a major sedimentary interbed, 55 meters below ground surface, were measured over time. Data showed that water formed a mound on the interbed before seeping through the interbed. Such behavior is consistent with a hypothesis of rapid flow through the fractured basalt being impeded by the sedimentary interbed. In 2014, the USGS, in cooperation with the U.S. Department of Energy, used a modified version of a Hantush (1967) equation to model the time-dependent perched water table heights from the LSIT as a function of radial distance from the pond center. The modeled volume change between time-steps and the known inflows to the pond were used in a mass balance to estimate the time-varying volume of water seeping through the interbed. This volume of water, the height of perched water, and the interbed thickness were used in Darcy's Law to estimate the effective saturated hydraulic conductivity of the impeding interbed. Results indicate a slightly higher effective conductivity than laboratory measurements of small core samples taken from the interbed, reflecting the presence of fractures or other heterogeneities that facilitate field-scale flow through the interbed. Applied to other locations, this method can improve estimates of recharge and contaminant transport to underlying aquifers.

  16. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Tethered gravity laboratories study is presented. The following subject areas are covered: variable gravity laboratory; attitude tether stabilizer; configuration analysis (AIT); dynamic analysis (SAO); and work planned for the next reporting period.

  17. An Electronics "Unit Laboratory"

    ERIC Educational Resources Information Center

    Davies, E. R.; Penton, S. J.

    1976-01-01

    Describes a laboratory teaching technique in which a single topic (in this case, bipolar junction transistors) is studied over a period of weeks under the supervision of one staff member, who also designs the laboratory work. (MLH)

  18. Employment at National Laboratories

    SciTech Connect

    E. S. Peterson; C. A. Allen

    2007-04-01

    Scientists enter the National Laboratory System for many different reasons. For some, faculty positions are scarce, so they take staff-scientist position at national laboratories (i.e. Pacific Northwest, Idaho, Los Alamos, and Brookhaven). Many plan to work at the National Laboratory for 5 to 7 years and then seek an academic post. For many (these authors included), before they know it it’s 15 or 20 years later and they never seriously considered leaving the laboratory system.

  19. EPA Environmental Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  20. Laboratory Ventilation and Safety.

    ERIC Educational Resources Information Center

    Steere, Norman V.

    1965-01-01

    In order to meet the needs of both safety and economy, laboratory ventilation systems must effectively remove air-borne toxic and flammable materials and at the same time exhaust a minimum volume of air. Laboratory hoods are the most commonly used means of removing gases, dusts, mists, vapors, and fumed from laboratory operations. To be effective,…

  1. Theme: Laboratory Instruction.

    ERIC Educational Resources Information Center

    Bruening, Thomas H.; And Others

    1992-01-01

    A series of theme articles discuss setting up laboratory hydroponics units, the school farm at the Zuni Pueblo in New Mexico, laboratory experiences in natural resources management and urban horticulture, the development of teaching labs at Derry (PA) High School, management of instructional laboratories, and industry involvement in agricultural…

  2. Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Fay, Michael; Bruck, Laura B.; Towns, Marcy H.

    2013-01-01

    Forty chemistry faculty from American Chemical Society-approved departments were interviewed to determine their goals for undergraduate chemistry laboratory. Faculty were stratified by type of institution, departmental success with regard to National Science Foundation funding for laboratory reform, and level of laboratory course. Interview…

  3. Laboratory Activities in Israel

    ERIC Educational Resources Information Center

    Mamlok-Naaman, Rachel; Barnea, Nitza

    2012-01-01

    Laboratory activities have long had a distinctive and central role in the science curriculum, and science educators have suggested that many benefits accrue from engaging students in science laboratory activities. Many research studies have been conducted to investigate the educational effectiveness of laboratory work in science education in…

  4. INL Laboratory Scale Atomizer

    SciTech Connect

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  5. Laboratory Equipment Criteria.

    ERIC Educational Resources Information Center

    State Univ. Construction Fund, Albany, NY.

    Requirements for planning, designing, constructing and installing laboratory furniture are given in conjunction with establishing facility criteria for housing laboratory equipment. Furniture and equipment described include--(1) center tables, (2) reagent racks, (3) laboratory benches and their mechanical fixtures, (4) sink and work counters, (5)…

  6. Los Alamos National Laboratory.

    ERIC Educational Resources Information Center

    Hammel, Edward F., Jr.

    1982-01-01

    Current and post World War II scientific research at the Los Alamos National Laboratory (New Mexico) is discussed. The operation of the laboratory, the Los Alamos consultant program, and continuation education, and continuing education activities at the laboratory are also discussed. (JN)

  7. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    SciTech Connect

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  8. Sandia, California Tritium Research Laboratory transition and reutilization project

    SciTech Connect

    Garcia, T.B.

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  9. Complexity Survey.

    ERIC Educational Resources Information Center

    Gordon, Sandra L.; Anderson, Beth C.

    To determine whether consensus existed among teachers about the complexity of common classroom materials, a survey was administered to 66 pre-service and in-service kindergarten and prekindergarten teachers. Participants were asked to rate 14 common classroom materials as simple, complex, or super-complex. Simple materials have one obvious part,…

  10. Quality in pathology laboratory practice.

    PubMed

    Weinstein, S

    1995-06-01

    Quality refers not only to analytical quality control, a traditional area of laboratory excellence, but to the entire science of quality management. As measures of quality, structural indicators refer to staffing and physical facilities, process indicators to the institutions operations and, perhaps most importantly, outcome indicators address the ultimate patient care uses that pathology information is put to. Comparison of performance to peer laboratories, external quality control, is a practical, if limited, yardstick of performance. Customer satisfaction and turn-around-time of tests are receiving more recent attention as quality measures. Blood banking, because of its inherently complex cycle from donor phlebotomy to product infusion, requires special considerations with regard to quality management. Reporting of anatomical pathology, where the only gold standard is a consensus of experts, also does not lend itself to classical numerical quality assessment. PMID:7670717

  11. The total laboratory solution: a new laboratory E-business model based on a vertical laboratory meta-network.

    PubMed

    Friedman, B A

    2001-08-01

    Major forces are now reshaping all businesses on a global basis, including the healthcare and clinical laboratory industries. One of the major forces at work is information technology (IT), which now provides the opportunity to create a new economic and business model for the clinical laboratory industry based on the creation of an integrated vertical meta-network, referred to here as the "total laboratory solution" (TLS). Participants at the most basic level of such a network would include a hospital-based laboratory, a reference laboratory, a laboratory information system/application service provider/laboratory portal vendor, an in vitro diagnostic manufacturer, and a pharmaceutical/biotechnology manufacturer. It is suggested that each of these participants would add value to the network primarily in its area of core competency. Subvariants of such a network have evolved over recent years, but a TLS comprising all or most of these participants does not exist at this time. Although the TLS, enabled by IT and closely akin to the various e-businesses that are now taking shape, offers many advantages from a theoretical perspective over the current laboratory business model, its success will depend largely on (a) market forces, (b) how the collaborative networks are organized and managed, and (c) whether the network can offer healthcare organizations higher quality testing services at lower cost. If the concept is successful, new demands will be placed on hospital-based laboratory professionals to shift the range of professional services that they offer toward clinical consulting, integration of laboratory information from multiple sources, and laboratory information management. These information management and integration tasks can only increase in complexity in the future as new genomic and proteomics testing modalities are developed and come on-line in clinical laboratories. PMID:11468263

  12. Laboratory Turnaround Time

    PubMed Central

    Hawkins, Robert C

    2007-01-01

    Turnaround time (TAT) is one of the most noticeable signs of laboratory service and is often used as a key performance indicator of laboratory performance. This review summarises the literature regarding laboratory TAT, focusing on the different definitions, measures, expectations, published data, associations with clinical outcomes and approaches to improve TAT. It aims to provide a consolidated source of benchmarking data useful to the laboratory in setting TAT goals and to encourage introduction of TAT monitoring for continuous quality improvement. A 90% completion time (sample registration to result reporting) of <60 minutes for common laboratory tests is suggested as an initial goal for acceptable TAT. PMID:18392122

  13. Communication complexity and information complexity

    NASA Astrophysics Data System (ADS)

    Pankratov, Denis

    Information complexity enables the use of information-theoretic tools in communication complexity theory. Prior to the results presented in this thesis, information complexity was mainly used for proving lower bounds and direct-sum theorems in the setting of communication complexity. We present three results that demonstrate new connections between information complexity and communication complexity. In the first contribution we thoroughly study the information complexity of the smallest nontrivial two-party function: the AND function. While computing the communication complexity of AND is trivial, computing its exact information complexity presents a major technical challenge. In overcoming this challenge, we reveal that information complexity gives rise to rich geometrical structures. Our analysis of information complexity relies on new analytic techniques and new characterizations of communication protocols. We also uncover a connection of information complexity to the theory of elliptic partial differential equations. Once we compute the exact information complexity of AND, we can compute exact communication complexity of several related functions on n-bit inputs with some additional technical work. Previous combinatorial and algebraic techniques could only prove bounds of the form theta( n). Interestingly, this level of precision is typical in the area of information theory, so our result demonstrates that this meta-property of precise bounds carries over to information complexity and in certain cases even to communication complexity. Our result does not only strengthen the lower bound on communication complexity of disjointness by making it more exact, but it also shows that information complexity provides the exact upper bound on communication complexity. In fact, this result is more general and applies to a whole class of communication problems. In the second contribution, we use self-reduction methods to prove strong lower bounds on the information

  14. Data management in the vascular laboratory.

    PubMed

    Kempczinski, R F

    1994-12-01

    As the clinical workload in the vascular laboratory increases and as the demand for additional documentation by hospital oversight committees and outside agencies grow, the need for computerized data management will become obvious. Although there are no generic, broadly applicable software programs to automate the laboratory's operations, applications can easily be developed using any of the current database programs to meet the needs of most laboratories. Fortunately, the intense competition in the microcomputer industry has recently made very powerful systems that are capable of providing the necessary computing support increasingly affordable. Such systems can be very simple or incredibly complex depending on the available local expertise and each laboratory's specific needs. In addition to facilitating the laboratory's daily operations, such a system will inevitably expedite the implementation of the laboratory's quality assurance program and will maximize utilization of existing personnel. This type of cost-effective solution to the ever-increasing demand for service will become increasingly important in maintaining the laboratory's fiscal viability. Although the prospects of undertaking such a task might seem daunting, especially to the computer novice, it is important to begin. Keep the system simple, at first, and allow it to develop as local expertise and confidence develop. The only prospect more frightening that sitting down to develop a computerized system for managing the laboratory's data, is the prospect of trying to continue without one! PMID:7881616

  15. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  16. Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  17. Teaching Chromatography Using Virtual Laboratory Exercises

    ERIC Educational Resources Information Center

    Stone, David C.

    2007-01-01

    Though deceptively simple to teach, chromatography presents many nuances and complex interactions that challenge both student and instructor. Time and instrumentation provide major obstacles to a thorough examination of these details in the laboratory. Modern chromatographic method-development software provides an opportunity to overcome this,…

  18. Development of an Environmental Virtual Field Laboratory

    ERIC Educational Resources Information Center

    Ramasundaram, V.; Grunwald, S.; Mangeot, A.; Comerford, N. B.; Bliss, C. M.

    2005-01-01

    Laboratory exercises, field observations and field trips are a fundamental part of many earth science and environmental science courses. Field observations and field trips can be constrained because of distance, time, expense, scale, safety, or complexity of real-world environments. Our objectives were to develop an environmental virtual field…

  19. Laboratory Studies Towards Understanding Comets

    NASA Astrophysics Data System (ADS)

    Gudipati, Murthy S.; Abou Mrad, Ninette; Blum, Jürgen; Charnley, Steven B.; Chiavassa, Thierry; Cordiner, Martin A.; Mousis, Olivier; Danger, Grégoire; Duvernay, Fabrice; Gundlach, Bastian; Hartogh, Paul; Marboeuf, Ulysse; Simonia, Irakli; Simonia, Tsitsino; Theulé, Patrice; Yang, Rui

    2015-12-01

    This review presents some of the recent advancements in our understanding of comets facilitated by laboratory studies, need for new laboratory simulations, and predictions for future explorations. With the spacecraft Rosetta at the comet 67P/Churyumov-Gerasimenko, a large volume of science data is expected to follow early results that have been published recently. The most surprising of them being hard ice shell that bounced the lander Philae a couple of times before settling on the comet. Long evaded molecular nitrogen has now been detected in the comet 67P/CG. The observed density of 470 kg m^{- 3} is in line with other comet observations, whereas the nature and composition of hydrocarbons detected on the surface are still a puzzle. Observation of D/H ratio that deviates significantly from Earth's water D/H ratio brings back to the table the long-standing question whether or not water on Earth was delivered by comet impacts. Our review summarizes some of the critical laboratory work that helps improve our understanding of cometary interior (whether amorphous or crystalline or containing clathrates), cometary surface (rich of complex organics), cometary coma and tail (D/H ratio, negative ions, and photoluminescence). Outstanding questions are also discussed.

  20. Complex derivatives

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano; Caldarelli, Guido; Georg, Co-Pierre; May, Robert; Stiglitz, Joseph

    2013-03-01

    The intrinsic complexity of the financial derivatives market has emerged as both an incentive to engage in it, and a key source of its inherent instability. Regulators now faced with the challenge of taming this beast may find inspiration in the budding science of complex systems.

  1. Designing Complexity

    ERIC Educational Resources Information Center

    Glanville, Ranulph

    2007-01-01

    This article considers the nature of complexity and design, as well as relationships between the two, and suggests that design may have much potential as an approach to improving human performance in situations seen as complex. It is developed against two backgrounds. The first is a world view that derives from second order cybernetics and radical…

  2. NVLAP calibration laboratory program

    SciTech Connect

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  3. Technology Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Brame, Ray; And Others

    This guide contains 43 modules of laboratory activities for technology education courses. Each module includes an instructor's resource sheet and the student laboratory activity. Instructor's resource sheets include some or all of the following elements: module number, course title, activity topic, estimated time, essential elements, objectives,…

  4. The Virtual Robotics Laboratory

    SciTech Connect

    Kress, R.L.; Love, L.J.

    1997-03-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  5. Quality in Teaching Laboratories.

    ERIC Educational Resources Information Center

    Stubington, John F.

    1995-01-01

    Describes a Japanese process-oriented approach called KAIZEN for improving the quality of existing teaching laboratories. It provides relevant quality measurements and indicates how quality can be improved. Use of process criteria sidesteps the difficulty of defining quality for laboratory experiments and allows separation of student assessment…

  6. The Language Laboratory.

    ERIC Educational Resources Information Center

    Hocking, Elton

    This condensed article on the language laboratory describes educational and financial possibilities and limitations, often citing the foreign language program at Purdue University as an example. The author discusses: (1) costs and amortization, (2) preventive maintenance, (3) laboratory design, (4) the multichannel recorder, and (5) visuals. Other…

  7. Dental Laboratory Technology.

    ERIC Educational Resources Information Center

    Department of the Air Force, Washington, DC.

    The Air Force dental laboratory technology manual is designed as a basic training text as well as a reference source for dental laboratory technicians, a specialty occupation concerned with the design, fabrication, and repair of dental prostheses. Numerous instructive diagrams and photographs are included throughout the manual. The comprehensive…

  8. Hoods for Science Laboratories.

    ERIC Educational Resources Information Center

    Horowitz, Harold; and others

    Detailed discussions are presented dealing with the selection and design of fume hoods for science laboratories. Areas covered include--(1) air flow design, (2) materials properties, (3) location in the laboratory, (4) testing and adjustment, (5) exhaust systems, and (6) hazards of fume discharges. (JT)

  9. The Virtual Robotics Laboratory

    SciTech Connect

    Kress, R.L.; Love, L.J.

    1999-09-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  10. Dental Laboratory Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of dental laboratory technician, lists technical competencies and competency builders for 13 units pertinent to the health technologies cluster in general and 8 units to the occupation of dental laboratory technician. The following skill areas…

  11. LANGUAGE ARTS LABORATORY.

    ERIC Educational Resources Information Center

    ROBERTS, HERMESE E.

    THE LANGUAGE ARTS LABORATORY WAS ESTABLISHED TO IMPROVE READING ABILITY AND OTHER LANGUAGE ARTS SKILLS AS AN AID IN THE PREVENTION OF DROPOUTS. THE LABORATORY WAS OPERATED ON A SUMMER SCHEDULE WITH A FLEXIBLE PROGRAM OF FROM 45 MINUTES TO 2 1/2 HOURS DAILY. ALL PUPILS WERE 14 YEARS OF AGE OR OLDER, AND EXPRESSED A DESIRE TO IMPROVE THEIR READING…

  12. Biotechnology Laboratory Methods.

    ERIC Educational Resources Information Center

    Davis, Robert H.; Kompala, Dhinakar S.

    1989-01-01

    Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream processing-bioseparations.…

  13. Medical Laboratory Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of medical laboratory technician, lists technical competencies and competency builders for 18 units pertinent to the health technologies cluster in general and 8 units specific to the occupation of medical laboratory technician. The following…

  14. Practical Laboratory Planning.

    ERIC Educational Resources Information Center

    Ferguson, W. R.

    This book is intended as a guide for people who are planning chemistry and physics research laboratories. It deals with the importance of effective communication between client and architect, the value of preliminary planning, and the role of the project officer. It also discusses the size and layout of individual laboratories, the design of…

  15. Primary Standards Laboratory report

    SciTech Connect

    Not Available

    1990-12-01

    Sandia National Laboratories operates the Primary Standards Laboratory (PSL) for the Department of Energy, Albuquerque Operations Office (DOE/AL). This report summarizes metrology activities that received emphasis in the first half of 1990 and provides information pertinent to the operation of the DOE/AL system-wide Standards and Calibration Program.

  16. Laboratory for Oceans

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A review is made of the activities of the Laboratory for Oceans. The staff and the research activities are nearly evenly divided between engineering and scientific endeavors. The Laboratory contributes engineering design skills to aircraft and ground based experiments in terrestrial and atmospheric sciences in cooperation with scientists from labs in Earth sciences.

  17. Laboratory Astrochemistry: Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  18. Laboratory automation in clinical bacteriology: what system to choose?

    PubMed

    Croxatto, A; Prod'hom, G; Faverjon, F; Rochais, Y; Greub, G

    2016-03-01

    Automation was introduced many years ago in several diagnostic disciplines such as chemistry, haematology and molecular biology. The first laboratory automation system for clinical bacteriology was released in 2006, and it rapidly proved its value by increasing productivity, allowing a continuous increase in sample volumes despite limited budgets and personnel shortages. Today, two major manufacturers, BD Kiestra and Copan, are commercializing partial or complete laboratory automation systems for bacteriology. The laboratory automation systems are rapidly evolving to provide improved hardware and software solutions to optimize laboratory efficiency. However, the complex parameters of the laboratory and automation systems must be considered to determine the best system for each given laboratory. We address several topics on laboratory automation that may help clinical bacteriologists to understand the particularities and operative modalities of the different systems. We present (a) a comparison of the engineering and technical features of the various elements composing the two different automated systems currently available, (b) the system workflows of partial and complete laboratory automation, which define the basis for laboratory reorganization required to optimize system efficiency, (c) the concept of digital imaging and telebacteriology, (d) the connectivity of laboratory automation to the laboratory information system, (e) the general advantages and disadvantages as well as the expected impacts provided by laboratory automation and (f) the laboratory data required to conduct a workflow assessment to determine the best configuration of an automated system for the laboratory activities and specificities. PMID:26806135

  19. Software agent technology in the laboratory

    SciTech Connect

    Staab, T. A.

    2002-01-01

    The IT (Information Technology) environment in today's laboratories is characterized as being highly distributed, heterogeneous, and in some instances extremely dynamic. Larger organizations have to deal with hundreds of different systems, ranging from standalone workstations and devices in laboratories to fully integrated LIMS (Laboratory Information Management System) and ERP (Enterprise Resource Planning) systems. An information system operating in such an environment must handle several emerging problems, such as heterogeneous hardware and software platforms, as well as distributed information sources and capabilities. It is also expected that the IT infrastructure scales well, easily integrates with legacy systems, allows resource sharing, and supports day-to-day operations such as information retrieval, data storage, validation, tracking, replication, and archival in a fully automated fashion. By using real-world examples, this presentation will illustrate how software agent technology can be used to manage the ever increasing IT complexity and user demands in the laboratory of the future.

  20. Australia's marine virtual laboratory

    NASA Astrophysics Data System (ADS)

    Proctor, Roger; Gillibrand, Philip; Oke, Peter; Rosebrock, Uwe

    2014-05-01

    In all modelling studies of realistic scenarios, a researcher has to go through a number of steps to set up a model in order to produce a model simulation of value. The steps are generally the same, independent of the modelling system chosen. These steps include determining the time and space scales and processes of the required simulation; obtaining data for the initial set up and for input during the simulation time; obtaining observation data for validation or data assimilation; implementing scripts to run the simulation(s); and running utilities or custom-built software to extract results. These steps are time consuming and resource hungry, and have to be done every time irrespective of the simulation - the more complex the processes, the more effort is required to set up the simulation. The Australian Marine Virtual Laboratory (MARVL) is a new development in modelling frameworks for researchers in Australia. MARVL uses the TRIKE framework, a java-based control system developed by CSIRO that allows a non-specialist user configure and run a model, to automate many of the modelling preparation steps needed to bring the researcher faster to the stage of simulation and analysis. The tool is seen as enhancing the efficiency of researchers and marine managers, and is being considered as an educational aid in teaching. In MARVL we are developing a web-based open source application which provides a number of model choices and provides search and recovery of relevant observations, allowing researchers to: a) efficiently configure a range of different community ocean and wave models for any region, for any historical time period, with model specifications of their choice, through a user-friendly web application, b) access data sets to force a model and nest a model into, c) discover and assemble ocean observations from the Australian Ocean Data Network (AODN, http://portal.aodn.org.au/webportal/) in a format that is suitable for model evaluation or data assimilation, and

  1. Carbon Characterization Laboratory Report

    SciTech Connect

    David Swank; William Windes; D.C. Haggard; David Rohrbaugh; Karen Moore

    2009-03-01

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Lab-C20 of the Idaho National Laboratory Research Center. This laboratory was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite research and development activities. The CCL is designed to characterize and test carbon-based materials such as graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully prepared to measure material properties for nonirradiated carbon-based materials. Plans to establish the laboratory as a radiological facility within the next year are definitive. This laboratory will be modified to accommodate irradiated materials, after which it can be used to perform material property measurements on both irradiated and nonirradiated carbon-based material. Instruments, fixtures, and methods are in place for preirradiation measurements of bulk density, thermal diffusivity, coefficient of thermal expansion, elastic modulus, Young’s modulus, Shear modulus, Poisson ratio, and electrical resistivity. The measurement protocol consists of functional validation, calibration, and automated data acquisition.

  2. Carney Complex

    MedlinePlus

    ... Screening guidelines may change over time as new technologies are developed and more is learned about Carney complex. It is important to talk with your doctor about appropriate screening tests. Learn more about what to expect when having ...

  3. COMPLEX ELECTRICAL RESISTIVITY FOR MONITORING DNAPL CONTAMINATION

    EPA Science Inventory

    We propose to develop new practical complex resistivity field measurement techniques for pollution characterization and monitoring. For this purpose we will document the detectability of clay-organic interactions with geophysical measurements in the laboratory, develop further un...

  4. 42 CFR 493.807 - Condition: Reinstatement of laboratories performing nonwaived testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., subspecialty, or analyte, the laboratory must then demonstrate sustained satisfactory performance on two... Subspecialty for Laboratories Performing Tests of Moderate Complexity (Including the Subcategory), High... nonwaived testing. 493.807 Section 493.807 Public Health CENTERS FOR MEDICARE & MEDICAID...

  5. Specialized Laboratory Information Systems.

    PubMed

    Dangott, Bryan

    2016-03-01

    Some laboratories or laboratory sections have unique needs that traditional anatomic and clinical pathology systems may not address. A specialized laboratory information system (LIS), which is designed to perform a limited number of functions, may perform well in areas where a traditional LIS falls short. Opportunities for specialized LISs continue to evolve with the introduction of new testing methodologies. These systems may take many forms, including stand-alone architecture, a module integrated with an existing LIS, a separate vendor-supplied module, and customized software. This article addresses the concepts underlying specialized LISs, their characteristics, and in what settings they are found. PMID:26851663

  6. Laboratory Automation and Middleware.

    PubMed

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory. PMID:26065792

  7. Sonication standard laboratory module

    DOEpatents

    Beugelsdijk, Tony; Hollen, Robert M.; Erkkila, Tracy H.; Bronisz, Lawrence E.; Roybal, Jeffrey E.; Clark, Michael Leon

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  8. The laboratory module

    NASA Astrophysics Data System (ADS)

    Of the five modules comprising the Orbiting Quarantine Facility, the Laboratory Module must provide not only an extensive research capability to permit execution of the protocol, but also the flexibility to accommodate second-order testing if nonterrestrial life is discovered in the sample. The biocontainment barriers that protect the sample and the researchers from cross contamination are described. Specifically, the laboratory layout, laboratory equipment, the environmental control and life support system, and containment assurance procedures are discussed. The metal manipulation arm proposed for use within the biocontainment cabinets is described. Sample receipt and processing procedures are outlined.

  9. Complex regional pain syndrome.

    PubMed

    Sebastin, Sandeep J

    2011-05-01

    Complex regional pain syndrome (CRPS) previously known as reflex sympathetic dystrophy is a chronic neurological disorder involving the limbs characterized by disabling pain, swelling, vasomotor instability, sudomotor abnormality, and impairment of motor function. CRPS is not uncommon after hand surgery and may complicate post-operative care. There is no specific diagnostic test for CRPS and the diagnosis is based on history, clinical examination, and supportive laboratory findings. Recent modifications to diagnostic criteria have enabled clinicians to diagnose this disease more consistently. This review gives a synopsis of CRPS and discusses the diagnosis, pathophysiology, and treatment options based on the limited evidence in the literature. PMID:22022040

  10. Complex regional pain syndrome

    PubMed Central

    Sebastin, Sandeep J

    2011-01-01

    Complex regional pain syndrome (CRPS) previously known as reflex sympathetic dystrophy is a chronic neurological disorder involving the limbs characterized by disabling pain, swelling, vasomotor instability, sudomotor abnormality, and impairment of motor function. CRPS is not uncommon after hand surgery and may complicate post-operative care. There is no specific diagnostic test for CRPS and the diagnosis is based on history, clinical examination, and supportive laboratory findings. Recent modifications to diagnostic criteria have enabled clinicians to diagnose this disease more consistently. This review gives a synopsis of CRPS and discusses the diagnosis, pathophysiology, and treatment options based on the limited evidence in the literature. PMID:22022040

  11. New laboratory markers for the management of rheumatoid arthritis patients.

    PubMed

    Foti, Daniela P; Greco, Marta; Palella, Eleonora; Gulletta, Elio

    2014-12-01

    Rheumatoid arthritis, the most prominent of systemic autoimmune rheumatic diseases, represents an important social health problem. Recent insights into the immunopathogenic mechanism of this complex and multiform illness might open new perspectives for a more appropriate laboratory approach. In this review we focus on the most relevant pathogenetic mechanism; indicating the laboratory biomarkers specifically linked to early diagnosis, prognosis, evolutive aspects of the disease, and therapeutic efficacy. Evidence based on laboratory medicine could provide the best outcome for patients. PMID:24933628

  12. Ecosystems in the Laboratory

    ERIC Educational Resources Information Center

    Madders, M.

    1975-01-01

    Describes the materials and laboratory techniques for the study of food chains and food webs, pyramids of numbers and biomass, energy pyramids, and oxygen gradients. Presents a procedure for investigating the effects of various pollutants on an entire ecosystem. (GS)

  13. Organic Laboratory Experiments.

    ERIC Educational Resources Information Center

    Smith, Sherrel

    1990-01-01

    Detailed is a method in which short pieces of teflon tubing may be used for collection tubes for collecting preparative fractions from gas chromatographs. Material preparation, laboratory procedures, and results of this method are discussed. (CW)

  14. Understanding Laboratory Tests

    MedlinePlus

    ... and Drug Administration (FDA) regulates the development and marketing of all laboratory tests that use test kits ... at the National Institutes of Health FOLLOW US Facebook Twitter Instagram YouTube Google+ LinkedIn GovDelivery RSS CONTACT ...

  15. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Variable Gravity Laboratory studies are discussed. The following subject areas are covered: (1) conceptual design and engineering analysis; (2) control strategies (fast crawling maneuvers, main perturbations and their effect upon the acceleration level); and (3) technology requirements.

  16. RAS Laboratory Groups

    Cancer.gov

    The RAS Initiative uses multiple technologies to attack RAS-driven cancers. The resources of the Frederick National Lab allocated to the RAS Hub are organized into seven laboratory groups, each contributing to the collaborative effort.

  17. Microcontrollers in the Laboratory.

    ERIC Educational Resources Information Center

    Williams, Ron

    1989-01-01

    Described is the use of automated control using microcomputers. Covers the development of the microcontroller and describes advantages and characteristics of several brands of chips. Provides several recent applications of microcontrollers in laboratory automation. (MVL)

  18. Retainer for laboratory animals

    NASA Technical Reports Server (NTRS)

    Lee, R. W.

    1979-01-01

    Bio-retainer holds laboratory animals in fixed position for research and clinical experiments. Retainer allows full access to animals and can be rapidly opened and closed to admit and release specimens.

  19. ENVIRONMENTAL RESEARCH LABORATORY - CORVALLIS

    EPA Science Inventory

    The Environmental Research Laboratory - Corvallis is the U.S. Environmental Protection Agency's - national research center for terrestrial and watershed ecology, aquatic ecoregions, and for the ecological effects of climate change, stratospheric ozone depletion, and atmospheric p...

  20. Physics Laboratory in UEC

    NASA Astrophysics Data System (ADS)

    Takada, Tohru; Nakamura, Jin; Suzuki, Masaru

    All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.

  1. Safety in Science Laboratories.

    ERIC Educational Resources Information Center

    Education in Science, 1978

    1978-01-01

    Presents 12 amendments to the second edition of Safety in Science Laboratories. Covers topics such as regular inspection of equipment, wearing safety glasses, dating stock chemicals, and safe use of chemicals. (MA)

  2. NETL - Thermogravimetric Analysis Laboratory

    SciTech Connect

    Richards, George

    2013-06-12

    Researchers in NETL's Thermal Analysis Laboratory are investigating chemical looping combustion. As a clean and efficient fossil fuel technology, chemical looping combustion controls CO2 emissions and offers a promising alternative to traditional combustion.

  3. Theory and laboratory astrophysics

    NASA Technical Reports Server (NTRS)

    Schramm, David N.; Mckee, Christopher F.; Alcock, Charles; Allamandola, Lou; Chevalier, Roger A.; Cline, David B.; Dalgarno, Alexander; Elmegreen, Bruce G.; Fall, S. Michael; Ferland, Gary J.

    1991-01-01

    Science opportunities in the 1990's are discussed. Topics covered include the large scale structure of the universe, galaxies, stars, star formation and the interstellar medium, high energy astrophysics, and the solar system. Laboratory astrophysics in the 1990's is briefly surveyed, covering such topics as molecular, atomic, optical, nuclear and optical physics. Funding recommendations are given for the National Science Foundation, NASA, and the Department of Energy. Recommendations for laboratory astrophysics research are given.

  4. Complex networks: Patterns of complexity

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2010-07-01

    The Turing mechanism provides a paradigm for the spontaneous generation of patterns in reaction-diffusion systems. A framework that describes Turing-pattern formation in the context of complex networks should provide a new basis for studying the phenomenon.

  5. Geophysical investigation: New Production Reactor Complex, Idaho National Engineering Laboratory

    SciTech Connect

    Filipkowski, F.; Blackey, M.; Davies, D.; Levine, E.N.; Murphy, V.

    1991-12-01

    Seismic crosshole and downhole velocity measurements were performed for two borehole arrays approximately 300 feet deep in conjunction with verticality measurements and geophysical logging of borehole WO-2 (to a depth of 4,960 feet) at the NPR site of the INEL. Past studies show that the site area is covered by a thin layer of soil which overlies numerous basalt flows interrupted by sandy and clayey interbeds. Compressional and shear wave velocities computed for these arrays revealed low velocity zones at the following elevation ranges for crosshole array No. 1: 4,893 feet to 4,873 feet (basalt rubble zone) and 4,705 feet to 4,686 feet (sediment interbed). Corresponding elevation ranges for crosshole array No. 2 include: 4,830 feet to 4,815 feet (sediment interbed), 4,785 feet to 4,765 feet (highly vesicular and fractured basalt), 4,715 feet to 4,705 feet (basalt rubble zone), and 4,672 feet to 4,667 feet (sediment interbed). In general, crosshole velocity data correlated between arrays with velocity differences possibly explained by localized lithologic changes. Due to scatter in the downhole velocity data, only velocity averages were computed. However, these downhole velocities correlated to the approximate mean crosshole velocity values and therefore independent confirmed the crosshole data. Geophysical logging of well WO-2 included natural gamma, neutron, and compensated density logs to a depth of 4,960 feet at which a viscous borehole fluid inhibited further investigation. Second runs of small sections of these logs were repeated satisfactorily for confirmation of certain anomalous areas.

  6. Laboratory measurement of the complex dielectric constant of soils

    NASA Technical Reports Server (NTRS)

    Wiebe, M. L.

    1971-01-01

    The dielectric constant of a material is an extremely important parameter when considering passive radiometric remote sensing applications. This is because the emitted energy measured by a microwave radiometer is dependent on the dielectric constant of the surface being scanned. Two techniques of measuring dielectric constants are described. The first method involves a dielectric located in air. The second method uses basically the same theoretical approach, but the dielectric under consideration is located inside a section of waveguide.

  7. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - GEOCHEMISTRY LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  8. Laboratory experiments in atmospheric optics.

    PubMed

    Vollmer, M; Tammer, R

    1998-03-20

    Old and new laboratory experiments on atmospheric optics with a focus on mirages, rainbows, and halos are presented. Some qualitative demonstrations serve primarily didactical purposes, e.g., by proving the existence of curved light rays in media with a gradient of the index of refraction, by directly visualizing the minimum-deviation curve for rainbow paths in water droplets, or by helping to elucidate the ray classes in hexagons that contribute to a specific halo. In addition, quantitative experiments allow a direct comparison of angular positions and intensities with analytical computations or Monte Carlo simulations of light scattering from small water droplets or ice hexagons. In particular, the latter can help us to understand complex halo phenomena. PMID:18268748

  9. Laboratory experiments in atmospheric optics.

    PubMed

    Vollmer, M; Tammer, R

    1999-08-16

    Old and new laboratory experiments on atmospheric optics with a focus on mirages, rainbows, and halos are presented. Some qualitative demonstrations serve primarily didactical purposes, e.g., by proving the existence of curved light rays in media with a gradient of the index of refraction, by directly visualizing the minimum-deviation curve for rainbow paths in water droplets, or by helping to elucidate the ray classes in hexagons that contribute to a specific halo. In addition, quantitative experiments allow a direct comparison of angular positions and intensities with analytical computations or Monte Carlo simulations of light scattering from small water droplets or ice hexagons. In particular, the latter can help us to understand complex halo phenomena. PMID:19399049

  10. Laboratory issues in bleeding disorders.

    PubMed

    Lillicrap, D; Nair, S C; Srivastava, A; Rodeghiero, F; Pabinger, I; Federici, A B

    2006-07-01

    The clinical history of the patient and of his/her relatives is the most important tool for making correct diagnosis of inherited or acquired bleeding disorders. Several attempts have been made by clinicians to evaluate the sensitivity and specificity of bleeding symptoms. Specific and detailed questionnaires have been designed to quantify the bleeding tendency of patients with von Willebrand's disease (VWD) and a bleeding score has been calculated. VWD is considered the most frequent inherited bleeding disorder according to population studies: however, due to the complexity of its diagnosis, the number of patients with correct diagnosis of VWD in many developing countries is relatively low and most cases remain still under- or misdiagnosed. Once bleeding history is carefully evaluated by means of a bleeding score, the laboratory workout should be organized to find out the specific defect of haemostasis responsible for bleeding. Since factors involved in haemostasis are many, the correct approach must include first level screening tests with the aim to identify the abnormal phase of haemostasis involved: then, second level tests should be focused on the specific factors within the abnormal step of haemostasis. Among many other acquired bleeding disorders related to clinical conditions or to the use of drugs, the acquired inhibitors of haemostasis are rare but should be immediately characterized by appropriate laboratory tests because they can be often life-threatening for the patients. PMID:16683999

  11. Clinical laboratories: production industry or medical services?

    PubMed

    Plebani, Mario

    2015-06-01

    The current failure to evidence any link between laboratory tests, clinical decision-making and patient outcomes, and the scarcity of financial resources affecting healthcare systems worldwide, have put further pressure on the organization and delivery of laboratory services. Consolidation, merger, and laboratory downsizing have been driven by the need to deliver economies of scale and cut costs per test while boosting productivity. Distorted economics, based on payment models rewarding volume and efficiency rather than quality and clinical effectiveness, have underpinned the entrance of clinical laboratories into the production industry thus forcing them to relinquish their original mission of providing medical services. The sea change in laboratory medicine in recent years, with the introduction of ever newer and ever more complex tests, including 'omics', which impact on clinical decision-making, should encourage clinical laboratories to return to their original mission as long as payments models are changed. Rather than being considered solely in terms of costs, diagnostic testing must be seen in the context of an entire hospital stay or an overall payment for a care pathway: the testing process should be conceived as a part of the patient's entire journey. PMID:25405721

  12. Researching Complexity.

    ERIC Educational Resources Information Center

    Sumara, Dennis J.

    2000-01-01

    Discusses what Complexity Theory (presented as a rubric that collects theoretical understandings from a number of domains such as ecology, biology, neurology, and education) suggests about mind, selfhood, intelligence, and practices of reading, and the import of these reconceptualizations to reader-response researchers. Concludes that developing…

  13. Complex Clouds

    Atmospheric Science Data Center

    2013-04-16

    ...     View Larger Image The complex structure and beauty of polar clouds are highlighted by these images acquired ... Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe ...

  14. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  15. Complex interactions

    NASA Astrophysics Data System (ADS)

    de Régules, Sergio

    2016-04-01

    Complexity science – which describes phenomena such as collective and emergent behaviour – is the focus of a new centre where researchers are examining everything from the spread of influenza to what a healthy heartbeat looks like. Sergio de Régules reports.

  16. Development of the Design Laboratory.

    ERIC Educational Resources Information Center

    Silla, Harry

    1986-01-01

    Describes the design laboratory at the Stevens Institute of Technology (SIT). Considers course objectives, design projects, project structure, mechanical design, project management, and laboratory operation. This laboratory complements SIT's course in process design, giving students a complete design experience. (JN)

  17. Laboratory safety handbook

    USGS Publications Warehouse

    Skinner, E.L.; Watterson, C.A.; Chemerys, J.C.

    1983-01-01

    Safety, defined as 'freedom from danger, risk, or injury,' is difficult to achieve in a laboratory environment. Inherent dangers, associated with water analysis and research laboratories where hazardous samples, materials, and equipment are used, must be minimized to protect workers, buildings, and equipment. Managers, supervisors, analysts, and laboratory support personnel each have specific responsibilities to reduce hazards by maintaining a safe work environment. General rules of conduct and safety practices that involve personal protection, laboratory practices, chemical handling, compressed gases handling, use of equipment, and overall security must be practiced by everyone at all levels. Routine and extensive inspections of all laboratories must be made regularly by qualified people. Personnel should be trained thoroughly and repetitively. Special hazards that may involve exposure to carcinogens, cryogenics, or radiation must be given special attention, and specific rules and operational procedures must be established to deal with them. Safety data, reference materials, and texts must be kept available if prudent safety is to be practiced and accidents prevented or minimized.

  18. NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  19. The Future Direction of Regional Educational Laboratories in Contributing to Urban School Improvement. Laboratory Policy Paper.

    ERIC Educational Resources Information Center

    McKenzie, Floretta Dukes

    This paper examines the current and future roles of organizations such as education laboratories in serving the changing needs of urban education. Concerns for greater effectiveness in support services stem from the growing need to effectively deal with some of the complex, lingering issues which to data have been only marginally addressed. Urban…

  20. Evaluating Astronomy Laboratories

    NASA Astrophysics Data System (ADS)

    Zirbel, E. L.

    2002-12-01

    A set of non-traditional astronomy laboratories for non-science majors will be presented along with evaluations of lab technicians (these labs were originally developed at the College of Staten Island of the City University of New York). The goal of these labs is twofold: (a) to provide the students with hands-on experiences of scientific methodology and (b) to provoke critical thinking. Because non-science majors are often rather resistant to learning the relevant methodology - and especially to thinking critically - this manual is structured differently. It does not only provide traditional cook-book recipes but also contains several leading questions to make the students realize why they are doing what. The students are encouraged to write full sentences and explain how they reach which conclusions. This poster summarizes the experiences of the laboratory assistants that worked with the instructor and presents how they judge the effectiveness of the laboratories.

  1. Space Food Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The Space Food Systems Laboratory (SFSL) is a multipurpose laboratory responsible for space food and package research and development. It is located on-site at Johnson Space Center in Building 17. The facility supports the development of flight food, menus, packaging and food related hardware for Shuttle, International Space Station, and Advanced Life Support food systems. All foods used to support NASA ground tests and/or missions must meet the highest standards before they are 'accepted' for use on actual space flights. The foods are evaluated for nutritional content, sensory acceptability, safety, storage and shelf life, and suitability for use in micro-gravity. The food packaging is also tested to determine its functionality and suitability for use in space. Food Scientist, Registered Dieticians, Packaging Engineers, Food Systems Engineers, and Technicians staff the Space Food Systems Laboratory.

  2. Exploration Laboratory Analysis - ARC

    NASA Technical Reports Server (NTRS)

    Krihak, Michael K.; Fung, Paul P.

    2012-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL). The SMEMCL provided diagnosis and treatment for the evidence-based medical conditions and hence, a basis for developing ELA functional requirements.

  3. Analytical laboratory quality audits

    SciTech Connect

    Kelley, William D.

    2001-06-11

    Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

  4. ICD Complex Operations and Maintenance Plan

    SciTech Connect

    Gibson, P. L.

    2007-06-25

    This Operations and Maintenance (O&M) Plan describes how the Idaho National Laboratory (INL) conducts operations, winterization, and startup of the Idaho CERCLA Disposal Facility (ICDF) Complex. The ICDF Complex is the centralized INL facility responsible for the receipt, storage, treatment (as necessary), and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation waste.

  5. Structure determination of transient transcription complexes.

    PubMed

    Cramer, Patrick

    2016-08-15

    The determination of detailed 3D structures of large and transient multicomponent complexes remains challenging. Here I describe the approaches that were used and developed by our laboratory to achieve structure solution of eukaryotic transcription complexes. I hope this collection serves as a resource for structural biologists seeking solutions for difficult structure determination projects. PMID:27528766

  6. Laboratory investigations of impact-generated plasma

    NASA Technical Reports Server (NTRS)

    Crawford, David A.; Schultz, Peter H.

    1991-01-01

    The characteristics of plasma that was produced in laboratory by hypervelocity impacts were investigated to demonstrate the feasibility of generation of magnetic fields by meteoritic impacts and to explain the presence of paleomagnetic fields on the lunar surface. The impact-generated magnetic fields were found to exhibit spatial and temporal complexity that depended on the impact angle, the velocity, and the projectile/target composition. The results suggest that crater-related paleomagnetism associated with this mechanism should exhibit similar complexity with spatial wavelengths on the order of a fraction of the crater radius.

  7. Underground laboratories in Asia

    SciTech Connect

    Lin, Shin Ted; Yue, Qian

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  8. Managing Complexity

    SciTech Connect

    Chassin, David P.; Posse, Christian; Malard, Joel M.

    2004-08-01

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today’s most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically-based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This paper explores the state of the art in the use physical analogs for understanding the behavior of some econophysical systems and to deriving stable and robust control strategies for them. In particular we review and discussion applications of some analytic methods based on the thermodynamic metaphor according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood.

  9. The Applied Mathematics Laboratory.

    ERIC Educational Resources Information Center

    Siegel, Martha J.

    This report describes the Applied Mathematics Laboratory (AML) operated by the Department of Mathematics at Towson State University, Maryland. AML is actually a course offered to selected undergraduates who are given the opportunity to apply their skills in investigating industrial and governmental problems. By agreement with sponsoring…

  10. Simulating Laboratory Procedures.

    ERIC Educational Resources Information Center

    Baker, J. E.; And Others

    1986-01-01

    Describes the use of computer assisted instruction in a medical microbiology course. Presents examples of how computer assisted instruction can present case histories in which the laboratory procedures are simulated. Discusses an authoring system used to prepare computer simulations and provides one example of a case history dealing with fractured…

  11. Green Laboratory Schools.

    ERIC Educational Resources Information Center

    Pope, Jonathan

    1998-01-01

    Presents schools as the perfect microcosms of the world of the 1990s: most work is done indoors, many resources are consumed, and schools sit surrounded by large chunks of land mostly devoted to grass and parking. Suggests that a school can serve as two perfect environmental education laboratories, one indoor and one outdoor. Describes how to…

  12. Aquatic Microbiology Laboratory Manual.

    ERIC Educational Resources Information Center

    Cooper, Robert C.; And Others

    This laboratory manual presents information and techniques dealing with aquatic microbiology as it relates to environmental health science, sanitary engineering, and environmental microbiology. The contents are divided into three categories: (1) ecological and physiological considerations; (2) public health aspects; and (3)microbiology of water…

  13. Introducing Laboratory Safety.

    ERIC Educational Resources Information Center

    DeLorenzo, Ronald

    1985-01-01

    Presents a simple, 10-item quiz designed to make students aware that they must learn laboratory safety. The items include questions on acid/base accidents, several types of fire extinguishers, and safety glassses. Answers and some explanations are included. (DH)

  14. Microgravity Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.

    1985-01-01

    A Microgravity Materials Science Laboratory (MMSL) has been planned, designed, and is being developed. This laboratory will support related efforts to define the requirements for the Microgravity and Materials Processing Laboratory (MMPF) and the MMPF Test Bed for the Space Station. The MMSL will serve as a check out and training facility for science mission specialists for STS, Spacelab and Space Station prior to the full operation of the MMPF Test Bed. The focus of the MMSL will be on experiments related to the understanding of metal/ceramic/glass solidification, high perfection crystal growth and fluid physics. This ground-based laboratory will be used by university/industry/government researchers to examine and become familiar with the potential of new microgravity materials science concepts and to conduct longer term studies aimed at fully developing a l-g understanding of materials and processing phenomena. Such research will help create new high quality concepts for space experiments and will provide the basis for modeling, theories, and hypotheses upon which key space experiments can be defined and developed.

  15. Water Chemistry Laboratory Manual.

    ERIC Educational Resources Information Center

    Jenkins, David; And Others

    This manual of laboratory experiments in water chemistry serves a dual function of illustrating fundamental chemical principles of dilute aqueous systems and of providing the student with some familiarity with the chemical measurements commonly used in water and wastewater analysis. Experiments are grouped in categories on the basis of similar…

  16. Instrumental Analysis Chemistry Laboratory

    ERIC Educational Resources Information Center

    Munoz de la Pena, Arsenio; Gonzalez-Gomez, David; Munoz de la Pena, David; Gomez-Estern, Fabio; Sequedo, Manuel Sanchez

    2013-01-01

    designed for automating the collection and assessment of laboratory exercises is presented. This Web-based system has been extensively used in engineering courses such as control systems, mechanics, and computer programming. Goodle GMS allows the students to submit their results to a…

  17. Energy Systems Laboratory Groundbreaking

    SciTech Connect

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2011-01-01

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  18. RUNNING A LANGUAGE LABORATORY.

    ERIC Educational Resources Information Center

    REES, ALUN L.W.

    THIS ARTICLE DESCRIBES THE LANGUAGE LABORATORY AT THE NATIONAL UNIVERSITY OF TRUJILLO AS IT IS USED IN THE FIVE-YEAR ENGLISH TEACHER TRAINING PROGRAM. THE FIRST TWO YEARS OF THIS COURSE ARE INTENSIVE, BASED ON A STUDY OF ENGLISH USING LADO-FRIES MATERIALS (FOR LATIN AMERICAN LEARNERS) WHICH REQUIRE FIVE HOURS OF CLASSWORK A WEEK SUPPLEMENTED BY…

  19. Writing the Laboratory Notebook.

    ERIC Educational Resources Information Center

    Kanare, Howard M.

    The purpose of this book is to teach the principles of proper scientific notekeeping. The principles presented in this book are goals for which working scientists must strive. Chapter 1, "The Reasons for Notekeeping," is an overview of the process of keeping a laboratory notebook. Chapter 2, "The Hardware of Notekeeping," is intended especially…

  20. Energy Systems Laboratory Groundbreaking

    ScienceCinema

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  1. Microcomputers in the Laboratory.

    ERIC Educational Resources Information Center

    Rafert, Bruce; Nicklin, R. C.

    1982-01-01

    A one-semester hour laboratory course introduced junior and senior physics majors to assembly language programing and to interfacing KIM-1 microcomputer to experiments. A general purpose interface to a standard breadboard was developed. Course details, apparatus, and some interfacing projects are given. (Author/SK)

  2. Introductory Materials Laboratory.

    ERIC Educational Resources Information Center

    Ritter, John E., Jr.

    Described is an introductory materials science laboratory program which emphasizes crystal structure both on the atomistic and microscopic scale and the dependence of materials properties on structure. The content of this program is classified into four major areas: (1) materials science, (2) mechanical behavior of materials, (3) materials testing…

  3. Revitalizing chemistry laboratory instruction

    NASA Astrophysics Data System (ADS)

    McBride, Phil Blake

    This dissertation involves research in three major domains of chemical education as partial fulfillment of the requirements for the Ph.D. program in chemistry at Miami University with a major emphasis on chemical education, and concurrent study in organic chemistry. Unit I, Development and Assessment of a Column Chromatography Laboratory Activity, addresses the domain of Instructional Materials Development and Testing. This unit outlines the process of developing a publishable laboratory activity, testing and revising that activity, and subsequently sharing that activity with the chemical education community. A laboratory activity focusing on the separation of methylene blue and sodium fluorescein was developed to demonstrate the effects of both the stationary and mobile phase in conducting a separation. Unit II, Bringing Industry to the Laboratory, addresses the domain of Curriculum Development and Testing. This unit outlines the development of the Chemistry of Copper Mining module, which is intended for use in high school or undergraduate college chemistry. The module uses the learning cycle approach to present the chemistry of the industrial processes of mining copper to the students. The module includes thirteen investigations (three of which are web-based and ten which are laboratory experiments) and an accompanying interactive CD-ROM, which provides an explanation of the chemistry used in copper mining with a virtual tour of an operational copper mine. Unit III, An Alternative Method of Teaching Chemistry. Integrating Lecture and the Laboratory, is a project that addresses the domain of Research in Student Learning. Fundamental Chemistry was taught at Eastern Arizona College as an integrated lecture/laboratory course that met in two-hour blocks on Monday, Wednesday, and Friday. The students taking this integrated course were compared with students taking the traditional 1-hour lectures held on Monday, Wednesday, and Friday, with accompanying 3-hour lab on

  4. Undergraduate Laboratory for Surface Science

    NASA Astrophysics Data System (ADS)

    Okumura, Mitchio; Beauchamp, Jesse L.; Dickert, Jeffrey M.; Essy, Blair R.; Claypool, Christopher L.

    1996-02-01

    Surface science has developed into a multidisciplinary field of research with applications ranging from heterogeneous catalysis to semiconductor etching (1). Aspects of surface chemistry are now included in physical chemistry textbooks (2) and undergraduate curricula (3), but the perceived cost and complexity of equipment has deterred the introduction of surface science methods in undergraduate laboratories (4). Efforts to expose chemistry undergraduates to state-of-the-art surface instrumentation have just begun (5). To provide our undergraduates with hands-on experience in using standard techniques for characterizing surface morphology, adsorbates, kinetics, and reaction mechanisms, we have developed a set of surface science experiments for our physical chemistry laboratory sequence. The centerpiece of the laboratory is an ultrahigh vacuum (UHV) chamber for studies of single crystal surfaces. This instrument, shown in the figure, has surface analysis capabilities including low energy electron diffraction (LEED), Auger spectroscopy, and temperature-programmed desorption (TPD). The laboratory exercises involve experiments on the well-studied Pt(111) surface. Students prepare a previously mounted single crystal sample by sputtering it with an argon ion gun and heating it under O2. Electron diffraction patterns from the cleaned surface are then obtained with a reverse view LEED apparatus (Princeton Instruments). Images are captured by a charge-coupled device (CCD) camera interfaced to a personal computer for easy downloading and subsequent analysis. Although the LEED images from a Pt(111) surface can be readily interpreted using simple diffraction arguments, this lab provides an excellent context for introducing Miller indices and reciprocal lattices (6). The surface chemical composition can be investigated by Auger spectroscopy, using the LEED apparatus as a simple energy analyzer. The temperature programmed desorption experiment, which is nearly complete, will be

  5. Laboratory Waste Management. A Guidebook.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A primary goal of the American Chemical Society Task Force on Laboratory Waste Management is to provide laboratories with the information necessary to develop effective strategies and training programs for managing laboratory wastes. This book is intended to present a fresh look at waste management from the laboratory perspective, considering both…

  6. Complex Systems

    PubMed Central

    Goldberger, Ary L.

    2006-01-01

    Physiologic systems in health and disease display an extraordinary range of temporal behaviors and structural patterns that defy understanding based on linear constructs, reductionist strategies, and classical homeostasis. Application of concepts and computational tools derived from the contemporary study of complex systems, including nonlinear dynamics, fractals and “chaos theory,” is having an increasing impact on biology and medicine. This presentation provides a brief overview of an emerging area of biomedical research, including recent applications to cardiopulmonary medicine and chronic obstructive lung disease. PMID:16921107

  7. [Carney complex].

    PubMed

    Kacerovská, D; Michal, M; Síma, R; Grossmann, P; Kazakov, D V

    2011-10-01

    Carney complex is a clinically and genetically heterogeneous disease, with at least two genetic loci including the PRKAR1A gene located on chromosome 17 and the CNC2 locus mapped to chromosome 2. Clinically this syndrome is characterized by multiple myxomas occurring in different anatomic sites, mucocutaneous pigmentary lesions, and a variety of non-endocrine and endocrine tumors, often causing endocrine abnormalities, involving various organs. Knowledge of morphological findings in CNC patients with their typical locations is necessary to raise suspicion of this syndrome by pathologists. Confirmation of the diagnosis allows regular clinical check-ups and early treatment of these patients. PMID:22145222

  8. Maritime security laboratory for maritime security research

    NASA Astrophysics Data System (ADS)

    Bunin, Barry J.; Sutin, Alexander; Bruno, Michael S.

    2007-04-01

    Stevens Institute of Technology has established a new Maritime Security Laboratory (MSL) to facilitate advances in methods and technologies relevant to maritime security. MSL is designed to enable system-level experiments and data-driven modeling in the complex environment of an urban tidal estuary. The initial focus of the laboratory is on the threats posed by divers and small craft with hostile intent. The laboratory is, however, evolvable to future threats as yet unidentified. Initially, the laboratory utilizes acoustic, environmental, and video sensors deployed in and around the Hudson River estuary. Experimental data associated with boats and SCUBA divers are collected on a computer deployed on board a boat specifically designed and equipped for these experiments and are remotely transferred to a Visualization Center on campus. Early experiments utilizing this laboratory have gathered data to characterize the relevant parameters of the estuary, acoustic signals produced by divers, and water and air traffic. Hydrophones were deployed to collect data to enable the development of passive acoustic methodologies for maximizing SCUBA diver detection distance. Initial results involving characteristics of the estuary, acoustic signatures of divers, ambient acoustic noise in an urban estuary, and transmission loss of acoustic signals in a wide frequency band are presented. These results can also be used for the characterization of abnormal traffic and improvement of underwater communication in a shallow water estuary.

  9. Smart Grid Integration Laboratory

    SciTech Connect

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of

  10. Complexity in scalable computing.

    SciTech Connect

    Rouson, Damian W. I.

    2008-12-01

    The rich history of scalable computing research owes much to a rapid rise in computing platform scale in terms of size and speed. As platforms evolve, so must algorithms and the software expressions of those algorithms. Unbridled growth in scale inevitably leads to complexity. This special issue grapples with two facets of this complexity: scalable execution and scalable development. The former results from efficient programming of novel hardware with increasing numbers of processing units (e.g., cores, processors, threads or processes). The latter results from efficient development of robust, flexible software with increasing numbers of programming units (e.g., procedures, classes, components or developers). The progression in the above two parenthetical lists goes from the lowest levels of abstraction (hardware) to the highest (people). This issue's theme encompasses this entire spectrum. The lead author of each article resides in the Scalable Computing Research and Development Department at Sandia National Laboratories in Livermore, CA. Their co-authors hail from other parts of Sandia, other national laboratories and academia. Their research sponsors include several programs within the Department of Energy's Office of Advanced Scientific Computing Research and its National Nuclear Security Administration, along with Sandia's Laboratory Directed Research and Development program and the Office of Naval Research. The breadth of interests of these authors and their customers reflects in the breadth of applications this issue covers. This article demonstrates how to obtain scalable execution on the increasingly dominant high-performance computing platform: a Linux cluster with multicore chips. The authors describe how deep memory hierarchies necessitate reducing communication overhead by using threads to exploit shared register and cache memory. On a matrix-matrix multiplication problem, they achieve up to 96% parallel efficiency with a three-part strategy: intra

  11. Procedures of Exercise Physiology Laboratories

    NASA Technical Reports Server (NTRS)

    Bishop, Phillip A.; Fortney, Suzanne; Greenisen, Michael; Siconolfi, Steven F.; Bamman, Marcas M.; Moore, Alan D., Jr.; Squires, William

    1998-01-01

    This manual describes the laboratory methods used to collect flight crew physiological performance data at the Johnson Space Center. The Exercise Countermeasures Project Laboratory is a standard physiology laboratory; only the application to the study of human physiological adaptations to spaceflight is unique. In the absence of any other recently published laboratory manual, this manual should be a useful document staffs and students of other laboratories.

  12. The Indiana Laboratory System: Focus on Environmental Laboratories

    PubMed Central

    Hammes, Kara R.; Matheson, Shelley R.; Lovchik, Judith C.

    2013-01-01

    The Indiana State Department of Health (ISDH) Laboratories are working to improve Indiana's state public health laboratory system. Environmental laboratories are key stakeholders in this system, but their needs have been largely unaddressed prior to this project. In an effort to identify and engage these laboratories, the ISDH Laboratories organized and hosted the First Annual Environmental Laboratories Meeting. The focus of this meeting was on water-testing laboratories throughout the state. Meeting objectives included issue identification, disaster recovery response, and communication efforts among system partners. Common concerns included the need for new technology and updated methods, analyst training, certification programs for analysts and sample collectors, electronic reporting, and regulation interpretation and inspection consistency. Now that these issues have been identified, they can be addressed through a combination of laboratory workgroups and collaboration with Indiana's regulatory agencies. Participants were overwhelmingly positive about the meeting's outcomes and were willing to help with future laboratory system improvement projects. PMID:23997304

  13. The science of laboratory and project management in regulated bioanalysis.

    PubMed

    Unger, Steve; Lloyd, Thomas; Tan, Melvin; Hou, Jingguo; Wells, Edward

    2014-05-01

    Pharmaceutical drug development is a complex and lengthy process, requiring excellent project and laboratory management skills. Bioanalysis anchors drug safety and efficacy with systemic and site of action exposures. Development of scientific talent and a willingness to innovate or adopt new technology is essential. Taking unnecessary risks, however, should be avoided. Scientists must strategically assess all risks and find means to minimize or negate them. Laboratory Managers must keep abreast of ever-changing technology. Investments in instrumentation and laboratory design are critical catalysts to efficiency and safety. Matrix management requires regular communication between Project Managers and Laboratory Managers. When properly executed, it aligns the best resources at the right times for a successful outcome. Attention to detail is a critical aspect that separates excellent laboratories. Each assay is unique and requires attention in its development, validation and execution. Methods, training and facilities are the foundation of a bioanalytical laboratory. PMID:24958120

  14. Carney complex.

    PubMed

    Espiard, Stéphanie; Bertherat, Jérôme

    2013-01-01

    Carney complex is a rare, dominantly inherited multiple endocrine neoplasia syndrome, affecting endocrine glands as the adrenal cortex (causing Cushing's syndrome), the pituitary and the thyroid. It is associated with many other nonendocrine tumors, including cardiac myxomas, testicular tumors, melanotic schwannoma, breast myxomatosis, and abnormal pigmentation (lentiginosis) or myxomas of the skin. The gene located on the CNC1 locus was identified 12 years ago as the regulatory subunit 1A (R1A) of the protein kinase A (PRKAR1A) located at 17q22-24. Inactivating heterozygous germline mutations of PRKAR1A are observed in about two thirds of Carney complex patients with some genotype-phenotype correlation useful for follow-up and prognosis. More rarely, mutations of phosphodiesterase genes have been reported in patients presenting mainly with Cushing's syndrome. In vitro and in vivo studies help to understand how R1A inactivation leads to tumorigenesis. PRKAR1A appears to be a relatively weak tumorigenic signal which can cooperate with other signaling pathways and tumor suppressors. PMID:23652670

  15. Laboratory Evaluation of Anemia

    PubMed Central

    Wallerstein, Ralph O.

    1987-01-01

    The laboratory evaluation of anemia begins with a complete blood count and reticulocyte count. The anemia is then categorized as microcytic, macrocytic or normocytic, with or without reticulocytosis. Examination of the peripheral smear and a small number of specific tests confirm the diagnosis. The serum iron level, total iron-binding capacity, serum ferritin level and hemoglobin electrophoresis generally separate the microcytic anemias. The erythrocyte size-distribution width may be particularly helpful in distinguishing iron deficiency from thalassemia minor. Significant changes have occurred in the laboratory evaluation of macrocytic anemia, and a new syndrome of nitrous oxide-induced megaloblastosis and neurologic dysfunction has been recognized. A suggested approach to the hemolytic anemias includes using the micro-Coombs' test and ektacytometry. Finally, a number of causes have been identified for normocytic anemia without reticulocytosis, including normocytic megaloblastic anemia and the acquired immunodeficiency syndrome. PMID:3577135

  16. Laboratory models of tornadoes

    NASA Astrophysics Data System (ADS)

    Church, Christopher R.; Snow, John T.

    Nature provides many examples of intense but small-scale atmospheric vortices, the most devastating being tornadoes. Other small vortices include waterspouts, fire whirls, dust devils, and steam devils. Several aspects of small-scale atmospheric vortex flows are of concern to the atmospheric scientist, namely: determination of their kinematic structure, understanding of their formation and dynamics, identification of the factors that control their intensities, and application of new knowledge and insights in ways that will provide greater protection for society from the hazards of these phenomena. Although some of the vortex types listed above occur more frequently and are more readily available for observation than tornadoes, all small-scale vortices are inherently infrequent, short-lived phenomena; it has been expedient for some scientists to simulate tornadolike flows in the laboratory. This laboratory work constitutes a small but significant part of the overall tornado research effort.

  17. Space Radiation Effects Laboratory

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The SREL User's Handbook is designed to provide information needed by those who plan experiments involving the accelerators at this laboratory. Thus the Handbook will contain information on the properties of the machines, the beam parameters, the facilities and services provided for experimenters, etc. This information will be brought up to date as new equipment is added and modifications accomplished. This Handbook is influenced by the many excellent models prepared at other accelerator laboratories. In particular, the CERN Synchrocyclotron User's Handbook (November 1967) is closely followed in some sections, since the SREL Synchrocyclotron is a duplicate of the CERN machine. We wish to thank Dr. E. G. Michaelis for permission to draw so heavily on his work, particularly in Section II of this Handbook. We hope that the Handbook will prove useful, and will welcome suggestions and criticism.

  18. Remote Sensing Laboratory - RSL

    ScienceCinema

    None

    2015-01-09

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  19. Remote Sensing Laboratory - RSL

    SciTech Connect

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  20. A lunar laboratory

    NASA Technical Reports Server (NTRS)

    Keaton, P. W.; Duke, M. B.

    1987-01-01

    An international research laboratory can be established on the Moon in the early years of the 21st Century. It can be built using the transportation system now envisioned by NASA, which includes a space station for Earth orbital logistics and orbital transfer vehicles for Earth-Moon transportation. A scientific laboratory on the Moon would permit extended surface and subsurface geological exploration; long-duration experiments defining the lunar environment and its modification by surface activity; new classes of observations in astronomy; space plasma and fundamental physics experiments; and lunar resource development. The discovery of a lunar source for propellants may reduce the cost of constructing large permanent facilities in space and enhance other space programs such as Mars exploration.

  1. The flight robotics laboratory

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.

    1988-01-01

    The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.

  2. Automated Microbial Metabolism Laboratory

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Development of the automated microbial metabolism laboratory (AMML) concept is reported. The focus of effort of AMML was on the advanced labeled release experiment. Labeled substrates, inhibitors, and temperatures were investigated to establish a comparative biochemical profile. Profiles at three time intervals on soil and pure cultures of bacteria isolated from soil were prepared to establish a complete library. The development of a strategy for the return of a soil sample from Mars is also reported.

  3. Portable Laser Laboratory

    SciTech Connect

    Weir, J.T.

    1994-07-01

    A Portable Laser Laboratory (PLL) is being designed and built for the CALIOPE Program tests which will begin in October of 1994. The PLL is designed to give maximum flexibility for evolving laser experiments and can be readily moved by loading it onto a standard truck trailer. The internal configuration for the October experiments will support a two line DIAL system running in the mid-IR. Brief descriptions of the laser and detection systems are included.

  4. Hanford cultural resources laboratory

    SciTech Connect

    Wright, M.K.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act.

  5. Princeton Plasma Physics Laboratory:

    SciTech Connect

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  6. Laboratory microfusion capability study

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The purpose of this study is to elucidate the issues involved in developing a Laboratory Microfusion Capability (LMC) which is the major objective of the Inertial Confinement Fusion (ICF) program within the purview of the Department of Energy's Defense Programs. The study was initiated to support a number of DOE management needs: to provide insight for the evolution of the ICF program; to afford guidance to the ICF laboratories in planning their research and development programs; to inform Congress and others of the details and implications of the LMC; to identify criteria for selection of a concept for the Laboratory Microfusion Facility; and to develop a coordinated plan for the realization of an LMC. As originally proposed, the LMC study was divided into two phases. The first phase identifies the purpose and potential utility of the LMC, the regime of its performance parameters, driver independent design issues and requirements, its development goals and requirements, and associated technical, management, staffing, environmental, and other developmental and operational issues. The second phase addresses driver-dependent issues such as specific design, range of performance capabilities, and cost. The study includes four driver options: the neodymium-glass solid state laser, the krypton fluoride excimer gas laser, the light-ion accelerator, and the heavy-ion induction linear accelerator. The results of the Phase 2 study are described in the present report.

  7. Exploration Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  8. Laboratory Diagnosis of Amebiasis

    PubMed Central

    Tanyuksel, Mehmet; Petri, William A.

    2003-01-01

    The detection of Entamoeba histolytica, the causative agent of amebiasis, is an important goal of the clinical microbiology laboratory. To assess the scope of E. histolytica infection, it is necessary to utilize accurate diagnostic tools. As more is discovered about the molecular and cell biology of E. histolytica, there is great potential for further understanding the pathogenesis of amebiasis. Molecular biology-based diagnosis may become the technique of choice in the future because establishment of these protozoa in culture is still not a routine clinical laboratory process. In all cases, combination of serologic tests with detection of the parasite (by antigen detection or PCR) offers the best approach to diagnosis, while PCR techniques remain impractical in many developing country settings. The detection of amebic markers in serum in patients with amebic colitis and liver abscess appears promising but is still only a research tool. On the other hand, stool antigen detection tests offer a practical, sensitive, and specific way for the clinical laboratory to detect intestinal E. histolytica. All the current tests suffer from the fact that the antigens detected are denatured by fixation of the stool specimen, limiting testing to fresh or frozen samples. PMID:14557296

  9. Cysticercosis in laboratory rabbits.

    PubMed

    Owiny, J R

    2001-03-01

    There are no data on the current incidence of Taenia pisiformis in laboratory rabbits. Two cases of cysticercosis most likely due to T. pisiformis in laboratory rabbits (intermediate host) are presented. Both rabbits had no contact with dogs (final host); their caretakers did not work with dogs, and these caretakers changed into facility scrubs and wore gloves when working with the rabbits. Rabbit 1 may have been infected after being fed hay at our facility. In light of the life cycle of the parasite and the history of rabbit 2, it potentially could have been infected prior to arrival at our facility. There have been only three cases of tapeworm cysts in rabbits in our facility (average daily census, 250) during the last 10 years (incidence, < 1%). This report indicates that although cysticercosis is rare in laboratory rabbits, one should always be aware of such incidental findings. Although it may not produce overt illness in the rabbit, hepatic migration could adversely affect the outcome of some experimental procedures PMID:11300689

  10. Materials and Fuels Complex Tour

    ScienceCinema

    Miley, Don

    2013-05-28

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions. You can learn more about INL research programs at http://www.facebook.com/idahonationallaboratory.

  11. Materials and Fuels Complex Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions. You can learn more about INL research programs at http://www.facebook.com/idahonationallaboratory.

  12. SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) WARM LABORATORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) WARM LABORATORY ROOM, DECONTAMINATION ROOM, HOT CHEMISTRY LABORATORY, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-098-105066. ALTERNATE ID NUMBER 4272-14-103. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. Economic Education Laboratory: Initiating a Meaningful Economic Learning through Laboratory

    ERIC Educational Resources Information Center

    Noviani, Leny; Soetjipto, Budi Eko; Sabandi, Muhammad

    2015-01-01

    Laboratory is considered as one of the resources in supporting the learning process. The laboratory can be used as facilities to deepen the concepts, learning methods and enriching students' knowledge and skills. Learning process by utilizing the laboratory facilities can help lecturers and students in grasping the concept easily, constructing the…

  14. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  15. Laboratory for Extraterrestrial Physics

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study

  16. Purdue Hydrogen Systems Laboratory

    SciTech Connect

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  17. Materials Science Laboratory

    NASA Technical Reports Server (NTRS)

    Jackson, Dionne

    2005-01-01

    The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.

  18. Princeton Plasma Physics Laboratory

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  19. Laboratory and Industrial Ventilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This handbook supplements the Facilities Engineering Handbook (NHB 7320.1) and provides additional policies and criteria for uniform application to ventilation systems. It expands basic requirements, provides additional design and construction guidance, and places emphasis on those design considerations which will provide for greater effectiveness in the use of these systems. The provisions of this handbook are applicable to all NASA field installations and the Jet Propulsion Laboratory. Since supply of this handbook is limited, abstracts of the portion or portions applicable to a given requirement will be made for the individual specific needs encountered rather than supplying copies of the handbook as has been past practice.

  20. Preoperative Laboratory Testing.

    PubMed

    Bock, Matthias; Fritsch, Gerhard; Hepner, David L

    2016-03-01

    Routine preoperative testing is not cost-effective, because it is unlikely to identify significant abnormalities. Abnormal findings from routine testing are more likely to be false positive, are costly to pursue, introduce a new risk, increase the patient's anxiety, and are inconvenient to the patient. Abnormal findings rarely alter the surgical or anesthetic plan, and there is usually no association between perioperative complications and abnormal laboratory results. Incidental findings and false positive results may lead to increased hospital visits and admissions. Preoperative testing needs to be done based on a targeted history and physical examination and the type of surgery. PMID:26927738

  1. Laboratory prototype flash evaporator

    NASA Technical Reports Server (NTRS)

    Gaddis, J. L.

    1972-01-01

    A laboratory prototype flash evaporator that is being developed as a candidate for the space shuttle environmental control system expendable heat sink is described. The single evaporator configuration uses water as an evaporant to accommodate reentry and on-orbit peak heat loads, and Freon 22 for terrestrial flight phases below 120,000 feet altitude. The design features, fabrication techniques used for the prototype unit, redundancy considerations, and the fluid temperature control arrangement are reported in detail. The results of an extensive test program to determine the evaporator operational characteristics under a wide variety of conditions are presented.

  2. Gait Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Complete motion analysis laboratory has evolved out of analyzing walking patterns of crippled children at Stanford Children's Hospital. Data is collected by placing tiny electrical sensors over muscle groups of child's legs and inserting step-sensing switches in soles of shoes. Miniature radio transmitters send signals to receiver for continuous recording of abnormal walking pattern. Engineers are working to apply space electronics miniaturization techniques to reduce size and weight of telemetry system further as well as striving to increase signal bandwidth so analysis can be performed faster and more accurately using a mini-computer.

  3. Novae as Thermonuclear Laboratories

    NASA Astrophysics Data System (ADS)

    Clayton, D. D.

    2003-07-01

    Fred Hoyle undertook a study of observational consequences of the thermonuclear paradigm for the nova event in the years following his 1972 resignation from Cambridge University. The most fruitful of these have been in the areas of gamma-ray astronomy, by which one attempts to measure the level of radioactivity in the nova envelope, and of presolar grain studies in laboratories, by which one measures anomalous isotopic ratios that fingerprint condensation in the thermonuclear event. This work summarizes progress with these two astronomical measures of the novae.

  4. Laboratory Needs for Interstellar Ice Studies

    NASA Astrophysics Data System (ADS)

    Boogert, Abraham C. A.

    2012-05-01

    A large fraction of the molecules in dense interstellar and circumstellar environments is stored in icy grain mantles. The mantles are formed by a complex interplay between chemical and physical processes. Key questions on the accretion and desorption processes and the chemistry on the grain surfaces and within the icy mantles can only be answered by laboratory experiments. Recent infrared (2-30 micron) spectroscopic surveys of large samples of Young Stellar Objects (YSOs) and background stars tracing quiescent cloud material have shown that the ice band profiles and depths vary considerably as a function of environment. Using laboratory spectra in the identification process, it is clear that a rather complex mixture of simple species (CH3OH, CO2, H2O, CO) exists even in the quiescent cloud phase. Variations of the local physical conditions (CO freeze out) and time scales (CH3OH formation) appear to be key factors in the observed variations. Sublimation and thermal processing dominate as YSOs heat their environments. The identification of several ice absorption features is still disputed. I will outline laboratory work (e.g., on salts, PAHs, and aliphatic hydrocarbons) needed to further constrain the ice band identification as well as the thermal and chemical history of the carriers. Such experiments will also be essential to interpret future high spectral resolution SOFIA and JWST observations.

  5. Narrative interpretations for clinical laboratory evaluations: an overview.

    PubMed

    Dighe, A S; Soderberg, B L; Laposata, M

    2001-12-01

    As the clinical laboratory test menu has significantly expanded in volume and complexity, there is a rapidly growing need by clinicians for narrative interpretations of complex studies that resemble those provided in anatomic pathology and radiology. In this report, the impact of advice on laboratory test selection and interpretation is presented with regard to providing adequate quality of care, reducing medical error, and reducing the cost for health care. In addition, past and current attempts to address the physician's need for advice on laboratory test selection and interpretation are also described. These include curbside consultations, intelligent laboratory information systems, and medical information from the Internet. Each is presented with examples from the literature and with its advantages and disadvantages for practicing clinicians confronting large, expensive test menus and the results of esoteric assays. PMID:11993697

  6. Lunar Receiving Laboratory Project History

    NASA Technical Reports Server (NTRS)

    Mangus, Susan; Larsen, William

    2004-01-01

    As early as 1959, the Working Group on Lunar Exploration within NASA advocated that 'one of the prime objectives of the first lunar landing mission should be the collection of samples for return to Earth, where they could be subjected to detailed study and analysis.' Within NASA, neither this group nor any other scientists working with the Agency were concerned about back contamination issues. Outside of NASA, back contamination concerns had been raised as early as 1960. Although NASA did not seem to pay any attention to the concerns at that time, the scientific community continued to be interested in the topic. In 1962 and again in 1963, as the Apollo Program loomed large, further discussions were held. These early discussions of back contamination did not make their way into NASA's administration, however, and when Manned Spacecraft Center personnel began to articulate early concepts for the Lunar Receiving Laboratory (LRL), the back contamination issue was not considered. Once this concern became a major focus, however, the LRL's development became increasingly complex. This is the history of that development.

  7. The Laboratory in Professional Education.

    ERIC Educational Resources Information Center

    Kaplan, Harold N.

    1979-01-01

    The role of laboratory experience in professional education is discussed. Although laboratory experiments are often expensive and demanding on faculty time, they can offer a unique experience to the veterinary medicine student. (BH)

  8. How Reliable Is Laboratory Testing?

    MedlinePlus

    ... to day in a laboratory. The other two, sensitivity and specificity, deal with how well the test ... are frequently monitored by the professional laboratory personnel. Sensitivity and specificity data are determined by research studies ...

  9. EPA LABORATORIES IMPLEMENT EMS PROGRAM

    EPA Science Inventory

    This paper highlights the breadth and magnitude of carrying out an effective Environmental Management System (EMS) program at the U.S. EPA's research and development laboratories. Federal research laboratories have unique operating challenges compared to more centralized industr...

  10. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1990-01-01

    The scope of the study is to investigate ways of controlling the microgravity environment of the International Space Station by means of a tethered system. Four main study tasks were performed. First, researchers analyzed the utilization of the tether systems to improve the lowest possible steady gravity level on the Space Station and the tether capability to actively control the center of gravity position in order to compensate for activities that would upset the mass distribution of the Station. The purpose of the second task was to evaluate the whole of the experiments performable in a variable gravity environment and the related beneficial residual accelerations, both for pure and applied research in the fields of fluid, materials, and life science, so as to assess the relevance of a variable g-level laboratory. The third task involves the Tethered Variable Gravity Laboratory. The use of the facility that would crawl along a deployed tether and expose experiments to varying intensities of reduced gravity is discussed. Last, a study performed on the Attitude Tether Stabilizer concept is discussed. The stabilization effect of ballast masses tethered to the Space Station was investigated as a means of assisting the attitude control system of the Station.

  11. Mobile Energy Laboratory Procedures

    SciTech Connect

    Armstrong, P.R.; Batishko, C.R.; Dittmer, A.L.; Hadley, D.L.; Stoops, J.L.

    1993-09-01

    Pacific Northwest Laboratory (PNL) has been tasked to plan and implement a framework for measuring and analyzing the efficiency of on-site energy conversion, distribution, and end-use application on federal facilities as part of its overall technical support to the US Department of Energy (DOE) Federal Energy Management Program (FEMP). The Mobile Energy Laboratory (MEL) Procedures establish guidelines for specific activities performed by PNL staff. PNL provided sophisticated energy monitoring, auditing, and analysis equipment for on-site evaluation of energy use efficiency. Specially trained engineers and technicians were provided to conduct tests in a safe and efficient manner with the assistance of host facility staff and contractors. Reports were produced to describe test procedures, results, and suggested courses of action. These reports may be used to justify changes in operating procedures, maintenance efforts, system designs, or energy-using equipment. The MEL capabilities can subsequently be used to assess the results of energy conservation projects. These procedures recognize the need for centralized NM administration, test procedure development, operator training, and technical oversight. This need is evidenced by increasing requests fbr MEL use and the economies available by having trained, full-time MEL operators and near continuous MEL operation. DOE will assign new equipment and upgrade existing equipment as new capabilities are developed. The equipment and trained technicians will be made available to federal agencies that provide funding for the direct costs associated with MEL use.

  12. Microgravity Emissions Laboratory Developed

    NASA Technical Reports Server (NTRS)

    Goodnight, Thomas W.; McNelis, Anne M.

    2001-01-01

    The Microgravity Emissions Laboratory (MEL) was developed for the support, simulation, and verification of the International Space Station microgravity environment. The MEL utilizes an inertial measurement system using acceleration emissions generated by various operating components of the space station. These emissions, if too large, could hinder the science performed on the space station by disturbing the microgravity environment. Typical test components are disk drives, pumps, motors, solenoids, fans, and cameras. These components will produce inertial forces, which disturb the microgravity on-orbit station environment. These components, usually housed within a station rack, must meet acceleration limits imposed at the rack interface for minimizing the onboard station-operating environment. The NASA Glenn Research Center developed this one-of-a-kind laboratory for testing components and, eventually, rack-level configurations. The MEL approach is to measure the component's generated inertial forces. This force is a product of the full diagonal mass matrix including the test setup (the center of gravity, mass moment of inertia, and weight) and the resolved diagonal rigid-body acceleration determined from measurements using the 10 apparatus accelerometers. The mass matrix can be test derived. The bifilar torsional pendulum method is used to measure the moment of inertia for the test component.

  13. 42 CFR 493.5 - Categories of tests by complexity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Categories of tests by complexity. 493.5 Section... tests by complexity. (a) Laboratory tests are categorized as one of the following: (1) Waived tests. (2) Tests of moderate complexity, including the subcategory of PPM procedures. (3) Tests of high...

  14. Parachute Testing for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The team developing the landing system for NASA's Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

    In this image, an engineer is dwarfed by the parachute, which holds more air than a 280-square-meter (3,000-square-foot) house and is designed to survive loads in excess of 36,000 kilograms (80,000 pounds).

    The parachute, built by Pioneer Aerospace, South Windsor, Connecticut, has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 17 meters (55 feet). It is the largest disk-gap-band parachute ever built and is shown here inflated in the test section with only about 3.8 meters (12.5 feet) of clearance to both the floor and ceiling.

    The wind tunnel, which is 24 meters (80 feet) tall and 37 meters (120 feet) wide and big enough to house a Boeing 737, is part of the National Full-Scale Aerodynamics Complex, operated by the U.S. Air Force, Arnold Engineering Development Center.

    NASA's Jet Propulsion Laboratory, Pasadena, California, is building and testing the Mars Science Laboratory spacecraft for launch in 2009. The mission will land a roving analytical laboratory on the surface of Mars in 2010. JPL is a division of the California Institute of Technology.

  15. Saving Water at Los Alamos National Laboratory

    SciTech Connect

    Erickson, Andy

    2015-03-16

    Los Alamos National Laboratory decreased its water usage by 26 percent in 2014, with about one-third of the reduction attributable to using reclaimed water to cool a supercomputing center. The Laboratory's goal during 2014 was to use only re-purposed water to support the mission at the Strategic Computing Complex. Using reclaimed water from the Sanitary Effluent Reclamation Facility, or SERF, substantially decreased water usage and supported the overall mission. SERF collects industrial wastewater and treats it for reuse. The reclamation facility contributed more than 27 million gallons of re-purposed water to the Laboratory's computing center, a secured supercomputing facility that supports the Laboratory’s national security mission and is one of the institution’s larger water users. In addition to the strategic water reuse program at SERF, the Laboratory reduced water use in 2014 by focusing conservation efforts on areas that use the most water, upgrading to water-conserving fixtures, and repairing leaks identified in a biennial survey.

  16. Value of Laboratory Experiments for Code Validations

    SciTech Connect

    Wawersik, W.R.

    1998-12-14

    Numerical codes have become indispensable for designing underground structures and interpretating the behavior of geologic systems. Because of the complexities of geologic systems, however, code calculations often are associated with large quantitative uncertainties. This papers presents three examples to demonstrate the value of laboratory(or bench scale) experiments to evaluate the predictive capabilities of such codes with five major conclusions: Laboratory or bench-scale experiments are a very cost-effective, controlled means of evaluating and validating numerical codes, not instead of but before or at least concurrent with the implementation of in situ studies. The design of good laboratory validation tests must identifj what aspects of a code are to be scrutinized in order to optimize the size, geometry, boundary conditions, and duration of the experiments. The design of good and sometimes difficult numerical analyses and sensitivity studies. Laboratory validation tests must involve: Good validation experiments will generate independent data sets to identify the combined effect of constitutive models, model generalizations, material parameters, and numerical algorithms. Successfid validations of numerical codes mandate a close collaboration between experimentalists and analysts drawing from the full gamut of observations, measurements, and mathematical results.

  17. [Carney complex].

    PubMed

    Losada Grande, Eladio José; Al Kassam Martínez, Daniel; González Boillos, Margarita

    2011-01-01

    Carney complex (CNC) is an autosomal dominantly inherited syndrome characterized by spotty skin pigmentation, cardiac and cutaneous myxoma, and endocrine overactivity. Skin pigmentation includes lentigines and blue nevi. Myxomas may occur in breast, skin and heart. Cardiac myxomas may be multiple and occur in any cardiac chamber, and are more prone to recurrence. The most common endocrine gland manifestation is an ACTH-independent Cushing's syndrome due to primary pigmented nodular adrenocortical disease (PPNAD). PPNAD may occur isolated, with no other signs of CNC. Pituitary and thyroid glands and gonads are also involved. The PRKAR1A gene, located in 17 q22-24, encodes type 1A regulatory subunit of protein kinase A. Inactivating germline mutations of this gene are found in 70% of patients with CNC. PRKAR1A is a key component of the c-AMP signaling pathway that has been implicated in endocrine tumorigenesis. Many different mutations have been reported in the PRKAR1A gene. In almost all cases the sequence change was predicted to lead to a premature stop codon and the resultant mutant mRNA was subject to nonsense-mediated mRNA decay. There is no clear genotype-phenotype correlation in patients with CNC. Genetic analysis should be performed in all CNC index cases. All affected patients should be monitored for clinical signs of CNC at least once a year. Genetic diagnosis allows for more effective preparation of more appropriate and effective therapeutic strategies and genetic counseling for patients and gene carriers, and to avoid unnecessary tests to relatives not carrying the gene. PMID:21536508

  18. Introductory Archaeology: The Inexpensive Laboratory.

    ERIC Educational Resources Information Center

    Rice, Patricia C.

    1990-01-01

    Describes a number of student-focused laboratory exercises that are inexpensive, yet show the scientific character of archaeology. Describes the environmental laboratory exercise which includes the following analysis topics: (1) pollen; (2) earth core; (3) microfaunal; and (4) microwear. Describes the ceramic laboratory which involves…

  19. Chemistry laboratory safety manual available

    NASA Technical Reports Server (NTRS)

    Elsbrock, R. G.

    1968-01-01

    Chemistry laboratory safety manual outlines safe practices for handling hazardous chemicals and chemistry laboratory equipment. Included are discussions of chemical hazards relating to fire, health, explosion, safety equipment and procedures for certain laboratory techniques and manipulations involving glassware, vacuum equipment, acids, bases, and volatile solvents.

  20. Laboratory Materials: Affordances or Constraints?

    ERIC Educational Resources Information Center

    Jordan, Rebecca C.; Ruibal-Villasenor, Maria; Hmelo-Silver, Cindy E.; Etkina, Eugenia

    2011-01-01

    Laboratory instruction is critical to the understanding of biology and is a central piece of biological sciences instruction. Although much investigation has focused on the content of biology laboratory exercises, we contend that understanding the extent to which the laboratory materials can aid or limit experimental investigation is of equal…

  1. Federal Laboratory Consortium Resource Directory.

    ERIC Educational Resources Information Center

    Federal Laboratory Consortium, Washington, DC.

    Intended to assist both the private and public sectors to locate and utilize technological expertise within the federal laboratories, this directory lists the federal laboratories and centers that are affiliated with the Federal Laboratory Consortium and describes the area of technological expertise they can make available to solve problems. This…

  2. Diversifying the Introductory Physics Laboratory.

    ERIC Educational Resources Information Center

    Jewett, John W., Jr.; Lessie, Douglas

    1983-01-01

    Describes a two-semester laboratory program designed to motivate students. The program consists of computer-oriented modules and discovery approach laboratory exercises. Students complete similar computer/laboratory material during the first semester but elect one of three tracks during the second semester (computer, every-day life, and…

  3. Managing the Occupational Education Laboratory.

    ERIC Educational Resources Information Center

    Storm, George

    This guide for occupational educators deals with laboratory and instructional management on an interdisciplinary basis within the broad field of occupational education. The principles discussed are intended to be applied at all levels and in all types of laboratories. The text suggests effective ways of organizing laboratories so that students can…

  4. Undergraduate Laboratory for Surface Science

    NASA Astrophysics Data System (ADS)

    Okumura, Mitchio; Beauchamp, Jesse L.; Dickert, Jeffrey M.; Essy, Blair R.; Claypool, Christopher L.

    1996-02-01

    Surface science has developed into a multidisciplinary field of research with applications ranging from heterogeneous catalysis to semiconductor etching (1). Aspects of surface chemistry are now included in physical chemistry textbooks (2) and undergraduate curricula (3), but the perceived cost and complexity of equipment has deterred the introduction of surface science methods in undergraduate laboratories (4). Efforts to expose chemistry undergraduates to state-of-the-art surface instrumentation have just begun (5). To provide our undergraduates with hands-on experience in using standard techniques for characterizing surface morphology, adsorbates, kinetics, and reaction mechanisms, we have developed a set of surface science experiments for our physical chemistry laboratory sequence. The centerpiece of the laboratory is an ultrahigh vacuum (UHV) chamber for studies of single crystal surfaces. This instrument, shown in the figure, has surface analysis capabilities including low energy electron diffraction (LEED), Auger spectroscopy, and temperature-programmed desorption (TPD). The laboratory exercises involve experiments on the well-studied Pt(111) surface. Students prepare a previously mounted single crystal sample by sputtering it with an argon ion gun and heating it under O2. Electron diffraction patterns from the cleaned surface are then obtained with a reverse view LEED apparatus (Princeton Instruments). Images are captured by a charge-coupled device (CCD) camera interfaced to a personal computer for easy downloading and subsequent analysis. Although the LEED images from a Pt(111) surface can be readily interpreted using simple diffraction arguments, this lab provides an excellent context for introducing Miller indices and reciprocal lattices (6). The surface chemical composition can be investigated by Auger spectroscopy, using the LEED apparatus as a simple energy analyzer. The temperature programmed desorption experiment, which is nearly complete, will be

  5. Environmental enrichment for primates in laboratories

    NASA Astrophysics Data System (ADS)

    Buchanan-Smith, H. M.

    2010-06-01

    Environmental enrichment is a critical component of Refinement, one of the 3Rs underlying humane experimentation on animals. In this paper I discuss why primates housed in laboratories, which often have constraints of space and study protocols, are a special case for enrichment. I outline a framework for categorising the different types of enrichment, using the marmoset as a case study, and summarise the methods used to determine what animals want/prefer. I briefly review the arguments that enrichment does not negatively affect experimental outcomes. Finally I focus on complexity and novelty, choice and control, the underlying features of enrichment that makes it successful, and how combined with a thorough understanding of natural history we can put effective enrichment into practice in laboratories. Throughout the paper I emphasise the need to evaluate enrichment to ensure it is having the desired effect.

  6. Three-dimensional printing physiology laboratory technology.

    PubMed

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R

    2013-12-01

    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories. PMID:24043254

  7. Computer systems for laboratory networks and high-performance NMR.

    PubMed

    Levy, G C; Begemann, J H

    1985-08-01

    Modern computer technology is significantly enhancing the associated tasks of spectroscopic data acquisition and data reduction and analysis. Distributed data processing techniques, particularly laboratory computer networking, are rapidly changing the scientist's ability to optimize results from complex experiments. Optimization of nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) experimental results requires use of powerful, large-memory (virtual memory preferred) computers with integrated (and supported) high-speed links to magnetic resonance instrumentation. Laboratory architectures with larger computers, in order to extend data reduction capabilities, have facilitated the transition to NMR laboratory computer networking. Examples of a polymer microstructure analysis and in vivo 31P metabolic analysis are given. This paper also discusses laboratory data processing trends anticipated over the next 5-10 years. Full networking of NMR laboratories is just now becoming a reality. PMID:3840171

  8. Tochilinite Produced in Laboratory

    NASA Astrophysics Data System (ADS)

    Kozerenko, S. V.; Organova, N. J.; Fadeev, V. V.; Magazina, L. O.; Kolpakova, N. N.; Kopneva, L. A.

    1996-03-01

    Tochilinite was firstly identified in the serpentinites from Voronezh region, Russia, in 1971. Later this mineral was recognized to be a major matrix phase of the most primitive carbonaceous chondrites (CI, CM) where tochilinite as a mixed-layer structure occurs among serpentine group minerals, olivine, pyroxene, pyrrhotite etc. Terrestrial tochilinite has been suggested to result from low-temperature hydrothermal alteration of serpentinite. The origin of the chondritic tochilinite is still not known, partly because of failure to synthesis this mineral. As for as we know, since 1971, there was no publication about successful synthesis of tochilinite. Here we present results of the first laboratory synthesis of tochilinite as a product of interaction of Fe(II) hydroxides with H2S at 80 degrees C, and total concentration of reduced sulfur ions in solution lower than 10-4M at pH 7.8 and lower than 1M at pH 11.5.

  9. First International Microgravity Laboratory

    NASA Astrophysics Data System (ADS)

    McMahan, Tracy; Shea, Charlotte; Wiginton, Margaret; Neal, Valerie; Gately, Michele; Hunt, Lila; Graben, Jean; Tiderman, Julie; Accardi, Denise

    This colorful booklet presents capsule information on every aspect of the International Microgravity Laboratory (IML). As part of Spacelab, IML is divided into Life Science Experiments and Materials Science Experiments. Because the life and materials sciences use different Spacelab resources, they are logically paired on the IML missions. Life science investigations generally require significant crew involvement, and crew members often participate as test subjects or operators. Materials missions capitalize on these complementary experiments. International cooperation consists in participation by the European Space Agency, Canada, France, Germany, and Japan who are all partners in developing hardware and experiments of IML missions. IML experiments are crucial to future space ventures, like the development of Space Station Freedom, the establishment of lunar colonies, and the exploration of other planets. Principal investigators are identified for each experiment.

  10. First International Microgravity Laboratory

    NASA Technical Reports Server (NTRS)

    Mcmahan, Tracy; Shea, Charlotte; Wiginton, Margaret; Neal, Valerie; Gately, Michele; Hunt, Lila; Graben, Jean; Tiderman, Julie; Accardi, Denise

    1990-01-01

    This colorful booklet presents capsule information on every aspect of the International Microgravity Laboratory (IML). As part of Spacelab, IML is divided into Life Science Experiments and Materials Science Experiments. Because the life and materials sciences use different Spacelab resources, they are logically paired on the IML missions. Life science investigations generally require significant crew involvement, and crew members often participate as test subjects or operators. Materials missions capitalize on these complementary experiments. International cooperation consists in participation by the European Space Agency, Canada, France, Germany, and Japan who are all partners in developing hardware and experiments of IML missions. IML experiments are crucial to future space ventures, like the development of Space Station Freedom, the establishment of lunar colonies, and the exploration of other planets. Principal investigators are identified for each experiment.

  11. Laboratory for Radiokrypton Dating

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Bailey, K.; Jiang, W.; Müller, P.; O'Connor, T. P.; Zappala, J. C.

    2013-12-01

    Due to its simple production and transport processes in the terrestrial environment, the long-lived noble-gas isotope 81Kr (half-life = 230 kyr) is the ideal tracer for studying old water and ice in the age range of 10^5-10^6 years, a range beyond the reach of 14C. 81Kr dating, a concept pursued in the past four decades by numerous laboratories employing a variety of techniques, is now available for the first time to the earth science community at large. This is made possible by the development of ATTA-3 (Jiang et al., GCA 91, 1-6; 2012), an efficient and selective atom counter based on the Atom Trap Trace Analysis method (Chen et al., Science 286, 1139-1141; 1999). The instrument is capable of measuring both 81Kr/Kr and 85Kr/Kr ratios of environmental samples in the range of 10^-14-10^-10. For 81Kr-dating in the age range of 150 - 1,500 kyr, the required sample size is 5 - 10 micro-L STP of krypton gas, which can be extracted from approximately 100 - 200 kg of water or 40 - 80 kg of ice. For 85Kr/Kr analysis, the required sample size is generally smaller by an order of magnitude because of the isotope's higher initial abundance in the atmosphere. The Laboratory for Radiokrypton Dating is currently equipped to analyze up to 120 samples per year. With future equipment upgrades, this limit can be increased as demand grows. In the period since November 2011, the Laboratory has measured both 81Kr/Kr and 85Kr/Kr ratios in over 50 samples that had been extracted by collaborators from six different continents. The samples were from groundwater wells in the Great Artesian Basin (Australia), Guarani Aquifer (Brazil), and Locust Grove (Maryland); from brine wells of the Waste Isolation Pilot Plant (New Mexico); from geothermal steam vents in Yellowstone National Park; from near-surface ice at Taylor Glacier, Antarctica; and from deep mines in South Africa. Sample collection and purification was performed by groups including the University of Illinois at Chicago, University

  12. The autonomic laboratory

    NASA Technical Reports Server (NTRS)

    Low, P. A.; Opfer-Gehrking, T. L.

    1999-01-01

    The autonomic nervous system can now be studied quantitatively, noninvasively, and reproducibly in a clinical autonomic laboratory. The approach at the Mayo Clinic is to study the postganglionic sympathetic nerve fibers of peripheral nerve (using the quantitative sudomotor axon reflex test [QSART]), the parasympathetic nerves to the heart (cardiovagal tests), and the regulation of blood pressure by the baroreflexes (adrenergic tests). Patient preparation is extremely important, since the state of the patient influences the results of autonomic function tests. The autonomic technologist in this evolving field needs to have a solid core of knowledge of autonomic physiology and autonomic function tests, followed by training in the performance of these tests in a standardized fashion. The range and utilization of tests of autonomic function will likely continue to evolve.

  13. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.

    2010-01-01

    The Drill for the Mars Science Laboratory mission is a rotary-percussive sample acquisition device with an emphasis on toughness and robustness to handle the harsh environment on Mars. The unique challenges associated with autonomous drilling from a mobile robot are addressed. A highly compressed development schedule dictated a modular design architecture that satisfies the functional and load requirements while allowing independent development and testing of the Drill subassemblies. The Drill consists of four actuated mechanisms: a spindle that rotates the bit, a chuck that releases and engages bits, a novel voice-coil-based percussion mechanism that hammers the bit, and a linear translation mechanism. The Drill has three passive mechanisms: a replaceable bit assembly that acquires and collects sample, a contact sensor / stabilizer mechanism, and, lastly a flex harness service loop. This paper describes the various mechanisms that makeup the Drill and discusses the solutions to their unique design and development challenges.

  14. Laminar laboratory rivers

    NASA Astrophysics Data System (ADS)

    Seizilles, Grégoire; Devauchelle, Olivier; Lajeunesse, Éric; Métivier, François

    2014-05-01

    A viscous fluid flowing over fine plastic grains spontaneously channelizes into a few centimeters-wide river. After reaching its equilibrium shape, this stable laboratory flume is able to carry a steady load of sediments, like many alluvial rivers. When the sediment discharge vanishes, the river size, shape and slope fit the threshold theory proposed by Glover and Florey (1951), which assumes that the Shields parameter is critical on the channel bed. As the sediment discharge is increased, the river widens and flattens. Surprisingly, the aspect ratio of its cross section depends on the sediment discharge only, regardless of the water discharge. We propose a theoretical interpretation of these findings based on the balance between gravity, which pulls particles towards the center of the channel, and the diffusion of bedload particles, which pushes them away from areas of intense bedload.

  15. Computer integrated laboratory testing

    NASA Technical Reports Server (NTRS)

    Dahl, Charles C.

    1992-01-01

    The objective is the integration of computers into the Engineering Materials Science Laboratory course, where existing test equipment is not computerized. The first lab procedure is to demonstrate and produce a material phase change curve. The second procedure is a demonstration of the modulus of elasticity and related stress-strain curve, plastic performance, maximum and failure strength. The process of recording data by sensors that are connected to a data logger which adds a time base, and the data logger in turn connected to a computer, places the materials labs into a computer integrated mode with minimum expense and maximum flexibility. The sensor signals are input into a spread sheet for tabular records, curve generation, and graph printing.

  16. Interaction between clinic and laboratory.

    PubMed

    Armstrong, Elina; Joutsi-Korhonen, Lotta; Lassila, Riitta

    2011-01-01

    Clinicians order laboratory tests to diagnose, monitor, and screen for diseases, to evaluate or confirm previously abnormal results and to develop prognoses. The rigorous quality assurance programs, large automated processes and economic constraints may induce direct challenges to tailored diagnosis. Clinicians will have to gain an understanding of the underlying principles of laboratory technologies without losing their ability to practice 'the art of medicine' at their primary focus - the patient. Specialized laboratory services and expertise play especially important roles in coagulation hematology. Assays are technically demanding and often based on functional properties of proteins, producing results that are far more than plain numbers. Interpretation of laboratory data poses many challenges, such as pre-analytical and patient-dependent factors, of which the laboratory is often not well informed, but which the clinicians are required to take into account. The laboratory scientist needs to understand the multiple clinical circumstances causing variance or interference in the laboratory results. Direct interaction between clinic and laboratory is needed. When laboratory-specific issues are uncertain to the clinician, the laboratory scientist should become the clinician's primary consultant. The better the education and knowledge of both directions, the better the outcome. Regular multidisciplinary rounds by the clinicians and the laboratory scientists are of great benefit. This interaction at its best fosters research and development by identifying new mechanisms and tools. PMID:21193109

  17. [ISO 15189 medical laboratory accreditation].

    PubMed

    Aoyagi, Tsutomu

    2004-10-01

    This International Standard, based upon ISO/IEC 17025 and ISO 9001, provides requirements for competence and quality that are particular to medical laboratories. While this International Standard is intended for use throughout the currently recognized disciplines of medical laboratory services, those working in other services and disciplines will also find it useful and appropriate. In addition, bodies engaged in the recognition of the competence of medical laboratories will be able to use this International Standard as the basis for their activities. The Japan Accreditation Board for Conformity Assessment (AB) and the Japanese Committee for Clinical Laboratory Standards (CCLS) are jointly developing the program of accreditation of medical laboratories. ISO 15189 requirements consist of two parts, one is management requirements and the other is technical requirements. The former includes the requirements of all parts of ISO 9001, moreover it includes the requirement of conformity assessment body, for example, impartiality and independence from any other party. The latter includes the requirements of laboratory competence (e.g. personnel, facility, instrument, and examination methods), moreover it requires that laboratories shall participate proficiency testing(s) and laboratories' examination results shall have traceability of measurements and implement uncertainty of measurement. Implementation of ISO 15189 will result in a significant improvement in medical laboratories management system and their technical competence. The accreditation of medical laboratory will improve medical laboratory service and be useful for patients. PMID:15624503

  18. The Laboratory for Terrestrial Physics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Laboratory for Terrestrial Physics is dedicated to the advancement of knowledge in Earth and planetary science, by conducting innovative research using space technology. The Laboratory's mission and activities support the work and new initiatives at NASA's Goddard Space Flight Center (GSFC). The Laboratory's success contributes to the Earth Science Directorate as a national resource for studies of Earth from Space. The Laboratory is part of the Earth Science Directorate based at the GSFC in Greenbelt, MD. The Directorate itself is comprised of the Global Change Data Center (GCDC), the Space Data and Computing Division (SDCD), and four science Laboratories, including Laboratory for Terrestrial Physics, Laboratory for Atmospheres, and Laboratory for Hydrospheric Processes all in Greenbelt, MD. The fourth research organization, Goddard Institute for Space Studies (GISS), is in New York, NY. Relevant to NASA's Strategic Plan, the Laboratory ensures that all work undertaken and completed is within the vision of GSFC. The philosophy of the Laboratory is to balance the completion of near term goals, while building on the Laboratory's achievements as a foundation for the scientific challenges in the future.

  19. A Synopsis of Recent Experimental Developments in Complex (Dusty) Plasma Physics

    NASA Astrophysics Data System (ADS)

    Morfill, G. E.

    2002-12-01

    A brief summary is presented of recent developments in laboratory studies of complex (dusty) plasmas, both in terrestrial laboratories and under microgravity conditions, together with a short discussion of possible future developments.

  20. Laboratory Blast Testing Methodologies

    NASA Astrophysics Data System (ADS)

    Needham, C.; Rule, G.

    Blast-induced injuries remain a critical problem facing US Forces during combat operations. As the nature of modern warfare has evolved, it is likely that the Improvised Explosive Device (IED) will remain a common battlefield threat for the foreseeable future. Thus, research devoted to improving protection, and characterizing the physiological response of people and equipment to blast exposure is and will remain a major thrust area for the DOD. Unfortunately, exact reproduction or simulation of the blast environment is technically challenging, while measuring and characterizing blast exposures is even more complex.

  1. GELCASTING: From laboratory development toward industrial production

    SciTech Connect

    Omatete, O.O.; Janney, M.A.; Nunn, S.D.

    1995-07-01

    Gelcasting, a ceramic forming process, was developed to overcome some of the limitations of other complex-shape forming techniques such as injection molding and slip casting. In gelcasting, a concentrated slurry of ceramic powder in a solution of organic monomers is poured into a mold and then polymerized in-situ to form a green body in the shape of the mold cavity. Thus, it is a combination of polymer chemistry with slip processing and represents minimal departure from standard ceramic processing. The simplicity of the process has attracted industrial partners and by collaboration between them and the developers, the process is being advanced from the laboratory toward industrial production.

  2. Experimenter's Laboratory for Visualized Interactive Science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Rodier, Daniel R.; Klemp, Marjorie K.

    1994-01-01

    ELVIS (Experimenter's Laboratory for Visualized Interactive Science) is an interactive visualization environment that enables scientists, students, and educators to visualize and analyze large, complex, and diverse sets of scientific data. It accomplishes this by presenting the data sets as 2-D, 3-D, color, stereo, and graphic images with movable and multiple light sources combined with displays of solid-surface, contours, wire-frame, and transparency. By simultaneously rendering diverse data sets acquired from multiple sources, formats, and resolutions and by interacting with the data through an intuitive, direct-manipulation interface, ELVIS provides an interactive and responsive environment for exploratory data analysis.

  3. What's Happening in the Software Engineering Laboratory?

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose; Green, Scott; Smith, Donald

    1995-01-01

    Since 1976 the Software Engineering Laboratory (SEL) has been dedicated to understanding and improving the way in which one NASA organization the Flight Dynamics Division (FDD) at Goddard Space Flight Center, develops, maintains, and manages complex flight dynamics systems. This paper presents an overview of recent activities and studies in SEL, using as a framework the SEL's organizational goals and experience based software improvement approach. It focuses on two SEL experience areas : (1) the evolution of the measurement program and (2) an analysis of three generations of Cleanroom experiments.

  4. Virtual Laboratories in Physics with Autogenerated Parameters

    NASA Astrophysics Data System (ADS)

    Maksimov, M. A.; Monakhov, V. V.; Kozhedub, A. V.

    2015-09-01

    The paper is devoted to a virtual laboratory system, which in particular can be used to test knowledge through research. The participant can prefer which tools to operate and what actions should be taken. For the most of the tasks, there are copious ways to obtain the correct solution. One of the most important features of the system that distinguish this one among other simulation packages and educational systems is the pseudo-random physical parameter generation technique. The technique supports constraints and relationships between variables. As a result, it provides correctness and equal complexity of the generated task. The system can be very complex and is highly customizable by internal script system executed on server-side. The system is used as a part of distolymp Learning Management System with about 40 thousand participants per year.

  5. Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory

    SciTech Connect

    1997-09-01

    ``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

  6. [Laboratory markers of melanoma progression].

    PubMed

    Bánfalvi, Teodóra; Edesné, Mariann B; Gergye, Mária; Udvarhelyi, Nóra; Orosz, Zsolt; Gilde, Katalin; Kremmer, Tibor; Ottó, Szabolcs; Tímár, József

    2003-01-01

    Extracellular tumour markers may have potential role in the follow-up of patients with malignant melanoma, in therapy monitoring and in prediction of prognosis. In our article circulating tumour markers in melanoma (melanoma inhibitory activity, lipid bound sialic acid, neuron specific enolase, TA90 immune complex, S-100B protein, 5-S-cysteinyldopa, tyrosinase, cytokines, metalloproteinases, LDH) were reviewed. Among laboratory melanoma markers the S-100B protein is the most investigated. S-100B protein has high specificity, appropriate sensitivity and proved to be significant prognostic factor independent from stages. High serum values are associated with shorter survival. However, before S-100B monitoring immunohistochemistry for the detection of S-100B is required. In the case of malignant melanomas with low expression serum S-100B monitoring may not be sensitive enough to follow disease progression. Although the serum concentration of 5-S-cysteinyldopa did not prove to be independent prognostic factor in our previous studies comprising the highest patient number in the literature, the marker was suggested for therapy monitoring. The survival analysis indicated that the elevated 5-S-cysteinyldopa level predicts shorter survival. In spite of the calculated low correlation between the two markers, parallel elevation of S-100B protein and 5-S-cysteinyldopa indicated shorter survival. On the basis of the literature LDH is the most appropriate tumour marker in stage IV to predict prognosis, but its sensitivity and specificity could not achieve that of S-100B protein. S-100B and LDH proved to be similarly reliable in respect to the clinical outcome. Determination of serum concentration of MIA and tyrosinase are also reliable markers in malignant melanoma. The other investigated markers are not well known yet or do not provide useful information to the clinicians. PMID:12704461

  7. Molecular complexes in close and far away

    PubMed Central

    Klemperer, William; Vaida, Veronica

    2006-01-01

    In this review, gas-phase chemistry of interstellar media and some planetary atmospheres is extended to include molecular complexes. Although the composition, density, and temperature of the environments discussed are very different, molecular complexes have recently been considered as potential contributors to chemistry. The complexes reviewed include strongly bound aggregates of molecules with ions, intermediate-strength hydrogen bonded complexes (primarily hydrates), and weakly bonded van der Waals molecules. In low-density, low-temperature environments characteristic of giant molecular clouds, molecular synthesis, known to involve gas-phase ion-molecule reactions and chemistry at the surface of dust and ice grains is extended here to involve molecular ionic clusters. At the high density and high temperatures found on planetary atmospheres, molecular complexes contribute to both atmospheric chemistry and climate. Using the observational, laboratory, and theoretical database, the role of molecular complexes in close and far away is discussed. PMID:16740667

  8. Laboratory development TPV generator

    SciTech Connect

    Holmquist, G.A.; Wong, E.M.; Waldman, C.H.

    1996-02-01

    A laboratory model of a TPV generator in the kilowatt range was developed and tested. It was based on methane/oxygen combustion and a spectrally matched selective emitter/collector pair (ytterbia emitter-silicon PV cell). The system demonstrated a power output of 2.4 kilowatts at an overall efficiency of 4.5{percent} without recuperation of heat from the exhaust gases. Key aspects of the effort include: (1) process development and fabrication of mechanically strong selective emitter ceramic textile materials; (2) design of a stirred reactor emitter/burner capable of handling up to 175,000 Btu/hr fuel flows; (3) support to the developer of the production silicon concentrator cells capable of withstanding TPV environments; (4) assessing the apparent temperature exponent of selective emitters; and (5) determining that the remaining generator efficiency improvements are readily defined combustion engineering problems that do not necessitate breakthrough technology. The fiber matrix selective emitter ceramic textile (felt) was fabricated by a relic process with the final heat-treatment controlling the grain growth in the porous ceramic fiber matrix. This textile formed a cylindrical cavity for a stirred reactor. The ideal stirred reactor is characterized by constant temperature combustion resulting in a uniform reactor temperature. This results in a uniform radiant emission from the emitter. As a result of significant developments in the porous emitter matrix technology, a TPV generator burner/emitter was developed that produced kilowatts of radiant energy. {copyright} {ital 1996 American Institute of Physics.}

  9. Spectrometers beyond the laboratory

    SciTech Connect

    Wadsworth, W.

    1996-11-01

    Two new types of miniature Fourier Transform Spectrometers (FTS) presently being built have enabled this technology to be taken out of the laboratory and into the field. Both designs are very rugged, use little power to run, and can be made extremely small and lightweight. They are excellent candidates for airborne use, both in aircraft and satellite applications. One, the Mcro FT, is a mass balanced linear reciprocating scan operating in the 1-2 scan per second speed range. The other, the Turbo FT, uses a rotary scan, enabling it to run at much higher speeds, from 10 to 1000 scans per second. Either type can be built in the visible, near K and thermal IR wavelength ranges, and provide spectral resolution of 1-2 wave-numbers. Results obtained in all these wavelength ranges are presented here. The rotary configuration is more suited to airborne and satellite survey type deployments, due mostly to its rapid scan rate. Either of these sensors will fit into a small, commercially available stabilized pod which can easily be attached to a helicopter or light plane. This results in a very economical flight spectrometer system. 11 figs.

  10. Automated Microbial Metabolism Laboratory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Automated Microbial Metabolism Laboratory (AMML) 1971-1972 program involved the investigation of three separate life detection schemes. The first was a continued further development of the labeled release experiment. The possibility of chamber reuse without inbetween sterilization, to provide comparative biochemical information was tested. Findings show that individual substrates or concentrations of antimetabolites may be sequentially added to a single test chamber. The second detection system which was investigated for possible inclusion in the AMML package of assays, was nitrogen fixation as detected by acetylene reduction. Thirdly, a series of preliminary steps were taken to investigate the feasibility of detecting biopolymers in soil. A strategy for the safe return to Earth of a Mars sample prior to manned landings on Mars is outlined. The program assumes that the probability of indigenous life on Mars is unity and then broadly presents the procedures for acquisition and analysis of the Mars sample in a manner to satisfy the scientific community and the public that adequate safeguards are being taken.

  11. BNL Sources Development Laboratory

    SciTech Connect

    Ben-Zvi, I.; Graves, W.; Heese, R.; Johnson, E.D.; Krinsky, S.; Yu, L.H.

    1997-01-01

    The NSLS has a long-standing interest in providing the best possible synchrotron radiation sources for its user community, and hence, has recently established the Source Development Laboratory (SDL) to pursue research into fourth generation synchrotron radiation sources. A major element of the program includes development of a high peak power FEL meant to operate in the vacuum ultraviolet. The objective of the program is to develop the source, and experimental technology together to provide the greatest impact on UV science. The accelerator under construction for the SDL consists of a high brightness RF photocathode electron gun followed by a 230 MeV short pulse linac incorporating a magnetic chicane for pulse compression. The gun drive laser is a wide bandwidth Ti: Sapphire regenerative amplifier capable of pulse shaping which will be used to study non- linear emittance compensation. Using the compressor, 1 nC bunches with a length as small as 50 {mu}m sigma (2 kA peak current) are available for experiments. In this paper we briefly describe the facility and detail our plans for utilizing the 10 m long NISUS wiggler to carry out single pass FEL experiments. These include a 1 {mu}m SASE demonstration, a seeded beam demonstration at 300 nm, and a High Gain Harmonic Generation experiment at 200 mn. The application of chirped pulse amplification to this type of FEL will also be discussed.

  12. Oral anatomy laboratory examinations in a physical therapy program.

    PubMed

    Fabrizio, Philip A

    2013-01-01

    The process of creating and administering traditional tagged anatomy laboratory examinations is time consuming for instructors and limits laboratory access for students. Depending on class size and the number of class, sections, creating, administering, and breaking down a tagged laboratory examination may involve one to two eight-hour days. During the time that a tagged examination is being created, student productivity may be reduced as the anatomy laboratory is inaccessible to students. Further, the type of questions that can be asked in a tagged laboratory examination may limit student assessment to lower level cognitive abilities and may limit the instructors' ability to assess the students' understanding of anatomical and clinical concepts. Anatomy is a foundational science in the Physical Therapy curriculum and a thorough understanding of anatomy is necessary to progress through the subsequent clinical courses. Physical therapy curricula have evolved to reflect the changing role of physical therapists to primary caregivers by introducing a greater scope of clinical courses earlier in the curriculum. Physical therapy students must have a thorough understanding of clinical anatomy early in the education process. However, traditional anatomy examination methods may not be reflective of the clinical thought processes required of physical therapy students. Traditional laboratory examination methods also reduce student productivity by limiting access during examination set-up and breakdown. To provide a greater complexity of questions and reduced overall laboratory time required for examinations, the Physical Therapy Program at Mercer University has introduced oral laboratory examinations for the gross anatomy course series. PMID:23225627

  13. Seeding the Physical and Analytical Laboratory Curriculum with Interdisciplinary Applications

    NASA Astrophysics Data System (ADS)

    Reutt-Robey, Janice; Blough, Neil; Rebbert, Richard

    1999-02-01

    For the past five years, the Department of Chemistry and Biochemistry at the University of Maryland at College Park has worked to modernize all facets of the undergraduate laboratory experience. Students in the first-year biochemistry laboratory now utilize modern techniques in biochemistry and molecular biology to isolate and characterize the bacterial enzyme alkaline phosphatase. Organic chemistry laboratories are now conducted exclusively with microware. New laboratory-intensive introductory chemistry courses have been developed for out chemistry majors. This Highlight describes innovations in three upper-division laboratories, Physical Chemistry Laboratories I and II and Instrumental Methods of Analysis. Beyond serving as an experimental practicum, an important goal of these laboratories is that students begin to gain an appreciation for the power of chemical measurements to probe the properties of more complex chemical systems. Since physical and analytical methods are increasingly applied to biochemical systems in research, in industrial processes, and in health and environmental regulation, it is appropriate to introduce experiments involving biochemical, environmental, and materials systems to these upper-division laboratories.

  14. Whole Class Laboratories: More Examples

    NASA Astrophysics Data System (ADS)

    Kouh, Minjoon

    2016-03-01

    Typically, introductory physics courses are taught with a combination of lectures and laboratories in which students have opportunities to discover the natural laws through hands-on activities in small groups. This article reports the use of Google Drive, a free online document-sharing tool, in physics laboratories for pooling experimental data from the whole class. This pedagogical method was reported earlier, and the present article offers a few more examples of such "whole class" laboratories.

  15. Ethical Inspection about laboratory animals.

    PubMed

    Yang, Nai-bin; Pan, Xiao-jun; Cheng, Jing-jing; Lin, Jia-qiang; Zhu, Jia-yin

    2015-11-01

    Laboratory animals and animal experiments are foundations and important support conditions for life sciences, especially for medical research. The animal experiments have drawn extensive attention from the society because of the ethical issue. This paper takes Wenzhou Medical University as an example to give a brief introduction to the ethical review about laboratory animals in the university so as to further draw attention and concerns from the public about the ethical issue of laboratory animals. We successively introduce its scientific projects, nurturing environment and ethical review of laboratory animals. PMID:27215017

  16. Complex Tectonism on Ganymede

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Complex tectonism is evident in these images of Ganymede's surface. The solid state imaging camera on NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. The 80 kilometer (50 mile) wide lens-shaped feature in the center of the image is located at 32 degrees latitude and 188 degrees longitude along the border of a region of ancient dark terrain known as Marius Regio, and is near an area of younger bright terrain named Nippur Sulcus. The tectonism that created the structures in the bright terrain nearby has strongly affected the local dark terrain to form unusual structures such as the one shown here. The lens-like appearance of this feature is probably due to shearing of the surface, where areas have slid past each other and also rotated slightly. Note that in several places in these images, especially around the border of the lens-shaped feature, bright ridges appear to turn into dark grooves. Analysis of the geologic structures in areas like this are helping scientists to understand the complex tectonic history of Ganymede.

    North is to the top-left of the image, and the sun illuminates the surface from the southeast. The image covers an area about 63 kilometers (39 miles) by 120 kilometers (75 miles) across at a resolution of 188 meters (627 feet) per picture element. The images were taken on September 6, 1996 at a range of 18,522 kilometers (11,576 miles) by the solid state imaging (CCD) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  17. Wentworth Institute Mechanical Engineering Laboratory Manual. Laboratory Study Guide.

    ERIC Educational Resources Information Center

    Avakian, Harry; And Others

    This publication is a laboratory study guide designed for mechanical engineering students. All of the experiments (with the exception of experiment No. 1) contained in the Mechanical Engineering Laboratory Manual have been included in this guide. Brief theoretical backgrounds, examples and their solutions, charts, graphs, illustrations, and…

  18. Mice examined in Animal Laboratory of Lunar Receiving Laboratory

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Landrum Young (seated), Brown and Root-Northrup, and Russell Stullken, Manned Spacecraft Center, examine mice in the Animal laboratory of the Lunar Receiving Laboratory which have been inoculated with lunar sample material. wish for peace for all mankind. astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.

  19. Cobalt(II) Ammine Complexes as Reversible Absorbers of Oxygen.

    ERIC Educational Resources Information Center

    Saito, Kazuo; Ogino, Kazuko

    1988-01-01

    Describes experiments designed to measure the oxygen content in the atmosphere and related areas in the high school laboratories. Considers the application of these activities to other programs. Includes a description of the binuclear complex and recommended procedures. (CW)

  20. 19. CONSTRUCTION PROGRESS PHOTO SHOWING (TYPICALLY COMPLEX) WASTE HOLDING CELL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. CONSTRUCTION PROGRESS PHOTO SHOWING (TYPICALLY COMPLEX) WASTE HOLDING CELL PIPING. INEEL PHOTO NUMBER NRTS-59-3212. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  1. 2. View looking west southwest at Test Stand 'A' complex. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View looking west southwest at Test Stand 'A' complex. Monitor Building 4203/E-4 is hidden behind barrier (4216/E-17). - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Control Center, Edwards Air Force Base, Boron, Kern County, CA

  2. Synthesis of Dinitrogen and Dihydrogen Complexes of Molybdenum.

    ERIC Educational Resources Information Center

    Archer, Leonard J.; And Others

    1981-01-01

    Presents background information, safety notes, and laboratory procedures for synthesizing dinitrogen and dihydrogen complexes of molybdenum. The one-step method described is suitable for advanced inorganic chemistry classes. (SK)

  3. Laboratory for Radiokrypton Dating

    NASA Astrophysics Data System (ADS)

    Zappala, J. C.; Jiang, W.; Bailey, K. G.; Lu, Z. T.; Mueller, P.; O'Connor, T. P.

    2015-12-01

    Due to its simple production and transport in the terrestrial environment, 81Kr (half-life = 230,000 yr) is the ideal tracer for old water and ice with mean residence times in the range of 105-106 years, a range beyond the reach of 14C. 81Kr-dating is now available to the earth science community at large thanks to the development of an efficient and selective atom counter based on the Atom Trap Trace Analysis (ATTA) method. ATTA is a laser-based atom counting method where individual neutral atoms of the desired isotope are selectively captured by laser beams, and their fluorescence detected via a CCD camera. ATTA is unique among trace analysis techniques in that it is free of interferences from any other isotopes, isobars, atomic or molecular species. The ATTA instrument at Argonne's Laboratory for Radiokrypton Dating is capable of measuring both 81Kr/Kr and 85Kr/Kr ratios of environmental samples in the range of 10-14-10-10. For 81Kr-dating in the age range of 150 kyr - 1500 kyr, the required sample size is 5 micro-L STP of krypton gas, which can be extracted from approximately 100 kg of water or 40 kg of ice. For 85Kr/Kr analysis, the sample size can be smaller by an order of magnitude. We are continually developing the method towards higher counting efficiency, smaller sample sizes requirements, and higher sample throughput rates. In the past four years, we have performed radiokrypton analysis of over 150 groundwater and ice samples extracted by collaborators from all seven continents. Sample collection and purification was performed by groups including the University of Chicago, the University of Illinois at Chicago, the University of Bern, and the International Atomic Energy Agency. This work is supported by the U.S. DOE, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  4. Alternative Fuels Research Laboratory

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Nakley, Leah M.; Yen, Chia H.

    2012-01-01

    NASA Glenn has invested over $1.5 million in engineering, and infrastructure upgrades to renovate an existing test facility at the NASA Glenn Research Center (GRC), which is now being used as an Alternative Fuels Laboratory. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch (F-T) synthesis and thermal stability testing. This effort is supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing project. The purpose of this test facility is to conduct bench scale F-T catalyst screening experiments. These experiments require the use of a synthesis gas feedstock, which will enable the investigation of F-T reaction kinetics, product yields and hydrocarbon distributions. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor for catalyst activation studies. Product gas composition and performance data can be continuously obtained with an automated gas sampling system, which directly connects the reactors to a micro-gas chromatograph (micro GC). Liquid and molten product samples are collected intermittently and are analyzed by injecting as a diluted sample into designated gas chromatograph units. The test facility also has the capability of performing thermal stability experiments of alternative aviation fuels with the use of a Hot Liquid Process Simulator (HLPS) (Ref. 1) in accordance to ASTM D 3241 "Thermal Oxidation Stability of Aviation Fuels" (JFTOT method) (Ref. 2). An Ellipsometer will be used to study fuel fouling thicknesses on heated tubes from the HLPS experiments. A detailed overview of the test facility systems and capabilities are described in this paper.

  5. Laboratory Spectroscopy of Ices of Astrophysical Interest

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie; Moore, M. H.

    2011-01-01

    Ongoing and future NASA and ESA astronomy missions need detailed information on the spectra of a variety of molecular ices to help establish the identity and abundances of molecules observed in astronomical data. Examples of condensed-phase molecules already detected on cold surfaces include H2O, CO, CO2, N2, NH3, CH4, SO2, O2, and O3. In addition, strong evidence exists for the solid-phase nitriles HCN, HC3N, and C2N2 in Titan's atmosphere. The wavelength region over which these identifications have been made is roughly 0.5 to 100 micron. Searches for additional features of complex carbon-containing species are in progress. Existing and future observations often impose special requirements on the information that comes from the laboratory. For example, the measurement of spectra, determination of integrated band strengths, and extraction of complex refractive indices of ices (and icy mixtures) in both amorphous and crystalline phases at relevant temperatures are all important tasks. In addition, the determination of the index of refraction of amorphous and crystalline ices in the visible region is essential for the extraction of infrared optical constants. Similarly, the measurement of spectra of ions and molecules embedded in relevant ices is important. This laboratory review will examine some of the existing experimental work and capabilities in these areas along with what more may be needed to meet current and future NASA and ESA planetary needs.

  6. Handling Metadata in a Neurophysiology Laboratory.

    PubMed

    Zehl, Lyuba; Jaillet, Florent; Stoewer, Adrian; Grewe, Jan; Sobolev, Andrey; Wachtler, Thomas; Brochier, Thomas G; Riehle, Alexa; Denker, Michael; Grün, Sonja

    2016-01-01

    To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework. PMID:27486397

  7. Handling Metadata in a Neurophysiology Laboratory

    PubMed Central

    Zehl, Lyuba; Jaillet, Florent; Stoewer, Adrian; Grewe, Jan; Sobolev, Andrey; Wachtler, Thomas; Brochier, Thomas G.; Riehle, Alexa; Denker, Michael; Grün, Sonja

    2016-01-01

    To date, non-reproducibility of neurophysiological research is a matter of intense discussion in the scientific community. A crucial component to enhance reproducibility is to comprehensively collect and store metadata, that is, all information about the experiment, the data, and the applied preprocessing steps on the data, such that they can be accessed and shared in a consistent and simple manner. However, the complexity of experiments, the highly specialized analysis workflows and a lack of knowledge on how to make use of supporting software tools often overburden researchers to perform such a detailed documentation. For this reason, the collected metadata are often incomplete, incomprehensible for outsiders or ambiguous. Based on our research experience in dealing with diverse datasets, we here provide conceptual and technical guidance to overcome the challenges associated with the collection, organization, and storage of metadata in a neurophysiology laboratory. Through the concrete example of managing the metadata of a complex experiment that yields multi-channel recordings from monkeys performing a behavioral motor task, we practically demonstrate the implementation of these approaches and solutions with the intention that they may be generalized to other projects. Moreover, we detail five use cases that demonstrate the resulting benefits of constructing a well-organized metadata collection when processing or analyzing the recorded data, in particular when these are shared between laboratories in a modern scientific collaboration. Finally, we suggest an adaptable workflow to accumulate, structure and store metadata from different sources using, by way of example, the odML metadata framework. PMID:27486397

  8. 40. South Elevation, Revised Drawing of XRay Laboratory, Building No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. South Elevation, Revised Drawing of X-Ray Laboratory, Building No. 27, Letterman General Hospital. August 1940. BUILDING 1006. - Presidio of San Francisco, Letterman General Hospital, Building No. 27, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  9. 39. North Elevation, Revised Drawing of XRay Laboratory, Building No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. North Elevation, Revised Drawing of X-Ray Laboratory, Building No. 27, Letterman General Hospital. August 1915. BUILDING 1006. - Presidio of San Francisco, Letterman General Hospital, Building No. 27, Letterman Hospital Complex, Edie Road, San Francisco, San Francisco County, CA

  10. Operational experience on the Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.; Babzien, M.; Ben-Zvi, I.

    1994-09-01

    Brookhaven National Laboratory Accelerator Test Facility is a laser-electron linear accelerator complex designed to provide high brightness beams for testing of advanced acceleration concepts and high power pulsed photon sources. Results of electron beam parameters attained during the commissioning of the nominally 45 MeV energy machine are presented.

  11. Adsorption of Phosphate on Goethite: An Undergraduate Research Laboratory Project

    ERIC Educational Resources Information Center

    Tribe, Lorena; Barja, Beatriz C.

    2004-01-01

    A laboratory experiment on the adsorption of phosphate on goethite is presented, which also includes discussion on surface properties, interfaces, acid-base equilibrium, molecular structure and solid state chemistry. It was seen that many students were able to produce qualitatively correct results for a complex system of real interest and they…

  12. The Invention Factory: Thomas Edison's Laboratories. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Bolger, Benjamin

    This lesson explores the group of buildings in West Orange, New Jersey, built in 1887, that formed the core of Thomas Edison's research and development complex. They consisted of chemistry, physics, and metallurgy laboratories; machine shop; pattern shop; research library; and rooms for experiments. The lesson explains that the prototypes (ideas…

  13. Partnership Opportunities with the Oak Ridge National Laboratory

    SciTech Connect

    Payne, T.L.; Coxon, G.D.

    2000-02-20

    The Oak Ridge National Laboratory (ORNL) is ``bringing science to life'' through the creation of knowledge; the invention of new tools and techniques; the scientific analysis of complex situations; and the design, construction and operation of research facilities used by scientists and engineers from throughout the world.

  14. Computer Simulation and Laboratory Work in the Teaching of Mechanics.

    ERIC Educational Resources Information Center

    Borghi, L.; And Others

    1987-01-01

    Describes a teaching strategy designed to help high school students learn mechanics by involving them in simple experimental work, observing didactic films, running computer simulations, and executing more complex laboratory experiments. Provides an example of the strategy as it is applied to the topic of projectile motion. (TW)

  15. Cold Agglutinin Disease; A Laboratory Challenge

    PubMed Central

    Nikousefat, Zahra; Javdani, Moosa; Hashemnia, Mohammad; Haratyan, Abbas; Jalili, Ali

    2015-01-01

    Introduction: Autoimmune haemolytic anemia (AIHA) is a complex process characterized by an immune reaction against red blood cell self-antigens. The analysis of specimens, drawn from patients with cold auto-immune hemolytic anemia is a difficult problem for automated hematology analyzer. This paper was written to alert technologists and pathologists to the presence of cold agglutinins and its effect on laboratory tests. Case Presentation: A 72-year-old female presented to the Shafa laboratory for hematology profile evaluation. CBC indices showed invalid findings with the Sysmex automated hematology analyzer. Checking the laboratory process showed precipitation residue sticking to the sides of the tube. After warming the tubes, results become valid and the problem attributed to cold agglutinin disease. In this situation, aggregation of RBCs, which occurs at t < 30°C, causes invalid findings meanwhile working with automated hematology analyzer. Conclusions: Knowledge of this phenomenon can help prevent wasting too much time and make an early and accurate diagnosis. PMID:26566452

  16. Los Alamos National Laboratory building cost index

    SciTech Connect

    Orr, H.D.; Lemon, G.D.

    1982-10-01

    The Los Alamos National Laboratory Building Cost Index indicates that actual escalation since 1970 is near 10% per year. Therefore, the Laboratory will continue using a 10% per year escalation rate for construction estimates through 1985 and a slightly lower rate of 8% per year from 1986 through 1990. The computerized program compares the different elements involved in the cost of a typical construction project, which for our purposes, is a complex of office buildings and experimental laboratories. The input data used in the program consist primarily of labor costs and material and equipment costs. The labor costs are the contractual rates of the crafts workers in the Los Alamos area. For the analysis, 12 field-labor craft categories are used; each is weighted corresponding to the labor craft distribution associated with the typical construction project. The materials costs are current Los Alamos prices. Additional information sources include material and equipment quotes obtained through conversations with vendors and from trade publications. The material and equipment items separate into 17 categories for the analysis and are weighted corresponding to the material and equipment distribution associated with the typical construction project. The building cost index is compared to other national building cost indexes.

  17. Road Transportable Analytical Laboratory system. Phase 1

    SciTech Connect

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

  18. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    SciTech Connect

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC&FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate.

  19. Laboratory surface astrochemistry experiments

    SciTech Connect

    Frankland, V. L.; Rosu-Finsen, A. Lasne, J.; Collings, M. P.; McCoustra, M. R. S.

    2015-05-15

    Although several research groups have studied the formation of H{sub 2} on interstellar dust grains using surface science techniques, few have explored the formation of more complex molecules. A small number of these reactions produce molecules that remain on the surface of interstellar dust grains and, over time, lead to the formation of icy mantles. The most abundant of these species within the ice is H{sub 2}O and is of particular interest as the observed molecular abundance cannot be accounted for using gas-phase chemistry alone. This article provides a brief introduction to the astronomical implications and motivations behind this research and the requirement for a new dual atomic beam ultrahigh vacuum (UHV) system. Further details of the apparatus design, characterisation, and calibration of the system are provided along with preliminary data from atomic O and O{sub 2} beam dosing on bare silica substrate and subsequent temperature programmed desorption measurements. The results obtained in this ongoing research may enable more chemically accurate surface formation mechanisms to be deduced for this and other species before simulating the kinetic data under interstellar conditions.

  20. Interparticle Attraction in 2D Complex Plasmas

    NASA Astrophysics Data System (ADS)

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-03-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  1. Sociality influences cultural complexity

    PubMed Central

    Muthukrishna, Michael; Shulman, Ben W.; Vasilescu, Vlad; Henrich, Joseph

    2014-01-01

    Archaeological and ethnohistorical evidence suggests a link between a population's size and structure, and the diversity or sophistication of its toolkits or technologies. Addressing these patterns, several evolutionary models predict that both the size and social interconnectedness of populations can contribute to the complexity of its cultural repertoire. Some models also predict that a sudden loss of sociality or of population will result in subsequent losses of useful skills/technologies. Here, we test these predictions with two experiments that permit learners to access either one or five models (teachers). Experiment 1 demonstrates that naive participants who could observe five models, integrate this information and generate increasingly effective skills (using an image editing tool) over 10 laboratory generations, whereas those with access to only one model show no improvement. Experiment 2, which began with a generation of trained experts, shows how learners with access to only one model lose skills (in knot-tying) more rapidly than those with access to five models. In the final generation of both experiments, all participants with access to five models demonstrate superior skills to those with access to only one model. These results support theoretical predictions linking sociality to cumulative cultural evolution. PMID:24225461

  2. On State Complexes and Special Cube Complexes

    ERIC Educational Resources Information Center

    Peterson, Valerie J.

    2009-01-01

    This thesis presents the first steps toward a classification of non-positively curved cube complexes called state complexes. A "state complex" is a configuration space for a "reconfigurable system," i.e., an abstract system in which local movements occur in some discrete manner. Reconfigurable systems can be used to describe, for example,…

  3. Reactions of a Dinitrogen Complex of Molybdenum: Formation of a Carbon-Nitrogen Bond.

    ERIC Educational Resources Information Center

    Busby, David C.; And Others

    1981-01-01

    Reports a procedure for the formation of alkyldiazenido complexes of molybdenum in the absence of dioxygen, suitable for inclusion in an advanced inorganic chemistry laboratory. Includes background information and experimental procedures for two complexes. (SK)

  4. Laboratory volcano geodesy

    NASA Astrophysics Data System (ADS)

    Færøvik Johannessen, Rikke; Galland, Olivier; Mair, Karen

    2014-05-01

    Magma transport in volcanic plumbing systems induces surface deformation, which can be monitored by geodetic techniques, such as GPS and InSAR. These geodetic signals are commonly analyzed through geodetic models in order to constrain the shape of, and the pressure in, magma plumbing systems. These models, however, suffer critical limitations: (1) the modelled magma conduit shapes cannot be compared with the real conduits, so the geodetic models cannot be tested nor validated; (2) the modelled conduits only exhibit shapes that are too simplistic; (3) most geodetic models only account for elasticity of the host rock, whereas substantial plastic deformation is known to occur. To overcome these limitations, one needs to use a physical system, in which (1) both surface deformation and the shape of, and pressure in, the underlying conduit are known, and (2) the mechanical properties of the host material are controlled and well known. In this contribution, we present novel quantitative laboratory results of shallow magma emplacement. Fine-grained silica flour represents the brittle crust, and low viscosity vegetable oil is an analogue for the magma. The melting temperature of the oil is 31°C; the oil solidifies in the models after the end of the experiments. At the time of injection the oil temperature is 50°C. The oil is pumped from a reservoir using a volumetric pump into the silica flour through a circular inlet at the bottom of a 40x40 cm square box. The silica flour is cohesive, such that oil intrudes it by fracturing it, and produces typical sheet intrusions (dykes, cone sheets, etc.). During oil intrusion, the model surface deforms, mostly by doming. These movements are measured by an advanced photogrammetry method, which uses 4 synchronized fixed cameras that periodically image the surface of the model from different angles. We apply particle tracking method to compute the 3D ground deformation pattern through time. After solidification of the oil, the

  5. Laboratory Activities for Introductory Astronomy

    ERIC Educational Resources Information Center

    Kruglak, Haym

    1973-01-01

    Presents sample laboratory activities designed for use in astronomy teaching, including naked eye observations, instrument construction, student projects, and cloudy weather activities. Appended are bibliographies of journal articles and reference books and lists of films, laboratory manuals, and distributors of apparatus and teaching aids. (CC)

  6. An Advanced Chemistry Laboratory Program.

    ERIC Educational Resources Information Center

    Wise, John H.

    The Advanced Chemistry Laboratory Program is a project designed to devise experiments to coordinate the use of instruments in the laboratory programs of physical chemistry, instrumental analysis, and inorganic chemistry at the advanced undergraduate level. It is intended that such experiments would incorporate an introduction to the instrument…

  7. OCCUPATION--LANGUAGE LABORATORY DIRECTOR.

    ERIC Educational Resources Information Center

    TURNER, DAYMOND

    TRUE PROFESSIONAL STATUS FOR A LABORATORY DIRECTOR, PLUS ADMINISTRATIVE SUPPORT OF SUCH INSTRUCTION, WILL GIVE COLLEGES AND UNIVERSITIES ADEQUATE RETURN FOR THEIR INVESTMENT IN ELECTRONIC EQUIPMENT. BY BEING INVOLVED IN IMPORTANT RESEARCH AND INSTRUCTIONAL ACTIVITIES, THE DIRECTOR OF A LANGUAGE LABORATORY CAN SERVE ALSO TO FREE THE TEACHER AND…

  8. Whole Class Laboratories: More Examples

    ERIC Educational Resources Information Center

    Kouh, Minjoon

    2016-01-01

    Typically, introductory physics courses are taught with a combination of lectures and laboratories in which students have opportunities to discover the natural laws through hands-on activities in small groups. This article reports the use of Google Drive, a free online document-sharing tool, in physics laboratories for pooling experimental data…

  9. Simulated Laboratory in Digital Logic.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    Design of computer circuits used to be a pencil and paper task followed by laboratory tests, but logic circuit design can now be done in half the time as the engineer accesses a program which simulates the behavior of real digital circuits, and does all the wiring and testing on his computer screen. A simulated laboratory in digital logic has been…

  10. A laboratory animal science pioneer.

    PubMed

    Kostomitsopoulos, Nikolaos

    2014-11-01

    Nikolaos Kostomitsopoulos, DVM, PhD, is Head of Laboratory Animal Facilities and Designated Veterinarian, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece. Dr. Kostomitsopoulos discusses his successes in implementing laboratory animal science legislation and fostering collaboration among scientists in Greece. PMID:25333597

  11. Undergraduate Organic Chemistry Laboratory Safety

    NASA Astrophysics Data System (ADS)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  12. LABORATORY DESIGN CONSIDERATIONS FOR SAFETY.

    ERIC Educational Resources Information Center

    National Safety Council, Chicago, IL. Campus Safety Association.

    THIS SET OF CONSIDERATIONS HAS BEEN PREPARED TO PROVIDE PERSONS WORKING ON THE DESIGN OF NEW OR REMODELED LABORATORY FACILITIES WITH A SUITABLE REFERENCE GUIDE TO DESIGN SAFETY. THERE IS NO DISTINCTION BETWEEN TYPES OF LABORATORY AND THE EMPHASIS IS ON GIVING GUIDES AND ALTERNATIVES RATHER THAN DETAILED SPECIFICATIONS. AREAS COVERED INCLUDE--(1)…

  13. The Laboratory for Learning Resourses

    ERIC Educational Resources Information Center

    Spilman, Edra L.

    1973-01-01

    Laboratories for Learning Resourses, instead of replacing or competing with the medical library, should provide a learning environment for medical students, with books, laboratory-lecture presentations, slide-sound programs, films, videotapes, computer models and programs, museum specimens and charts. (Author/PG)

  14. Three Puzzles for Organic Laboratory.

    ERIC Educational Resources Information Center

    Todd, David; Pickering, Miles

    1988-01-01

    Notes that laboratory work should be more oriented towards puzzle solving rather than technique or illustration. Offers three organic laboratory puzzles which can be solved by melting point alone. Involves lab work at the 100-200-mg scale but still uses conventional glassware. (MVL)

  15. Trial of Integrated Laboratory Practice

    ERIC Educational Resources Information Center

    Matsuo, Osamu; Takahashi, Yuzo; Abe, Chikara; Tanaka, Kunihiko; Nakashima, Akira; Morita, Hironobu

    2011-01-01

    In most laboratory practices for students in medical schools, a laboratory guidebook is given to the students, in which the procedures are precisely described. The students merely follow the guidebook without thinking deeply, which spoils the students and does not entice them to think creatively. Problem-based learning (PBL) could be one means for…

  16. Dental Laboratory Technology Program Standards.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This guide contains 45 program standards for the dental laboratory technology program conducted in technical institutes in Georgia. The dental laboratory technology program, either diploma or associate degree, is designed to ensure that students gain basic competence in the job skills needed for an entry-level employee in dental laboratory…

  17. Federal Laboratory Consortium Resource Directory.

    ERIC Educational Resources Information Center

    Federal Laboratory Consortium, Washington, DC.

    Designed to bridge the communication gap between the Federal Laboratory Consortium (FLC) and public and private sectors of the country, this directory has been prepared as a compilation of scientific and technical research and development activities at federal laboratories, which are directing technology transfer efforts toward increasing the use…

  18. Laboratory Manual, Electrical Engineering 25.

    ERIC Educational Resources Information Center

    Syracuse Univ., NY. Dept. of Electrical Engineering.

    Developed as part of a series of materials in the electrical engineering sequence developed under contract with the United States Office of Education, this laboratory manual provides nine laboratory projects suitable for a second course in electrical engineering. Dealing with resonant circuits, electrostatic fields, magnetic devices, and…

  19. Managing a Computer Teaching Laboratory.

    ERIC Educational Resources Information Center

    Macey, Susan M.

    1998-01-01

    Examines issues concerning the initial setup and the everyday operational problems of managing a computer teaching laboratory. Addresses such issues as setting policies on laboratory access, dealing with a high student-per-machine ratio, provisions for maintenance, obtaining hardware and software upgrades, staffing, data security, and networking…

  20. Medical Laboratory Assistant. Student's Manual.

    ERIC Educational Resources Information Center

    Barnett, Sara

    This student's manual for the medical laboratory student is one of a series of self-contained, individualized instructional materials for students enrolled in training within the allied health field. It is intended to provide study materials and learning activities that are general enough for all medical laboratory students to use to enhance their…

  1. Dental Laboratory Technology Program Guide.

    ERIC Educational Resources Information Center

    Georgia Univ., Athens. Dept. of Vocational Education.

    This program guide contains the standard dental laboratory technology curriculum for both diploma programs and associate degree programs in technical institutes in Georgia. The curriculum encompasses the minimum competencies required for entry-level workers in the dental laboratory technology field. The general information section contains the…

  2. Testing containment of laboratory hoods

    SciTech Connect

    Knutson, G.W.

    1987-06-01

    Laboratory fume hoods often do not adequately provide protection to a chemist or technician at the hood. The reason for failure of the hoods to perform adequately are varied and, in many instances, difficult to determine. In some cases, the laboratory hood manufacturer has provided equipment that does not reflect the state of art in controlling laboratory exposures. In other cases, the architect or engineer has disregarded the function of the hood thus the design of the installation is faulty and the hood will not work. The contractor may have installed the system so poorly that it will not adequately function. Finally, the chemist or technician may misuse the hood, causing poor performance. This paper considers a method of evaluating the performance of laboratory fume hoods. Using the method, the paper examines several instances where the laboratory fume hood performed inadequately, quantifies the performance and identifies the cause of poor performance.

  3. Laboratory Studies of Interstellar PAH Analogs

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are now considered to be an important and ubiquitous component of the organic material in space. PAHs are found in a large variety of extraterrestrial materials such as interplanetary dust particles (IDPs) and meteoritic materials. PAHs are also good candidates to account for the infrared emission bands (UIRs) and the diffuse interstellar optical absorption bands (DIBs) detected in various regions of the interstellar medium. The recent observations made with the Infrared Space Observatory (ISO) have confirmed the ubiquitous nature of the UIR bands and their carriers. PAHs are though to form through chemical reactions in the outflow from carbon-rich stars in a process similar to soot formation. Once injected in the interstellar medium, PAHs are further processed by the interstellar radiation field, interstellar shocks and energetic particles. A major, dedicated, laboratory effort has been undertaken over the past years to measure the physical and chemical characteristics of these complex molecules and their ions under experimental conditions that mimic the interstellar conditions. These measurements require collision-free conditions where the molecules and ions are cold and chemically isolated. The spectroscopy of PAHs under controlled conditions represents an essential diagnostic tool to study the evolution of extraterrestrial PAHs. The Astrochemistry Laboratory program will be discussed through its multiple aspects: objectives, approach and techniques adopted, adaptability to the nature of the problem(s), results and implications for astronomy as well as for molecular spectroscopy. A review of the data generated through laboratory simulations of space environments and the role these data have played in our current understanding of the properties of interstellar PAHs will be presented. The discussion will also introduce the newest generation of laboratory experiments that are currently being developed in order to provide a

  4. 1990 National Water Quality Laboratory Services Catalog

    USGS Publications Warehouse

    Pritt, Jeffrey, (Edited By); Jones, Berwyn E.

    1989-01-01

    PREFACE This catalog provides information about analytical services available from the National Water Quality Laboratory (NWQL) to support programs of the Water Resources Division of the U.S. Geological Survey. To assist personnel in the selection of analytical services, the catalog lists cost, sample volume, applicable concentration range, detection level, precision of analysis, and preservation techniques for samples to be submitted for analysis. Prices for services reflect operationa1 costs, the complexity of each analytical procedure, and the costs to ensure analytical quality control. The catalog consists of five parts. Part 1 is a glossary of terminology; Part 2 lists the bottles, containers, solutions, and other materials that are available through the NWQL; Part 3 describes the field processing of samples to be submitted for analysis; Part 4 describes analytical services that are available; and Part 5 contains indices of analytical methodology and Chemical Abstract Services (CAS) numbers. Nomenclature used in the catalog is consistent with WATSTORE and STORET. The user is provided with laboratory codes and schedules that consist of groupings of parameters which are measured together in the NWQL. In cases where more than one analytical range is offered for a single element or compound, different laboratory codes are given. Book 5 of the series 'Techniques of Water Resources Investigations of the U.S. Geological Survey' should be consulted for more information about the analytical procedures included in the tabulations. This catalog supersedes U.S. Geological Survey Open-File Report 86-232 '1986-87-88 National Water Quality Laboratory Services Catalog', October 1985.

  5. Mars Science Laboratory Drill

    NASA Technical Reports Server (NTRS)

    Okon, Avi B.; Brown, Kyle M.; McGrath, Paul L.; Klein, Kerry J.; Cady, Ian W.; Lin, Justin Y.; Ramirez, Frank E.; Haberland, Matt

    2012-01-01

    This drill (see Figure 1) is the primary sample acquisition element of the Mars Science Laboratory (MSL) that collects powdered samples from various types of rock (from clays to massive basalts) at depths up to 50 mm below the surface. A rotary-percussive sample acquisition device was developed with an emphasis on toughness and robustness to handle the harsh environment on Mars. It is the first rover-based sample acquisition device to be flight-qualified (see Figure 2). This drill features an autonomous tool change-out on a mobile robot, and novel voice-coil-based percussion. The drill comprises seven subelements. Starting at the end of the drill, there is a bit assembly that cuts the rock and collects the sample. Supporting the bit is a subassembly comprising a chuck mechanism to engage and release the new and worn bits, respectively, and a spindle mechanism to rotate the bit. Just aft of that is a percussion mechanism, which generates hammer blows to break the rock and create the dynamic environment used to flow the powdered sample. These components are mounted to a translation mechanism, which provides linear motion and senses weight-on-bit with a force sensor. There is a passive-contact sensor/stabilizer mechanism that secures the drill fs position on the rock surface, and flex harness management hardware to provide the power and signals to the translating components. The drill housing serves as the primary structure of the turret, to which the additional tools and instruments are attached. The drill bit assembly (DBA) is a passive device that is rotated and hammered in order to cut rock (i.e. science targets) and collect the cuttings (powder) in a sample chamber until ready for transfer to the CHIMRA (Collection and Handling for Interior Martian Rock Analysis). The DBA consists of a 5/8-in. (.1.6- cm) commercial hammer drill bit whose shank has been turned down and machined with deep flutes designed for aggressive cutting removal. Surrounding the shank of the

  6. Biologically Inspired Phosphino Platinum Complexes

    SciTech Connect

    Jain, Avijita; Helm, Monte L.; Linehan, John C.; DuBois, Daniel L.; Shaw, Wendy J.

    2012-08-01

    Platinum complexes containing phosphino amino acid and amino acid ester ligands, built upon the PPhNR’2 platform, have been synthesized and characterized (PPhNR’2= [1,3-diaza]-5-phenyl phosphacyclohexane, R’=glycine or glycine ester). These complexes were characterized by 31P, 13C, 1H, 195Pt NMR spectroscopy and mass spectrometry. The X-ray crystal structure of one of the complexes, [PtCl2(PPhNGlyester 2)2], is also reported. These biologically inspired ligands have potential use in homogeneous catalysis, with special applications in chiral chemistry and water soluble chemistry. These complexes also provide a foundation upon which larger peptides can be attached, to allow the introduction of enzyme-like features onto small molecule catalysts. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  7. How to utilize benchmarking in the clinical laboratory.

    PubMed

    Steiner, Jan W; Murphy, Kathleen A; Buck, Earl C; Rajkovich, Daniel E

    2006-01-01

    Benchmarking of clinical laboratory activities has become a tool used increasingly to enable administrators and managers to obtain an independent evaluation of the performance of the laboratory and identify opportunities for improvement. Benchmarking is particularly important because of the diversity and complexity of the various sections of the laboratory. The critical component of laboratory benchmarking is peer comparison, as solutions to shortcomings or problems can be titrated and planned through this process. The reliability of benchmarking must be supplemented and modified by the input of the manager's detailed understanding of local circumstances. At this critical moment, the changes in peer review strategies instituted by JCAHO, CAP, CLIA, and individual states create an urgent opportunity to assist medical directors and laboratory managers in maintaining an overview of the performance and quality of laboratory operations. Unannounced site visits will require prompt reports and alerts of undesirable changes in performance. The future goals of benchmarking must expand to include surveys of laboratory test utilization and patient outcomes as ultimate measures of test utility in the clinical process and important assessments of the quality of patient care. PMID:17132459

  8. Making Laboratories Count -- Better Integration of Laboratories in Physics Courses

    NASA Astrophysics Data System (ADS)

    Sizemore, Jim

    2011-10-01

    The quality of K-12 education leaves something to be desired and presents higher education faculty with the challenge of instructing under-prepared students. However, by their own admission, students from many institutions inform us that laboratory sections in science classes, including physics, consist mostly of showing up, going through the motions, and getting grades that boost their overall grade. This work presents laboratories that challenge students to take their laboratory work more seriously including specific rubrics enforcing SOLVE and Bloom's Taxonomy, pre-lab preparation work, and quizzes on pre-lab preparation. Early results are encouraging revealing greater student progress with better integration of laboratory with the rest of a complete physics course.

  9. OSHA Laboratory Standard: Driving Force for Laboratory Safety!

    ERIC Educational Resources Information Center

    Roy, Kenneth R.

    2000-01-01

    Discusses the Occupational Safety and Health Administration's (OSHA's) Laboratory Safety Standards as the major driving force in establishing and maintaining a safe working environment for teachers and students. (Author)

  10. Validating the Equilibrium Stage Model for an Azeotropic System in a Laboratorial Distillation Column

    ERIC Educational Resources Information Center

    Duarte, B. P. M.; Coelho Pinheiro, M. N.; Silva, D. C. M.; Moura, M. J.

    2006-01-01

    The experiment described is an excellent opportunity to apply theoretical concepts of distillation, thermodynamics of mixtures and process simulation at laboratory scale, and simultaneously enhance the ability of students to operate, control and monitor complex units.

  11. VIEW OF KENNEDY AVIONICS TEST SET LABORATORY, ROOM NO. MM6, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF KENNEDY AVIONICS TEST SET LABORATORY, ROOM NO. MM6, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  12. A SURVEY OF LABORATORY AND STATISTICAL ISSUES RELATED TO FARMWORKER EXPOSURE STUDIES

    EPA Science Inventory

    Developing internally valid, and perhaps generalizable, farmworker exposure studies is a complex process that involves many statistical and laboratory considerations. Statistics are an integral component of each study beginning with the design stage and continuing to the final da...

  13. Laboratory cost and utilization containment.

    PubMed

    Steiner, J W; Root, J M; White, D C

    1991-01-01

    The authors analyzed laboratory costs and utilization in 3,771 cases of Medicare inpatients admitted to a New England academic medical center ("the Hospital") from October 1, 1989 to September 30, 1990. The data were derived from the Hospital's Decision Resource System comprehensive data base. The authors established a historical reference point for laboratory costs as a percentage of total inpatient costs using 1981-82 Medicare claims data and cost report information. Inpatient laboratory costs were estimated at 9.5% of total inpatient costs for pre-Diagnostic Related Groups (DRGs) Medicare discharges. Using this reference point and adjusting for the Hospital's 1990 case mix, the "expected" laboratory cost was 9.3% of total cost. In fact, the cost averaged 11.5% (i.e., 24% above the expected cost level), and costs represented an even greater percentage of DRG reimbursement at 12.9%. If we regard the reimbursement as a total cost target (to eliminate losses from Medicare), then that 12.9% is 39% above the "expected" laboratory proportion of 9.3%. The Hospital lost an average of $1,091 on each DRG inpatient. The laboratory contributed 29% to this loss per case. Compared to other large hospitals, the Hospital was slightly (3%) above the mean direct cost per on-site test and significantly (58%) above the mean number of inpatient tests per inpatient day compared to large teaching hospitals. The findings suggest that careful laboratory cost analyses will become increasingly important as the proportion of patients reimbursed in a fixed manner grows. The future may hold a prospective zero-based laboratory budgeting process based on predictable patterns of DRG admissions or other fixed-reimbursement admission and laboratory utilization patterns. PMID:10113716

  14. Preservice laboratory education strengthening enhances sustainable laboratory workforce in Ethiopia

    PubMed Central

    2013-01-01

    Background There is a severe healthcare workforce shortage in sub Saharan Africa, which threatens achieving the Millennium Development Goals and attaining an AIDS-free generation. The strength of a healthcare system depends on the skills, competencies, values and availability of its workforce. A well-trained and competent laboratory technologist ensures accurate and reliable results for use in prevention, diagnosis, care and treatment of diseases. Methods An assessment of existing preservice education of five medical laboratory schools, followed by remedial intervention and monitoring was conducted. The remedial interventions included 1) standardizing curriculum and implementation; 2) training faculty staff on pedagogical methods and quality management systems; 3) providing teaching materials; and 4) procuring equipment for teaching laboratories to provide practical skills to complement didactic education. Results A total of 2,230 undergraduate students from the five universities benefitted from the standardized curriculum. University of Gondar accounted for 252 of 2,230 (11.3%) of the students, Addis Ababa University for 663 (29.7%), Jimma University for 649 (29.1%), Haramaya University for 429 (19.2%) and Hawassa University for 237 (10.6%) of the students. Together the universities graduated 388 and 312 laboratory technologists in 2010/2011 and 2011/2012 academic year, respectively. Practical hands-on training and experience with well-equipped laboratories enhanced and ensured skilled, confident and competent laboratory technologists upon graduation. Conclusions Strengthening preservice laboratory education is feasible in resource-limited settings, and emphasizing its merits (ample local capacity, country ownership and sustainability) provides a valuable source of competent laboratory technologists to relieve an overstretched healthcare system. PMID:24164781

  15. Mars Science Laboratory Boot Robustness Testing

    NASA Technical Reports Server (NTRS)

    Banazadeh, Payam; Lam, Danny

    2011-01-01

    Mars Science Laboratory (MSL) is one of the most complex spacecrafts in the history of mankind. Due to the nature of its complexity, a large number of flight software (FSW) requirements have been written for implementation. In practice, these requirements necessitate very complex and very precise flight software with no room for error. One of flight software's responsibilities is to be able to boot up and check the state of all devices on the spacecraft after the wake up process. This boot up and initialization is crucial to the mission success since any misbehavior of different devices needs to be handled through the flight software. I have created a test toolkit that allows the FSW team to exhaustively test the flight software under variety of different unexpected scenarios and validate that flight software can handle any situation after booting up. The test includes initializing different devices on spacecraft to different configurations and validate at the end of the flight software boot up that the flight software has initialized those devices to what they are suppose to be in that particular scenario.

  16. Laboratory reengineering facilitates cost management.

    PubMed

    Ellis, J E; Moser, L H

    1998-08-01

    In 1993, The Medical University of South Carolina (MUSC) in Charleston undertook a change management initiative to achieve a more cost-competitive position in its market and become a more attractive partner for a possible future affiliation with another provider organization. A key element of this change process was a reorganization of the medical center's laboratory department. Through consolidation of MUSC's separate laboratories and the introduction of a new, more efficient chemistry analyzer system, the medical center realized annual laboratory savings of approximately $1.3 million. PMID:10182277

  17. Microwave remote sensing laboratory design

    NASA Technical Reports Server (NTRS)

    Friedman, E.

    1979-01-01

    Application of active and passive microwave remote sensing to the study of ocean pollution is discussed. Previous research efforts, both in the field and in the laboratory were surveyed to derive guidance for the design of a laboratory program of research. The essential issues include: choice of radar or radiometry as the observational technique; choice of laboratory or field as the research site; choice of operating frequency; tank sizes and material; techniques for wave generation and appropriate wavelength spectrum; methods for controlling and disposing of pollutants used in the research; and pollutants other than oil which could or should be studied.

  18. Electromedical devices test laboratories accreditation

    NASA Astrophysics Data System (ADS)

    Murad, C.; Rubio, D.; Ponce, S.; Álvarez Abri, A.; Terrón, A.; Vicencio, D.; Fascioli, E.

    2007-11-01

    In the last years, the technology and equipment at hospitals have been increase in a great way as the risks of their implementation. Safety in medical equipment must be considered an important issue to protect patients and their users. For this reason, test and calibrations laboratories must verify the correct performance of this kind of devices under national and international standards. Is an essential mission for laboratories to develop their measurement activities taking into account a quality management system. In this article, we intend to transmit our experience working to achieve an accredited Test Laboratories for medical devices in National technological University.

  19. Optical Characterization Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.

  20. Lawrence Livermore National Laboratory Annual Report 2006

    SciTech Connect

    Chrzanowski, P; Walter, K

    2007-05-24

    For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory's significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer simulations performed on NNSA's Advanced Simulation

  1. A Process for Developing Introductory Science Laboratory Learning Goals to Enhance Student Learning and Instructional Alignment

    ERIC Educational Resources Information Center

    Duis, Jennifer M.; Schafer, Laurel L.; Nussbaum, Sophia; Stewart, Jaclyn J.

    2013-01-01

    Learning goal (LG) identification can greatly inform curriculum, teaching, and evaluation practices. The complex laboratory course setting, however, presents unique obstacles in developing appropriate LGs. For example, in addition to the large quantity and variety of content supported in the general chemistry laboratory program, the interests of…

  2. Pre-Employment Laboratory Training

    ERIC Educational Resources Information Center

    Vela, Rene H.; Correa, Jose

    1976-01-01

    The article describes the development of a pre-employment laboratory training program in meat processing and its successful use in conjunction with a cooperative training program in a high school agriculture curriculum. (MS)

  3. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  4. Laboratory Techniques for the Blind

    ERIC Educational Resources Information Center

    Tombaugh, Dorothy

    1972-01-01

    Describes modifications of laboratory procedures for the BSCS Green Version biology, including dissection, microbiology, animal behavior, physiology, biochemistry, and genetics that make the methods suitable for direct experimentation by blind students. Discusses models as substitutes for microscopy. (AL)

  5. LABCON - Laboratory Job Control program

    NASA Technical Reports Server (NTRS)

    Reams, L. T.

    1969-01-01

    Computer program LABCON controls the budget system in a component test laboratory whose workload is made up from many individual budget allocations. A common denominator is applied to an incoming job, to which all effort is charged and accounted for.

  6. A Combustion Laboratory for Undergraduates.

    ERIC Educational Resources Information Center

    Peters, James E.

    1985-01-01

    Describes a combustion laboratory facility and experiments for a senior-level (undergraduate) course in mechanical engineering. The experiment reinforces basic thermodynamic concepts and provides many students with their first opportunity to work with a combustion system. (DH)

  7. Extending the Marine Microcosm Laboratory

    ERIC Educational Resources Information Center

    Ryswyk, Hal Van; Hall, Eric W.; Petesch, Steven J.; Wiedeman, Alice E.

    2007-01-01

    The traditional range of marine microcosm laboratory experiments is presented as an ideal environment to teach the entire analysis process. The microcosm lab provides student-centered approach with opportunities for collaborative learning and to develop critical communication skills.

  8. Laboratory Workhorse: The Analytical Balance.

    ERIC Educational Resources Information Center

    Clark, Douglas W.

    1979-01-01

    This report explains the importance of various analytical balances in the water or wastewater laboratory. Stressed is the proper procedure for utilizing the equipment as well as the mechanics involved in its operation. (CS)

  9. Laboratory directed research and development

    SciTech Connect

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  10. Mars Science Laboratory at Sunset

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 2, 2003

    Sunset on Mars catches NASA's Mars Science Laboratory in the foreground in this artist's concept. The mission is under development for launch in 2009 and a precision landing on Mars in 2010.

    Once on the ground, the Mars Science Laboratory would analyze dozens of samples scooped up from the soil and cored from rocks as it explores with greater range than any previous Mars rover. It would investigate the past or present ability of Mars to support life. NASA is considering nuclear energy for powering the rover to give it a long operating lifespan.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif., is managing development of the Mars Smart Laboratory for the NASA Office of Space Science, Washington, D.C.

  11. Mars Science Laboratory at Canyon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 2, 2003

    NASA's Mars Science Laboratory travels near a canyon on Mars in this artist's concept. The mission is under development for launch in 2009 and a precision landing on Mars in 2010.

    Once on the ground, the Mars Science Laboratory would analyze dozens of samples scooped up from the soil and cored from rocks as it explores with greater range than any previous Mars rover. It would investigate the past or present ability of Mars to support life. NASA is considering nuclear energy for powering the rover to give it a long operating lifespan.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif., is managing development of the Mars Smart Laboratory for the NASA Office of Space Science, Washington, D.C.

  12. Portable Medical Laboratory Applications Software

    PubMed Central

    Silbert, Jerome A.

    1983-01-01

    Portability implies that a program can be run on a variety of computers with minimal software revision. The advantages of portability are outlined and design considerations for portable laboratory software are discussed. Specific approaches for achieving this goal are presented.

  13. [Quality management in medical laboratories].

    PubMed

    Fritzer-Szekeres, M

    2010-05-01

    During the 20th century understanding for quality has changed and international and national requirements for quality have been published. Therefore also medical branches started to establish quality management systems. Quality assurance has always been important for medical laboratories. Certification according to the standard ISO 9001 and accreditation according to the standard ISO 17025 have been the proof of fulfilling quality requirements. The relatively new standard ISO 15189 is the first standard for medical laboratories. This standard includes technical and management requirements for the medical laboratory. The main focus is the proof of competence within the personnel. As this standard is accepted throughout the European Union an increase in accreditations of medical laboratories is predictable. PMID:20454753

  14. A Laboratory Investigation of Groupthink.

    ERIC Educational Resources Information Center

    Courtright, John A.

    1978-01-01

    Examines the groupthink phenomenon under controlled, laboratory conditions. Results indicate that the presence or absence of disagreement (conflict, hostility) among members may be the best discriminator between groupthink and nongroupthink groups. (JMF)

  15. Instrument Synthesis and Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2004-01-01

    The topics addressed in this viewgraph presentation include information on 1) Historic instruments at Goddard; 2) Integrated Design Capability at Goddard; 3) The Instrument Synthesis and Analysis Laboratory (ISAL).

  16. Los Alamos National Laboratory Overview

    SciTech Connect

    Neu, Mary

    2010-06-02

    Mary Neu, Associate Director for Chemistry, Life and Earth Sciences at Los Alamos National Laboratory, delivers opening remarks at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  17. E-laboratories : agent-based modeling of electricity markets.

    SciTech Connect

    North, M.; Conzelmann, G.; Koritarov, V.; Macal, C.; Thimmapuram, P.; Veselka, T.

    2002-05-03

    Electricity markets are complex adaptive systems that operate under a wide range of rules that span a variety of time scales. These rules are imposed both from above by society and below by physics. Many electricity markets are undergoing or are about to undergo a transition from centrally regulated systems to decentralized markets. Furthermore, several electricity markets have recently undergone this transition with extremely unsatisfactory results, most notably in California. These high stakes transitions require the introduction of largely untested regulatory structures. Suitable laboratories that can be used to test regulatory structures before they are applied to real systems are needed. Agent-based models can provide such electronic laboratories or ''e-laboratories.'' To better understand the requirements of an electricity market e-laboratory, a live electricity market simulation was created. This experience helped to shape the development of the Electricity Market Complex Adaptive Systems (EMCAS) model. To explore EMCAS' potential as an e-laboratory, several variations of the live simulation were created. These variations probed the possible effects of changing power plant outages and price setting rules on electricity market prices.

  18. An Experiment on Isomerism in Metal-Amino Acid Complexes.

    ERIC Educational Resources Information Center

    Harrison, R. Graeme; Nolan, Kevin B.

    1982-01-01

    Background information, laboratory procedures, and discussion of results are provided for syntheses of cobalt (III) complexes, I-III, illustrating three possible bonding modes of glycine to a metal ion (the complex cations II and III being linkage/geometric isomers). Includes spectrophotometric and potentiometric methods to distinguish among the…

  19. Equilibrium between Different Coordination Geometries in Oxidovanadium(IV) Complexes

    ERIC Educational Resources Information Center

    Ugone, Valeria; Garribba, Eugenio; Micera, Giovanni; Sanna, Daniele

    2015-01-01

    In this laboratory activity, the equilibrium between square pyramidal and octahedral V(IV)O[superscript 2+] complexes is described. We propose a set of experiments to synthesize and characterize two types of V(IV)O[superscript 2+] complexes. The experiment allows great flexibility and may be effectively used at a variety of levels and the activity…

  20. Complexation of Actinides in Solution: Thermodynamic Measurementsand Structural Characterization

    SciTech Connect

    Rao, L.

    2007-02-01

    This paper presents a brief introduction of the studies of actinide complexation in solution at Lawrence Berkeley National Laboratory. An integrated approach of thermodynamic measurements and structural characterization is taken to obtain fundamental understanding of actinide complexation in solution that is of importance in predicting the behavior of actinides in separation processes and environmental transport.

  1. Phoenix's Wet Chemistry Laboratory Units

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Gallium Safety in the Laboratory

    SciTech Connect

    Cadwallader, L.C.

    2003-05-07

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  3. Gallium Safety in the Laboratory

    SciTech Connect

    Lee C. Cadwallader

    2003-06-01

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  4. Misleading biochemical laboratory test results

    PubMed Central

    Nanji, Amin A.

    1984-01-01

    This article reviews the general and specific factors that interfere with the performance of common biochemical laboratory tests and the interpretation of their results. The clinical status of the patient, drug interactions, and in-vivo and in-vitro biochemical interactions and changes may alter the results obtained from biochemical analysis of blood constituents. Failure to recognize invalid laboratory test results may lead to injudicious and dangerous management of patients. PMID:6375845

  5. The Mycobacterium avium complex.

    PubMed Central

    Inderlied, C B; Kemper, C A; Bermudez, L E

    1993-01-01

    Mycobacterium avium complex (MAC) disease emerged early in the epidemic of AIDS as one of the common opportunistic infections afflicting human immunodeficiency virus-infected patients. However, only over the past few years has a consensus developed about its significance to the morbidity and mortality of AIDS. M. avium was well known to mycobacteriologists decades before AIDS, and the MAC was known to cause disease, albeit uncommon, in humans and animals. The early interest in the MAC provided a basis for an explosion of studies over the past 10 years largely in response to the role of the MAC in AIDS opportunistic infection. Molecular techniques have been applied to the epidemiology of MAC disease as well as to a better understanding of the genetics of antimicrobial resistance. The interaction of the MAC with the immune system is complex, and putative MAC virulence factors appear to have a direct effect on the components of cellular immunity, including the regulation of cytokine expression and function. There now is compelling evidence that disseminated MAC disease in humans contributes to both a decrease in the quality of life and survival. Disseminated disease most commonly develops late in the course of AIDS as the CD4 cells are depleted below a critical threshold, but new therapies for prophylaxis and treatment offer considerable promise. These new therapeutic modalities are likely to be useful in the treatment of other forms of MAC disease in patients without AIDS. The laboratory diagnosis of MAC disease has focused on the detection of mycobacteria in the blood and tissues, and although the existing methods are largely adequate, there is need for improvement. Indeed, the successful treatment of MAC disease clearly will require an early and rapid detection of the MAC in clinical specimens long before the establishment of the characteristic overwhelming infection of bone marrow, liver, spleen, and other tissue. Also, a standard method of susceptibility testing

  6. DISMANTLING OF THE FUEL CELL LABORATORY AT RESEARCH CENTRE JUELICH

    SciTech Connect

    Stahn, B.; Matela, K.; Bensch, D.; Ambos, Frank

    2003-02-27

    The fuel cell laboratory was constructed in three phases and taken into operation in the years 1962 to 1966. The last experimental work was carried out in 1996. After all cell internals had been disassembled, the fuel cell laboratory was transferred to shutdown operation in 1997. Three cell complexes, which differed, in particular, by the type of shielding (lead, cast steel, concrete), were available until then for activities at nuclear components. After approval by the regulatory authority, the actual dismantling of the fuel cell laboratory started in March 2000. The BZ I laboratory area consisted of 7 cells with lead shieldings of 100 to 250 mm thickness. This area was dismantled from April to September 2000. Among other things, approx. 30,000 lead bricks with a total weight of approx. 300 Mg were dismantled and disposed of. The BZ III laboratory area essentially consisted of cells with concrete shieldings of 1200 to 1400 mm thickness. The dismantling of this area started in the fir st half of 2001 and was completed in November 2002. Among other things, approx. 900 Mg of concrete was dismantled and disposed of. Since more than 90 % of the dismantled materials was measurable for clearance, various clearance measurement devices were used during dismantling. The BZ II laboratory area essentially consists of cells with cast steel shieldings of 400 to 460 mm thickness. In September 2002 it was decided to continue using this laboratory area for future tasks. The dismantling of the fuel cell laboratory was thus completed. After appropriate refurbishment, the fuel cell laboratory will probably take up operation again in late 2003.

  7. US Army primary radiation standards complex

    SciTech Connect

    Rogers, S.C.

    1993-12-31

    This paper describes the U.S. Army Primary Radiation Standards Complex (PRSC) to be constructed at Redstone Arsenal, Alabama. The missions of the organizations to be located in the PRSC are described. The health physics review of the facility design is discussed. The radiation sources to be available in the PRSC and the resulting measurement capabilities of the Army Primary Standards Laboratory Nucleonics section are specified. Influence of the National Voluntary Laboratory Accrediation Program (NVLAP) accreditation criteria on facility design and source selection is illustrated.

  8. Complex Organics in Interstellar Space

    NASA Astrophysics Data System (ADS)

    Foing, B.; Ehrenfreund, P.; Ruiterkamp, R.; Cox, N.

    There are signatures of large organic molecules in the interstellar medium, from the ultraviolet to the infrared. Some infrared emission bands, which have been ascribed to families of large aromatic compounds are not specific for individual identification (and for discriminating free floating PAH molecules from loosely bound aromatics in amorphous carbon compounds). Red fluorescence and FUV absorption have also been ascribed to these aromatic compounds. Electronic transitions in the visible are a key to identify free gas phase molecules. The origin of Diffuse Interstellar Bands (Herbig 1995), more than 300 in recent surveys (O' Tuairisg et al 2000) is still a mystery. However the measurements of sub-structures rotational contours in DIBs (Ehrenfreund Foing 1996) indicate large molecules such as chains (12-18C), rings, 50 C PAHs or fullerenes. The distribution of DIB widths permit to estimate a distribution of size of molecular carriers. The environment properties of DIB carriers also indicate ionisation potentials similar to those of cations of large carbonaceous molecules, such as large PAHs or fullerenes (Sonnentrucker et al 1997). The correlation studies of DIBS also indicate different carriers for the strong DIBs observed in the visible (Cami et al 1997). DIBS are weakened in the in the low-metallicity Magellanic clouds (Ehrenfreund et al 2002, Cox et al 2004). The detection of near IR bands at 9577 and 9632 A coinciding with laboratory transitions of C60+ (Foing, Ehrenfreund 1994, 1997, Galatzudinov et al 2000 ) suggest that significant interstellar carbon could reside in complex fullerene type compounds. These results indicate that many different large and complex organic molecules can form and survive in the very harsh interstellar environments. A follow up interdisciplinary work is required between astronomical observations, laboratory matrix and gas phase spectroscopy, theoretical work and modelling, and active experiments in space to study the formation

  9. Lawrence Livermore National Laboratory hot spot mobile laboratory

    SciTech Connect

    Buddemeier, B

    1999-08-27

    Gross alpha/beta/tritium liquid The Hot Spot Mobile Laboratory is an asset used to analyze samples (some high hazard) from the field. Field laboratories allow the quick turnaround of samples needed to establish weapon condition and hazard assessment for the protection of responders and the public. The Hot Spot Lab is configured to fly anywhere in the world and is staffed by expert scientists and technicians from Lawrence Livermore National Laboratory who perform similar functions in their routine jobs. The Hot Spot Team carries sample control kits to provide responding field teams with the procedures, tools, and equipment for sample collection and field measurements. High-hazard samples brought back from the field are prepared for analysis in HEPA-filtered gloveboxes staffed by technicians from LLNL's Plutonium Facility. The samples are passed on to the Mobile Laboratory which carries a variety of radiological and chemical analytical equipment in portable configuration for use in the field. Equipment and personnel can also deploy special assets to local hospitals or the field for detection of plutonium in a lung or wound. Quick assessment of personnel contamination is essential for time-critical medical intervention. In addition to pulling the trailer, the Hot Spot Truck also stores some of the equipment, consumables, and a PTO generator. The Hot Spot Laboratory has the capability to be self-sufficient for several weeks when deployed to determine Pu uptake.

  10. 42 CFR 493.1850 - Laboratory registry.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Laboratory registry. 493.1850 Section 493.1850... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Enforcement Procedures § 493.1850 Laboratory... laboratories, including the following: (1) A list of laboratories that have been convicted, under Federal...

  11. 27 CFR 22.108 - Other laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Other laboratories. 22.108... Other laboratories. Laboratories, other than pathological laboratories specified in § 22.107, may... products resulting from the use of tax-free alcohol shall be confined strictly to the laboratory...

  12. 15 CFR 280.103 - Laboratory accreditation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Laboratory accreditation. 280.103... QUALITY Petitions, Affirmations, and Laboratory Accreditation § 280.103 Laboratory accreditation. A laboratory may be accredited by any laboratory accreditation program that may be established by any entity...

  13. 42 CFR 493.1850 - Laboratory registry.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Laboratory registry. 493.1850 Section 493.1850... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Enforcement Procedures § 493.1850 Laboratory... laboratories, including the following: (1) A list of laboratories that have been convicted, under Federal...

  14. 42 CFR 493.1850 - Laboratory registry.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Laboratory registry. 493.1850 Section 493.1850... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Enforcement Procedures § 493.1850 Laboratory... laboratories, including the following: (1) A list of laboratories that have been convicted, under Federal...

  15. 27 CFR 22.108 - Other laboratories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Other laboratories. 22.108... Other laboratories. Laboratories, other than pathological laboratories specified in § 22.107, may... products resulting from the use of tax-free alcohol shall be confined strictly to the laboratory...

  16. 27 CFR 22.108 - Other laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Other laboratories. 22.108... Other laboratories. Laboratories, other than pathological laboratories specified in § 22.107, may... products resulting from the use of tax-free alcohol shall be confined strictly to the laboratory...

  17. 27 CFR 22.108 - Other laboratories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Other laboratories. 22.108... Other laboratories. Laboratories, other than pathological laboratories specified in § 22.107, may... products resulting from the use of tax-free alcohol shall be confined strictly to the laboratory...

  18. 42 CFR 493.1850 - Laboratory registry.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Laboratory registry. 493.1850 Section 493.1850... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Enforcement Procedures § 493.1850 Laboratory... laboratories, including the following: (1) A list of laboratories that have been convicted, under Federal...

  19. 42 CFR 493.1850 - Laboratory registry.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Laboratory registry. 493.1850 Section 493.1850... (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Enforcement Procedures § 493.1850 Laboratory... laboratories, including the following: (1) A list of laboratories that have been convicted, under Federal...

  20. 27 CFR 22.108 - Other laboratories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Other laboratories. 22.108... Other laboratories. Laboratories, other than pathological laboratories specified in § 22.107, may... products resulting from the use of tax-free alcohol shall be confined strictly to the laboratory...

  1. Scaling in natural and laboratory earthquakes

    NASA Astrophysics Data System (ADS)

    Nielsen, S.; Spagnuolo, E.; Smith, S. A. F.; Violay, M.; Di Toro, G.; Bistacchi, A.

    2016-02-01

    Laboratory experiments reproducing seismic slip conditions show extreme frictional weakening due to the activation of lubrication processes. Due to a substantial variability in the details of the weakening transient, generalization of experimental results and comparison to seismic observations have not been possible so far. Here we show that during the weakening, shear stress τ is generally well matched by a power law of slip u in the form τ∝u-α (with 0.35 < α < 0.6). The resulting fracture energy Gf can be approximated by a power law in some aspects in agreement with the seismological estimates G'. It appears that Gf and G' are comparable in the range 0.01 < u < 0.3 m. However, G' surpasses Gf at larger slips: at u≈10 m, G'≈108 and Gf≈106. Possible interpretations of this misfit involve the complexity of damage and weakening mechanisms within mature fault zone structures.

  2. Summer Research Experiences with a Laboratory Tokamak

    NASA Astrophysics Data System (ADS)

    Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.

    1998-11-01

    Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.

  3. Development of a Regional Laboratory Healthcare Network

    PubMed Central

    Huff, Stanley M.; Evans, R. Scott; Gandhi, Santosh; Jensen, Blake

    1988-01-01

    In order to provide cost effective patient care and to provide better information access and exchange capabilities for healthcare providers, a regional healthcare network has been created. The goals of the network are to provide laboratory computer services to 8 hospitals, to provide the decision support capabilities of the HELP system to a group of affiliated hospitals in the intermountain region, and to allow access and exchange of clinical patient data among the various institutions. The network has nodes separated by over 30 miles and includes Tandem, Prime, Data General, and IBM hardware. Problems encountered in creating the network include the lack of appropriate standards, development of strategies for error handling and system isolation, complexities in data translation, and functional overlap between the systems.

  4. Emergent dynamics of laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Kelley, Douglas H.; Ouellette, Nicholas T.

    2013-01-01

    Collective animal behaviour occurs at nearly every biological size scale, from single-celled organisms to the largest animals on earth. It has long been known that models with simple interaction rules can reproduce qualitative features of this complex behaviour. But determining whether these models accurately capture the biology requires data from real animals, which has historically been difficult to obtain. Here, we report three-dimensional, time-resolved measurements of the positions, velocities, and accelerations of individual insects in laboratory swarms of the midge Chironomus riparius. Even though the swarms do not show an overall polarisation, we find statistical evidence for local clusters of correlated motion. We also show that the swarms display an effective large-scale potential that keeps individuals bound together, and we characterize the shape of this potential. Our results provide quantitative data against which the emergent characteristics of animal aggregation models can be benchmarked.

  5. Commercialization of a DOE Laboratory

    SciTech Connect

    Stephenson, Barry A.

    2008-01-15

    On April 1, 1998, Materials and Chemistry Laboratory, Inc. (MCLinc) began business as an employee-owned, commercial, applied research laboratory offering services to both government and commercial clients. The laboratory had previously been a support laboratory to DoE's gaseous diffusion plant in Oak Ridge (K-25). When uranium enrichment was halted at the site, the laboratory was expanded to as an environmental demonstration center and served from 1992 until 1997 as a DOE Environmental User Facility. In 1997, after the laboratory was declared surplus, it was made available to the employee group who operated the laboratory for DOE as a government-owned, contractor-operated facility. This paper describes briefly the process of establishing the business. Attributes that contributed to the success of MCLinc are described. Some attention is given to lessons learned and to changes that could facilitate future attempts to make similar transitions. Lessons learnt: as with any business venture, operation over time has revealed that some actions taken by the laboratory founders have contributed to its successful operation while others were not so successful. Observations are offered in hopes that lessons learned may suggest actions that will facilitate future attempts to make similar transitions. First, the decision to vest significant ownership of the business in the core group of professionals operating the business is key to its success. Employee-owners of the laboratory have consistently provided a high level of service to its customers while conducting business in a cost-efficient manner. Secondly, an early decision to provide business support services in-house rather than purchasing them from support contractors on site have proven cost-effective. Laboratory employees do multiple tasks and perform overhead tasks in addition to their chargeable technical responsibilities. Thirdly, assessment of technical capabilities in view of market needs and a decision to offer these

  6. Test report for initial test of 6266 Building filter assemblies

    SciTech Connect

    Prather, M.C.

    1994-08-01

    This is the test report for the initial test of the Waste Sampling and Characterization Facility (WSCF) 6266 Building high efficiency particulate air (HEPA) filter assemblies. This supports the start-up of WSCF.

  7. Lawrence Livermore National Laboratory 2007 Annual Report

    SciTech Connect

    Chrzanowski, P; Walter, K

    2008-04-25

    of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us

  8. Basic problems of serological laboratory diagnosis.

    PubMed

    Fierz, W

    1999-12-01

    Serological laboratory diagnosis is inflicted with at least two kinds of basic problems. One type relates to the fact that the serological diagnosis of infectious diseases is double indirect: First, to diagnose an infectious disease, the identification of the microbial agent is sought that caused the disease. Second, to identify this infectious agent, the patient's immune response to potential agents is measured. So, the serological test is neither measuring directly disease nor the cause of the disease, but the patient's immune system. Another type of problem is based on the fact that each person's immune system is very individual. The exact physicochemical properties of antibodies are unique for each clone of antibodies. The way an individual's immune system sees an infectious agent depends not only on the genetic makeup of the person but also on the personal experience from former encounters with infectious agents. Both types of problems lead to complexities in selecting the appropriate test, in interpreting the results, and in standardizing serological tests. Therefore, a close collaboration of the laboratory with the clinic is mandatory to avoid erroneous conclusions from serological test results, which might lead to wrong decisions in patient care. PMID:10934525

  9. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1992-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  10. Experimenter's laboratory for visualized interactive science

    NASA Technical Reports Server (NTRS)

    Hansen, Elaine R.; Klemp, Marjorie K.; Lasater, Sally W.; Szczur, Marti R.; Klemp, Joseph B.

    1993-01-01

    The science activities of the 1990's will require the analysis of complex phenomena and large diverse sets of data. In order to meet these needs, we must take advantage of advanced user interaction techniques: modern user interface tools; visualization capabilities; affordable, high performance graphics workstations; and interoperatable data standards and translator. To meet these needs, we propose to adopt and upgrade several existing tools and systems to create an experimenter's laboratory for visualized interactive science. Intuitive human-computer interaction techniques have already been developed and demonstrated at the University of Colorado. A Transportable Applications Executive (TAE+), developed at GSFC, is a powerful user interface tool for general purpose applications. A 3D visualization package developed by NCAR provides both color-shaded surface displays and volumetric rendering in either index or true color. The Network Common Data Form (NetCDF) data access library developed by Unidata supports creation, access and sharing of scientific data in a form that is self-describing and network transparent. The combination and enhancement of these packages constitutes a powerful experimenter's laboratory capable of meeting key science needs of the 1990's. This proposal encompasses the work required to build and demonstrate this capability.

  11. Los Alamos National Laboratory Building Cost Index

    SciTech Connect

    Orr, H.D.; Lemon, G.D.

    1983-01-01

    The Los Alamos National Laboratory Building Cost Index indicates that actual escalation since 1970 is near 10% per year. Therefore, the Laboratory will continue using a 10% per year escalation rate for construction estimates through 1985 and a slightly lower rate of 8% per year from 1986 through 1990. The computerized program compares the different elements involved in the cost of a typical construction project, which for our purposes, is a complex of office buildings and experimental laboratores. The input data used in the program consist primarily of labor costs and material and equipment costs. The labor costs are the contractural rates of the crafts workers in the Los Alamos area. For the analysis, 12 field-labor draft categories are used; each is weighted corresponding to the labor craft distribution associated with the typical construction project. The materials costs are current Los Alamos prices. Additional information sources include material and equipment quotes obtained through conversations with vendors and from trade publications. The material and equipment items separate into 17 categories for the analysis and are weighted corresponding to the material and equipment distribution associated with the typical construction project. The building cost index is compared to other national building cost indexes.

  12. Cape Fear: an outdoor hillslope laboratory

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Petroselli, Andrea; Fiori, Aldo; Romano, Nunzio; Rulli, Maria Cristina; Porfiri, Maurizio; Palladino, Mario; Grimaldi, Salvatore

    2016-04-01

    Hydrological processes occurring at the hillslope scale highly influence the response of natural catchments. However, modelling hillslope dynamics is often extremely challenging, and conceptualizations may be inadequate to simulate such complex processes. Towards this aim, field experiments on natural and artificial catchments have proved highly beneficial. In this work, we present Cape Fear, an ad hoc designed experimental plot whereby traditional and new measurement systems are integrated for improved comprehension of hillslope processes. This outdoor hillslope laboratory hosts diverse sensing apparatuses, spanning from a system of rainfall simulators, a v-notch weir for input and output fluxes analysis, sophisticated instrumentation for continuous measurements of surface and subsurface water and soil transport, to innovative image-based setups to remotely sense surface waters. We demonstrate the potential of such a versatile and thoroughly instrumented outdoor laboratory through a proof-of-concept experiment conducted during a natural rainfall event. The response of the plot to the storm is reconstructed based on continuous monitoring of input and output fluxes. Further, an innovative tracer-based approach involving the use of fluorescent particles is utilized to remotely investigate the onset of overland flow from captured images. Insight from experimental observations is utilized to identify the physical phenomena governing the response of the hillslope to the precipitation event. Cape Fear is a powerful resource for the hydrological community and this small scale experimental observatory is expected to provide diverse and innovative observations to advance current knowledge on hydrological processes at the hillslope scale.

  13. Laboratory Exercises to Teach Clinically Relevant Chemistry of Antibiotics

    PubMed Central

    Chelette, Candace T.

    2014-01-01

    Objectives. To design, implement, and evaluate student performance on clinically relevant chemical and spectral laboratory exercises on antibiotics. Design. In the first of 2 exercises, second-year pharmacy students enrolled in an integrated laboratory sequence course studied the aqueous stability of ß-lactam antibiotics using a spectral visual approach. In a second exercise, students studied the tendency of tetracycline, rifamycins, and fluoroquinolones to form insoluble chelate complexes (turbidity) with polyvalent metals. Assessment. On a survey to assess achievement of class learning objectives, students agreed the laboratory activities helped them better retain important information concerning antibiotic stability and interactions. A significant improvement was observed in performance on examination questions related to the laboratory topics for 2012 and 2013 students compared to 2011 students who did not complete the laboratory. A 1-year follow-up examination question administered in a separate course showed >75% of the students were able to identify rifamycins-food interactions compared with <25% of students who had not completed the laboratory exercises. Conclusion. The use of spectral visual approaches allowed students to investigate antibiotic stability and interactions, thus reinforcing the clinical relevance of medicinal chemistry. Students’ performance on questions at the 1-year follow-up suggested increased retention of the concepts learned as a result of completing the exercises. PMID:24672070

  14. An Atmospheric Cloud Physics Laboratory for the Space Laboratory

    NASA Technical Reports Server (NTRS)

    Smith, R.; Anderson, J.; Schrick, B.; Ellsworth, C.; Davis, M.

    1976-01-01

    Results of research and engineering analyses to date show that it is feasible to develop and fly on the first Spacelab mission a multipurpose laboratory in which experiments can be performed on the microphysical processes in atmospheric clouds. The paper presents a series of tables on the Atmospheric Cloud Physics Laboratory, with attention given to experiment classes, the preliminary equipment list (particle generators, optical and imaging devices, particle detectors and characterizers, etc.), initial equipment (scientific equipment subsystems and flight support subsystems), and scientific functional requirements (the expansion chamber, the continuous flow diffusion chamber, the static diffusion chamber, the humidifier, and particle generators).

  15. Radioactive Standards Laboratory ININ as a reference laboratory in Mexico.

    PubMed

    GarcíaDíaz, O; MartínezAyala, L; HerreraValadez, L; TovarM, V; Karam, L

    2016-03-01

    The Radioactive Standards Laboratory of the National Institute of Nuclear Research is the National reference laboratory for the measurement of radioactivity in Mexico. It has a gamma-ray spectrometry system with a high-purity Ge-detector for measurements from 50 keV to 2000 keV, and develops standardized radioactive (beta-particle and gamma-ray emitting) sources in different geometries with uncertainties less than or equal to 5% for applications such as the calibration of radionuclide calibrators (clinically used dose calibrators), Ge-detectors and NaI(Tl) detectors. PMID:27358942

  16. Accreditation of the PGD laboratory.

    PubMed

    Harper, J C; Sengupta, S; Vesela, K; Thornhill, A; Dequeker, E; Coonen, E; Morris, M A

    2010-04-01

    Accreditation according to an internationally recognized standard is increasingly acknowledged as the single most effective route to comprehensive laboratory quality assurance, and many countries are progressively moving towards compulsory accreditation of medical testing laboratories. The ESHRE PGD Consortium and some regulatory bodies recommend that all PGD laboratories should be accredited or working actively towards accreditation, according to the internationally recognized standard ISO 15189, 'Medical laboratories-Particular requirements for quality and competence'. ISO 15189 requires comprehensive quality assurance. Detailed management and technical requirements are defined in the two major chapters. The management requirements address quality management including the quality policy and manual, document control, non-conformities and corrective actions, continual improvement, auditing, management review, contracts, referrals and resolution of complaints. Technical requirements include personnel competence (both technical and medical), equipment, accommodation and environment, and pre-analytical, analytical and post-analytical processes. Emphasis is placed on the particular requirements of patient care: notably sample identification and traceability, test validation and interpretation and reporting of results. Quality indicators must be developed to monitor contributions to patient care and continual improvement. We discuss the implementation of ISO 15189 with a specific emphasis on the PGD laboratory, highlight elements of particular importance or difficulty and provide suggestions of effective and efficient ways to obtain accreditation. The focus is on the European environment although the principles are globally applicable. PMID:20097923

  17. Does software design complexity affect maintenance effort?

    NASA Technical Reports Server (NTRS)

    Epping, Andreas; Lott, Christopher M.

    1994-01-01

    The design complexity of a software system may be characterized within a refinement level (e.g., data flow among modules), or between refinement levels (e.g., traceability between the specification and the design). We analyzed an existing set of data from NASA's Software Engineering Laboratory to test whether changing software modules with high design complexity requires more personnel effort than changing modules with low design complexity. By analyzing variables singly, we identified strong correlations between software design complexity and change effort for error corrections performed during the maintenance phase. By analyzing variables in combination, we found patterns which identify modules in which error corrections were costly to perform during the acceptance test phase.

  18. 77 FR 16551 - Standards for Private Laboratory Analytical Packages and Introduction to Laboratory Related...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... HUMAN SERVICES Food and Drug Administration Standards for Private Laboratory Analytical Packages and Introduction to Laboratory Related Portions of the Food Modernization Safety Act for Private Laboratory... Administration (FDA) is announcing two meetings entitled ``Standards for Private Laboratory Analytical...

  19. Cyanobacterial NADPH dehydrogenase complexes

    SciTech Connect

    Ogawa, Teruo; Mi, Hualing

    2007-07-01

    Cyanobacteria possess functionally distinct multiple NADPH dehydrogenase (NDH-1) complexes that are essential to CO2 uptake, photosystem-1 cyclic electron transport and respiration. The unique nature of cyanobacterial NDH-1 complexes is the presence of subunits involved in CO2 uptake. Other than CO2 uptake, chloroplastic NDH-1 complex has similar role as cyanobacterial NDH-1 complexes in photosystem-1 cyclic electron transport and respiration (chlororespiration). In this mini-review we focus on the structure and function of cyanobacterial NDH-1 complexes and their phylogeny. The function of chloroplastic NDH-1 complex and characteristics of plants defective in NDH-1 are also described forcomparison.

  20. Alerting of Laboratory Critical Values

    NASA Astrophysics Data System (ADS)

    Song, Sang Hoon; Park, Kyoung Un; Song, Junghan; Paik, Hyeon Young; Lee, Chi Woo; Bang, Su Mi; Hong, Joon Seok; Lee, Hyun Joo; Cho, In-Sook; Kim, Jeong Ah; Kim, Hyun-Young; Kim, Yoon

    Critical value is defined as a result suggesting that the patient is in danger unless appropriate action is taken immediately. We designed an automated reporting system of critical values and evaluated its performance. Fifteen critical values were defined and 2-4 doctors were assigned to receive short message service (SMS).Laboratory results in LIS and EMR were called back to the DIA server. The rule engine named U-brain in the CDSS server was run in real-time and decision if the laboratory data was critical was made. The CDSS system for alerting of laboratory critical values was fast and stable without additional burden to the entire EMR system. Continuous communication with clinicians and feedback of clinical performance are mandatory for the refinement and development of user-friendly CDSS contents. Appropriate clinical parameters are necessary for demonstration of the usefulness of the system.