Sample records for x-ray analysis electron

  1. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  2. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  3. X-ray analysis of electron Bernstein wave heating in MST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seltzman, A. H., E-mail: seltzman@wisc.edu; Anderson, J. K.; DuBois, A. M.

    2016-11-15

    A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. Thismore » provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.« less

  4. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  5. Calcium measurements with electron probe X-ray and electron energy loss analysis.

    PubMed

    LeFurgey, A; Ingram, P

    1990-03-01

    This paper presents a broad survey of the rationale for electron probe X-ray microanalysis (EPXMA) and the various methods for obtaining qualitative and quantitative information on the distribution and amount of elements, particularly calcium, in cryopreserved cells and tissues. Essential in an introductory consideration of microanalysis in biological cryosections is the physical basis for the instrumentation, fundamentals of X-ray spectrometry, and various analytical modes such as static probing and X-ray imaging. Some common artifacts are beam damage and contamination. Inherent pitfalls of energy dispersive X-ray systems include Si escape peaks, doublets, background, and detector calibration shifts. Quantitative calcium analysis of thin cryosections is carried out in real time using a multiple least squares fitting program on filtered X-ray spectra and normalizing the calcium peak to a portion of the continuum. Recent work includes the development of an X-ray imaging system where quantitative data can be retrieved off-line. The minimum detectable concentration of calcium in biological cryosections is approximately 300 mumole kg dry weight with a spatial resolution of approximately 100 A. The application of electron energy loss (EELS) techniques to the detection of calcium offers the potential for greater sensitivity and spatial resolution in measurement and imaging. Determination of mass thickness with EELS can facilitate accurate calculation of wet weight concentrations from frozen hydrated and freeze-dried specimens. Calcium has multiple effects on cell metabolism, membrane transport and permeability and, thus, on overall cell physiology or pathophysiology. Cells can be rapidly frozen for EPXMA during basal or altered functional conditions to delineate the location and amount of calcium within cells and the changes in location and concentration of cations or anions accompanying calcium redistribution. Recent experiments in our laboratory document that EPXMA in

  6. Quantum theory for 1D X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Anisimov, Petr M.

    2018-06-01

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classical theory, which allows for immediate transfer of knowledge between the two regimes. We exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.

  7. Development of scanning electron and x-ray microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Tomokazu, E-mail: tomokzau.matsumura@etd.hpk.co.jp; Hirano, Tomohiko, E-mail: tomohiko.hirano@etd.hpk.co.jp; Suyama, Motohiro, E-mail: suyama@etd.hpk.co.jp

    We have developed a new type of microscope possessing a unique feature of observing both scanning electron and X-ray images under one unit. Unlike former X-ray microscopes using SEM [1, 2], this scanning electron and X-ray (SELX) microscope has a sample in vacuum, thus it enables one to observe a surface structure of a sample by SEM mode, to search the region of interest, and to observe an X-ray image which transmits the region. For the X-ray observation, we have been focusing on the soft X-ray region from 280 eV to 3 keV to observe some bio samples and softmore » materials. The resolutions of SEM and X-ray modes are 50 nm and 100 nm, respectively, at the electron energy of 7 keV.« less

  8. Quantum theory for 1D X-ray free electron laser

    DOE PAGES

    Anisimov, Petr Mikhaylovich

    2017-09-19

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classicalmore » theory, which allows for immediate transfer of knowledge between the two regimes. In conclusion, we exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.« less

  9. X-ray tube with magnetic electron steering

    DOEpatents

    Reed, Kim W.; Turman, Bobby N.; Kaye, Ronald J.; Schneider, Larry X.

    2000-01-01

    An X-ray tube uses a magnetic field to steer electrons. The magnetic field urges electrons toward the anode, increasing the proportion of electrons emitted from the cathode that reach desired portions of the anode and consequently contribute to X-ray production. The magnetic field also urges electrons reflected from the anode back to the anode, further increasing the efficiency of the tube.

  10. Stochastic stimulated electronic x-ray Raman spectroscopy

    PubMed Central

    Kimberg, Victor; Rohringer, Nina

    2016-01-01

    Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the O1s→π* transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations. PMID:26958585

  11. X-ray Free-electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldhaus, J.; /DESY; Arthur, J.

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, andmore » can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.« less

  12. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE PAGES

    Schulz, S.; Grguraš, I.; Behrens, C.; ...

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  13. Femtosecond all-optical synchronization of an X-ray free-electron laser

    PubMed Central

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  14. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    NASA Astrophysics Data System (ADS)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles

  15. Stimulated Electronic X-Ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Purvis, Michael; Ryan, Duncan; London, Richard A.; Bozek, John D.; Bostedt, Christoph; Graf, Alexander; Brown, Gregory; Rocca, Jorge J.; Rohringer, Nina

    2013-12-01

    We demonstrate strong stimulated inelastic x-ray scattering by resonantly exciting a dense gas target of neon with femtosecond, high-intensity x-ray pulses from an x-ray free-electron laser (XFEL). A small number of lower energy XFEL seed photons drive an avalanche of stimulated resonant inelastic x-ray scattering processes that amplify the Raman scattering signal by several orders of magnitude until it reaches saturation. Despite the large overall spectral width, the internal spiky structure of the XFEL spectrum determines the energy resolution of the scattering process in a statistical sense. This is demonstrated by observing a stochastic line shift of the inelastically scattered x-ray radiation. In conjunction with statistical methods, XFELs can be used for stimulated resonant inelastic x-ray scattering, with spectral resolution smaller than the natural width of the core-excited, intermediate state.

  16. High-intensity double-pulse X-ray free-electron laser

    DOE PAGES

    Marinelli, A.; Ratner, D.; Lutman, A. A.; ...

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  17. Millimeter, microwave, hard X-ray, and soft X-ray observations of energetic electron populations in solar flares

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; White, S. M.; Gopalswamy, N.; Lim, J.

    1994-01-01

    We present comparisons of multiwavelength data for a number of solar flares observed during the major campaign of 1991 June. The different wavelengths are diagnostics of energetic electrons in different energy ranges: soft X-rays are produced by electrons with energies typically below 10 keV, hard X-rays by electrons with energies in the range 10-200 keV, microwaves by electrons in the range 100 keV-1 MeV, and millimeter-wavelength emission by electrons with energies of 0.5 MeV and above. The flares in the 1991 June active period were remarkable in two ways: all have very high turnover frequencies in their microwave spectra, and very soft hard X-ray spectra. The sensitivity of the microwave and millimeter data permit us to study the more energetic (greater than 0.3 MeV) electrons even in small flares, where their high-energy bremsstrahlung is too weak for present detectors. The millimeter data show delays in the onset of emission with respect to the emissions associated with lower energy electrons and differences in time profiles, energy spectral indices incompatible with those implied by the hard X-ray data, and a range of variability of the peak flux in the impulsive phase when compared with the peak hard X-ray flux which is two orders of magnitude larger than the corresponding variability in the peak microwave flux. All these results suggest that the hard X-ray-emitting electrons and those at higher energies which produce millimeter emission must be regarded as separate populations. This has implications for the well-known 'number problem' found previously when comparing the numbers of non thermal electrons required to produce the hard X-ray and radio emissions.

  18. Deducing Electron Properties from Hard X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; hide

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  19. Fresh-slice multicolour X-ray free-electron lasers

    DOE PAGES

    Lutman, Alberto A.; Maxwell, Timothy J.; MacArthur, James P.; ...

    2016-10-24

    X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses with a narrow energy bandwidth and unprecedented brightness. Ultrafast physical and chemical dynamics, initiated with a site-specific X-ray pulse, can be explored using XFELs with a second ultrashort X-ray probe pulse. However, existing double-pulse schemes are complicated, difficult to customize or provide only low-intensity pulses. Here we present the novel fresh-slice technique for multicolour pulse production, wherein different temporal slices of an electron bunch lase to saturation in separate undulator sections. This method combines electron bunch tailoring from a passive wakefield device with trajectory control to provide multicolour pulses. The fresh-slice schememore » outperforms existing techniques at soft X-ray wavelengths. It produces femtosecond pulses with a power of tens of gigawatts and flexible colour separation. The pulse delay can be varied from temporal overlap to almost one picosecond. As a result, we also demonstrate the first three-colour XFEL and variably polarized two-colour pulses.« less

  20. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    NASA Technical Reports Server (NTRS)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  1. Electron temperature from x-ray continuum measurements on the NIF

    NASA Astrophysics Data System (ADS)

    Jarrott, Leonard; Bachmann, Benjamin; Benedetti, Robin; Izumi, Nobuhiko; Khan, Shahab; Landen, Otto; Ma, Tammy; Nagel, Sabrina; Pak, Arthur; Patel, Prav; Schneider, Marilyn; Springer, Paul; LLNL Collaboration

    2017-10-01

    We report on measurements of the electron temperature within the hot spot of inertially confined, layered implosions on the NIF using a titanium differential filtering x-ray diagnostic. The electron temperature from x-ray emission is insensitive to non-thermal velocity flows as is the case with ion temperature measurements and is thus a critical parameter in interpreting stagnated hot spot conditions. Here we discuss measurements using titanium filters ranging from 10 μm to 1mm in thickness with a sensitivity band of 10-30keV coupled with penumbral pinholes. The use of larger pinhole diameters increases x-ray fluence improving sensitivity of photon energies with minimal attenuation from the compressed fuel/shell. This diagnostic has been fielded on a series of cryogenic shots with DT ion temperatures ranging from 2-5keV. Analysis of the measurement will be presented along with a comparison against simulated electron temperatures and x-ray spectra as well as a comparison to DT ion temperature measurements. This work was performed under the auspices of U.S. DoE by LLNL under Contract No. DE-AC52-07NA27344.

  2. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.

    PubMed

    Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi

    2013-01-01

    We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.

  3. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    DOE PAGES

    Kroll, Thomas; Kern, Jan; Kubin, Markus; ...

    2016-09-19

    X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. But, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. We compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based onmore » self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. Lastly, we show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.« less

  4. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    PubMed Central

    Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe

    2016-01-01

    X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements. PMID:27828320

  5. Measurement of Total Calcium in Neurons by Electron Probe X-ray Microanalysis

    PubMed Central

    Pivovarova, Natalia B.; Andrews, S. Brian

    2013-01-01

    In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis

  6. Thomson-backscattered x rays from laser-accelerated electrons.

    PubMed

    Schwoerer, H; Liesfeld, B; Schlenvoigt, H-P; Amthor, K-U; Sauerbrey, R

    2006-01-13

    We present the first observation of Thomson-backscattered light from laser-accelerated electrons. In a compact, all-optical setup, the "photon collider," a high-intensity laser pulse is focused into a pulsed He gas jet and accelerates electrons to relativistic energies. A counterpropagating laser probe pulse is scattered from these high-energy electrons, and the backscattered x-ray photons are spectrally analyzed. This experiment demonstrates a novel source of directed ultrashort x-ray pulses and additionally allows for time-resolved spectroscopy of the laser acceleration of electrons.

  7. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    PubMed

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  8. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and themore » beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.« less

  9. Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.

    PubMed

    Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D

    2015-10-01

    We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnostics

    NASA Astrophysics Data System (ADS)

    Musset, S.; Kontar, E. P.; Vilmer, N.

    2018-02-01

    Context. Imaging spectroscopy in X-rays with RHESSI provides the possibility to investigate the spatial evolution of X-ray emitting electron distribution and therefore, to study transport effects on energetic electrons during solar flares. Aims: We study the energy dependence of the scattering mean free path of energetic electrons in the solar corona. Methods: We used imaging spectroscopy with RHESSI to study the evolution of energetic electrons distribution in various parts of the magnetic loop during the 2004 May 21 flare. We compared these observations with the radio observations of the gyrosynchrotron radiation of the same flare and with the predictions of a diffusive transport model. Results: X-ray analysis shows a trapping of energetic electrons in the corona and a spectral hardening of the energetic electron distribution between the top of the loop and the footpoints. Coronal trapping of electrons is stronger for radio-emitting electrons than for X-ray-emitting electrons. These observations can be explained by a diffusive transport model. Conclusions: We show that the combination of X-ray and radio diagnostics is a powerful tool to study electron transport in the solar corona in different energy domains. We show that the diffusive transport model can explain our observations, and in the range 25-500 keV, the scattering mean free path of electrons decreases with electron energy. We can estimate for the first time the scattering mean free path dependence on energy in the corona.

  11. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomicmore » states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).« less

  12. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  13. Scanning Electron Microscopy and X-Ray Microanalysis

    NASA Astrophysics Data System (ADS)

    Albee, Arden L.

    This outstanding volume has managed the nearly impossible task of combining the expertise of all six authors in a lucid and homogeneous style of writing. Subtitled ‘A Text for Biologists, Material Scientists and Geologists,’ the book has evolved from a short course taught each summer at Lehigh University.The book provides a basic knowledge of (1) the electron optics for these instruments a nd their controls, (2) the characteristics of the electron beam-sample interactions, (3) image formation and interpretation, (4) X ray spectrometry and quantitative X ray microanalysis with separate detailed sections on wavelength dispersive and energy dispersive techniques, and (5) specimen preparation, especially for biological materials.

  14. Electron and fluorescence spectra of a water molecule irradiated by an x-ray free-electron laser pulse

    NASA Astrophysics Data System (ADS)

    Schäfer, Julia M.; Inhester, Ludger; Son, Sang-Kil; Fink, Reinhold F.; Santra, Robin

    2018-05-01

    With the highly intense x-ray light generated by x-ray free-electron lasers (XFELs), molecular samples can be ionized many times in a single pulse. Here we report on a computational study of molecular spectroscopy at the high x-ray intensity provided by XFELs. Calculated photoelectron, Auger electron, and x-ray fluorescence spectra are presented for a single water molecule that reaches many electronic hole configurations through repeated ionization steps. The rich details shown in the spectra depend on the x-ray pulse parameters in a nonintuitive way. We discuss how the observed trends can be explained by the competition of microscopic electronic transition processes. A detailed comparison between spectra calculated within the independent-atom model and within the molecular-orbital framework highlights the chemical sensitivity of the spectral lines of multiple-hole configurations. Our results demonstrate how x-ray multiphoton ionization-related effects such as charge-rearrangement-enhanced x-ray ionization of molecules and frustrated absorption manifest themselves in the electron and fluorescence spectra.

  15. THE X-RAY DETECTABILITY OF ELECTRON BEAMS ESCAPING FROM THE SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saint-Hilaire, Pascal; Krucker, Saem; Christe, Steven

    2009-05-01

    We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams ({approx}>10{sup 35} electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number ofmore » escaping electrons (above 10 keV) to {approx}>3 x 10{sup 36} for RHESSI, {approx}>3 x 10{sup 35} for Hinode/XRT, and {approx}>10{sup 33} electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.« less

  16. Laser x-ray Conversion and Electron Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Wang, Guang-yu; Chang, Tie-qiang

    2001-02-01

    The influence of electron thermal conductivity on the laser x-ray conversion in the coupling of 3ωo laser with Au plane target has been investigated by using a non-LTE radiation hydrodynamic code. The non-local electron thermal conductivity is introduced and compared with the other two kinds of the flux-limited Spitzer-Härm description. The results show that the non-local thermal conductivity causes the increase of the laser x-ray conversion efficiency and important changes of the plasma state and coupling feature.

  17. Density gradient free electron collisionally excited x-ray laser

    DOEpatents

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  18. Attosecond time-energy structure of X-ray free-electron laser pulses

    NASA Astrophysics Data System (ADS)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  19. Phase contrast: the frontier of x-ray and electron imaging

    NASA Astrophysics Data System (ADS)

    Hwu, Y.; Margaritondo, G.

    2013-12-01

    Phase contrast has been a fundamental component of microscopy since the early 1940s. In broad terms, it refers to the formation of images using not the combination of wave intensities but their amplitudes with the corresponding phase factors. The impact on visible microscopy of biological specimens has been major. This contrast mechanism is now playing an increasingly important role in other kinds of microscopy, notably those based on electrons or x-rays. It notably solves the background problem of weak absorption contrast. New breakthroughs and new techniques are continuously produced, unfortunately unknown to most of the scientists that could exploit them. The present special cluster issue of reviews was inspired by this situation. The case of x-rays is very interesting. Phase contrast requires a high degree of longitudinal and lateral coherence. But conventional x-ray sources are not coherent. The progress of synchrotron sources yielded high coherence as a key byproduct—and started a rapid expansion of phase contrast radiology. No review—or cluster of reviews—can possibly cover all the facets of the recent progress. Without trying to be absolutely comprehensive, the present special cluster issue touches a variety of issues, giving a very broad picture. Liu et al review in general terms the different phase-based hard-x-ray techniques, with an interesting variety of examples. Then, Suortti et al and Wang et al present more specialized overviews of crystal and grating based x-ray imaging techniques, very powerful in the analysis of biological specimens. Mokso et al discuss the many facets of tomography using phase effects, expanding the picture of tomographic reconstruction of the three previous reviews. Wu et al treat the rapid progress in hard-x-ray focusing and its impact on radiology and tomography for materials science and biomedical research. The next two reviews deal with special and very interesting classes of applications. Specifically, Lee et al

  20. X-ray free electron laser: opportunities for drug discovery.

    PubMed

    Cheng, Robert K Y; Abela, Rafael; Hennig, Michael

    2017-11-08

    Past decades have shown the impact of structural information derived from complexes of drug candidates with their protein targets to facilitate the discovery of safe and effective medicines. Despite recent developments in single particle cryo-electron microscopy, X-ray crystallography has been the main method to derive structural information. The unique properties of X-ray free electron laser (XFEL) with unmet peak brilliance and beam focus allow X-ray diffraction data recording and successful structure determination from smaller and weaker diffracting crystals shortening timelines in crystal optimization. To further capitalize on the XFEL advantage, innovations in crystal sample delivery for the X-ray experiment, data collection and processing methods are required. This development was a key contributor to serial crystallography allowing structure determination at room temperature yielding physiologically more relevant structures. Adding the time resolution provided by the femtosecond X-ray pulse will enable monitoring and capturing of dynamic processes of ligand binding and associated conformational changes with great impact to the design of candidate drug compounds. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  1. The X-ray Detectability of Electron Beams Escaping from the Sun

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, Pascal; Krucker, Säm; Christe, Steven; Lin, Robert P.

    2009-05-01

    We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams (gsim1035 electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number of escaping electrons (above 10 keV) to gsim3 × 1036 for RHESSI, gsim3 × 1035 for Hinode/XRT, and gsim1033 electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.

  2. Electronic catalogue of muonic X-rays

    NASA Astrophysics Data System (ADS)

    Zinatulina, Daniya; Briançon, Chantal; Brudanin, Victor; Egorov, Viacheslav; Perevoshchikov, Lev; Shirchenko, Mark; Yutlandov, Igor; Petitjean, Claude

    2018-04-01

    μX-ray spectra for Z=9-90 were measured with HPGe detectors and muonic beams of PSI (Villigen, Switzerland) [1]. The results are presented as electronic atlas composed of graphic plots. The atlas is available at JINR site [2].

  3. THz-pump and X-ray-probe sources based on an electron linac

    NASA Astrophysics Data System (ADS)

    Setiniyaz, Sadiq; Park, Seong Hee; Kim, Hyun Woo; Vinokurov, Nikolay A.; Jang, Kyu-Ha; Lee, Kitae; Baek, In Hyung; Jeong, Young Uk

    2017-11-01

    We describe a compact THz-pump and X-ray-probe beamline, based on an electron linac, for ultrafast time-resolved diffraction applications. Two high-energy electron (γ > 50) bunches, 5 ns apart, impinge upon a single-foil or multifoil radiator and generate THz radiation and X-rays simultaneously. The THz pulse from the first bunch is synchronized to the X-ray beam of the second bunch by using an adjustable optical delay of a THz pulse. The peak power of THz radiation from the multifoil radiator is estimated to be 0.14 GW for a 200 pC well-optimized electron bunch. GEANT4 simulations show that a carbon foil with a thickness of 0.5-1.0 mm has the highest yield of 10-20 keV hard X-rays for a 25 MeV beam, which is approximately 103 photons/(keV pC-electrons) within a few degrees of the polar angle. A carbon multifoil radiator with 35 foils (25 μm thick each) can generate close to 103 hard X-rays/(keV pC-electrons) within a 2° acceptance angle. With 200 pC charge and a 100 Hz repetition rate, we can generate 107 X-rays per 1 keV energy bin per second or 105 X-rays per 1 keV energy bin per pulse. The longitudinal time profile of an X-ray pulse ranges from 400 to 600 fs depending on the acceptance angle. The broadening of the time duration of an X-ray pulse is observed owing to its diverging effect. A double-crystal monochromator will be used to select and transport the desired X-rays to the sample. The heating of the radiators by an electron beam is negligible because of the low beam current.

  4. THz-pump and X-ray-probe sources based on an electron linac.

    PubMed

    Setiniyaz, Sadiq; Park, Seong Hee; Kim, Hyun Woo; Vinokurov, Nikolay A; Jang, Kyu-Ha; Lee, Kitae; Baek, In Hyung; Jeong, Young Uk

    2017-11-01

    We describe a compact THz-pump and X-ray-probe beamline, based on an electron linac, for ultrafast time-resolved diffraction applications. Two high-energy electron (γ > 50) bunches, 5 ns apart, impinge upon a single-foil or multifoil radiator and generate THz radiation and X-rays simultaneously. The THz pulse from the first bunch is synchronized to the X-ray beam of the second bunch by using an adjustable optical delay of a THz pulse. The peak power of THz radiation from the multifoil radiator is estimated to be 0.14 GW for a 200 pC well-optimized electron bunch. GEANT4 simulations show that a carbon foil with a thickness of 0.5-1.0 mm has the highest yield of 10-20 keV hard X-rays for a 25 MeV beam, which is approximately 10 3 photons/(keV pC-electrons) within a few degrees of the polar angle. A carbon multifoil radiator with 35 foils (25 μm thick each) can generate close to 10 3 hard X-rays/(keV pC-electrons) within a 2° acceptance angle. With 200 pC charge and a 100 Hz repetition rate, we can generate 10 7 X-rays per 1 keV energy bin per second or 10 5 X-rays per 1 keV energy bin per pulse. The longitudinal time profile of an X-ray pulse ranges from 400 to 600 fs depending on the acceptance angle. The broadening of the time duration of an X-ray pulse is observed owing to its diverging effect. A double-crystal monochromator will be used to select and transport the desired X-rays to the sample. The heating of the radiators by an electron beam is negligible because of the low beam current.

  5. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Taborda, A.; Desbrée, A.; Carvalho, A.; Chaves, P. C.; Reis, M. A.

    2016-08-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 103 barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing 57Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  6. Density gradient free electron collisionally excited X-ray laser

    DOEpatents

    Campbell, Edward M.; Rosen, Mordecai D.

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  7. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2013-01-01

    Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. © Wiley Periodicals, Inc.

  8. Bulk sensitive hard x-ray photoemission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C.; Weber, N.

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. Themore » high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.« less

  9. Terawatt x-ray free-electron-laser optimization by transverse electron distribution shaping

    DOE PAGES

    Emma, C.; Wu, J.; Fang, K.; ...

    2014-11-03

    We study the dependence of the peak power of a 1.5 Å Terawatt (TW), tapered x-ray free-electron laser (FEL) on the transverse electron density distribution. Multidimensional optimization schemes for TW hard x-ray free-electron lasers are applied to the cases of transversely uniform and parabolic electron beam distributions and compared to a Gaussian distribution. The optimizations are performed for a 200 m undulator and a resonant wavelength of λ r = 1.5 Å using the fully three-dimensional FEL particle code GENESIS. The study shows that the flatter transverse electron distributions enhance optical guiding in the tapered section of the undulator andmore » increase the maximum radiation power from a maximum of 1.56 TW for a transversely Gaussian beam to 2.26 TW for the parabolic case and 2.63 TW for the uniform case. Spectral data also shows a 30%–70% reduction in energy deposited in the sidebands for the uniform and parabolic beams compared with a Gaussian. An analysis of the transverse coherence of the radiation shows the coherence area to be much larger than the beam spotsize for all three distributions, making coherent diffraction imaging experiments possible.« less

  10. X-Ray Microanalysis and Electron Energy Loss Spectrometry in the Analytical Electron Microscope: Review and Future Directions

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.; Williams, D. B.

    1992-01-01

    This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be

  11. Harmonic lasing in x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2012-08-01

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned x-ray free electron laser (FEL) facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of x-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned x-ray FEL (XFEL) facilities. In particular, Linac Coherent Light Source (LCLS) after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multigigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow one to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other x-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact x-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in

  12. Soft X-ray astronomy proportional counter electronics

    NASA Technical Reports Server (NTRS)

    Gardner, W. R.

    1971-01-01

    The X-ray multiwire proportional counter is designed to measure cosmic X-ray fluxes at sounding rocket altitudes in the energy range of 0.1 to 10 keV. Four instruments will be launched in a Black Brant 4 rocket employing different combinations of detector windows and gas. The detector is constructed with two layers of twelve cells. A columnator is mounted on the face of one layer whose cells are wired together alternately to form two main detector sections. The electronics and gas regulation systems are mounted on the face of the second layer whose cells are wired together to form one anticoincidence detector section. Normally X-rays will have short ionization paths in only one of the main detector cells at a time and won't enter the anticoincidence detector cells. To distinguish between X-rays and charged particles, the instrument includes a coincidence discriminator, an anticoincidence discriminator, and a pulse rise time discriminator.

  13. Two-colour hard X-ray free-electron laser with wide tunability.

    PubMed

    Hara, Toru; Inubushi, Yuichi; Katayama, Tetsuo; Sato, Takahiro; Tanaka, Hitoshi; Tanaka, Takashi; Togashi, Tadashi; Togawa, Kazuaki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya

    2013-01-01

    Ultrabrilliant, femtosecond X-ray pulses from X-ray free-electron lasers (XFELs) have promoted the investigation of exotic interactions between intense X-rays and matters, and the observation of minute targets with high spatio-temporal resolution. Although a single X-ray beam has been utilized for these experiments, the use of multiple beams with flexible and optimum beam parameters should drastically enhance the capability and potentiality of XFELs. Here we show a new light source of a two-colour double-pulse (TCDP) XFEL in hard X-rays using variable-gap undulators, which realizes a large and flexible wavelength separation of more than 30% with an ultraprecisely controlled time interval in the attosecond regime. Together with sub-10-fs pulse duration and multi-gigawatt peak powers, the TCDP scheme enables us to elucidate X-ray-induced ultrafast transitions of electronic states and structures, which will significantly contribute to the advancement of ultrafast chemistry, plasma and astronomical physics, and quantum X-ray optics.

  14. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    NASA Astrophysics Data System (ADS)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-01

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X

  15. Probing solid catalysts under operating conditions: electrons or X-rays?

    PubMed

    Thomas, John Meurig; Hernandez-Garrido, Juan-Carlos

    2009-01-01

    Seeing is believing: In light of recent advances, the pros and cons of using electrons and X-rays for in situ studies of catalysts are analyzed: by using X-rays the structure of bound reactants at steady state are obtained from extended X-ray adsorption fine structure spectroscopy (EXAFS) data (see graph), thereby affording mechanistic insights.

  16. X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics

    NASA Astrophysics Data System (ADS)

    Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2018-06-01

    X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.

  17. Neon in ultrashort and intense x-rays from free electron lasers

    NASA Astrophysics Data System (ADS)

    Buth, Christian; Beerwerth, Randolf; Obaid, Razib; Berrah, Nora; Cederbaum, Lorenz S.; Fritzsche, Stephan

    2018-03-01

    We theoretically examine neon atoms in ultrashort and intense x-rays from free electron lasers and compare our results with data from experiments conducted at the Linac Coherent Light Source. For this purpose, we treat in detail the electronic structure in all possible nonrelativistic cationic configurations using a relativistic multiconfiguration approach. The interaction with the x-rays is described in rate-equation approximation. To understand the mechanisms of the interaction, a path analysis is devised which allows us to investigate what sequences of photoionization and decay processes lead to a specific configuration and with what probability. Thereby, we uncover a connection to the mathematics of graph theory and formal languages. In detail, we study the ion yields and find that plain rate equations do not provide a satisfactory description. We need to extend the rate equations for neon to incorporate double Auger decay of a K-shell vacancy and photoionization shake off for neutral neon. Shake off is included for valence and core ionization; the former has hitherto been overlooked but has important consequences for the ion yields from an x-ray energy below the core ionization threshold. Furthermore, we predict the photon yields from XUV and x-ray fluorescence these allow one insights into the configurations populated by the interaction with the x-rays. Finally, we discover that inaccuracies in those Auger decay widths employed in previous studies have only a minor influence on ion and photon yields.

  18. Tutorial on X-Ray Free-Electron Lasers

    DOE PAGES

    Carlsten, Bruce E.

    2018-05-02

    This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less

  19. Tutorial on X-Ray Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsten, Bruce E.

    This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less

  20. XAP, a program for deconvolution and analysis of complex X-ray spectra

    USGS Publications Warehouse

    Quick, James E.; Haleby, Abdul Malik

    1989-01-01

    The X-ray analysis program (XAP) is a spectral-deconvolution program written in BASIC and specifically designed to analyze complex spectra produced by energy-dispersive X-ray analytical systems (EDS). XAP compensates for spectrometer drift, utilizes digital filtering to remove background from spectra, and solves for element abundances by least-squares, multiple-regression analysis. Rather than base analyses on only a few channels, broad spectral regions of a sample are reconstructed from standard reference spectra. The effects of this approach are (1) elimination of tedious spectrometer adjustments, (2) removal of background independent of sample composition, and (3) automatic correction for peak overlaps. Although the program was written specifically to operate a KEVEX 7000 X-ray fluorescence analytical system, it could be adapted (with minor modifications) to analyze spectra produced by scanning electron microscopes, electron microprobes, and probes, and X-ray defractometer patterns obtained from whole-rock powders.

  1. Correlative analysis of hard and soft x ray observations of solar flares

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1994-01-01

    We have developed a promising new technique for jointly analyzing BATSE hard X-ray observations of solar flares with simultaneous soft X-ray observations. The technique is based upon a model in which electric currents and associated electric fields are responsible for the respective heating and particle acceleration that occur in solar flares. A useful by-product of this technique is the strength and evolution of the coronal electric field. The latter permits one to derive important flare parameters such as the current density, the number of current filaments composing the loop, and ultimately the hard X-ray spectrum produced by the runaway electrons. We are continuing to explore the technique by applying it to additional flares for which we have joint BATSE/Yohkoh observations. A central assumption of our analysis is the constant of proportionality alpha relating the hard X-ray flux above 50 keV and the rate of electron acceleration. For a thick-target model of hard X-ray production, it can be shown that cv is in fact related to the spectral index and low-energy cutoff of precipitating electrons. The next step in our analysis is to place observational constraints on the latter parameters using the joint BATSE/Yohkoh data.

  2. Atmospheric electron-induced x-ray spectrometer development

    NASA Technical Reports Server (NTRS)

    Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; Crisp, Joy

    2005-01-01

    This paper extends the work reported at the IEEE Aerospace conference in 2001 and 2003 where the concept and progress in the development of the so called atmospheric Electron X-ray Spectrometer (AEXS) has been described.

  3. Atmospheric Electron-Induced X-Ray Spectrometer (AEXS) Development

    NASA Technical Reports Server (NTRS)

    Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; George, Thomas; Douglas, Susanne; Crisp, Joy

    2005-01-01

    This paper describes the progress in the development of the so-called Atmospheric Electron X-ray Spectrometer (AEXS) instrument in our laboratory at JPL. The AEXS is a novel miniature instrument concept based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam, for non-destructive evaluation of surfaces of samples in situ, in planetary ambient atmosphere. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum within the AEXS electron source from the outside ambient atmosphere. By using a focused electron beam, the impinging electrons on samples in the external atmosphere excite XRF spectra from the irradiated spots with high-to-medium spatial resolution. The XRF spectra are analyzed using an energy-dispersive detector to determine surface elemental composition. The use of high- intensity electron beam results in rapid spectrum acquisition (several minutes), and consequently low energy consumption (several tens of Joules) per acquired XRF spectrum in comparison to similar portable instruments.

  4. Scanning electron microscopy, x-ray diffraction, and electron microprobe analysis of calcific deposits on intrauterine contraceptive devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, S.R.; Wilkinson, E.J.

    Deposits found on intrauterine contraceptive devices (IUDs) were studied by scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray microanalysis. All seven devices, including five plastic and two copper IUDs, were coated with a crust containing cellular, acellular, and fibrillar material. The cellular material was composed of erythrocytes, leukocytes, cells of epithelial origin, sperm, and bacteria. Some of the bacteria were filamentous, with acute-angle branching. The fibrillar material appeared to be fibrin. Most of the acellular material was amorphous; calcite was identified by x-ray diffraction, and x-ray microanalysis showed only calcium. Some of the acellular material, particularly that on themore » IUD side of the crust, was organized in spherulitic crystals and was identified as calcium phosphate by x-ray microanalysis. The crust was joined to the IUD surface by a layer of fibrillar and amorphous material. It is suggested that the initial event in the formation of calcific deposits on IUD surfaces is the deposition of an amorphous and fibrillar layer. Various types of cells present in the endometrial environment adhere to this layer and then calcify. Thus, the deposition of calcific material on the IUDs is a calcification phenomenon, not unlike the formation of plaque on teeth.« less

  5. Femtosecond synchronism of x-rays and visible/infrared light in an x-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, B. W.

    2007-12-15

    A way is proposed to obtain ultrashort pulses of intense infrared/visible light in few-femtosecond synchronism with x-rays from an x-ray free-electron laser (XFEL). It makes use of the recently proposed emittance-slicing technique [Emma et al., Phys. Rev. Lett. 92, 074801 (2004)] to both restrict the duration of self-amplified spontaneous emission (SASE) to a few femtoseconds and to lead to a coherence enhancement of near-infrared transition undulator radiation (CTUR). The x-rays and the near-infrared light originate within the XFEL undulator from the same slice of electrons within a bunch and are therefore perfectly synchronized with each other. An example of realizingmore » the scheme at the Linac Coherent Light Source is presented. A few side issues are explored briefly, such as the magnitude of the velocity term versus the acceleration term in the Lienard-Wiechert fields and the possible use of the CTUR as a diagnostic tool for the SASE process itself.« less

  6. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode

    DOE PAGES

    Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; ...

    2012-11-05

    The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as wellmore » as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ 1,3 XES spectra of Mn II and Mn 2 III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. Furthermore, the technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.« less

  7. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode

    PubMed Central

    Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Lassalle-Kaiser, Benedikt; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Hellmich, Julia; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Schafer, Donald W.; Sellberg, Jonas; Kenney, Christopher; Herbst, Ryan; Pines, Jack; Hart, Philip; Herrmann, Sven; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Zouni, Athina; Messinger, Johannes; Glatzel, Pieter; Sauter, Nicholas K.; Yachandra, Vittal K.; Yano, Junko; Bergmann, Uwe

    2012-01-01

    The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ1,3 XES spectra of MnII and Mn2III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II. PMID:23129631

  8. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  9. Outrunning damage: Electrons vs X-rays-timescales and mechanisms.

    PubMed

    Spence, John C H

    2017-07-01

    Toward the end of his career, Zewail developed strong interest in fast electron spectroscopy and imaging, a field to which he made important contributions toward his aim of making molecular movies free of radiation damage. We therefore compare here the atomistic mechanisms leading to destruction of protein samples in diffract-and-destroy experiments for the cases of high-energy electron beam irradiation and X-ray laser pulses. The damage processes and their time-scales are compared and relevant elastic, inelastic, and photoelectron cross sections are given. Inelastic mean-free paths for ejected electrons at very low energies in insulators are compared with the bioparticle size. The dose rate and structural damage rate for electrons are found to be much lower, allowing longer pulses, reduced beam current, and Coulomb interactions for the formation of smaller probes. High-angle electron scattering from the nucleus, which has no parallel in the X-ray case, tracks the slowly moving nuclei during the explosion, just as the gain of the XFEL (X-ray free-electron laser) has no parallel in the electron case. Despite reduced damage and much larger elastic scattering cross sections in the electron case, leading to not dissimilar elastic scattering rates (when account is taken of the greatly increased incident XFEL fluence), progress for single-particle electron diffraction is seen to depend on the effort to reduce emittance growth due to Coulomb interactions, and so allow formation of intense sub-micron beams no larger than a virus.

  10. University of California electron and X-ray experiments on ISEE-3

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1981-01-01

    The history of the University of California solar and interplanetary electron experiment and the solar X-ray experiment is outlined, and the two instruments used are described. The roles of personnel are mentioned and the data analysis projects completed or begun are summarized. A bibliography is included.

  11. Diffraction data of core-shell nanoparticles from an X-ray free electron laser

    DOE PAGES

    Li, Xuanxuan; Chiu, Chun -Ya; Wang, Hsiang -Ju; ...

    2017-04-11

    X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Furthermore, scattering patterns resulting from single particles were selected and compiledmore » into a dataset which can be valuable for algorithm developments in single particle scattering research.« less

  12. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-02

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  13. Ultra-short wavelength x-ray system

    DOEpatents

    Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  14. High-Performance X-ray Detection in a New Analytical Electron Microscope

    NASA Technical Reports Server (NTRS)

    Lyman, C. E.; Goldstein, J. I.; Williams, D. B.; Ackland, D. W.; vonHarrach, S.; Nicholls, A. W.; Statham, P. J.

    1994-01-01

    X-ray detection by energy-dispersive spectrometry in the analytical electron microscope (AEM) is often limited by low collected X-ray intensity (P), modest peak-to-background (P/B) ratios, and limitations on total counting time (tau) due to specimen drift and contamination. A new AFM has been designed with maximization of P. P/B, and tau as the primary considerations. Maximization of P has been accomplished by employing a field-emission electron gun, X-ray detectors with high collection angles, high-speed beam blanking to allow only one photon into the detector at a time, and simultaneous collection from two detectors. P/B has been maximized by reducing extraneous background signals generated at the specimen holder, the polepieces and the detector collimator. The maximum practical tau has been increased by reducing specimen contamination and employing electronic drift correction. Performance improvments have been measured using the NIST standard Cr thin film. The 0-3 steradian solid angle of X-ray collection is the highest value available. The beam blanking scheme for X-ray detection provides 3-4 times greater throughput of X-rays at high count rates into a recorded spectrum than normal systems employing pulse-pileup rejection circuits. Simultaneous X-ray collection from two detectors allows the highest X-ray intensity yet recorded to be collected from the NIST Cr thin film. The measured P/B of 6300 is the highest level recorded for an AEM. In addition to collected X-ray intensity (cps/nA) and P/B measured on the standard Cr film, the product of these can be used as a figure-of-merit to evaluate instruments. Estimated minimum mass fraction (MMF) for Cr measured on the standard NIST Cr thin film is also proposed as a figure-of-merit for comparing X-ray detection in AEMs. Determinations here of the MMF of Cr detectable show at least a threefold improvement over previous instruments.

  15. Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Newby, David, Jr.

    Soft x-ray spectroscopy can provide a wealth of information on the electronic structure of solids. In this work, a suite of soft x-ray spectroscopies is applied to organic and inorganic materials with potential applications in electronic and energy generation devices. Using the techniques of x-ray absorption (XAS), x-ray emission spectroscopy (XES), and x-ray photoemission spectroscopy (XPS), the fundamental properties of these different materials are explored. Cycloparaphenylenes (CPPs) are a recently synthesized family of cyclic hydrocarbons with very interesting properties and many potential applications. Unusual UV/Visible fluorescence trends have spurred a number of theoretical investigations into the electronic properties of the CPP family, but thus far no comprehensive electronic structure measurements have been conducted. XPS, XAS, and XES data for two varieties, [8]- and [10]-CPP, are presented here, and compared with the results of relevant DFT calculations. Turning towards more application-centered investigations, similar measurements are applied to two materials commonly used in solid oxide fuel cell (SOFC) cathodes: La1-xSrxMnO 3 (LSMO) and La1-xSr1- xCo1-yFe yO3 (LSCF). Both materials are structurally perovskites, but they exhibit strikingly different electronic properties. SOFC systems very efficiently produce electricity by catalyzing reactions between oxygen and petroleum-based hydrocarbons at high temperatures (> 800 C). Such systems are already utilized to great effect in many industries, but more widespread adoption could be had if the cells could operate at lower temperatures. Understanding the electronic structure and operational evolution of the cathode materials is essential for the development of better low-temperature fuel cells. LSCF is a mixed ion-electron conductor which holds promise for low-temperature SOFC applications. XPS spectra of LSCF thin films are collected as the films are heated and gas-dosed in a controlled environment. The

  16. X-ray diagnostic development for measurement of electron deposition to the SABRE anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lash, J.S.; Derzon, M.S.; Cuneo, M.E.

    Extraction applied-B ion diodes are under development on the SABRE (6 MV, 250 kA) accelerator at Sandia. The authors are assessing this technology for the production of high brightness lithium ion beams for inertial confinement fusion. Electron loss physics is a focus of effort since electron sheath physics affects ion beam divergence, ion beam purity, and diode impedance. An x-ray slit-imaging diagnostic is under development for detection of x-rays produced during electron deposition to the anode. This diagnostic will aid in the correlation of electron deposition to ion production to better understand the ion diode physics. The x-ray detector consistsmore » of a filter pack, scintillator and optical fiber array that is streaked onto a CCD camera. Current orientation of the diagnostic provides spatial information across the anode radius at three different azimuths or at three different x-ray energy cuts. The observed x-ray emission spectrum can then be compared to current modeling efforts examining electron deposition to the anode.« less

  17. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  18. ELECTRON MICROSCOPE AND X-RAY DIFFRACTION STUDIES ON A HOMOLOGOUS SERIES OF SATURATED PHOSPHATIDYLCHOLINES.

    PubMed

    ELBERS, P F; VERVERGAERT, P H

    1965-05-01

    Three homologous saturated phosphatidylcholines were studied by electron microscopy after tricomplex fixation. The results are compared with those obtained by x-ray diffraction analysis of the same and some other homologous compounds, in the dry crystalline state and after tricomplex fixation. By electron microscopy alternating dark and light bands are observed which are likely to correspond to phosphatide double layers. X-Ray diffraction reveals the presence of lamellar structures of regular spacing. The layer spacings obtained by both methods are in good agreement. From the electron micrographs the width of the polar parts of the double layers can be derived directly. The width of the carboxylglycerylphosphorylcholine moiety of the layers is found by extrapolating the x-ray diffraction data to zero chain length of the fatty acids. When from this width the contribution of the carboxylglyceryl part of the molecules is subtracted, again we find good agreement with the electron microscope measurements. An attempt has been made to account for the different layer spacings measured in terms of orientation of the molecules within the double layers.

  19. Temporal cross-correlation of x-ray free electron and optical lasers using soft x-ray pulse induced transient reflectivity.

    PubMed

    Krupin, O; Trigo, M; Schlotter, W F; Beye, M; Sorgenfrei, F; Turner, J J; Reis, D A; Gerken, N; Lee, S; Lee, W S; Hays, G; Acremann, Y; Abbey, B; Coffee, R; Messerschmidt, M; Hau-Riege, S P; Lapertot, G; Lüning, J; Heimann, P; Soufli, R; Fernández-Perea, M; Rowen, M; Holmes, M; Molodtsov, S L; Föhlisch, A; Wurth, W

    2012-05-07

    The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.

  20. X-ray spectra and electron structure of A15 compounds of transition metals

    NASA Astrophysics Data System (ADS)

    Kurmaev, E. Z.; Iarmoshenko, Iu. M.

    1988-01-01

    Results of an X-ray emission spectroscopy study of the electron structure of A15 compounds are reported. In particular, attention is given to the X-ray spectra of A15 compounds of the A3B type with transition and nontransition elements, effect of alloying on the formation of the electron structure of ternary phases, and effect of atomic ordering in the X-ray spectra of A15 compounds with changes in heat treament and concentration. The X-ray spectra of A15 compounds irradiated by fast neutrons are also examined.

  1. Synchrotron X-ray topography of electronic materials.

    PubMed

    Tuomi, T

    2002-05-01

    Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.

  2. Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source

    NASA Astrophysics Data System (ADS)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire

    2000-11-01

    We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.

  3. X-ray comb generation from nuclear-resonance-stabilized x-ray free-electron laser oscillator for fundamental physics and precision metrology

    DOE PAGES

    Adams, B.  W.; Kim, K. -J.

    2015-03-31

    An x-ray free-electron laser oscillator (XFELO) is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as ⁵⁷Fe as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuationmore » of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS) XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as ¹⁸¹Ta or ⁴⁵Sc.« less

  4. Food Irradiation Using Electron Beams and X-Rays

    NASA Astrophysics Data System (ADS)

    Miller, Bruce

    2003-04-01

    In this presentation we will discuss the technology of food irradiation using electron accelerators. Food irradiation has generally come to describe the use of ionizing radiation to decrease the population of, or prevent the growth of, undesirable biological organisms in food. The many beneficial applications include insect disinfestation, sprouting inhibition, delayed ripening, and the enhanced safety and sterilization of fresh and frozen meat products, seafood, and eggs. With special regard to food safety, bacteria such as Salmonella enteridis, Listeria monocytogenes, Campylobacter jejuni and Escherichia coli serotype O157:H7 are the primary causes of food poisoning in industrialized countries. Ionizing doses in the range of only 1-5 kilogray (kGy) can virtually eliminate these organisms from food, without affecting the food's sensory and nutritional qualities, and without inducing radioactivity. The key elements of an accelerator-based irradiation facility include the accelerator system, a scanning system, and a material handling system that moves the product through the beam in a precisely controlled manner. Extensive radiation shielding is necessary to reduce the external dose to acceptable levels, and a safety system is necessary to prevent accidental exposure of personnel during accelerator operation. Parameters that affect the dose distribution must be continuously monitored and controlled with process control software. The choice of electron beam vs x-ray depends on the areal density (density times thickness) of the product and the anticipated mass throughput. To eliminate nuclear activation concerns, the maximum kinetic energy of the accelerator is limited by regulation to 10 MeV for electron beams, and 5 MeV for x-rays. From penetration considerations, the largest areal density that can be treated by double-sided electron irradiation at 10 MeV is about 8.8 g/cm2. Products having greater areal densities must be processed using more penetrating x-rays. The

  5. RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W J; Hartemann, F V; Tremaine, A M

    2002-10-16

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.

  6. Exotic X-ray Sources from Intermediate Energy Electron Beams

    NASA Astrophysics Data System (ADS)

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J. L.; Lancaster, G.

    2003-08-01

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, "novel" x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic "structure" of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR).

  7. Polarization control in an X-ray free-electron laser

    DOE PAGES

    Lutman, Alberto A.; MacArthur, James P.; Ilchen, Markus; ...

    2016-05-09

    X-ray free-electron lasers are unique sources of high-brightness coherent radiation. However, existing devices supply only linearly polarized light, precluding studies of chiral dynamics. A device called the Delta undulator has been installed at the Linac Coherent Light Source (LCLS) to provide tunable polarization. With a reverse tapered planar undulator line to pre-microbunch the beam and the novel technique of beam diverting, hundreds of microjoules of circularly polarized X-ray pulses are produced at 500–1,200 eV. These X-ray pulses are tens of femtoseconds long, have a degree of circular polarization of 0.98 –0.04 +0.02 at 707 eV and may be scanned inmore » energy. We also present a new two-colour X-ray pump–X-ray probe operating mode for the LCLS. As a result, energy differences of ΔE/E = 2.4% are supported, and the second pulse can be adjusted to any elliptical polarization. In this mode, the pointing, timing, intensity and wavelength of the two pulses can be modified.« less

  8. Ray-trace analysis of glancing-incidence X-ray optical systems

    NASA Technical Reports Server (NTRS)

    Foreman, J. W., Jr.; Cardone, J. M.

    1976-01-01

    The results of a ray-trace analysis of several glancing-incidence X-ray optical systems are presented. The object of the study was threefold. First, the vignetting characteristics of the S-056 X-ray telescope were calculated using experimental data to determine mirror reflectivities. Second, a small Wolter Type I X-ray telescope intended for possible use in the Geostationary Operational Environmental Satellite program was designed and ray traced. Finally, a ray-trace program was developed for a Wolter-Schwarzschild X-ray telescope.

  9. X-ray free-electron laser studies of dense plasmas

    NASA Astrophysics Data System (ADS)

    Vinko, Sam M.

    2015-10-01

    > The high peak brightness of X-ray free-electron lasers (FELs), coupled with X-ray optics enabling the focusing of pulses down to sub-micron spot sizes, provides an attractive route to generating high energy-density systems on femtosecond time scales, via the isochoric heating of solid samples. Once created, the fundamental properties of these plasmas can be studied with unprecedented accuracy and control, providing essential experimental data needed to test and benchmark commonly used theoretical models and assumptions in the study of matter in extreme conditions, as well as to develop new predictive capabilities. Current advances in isochoric heating and spectroscopic plasma studies on X-ray FELs are reviewed and future research directions and opportunities discussed.

  10. Microscale reconstruction of biogeochemical substrates using multimode X-ray tomography and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.

    2012-12-01

    X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine

  11. Analysis of the Relationship Between the Solar X-Ray Radiation Intensity and the D-Region Electron Density Using Satellite and Ground-Based Radio Data

    NASA Astrophysics Data System (ADS)

    Nina, Aleksandra; Čadež, Vladimir M.; Bajčetić, Jovan; Mitrović, Srdjan T.; Popović, Luka Č.

    2018-04-01

    Increases in the X-ray radiation that is emitted during a solar X-ray flare induce significant changes in the ionospheric D region. Because of the numerous complex processes in the ionosphere and the characteristics of the radiation and plasma, the causal-consequential relationship between the X-ray radiation and ionospheric parameters is not easily determined. In addition, modeling the ionospheric D-region plasma parameters is very difficult because of the lack of data for numerous time- and space-dependent physical quantities. In this article we first give a qualitative analysis of the relationship between the electron density and the recorded solar X-ray intensity. After this, we analyze the differences in the relationships between the D-region response and various X-ray radiation properties. The quantitative study is performed for data observed on 5 May 2010 in the time period between 11:40 UT - 12:40 UT when the GOES 14 satellite detected a considerable X-ray intensity increase. Modeling the electron density is based on characteristics of the 23.4 kHz signal emitted in Germany and recorded by the receiver in Serbia.

  12. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas

    2015-04-14

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

  13. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  14. Implications of X-Ray Observations for Electron Acceleration and Propagation in Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.; Aschwanden, M. J.; Aurass, H.; Battaglia, M.; Grigis, P. C.; Kontar, E. P.; Liu, W.; Saint-Hilaire, P.; Zharkova, V. V.

    2011-01-01

    High-energy X-rays and gamma-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed.

  15. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E [Manteca, CA

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  16. X-ray Heating and Electron Temperature of Laboratory Photoionized Plasmas

    NASA Astrophysics Data System (ADS)

    Mancini, Roberto; Lockard, Tom; Mayes, Daniel C.; Loisel, Guillaume; Bailey, James E.; Rochau, Gregory; Abdallah, J.; Golovkin, I.

    2018-06-01

    In separate experiments performed at the Z facility of Sandia National Laboratories two different samples were employed to produce and characterize photoionized plasmas. One was a gas cell filled with neon, and the other was a thin silicon layer coated with plastic. Both samples were driven by the broadband x-ray flux produced at the collapse of a wire array z-pinch implosion. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the charge state distribution, and the electron temperature was extracted from a Li-like ion level population ratio. To interpret the temperature measurement, we performed Boltzmann kinetics and radiation-hydrodynamic simulations. We found that non-equilibrium atomic physics and the coupling of the radiation flux to the atomic level population kinetics play a critical role in modeling the x-ray heating of photoionized plasmas. In spite of being driven by similar x-ray drives, differences of ionization and charged state distributions in the neon and silicon plasmas are reflected in the plasma heating and observed electron temperatures.This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  17. Calculation of x-ray spectra emerging from an x-ray tube. Part I. electron penetration characteristics in x-ray targets.

    PubMed

    Poludniowski, Gavin G; Evans, Philip M

    2007-06-01

    The penetration characteristics of electron beams into x-ray targets are investigated for incident electron kinetic energies in the range 50-150 keV. The frequency densities of electrons penetrating to a depth x in a target, with a fraction of initial kinetic energy, u, are calculated using Monte Carlo methods for beam energies of 50, 80, 100, 120 and 150 keV in a tungsten target. The frequency densities for 100 keV electrons in Al, Mo and Re targets are also calculated. A mixture of simple modeling with equations and interpolation from data is used to generalize the calculations in tungsten. Where possible, parameters derived from the Monte Carlo data are compared to experimental measurements. Previous electron transport approximations in the semiempirical models of other authors are discussed and related to this work. In particular, the crudity of the use of the Thomson-Whiddington law to describe electron penetration and energy loss is highlighted. The results presented here may be used towards calculating the target self-attenuation correction for bremsstrahlung photons emitted within a tungsten target.

  18. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  19. PROS: An IRAF based system for analysis of x ray data

    NASA Technical Reports Server (NTRS)

    Conroy, M. A.; Deponte, J.; Moran, J. F.; Orszak, J. S.; Roberts, W. P.; Schmidt, D.

    1992-01-01

    PROS is an IRAF based software package for the reduction and analysis of x-ray data. The use of a standard, portable, integrated environment provides for both multi-frequency and multi-mission analysis. The analysis of x-ray data differs from optical analysis due to the nature of the x-ray data and its acquisition during constantly varying conditions. The scarcity of data, the low signal-to-noise ratio and the large gaps in exposure time make data screening and masking an important part of the analysis. PROS was developed to support the analysis of data from the ROSAT and Einstein missions but many of the tasks have been used on data from other missions. IRAF/PROS provides a complete end-to-end system for x-ray data analysis: (1) a set of tools for importing and exporting data via FITS format -- in particular, IRAF provides a specialized event-list format, QPOE, that is compatible with its IMAGE (2-D array) format; (2) a powerful set of IRAF system capabilities for both temporal and spatial event filtering; (3) full set of imaging and graphics tasks; (4) specialized packages for scientific analysis such as spatial, spectral and timing analysis -- these consist of both general and mission specific tasks; and (5) complete system support including ftp and magnetic tape releases, electronic and conventional mail hotline support, electronic mail distribution of solutions to frequently asked questions and current known bugs. We will discuss the philosophy, architecture and development environment used by PROS to generate a portable, multimission software environment. PROS is available on all platforms that support IRAF, including Sun/Unix, VAX/VMS, HP, and Decstations. It is available on request at no charge.

  20. X-ray microanalysis in the scanning electron microscope.

    PubMed

    Roomans, Godfried M; Dragomir, Anca

    2014-01-01

    X-ray microanalysis conducted using the scanning electron microscope is a technique that allows the determination of chemical elements in bulk or semi-thick specimens. The lowest concentration of an element that can be detected is in the order of a few mmol/kg or a few hundred parts per million, and the smallest amount is in the order of 10(-18) g. The spatial resolution of the analysis depends on the thickness of the specimen. For biological specimen analysis, care must be taken to prevent displacement/loss of the element of interest (usually ions). Protocols are presented for the processing of frozen-hydrated and freeze-dried specimens, as well as for the analysis of small volumes of fluid, cell cultures, and other specimens. Aspects of qualitative and quantitative analysis are covered, including limitations of the technique.

  1. X-ray microanalysis in the scanning electron microscope.

    PubMed

    Roomans, Godfried M; Dragomir, Anca

    2007-01-01

    X-ray microanalysis conducted using the scanning electron microscope is a technique that allows the determination of chemical elements in bulk or semithick specimens. The lowest concentration of an element that can be detected is in the order of a few mmol/kg or a few hundred parts per million, and the smallest amount is in the order of 10(-18) g. The spatial resolution of the analysis depends on the thickness of the specimen. For biological specimen analysis, care must be taken to prevent displacement/loss of the element of interest (usually ions). Protocols are presented for the processing of frozen-hydrated and freeze-dried specimens, as well as for the analysis of small volumes of fluid, cell cultures and other specimens. Aspects of qualitative and quantitative analysis are covered, including limitations of the technique.

  2. Mitigation of Hot Electrons from Laser-Plasma Instabilities in Laser-Generated X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Fein, Jeffrey R.

    This thesis describes experiments to understand and mitigate energetic or "hot" electrons from laser-plasma instabilities (LPIs) in an effort to improve radiographic techniques using laser-generated x-ray sources. Initial experiments on the OMEGA-60 laser show evidence of an underlying background generated by x-rays with energies over 10 keV on radiographs using backlit pinhole radiography, whose source is consistent with hard x-rays from LPI-generated hot electrons. Mitigating this background can dramatically reduce uncertainties in measured object densities from radiographs and may be achieved by eliminating the target components in which LPIs are most likely to grow. Experiments were performed on the OMEGA-EP laser to study hot electron production from laser-plasma instabilities in high-Z plasmas relevant to laser-generated x-ray sources. Measurements of hard x-rays show a dramatic reduction in hot-electron energy going from low-Z CH to high-Z Au targets, in a manner that is consistent with steepening electron density profiles that were also measured. The profile-steepening, we infer, increased thresholds of LPIs and contributed to the reduced hot-electron production at higher Z. Possible mechanisms for generating hot electrons include the two-plasmon decay and stimulated Raman scattering instabilities driven by multiple laser beams. Radiation hydrodynamic simulations using the CRASH code predict that both of these instabilities were above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased collisional and Landau damping of electron plasma waves. Another set of experiments were performed on the OMEGA-60 laser to test whether hard x-ray background could be mitigated in backlit pinhole imagers by controlling laser-plasma instabilities. Based on the results above, we hypothesized that LPIs and hot electrons that lead to hard x-ray background would be reduced

  3. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  4. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    DOE PAGES

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    2018-01-19

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately tenmore » meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.« less

  5. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    2018-01-01

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately ten meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.

  6. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately tenmore » meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.« less

  7. Investigation of nanoparticulate silicon as printed layers using scanning electron microscopy, transmission electron microscopy, X-ray absorption spectroscopy and X-ray photoelectron spectroscopy

    DOE PAGES

    Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.; ...

    2017-08-21

    The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milledmore » for different times. XANES results reveal the presence of the +4 (SiO 2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si 2O), +2 (SiO) and +3 (Si 2O 3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.« less

  8. Rat Phantom Depth Dose Studies in Electron, X-ray, Gamma-Ray, and Reactor Radiation Fields

    DTIC Science & Technology

    1986-12-01

    i©™D©/^ ^1[P@^T Rat phantom depth dose studies in electron , Xrayf gamma-ray, and reactor radiation fields M. Dooley D. M. Eagleson G. H. Zeman...energy electrons , bremsstrahlung, and mixed neutron/gamma radiation fields are sometimes used in radiobiological experiments employing rats. This report...have revealed differing sensitivities of experimental animals that have been exposed to cobalt-60 photons, high-energy electrons , high-energy X rays

  9. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.

    PubMed

    Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi

    2015-07-01

    Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Development of a low-energy x-ray camera for the imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation for range estimation.

    PubMed

    Ando, Koki; Yamaguchi, Mitsutaka; Yamamoto, Seiichi; Toshito, Toshiyuki; Kawachi, Naoki

    2017-06-21

    Imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation is a possible method for measurement of the proton beam distribution in phantom. However, it is not clear that the method is used for range estimation of protons. For this purpose, we developed a low-energy x-ray camera and conducted imaging of the bremsstrahlung x-ray produced during irradiation of proton beams. We used a 20 mm  ×  20 mm  ×  1 mm finely grooved GAGG scintillator that was optically coupled to a one-inch square high quantum efficiency (HQE)-type position-sensitive photomultiplier tube to form an imaging detector. The imaging detector was encased in a 2 cm-thick tungsten container, and a pinhole collimator was attached to its camera head. After performance of the camera was evaluated, secondary electron bremsstrahlung x-ray imaging was conducted during irradiation of the proton beams for three different proton energies, and the results were compared with Monte Carlo simulation as well as calculated value. The system spatial resolution and sensitivity of the developed x-ray camera with 1.5 mm-diameter pinhole collimator were estimated to be 32 mm FWHM and 5.2  ×  10 -7 for ~35 keV x-ray photons at 100 cm from the collimator surface, respectively. We could image the proton beam tracks by measuring the secondary electron bremsstrahlung x-ray during irradiation of the proton beams, and the ranges for different proton energies could be estimated from the images. The measured ranges from the images were well matched with the Monte Carlo simulation, and slightly smaller than the calculated values. We confirmed that the imaging of the secondary electron bremsstrahlung x-ray emitted during proton irradiation with the developed x-ray camera has the potential to be a new tool for proton range estimations.

  11. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin

    We use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated and therebymore » the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens a new avenue for materials characterization on a one particle at-a-time basis.« less

  12. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin

    Here, we use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated andmore » thereby the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens a new avenue for materials characterization on a one particle at-a-time basis.« less

  13. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    DOE PAGES

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin; ...

    2017-09-05

    Here, we use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated andmore » thereby the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens a new avenue for materials characterization on a one particle at-a-time basis.« less

  14. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  15. On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Kneip, S.; Najmudin, Z.; Mangles, S. P. D.; Vargas, M.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.

    2018-04-01

    The electric and magnetic fields responsible for electron acceleration in a Laser Wakefield Accelerator (LWFA) also cause electrons to radiate x-ray photons. Such x-ray pulses have several desirable properties including short duration and being well collimated with tunable high energy. We measure the scaling of this x-ray source experimentally up to laser powers greater than 100 TW. An increase in laser power allows electron trapping at a lower density as well as with an increased trapped charge. These effects resulted in an x-ray fluence that was measured to increase non-linearly with laser power. The fluence of x-rays was also compared with that produced from K-α emission resulting from a solid target interaction for the same energy laser pulse. The flux was shown to be comparable, but the LWFA x-rays had a significantly smaller source size. This indicates that such a source may be useful as a backlighter for probing high energy density plasmas with ultrafast temporal resolution.

  16. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    NASA Astrophysics Data System (ADS)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  17. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    PubMed

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  18. High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, C. F.; Zhao, T. Z.; Behm, K.

    Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less

  19. High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Dong, C. F.; Zhao, T. Z.; Behm, K.; Cummings, P. G.; Nees, J.; Maksimchuk, A.; Yanovsky, V.; Krushelnick, K.; Thomas, A. G. R.

    2018-04-01

    Bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail, which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.

  20. High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators

    DOE PAGES

    Dong, C. F.; Zhao, T. Z.; Behm, K.; ...

    2018-04-24

    Here, bright and ultrashort duration x-ray pulses can be produced by through betatron oscillations of electrons during laser wakefield acceleration (LWFA). Our experimental measurements using the Hercules laser system demonstrate a dramatic increase in x-ray flux for interaction distances beyond the depletion/dephasing lengths, where the initial electron bunch injected into the first wake bucket catches up with the laser pulse front and the laser pulse depletes. A transition from an LWFA regime to a beam-driven plasma wakefield acceleration regime consequently occurs. The drive electron bunch is susceptible to the electron-hose instability and rapidly develops large amplitude oscillations in its tail,more » which leads to greatly enhanced x-ray radiation emission. We measure the x-ray flux as a function of acceleration length using a variable length gas cell. 3D particle-in-cell simulations using a Monte Carlo synchrotron x-ray emission algorithm elucidate the time-dependent variations in the radiation emission processes.« less

  1. Microbeam X-ray analysis in Poland - past and future

    NASA Astrophysics Data System (ADS)

    Kusinski, J.

    2010-02-01

    The article provides an overview of the development of electron beam X-ray microanalysis (EPMA) in Poland. Since the introduction by Prof. Bojarski of EMPA over 45 years ago, tremendous advances in methodologies and in instrumentation have been made in order to improve the precision of quantitative compositional analysis, spatial resolution and analytical sensitivity. This was possible due to the activity of Applied Crystallography Committee at the Polish Academy of Sciences, as well as the groups of researches working in the Institute for Ferrous Metallurgy (Gliwice), the Technical University of Warsaw, the Silesian Technical University (Katowice), the AGH-University of Sciences and Technology (Krakow), and the Institute of Materials Science and Metallurgy Polish Academy of Sciences (Krakow). Based on the research examples realized by these teams, conferences, seminars and congresses organized, as well as books and academic textbooks issued, the evolution of electron beam X-ray microanalysis in Poland is demonstrated.

  2. Three-dimensional structure determination protocol for noncrystalline biomolecules using x-ray free-electron laser diffraction imaging.

    PubMed

    Oroguchi, Tomotaka; Nakasako, Masayoshi

    2013-02-01

    Coherent and intense x-ray pulses generated by x-ray free-electron laser (XFEL) sources are paving the way for structural determination of noncrystalline biomolecules. However, due to the small scattering cross section of electrons for x rays, the available incident x-ray intensity of XFEL sources, which is currently in the range of 10(12)-10(13) photons/μm(2)/pulse, is lower than that necessary to perform single-molecule diffraction experiments for noncrystalline biomolecules even with the molecular masses of megadalton and submicrometer dimensions. Here, we propose an experimental protocol and analysis method for visualizing the structure of those biomolecules by the combined application of coherent x-ray diffraction imaging and three-dimensional reconstruction methods. To compensate the small scattering cross section of biomolecules, in our protocol, a thin vitreous ice plate containing several hundred biomolecules/μm(2) is used as sample, a setup similar to that utilized by single-molecule cryoelectron microscopy. The scattering cross section of such an ice plate is far larger than that of a single particle. The images of biomolecules contained within irradiated areas are then retrieved from each diffraction pattern, and finally provide the three-dimensional electron density model. A realistic atomic simulation using large-scale computations proposed that the three-dimensional structure determination of the 50S ribosomal subunit embedded in a vitreous ice plate is possible at a resolution of 0.8 nm when an x-ray beam of 10(16) photons/500×500 nm(2)/pulse is available.

  3. Damage threshold of coating materials on x-ray mirror for x-ray free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyama, Takahisa, E-mail: koyama@spring8.or.jp; Yumoto, Hirokatsu; Tono, Kensuke

    2016-05-15

    We evaluated the damage threshold of coating materials such as Mo, Ru, Rh, W, and Pt on Si substrates, and that of uncoated Si substrate, for mirror optics of X-ray free electron lasers (XFELs). Focused 1 μm (full width at half maximum) XFEL pulses with the energies of 5.5 and 10 keV, generated by the SPring-8 angstrom compact free electron laser (SACLA), were irradiated under the grazing incidence condition. The damage thresholds were evaluated by in situ measurements of X-ray reflectivity degradation during irradiation by multiple pulses. The measured damage fluences below the critical angles were sufficiently high compared withmore » the unfocused SACLA beam fluence. Rh coating was adopted for two mirror systems of SACLA. One system was a beamline transport mirror system that was partially coated with Rh for optional utilization of a pink beam in the photon energy range of more than 20 keV. The other was an improved version of the 1 μm focusing mirror system, and no damage was observed after one year of operation.« less

  4. VETA-I x ray test analysis

    NASA Technical Reports Server (NTRS)

    Brissenden, R. J. V.; Chartas, G.; Freeman, M. D.; Hughes, J. P.; Kellogg, E. M.; Podgorski, W. A.; Schwartz, D. A.; Zhao, P.

    1992-01-01

    This interim report presents some definitive results from our analysis of the VETA-I x-ray testing data. It also provides a description of the hardware and software used in the conduct of the VETA-I x-ray test program performed at the MSFC x-ray Calibration Facility (XRCF). These test results also serve to supply data and information to include in the TRW final report required by DPD 692, DR XC04. To provide an authoritative compendium of results, we have taken nine papers as published in the SPIE Symposium, 'Grazing Incidence X-ray/EUV Optics for Astronomy and Projection Lithography' and have reproduced them as the content of this report.

  5. Nonlinear effects in propagation of radiation of X-ray free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosik, V. L., E-mail: v-nosik@yandex.ru, E-mail: nosik@ns.crys.ras.ru

    2016-05-15

    Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of “hollow” atomic shells as a result of the photoelectric effect.

  6. OSO-8 soft X-ray wheel experiment: Data analysis

    NASA Technical Reports Server (NTRS)

    Kraushaar, W. L.

    1982-01-01

    The soft X-ray experiment hardware and its operation are described. The device included six X-ray proportional counters, two of which, numbers 1 and 4, were pressurized with on-board methane gas supplies. Number 4 developed an excessive leak rate early in the mission and was turned off on 1975 day number 282 except for brief (typically 2-hour) periods up to day 585 after which it as left off. Counter 1 worked satisfactorily until 1975 day number 1095 (January 1, 1978) at which time the on-board methane supply was depleted. The other four counters were sealed and all except number 3 worked satisfactorily throughout the mission which terminated with permanent satellie shut-down on day 1369. This was the first large area thin-window, gas-flow X-ray detector to be flown in orbit. The background problems were severe and consumed a very large portion of the data analysis effort. These background problems were associated with the Earth's trapped electron belts.

  7. Thermal analysis on x-ray tube for exhaust process

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Rao Ratnala, Srinivas; Veeresh Kumar, G. B.; Shivakumar Gouda, P. S.

    2018-02-01

    It is great importance in the use of X-rays for medical purposes that the dose given to both the patient and the operator is carefully controlled. There are many types of the X- ray tubes used for different applications based on their capacity and power supplied. In present thesis maxi ray 165 tube is analysed for thermal exhaust processes with ±5% accuracy. Exhaust process is usually done to remove all the air particles and to degasify the insert under high vacuum at 2e-05Torr. The tube glass is made up of Pyrex material, 95%Tungsten and 5%rhenium is used as target material for which the melting point temperature is 3350°C. Various materials are used for various parts; during the operation of X- ray tube these waste gases are released due to high temperature which in turn disturbs the flow of electrons. Thus, before using the X-ray tube for practical applications it has to undergo exhaust processes. Initially we build MX 165 model to carry out thermal analysis, and then we simulate the bearing temperature profiles with FE model to match with test results with ±5%accuracy. At last implement the critical protocols required for manufacturing processes like MF Heating, E-beam, Seasoning and FT.

  8. Micromorphology of sialoliths in submandibular salivary gland: a scanning electron microscope and X-ray diffraction analysis.

    PubMed

    Kasaboğlu, Oğuzcan; Er, Nuray; Tümer, Celal; Akkocaoğlu, Murat

    2004-10-01

    Sialoliths are common in the submandibular gland and its duct system. The exact cause of formation of a sialolith is still a matter of debate. The aim of this study was to analyze 6 sialoliths ultrastructurally to determine their development mechanism in the submandibular salivary glands. Six sialoliths retrieved from the hilus and duct of the submandibular salivary glands of 6 patients with sialadenitis were analyzed ultrastructurally by scanning electron microscope and x-ray diffractometer. Scanning electron microscope revealed mainly irregular, partly rudely hexagonal, needle-like and plate-shaped crystals. The cross-section from the surface to the inner part of the sialoliths showed no organic material. X-ray diffraction showed that the sialoliths were composed of hydroxyapatite crystals. Energy dispersive x-ray microanalysis showed that all of the samples contained high levels of Ca and P, and small amounts of Mg, Na, Cl, Si, Fe, and K. The main structures of the submandibular sialoliths were found to be hydroxyapatite crystals. No organic cores were observed in the central parts of the sialoliths. In accordance with these preliminary results, sialoliths in the submandibular salivary glands may arise secondary to sialadenitis, but not via a luminal organic nidus.

  9. Capillary Optics Based X-Ray Micro-Imaging Elemental Analysis

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Cappuccio, G.; Longoni, A.; Frizzi, T.; Cibin, G.

    2010-04-01

    A rapidly developed during the last few years micro-X-ray fluorescence spectrometry (μXRF) is a promising multi-elemental technique for non-destructive analysis. Typically it is rather hard to perform laboratory μXRF analysis because of the difficulty of producing an original small-size X-ray beam as well as its focusing. Recently developed for X-ray beam focusing polycapillary optics offers laboratory X-ray micro probes. The combination of polycapillary lens and fine-focused micro X-ray tube can provide high intensity radiation flux on a sample that is necessary in order to perform the elemental analysis. In comparison to a pinhole, an optimized "X-ray source-op tics" system can result in radiation density gain of more than 3 orders by the value. The most advanced way to get that result is to use the confocal configuration based on two X-ray lenses, one for the fluorescence excitation and the other for the detection of secondary emission from a sample studied. In case of X-ray capillary microfocusing a μXRF instrument designed in the confocal scheme allows us to obtain a 3D elemental mapping. In this work we will show preliminary results obtained with our prototype, a portable X-ray microscope for X-ray both imaging and fluorescence analysis; it enables μXRF elemental mapping simultaneously with X-ray imaging. A prototype of compact XRF spectrometer with a spatial resolution less than 100 μm has been designed.

  10. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges

    PubMed Central

    Neutze, Richard; Moffat, Keith

    2012-01-01

    X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today’s synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics. PMID:23021004

  11. Classification and assessment of retrieved electron density maps in coherent X-ray diffraction imaging using multivariate analysis.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) is one of the techniques used to visualize structures of non-crystalline particles of micrometer to submicrometer size from materials and biological science. In the structural analysis of CXDI, the electron density map of a sample particle can theoretically be reconstructed from a diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction is difficult because diffraction patterns are affected by Poisson noise and miss data in small-angle regions due to the beam stop and the saturation of detector pixels. In contrast to X-ray protein crystallography, in which the phases of diffracted waves are experimentally estimated, phase retrieval in CXDI relies entirely on the computational procedure driven by the PR algorithms. Thus, objective criteria and methods to assess the accuracy of retrieved electron density maps are necessary in addition to conventional parameters monitoring the convergence of PR calculations. Here, a data analysis scheme, named ASURA, is proposed which selects the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a diffraction pattern. Each electron density map composed of J pixels is expressed as a point in a J-dimensional space. Principal component analysis is applied to describe characteristics in the distribution of the maps in the J-dimensional space. When the distribution is characterized by a small number of principal components, the distribution is classified using the k-means clustering method. The classified maps are evaluated by several parameters to assess the quality of the maps. Using the proposed scheme, structure analysis of a diffraction pattern from a non-crystalline particle is conducted in two stages: estimation of the overall shape and determination of the fine structure inside the support shape. In each stage, the most accurate and probable density maps are objectively selected. The validity

  12. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  13. Thermal analysis, X-ray powder diffraction and electron microscopy data related with the production of 1:1 Caffeine:Glutaric Acid cocrystals.

    PubMed

    Duarte, Íris; Andrade, Rita; Pinto, João F; Temtem, Márcio

    2016-09-01

    The data presented in this article are related to the production of 1:1 Caffeine:Glutaric Acid cocrystals as part of the research article entitled "Green production of cocrystals using a new solvent-free approach by spray congealing" (Duarte et al., 2016) [1]. More specifically, here we present the thermal analysis and the X-ray powder diffraction data for pure Glutaric Acid, used as a raw material in [1]. We also include the X-ray powder diffraction and electron microscopy data obtained for the 1:1 Caffeine:Glutaric Acid cocrystal (form II) produced using the cooling crystallization method reported in "Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile" (Yu et al., 2010) [2]. Lastly, we show the X-ray powder diffraction data obtained for assessing the purity of the 1:1 Caffeine:Glutaric cocrystals produced in [1].

  14. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    PubMed Central

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170

  15. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    PubMed Central

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin-ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.

    2015-01-01

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. PMID:25727920

  16. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    DOE PAGES

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; ...

    2015-03-02

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less

  17. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    PubMed

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0-1000 eV), as well as X-ray fluorescence produced by irradiation of large-Z element nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5-14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\\bullet{\\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more

  18. Electronic structure and x-ray spectroscopy of Cu2MnAl1-xGax

    NASA Astrophysics Data System (ADS)

    Rai, D. P.; Ekuma, C. E.; Boochani, A.; Solaymani, S.; Thapa, R. K.

    2018-04-01

    We explore the electronic and related properties of Cu2MnAl1-xGax with a first-principles, relativistic multiscattering Green function approach. We discuss our results in relation to existing experimental data and show that the electron-core hole interaction is essential for the description of the optical spectra especially in describing the X-ray absorption and magnetic circular dichroism spectra at the L2,3 edges of Cu and Mn.

  19. X-Ray Data Booklet

    Science.gov Websites

    X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Energy Emission Energies Table of X-Ray Properties Synchrotron Radiation Characteristics of Synchrotron Radiation History of X

  20. Microstructure Analysis of Bismuth Absorbers for Transition-Edge Sensor X-ray Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.

    2018-03-01

    Given its large X-ray stopping power and low specific heat capacity, bismuth (Bi) is a promising absorber material for X-ray microcalorimeters and has been used with transition-edge sensors (TESs) in the past. However, distinct X-ray spectral features have been observed in TESs with Bi absorbers deposited with different techniques. Evaporated Bi absorbers are widely reported to have non-Gaussian low-energy tails, while electroplated ones do not show this feature. In this study, we fabricated Bi absorbers with these two methods and performed microstructure analysis using scanning electron microscopy and X-ray diffraction microscopy. The two types of material showed the same crystallographic structure, but the grain size of the electroplated Bi was about 40 times larger than that of the evaporated Bi. This distinction in grain size is likely to be the cause of their different spectral responses.

  1. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  2. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-05-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.

  3. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    PubMed Central

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-01-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles. PMID:24763651

  4. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  5. Exploring coherent electron excitation and migration dynamics by electron diffraction with ultrashort X-ray pulses.

    PubMed

    Yuan, Kai-Jun; Bandrauk, André D

    2017-10-04

    Exploring ultrafast charge migration is of great importance in biological and chemical reactions. We present a scheme to monitor attosecond charge migration in molecules by electron diffraction with spatial and temporal resolutions from ab initio numerical simulations. An ultraviolet pulse creates a coherent superposition of electronic states, after which a time-delayed attosecond X-ray pulse is used to ionize the molecule. It is found that diffraction patterns in the X-ray photoelectron spectra show an asymmetric structure, which is dependent on the time delay between the pump-probe pulses, encoding the information of molecular orbital symmetry and chemical bonding. We describe these phenomena by developing an electronic time-dependent ultrafast molecular photoionization model of a coherent superposition state. The periodical distortion of electron diffraction patterns illustrates the evolution of the electronic coherence, providing a tool for attosecond imaging of ultrafast molecular reaction processes.

  6. Performance of an electron gun for a high-brightness X-ray generator.

    PubMed

    Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo

    2008-05-01

    A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm(-2). The beam sizes at the rotating anticathode must therefore be within 1.0 mm x 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm x 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm x 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached approximately 60 mA with some thermal problems.

  7. Katherine E. Weimer Award: X-ray light sources from laser-plasma and laser-electron interaction: development and applications

    NASA Astrophysics Data System (ADS)

    Albert, Felicie

    2017-10-01

    Bright sources of x-rays, such as synchrotrons and x-ray free electron lasers (XFEL) are transformational tools for many fields of science. They are used for biology, material science, medicine, or industry. Such sources rely on conventional particle accelerators, where electrons are accelerated to gigaelectronvolts (GeV) energies. The accelerated particles are wiggled in magnetic structures to emit x-ray radiation that is commonly used for molecular crystallography, fluorescence studies, chemical analysis, medical imaging, and many other applications. One of the drawbacks of these machines is their size and cost, because electric field gradients are limited to about 100 V/M in conventional accelerators. Particle acceleration in laser-driven plasmas is an alternative to generate x-rays via betatron emission, Compton scattering, or bremsstrahlung. A plasma can sustain electrical fields many orders of magnitude higher than that in conventional radiofrequency accelerator structures. When short, intense laser pulses are focused into a gas, it produces electron plasma waves in which electrons can be trapped and accelerated to GeV energies. X-ray sources, driven by electrons from laser-wakefield acceleration, have unique properties that are analogous to synchrotron radiation, with a 1000-fold shorter pulse. An important use of x-rays from laser plasma accelerators is in High Energy Density (HED) science, which requires laser and XFEL facilities to create in the laboratory extreme conditions of temperatures and pressures that are usually found in the interiors of stars and planets. To diagnose such extreme states of matter, the development of efficient, versatile and fast (sub-picosecond scale) x-ray probes has become essential. In these experiments, x-ray photons can pass through dense material, and absorption of the x-rays can be directly measured, via spectroscopy or imaging, to inform scientists about the temperature and density of the targets being studied. Performed

  8. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2011-01-01

    The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.

  9. Advanced X-Ray Sources Ensure Safe Environments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Ames Research Center awarded inXitu Inc. (formerly Microwave Power Technology), of Mountain View, California, an SBIR contract to develop a new design of electron optics for forming and focusing electron beams that is applicable to a broad class of vacuum electron devices. This technology offers an inherently rugged and more efficient X-ray source for material analysis; a compact and rugged X-ray source for smaller rovers on future Mars missions; and electron beam sources to reduce undesirable emissions from small, widely distributed pollution sources; and remediation of polluted sites.

  10. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source.

    PubMed

    Du, Yingchao; Yan, Lixin; Hua, Jianfei; Du, Qiang; Zhang, Zhen; Li, Renkai; Qian, Houjun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2013-05-01

    Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 10(6) per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

  11. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  12. AN OSCILLATOR CONFIGURATION FOR FULL REALIZATION OF HARD X-RAY FREE ELECTRON LASER*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.-J.; Kolodziej, T.; Lindberg, R. R.

    2017-06-01

    An x-ray free electron laser oscillator (XFELO) is feasible by employing an X-ray cavity with Bragg mirrors such as diamond crystals. An XFELO at the 5th harmonic frequency may be implemented at the LCLS II using its 4 GeV superconducting linac, producing stable, fully coherent, high-spectral-purity hard x-rays. In addition, its output can be a coherent seed to the LCLS amplifier for stable, high-power, femto-second x-ray pulses. We summarize the recent progress in various R&D efforts addressing critical issues for realizing an XFELO at LCLS II.

  13. On angiography with a Thomson laser-electron X-ray generator

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. V.; Vinogradov, S. L.; D'yachkov, N. V.; Polunina, A. V.; Postnov, A. A.

    2017-02-01

    We consider a possibility of application of laser-electron X-ray generators for diagnosing the vessel status of internal organs. It is shown that modern lasers and linear accelerators can be used for the development of angiographic instruments of a new type with an increased spatial and temporal resolution while maintaining or reducing the radiation load on the patient and medical staff. Such improvements in diagnostic and ambient factors cannot be achieved with the use of X-ray tubes. All particular estimates and calculations have been performed for a contrast agent based on iodine compounds.

  14. TES X-ray microcalorimeters for X-ray astronomy and material analysis

    NASA Astrophysics Data System (ADS)

    Mitsuda, Kazuhisa

    2016-11-01

    TES X-ray microcalorimeter arrays provide not only high-energy resolution (FWHM < 10eV) in X-ray spectroscopy but also imaging and high-counting-rate capabilities. They are very promising spectrometer for X-ray astronomy and material analysis. In this paper, we report our recent progress. For material analysis, we have fabricated 8 × 8 format array with a fast signal response ( 40 μs) and proved the energy resolution of 5.8 eV FWHM at 5.9 keV. We developed common biasing scheme to reduce number of wirings from room temperature to the cryogenic stage. From measurements using the newly-designed common-bias SQUID array amplifier chips, and from numerical simulations, we demonstrated that signal cross talks due to the common bias is enough small. For space applications, we are developing frequency-division signal multiplexing system. We have fabricated a baseband feedback system and demonstrated that the noise added by the feedback system is about 4 eV FWHM equivalent for 16 ch multiplexing system. The digital to analog converter (DAC) dominates the noise, and needs be reduced by a factor of four for future astronomy missions.

  15. Performance of the x-ray free-electron laser oscillator with crystal cavity

    NASA Astrophysics Data System (ADS)

    Lindberg, R. R.; Kim, K.-J.; Shvyd'Ko, Yu.; Fawley, W. M.

    2011-01-01

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include the frequency-dependent Bragg crystal reflectivity and the transverse diffraction and focusing using the two-dimensional FEL code GINGER. A review of the physics of Bragg crystal reflectors and the x-ray FEL oscillator is made, followed by a discussion of its numerical implementation in GINGER. The simulation results for a two-crystal cavity and realistic FEL parameters indicate ˜109 photons in a nearly Fourier-limited, ps pulse. Compressing the electron beam to 100 A and 100 fs results in comparable x-ray characteristics for relaxed beam emittance, energy spread, and/or undulator parameters, albeit in a larger radiation bandwidth. Finally, preliminary simulation results indicate that the four-crystal FEL cavity can be tuned in energy over a range of a few percent.

  16. Columnar recombination for X-ray generated electron-holes in amorphous selenium and its significance in a-Se x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bubon, O.; Thunder Bay Regional Research Institute, Thunder Bay, Ontario, P7A 7T1; Jandieri, K.

    Although amorphous selenium (a-Se) has a long and successful history of application in optical and X-ray imaging, some of its fundamental properties are still puzzling. In particularly, the mechanism of carrier recombination following x-ray excitation and electric field and temperature dependences of the electron-hole pair creation energy (W{sub ehp}) remain unclear. Using the combination of X-ray photocurrent and pulse height spectroscopy measurements, we measure W{sub ehp} in a wide range of temperatures (218–320 K) and electric fields (10–100 V/µm) and show that the conventional columnar recombination model which assumes Langevin recombination within a column (a primary electron track) fails to explain experimentalmore » results in a wide range of electric fields and temperatures. The reason for the failure of the conventional model is revealed in this work, and the theory of the columnar recombination is modified to include the saturation of the recombination rate at high electric field in order to account for the experimental results in the entire range of fields and temperatures.« less

  17. European X-Ray Free Electron Laser (EXFEL): local implications

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    European X-Ray FEL - free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5GeV energy and more than 2km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in frequency. The prototype of EXFEL is FLASH Laser (200 m in length), where the "proof of principle" was checked, and from the technologies were transferred to the bigger machine. The project was stared in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.

  18. Electronic structure and optical properties of CdSxSe1-x solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    NASA Astrophysics Data System (ADS)

    Murphy, M. W.; Yiu, Y. M.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai; Sham, T. K.

    2014-11-01

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdSxSe1-x solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  19. Insights into electron and ion acceleration and transport from x-ray and gamma-ray imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Hurford, Gordon J.; Krucker, Samuel

    The previous solar maximum has featured high resolution imaging/spectroscopy observations at hard x-ray and gamma-ray energies by the Reuven Ramaty High Energy Solar/Spectroscopic Imager (RHESSI). Highlights of these observations will be reviewed, along with their impli-cations for our understanding of ion and electron acceleration and transport processes. The results to date have included new insights into the location of the acceleration region and the thick target model, a new appreciation of the significance of x-ray albedo, observation of coronal gamma-ray sources and their implications for electron trapping, and indications of differences in the acceleration and transport between electrons and ions. The role of RHESSI's observational strengths and weaknesses in determining the character of its scientific results will also be discussed and used to identify what aspects of the acceleration and transport processes must await the next generation of instrumentation. The extent to which new instrumentation now under development, such as Solar Orbiter/STIX, GRIPS, and FOXSI, can address these open issues will be outlined.

  20. Emerging opportunities in structural biology with X-ray free-electron lasers

    PubMed Central

    Schlichting, Ilme; Miao, Jianwei

    2012-01-01

    X-ray free-electron lasers (X-FELs) produce X-ray pulses with extremely brilliant peak intensity and ultrashort pulse duration. It has been proposed that radiation damage can be “outrun” by using an ultra intense and short X-FEL pulse that passes a biological sample before the onset of significant radiation damage. The concept of “diffraction-before-destruction” has been demonstrated recently at the Linac Coherent Light Source, the first operational hard X-ray FEL, for protein nanocrystals and giant virus particles. The continuous diffraction patterns from single particles allow solving the classical “phase problem” by the oversampling method with iterative algorithms. If enough data are collected from many identical copies of a (biological) particle, its three-dimensional structure can be reconstructed. We review the current status and future prospects of serial femtosecond crystallography (SFX) and single-particle coherent diffraction imaging (CDI) with X-FELs. PMID:22922042

  1. Surface applicator of a miniature X-ray tube for superficial electronic brachytherapy of skin cancer.

    PubMed

    Kim, Hyun Nam; Lee, Ju Hyuk; Park, Han Beom; Kim, Hyun Jin; Cho, Sung Oh

    2018-01-01

    We designed and fabricated a surface applicator of a novel carbon nanotube (CNT)-based miniature X-ray tube for the use in superficial electronic brachytherapy of skin cancer. To investigate the effectiveness of the surface applicator, the performance of the applicator was numerically and experimentally analyzed. The surface applicator consists of a graphite flattening filter and an X-ray shield. A Monte Carlo radiation transport code, MCNP6, was used to optimize the geometries of both the flattening filter and the shield so that X-rays are generated uniformly over the desired region. The performance of the graphite filter was compared with that of conventional aluminum (Al) filters of different geometries using the numerical simulations. After fabricating a surface applicator, the X-ray spatial distribution was measured to evaluate the performance of the applicator. The graphite filter shows better spatial dose uniformity and less dose distortion than Al filters. Moreover, graphite allows easy fabrication of the flattening filter due to its low X-ray attenuation property, which is particularly important for low-energy electronic brachytherapy. The applicator also shows that no further X-ray shielding is required for the application because unwanted X-rays are completely protected. As a result, highly uniform X-ray dose distribution was achieved from the miniature X-ray tube mounted with the surface applicators. The measured values of both flatness and symmetry were less than 5% and the measured penumbra values were less than 1 mm. All these values satisfy the currently accepted tolerance criteria for radiation therapy. The surface applicator exhibits sufficient performance capability for their application in electronic brachytherapy of skin cancers. © 2017 American Association of Physicists in Medicine.

  2. An investigation on some of the tumor treatment cases using x-rays and electron beams

    NASA Astrophysics Data System (ADS)

    Ucar, Burcu; Yigitoglu, Ibrahim; Arslan Kabalay, Ipek; Altiparmak, Duygu; Kilicaslan, Sinem

    2015-07-01

    In this work, we discussed some of the applications which X-rays and electron beam used in radiotherapy for tumor treatments. This study has been performed at Radiation Oncology Department, Medicine Faculty in Gaziosmanpasa University by using the VARIAN CLINICA DHX linear accelerator which is operated in the range of 6 MeV - 15 MeV. Processes for the treatments that X-rays used for pancreas, bladder and prostate tumors and the processes that the electron beam used for some of the derm tumors are studied. Effects of X-rays and electron beams to treatments process are examined and the obtained results are presented comparatively.

  3. A convenient method for X-ray analysis in TEM that measures mass thickness and composition

    NASA Astrophysics Data System (ADS)

    Statham, P.; Sagar, J.; Holland, J.; Pinard, P.; Lozano-Perez, S.

    2018-01-01

    We consider a new approach for quantitative analysis in transmission electron microscopy (TEM) that offers the same convenience as single-standard quantitative analysis in scanning electron microscopy (SEM). Instead of a bulk standard, a thin film with known mass thickness is used as a reference. The procedure involves recording an X-ray spectrum from the reference film for each session of acquisitions on real specimens. There is no need to measure the beam current; the current only needs to be stable for the duration of the session. A new reference standard with a large (1 mm x 1 mm) area of uniform thickness of 100 nm silicon nitride is used to reveal regions of X-ray detector occlusion that would give misleading results for any X-ray method that measures thickness. Unlike previous methods, the new X-ray method does not require an accurate beam current monitor but delivers equivalent accuracy in mass thickness measurement. Quantitative compositional results are also automatically corrected for specimen self-absorption. The new method is tested using a wedge specimen of Inconel 600 that is used to calibrate the high angle angular dark field (HAADF) signal to provide a thickness reference and results are compared with electron energy-loss spectrometry (EELS) measurements. For the new X-ray method, element composition results are consistent with the expected composition for the alloy and the mass thickness measurement is shown to provide an accurate alternative to EELS for thickness determination in TEM without the uncertainty associated with mean free path estimates.

  4. Methods development for diffraction and spectroscopy studies of metalloenzymes at X-ray free-electron lasers

    PubMed Central

    Kern, Jan; Hattne, Johan; Tran, Rosalie; Alonso-Mori, Roberto; Laksmono, Hartawan; Gul, Sheraz; Sierra, Raymond G.; Rehanek, Jens; Erko, Alexei; Mitzner, Rolf; Wernet, Phillip; Bergmann, Uwe; Sauter, Nicholas K.; Yachandra, Vittal; Yano, Junko

    2014-01-01

    X-ray free-electron lasers (XFELs) open up new possibilities for X-ray crystallographic and spectroscopic studies of radiation-sensitive biological samples under close to physiological conditions. To facilitate these new X-ray sources, tailored experimental methods and data-processing protocols have to be developed. The highly radiation-sensitive photosystem II (PSII) protein complex is a prime target for XFEL experiments aiming to study the mechanism of light-induced water oxidation taking place at a Mn cluster in this complex. We developed a set of tools for the study of PSII at XFELs, including a new liquid jet based on electrofocusing, an energy dispersive von Hamos X-ray emission spectrometer for the hard X-ray range and a high-throughput soft X-ray spectrometer based on a reflection zone plate. While our immediate focus is on PSII, the methods we describe here are applicable to a wide range of metalloenzymes. These experimental developments were complemented by a new software suite, cctbx.xfel. This software suite allows for near-real-time monitoring of the experimental parameters and detector signals and the detailed analysis of the diffraction and spectroscopy data collected by us at the Linac Coherent Light Source, taking into account the specific characteristics of data measured at an XFEL. PMID:24914169

  5. Remote analysis of planetary soils: X-ray diffractometer development

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1973-01-01

    A system is described suitable for remote low power mineralogical analysis of lunar, planetary, or asteroid soils. It includes an X-ray diffractometer, fluorescence spectrometer, and sample preparation system. A one Curie Fe-55 source provides a monochromatic X-ray beam of 5.9 keV. Seeman-Bohlin or focusing geometry is employed in the camera, allowing peak detection to proceed simultaneously at all angles and obviating the need for moving parts. The detector system is an array of 500-600 proportional counters with a wire-spacing of 1 mm. An electronics unit comprising preamplifier, postamplifier, window discriminators, and storage flipflops requiring only 3.5 milliwatts was designed and tested. Total instrument power is less than 5 watts. Powder diffraction patterns using a flat breadboard multiwire counter were recorded.

  6. Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.

    PubMed

    Agah, K Mikaili; Ghoranneviss, M; Elahi, A Salar

    2015-01-01

    Determinations of plasma parameters as well as the Magnetohydrodynamics (MHD) activity, energetic electrons energy and energy confinement time are essential for future fusion reactors experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma equilibrium, stability, and MHD instabilities. In this contribution we investigated the relation between energetic electrons, hard x-ray emission and MHD activity in the IR-T1 Tokamak. For this purpose we used the magnetic diagnostics and a hard x-ray spectroscopy in IR-T1 tokamak. A hard x-ray emission is produced by collision of the runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons.

  7. X-ray fluorescence analysis of low concentrations metals in geological samples and technological products

    NASA Astrophysics Data System (ADS)

    Lagoida, I. A.; Trushin, A. V.

    2016-02-01

    For the past several years many nuclear physics methods of quantitative elemental analysis have been designed. Many of these methods have applied in different devices which have become useful and effective instrument in many industrial laboratories. Methods of a matter structure analysis are based on the intensity detection of the X-ray radiation from the nuclei of elements which are excited by external X-ray source. The production of characteristic X-rays involves transitions of the orbital electrons of atoms in the target material between allowed orbits, or energy states, associated with ionization of the inner atomic shells. One of these methods is X-ray fluorescence analysis, which is widespread in metallurgical and processing industries and is used to identify and measure the concentration of the elements in ores and minerals on a conveyor belt. Samples of copper ore with known concentrations of elements, were taken from the Ural deposit. To excite the characteristic X-rays radionuclide sources 109Cd, with half-life 461.4 days were used. After finding the calibration coefficients, control measurements of samples and averaging of overall samples were made. The measurement error did not exceed 3%.

  8. X-ray laser–induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene

    PubMed Central

    Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.

    2016-01-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076

  9. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  10. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  11. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  12. Portable total reflection x-ray fluorescence analysis in the identification of unknown laboratory hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying, E-mail: liu.ying.48r@st.kyoto-u.ac.jp; Imashuku, Susumu; Sasaki, Nobuharu

    In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient tomore » determine all the elements (Z > 11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.« less

  13. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics.

    PubMed

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd'ko, Yuri

    2016-12-01

    We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-μm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ≃8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  14. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics

    DOE PAGES

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; ...

    2016-12-29

    Here, we report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-µm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ' 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) aremore » manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.« less

  15. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz

    Here, we report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-µm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ' 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) aremore » manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.« less

  16. Use of electron cyclotron resonance x-ray source for nondestructive testing application

    NASA Astrophysics Data System (ADS)

    Baskaran, R.; Selvakumaran, T. S.

    2006-03-01

    Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10×10cm2 has been marked at 20cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10-5Torr, microwave power: 350W, and coil current: 0A. The effective energy of the x-ray spectrum is nearly 40keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.

  17. High sensitive X-ray films to detect electron showers in 100 GeV region

    NASA Technical Reports Server (NTRS)

    Taira, T.; Shirai, T.; Tateyama, N.; Torii, S.; Nishimura, J.; Fujii, M.; Yoshida, A.; Aizu, H.; Nomura, Y.; Kazuno, M.

    1985-01-01

    Nonscreen type X-ray films were used in emulsion chamber experiments to detect high energy showers in cosmic rays. Ranges of the detection threshold is from about 1 to 2 TeV depending on the exposure conditions. Different types of X-ray films and sheets i.e. high sensitive screen type X-ray films and luminescence sheets were tested. The threshold of the shower detection is found to be about 200 GeV, which is much lower than that of nonscreen type X-ray films. These films are useful to detect showers in the medium energy range, a few hundred GeV, of the cosmic ray electrons.

  18. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WANG,X.J.; MURPHY,J.B.; YU,L.H.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherencemore » of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).« less

  19. Fermi LAT Observations of Cosmic-Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    Designed as a gamma-ray instrument, the LAT is a capable detector of high energy cosmic ray electrons. The LAT is composed of a 4x4 array of identical towers. Each tower has a Tracker and a Calorimeter module. Entire LAT is covered by segmented Anti-Coincidence Detector (ACD). The electron data analysis is based on that developed for photons. The main challenge is to identify and separate electrons from all other charged species, mainly CR protons (for gamma-ray analysis this is provided by the Anti-Coincidence Detector)

  20. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    NASA Astrophysics Data System (ADS)

    Minami, K.; Saito, Y.; Kai, H.; Shirota, K.; Yada, K.

    2009-09-01

    We have newly developed an open type fine-focus X-ray tube "TX-510" to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The "TX-510" employs a ZrO/W(100) Schottky emitter and an "In-Lens Field Emission Gun". The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  1. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecturea

    PubMed Central

    Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-01-01

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066

  2. Hartmann characterization of the PEEM-3 aberration-corrected X-ray photoemission electron microscope.

    PubMed

    Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A

    2018-05-01

    Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.

  3. Generation of High Brightness X-rays with the PLEIADES Thomson X-ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W J; Anderson, S G; Barty, C P J

    2003-05-28

    The use of short laser pulses to generate high peak intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. PLEIADES (Picosecond Laser Electron InterAction for Dynamic Evaluation of Structures) is a next generation Thomson scattering x-ray source being developed at Lawrence Livermore National Laboratory (LLNL). Ultra-fast picosecond x-rays (10-200 keV) are generated by colliding an energetic electron beam (20-100 MeV) with a high intensity, sub-ps, 800 nm laser pulse. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm2/mrad2. Simulationsmore » of the electron beam production, transport, and final focus are presented. Electron beam measurements, including emittance and final focus spot size are also presented and compared to simulation results. Measurements of x-ray production are also reported and compared to theoretical calculations.« less

  4. Development of a simulation method for dynamics of electrons ejected from DNA molecules irradiated with X-rays.

    PubMed

    Kai, Takeshi; Higuchi, Mariko; Fujii, Kentaro; Watanabe, Ritsuko; Yokoya, Akinari

    2012-12-01

    To develop a method for simulating the dynamics of the photoelectrons and Auger electrons ejected from DNA molecules irradiated with pulsed monochromatic X-rays. A 30-base-pair (bp) DNA molecule was used as the target model, and the X-rays were assumed to have a Gaussian-shaped time distribution. Photoionization and Auger decay were considered as the atomic processes. The atoms from which the photoelectrons or Auger electrons were emitted were specified in the DNA molecule (or DNA ion) using the Monte Carlo method, and the trajectory of each electron in the electric field formed around the positively charged DNA molecule was calculated with a Newtonian equation. The kinetics of the electrons produced by irradiation with X-rays at an intensity ranging from 1 × 10(12) to 1 × 10(16) photons/mm(2) and energies of 380 eV (below the carbon K-edge), 435 eV (above the nitrogen K-edge), and 560 eV (above the oxygen K-edge) were evaluated. It was found that at an X-ray intensity of 1 × 10(14) photons/mm(2) or less, all the produced electrons escaped from the target. However, above an X-ray intensity of 1 × 10(15) photons/mm(2) and an energy of 560 eV, some photoelectrons that were ejected from the oxygen atoms were trapped near the target DNA. A simulation method for studying the trajectories of electrons ejected from a 30-bp DNA molecule irradiated with pulsed monochromatic X-rays has been developed. The present results show that electron dynamics are strongly dependent on the charged density induced in DNA by pulsed X-ray irradiation.

  5. Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses

    DOE PAGES

    Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao; ...

    2018-01-03

    X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less

  6. Generation of High-Power High-Intensity Short X-Ray Free-Electron-Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guetg, Marc W.; Lutman, Alberto A.; Ding, Yuantao

    X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. As a result, this was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw andmore » by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.« less

  7. Electron Beam Production and Characterization for the PLEIADES Thomson X-ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W J; Hartemann, F V; Tremaine, A M

    2002-10-14

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. Simulations of beam production, transport, and focus are presented. It is shown that a 1 ps, 500 pC electron bunch with a normalized emittance of less than 5 {pi}mm-mrad can be delivered to the interaction point. Initial electron measurements are presented. Calculations of expected x-ray flux are also performed, demonstrating an expected peak spectral brightness of 10{sup 20} photons/s/mm{sup 2}/mrad{sup 2}/0.1% bandwidth. Effects of RF phase jitter are also presented, and planned phase measurements and controlmore » methods are discussed.« less

  8. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  9. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Rasouli, C.; Pourshahab, B.; Hosseini Pooya, S. M.; Orouji, T.; Rasouli, H.

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points - three TLDs per point - to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  10. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.

    PubMed

    Rasouli, C; Pourshahab, B; Hosseini Pooya, S M; Orouji, T; Rasouli, H

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points--three TLDs per point--to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  11. Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.

    2018-06-01

    Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.

  12. Miniaturized High-Speed Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  13. Detection and Analysis of X Ray Emission from the Princeton-Field-Reversed Configuration (PFRC-2)

    NASA Astrophysics Data System (ADS)

    Bosh, Alexandra; Swanson, Charles; Jandovitz, Peter; Cohen, Samuel

    2016-10-01

    The PFRC is an odd-parity rotating-magnetic-field-driven field-reversed-configuration magnetic confinement experiment. Studying X rays produced via electron Bremsstrahlung with neutral particles is crucial to the further understanding of the energy and particle confinement of the PFRC. The data on the x rays are collected using a detector system comprised of two, spatially scannable Amptek XR-100 CR detectors and a Amptek XR-100 SDD detector that view the plasma column at two axial locations, one in the divertor and one near the axial midplane. These provide X-ray energy and arrival-time information. (Data analysis requires measurement of each detector's efficiency, a parameter that is modified by window transmission. Detector calibrations were performed with a custom-made X-ray tube that impinged 1-microamp 1-5 kV electron beams onto a carbon target.) From the analyzed data, the average electron energy, effective temperature, and electron density can be extracted. Spatial scans then allow the FRC's internal energy to be measured. We present recent measurements of the Bremsstrahlung spectrum from 0.8 to 6 keV and the inferred electron temperature in the PFRC device as functions of heating power, magnetic field and fill gas pressure. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  14. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  15. Nanosecond time resolved x-ray diagnostics of relativistic electron beam initiated events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuswa, Glenn W.; Chang, James

    The dynamic behavior of a test sample during aid shortly after it has teen irradiated by an intense relativistic electron beam (REB) is of great interest to the study of team energy deposition. Since the sample densities are far beyond the cutoff in the optical region, flash x-radiography techniques have been developed to diagnose the evolution of the samples. The conventional approach of analyzing the dynamic behavior of solid densities utilizes one or more short x-ray bursts to record images on photographic emulsion. This technique is not useful in the presence of the intense x-rays from the REB interacting withmore » the sample. We report two techniques for isolating the film package from the REB x-ray pulse.« less

  16. X-ray lasers

    NASA Astrophysics Data System (ADS)

    Elton, Raymond C.

    Theoretical and practical aspects of X-ray lasers are discussed in an introduction emphasizing recent advances. Chapters are devoted to the unique optical properties of the X-ray spectral region, the principles of short-wavelength lasers, pumping by exciting plasma ions, pumping by electron capture into excited ionic states, pumping by ionization of atoms and ions, and alternative approaches. The potential scientific, technical, biological, and medical applications of X-ray lasers are briefly characterized.

  17. X-ray free-electron laser oscillator with nuclear-resonant cavity stabilization and quantum-optical applications

    DOE PAGES

    Adams, Bernhard W.; Kim, Kwang -Je

    2016-08-09

    Here, x-ray free-electron-laser oscillators with nuclear-resonant cavity stabilization (NRS-XFELO) hold the promise for providing x-rays with unprecedented coherence properties that will enable interesting quantum-optical and metrological applications. Among these are atom optics with x-ray-based optical elements providing high momentum transfer, or a frequency standard far surpassing the best state-of the-art atomic clocks.

  18. Diffuse Hard X-Ray Emission in Starburst Galaxies as Synchrotron from Very High Energy Electrons

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e ±) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e ± at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e ± created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e ± produced between the interactions between 10 and 100 TeV γ-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R <= 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e ±. We compare these models to extant radio and GeV and TeV γ-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to ~PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts' magnetic field. We also model generic starbursts, including

  19. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    PubMed

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  20. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    NASA Astrophysics Data System (ADS)

    Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.

    2010-10-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will

  1. Dual x-ray fluorescence spectrometer and method for fluid analysis

    DOEpatents

    Wilson, Bary W.; Shepard, Chester L.

    2005-02-22

    Disclosed are an X-ray fluorescence (SRF) spectrometer and method for on-site and in-line determination of contaminant elements in lubricating oils and in fuel oils on board a marine vessel. An XRF source block 13 contains two radionuclide sources 16, 17 (e.g. Cd 109 and Fe 55), each oriented 180 degrees from the other to excite separate targets. The Cd 109 source 16 excites sample lube oil flowing through a low molecular weight sample line 18. The Fe 55 source 17 excites fuel oil manually presented to the source beam inside a low molecular weight vial 26 or other container. Two separate detectors A and B are arranged to detect the fluorescent x-rays from the targets, photons from the analyte atoms in the lube oil for example, and sulfur identifying x-rays from bunker fuel oil for example. The system allows both automated in-line and manual on-site analysis using one set of signal processing and multi-channel analyzer electronics 34, 37 as well as one computer 39 and user interface 43.

  2. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faussurier, Gérald, E-mail: gerald.faussurier@cea.fr; Blancard, Christophe

    2016-01-15

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  3. Study of runaway electrons with Hard X-ray spectrometry of tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevelev, A.; Chugunov, I.; Khilkevitch, E.

    2014-08-21

    Hard-X-ray spectrometry is a tool widely used for diagnostic of runaway electrons in existing tokamaks. In future machines, ITER and DEMO, HXR spectrometry will be useful providing information on runaway electron energy, runaway beam current and its profile during disruption.

  4. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  5. Few-cycle pulse generation in an x-ray free-electron laser.

    PubMed

    Dunning, D J; McNeil, B W J; Thompson, N R

    2013-03-08

    A method is proposed to generate trains of few-cycle x-ray pulses from a free-electron laser (FEL) amplifier via a compact "afterburner" extension consisting of several few-period undulator sections separated by electron chicane delays. Simulations show that in the hard x ray (wavelength ~0.1 nm; photon energy ~10 keV) and with peak powers approaching normal FEL saturation (GW) levels, root mean square pulse durations of 700 zs may be obtained. This is approximately two orders of magnitude shorter than that possible for normal FEL amplifier operation. The spectrum is discretely multichromatic with a bandwidth envelope increased by approximately 2 orders of magnitude over unseeded FEL amplifier operation. Such a source would significantly enhance research opportunity in atomic dynamics and push capability toward nuclear dynamics.

  6. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    NASA Astrophysics Data System (ADS)

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.

    2014-04-01

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called ``molecular movie'' within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  7. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    PubMed

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-04-19

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  8. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    DOE PAGES

    Golovin, G.; Banerjee, S.; Liu, C.; ...

    2016-04-19

    Here, the recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense lasermore » probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.« less

  9. X-ray spectrophotometer SphinX and particle spectrometer STEP-F of the satellite experiment CORONAS-PHOTON. Preliminary results of the joint data analysis

    NASA Astrophysics Data System (ADS)

    Dudnik, O. V.; Podgorski, P.; Sylwester, J.; Gburek, S.; Kowalinski, M.; Siarkowski, M.; Plocieniak, S.; Bakala, J.

    2012-04-01

    A joint analysis is carried out of data obtained with the help of the solar X-ray SphinX spectrophotometer and the electron and proton satellite telescope STEP-F in May 2009 in the course of the scientific space experiment CORONAS-PHOTON. In order to determine the energies and particle types, in the analysis of spectrophotometer records data are used on the intensities of electrons, protons, and secondary γ-radiation, obtained by the STEP-F telescope, which was located in close proximity to the SphinX spectrophotometer. The identical reaction of both instruments is noted at the intersection of regions of the Brazilian magnetic anomaly and the Earth's radiation belts. It is shown that large area photodiodes, serving as sensors of the X-ray spectrometer, reliably record electron fluxes of low and intermediate energies, as well as fluxes of the secondary gamma radiation from construction materials of detector modules, the TESIS instrument complex, and the spacecraft itself. The dynamics of electron fluxes, recorded by the SphinX spectrophotometer in the vicinity of a weak geomagnetic storm, supplements the information about the processes of radial diffusion of electrons, which was studied using the STEP-F telescope.

  10. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments.

    PubMed

    Deutsch, Maxime; Gillon, Béatrice; Claiser, Nicolas; Gillet, Jean-Michel; Lecomte, Claude; Souhassou, Mohamed

    2014-05-01

    Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density) and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT) calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  11. Revealing the electronic structure of LiC 6 by soft X-ray spectroscopy

    DOE PAGES

    Zhang, L.; Li, X.; Augustsson, A.; ...

    2017-03-09

    The electronic structure of LiC 6 has been investigated in this paper by soft X-ray absorption and emission spectroscopies. The results reveal that upon full lithiation of graphite, the Li 2s electrons are transferred into the carbon π* states in a near rigid-band behavior, resulting in the increased density of states near E F and the shift of σ* states to lower energies. Finally, in addition, the resonant inelastic X-ray scattering spectra of LiC 6 do not show strong dispersive features as that of graphite, indicating that the crystal momentum is not conserved during the scattering process due to themore » delocalization of electrons in the intermediate state.« less

  12. Analysis of the Central X-ray Source in DG Tau

    NASA Astrophysics Data System (ADS)

    Schneider, P. Christian; Schmitt, Jürgen H. M. M.

    As a stellar X-ray source DG Tau shows two rather unusual features: A resolved X-ray jet [2] and an X-ray spectrum best described by two thermal components with different absorbing column densities, a so called "two-absorber X-ray (TAX)" morphology [1, 2]. In an effort to understand the properties of the central X-ray source in DG Tau a detailed position analysis was carried out.

  13. X-ray Mapping of Terrestrial and Extraterrestrial Materials Using the Electron Microprobe

    NASA Technical Reports Server (NTRS)

    Carpenter, P.

    2006-01-01

    Lunar samples returned from the Apollo program motivated development of the Bence-Albee algorithm for the rapid and accurate analysis of lunar materials, and established interlaboratory comparability through its common use. In the analysis of mineral and rock fragments it became necessary to combine micro- and macroscopic analysis by coupling electron-probe microanalysis (EPMA) with automated stage point counting. A coarse grid that included several thousand points was used, and initially wavelength-dispersive (WDS) and later energydispersive (EDS) data were acquired at discrete stage points using approx. 5 sec count times. A approx 50 micrometer beam diameter was used for WDS and up to 500 micrometer beam diameter for EDS analysis. Average analyses of discretely sampled phases were coupled with the point count data to calculate the bulk composition using matrix algebra. Use of a defocused beam resulted in a contribution from multiple phases to each analytical point, and the analytical data were deconvolved relative to end-member phase chemistry on the fly. Impressive agreement was obtained between WDS and EDS measurements as well as comparison with bulk chemistry obtained by other methods. In the 30 years since these methods were developed, significant improvements in EPMA automation and computer processing have taken place. Digital beam control allows routine collection of x-ray maps by EDS, and stage mapping for WDS is conducted continuously at slew speed and incrementally by sampling at discrete points. Digital pulse processing in EDS systems has significantly increased the throughput for EDS mapping, and the ongoing development of Si-drift detector systems promises mapping capabilities rivaling WDS systems. Spectrum imaging allows a data cube of EDS spectra to be acquired and sophisticated processing of the original data is possible using matrix algebra techniques. The study of lunar and meteoritic materials includes the need to conveniently: (1) Characterize

  14. Valence-electron configuration of Fe, Cr, and Ni in binary and ternary alloys from Kβ -to- Kα x-ray intensity ratios

    NASA Astrophysics Data System (ADS)

    Han, I.; Demir, L.

    2009-11-01

    Kβ -to- Kα x-ray intensity ratios of Fe, Cr, and Ni have been measured in pure metals and in alloys of FexNi1-x ( x=0.8 , 0.7, 0.6, 0.5, 0.4, 0.3, and 0.2), NixCr1-x ( x=0.8 , 0.6, 0.5, 0.4, and 0.2), FexCr1-x ( x=0.9 , 0.7, and 0.5), and FexCryNi1-(x+y) ( x=0.7-y=0.1 , x=0.5-y=0.2 , x=0.4-y=0.3 , x=0.3-y=0.3 , x=0.2-y=0.2 , and x=0.1-y=0.2 ) following excitation by 22.69 keV x rays from a 10 mCi C109d radioactive point source. The valence-electron configurations of these metals were determined by corporation of measured Kβ -to- Kα x-ray intensity ratios with the results of multiconfiguration Dirac-Fock calculation for various valence-electron configurations. Valence-electron configurations of 3d transition metals in alloys indicate significant differences with respect to the pure metals. Our analysis indicates that these differences arise from delocalization and/or charge transfer phenomena in alloys. Namely, the observed change of the valence-electron configurations of metals in alloys can be explained with the transfer of 3d electrons from one element to the other element and/or the rearrangement of electrons between 3d and 4s,4p states of individual metal atoms.

  15. An adjustable short-focal length, high-gradient PMQ electron-beam final-focus system for the PLEIADES ultra-fast x-ray Thomson source

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Ku

    enabled the production of x-ray energy over 40-140 keV. In this dissertation, the PLEIADES Thomson x-ray facility will be described in detail includes the 100 MeV linac and the FALCON laser system. Later, we will discuss the design, construction and implementation of the PMQ final focus system in the beamline. The measurement of electron beam parameters before and after the final focus system will be presented. The beam measurements at the interaction region were accomplished with the use of both OTR (Optical Transition Radiation) imaged by a CCD camera and the fast streak camera for respective spatial and temporal alignments. The theoretical analysis in "real beam" effects and spacetime beam jitter effects will be given to help understand the observations. A 3D simulation tool developed for x-ray data analysis was used to provide direct comparisons with the x-ray flux, spectrum distribution and transverse x-ray profile.

  16. Signatures of Synchrotron: Low-cutoff X-ray emission and the hard X-ray spectrum of Cas A

    NASA Astrophysics Data System (ADS)

    Stage, Michael D.; Fedor, Emily Elizabeth; Martina-Hood, Hyourin

    2018-06-01

    In soft X-rays, bright, young Galactic remnants (Cas A, Kepler, Tycho, etc.) present thermal line emission and bremsstrahlung from ejecta, and synchrotron radiation from the shocks. Their hard X-ray spectra tend to be dominated by power-law sources. However, it can be non-trivial to discriminate between contributions from processes such as synchrotron and bremsstrahlung from nonthermally accelerated electrons, even though the energies of the electrons producing this radiation may be very different. Spatially-resolved spectroscopic analysis of 0.5-10 keV observations with, e.g., Chandracan provide leverage in identifying the processes and their locations. Previously, Stage & Allen (2006), Allen & Stage (2007) and Stage & Allen (2011) identified regions characterized by high-cutoff synchrotron radiation. Extrapolating synchrotron model fits to the emission in the Chandra band, they estimated the synchrotron contribution to the hard X-ray spectrum at about one-third the observed flux, fitting the balance with nonthermal bremsstrahlung emission produced by nonthermal electrons in the ejecta. Although it is unlikely this analysis missed regions of the highest-cutoff synchrotron emission, which supplies the bulk of the synchrotron above 15 keV, it may have missed regions of lower-cutoff emission, especially if they are near bright ejecta and the reverse shock. These regions cannot explain the emission at the highest energies (~50 keV), but may make significant contributions to the hard spectrum at lower energies (~10 keV). Using the technique described in Fedor, Martina-Hood & Stage (this meeting), we revisit the analysis to include regions that may be dominated by low-cutoff synchrotron, located in the interior of the remnant, and/or correlated with the reverse shock. Identifying X-ray emission from accelerated electrons associated with the reverse-shock would have important implications for synchrotron and non-thermal bremsstrahlung radiation above the 10 keV.

  17. X-ray emissions from centimeter-long streamer corona discharges

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Millan, R. M.; McGaw, D. G.; Yu, C. T.; Putter, A. S.; Labelle, J. W.; Dwyer, J. R.

    2017-12-01

    In this work we provide extensive evidence that runaway electron acceleration and subsequent bremsstrahlung X-ray emission are a common feature in electrical discharges of negative polarity. They can be easily detected at voltages as low as 100 kV, indicating that all negative lightning could potentially produce runaway electrons. We show that centimeter-long streamer corona discharges produce bursts of X-ray radiation that are emitted by a source that is highly compact in space and time. Therefore, the emitted X-ray photons arrive together at the detector and pile up. Median burst energies vary between 33-96% of the total 100 keV available electrostatic energy that an electron can acquire in the gap. We present detailed statistical analysis of 5000+ discharges, showing that X-rays are observed in as many as 60% of the triggers, depending on the configuration. X-ray detection is more frequent when: the streamer corona discharge is not followed by a spark, the detector is oriented perpendicular to the gap, and a thicker anode is used. We show that for an 8-cm-long gap, X-rays are produced when runaway electrons hit the anode, and that the runaway electron acceleration is not correlated with streamer collisions, as inferred in meter-long discharges. The described experiment is a promising way for measuring the runaway electron distribution very close to the source and its dependence on the applied voltage.

  18. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    NASA Technical Reports Server (NTRS)

    Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi

    2013-01-01

    Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  19. Development of polycapillary x-ray optics for x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Adams, Bernhard W.; Attenkofer, Klaus; Bond, Justin L.; Craven, Christopher A.; Cremer, Till; O'Mahony, Aileen; Minot, Michael J.; Popecki, Mark A.

    2016-09-01

    Bundles of hollow glass capillaries can be tapered to produce quasi-focusing x-ray optics. These optics are known as Kumakhov lenses. These optics are interesting for lab-based sources because they can be used to collimate and concentrate x-rays originating from a point, such as a laser focus or an electron-beam focus in a microtube.

  20. Prediction and Measurement of X-Ray Spectral and Intensity Distributions from Low Energy Electron Impact Sources

    NASA Technical Reports Server (NTRS)

    Edwards, David L.

    1999-01-01

    In-vacuum electron beam welding is a technology that NASA considered as a joining technique for manufacture of space structures. The interaction of energetic electrons with metal produces x-rays. The radiation exposure to astronauts performing the in-vacuum electron beam welding must be characterized and minimized to insure safe operating conditions. This investigation characterized the x-ray environment due to operation of an in-vacuum electron beam welding tool. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the United States Space Shuttle. This series of experiments was named the International Space Welding Experiment (ISWE). The hardware associated with the ISWE was leased to NASA, by the Paton Welding Institute (PWI) in Ukraine, for ground based welding experiments in preparation for flight. Two tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests consisted of Thermoluminescence Dosimeters (TLD's) shielded with material currently used by astronauts during Extra Vehicular Activities (EVA) and exposed to x-ray radiation generated by operation of an in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x-rays of energy less than 10 KeV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by electron impact with metal. These x-ray spectra were used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the in-vacuum electron beam welding tool. The calculated absorbed dose

  1. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics.

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Theobald, W; Mileham, C; Begishev, I A; Bromage, J; Regan, S P

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.

  2. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    PubMed Central

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.

    2014-01-01

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes. PMID:24740172

  3. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    DOE PAGES

    Gaudin, J.; Fourment, C.; Cho, B. I.; ...

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore » the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less

  4. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  5. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  6. Bayesian Multiscale Analysis of X-Ray Jet Features in High Redshift Quasars

    NASA Astrophysics Data System (ADS)

    McKeough, Kathryn; Siemiginowska, A.; Kashyap, V.; Stein, N.

    2014-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet’s relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. We implement a sophisticated Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) (Esch et al. 2004; Conners & van Dyk 2007), to analyze jet features in 11 Chandra images of high redshift quasars (z ~ 2 - 4.8). Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. We measured the ratios of the X-ray and radio luminosities of the detected features and found that they are consistent with the CMB radiation relationship. We derived a range of the bulk lorentz factor (Γ) for detected jet features under the CMB jet emission model. There is no discernible trend of Γ with redshift within the sample. The efficiency of the X-ray emission between the detected jet feature and the corresponding quasar also shows no correlation with redshift. This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. We thank Teddy Cheung for providing the VLA radio images. Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D. N., Connors, A., Karovska, M., & van Dyk, D. A. 2004, ApJ, 610, 1213

  7. Discovery of Diffuse Hard X-ray Emission associated with Jupiter

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Miyoshi, Y.; Ishikawa, K.; Ohashi, T.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2009-12-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to ~6 x 3 arcmin with the 1-5 keV X-ray luminosity of ~3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. Although such an emission can be originated from multiple background point sources, its possibility is quite low. We hence examined three mechanisms, assuming that the emission is truly diffuse: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon around Jupiter.

  8. TOPICAL REVIEW: Human soft tissue analysis using x-ray or gamma-ray techniques

    NASA Astrophysics Data System (ADS)

    Theodorakou, C.; Farquharson, M. J.

    2008-06-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus.

  9. Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A.; Chabior, M.; Zanette, I.

    2014-10-15

    Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between amore » monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.« less

  10. X-ray texture analysis of paper coating pigments and the correlation with chemical composition analysis

    NASA Astrophysics Data System (ADS)

    Roine, J.; Tenho, M.; Murtomaa, M.; Lehto, V.-P.; Kansanaho, R.

    2007-10-01

    The present research experiments the applicability of x-ray texture analysis in investigating the properties of paper coatings. The preferred orientations of kaolin, talc, ground calcium carbonate, and precipitated calcium carbonate particles used in four different paper coatings were determined qualitatively based on the measured crystal orientation data. The extent of the orientation, namely, the degree of the texture of each pigment, was characterized quantitatively using a single parameter. As a result, the effect of paper calendering is clearly seen as an increase on the degree of texture of the coating pigments. The effect of calendering on the preferred orientation of kaolin was also evident in an independent energy dispersive spectrometer analysis on micrometer scale and an electron spectroscopy for chemical analysis on nanometer scale. Thus, the present work proves x-ray texture analysis to be a potential research tool for characterizing the properties of paper coating layers.

  11. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    PubMed Central

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J.; Brewster, Aaron S.; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; White, William E.; Schafer, Donald W.; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Glatzel, Pieter; Zwart, Petrus H.; Grosse-Kunstleve, Ralf W.; Bogan, Michael J.; Messerschmidt, Marc; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K.; Adams, Paul D.; Sauter, Nicholas K.

    2014-01-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and free from radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract statistically significant high-resolution signals from fewer diffraction measurements. PMID:24633409

  12. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials

    DOE PAGES

    Du, Ming; Jacobsen, Chris

    2017-10-07

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zeromore » loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 mu m (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Lastly, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.« less

  13. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Ming; Jacobsen, Chris

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zeromore » loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 mu m (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Lastly, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified.« less

  14. Resonant inelastic soft x-ray scattering of CdS: a two-dimensional electronic structure map approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinhardt, L.; Fuchs, O.; Fleszar, A.

    2008-09-24

    Resonant inelastic x-ray scattering (RIXS) with soft x-rays is uniquely suited to study the elec-tronic structure of a variety of materials, but is currently limited by low (fluorescence yield) count rates. This limitation is overcome with a new high-transmission spectrometer that allows to measure soft x-ray RIXS"maps." The S L2,3 RIXS map of CdS is discussed and compared with density functional calculations. The map allows the extraction of decay channel-specific"absorp-tion spectra," giving detailed insight into the wave functions of occupied and unoccupied elec-tronic states.

  15. X-ray radiation generated by a beam of relativistic electrons in composite structure

    NASA Astrophysics Data System (ADS)

    Blazhevich, S. V.; Noskov, A. V.

    2018-04-01

    The dynamic theory of coherent X-ray radiation generated by a beam of relativistic electrons in the three-layer structure consisting of an amorphous layer, a vacuum (air) layer and a single crystal has been developed. The phenomenon description is based on two main radiation mechanisms, namely, parametric X-ray radiation (PXR) and diffracted transition radiation (DTR). The possibility to increase the spectral-angular density of DTR under the condition of constructive interference of the transition radiation waves from different boundaries of such a structure has been demonstrated. It is shown that little changes in the layers thicknesses should not cause a considerable change in the interference picture, for example, the transition of constructive interference into destructive one. It means that in the considered process the conditions of constructive interference are enough stable to use them for increasing the intensity of X-ray source that can be created based on the interaction of relativistic electrons with such a structure.

  16. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    NASA Astrophysics Data System (ADS)

    Cheng, Lin; Ding, Xunliang; Liu, Zhiguo; Pan, Qiuli; Chu, Xuelian

    2007-08-01

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  17. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Gilchrist, B. E.; Nishikawa, K.; Williams, A.

    2013-12-01

    Relativistic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and suborbital Reusable Launch Vehicle (sRLV) altitudes. The monoenergetic beam is modeled in cylindrical symmetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremmstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry that relies on sRLVs with a nominal apogee of 100 km. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  18. Femtosecond crystallography with ultrabright electrons and x-rays: capturing chemistry in action.

    PubMed

    Miller, R J Dwayne

    2014-03-07

    With the recent advances in ultrabright electron and x-ray sources, it is now possible to extend crystallography to the femtosecond time domain to literally light up atomic motions involved in the primary processes governing structural transitions. This review chronicles the development of brighter and brighter electron and x-ray sources that have enabled atomic resolution to structural dynamics for increasingly complex systems. The primary focus is on achieving sufficient brightness using pump-probe protocols to resolve the far-from-equilibrium motions directing chemical processes that in general lead to irreversible changes in samples. Given the central importance of structural transitions to conceptualizing chemistry, this emerging field has the potential to significantly improve our understanding of chemistry and its connection to driving biological processes.

  19. Assessing the quantum physics impacts on future x-ray free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Mark J.; Anisimov, Petr Mikhaylovich

    A new quantum mechanical theory of x-ray free electron lasers (XFELs) has been successfully developed that has placed LANL at the forefront of the understanding of quantum effects in XFELs. Our quantum theory describes the interaction of relativistic electrons with x-ray radiation in the periodic magnetic field of an undulator using the same mathematical formalism as classical XFEL theory. This places classical and quantum treatments on the same footing and allows for a continuous transition from one regime to the other eliminating the disparate analytical approaches previously used. Moreover, Dr. Anisimov, the architect of this new theory, is now consideredmore » a resource in the international FEL community for assessing quantum effects in XFELs.« less

  20. Modeling the gain of inner-shell X-ray laser transitions in neon, argon, and copper driven by X-ray free electron laser radiation using photo-ionization and photo-excitation processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsen, Joseph

    2015-12-16

    Using an X-ray free electron laser (XFEL) at 960 eV to photo-ionize the 1s electron in neutral neon followed by lasing on the 2p-1s transition in singly-ionized neon, an inner-shell X-ray laser was demonstrated at 849 eV in singly-ionized neon gas several years ago. It took decades to demonstrate this scheme, because it required a very strong X-ray source that could photo-ionize the 1s (K shell) electron in neon on a timescale comparable to the intrinsic Auger lifetime in neon of 2 fs. In this paper, we model the neon inner shell X-ray laser under similar conditions to those usedmore » in the XFEL experiments at the SLAC Linac Coherent Light Source (LCLS), and show how we can improve the efficiency of the neon laser and reduce the drive requirements by tuning the XFEL to the 1s-3p transition in neutral neon in order to create gain on the 2p-1s line in neutral neon. We also show how the XFEL could be used to photo-ionize L-shell electrons to drive gain on n = 3–2 transitions in singly-ionized Ar and Cu plasmas. Furthermore, these bright, coherent, and monochromatic X-ray lasers may prove very useful for doing high-resolution spectroscopy and for studying non-linear process in the X-ray regime.« less

  1. Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berecz, Tibor, E-mail: berecz@eik.bme.hu; Jenei, Péter, E-mail: jenei@metal.elte.hu; Csóré, András, E-mail: csorean@gmail.com

    2016-03-15

    The microstructure and the dislocation density in as-quenched ferrous lath martensite were studied by different methods. The blocks, packets and variants formed due to martensitic transformation were identified and their sizes were determined by electron backscatter diffraction (EBSD). Concomitant transmission electron microscopy (TEM) investigation revealed that the laths contain subgrains with the size between 50 and 100 nm. A novel evaluation procedure of EBSD images was elaborated for the determination of the density and the space distribution of geometrically necessary dislocations from the misorientation distribution. The total dislocation density obtained by X-ray diffraction line profile analysis was in good agreementmore » with the value determined by EBSD, indicating that the majority of dislocations formed due to martensitic transformation during quenching are geometrically necessary dislocations.« less

  2. Femtosecond profiling of shaped x-ray pulses

    NASA Astrophysics Data System (ADS)

    Hoffmann, M. C.; Grguraš, I.; Behrens, C.; Bostedt, C.; Bozek, J.; Bromberger, H.; Coffee, R.; Costello, J. T.; DiMauro, L. F.; Ding, Y.; Doumy, G.; Helml, W.; Ilchen, M.; Kienberger, R.; Lee, S.; Maier, A. R.; Mazza, T.; Meyer, M.; Messerschmidt, M.; Schorb, S.; Schweinberger, W.; Zhang, K.; Cavalieri, A. L.

    2018-03-01

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fully suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. This achievement completes an important step toward future x-ray pulse shaping techniques.

  3. Femtosecond profiling of shaped x-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, M. C.; Grguras, I.; Behrens, C.

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less

  4. Femtosecond profiling of shaped x-ray pulses

    DOE PAGES

    Hoffmann, M. C.; Grguras, I.; Behrens, C.; ...

    2018-03-26

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less

  5. Talbot-Lau x-ray deflectometry phase-retrieval methods for electron density diagnostics in high-energy density experiments.

    PubMed

    Valdivia, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begishev, Ildar A; Bromage, Jake; Regan, Sean P

    2018-01-10

    Talbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments. This adaptation is known as a moiré deflectometer, which allows for single-shot capabilities in the form of interferometric fringe patterns. The moiré x-ray deflectometry technique requires a set of object and reference images in order to provide electron density maps, which can be costly in the high-energy density environment. In particular, synthetic reference phase images obtained ex situ through a phase-scan procedure, can provide a feasible solution. To test this procedure, an object phase map was retrieved from a single-shot moiré image obtained from a plasma-produced x-ray source. A reference phase map was then obtained from phase-stepping measurements using a continuous x-ray tube source in a small laboratory setting. The two phase maps were used to retrieve an electron density map. A comparison of the moiré and phase-stepping phase-retrieval methods was performed to evaluate single-exposure plasma electron density mapping for high-energy density and other transient plasma experiments. It was found that a combination of phase-retrieval methods can deliver accurate refraction angle mapping. Once x-ray backlighter quality is optimized, the ex situ method is expected to deliver electron density mapping with improved resolution. The steps necessary for improved diagnostic performance are discussed.

  6. Cryogenic coherent X-ray diffraction imaging of biological samples at SACLA: a correlative approach with cryo-electron and light microscopy.

    PubMed

    Takayama, Yuki; Yonekura, Koji

    2016-03-01

    Coherent X-ray diffraction imaging at cryogenic temperature (cryo-CXDI) allows the analysis of internal structures of unstained, non-crystalline, whole biological samples in micrometre to sub-micrometre dimensions. Targets include cells and cell organelles. This approach involves preparing frozen-hydrated samples under controlled humidity, transferring the samples to a cryo-stage inside a vacuum chamber of a diffractometer, and then exposing the samples to coherent X-rays. Since 2012, cryo-coherent diffraction imaging (CDI) experiments have been carried out with the X-ray free-electron laser (XFEL) at the SPring-8 Ångstrom Compact free-electron LAser (SACLA) facility in Japan. Complementary use of cryo-electron microscopy and/or light microscopy is highly beneficial for both pre-checking samples and studying the integrity or nature of the sample. This article reports the authors' experience in cryo-XFEL-CDI of biological cells and organelles at SACLA, and describes an attempt towards reliable and higher-resolution reconstructions, including signal enhancement with strong scatterers and Patterson-search phasing.

  7. Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser

    DOE PAGES

    Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; ...

    2016-11-04

    Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less

  8. Miniaturized, High-Speed, Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick

    2013-01-01

    A low-cost, miniature x-ray source has been developed that can be modulated in intensity from completely off to full intensity on nanosecond timescales. This modulated x-ray source (MXS) has no filaments and is extremely rugged. The energy level of the MXS is adjustable from 0 to more than 100 keV. It can be used as the core of many new devices, providing the first practical, arbitrarily time-variable source of x-rays. The high-speed switching capability and miniature size make possible many new technologies including x-ray-based communication, compact time-resolved x-ray diffraction, novel x-ray fluorescence instruments, and low- and precise-dose medical x-rays. To make x-rays, the usual method is to accelerate electrons into a target material held at a high potential. When the electrons stop in the target, x-rays are produced with a spectrum that is a function of the target material and the energy to which the electrons are accelerated. Most commonly, the electrons come from a hot filament. In the MXS, the electrons start off as optically driven photoelectrons. The modulation of the x-rays is then tied to the modulation of the light that drives the photoelectron source. Much of the recent development has consisted of creating a photoelectrically-driven electron source that is robust, low in cost, and offers high intensity. For robustness, metal photocathodes were adopted, including aluminum and magnesium. Ultraviolet light from 255- to 350-nm LEDs (light emitting diodes) stimulated the photoemissions from these photocathodes with an efficiency that is maximized at the low-wavelength end (255 nm) to a value of roughly 10(exp -4). The MXS units now have much higher brightness, are much smaller, and are made using a number of commercially available components, making them extremely inexpensive. In the latest MXS design, UV efficiency is addressed by using a high-gain electron multiplier. The photocathode is vapor-deposited onto the input cone of a Burle Magnum

  9. Inference of the electron temperature in ICF implosions from the hard X-ray spectral continuum

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Landen, O. L.; Svyatsky, D.; Sio, H.; Kabadi, N. V.; Simpson, R. A.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Shah, R. C.; Joshi, T. R.; Hakel, P.; Weber, T. E.; Rinderknecht, H. G.; Thorn, D.; Schneider, M.; Bradley, D.; Kilkenny, J.

    2017-10-01

    The NIF Continuum Spectrometer, scheduled to be first deployed in Fall of 2017, will infer the imploded core electron temperature from the free-free continuum self-emission spectra of photons with energies of 20 to 30 keV. However, this hard X-ray radiation is emitted by the tail of the electron distribution, which likely deviates from Maxwellian and thus obscures interpretation of the data. We investigate resulting modifications to the X-ray spectra. The logarithmic slope of the spectrum from the more realistic, non-thermal tail of the electron distribution is found to decrease more rapidly at higher photon energies, as compared to the perfectly Maxwellian case. Interpreting the spectrum with assumption of Maxwellian electrons enforced is shown to give an electron temperature that is lower than the actual one. Conversely, due to its connection with the non-thermal features in the electron distribution, hard X-ray emission can provide unprecedented information about kinetic processes in the hot DT core. This work was performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

  10. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  11. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning

    DOE PAGES

    Sanchez-Gonzalez, A.; Micaelli, P.; Olivier, C.; ...

    2017-06-05

    Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy,more » we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. Lastly, this opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.« less

  12. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Gonzalez, A.; Micaelli, P.; Olivier, C.

    Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy,more » we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. Lastly, this opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.« less

  13. Development and Application of Low Energy X-Ray and Electron Physics.

    DTIC Science & Technology

    1984-03-14

    the other with a specially designed streak camera. D. X-Ray Optics 1. Analyzers and Monochromators Along with our theoretical model calculations for...stearate and lead behenate (2d-spacings of 80, 100 and 120 A, respectively) that have reached the theoretically predicted values for peak, integrated...energy secondary electron energy photoemission, considerably more theoretical and ex- region. The secondary electron spectrum peaks at about perimental

  14. Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser

    DOE PAGES

    Gorobtsov, O. Yu.; Mukharamova, N.; Lazarev, S.; ...

    2018-02-02

    X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-ray radiation with femtosecond pulse duration. Currently, they are widely used in biology and material science. Knowledge of the XFEL statistical properties during an experiment may be vitally important for the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brown and Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us to determine the XFEL statistical properties directly from the Bragg peaks originating from colloidal crystals. This approach is different from the traditional one when HBT interferometry is performed inmore » the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatial coherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds for the monochromatized beam, which is significantly shorter than expected from the electron bunch measurements.« less

  15. Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorobtsov, O. Yu.; Mukharamova, N.; Lazarev, S.

    X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-ray radiation with femtosecond pulse duration. Currently, they are widely used in biology and material science. Knowledge of the XFEL statistical properties during an experiment may be vitally important for the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brown and Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us to determine the XFEL statistical properties directly from the Bragg peaks originating from colloidal crystals. This approach is different from the traditional one when HBT interferometry is performed inmore » the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatial coherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds for the monochromatized beam, which is significantly shorter than expected from the electron bunch measurements.« less

  16. Electron Beams Escaping the Sun: Hard X-ray Diagnostics of Jet-related Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Glesener, L.; Musset, S.; Saint-Hilaire, P.; Fleishman, G. D.; Krucker, S.; Christe, S.; Shih, A. Y.

    2017-12-01

    Coronal jets, which arise via an interaction between closed and open magnetic field, offer a convenient configuration for accelerated electrons to escape the low corona. Jets occur in all regions of the Sun, but those flare-related jets that occur in active regions are associated with bremsstrahlung hard X-rays (HXRs) from accelerated electrons. However, HXR measurement of the escaping beams themselves is elusive as it requires extremely high sensitivity. Jets are strongly correlated with Type III radio bursts in the corona and in interplanetary space. In this poster we present RHESSI observations of HXRs from flare-related jets, including multiwavelength analysis (with extreme ultraviolet and radio emission) and modeling of the emitting electron populations. We also present predicted observations of Type III-emitting electron beams by the FOXSI Small Explorer, which is currently undergoing a NASA Phase A concept study. FOXSI will measure HXRs from jets and flares in the low corona, providing quantitative diagnostics of accelerated electron beams at their origin. These same electron beams will be measured at higher altitudes by instruments aboard NASA's Parker Solar Probe and ESA's Solar Orbiter. With a planned launch in the rising phase of Solar Cycle 25, FOXSI will be ideally timed and optimized for collaborative study of electron beams escaping the Sun.

  17. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    NASA Astrophysics Data System (ADS)

    Lioliou, G.; Barnett, A. M.

    2016-11-01

    Results characterizing GaAs p+-i-n+ mesa photodiodes with a 10 μm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 μm and 400 μm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm2 to 67 nA/cm2 at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. 55Fe X-ray spectra were obtained using one 200 μm diameter device and one 400 μm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 μm and 740 eV using the 400 μm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. 63Ni beta particle spectra obtained using the 200 μm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  18. Proposed imaging of the ultrafast electronic motion in samples using x-ray phase contrast.

    PubMed

    Dixit, Gopal; Slowik, Jan Malte; Santra, Robin

    2013-03-29

    Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.

  19. Proposed Imaging of the Ultrafast Electronic Motion in Samples using X-Ray Phase Contrast

    NASA Astrophysics Data System (ADS)

    Dixit, Gopal; Slowik, Jan Malte; Santra, Robin

    2013-03-01

    Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11 636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the Laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.

  20. Generation of subterawatt-attosecond pulses in a soft x-ray free-electron laser

    DOE PAGES

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...

    2016-08-15

    Here, we propose a novel scheme to generate attosecond soft x rays in a self-seeded free-electron laser (FEL) suitable for enabling attosecond spectroscopic investigations. A time-energy chirped electron bunch with additional sinusoidal energy modulation is adopted to produce a short seed pulse through a self-seeding monochromator. This short seed pulse, together with high electron current spikes and a cascaded delay setup, enables a high-efficiency FEL with a fresh bunch scheme. Simulations show that using the Linac Coherent Light Source (LCLS) parameters, soft x-ray pulses with a FWHM of 260 attoseconds and a peak power of 0.5 TW can be obtained.more » This scheme also has the feature of providing a stable central wavelength determined by the self-seeding monochromator.« less

  1. Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2016-08-01

    Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0).

  2. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOEpatents

    Radley, Ian [Glenmont, NY; Bievenue, Thomas J [Delmar, NY; Burdett, John H [Charlton, NY; Gallagher, Brian W [Guilderland, NY; Shakshober, Stuart M [Hudson, NY; Chen, Zewu [Schenectady, NY; Moore, Michael D [Alplaus, NY

    2008-06-08

    An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  3. High brightness fully coherent x-ray amplifier seeded by a free-electron laser oscillator

    NASA Astrophysics Data System (ADS)

    Li, Kai; Yan, Jiawei; Feng, Chao; Zhang, Meng; Deng, Haixiao

    2018-04-01

    X-ray free-electron laser oscillator (XFELO) is expected to be a cutting-edge tool for fully coherent x-ray laser generation, and undulator taper technique is well-known for considerably increasing the efficiency of free-electron lasers (FELs). In order to combine the advantages of these two schemes, FEL amplifier seeded by XFELO is proposed by simply using a chirped electron beam. With the right choice of the beam parameters, the bunch tail is within the gain bandwidth of XFELO, and lase to saturation, which will be served as a seeding for further amplification. Meanwhile, the bunch head which is outside the gain bandwidth of XFELO, is preserved and used in the following FEL amplifier. It is found that the natural "double-horn" beam current, as well as residual energy chirp from chicane compressor, are quite suitable for the new scheme. Inheriting the advantages from XFELO seeding and undulator tapering, it is feasible to generate nearly terawatt level, fully coherent x-ray pulses with unprecedented shot-to-shot stability, which might open up new scientific opportunities in various research fields.

  4. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-02-10

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10 23 cm ₋3more » in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.« less

  5. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsten, Bruce E.; Barnes, Cris W.; Bishofberger, Kip A.

    2011-01-01

    The proposed Matter-Radiation Interactions in Extremes (MaRIE) facility at the Los Alamos National Laboratory will include a 50-keV X-Ray Free-Electron Laser (XFEL), a significant extension from planned and existing XFEL facilities. To prevent an unacceptably large energy spread arsing from energy diffusion, the electron beam energy should not exceed 20 GeV, which puts a significant constraint on the beam emittance. A 100-pC baseline design is presented along with advanced technology options to increase the photon flux and to decrease the spectral bandwidth through pre-bunching the electron beam.

  6. Time-dependent Electron Acceleration in Blazar Transients: X-Ray Time Lags and Spectral Formation

    NASA Astrophysics Data System (ADS)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D.

    2016-06-01

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ-ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using BeppoSAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.

  7. TIME-DEPENDENT ELECTRON ACCELERATION IN BLAZAR TRANSIENTS: X-RAY TIME LAGS AND SPECTRAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D., E-mail: pbecker@gmu.edu, E-mail: tlewis13@gmu.edu, E-mail: justin.finke@nrl.navy.mil

    2016-06-20

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ -ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using Beppo SAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution formore » the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.« less

  8. Electron trapping in evolving coronal structures during a large gradual hard X-ray/radio burst

    NASA Technical Reports Server (NTRS)

    Bruggmann, G.; Vilmer, N.; Klein, K.-L.; Kane, S. R.

    1994-01-01

    Gradual hard X-ray/radio bursts are characterized by their long duration, smooth time profile, time delays between peaks at different hard X-ray energies and microwaves, and radiation from extended sources in the low and middle corona. Their characteristic properties have been ascribed to the dynamic evolution of the accelerated electrons in coronal magnetic traps or to the separate acceleration of high-energy electrons in a 'second step' process. The information available so far was drawn from quality considerations of time profiles or even only from the common occurrence of emissions in different spectral ranges. This paper presents model computations of the temporal evolution of hard X-ray and microwave spectra, together with a qualitative discussion of radio lightcurves over a wide spectral range, and metric imaging observations. The basis hypothesis investigated is that the peculiar 'gradual' features can be related to the dynamical evolution of electrons injected over an extended time interval in a coronal trap, with electrons up to relativistic energies being injected simultaneously. The analyzed event (26 April. 1981) is particularly challenging to this hypothesis because of the long time delays between peaks at different X-ray energies and microwave frequencies. The observations are shown to be consistent with the hypothesis, provided that the electrons lose their energy by Coulomb collisions and possibly betatron deceleration. The access of the electrons to different coronal structures varies in the course of the event. The evolution and likely destabilization of part of the coronal plasma-magnetic field configuration is of crucial influence in determining the access to these structures and possibly the dynamical evolution of the trapped electrons through betatron deceleration in the late phase of the event.

  9. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials.

    PubMed

    Du, Ming; Jacobsen, Chris

    2018-01-01

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Finally, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In-Orbit Performance of the Digital Electronics for the X-Ray Microcalorimeter Onboard the Hitomi Satellite

    NASA Astrophysics Data System (ADS)

    Tsujimoto, M.; Tashiro, M. S.; Ishisaki, Y.; Yamada, S.; Seta, H.; Mitsuda, K.; Boyce, K. R.; Eckart, M. E.; Kilbourne, C. A.; Leutenegger, M. A.; Porter, F. S.; Kelley, R. L.

    2018-03-01

    The pulse shape processor is the onboard digital electronics unit of the X-ray microcalorimeter instrument—the soft X-ray spectrometer—onboard the Hitomi satellite. It processes X-ray events using the optimum filtering with limited resources. It was operated for 36 days in orbit continuously without issues and met the requirement of processing a 150 s^{-1} event rate during the observation of bright sources. Here, we present the results obtained in orbit, focusing on its performance as the onboard digital signal processing unit of an X-ray microcalorimeter.

  11. Electron-positron pairs, Compton reflection, and the X-ray spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Ghisellini, Gabriele; George, Ian M.; Fabian, A. C.; Svensson, Roland; Done, Chris

    1990-01-01

    It is shown here that reprocessing of radiation fron nonthermal pair cascades by cold material in the central parts of active galactic nuclei (AGN) gives rise to X-ray and gamma-ray spectra that satisfy current observational constraints. An average 1-30 keV X-ray spectral index alpha(x) of about 0.7 in the compact range 30-300 is obtained for a wide range of Lorentz factors of the injected electrons. The gamma-ray spectra are steep, with alpha(gamma) about two, and satisfy the observational constraints. Radiation from pair cascades exhibits steep power law decreases in soft X-rays similar to those observed in AGN. The overall picture is consistent with AGN having an accretion disk which intercepts and reprocesses a substantial fraction of the nonthermal continuum incident upon it from above and below.

  12. Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators

    NASA Astrophysics Data System (ADS)

    Kaplin, V.; Kuznetsov, S.; Uglov, S.

    2018-05-01

    The use of thin (< 10‑3 radiation length) internal targets in cyclic accelerators leads to multiple passes (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.

  13. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, W.; College of Science, National University of Defense Technology, Changsha 410073; Zhuo, H. B.

    2013-10-21

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ≤200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ∼160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ≥5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecondmore » physics.”.« less

  14. Multicascade X-Ray Free-Electron Laser with Harmonic Multiplier and Two-Frequency Undulator

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K. V.

    2018-06-01

    The feasibility of generation of powerful x-ray radiation by a cascade free-electron laser (FEL) with amplification of higher harmonics using a two-frequency undulator is studied. To analyze the FEL operation, a complex phenomenological single-pass FEL model is developed and used. It describes linear and nonlinear generation of harmonics in the FEL with seed laser that takes into account initial electron beam noise and describes all main losses of each harmonic in each FEL cascade. The model is also calibrated against and approved by the experimental FEL data and available results of three-dimensional numerical simulation. The electron beam in the undulator is assumed to be matched and focused, and the dynamics of power in the singlepass FEL with cascade harmonic multipliers is investigated to obtain x-ray laser radiation in the FEL having the shortest length, beam energy, and frequency of the seed laser as low as possible. In this context, the advantages of the two-frequency undulator used for generation of harmonics are demonstrated. The evolution of harmonics in a multicascade FEL with multiplication of harmonics is investigated. The operation of the cascade FEL at the wavelength λ = 1.14 nm, generating 30 MW already on 38 m with the seed laser operating at a wavelength of 11.43 nm corresponding to the maximal reflectivity of the multilayered mirror MoRu/Be coating is investigated. In addition, the operation of the multicascade FEL with accessible seed UVlaser operating at a wavelength of 157 nm (F2 excimer UV-laser) and electron beam with energy of 0.5 GeV is investigated. X-ray radiation simulated in it at the wavelength λ 3.9 nm reaches power of 50 MW already at 27 m, which is by two orders of magnitude shorter than 3.4 km of the x-ray FEL recently put into operation in Europe.

  15. Variable soft X-ray excesses in active galactic nuclei from nonthermal electron-positron pair cascades

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Coppi, Paolo S.

    1991-01-01

    In the present study of the formation of steep soft X-ray excesses that are superposed on flatter, hard X-ray power-law spectra in nonthermal electron-positron pair cascade sources, the soft excess in pair-cascade AGN models appears as a steep power law superposed on the tail of the UV bump and the flat nonthermal (hard X-ray) power law. The model-parameter space in which an excess in soft X-rays is visible is ascertained, and the time-variability of soft excesses in pair cascade models is examined. It is established that the parameter space in which soft excesses appear encompasses the range of preferred input parameters for a recently development Compton reflection model of UV and X-ray emission from the central engine of an AGN.

  16. Analysis of RNA structure using small-angle X-ray scattering

    PubMed Central

    Cantara, William A.; Olson, Erik D.; Musier-Forsyth, Karin

    2016-01-01

    In addition to their role in correctly attaching specific amino acids to cognate tRNAs, aminoacyl-tRNA synthetases (aaRS) have been found to possess many alternative functions and often bind to and act on other nucleic acids. In contrast to the well-defined 3D structure of tRNA, the structures of many of the other RNAs recognized by aaRSs have not been solved. Despite advances in the use of X-ray crystallography (XRC), nuclear magnetic resonance (NMR) spectroscopy and cryo-electron microscopy (cryo-EM) for structural characterization of biomolecules, significant challenges to solving RNA structures still exist. Recently, small-angle X-ray scattering (SAXS) has been increasingly employed to characterize the 3D structures of RNAs and RNA-protein complexes. SAXS is capable of providing low-resolution tertiary structure information under physiological conditions and with less intensive sample preparation and data analysis requirements than XRC, NMR and cryo-EM. In this article, we describe best practices involved in the process of RNA and RNA-protein sample preparation, SAXS data collection, data analysis, and structural model building. PMID:27777026

  17. Simulation Studies of the X-Ray Free-Electron Laser Oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindberg, R. R.; Shyd'ko, Y.; Kim, K.-J

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include transverse effects and realistic Bragg crystal properties with the two-dimensional code GINGER. In the present cases considered the radiation divergence is much narrower than the crystal acceptance, and the numerical algorithm can be simplified by ignoring the finite angular bandwidth of the crystal. In this regime GINGER shows that the saturated x-ray pulses have 109 photons and are nearly Fourier-limited with peak powers in excess of 1 MW. Wealso include preliminary results for a four-mirror cavity that can be tuned in wavelength over a few percent, with futuremore » plans to incorporate the full transverse response of the Bragg crystals into GINGER to more accurately model this tunable source.« less

  18. Impact of Oriented Clay Particles on X-Ray Spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Lim, A. J. M. S.; Syazwani, R. N.; Wijeyesekera, D. C.

    2016-07-01

    Understanding the engineering properties of the mineralogy and microfabic of clayey soils is very complex and thus very difficult for soil characterization. Micromechanics of soils recognize that the micro structure and mineralogy of clay have a significant influence on its engineering behaviour. To achieve a more reliable quantitative evaluation of clay mineralogy, a proper sample preparation technique for quantitative clay mineral analysis is necessary. This paper presents the quantitative evaluation of elemental analysis and chemical characterization of oriented and random oriented clay particles using X-ray spectroscopy. Three different types of clays namely marine clay, bentonite and kaolin clay were studied. The oriented samples were prepared by placing the dispersed clay in water and left to settle on porous ceramic tiles by applying a relatively weak suction through a vacuum pump. Images form a Scanning Electron Microscope (SEM) was also used to show the comparison between the orientation patterns of both the sample preparation techniques. From the quantitative analysis of the X-ray spectroscopy, oriented sampling method showed more accuracy in identifying mineral deposits, because it produced better peak intensity on the spectrum and more mineral content can be identified compared to randomly oriented samples.

  19. Electron microprobe mineral analysis guide

    NASA Technical Reports Server (NTRS)

    Brown, R. W.

    1980-01-01

    Electron microprobe mineral analysis guide is a compilation of X-ray tables and spectra recorded from various mineral matrices. Spectra were obtained using electron microprobe, equipped with LiF geared, curved crystal X-ray spectrometers, utilizing typical analytical operating conditions: 15 Kv acceleration potential, 0.02 microampere sample current as measured on a clinopyroxene standard (CP19). Tables and spectra are presented for the majority of elements, fluorine through uranium, occurring in mineral samples from lunar, meteoritic and terrestrial sources. Tables for each element contain relevant analytical information, i.e., analyzing crystal, X-ray peak, background and relative intensity information, X-ray interferences and a section containing notes on the measurement. Originally intended to cover silicates and oxide minerals the tables and spectra have been expanded to cover other mineral phases. Electron microprobe mineral analysis guide is intended as a spectral base to which additional spectra can be added as the analyst encounters new mineral matrices.

  20. Clusters in intense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Bostedt, Christoph

    2012-06-01

    Free-electron lasers can deliver extremely intense, coherent x-ray flashes with femtosecond pulse length, opening the door for imaging single nanoscale objects in a single shot. All matter irradiated by these intense x-ray pulses, however, will be transformed into a highly-excited non-equilibrium plasma within femtoseconds. During the x-ray pulse complex electron dynamics and the onset of atomic disorder will be induced, leading to a time-varying sample. We have performed first experiments about x-ray laser pulse -- cluster interaction with a combined spectroscopy and imaging approach at both, the FLASH free electron laser in Hamburg (Germany) and the LCLS x-ray free-electron laser in Stanford (California). Atomic clusters are ideal for investigating the light - matter interaction because their size can be tuned from the molecular to the bulk regime, thus allowing to distinguish between intra and inter atomic processes. Imaging experiments with xenon clusters show power-density dependent changes in the scattering patterns. Modeling the scattering data indicates that the optical constants of the clusters change during the femtosecond pulse due to the transient creation of high charge states. The results show that ultra fast scattering is a promising approach to study transient states of matter on a femtosecond time scale. Coincident recording of time-of-flight spectra and scattering patterns allows the deconvolution of focal volume and particle size distribution effects. Single-shot single-particle experiments with keV x-rays reveal that for the highest power densities an highly excited and hot cluster plasma is formed for which recombination is suppressed. Time resolved infrared pump -- x-ray probe experiments have started. Here, the clusters are pumped into a nanoplasma state and their time evolution is probed with femtosecond x-ray scattering. The data show strong variations in the scattering patterns stemming from electronic reconfigurations in the cluster

  1. Laboratory Measurements of X-Ray Emissions From Centimeter-Long Streamer Corona Discharges

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Millan, R. M.; McGaw, D. G.; Yu, C. T.; Putter, A. S.; LaBelle, J.; Dwyer, J.

    2017-11-01

    We provide extensive evidence that runaway electron acceleration and subsequent bremsstrahlung X-ray emission are a common feature in negative electrical discharges with voltages as low as 100 kV, indicating that all negative lightning could potentially produce runaway electrons. Centimeter long streamer corona discharges produce bursts of X-ray radiation, emitted by a source highly compact in space and time, leading to photon pileup. Median photon burst energies vary between 33 and 96 keV in 100 kV discharges. Statistical analysis of 5,000+ discharges shows that X-rays are observed in as many as 60% of the triggers, depending on the configuration. X-ray detection is more frequent when streamers are not followed by a spark, the detector is oriented perpendicular to the gap, and a thicker anode is used. In an 8-cm-long gap, X-rays are produced when runaway electrons hit the anode, and the electron acceleration is not necessarily correlated with streamer collisions.

  2. Conjugate observation of electron microburst groups by Bremsstrahlung X-ray and riometer techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siren, J.C.; Rosenberg, T.J.; Detrick, D.

    1980-12-01

    The first evidence is reported of simultaneous conjugate electron microburst group precipitation. Groups of bremsstrahlung X ray microbursts (E>25 keV) were observed during a substorm recovery phase by a balloon-borne scintillation counter over Roberval, Quebec, Canada. The microburst groups were accompanied one-to-one by time-delayed and broadened pulses of ionospheric absorption measured by a high sensitivity 30-MHz riometer at Siple Station, Antarctica (Lapprox. =4.1). For the interval of highest correlation, the absolute lag between the two data sets was 4 +- 1 s, to the limit of the relative timing accuracy. Approximately 2 s of the observed lag had been introducesmore » by a low-pass filter in the riometer data acquistion unit. The remainder (2 s) was due to the ionospheric recombination process, which evidently had a response time (tauapprox.5 s) during this event much shorter than that ordinarily associated with the D region of the ionosphere. Model calculations of the ionspheric response to time-varying precipitation, derived from the profile of the measurement X ray flux, provide a consistent picture of simultaneous microburst group precipitation at conjugate points, absolute absorption and the electron spectrum derived from X rays, the degree of variation in absorption and X ray fluxes, and the characteristic ionospheric time constant at the altitude of maximum energy deposition.« less

  3. Compact double-bunch x-ray free electron lasers for fresh bunch self-seeding and harmonic lasing

    DOE PAGES

    Emma, C.; Feng, Y.; Nguyen, D. C.; ...

    2017-03-03

    This study presents a novel method to improve the longitudinal coherence, efficiency and maximum photon energy of x-ray free electron lasers (XFELs). The method is equivalent to having two separate concatenated XFELs. The first uses one bunch of electrons to reach the saturation regime, generating a high power self-amplified spontaneous emission x-ray pulse at the fundamental and third harmonic. The x-ray pulse is filtered through an attenuator/monochromator and seeds a different electron bunch in the second FEL, using the fundamental and/or third harmonic as an input signal. In our method we combine the two XFELs operating with two bunches, separatedmore » by one or more rf cycles, in the same linear accelerator. We discuss the advantages and applications of the proposed system for present and future XFELs.« less

  4. Analysis of a measurement scheme for ultrafast hole dynamics by few femtosecond resolution X-ray pump-probe Auger spectroscopy.

    PubMed

    Cooper, Bridgette; Kolorenč, Přemysl; Frasinski, Leszek J; Averbukh, Vitali; Marangos, Jon P

    2014-01-01

    Ultrafast hole dynamics created in molecular systems as a result of sudden ionisation is the focus of much attention in the field of attosecond science. Using the molecule glycine we show through ab initio simulations that the dynamics of a hole, arising from ionisation in the inner valence region, evolves with a timescale appropriate to be measured using X-ray pulses from the current generation of SASE free electron lasers. The examined pump-probe scheme uses X-rays with photon energy below the K edge of carbon (275-280 eV) that will ionise from the inner valence region. A second probe X-ray at the same energy can excite an electron from the core to fill the vacancy in the inner-valence region. The dynamics of the inner valence hole can be tracked by measuring the Auger electrons produced by the subsequent refilling of the core hole as a function of pump-probe delay. We consider the feasibility of the experiment and include numerical simulation to support this analysis. We discuss the potential for all X-ray pump-X-ray probe Auger spectroscopy measurements for tracking hole migration.

  5. EDITORIAL: Attosecond and x-ray free-electron laser physics Attosecond and x-ray free-electron laser physics

    NASA Astrophysics Data System (ADS)

    Moshammer, R.; Ullrich, J.

    2009-07-01

    Currently, we are witnessing a revolution in photon science, driven by the vision to time-resolve ultra-fast electronic motion in atoms, molecules, and solids as well as by the quest for the characterization of time-dependent structural changes in large molecules and solids. Quantum jumps in the development of light sources are the key technologies for this emerging field of research. Thus, high harmonic radiation bursts now penetrate the attosecond (10-18 s) regime and free-electron lasers (FELs) deliver ultra-brilliant femtosecond, coherent VUV and x-ray pulses. This special issue presents a snapshot of this ongoing revolution and brings together, for the first time, pioneering results in both of these fields that are expected to evolve synergetically in the future. The volume is based on the spirit of the International Conference on Multi-Photon Processes, ICOMP08, which was held at the Max Planck Institute for Nuclear Physics in Heidelberg in summer 2008. The first contributions include articles that envision tracing electronic motion on an attosecond time scale and its relation to nuclear motion. After more technical papers on the generation of attosecond pulses via high harmonic generation (HHG), molecular and two-electron atomic dynamics in strong optical fields at a typical wavelength of 800 nm are presented pointing to sub-cycle, attosecond features. Making the transition to shorter wavelengths, nonlinear dynamics in atoms and molecules is explored via experimental and theoretical methods, where the present measurements are nearly exclusively performed at FEL sources. A substantial number of articles focus on the investigation of the most simple many- (few-) photon two-electron processes in double ionization of helium at optical and VUV wavelengths, with the goal of characterizing this fundamental reaction, not yet consistently solved theoretically, in spite of huge efforts. Finally, the behaviour of more complex nanoscaled systems, i.e. clusters, is

  6. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    PubMed

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  7. Analysis of solar X-ray data

    NASA Technical Reports Server (NTRS)

    Teske, R. G.

    1972-01-01

    Type III solar bursts occurring in the absence of solar flares were observed to be accompanied by weak X-radiation. The energy scale of an OSO-3 soft X-ray ion chamber was assessed using realistic theoretical X-ray spectra. Relationships between soft solar X-rays and solar activity were investigated. These included optical studies, the role of the Type III acceleration mechanism in establishing the soft X-ray source volume, H alpha flare intensity variations, and gross magnetic field structure.

  8. Tracking reaction dynamics in solution by pump-probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering).

    PubMed

    Kim, Jeongho; Kim, Kyung Hwan; Oang, Key Young; Lee, Jae Hyuk; Hong, Kiryong; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Kim, Tae Kyu; Ihee, Hyotcherl

    2016-03-07

    Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump-probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive to changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions.

  9. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    DOE PAGES

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; ...

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less

  10. Processings of the Workshop on Electron Contamination in X-Ray Astronomy Experiments. [proceedings of conference on effects of extraterrestrial radiation

    NASA Technical Reports Server (NTRS)

    Holt, S. S. (Editor)

    1974-01-01

    The proceedings of a conference to investigate the effects of extraterrestrial radiation and particle contamination of X-ray astronomical data are presented. The subjects discussed include the following: (1) electrons at low altitudes which affect soft X-ray astronomy, (2) the geographical distribution of 100 keV electrons above the earth's atmosphere, (3) midlatitude electron precipitation, (4) particle background observed by X-ray detectors on board Copernicus satellite, and (5) a survey of trapped low energy electrons near the inner boundary of the inner radiation zone as determined by OSO-7.

  11. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    DOE PAGES

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; ...

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore » based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less

  12. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore » based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less

  13. Thick-target bremsstrahlung interpretation of short time-scale solar hard X-ray features

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1983-01-01

    Steady-state analyses of bremsstrahlung hard X-ray production in solar flares are appropriate only if the lifetime of the high energy electrons in the X-ray source is much shorter than the duration of the observed X-ray burst. For a thick-target nonthermal model, this implies that a full time-dependent analysis is required when the duration of the burst is comparable to the collisional lifetime of the injected electrons, in turn set by the lengths and densities of the flaring region. In this paper we present the results of such a time-dependent analysis, and we point out that the intrinsic temporal signature of the thick-target production mechanism, caused by the finite travel time of the electrons through the target, may indeed rule out such a mechanism for extremely short duration hard X-ray events.

  14. Stimulated resonant x-ray Raman scattering with incoherent radiation

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Rohringer, Nina

    2013-11-01

    We present a theoretical study on stimulated electronic Raman scattering in neon by resonant excitation with an x-ray free electron laser (XFEL). This study is in support of the recent experimental demonstration [C. Weninger , Phys. Rev. Lett. (to be published)] of stimulated x-ray Raman scattering. Focusing the broadband XFEL pulses into a cell of neon gas at atmospheric pressure a strong inelastic x-ray scattering signal in the forward direction was observed, as the x-ray energy was varied across the region of core-excited Rydberg states and the K edge. The broadband and intrinsically incoherent x-ray pulses from the XFEL lead to a rich, structured line shape of the scattered radiation. We present a generalized Maxwell-Liouville-von Neumann approach to self-consistently solve for the amplification of the scattered radiation along with the time evolution of the density matrix of the atomic and residual ionic system. An in-depth analysis of the evolution of the emission spectra as a function of the Raman gain is presented. Furthermore, we propose the use of statistical methods to obtain high-resolution scattering data beyond the lifetime broadening despite pumping with incoherent x-ray pulses.

  15. Source Apportionment of Atmospheric Particles by Electron Probe X-Ray Microanalysis and Receptor Models.

    NASA Astrophysics Data System (ADS)

    van Borm, Werner August

    Electron probe X-ray microanalysis (EPXMA) in combination with an automation system and an energy-dispersive X-ray detection system was used to analyse thousands of microscopical particles, originating from the ambient atmosphere. The huge amount of data was processed by a newly developed X-ray correction method and a number of data reduction procedures. A standardless ZAF procedure for EPXMA was developed for quick semi-quantitative analysis of particles starting from simple corrections, valid for bulk samples and modified taking into account the particle finit diameter, assuming a spherical shape. Tested on a limited database of bulk and particulate samples, the compromise between calculation speed and accuracy yielded for elements with Z > 14 accuracies on concentrations less than 10% while absolute deviations remained below 4 weight%, thus being only important for low concentrations. Next, the possibilities for the use of supervised and unsupervised multivariate particle classification were investigated for source apportionment of individual particles. In a detailed study of the unsupervised cluster analysis technique several aspects were considered, that have a severe influence on the final cluster analysis results, i.e. data acquisition, X-ray peak identification, data normalization, scaling, variable selection, similarity measure, cluster strategy, cluster significance and error propagation. A supervised approach was developed using an expert system-like approach in which identification rules are builded to describe the particle classes in a unique manner. Applications are presented for particles sampled (1) near a zinc smelter (Vieille-Montagne, Balen, Belgium), analyzed for heavy metals, (2) in an urban aerosol (Antwerp, Belgium), analyzed for over 20 elements and (3) in a rural aerosol originating from a swiss mountain area (Bern). Thus is was possible to pinpoint a number of known and unknown sources and characterize their emissions in terms of particles

  16. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOEpatents

    Radley, Ian; Bievenue, Thomas J.; Burdett Jr., John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2007-04-24

    An x-ray source assembly (2700) and method of operation are provided having enhanced output stability. The assembly includes an anode (2125) having a source spot upon which electrons (2120) impinge and a control system (2715/2720) for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure (2710) notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  17. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Claudio Pellegrini and the World’s First Hard X-ray Free-Electron Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrini, Claudio

    2015-10-20

    President Obama welcomed SLAC's Claudio Pellegrini inside the Oval Office on Tuesday morning as a recipient of the Enrico Fermi Award, one of the highest honors the U.S. government can give to a scientist. Pellegrini, a visiting scientist and consulting professor at SLAC and distinguished professor emeritus at the University of California, Los Angeles, received the award for research that aided in the development of X-ray free-electron lasers (XFELs) including SLAC's Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility that started up in 2009. Here, Pellegrini describes his efforts that contributed to the realization of SLAC’smore » Linac Coherent Light Source, the world’s first hard X-ray free-electron laser.« less

  19. Behavior of characteristic X-rays from a partial-transmission-type X-ray target.

    PubMed

    Raza, Hamid Saeed; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2013-10-01

    The angular distribution of characteristic X-rays using a partial-transmission tungsten target was analyzed. Twenty four tallies were modeled to cover a 360° envelope around the target. The Monte Carlo N-Particle (MCNP5) simulation results revealed that the characteristic X-ray flux is not always isotropic around the target. Rather, the flux mainly depends on the target thickness and the energy of the incident electron beam. A multi-energy photon generator is proposed to emit high-energy characteristic X-rays, where the target acts as a filter for the low-energy characteristic X-rays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Structural biology at the European X-ray free-electron laser facility

    PubMed Central

    Altarelli, Massimo; Mancuso, Adrian P.

    2014-01-01

    The European X-ray free-electron laser (XFEL) facility, under construction in the Hamburg region, will provide high-peak brilliance (greater than 1033 photons s−1 mm−2 mrad−2 per 0.1% BW), ultrashort pulses (approx. 10 fs) of X-rays, with a high repetition rate (up to 27 000 pulses s−1) from 2016 onwards. The main features of this exceptional X-ray source, and the instrumentation developments necessary to exploit them fully, for application to a variety of scientific disciplines, are briefly summarized. In the case of structural biology, that has a central role in the scientific case of this new facility, the instruments and ancillary laboratories that are being planned and built within the baseline programme of the European XFEL and by consortia of users are also discussed. It is expected that the unique features of the source and the advanced features of the instrumentation will allow operation modes with more efficient use of sample materials, faster acquisition times, and conditions better approaching feasibility of single molecule imaging. PMID:24914145

  1. X-ray compass for determining device orientation

    DOEpatents

    Da Silva, Luiz B.; Matthews, Dennis L.; Fitch, Joseph P.; Everett, Matthew J.; Colston, Billy W.; Stone, Gary F.

    1999-01-01

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  2. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  3. Monitoring Ultrafast Chemical Dynamics by Time-Domain X-ray Photo- and Auger-Electron Spectroscopy.

    PubMed

    Gessner, Oliver; Gühr, Markus

    2016-01-19

    The directed flow of charge and energy is at the heart of all chemical processes. Extraordinary efforts are underway to monitor and understand the concerted motion of electrons and nuclei with ever increasing spatial and temporal sensitivity. The element specificity, chemical sensitivity, and temporal resolution of ultrafast X-ray spectroscopy techniques hold great promise to provide new insight into the fundamental interactions underlying chemical dynamics in systems ranging from isolated molecules to application-like devices. Here, we focus on the potential of ultrafast X-ray spectroscopy techniques based on the detection of photo- and Auger electrons to provide new fundamental insight into photochemical processes of systems with various degrees of complexity. Isolated nucleobases provide an excellent testing ground for our most fundamental understanding of intramolecular coupling between electrons and nuclei beyond the traditionally applied Born-Oppenheimer approximation. Ultrafast electronic relaxation dynamics enabled by the breakdown of this approximation is the major component of the nucleobase photoprotection mechanisms. Transient X-ray induced Auger electron spectroscopy on photoexcited thymine molecules provides atomic-site specific details of the extremely efficient coupling that converts potentially bond changing ultraviolet photon energy into benign heat. In particular, the time-dependent spectral shift of a specific Auger band is sensitive to the length of a single bond within the molecule. The X-ray induced Auger transients show evidence for an electronic transition out of the initially excited state within only ∼200 fs in contrast to theoretically predicted picosecond population trapping behind a reaction barrier. Photoinduced charge transfer dynamics between transition metal complexes and semiconductor nanostructures are of central importance for many emerging energy and climate relevant technologies. Numerous demonstrations of photovoltaic and

  4. An analysis of FtsZ assembly using small angle X-ray scattering and electron microscopy.

    PubMed

    Kuchibhatla, Anuradha; Abdul Rasheed, A S; Narayanan, Janaky; Bellare, Jayesh; Panda, Dulal

    2009-04-09

    Small angle X-ray scattering (SAXS) was used for the first time to study the self-assembly of the bacterial cell division protein, FtsZ, with three different additives: calcium chloride, monosodium glutamate and DEAE-dextran hydrochloride in solution. The SAXS data were analyzed assuming a model form factor and also by a model-independent analysis using the pair distance distribution function. Transmission electron microscopy (TEM) was used for direct observation of the FtsZ filaments. By sectioning and negative staining with glow discharged grids, very high bundling as well as low bundling polymers were observed under different assembly conditions. FtsZ polymers formed different structures in the presence of different additives and these additives were found to increase the bundling of FtsZ protofilaments by different mechanisms. The combined use of SAXS and TEM provided us a significant insight of the assembly of FtsZ and microstructures of the assembled FtsZ polymers.

  5. Echo-Enabled X-Ray Vortex Generation

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Marinelli, A.

    2012-11-01

    A technique to generate high-brightness electromagnetic vortices with tunable topological charge at extreme ultraviolet and x-ray wavelengths is described. Based on a modified version of echo-enabled harmonic generation for free-electron lasers, the technique uses two lasers and two chicanes to produce high-harmonic microbunching of a relativistic electron beam with a corkscrew distribution that matches the instantaneous helical phase structure of the x-ray vortex. The strongly correlated electron distribution emerges from an efficient three-dimensional recoherence effect in the echo-enabled harmonic generation transport line and can emit fully coherent vortices in a downstream radiator for access to new research in x-ray science.

  6. Performance of an electron gun for a high-brightness X-ray generator

    PubMed Central

    Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo

    2008-01-01

    A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm−2. The beam sizes at the rotating anticathode must therefore be within 1.0 mm × 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm × 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm × 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached ∼60 mA with some thermal problems. PMID:18421153

  7. Analysis of a Novel Diffractive Scanning Wire Beam Position Monitor (BPM) for Discriminative Profiling of Electron Vs. X Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatchyn, Roman; /SLAC

    2011-09-01

    Recent numerical studies of Free Electron Lasers (FELs) operating in the Self Amplified Spontaneous Emission (SASE) regime indicate a large sensitivity of the gain to the degree of transverse overlap (and associated phase coherence) between the electron and photon beams traveling down the insertion device. Simulations of actual systems imply that accurate detection and correction for this relative loss of overlap, rather than correction for the absolute departure of the electron beam from a fixed axis, is the preferred function of an FEL amplifier's Beam Position Monitor (BPM) and corrector systems. In this note we propose a novel diffractive BPMmore » with the capability of simultaneously detecting and resolving the absolute (and relative) transverse positions and profiles of electron and x-ray beams co-propagating through an undulator. We derive the equations governing the performance of the BPM and examine its predicted performance for the SLAC Linac Coherent Light Source (LCLS), viz., for profiling multi-GeV electron bunches co-propagating with one-to-several-hundred keV x-ray beams. Selected research and development (r&d) tasks for fabricating and testing the proposed BPM are discussed.« less

  8. Electronic structure of cobalt doped CdSe quantum dots using soft X-ray spectroscopy

    DOE PAGES

    Wright, Joshua T.; Su, Dong; van Buuren, Tony; ...

    2014-08-21

    Here, the electronic structure and magnetic properties of cobalt doped CdSe quantum dots (QDs) are studied using electron microscopy, soft X-ray spectroscopy, and magnetometry. Magnetometry measurements suggest these QDs are superparamagnetic, contrary to a spin-glass state observed in the bulk analogue. Electron microscopy shows well formed QDs, but with cobalt existing as doped into the QD and as unreacted species not contained in the QD. X-ray absorption measurements at the Co L3-edge suggest that changes in spectra features as a function of particle size can be described considering combination of a cobalt ion in a tetrahedral crystal field and anmore » octahedrally coordinated (impurity) phase. With decreasing particle sizes, the impurity phase increases, suggesting that small QDs can be difficult to dope.« less

  9. Hard X-ray spectrum of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Rothschild, R. E.; Marshall, F. E.; Levine, A. M.; Primini, F. A.

    1981-01-01

    Long-term measurements of the hard X-ray spectrum from 3 keV to 8 MeV of the black-hole candidate Cygnus X-1 in its low state are reported. Observations were made from October 26 to November 18, 1977 with the A2 (Cosmic X-ray) and A4 (Hard X-ray and Low-Energy Gamma-Ray) experiments on board HEAO 1 in the spacecraft's scanning mode. The measured spectrum below 200 keV is found to agree well with previous spectra which have been fit by a model of the Compton scattering of optical or UV photons in a very hot plasma of electron temperature 32.4 keV and optical depth 3.9 or 1.6 for spherical or disk geometry, respectively. At energies above 300 keV, however, flux excess is observed which may be accounted for by a distribution of electron temperatures from 15 to about 100 keV.

  10. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  11. Skylab ATM/S-056 X-ray event analyzer: Instrument description, parameter determination, and analysis example (15 June 1973 1B/M3 flare)

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1976-01-01

    The Skylab ATM/S-056 X-Ray Event Analyzer, part of an X-ray telescope experiment, is described. The techniques employed in the analysis of its data to determine electron temperatures and emission measures are reviewed. The analysis of a sample event - the 15 June 1973 1B/M3 flare - is performed. Comparison of the X-Ray Event Analyzer data with that of the SolRad 9 observations indicates that the X-Ray Event Analyzer accurately monitored the sun's 2.5 to 7.25 A X-ray emission and to a lesser extent the 6.1 to 20 A emission. A mean average peak temperature of 15 million K at 1,412 UT and a mean average peak electron density (assuming a flare volume of 10 to the 13 power cu km) of 27 million/cu mm at 1,416 to 1,417 UT are deduced for the event. The X-Ray Event Analyzer data, having a 2.5 s time resolution, should be invaluable in comparisons with other high-time resolution data (e.g., radio bursts).

  12. X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method

    NASA Astrophysics Data System (ADS)

    Pelicano, Christian Mark; Rapadas, Nick Joaquin; Magdaluyo, Eduardo

    2017-12-01

    Zinc oxide (ZnO) nanoparticles were successfully synthesized by a simple precipitation method using zinc acetate and tetramethylammonium hydroxide. The synthesized ZnO nanoparticles were characterized by X-ray Diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The XRD result revealed a hexagonal wurtzite structure for the ZnO nanoparticles. The TEM image showed spherical nanoparticles with an average crystallite size of 6.70 nm. For x-ray peak analysis, Williamson-Hall (W-H) and Size-Strain Plot (SSP) methods were applied to examine the effects of crystallite size and lattice strain on the peak broadening of the ZnO nanoparticles. Based on the calculations, the estimated crystallite sizes and lattice strains obtained are in good agreement with each other.

  13. X-Ray Laser

    DTIC Science & Technology

    1991-01-31

    Reflection in Relativistic Electron Beam Channel Radiation Systems, IEEE Trans. on Plasma Science 16(5), 548 (1988). 3. M. Strauss, P. Amendt, N...Reduced Radiation Losses in a Channeled-Beam X-Ray Laser by Bragg Reflection Coupling, Phys. Rev. A 39(11), 5791 (1989). 6. M. Strauss and N. Rostoker... Radiation Guiding in Channeling Beam X-Ray Laser by Bragg Reflection Coupling, Phys. Rev. A 40(12), 7097 (1989). 91-00870111 llllltl

  14. X-ray photoemission study of NiS2-xSex (x=0.0 1.2)

    NASA Astrophysics Data System (ADS)

    Krishnakumar, S. R.; Sarma, D. D.

    2003-10-01

    Electronic structure of NiS2-xSex system has been investigated for various compositions (x) using x-ray photoemission spectroscopy. An analysis of the core-level as well as the valence-band spectra of NiS2 in conjunction with many-body cluster calculations provides a quantitative description of the electronic structure of this compound. With increasing Se content, the on-site Coulomb correlation strength (U) does not change, while the bandwidth W of the system increases, driving the system from a covalent insulating state to a pd-metallic state.

  15. Synchrotron-based soft X-ray spectroscopic studies of the electronic structure of organic semiconducting molecules

    NASA Astrophysics Data System (ADS)

    Demasi, Alexander

    Organic molecules have been the subject of many scientific studies due to their potential for use in a new generation of optoelectronic and semiconducting devices, such as organic photovoltaics and organic light emitting diodes. These studies are motivated by the fact that organic semiconductor devices have several advantages over traditional inorganic semiconductor devices. Unlike inorganic semiconductors, where the electronic properties are a result of the deliberate introduction of dopants to the material, the properties of organic semiconductors are often intrinsic to the molecules themselves. As a result, organic semiconductor devices are frequently less susceptible to contamination by impurities than their inorganic counterparts, which results in the relatively lower cost of producing such devices. Accurate experimental determination of the bulk and surface electronic structure of organic semiconductors is a prerequisite in developing a comprehensive understanding of such materials. The organic materials studied in this thesis were N,N-Ethylene-bis(1,1,1trifluoropentane-2,4-dioneiminato)-copper(ii) (abbreviated Cu-TFAC), aluminum tris-8hydroxyquinoline (A1g3), lithium quinolate (Liq), tetracyanoquinodimethane (TCNQ), and tetrafluorotetracyanoquinodimethane (F4TCNQ). The electronic structures of these materials were measured with several synchrotron-based x-ray spectroscopies. X-ray photoemission spectroscopy was used to measure the occupied total density of states and the core-level states of the aforementioned materials. X-ray absorption spectroscopy (XAS) was used to probe the element-specific unoccupied partial density of states (PDOS); its angle-resolved variant was used to measure the orientation of the molecules in a film and, in some circumstances, to gauge the extent of an organic film's crystallinity. Most notably, x-ray emission spectroscopy (XES) measures the element- specific occupied PDOS and, when aided by XAS, resonant XES can additionally be

  16. Novel Chalcogenide Materials for x ray and Gamma ray Detection

    DTIC Science & Technology

    2016-05-01

    REPORT OF PROJECT: Novel chalcogenide materials for x - ray and - ray detection HDTRA1-09-1-0044 Mercouri Kanatzidis , PI Northwestern University...investigated semiconductor for hard radiation detection. The μτ products for electrons however are lower than those of CZT, the leading material for X - ray ...Formation of native defects in the gamma- ray detector material, Cs2Hg6S7 Semiconductor devices detecting hard radiation such as x - rays and

  17. Compton spectra of atoms at high x-ray intensity

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  18. X-ray data booklet. Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, D.

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  19. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    DOE PAGES

    Li, S.; Alverson, S.; Bohler, D.; ...

    2017-08-17

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency.more » Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.« less

  20. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Alverson, S.; Bohler, D.

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency.more » Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.« less

  1. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    NASA Astrophysics Data System (ADS)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.; Gilevich, S.; Huang, Z.; Miahnahri, A.; Ratner, D.; Robinson, J.; Zhou, F.

    2017-08-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μ m . Our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  2. Technological Challenges to X-Ray FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I atmore » 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.« less

  3. Analysis of electronic structure of amorphous InGaZnO/SiO{sub 2} interface by angle-resolved X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueoka, Y.; Ishikawa, Y.; Maejima, N.

    2013-10-28

    The electronic structures of amorphous indium gallium zinc oxide (a-IGZO) on a SiO{sub 2} layers before and after annealing were observed by constant final state X-ray photoelectron spectroscopy (CFS-XPS) and X-ray adsorption near-edge structure spectroscopy (XANES). From the results of angle-resolved CFS-XPS, the change in the electronic state was clearly observed in the a-IGZO bulk rather than in the a-IGZO/SiO{sub 2} interface. This suggests that the electronic structures of the a-IGZO bulk strongly affected the thin-film transistor characteristics. The results of XANES indicated an increase in the number of tail states upon atmospheric annealing (AT). We consider that the increasemore » in the number of tail states decreased the channel mobility of AT samples.« less

  4. Metalloprotein structures at ambient conditions and in real-time: biological crystallography and spectroscopy using X-ray free electron lasers

    DOE PAGES

    Kern, Jan; Yachandra, Vittal K.; Yano, Junko

    2015-09-02

    We have studied the structure of enzymes and the chemistry at the catalytic sites, intensively and have acquired an understanding of the atomic-scale chemistry which requires a new approach beyond steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure of metallo-enzymes at ambient conditions, while overcoming the severe X-ray-induced changes to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by the intense and ultra-short femtosecond (fs) X-ray pulses from an X-ray free electron laser (XFEL) by acquiring a signal before the samplemore » is destroyed. Our review describes the recent and pioneering uses of XFELs to study the protein structure and dynamics of metallo-enzymes using crystallography and scattering, as well as the chemical structure and dynamics of the catalytic complexes (charge, spin, and covalency) using spectroscopy during the reaction to understand the electron-transfer processes and elucidate the mechanism.« less

  5. Metalloprotein structures at ambient conditions and in real-time: biological crystallography and spectroscopy using X-ray free electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kern, Jan; Yachandra, Vittal K.; Yano, Junko

    We have studied the structure of enzymes and the chemistry at the catalytic sites, intensively and have acquired an understanding of the atomic-scale chemistry which requires a new approach beyond steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure of metallo-enzymes at ambient conditions, while overcoming the severe X-ray-induced changes to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by the intense and ultra-short femtosecond (fs) X-ray pulses from an X-ray free electron laser (XFEL) by acquiring a signal before the samplemore » is destroyed. Our review describes the recent and pioneering uses of XFELs to study the protein structure and dynamics of metallo-enzymes using crystallography and scattering, as well as the chemical structure and dynamics of the catalytic complexes (charge, spin, and covalency) using spectroscopy during the reaction to understand the electron-transfer processes and elucidate the mechanism.« less

  6. Massively parallel X-ray holography

    NASA Astrophysics Data System (ADS)

    Marchesini, Stefano; Boutet, Sébastien; Sakdinawat, Anne E.; Bogan, Michael J.; Bajt, Saša; Barty, Anton; Chapman, Henry N.; Frank, Matthias; Hau-Riege, Stefan P.; Szöke, Abraham; Cui, Congwu; Shapiro, David A.; Howells, Malcolm R.; Spence, John C. H.; Shaevitz, Joshua W.; Lee, Joanna Y.; Hajdu, Janos; Seibert, Marvin M.

    2008-09-01

    Advances in the development of free-electron lasers offer the realistic prospect of nanoscale imaging on the timescale of atomic motions. We identify X-ray Fourier-transform holography as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array placed next to the sample, multiplies the efficiency of X-ray Fourier transform holography by more than three orders of magnitude, approaching that of a perfect lens, and provides holographic images with both amplitude- and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expect to obtain higher spatial resolution ultrafast movies of transient states of matter.

  7. X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants.

    PubMed

    van der Ent, Antony; Przybyłowicz, Wojciech J; de Jonge, Martin D; Harris, Hugh H; Ryan, Chris G; Tylko, Grzegorz; Paterson, David J; Barnabas, Alban D; Kopittke, Peter M; Mesjasz-Przybyłowicz, Jolanta

    2018-04-01

    Contents Summary 432 I. Introduction 433 II. Preparation of plant samples for X-ray micro-analysis 433 III. X-ray elemental mapping techniques 438 IV. X-ray data analysis 442 V. Case studies 443 VI. Conclusions 446 Acknowledgements 449 Author contributions 449 References 449 SUMMARY: Hyperaccumulators are attractive models for studying metal(loid) homeostasis, and probing the spatial distribution and coordination chemistry of metal(loid)s in their tissues is important for advancing our understanding of their ecophysiology. X-ray elemental mapping techniques are unique in providing in situ information, and with appropriate sample preparation offer results true to biological conditions of the living plant. The common platform of these techniques is a reliance on characteristic X-rays of elements present in a sample, excited either by electrons (scanning/transmission electron microscopy), protons (proton-induced X-ray emission) or X-rays (X-ray fluorescence microscopy). Elucidating the cellular and tissue-level distribution of metal(loid)s is inherently challenging and accurate X-ray analysis places strict demands on sample collection, preparation and analytical conditions, to avoid elemental redistribution, chemical modification or ultrastructural alterations. We compare the merits and limitations of the individual techniques, and focus on the optimal field of applications for inferring ecophysiological processes in hyperaccumulator plants. X-ray elemental mapping techniques can play a key role in answering questions at every level of metal(loid) homeostasis in plants, from the rhizosphere interface, to uptake pathways in the roots and shoots. Further improvements in technological capabilities offer exciting perspectives for the study of hyperaccumulator plants into the future. © 2017 University of Queensland. New Phytologist © 2017 New Phytologist Trust.

  8. X-ray compass for determining device orientation

    DOEpatents

    Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

    1999-06-15

    An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

  9. Searching for X-ray emission from AGB stars

    NASA Astrophysics Data System (ADS)

    Ramstedt, S.; Montez, R.; Kastner, J.; Vlemmings, W. H. T.

    2012-07-01

    Context. Magnetic fields have been measured around asymptotic giant branch (AGB) stars of all chemical types using maser polarization observations. If present, a large-scale magnetic field would lead to X-ray emission, which should be observable using current X-ray observatories. Aims: The aim is to search the archival data for AGB stars that are intrinsic X-ray emitters. Methods: We have searched the ROSAT, CXO, and XMM-Newton archives for serendipitous X-ray observations of a sample of ~500 AGB stars. We specifically searched for the AGB stars detected with GALEX. The data is calibrated, analyzed and the X-ray luminosities and temperatures are estimated as functions of the circumstellar absorption. Results: We identify 13 AGB stars as having either serendipitous or targeted observations in the X-ray data archives, however for a majority of the sources the detailed analysis show that the detections are questionable. Two new sources are detected by ROSAT: T Dra and R UMa. The spectral analysis suggests that the emission associated with these sources could be due to coronal activity or interaction across a binary system. Conclusions: Further observations of the detected sources are necessary to clearly determine the origin of the X-ray emission. Moreover, additional objects should be subject to targeted X-ray observations in order to achieve better constraints for the magnetic fields around AGB stars. Appendices are available in electronic form at http://www.aanda.org

  10. Errors in quantitative backscattered electron analysis of bone standardized by energy-dispersive x-ray spectrometry.

    PubMed

    Vajda, E G; Skedros, J G; Bloebaum, R D

    1998-10-01

    Backscattered electron (BSE) imaging has proven to be a useful method for analyzing the mineral distribution in microscopic regions of bone. However, an accepted method of standardization has not been developed, limiting the utility of BSE imaging for truly quantitative analysis. Previous work has suggested that BSE images can be standardized by energy-dispersive x-ray spectrometry (EDX). Unfortunately, EDX-standardized BSE images tend to underestimate the mineral content of bone when compared with traditional ash measurements. The goal of this study is to investigate the nature of the deficit between EDX-standardized BSE images and ash measurements. A series of analytical standards, ashed bone specimens, and unembedded bone specimens were investigated to determine the source of the deficit previously reported. The primary source of error was found to be inaccurate ZAF corrections to account for the organic phase of the bone matrix. Conductive coatings, methylmethacrylate embedding media, and minor elemental constituents in bone mineral introduced negligible errors. It is suggested that the errors would remain constant and an empirical correction could be used to account for the deficit. However, extensive preliminary testing of the analysis equipment is essential.

  11. X-ray Survey of Centaurus A.

    PubMed

    Byram, E T; Chubb, T A; Friedman, H

    1970-07-24

    An x-ray survey of Centaurus A has given marginal evidence of its x-ray flux. If taken as an upper limit on inverse Compton x-rays generated by scattering interactions between relativistic electrons and cosmological background photons, the observation implies an upper limit of close to 3 degrees K for the background radiation temperature.

  12. On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources

    DOE PAGES

    Coppens, Philip; Fournier, Bertrand

    2015-11-11

    Here, the need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  13. PAL-XFEL soft X-ray scientific instruments and X-ray optics: First commissioning results

    NASA Astrophysics Data System (ADS)

    Park, Sang Han; Kim, Minseok; Min, Changi-Ki; Eom, Intae; Nam, Inhyuk; Lee, Heung-Soo; Kang, Heung-Sik; Kim, Hyeong-Do; Jang, Ho Young; Kim, Seonghan; Hwang, Sun-min; Park, Gi-Soo; Park, Jaehun; Koo, Tae-Yeong; Kwon, Soonnam

    2018-05-01

    We report an overview of soft X-ray scientific instruments and X-ray optics at the free electron laser (FEL) of the Pohang Accelerator Laboratory, with selected first-commissioning results. The FEL exhibited a pulse energy of 200 μJ/pulse, a pulse width of <50 fs full width at half maximum, and an energy bandwidth of 0.44% at a photon energy of 850 eV. Monochromator resolving power of 10 500 was achieved. The estimated total time resolution between optical laser and X-ray pulses was <270 fs. A resonant inelastic X-ray scattering spectrometer was set up; its commissioning results are also reported.

  14. Imaging crystal spectrometer for high-resolution x-ray measurements on electron beam ion traps and tokamaks

    DOE PAGES

    Beiersdorfer, P.; Magee, E. W.; Hell, N.; ...

    2016-09-09

    Here, we describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of λ/Δλ ≥ 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions withinmore » the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo 34+, which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components.« less

  15. Electrodynamics of relativistic electron beam x-ray sources

    NASA Astrophysics Data System (ADS)

    Niknejadi, Pardis

    Probing matter at atomic scales provides invaluable information about its structure; as a result interest in sources of x-rays and gamma-rays with high spectral resolution, low angular divergence and small source size has been on the rise. Explorations in this domain require x-ray or gamma-ray sources with high brightness. In the past decade, relativistic electron sources such as synchrotron rings and free electron lasers have proven to be the best technology available for the production of such beams. We1 start with an introduction to the physics of radiation and provide a summary of the theoretical grounds this work is based on. This dissertation is dedicated to different aspects of both fundamental processes of radiation in relativistic electron sources, and critical control and diagnostics that are required for the operation of these sources. Therefore this work is broken into two main parts. In the first part, the electron source that is currently set up at University of Hawai`i at Manoa will be introduced in detail. This source has unique capabilities as it is an inverse-Compton scattering (ICS) source that uses a free electron laser (FEL) with pulses of picosecond duration at ˜ 3 GHz rate for production of a coherent/semi-coherent x-ray beam by means of an optical cavity. After introducing the essential elements of the system and what was achieved prior to this work, we will focus on the requirements for achieving an optimum electron beam matched for the operation of the system which is the main focus of part I of this dissertation. The transport beam line of our system is unique and complex. For this reason, a simulation module has been developed for the study and delivery of an optimal beam. We will discuss the capabilities of this system and its compatibility with other elements that were already installed on the beam line. Finally, we will present results and experimental data as well as guidelines for future operation of the system when the microwave

  16. Scanning electron microscopy/energy dispersive spectrometry fixedbeam or overscan x-ray microanalysis of particles can miss the real structure: x-ray spectrum image mapping reveals the true nature

    NASA Astrophysics Data System (ADS)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2013-05-01

    The typical strategy for analysis of a microscopic particle by scanning electron microscopy/energy dispersive spectrometry x-ray microanalysis (SEM/EDS) is to use a fixed beam placed at the particle center or to continuously overscan to gather an "averaged" x-ray spectrum. While useful, such strategies inevitably concede any possibility of recognizing microstructure within the particle, and such fine scale structure is often critical for understanding the origins, behavior, and fate of particles. Elemental imaging by x-ray mapping has been a mainstay of SEM/EDS analytical practice for many years, but the time penalty associated with mapping with older EDS technology has discouraged its general use and reserved it more for detailed studies that justified the time investment. The emergence of the high throughput, high peak stability silicon drift detector (SDD-EDS) has enabled a more effective particle mapping strategy: "flash" x-ray spectrum image maps can now be recorded in seconds that capture the spatial distribution of major (concentration, C > 0.1 mass fraction) and minor (0.01 <= C <= 0.1) constituents. New SEM/SDD-EDS instrument configurations feature multiple SDDs that view the specimen from widely spaced azimuthal angles. Multiple, simultaneous measurements from different angles enable x-ray spectrometry and mapping that can minimize the strong geometric effects of particles. The NIST DTSA-II software engine is a powerful aid for quantitatively analyzing EDS spectra measured individually as well as for mapping information (available free for Java platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  17. X-ray Topographic Methods and Application to Analysis of Electronic Materials

    NASA Technical Reports Server (NTRS)

    Mayo, W. E.; Liu, H. Y.; Chaudhuri, J.

    1984-01-01

    Three supplementary X-ray techniques new to semiconductor applications are discussed. These are the Computer Aided Rocking Curve Analyzer, the Divergent Beam Method and a new method based on enhanced X-ray flourescence. The first method is used for quantitative mapping of an elastic or plastic strain field while the other two methods are used only to measure elastic strains. The divergent beam method is used for measuring the full strain tensor while the microfluorescence method is useful for monitoring strain uniformity. These methods are discussed in detail and examples of their application is presented. Among these are determination of the full strain ellipsoid in state-of-the-art liquid phase epitaxy deposited III-V epitaxial films; mapping of the plastic strain concentrations in tensile deformed Si; and quantitative determination of damage in V3Si due to ion implantation.

  18. Structural biology at the European X-ray free-electron laser facility.

    PubMed

    Altarelli, Massimo; Mancuso, Adrian P

    2014-07-17

    The European X-ray free-electron laser (XFEL) facility, under construction in the Hamburg region, will provide high-peak brilliance (greater than 10(33) photons s(-1) mm(-2) mrad(-2) per 0.1% BW), ultrashort pulses (approx. 10 fs) of X-rays, with a high repetition rate (up to 27 000 pulses s(-1)) from 2016 onwards. The main features of this exceptional X-ray source, and the instrumentation developments necessary to exploit them fully, for application to a variety of scientific disciplines, are briefly summarized. In the case of structural biology, that has a central role in the scientific case of this new facility, the instruments and ancillary laboratories that are being planned and built within the baseline programme of the European XFEL and by consortia of users are also discussed. It is expected that the unique features of the source and the advanced features of the instrumentation will allow operation modes with more efficient use of sample materials, faster acquisition times, and conditions better approaching feasibility of single molecule imaging. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Electron intensity modulation for mixed-beam radiation therapy with an x-ray multi-leaf collimator

    NASA Astrophysics Data System (ADS)

    Weinberg, Rebecca

    The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1

  20. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makita, M.; Karvinen, P.; Zhu, D.

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 10 4. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  1. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE PAGES

    Makita, M.; Karvinen, P.; Zhu, D.; ...

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore » >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of Ε/δΕ > 3 × 10 4. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  2. In Situ Mineralogical Analysis of Planetary Materials Using X-Ray Diffraction and X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D.; Vaniman, D.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Remote observations of Mars have led scientists to believe that its early climate was similar to that of the early Earth, having had abundant liquid water and a dense atmosphere. One of the most fascinating questions of recent times is whether simple bacterial life developed on Mars (as it did on the Earth) during this early element period. Analyses of SNC meteorites have broadened considerably our knowledge of the chemistry of certain types of Martian rocks, underscoring the tantalizing possibility of early hydrothermal systems and even of ancient bacterial life. Detailed analyses of SNC meteorites in Terrestrial laboratories utilize the most sophisticated organic, isotopic and microscopic techniques in existence. Indeed; it is unlikely that the key biogenic indicators used in McKay et al (ibid) could be identified by a remote instrument on the surface of Mars. As a result, it is probable that any robotic search for evidence of an ancient Martian biosphere will have as its focus the identification of key minerals in likely host rocks rather than the direct detection of organic or isotopic biomarkers. Even on a sample return mission, mineralogical screening will be utilized to choose the most likely candidate rocks. X-ray diffraction (XRD) is the only technique that can provide a direct determination of the crystal structures of the phases present within a sample. When many different crystalline phases are present, quantitative analysis is better constrained if used in conjunction with a determination of elemental composition, obtainable by X-ray fluorescence (XRF) using the same X-ray source as for XRD. For planetary surface analysis, a remote instrument combining XRD and XRF could be used for mineralogical characterization of both soils and rocks. We are designing a remote XRD/XRF instrument with this objective in mind. The instrument concept pays specific attention to constraints in sample preparation, weight, volume, power, etc. Based on the geometry of a

  3. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble

    PubMed Central

    Yan, Wenchao; Chen, Liming; Li, Dazhang; Zhang, Lu; Hafz, Nasr A. M.; Dunn, James; Ma, Yong; Huang, Kai; Su, Luning; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 1018 cm−3). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron–photon source can be ideal for pump–probe applications with femtosecond time resolution. PMID:24711405

  4. Electron paramagnetic resonance, scanning electron microscopy with energy dispersion X-ray spectrometry, X-ray powder diffraction, and NMR characterization of iron-rich fired clays.

    PubMed

    Presciutti, Federica; Capitani, Donatella; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni; Costantino, Ferdinando; Viel, Stéphane; Segre, Annalaura

    2005-12-01

    The aim of this study is to clarify the structure of an iron-rich clay and the structural changes involved in the firing process as a preliminary step to get information on ancient ceramic technology. To this purpose, illite-rich clay samples fired at different temperatures were characterized using a multitechnique approach, i.e., by electron paramagnetic resonance, scanning electron microscopy with electron dispersion X-ray spectrometry, X-ray powder diffraction, magic angle spinning and multiple quantum magic angle spinning NMR. During firing, four main reaction processes occur: dehydration, dehydroxylation, structural breakdown, and recrystallization. When the results are combined from all characterization methods, the following conclusions could be obtained. Interlayer H2O is located close to aluminum in octahedral sites and is driven off at temperatures lower than 600 degrees C. Between 600 and 700 degrees C dehydroxylation occurs whereas, between 800 and 900 degrees C, the aluminum in octahedral sites disappears, due to the breakdown of the illite structure, and all iron present is oxidized to Fe3+. In samples fired at 1000 and 1100 degrees C iron clustering was observed as well as large single crystals of iron with the occurrence of ferro- or ferrimagnetic effects. Below 900 degrees C the aluminum in octahedral sites presents a continuous distribution of chemical shift, suggesting the presence of slightly distorted sites. Finally, over the whole temperature range, the presence of at least two tetrahedral aluminum sites was revealed, characterized by different values of the quadrupolar coupling constant.

  5. Ground calibrations of the X-ray detector system of the Solar Intensity X-ray Spectrometer (SIXS) on board BepiColombo

    NASA Astrophysics Data System (ADS)

    Huovelin, Juhani; Lehtolainen, Arto; Genzer, Maria; Korpela, Seppo; Esko, Eero; Andersson, Hans

    2014-05-01

    SIXS includes X-ray and particle detector systems for the BepiColombo Mercury Planetary Orbiter (MPO). Its task is to monitor the direct solar X-rays and energetic particles in a wide field of view in the energy range of 1-20 keV (X-rays), 0.1-3 MeV (electrons) and 1-30 MeV (protons). The main purpose of these measurements is to provide quantitative information on the high energy radiation incident on Mercury's surface which causes the X-ray glow of the planet measured by the MIXS instrument. The X-ray and particle measurements of SIXS are also useful for investigations of the solar corona and the magnetosphere of Mercury. The ground calibrations of the X-ray detectors of the SIXS flight model were carried out in the X-ray laboratory of the Helsinki University during May and June 2012. The aim of the ground calibrations was to characterize the performance of the SIXS instrument's three High-Purity Silicon PIN X-ray detectors and verify that they fulfil their scientific performance requirements. The calibrations included the determination of the beginning of life energy resolution at different operational temperatures, determination of the detector's sensitivity within the field of view as a function of the off-axis and roll angles, pile-up tests for determining the speed of the read out electronics, measurements of the low energy threshold of the energy scale, a cross-calibration with the SMART-1 XSM flight spare detector, and the determination of the temperature dependence of the energy scale. An X-ray tube and the detectors' internal Ti coated 55Fe calibration sources were used as primary X-ray sources. In addition, two external fluorescence sources were used as secondary X-ray sources in the determination of the energy resolutions and in the comparison calibration with the SMART-1 XSM. The calibration results show that the detectors fulfill all of the scientific performance requirements. The ground calibration data combined with the instrument house-keeping data

  6. Handbook Of X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Arnaud, Keith A.; Smith, R. K.; Siemiginowska, A.; Edgar, R. J.; Grant, C. E.; Kuntz, K. D.; Schwartz, D. A.

    2011-09-01

    This poster advertises a book to be published in September 2011 by Cambridge University Press. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.

  7. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator

    PubMed Central

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron–betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators. PMID:24026068

  8. a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source

    NASA Astrophysics Data System (ADS)

    Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.

    2007-09-01

    A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.

  9. a High-Density Electron Beam and Quad-Scan Measurements at Pleiades Thomson X-Ray Source

    NASA Astrophysics Data System (ADS)

    Lim, J. K.; Rosenzweig, J. B.; Anderson, S. G.; Tremaine, A. M.

    A recent development of the photo-cathode injector technology has greatly enhanced the beam quality necessary for the creation of high density/high brightness electron beam sources. In the Thomson backscattering x-ray experiment, there is an immense need for under 20 micron electron beam spot at the interaction point with a high-intensity laser in order to produce a large x-ray flux. This has been demonstrated successfully at PLEIADES in Lawrence Livermore National Laboratory. For this Thomson backscattering experiment, we employed an asymmetric triplet, high remanence permanent-magnet quads to produce smaller electron beams. Utilizing highly efficient optical transition radiation (OTR) beam spot imaging technique and varying electron focal spot sizes enabled a quadrupole scan at the interaction zone. Comparisons between Twiss parameters obtained upstream to those parameter values deduced from PMQ scan will be presented in this report.

  10. High resolution energy-angle correlation measurement of hard x rays from laser-Thomson backscattering.

    PubMed

    Jochmann, A; Irman, A; Bussmann, M; Couperus, J P; Cowan, T E; Debus, A D; Kuntzsch, M; Ledingham, K W D; Lehnert, U; Sauerbrey, R; Schlenvoigt, H P; Seipt, D; Stöhlker, Th; Thorn, D B; Trotsenko, S; Wagner, A; Schramm, U

    2013-09-13

    Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.

  11. Talbot-Lau X-ray Deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-04-21

    Talbot-Lau X-ray Deflectometry has been developed as an electron density diagnostic for High Energy Density plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping was demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moire pattern formation and grating survival was also observed using a copper x-pinch driven at 400 kA, ~1 kA/ns. Lastly, these results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  12. Measurement and Instrumentation Challenges at X-ray Free Electron Lasers

    NASA Astrophysics Data System (ADS)

    Feng, Yiping

    2015-03-01

    X-ray Free Electron Laser sources based on the Self Amplified Spontaneous Emission process are intrinsically chaotic, giving rise to pulse-to-pulse fluctuations in all physical properties, including intensity, position and pointing, spatial and temporal profiles, spectral content, timing, and coherence. These fluctuations represents special challenges to users whose experiments are designed to reveal small changes in the underlying physical quantities, which would otherwise be completely washed out without using the proper diagnostics tools. Due to the X-ray FEL's unique characteristics such as the unprecedented peak power and nearly full spatial coherence, there are many technical challenges in conceiving and implementing these devices that are highly transmissive, provide sufficient signal-to-noise ratio, and most importantly work in the single-shot mode. Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford Univ.

  13. FreeDam - A webtool for free-electron laser-induced damage in femtosecond X-ray crystallography

    NASA Astrophysics Data System (ADS)

    Jönsson, H. Olof; Östlin, Christofer; Scott, Howard A.; Chapman, Henry N.; Aplin, Steve J.; Tîmneanu, Nicuşor; Caleman, Carl

    2018-03-01

    Over the last decade X-ray free-electron laser (XFEL) sources have been made available to the scientific community. One of the most successful uses of these new machines has been protein crystallography. When samples are exposed to the intense short X-ray pulses provided by the XFELs, the sample quickly becomes highly ionized and the atomic structure is affected. Here we present a webtool dubbed FreeDam based on non-thermal plasma simulations, for estimation of radiation damage in free-electron laser experiments in terms of ionization, temperatures and atomic displacements. The aim is to make this tool easily accessible to scientists who are planning and performing experiments at XFELs.

  14. Investigation of the hard x-ray background in backlit pinhole imagers.

    PubMed

    Fein, J R; Peebles, J L; Keiter, P A; Holloway, J P; Klein, S R; Kuranz, C C; Manuel, M J-E; Drake, R P

    2014-11-01

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  15. Investigation of the hard x-ray background in backlit pinhole imagers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fein, J. R., E-mail: jrfein@umich.edu; Holloway, J. P.; Peebles, J. L.

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographicmore » image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.« less

  16. A novel spinal kinematic analysis using X-ray imaging and vicon motion analysis: a case study.

    PubMed

    Noh, Dong K; Lee, Nam G; You, Joshua H

    2014-01-01

    This study highlights a novel spinal kinematic analysis method and the feasibility of X-ray imaging measurements to accurately assess thoracic spine motion. The advanced X-ray Nash-Moe method and analysis were used to compute the segmental range of motion in thoracic vertebra pedicles in vivo. This Nash-Moe X-ray imaging method was compared with a standardized method using the Vicon 3-dimensional motion capture system. Linear regression analysis showed an excellent and significant correlation between the two methods (R2 = 0.99, p < 0.05), suggesting that the analysis of spinal segmental range of motion using X-ray imaging measurements was accurate and comparable to the conventional 3-dimensional motion analysis system. Clinically, this novel finding is compelling evidence demonstrating that measurements with X-ray imaging are useful to accurately decipher pathological spinal alignment and movement impairments in idiopathic scoliosis (IS).

  17. A photodiode amplifier system for pulse-by-pulse intensity measurement of an x-ray free electron laser.

    PubMed

    Kudo, Togo; Tono, Kensuke; Yabashi, Makina; Togashi, Tadashi; Sato, Takahiro; Inubushi, Yuichi; Omodani, Motohiko; Kirihara, Yoichi; Matsushita, Tomohiro; Kobayashi, Kazuo; Yamaga, Mitsuhiro; Uchiyama, Sadayuki; Hatsui, Takaki

    2012-04-01

    We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC). Output signals from the amplifiers were transmitted to a data acquisition system through a long cable in the form of a differential signal. The x-ray pulse intensities were calculated from the peak values of the signals by a waveform fitting procedure. This system can measure 10(3)-10(9) photons/pulse of ~10 keV x-rays by direct irradiation of a silicon PIN photodiode, and from 10(7)-10(11) photons/pulse by detecting the x-rays scattered by a diamond film using the silicon PIN photodiode. This system gives a relative accuracy of ~10(-3) with a proper gain setting of the amplifiers for each measurement. Using this system, we succeeded in detecting weak light at the developmental phase of the light source, as well as intense light during lasing of the x-ray free electron laser. © 2012 American Institute of Physics

  18. Backscatter of hard X-rays in the solar atmosphere. [Calculating the reflectance of solar x ray emission

    NASA Technical Reports Server (NTRS)

    Bai, T.; Ramaty, R.

    1977-01-01

    The solar photosphere backscatters a substantial fraction of the hard X rays from solar flares incident upon it. This reflection was studied using a Monte Carlo simulation which takes into account Compton scattering and photo-electric absorption. Both isotropic and anisotropic X ray sources are considered. The bremsstrahlung from an anisotropic distribution of electrons are evaluated. By taking the reflection into account, the inconsistency is removed between recent observational data regarding the center-to-limb variation of solar X ray emission and the predictions of models in which accelerated electrons are moving down toward the photosphere.

  19. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    NASA Astrophysics Data System (ADS)

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J.; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A.; Patterson, Bruce D.; Penfold, Thomas J.; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J.

    2016-09-01

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.

  20. Establishing nonlinearity thresholds with ultraintense X-ray pulses

    DOE PAGES

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; ...

    2016-09-13

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable.more » Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Here in this paper we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.« less

  1. Anisotropic imaging performance in indirect x-ray imaging detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badano, Aldo; Kyprianou, Iacovos S.; Sempau, Josep

    We report on the variability in imaging system performance due to oblique x-ray incidence, and the associated transport of quanta (both x rays and optical photons) through the phosphor, in columnar indirect digital detectors. The analysis uses MANTIS, a combined x-ray, electron, and optical Monte Carlo transport code freely available. We describe the main features of the simulation method and provide some validation of the phosphor screen models considered in this work. We report x-ray and electron three-dimensional energy deposition distributions and point-response functions (PRFs), including optical spread in columnar phosphor screens of thickness 100 and 500 {mu}m, for 19,more » 39, 59, and 79 keV monoenergetic x-ray beams incident at 0 deg., 10 deg., and 15 deg. . In addition, we present pulse-height spectra for the same phosphor thickness, x-ray energies, and angles of incidence. Our results suggest that the PRF due to the phosphor blur is highly nonsymmetrical, and that the resolution properties of a columnar screen in a tomographic, or tomosynthetic imaging system varies significantly with the angle of x-ray incidence. Moreover, we find that the noise due to the variability in the number of light photons detected per primary x-ray interaction, summarized in the information or Swank factor, is somewhat independent of thickness and incidence angle of the x-ray beam. Our results also suggest that the anisotropy in the PRF is not less in screens with absorptive backings, while the noise introduced by variations in the gain and optical transport is larger. Predictions from MANTIS, after additional validation, can provide the needed understanding of the extent of such variations, and eventually, lead to the incorporation of the changes in imaging performance with incidence angle into the reconstruction algorithms for volumetric x-ray imaging systems.« less

  2. Chemical imaging analysis of the brain with X-ray methods

    NASA Astrophysics Data System (ADS)

    Collingwood, Joanna F.; Adams, Freddy

    2017-04-01

    Cells employ various metal and metalloid ions to augment the structure and the function of proteins and to assist with vital biological processes. In the brain they mediate biochemical processes, and disrupted metabolism of metals may be a contributing factor in neurodegenerative disorders. In this tutorial review we will discuss the particular role of X-ray methods for elemental imaging analysis of accumulated metal species and metal-containing compounds in biological materials, in the context of post-mortem brain tissue. X-rays have the advantage that they have a short wavelength and can penetrate through a thick biological sample. Many of the X-ray microscopy techniques that provide the greatest sensitivity and specificity for trace metal concentrations in biological materials are emerging at synchrotron X-ray facilities. Here, the extremely high flux available across a wide range of soft and hard X-rays, combined with state-of-the-art focusing techniques and ultra-sensitive detectors, makes it viable to undertake direct imaging of a number of elements in brain tissue. The different methods for synchrotron imaging of metals in brain tissues at regional, cellular, and sub-cellular spatial resolution are discussed. Methods covered include X-ray fluorescence for elemental imaging, X-ray absorption spectrometry for speciation imaging, X-ray diffraction for structural imaging, phase contrast for enhanced contrast imaging and scanning transmission X-ray microscopy for spectromicroscopy. Two- and three-dimensional (confocal and tomographic) imaging methods are considered as well as the correlation of X-ray microscopy with other imaging tools.

  3. Variance analysis of x-ray CT sinograms in the presence of electronic noise background.

    PubMed

    Ma, Jianhua; Liang, Zhengrong; Fan, Yi; Liu, Yan; Huang, Jing; Chen, Wufan; Lu, Hongbing

    2012-07-01

    Low-dose x-ray computed tomography (CT) is clinically desired. Accurate noise modeling is a fundamental issue for low-dose CT image reconstruction via statistics-based sinogram restoration or statistical iterative image reconstruction. In this paper, the authors analyzed the statistical moments of low-dose CT data in the presence of electronic noise background. The authors first studied the statistical moment properties of detected signals in CT transmission domain, where the noise of detected signals is considered as quanta fluctuation upon electronic noise background. Then the authors derived, via the Taylor expansion, a new formula for the mean-variance relationship of the detected signals in CT sinogram domain, wherein the image formation becomes a linear operation between the sinogram data and the unknown image, rather than a nonlinear operation in the CT transmission domain. To get insight into the derived new formula by experiments, an anthropomorphic torso phantom was scanned repeatedly by a commercial CT scanner at five different mAs levels from 100 down to 17. The results demonstrated that the electronic noise background is significant when low-mAs (or low-dose) scan is performed. The influence of the electronic noise background should be considered in low-dose CT imaging.

  4. Variance analysis of x-ray CT sinograms in the presence of electronic noise background

    PubMed Central

    Ma, Jianhua; Liang, Zhengrong; Fan, Yi; Liu, Yan; Huang, Jing; Chen, Wufan; Lu, Hongbing

    2012-01-01

    Purpose: Low-dose x-ray computed tomography (CT) is clinically desired. Accurate noise modeling is a fundamental issue for low-dose CT image reconstruction via statistics-based sinogram restoration or statistical iterative image reconstruction. In this paper, the authors analyzed the statistical moments of low-dose CT data in the presence of electronic noise background. Methods: The authors first studied the statistical moment properties of detected signals in CT transmission domain, where the noise of detected signals is considered as quanta fluctuation upon electronic noise background. Then the authors derived, via the Taylor expansion, a new formula for the mean–variance relationship of the detected signals in CT sinogram domain, wherein the image formation becomes a linear operation between the sinogram data and the unknown image, rather than a nonlinear operation in the CT transmission domain. To get insight into the derived new formula by experiments, an anthropomorphic torso phantom was scanned repeatedly by a commercial CT scanner at five different mAs levels from 100 down to 17. Results: The results demonstrated that the electronic noise background is significant when low-mAs (or low-dose) scan is performed. Conclusions: The influence of the electronic noise background should be considered in low-dose CT imaging. PMID:22830738

  5. Performance-limiting factors for x-ray free electron laser oscillator as a highly coherent, high spectral purity x-ray source

    NASA Astrophysics Data System (ADS)

    Park, Gunn Tae

    X-ray Free Electron Laser (XFEL) is a light source for coherent X-ray using the radiation from relativistic electrons and interaction between the two. In particular, XFEL oscillator(XFELO) uses optical cavity to repeatedly bring back the radiation to electron beam for the interaction. Its optimal performance, maximum single pass gain and minimum round trip loss, critically depends on cavity optics. In ideal case, the optimal performance would be achieved by the periodic radiation mode maximally overlapping with electron beam while the radiation mode is impinging on curved mirror that gives the radiation the focusing, below critical angle and angular divergence being kept small enough at each crystal for Bragg scattering, which is used for near-normal reflection. In reality, there exist various performance degrading factors in the cavity such as heat load on the crystal surface, misalignments of crystals and mirrors and mirror surface errors. In this thesis, we study via both analytic computation and numerical simulation the optimal design and performance of XFELO cavity in the presence of these factors. In optimal design, we implement asymmetric crystals into cavity to enhance the performance. In general, it has undesirable effect of pulse dilation. We present the configuration that avoids pulse length dilation. Then the effects of misalignments, focal length errors and mirror surface errors are to be evaluated and their tolerances are estimated. In particular, the simulation demonstrates that the effect of mirror surface errors on gain and round trip loss is well-within desired performance of XFELO.

  6. Monitoring long-range electron transfer pathways in proteins by stimulated attosecond broadband X-ray Raman spectroscopy

    DOE PAGES

    Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; ...

    2014-10-09

    In this study, long-range electron transfer (ET) plays a key role in many biological energy conversion and synthesis processes. We show that nonlinear spectroscopy with attosecond X-ray pulses provides a real time movie of the evolving oxidation states and electron densities around atoms, and can probe these processes with high spatial and temporal resolution. This is demonstrated in a simulation study of the stimulated X-ray Raman (SXRS) signals in Re-modified azurin, which had long served as a benchmark for long-range ET in proteins. Nonlinear SXRS signals are sensitive to the local electronic structure and should offer a novel window formore » long-range ET.« less

  7. A Bragg beam splitter for hard x-ray free-electron lasers.

    PubMed

    Osaka, Taito; Yabashi, Makina; Sano, Yasuhisa; Tono, Kensuke; Inubushi, Yuichi; Sato, Takahiro; Matsuyama, Satoshi; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2013-02-11

    We report a Bragg beam splitter developed for utilization of hard x-ray free-electron lasers. The splitter is based on an ultrathin silicon crystal operating in the symmetric Bragg geometry to provide high reflectivity and transmissivity simultaneously. We fabricated frame-shaped Si(511) and (110) crystals with thicknesses below 10 μm by a reactive dry etching method using atmospheric-pressure plasma. The thickness variation over an illuminated area is less than 300 nm peak-to-valley. High crystalline perfection was verified by topographic and diffractometric measurements. The crystal thickness was evaluated from the period of the Pendellösung beats measured with a highly monochromatic and collimated x-ray probe. The crystals provide two replica pulses with uniform wavefront [(<1/50)λ] and low spatial intensity variation (<5%). These Bragg beam splitters will play an important role in innovating XFEL applications.

  8. High speed x-ray beam chopper

    DOEpatents

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  9. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  10. Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays

    NASA Astrophysics Data System (ADS)

    May, J. C.; Rey, L.; Lee, Chi-Jen

    2002-03-01

    Molecular sizing potency results are presented for irradiated samples of one lot of Haemophilus b conjugate vaccine, pneumococcal polysaccharide type 6B and typhoid vi polysaccharide vaccine. The samples were irradiated (25 kGy) by gamma rays, electron beams and X-rays. IgG and IgM antibody response in mice test results (ELISA) are given for the Hib conjugate vaccine irradiated at 0°C or frozen in liquid nitrogen.

  11. Long life electrodes for large-area x-ray generators

    NASA Technical Reports Server (NTRS)

    Rothe, Dietmar E. (Inventor)

    1991-01-01

    This invention is directed to rugged, reliable, and long-life electrodes for use in large-area, high-current-density electron gun and x-ray generators which are employed as contamination-free preionizers for high-energy pulsed gas lasers. The electron source at the cathode is a corona plasma formed at the interface between a conductor, or semiconductor, and a high-permittivity dielectric. Detailed descriptions are provided of a reliable cold plasma cathode, as well as an efficient liquid-cooled electron beam target (anode) and x-ray generator which concentrates the x-ray flux in the direction of an x-ray window.

  12. Bayesian analysis of X-ray jet features of the high redshift quasar jets observed with Chandra

    NASA Astrophysics Data System (ADS)

    McKeough, Kathryn; Siemiginowska, Aneta; Kashyap, Vinay; Stein, Nathan; Cheung, Chi C.

    2015-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet's relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. Results from Chandra X-ray and multi-frequency VLA imaging observations of a sample of 11 high- redshift (z > 2) quasars with kilo-parsec scale radio jets are reported. The sample consists of a set of four z ≥ 3.6 flat-spectrum radio quasars, and seven intermediate redshift (z = 2.1 - 2.9) quasars comprised of four sources with integrated steep radio spectra and three with flat radio spectra.We implement a Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) , to analyze jet features in the X-ray images of the high redshift quasars. Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. Significant detections are based on the upper bound p-value test based on LIRA simulations. The X-ray and radio properties of this sample combined are examined and compared to lower-redshift samples.This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. Work is also supported by the Chandra grant GO4-15099X.

  13. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  14. Some radiation effects on organic binders in X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Novosel-Radović, Vj.; MaljkoviĆ, Da.; NenadiĆ, N.

    The paper deals with diminished wear resistance of standard samples in X-ray fluorescence spectrometry. The effect of X-ray irradiation on pellet samples, pressed with starch as organic binder, was investigated by sieve analysis and scanning electron microscopy. A change in the starch grain size was found as a result of swelling and cracking.

  15. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data

    PubMed Central

    Barty, Anton; Kirian, Richard A.; Maia, Filipe R. N. C.; Hantke, Max; Yoon, Chun Hong; White, Thomas A.; Chapman, Henry

    2014-01-01

    The emerging technique of serial X-ray diffraction, in which diffraction data are collected from samples flowing across a pulsed X-ray source at repetition rates of 100 Hz or higher, has necessitated the development of new software in order to handle the large data volumes produced. Sorting of data according to different criteria and rapid filtering of events to retain only diffraction patterns of interest results in significant reductions in data volume, thereby simplifying subsequent data analysis and management tasks. Meanwhile the generation of reduced data in the form of virtual powder patterns, radial stacks, histograms and other meta data creates data set summaries for analysis and overall experiment evaluation. Rapid data reduction early in the analysis pipeline is proving to be an essential first step in serial imaging experiments, prompting the authors to make the tool described in this article available to the general community. Originally developed for experiments at X-ray free-electron lasers, the software is based on a modular facility-independent library to promote portability between different experiments and is available under version 3 or later of the GNU General Public License. PMID:24904246

  16. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  17. Proton Induced X-Ray Emission (PIXE): Determining the Concentration of Samples

    NASA Astrophysics Data System (ADS)

    McCarthy, Mallory; Rodriguez Manso, Alis; Pajouhafsar, Yasmin; J Yennello, Sherry

    2017-09-01

    We used Proton Induced X-ray Emission (PIXE) as an analysis technique to determine the composition of samples, in particular, the elemental constituents and the concentrations. Each of the samples are bombarded with protons, which in result displaces a lower level electron and causes a higher level electron to fall into its place. This displacement produces characteristic x-rays that are `fingerprints' for each element. The protons supplied for the bombardment are produced and accelerated by the K150 proton beam in the Cyclotron Institute at Texas A&M University. The products are detected by three x-ray detectors: XR-100CR Si-PIN, XR-100SDD, and XR-100T CdTe. The peaks of the spectrum are analyzed using a software analysis tool, GUPIXWIN, to determine the concentration of the known elements of each particular sample. The goals of this work are to test run the Proton Induced X-Ray Emission experimental set up at Texas A&M University (TAMU) and to determine the concentration of thin films containing KBr given by the TAMU Chemical Engineering Department.

  18. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers.

    PubMed

    Rau, A W; Bakueva, L; Rowlands, J A

    2005-10-01

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting in a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously, (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/ microm, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S0) of the a-Se layers was 63 +/- 2 nC cm(-2) cGy(-1). It was found that S decreases to 30% of S0 after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25 +/- 0.1 x 10(22) ehp m(-3) s(-1) and, to a first approximation, independent of the ghosting dose. However, both hole and electron transport

  19. The x-ray time of flight method for investigation of ghosting in amorphous selenium-based flat panel medical x-ray imagers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rau, A.W.; Bakueva, L.; Rowlands, J.A.

    2005-10-15

    Amorphous selenium (a-Se) based real-time flat-panel imagers (FPIs) are finding their way into the digital radiology department because they offer the practical advantages of digital x-ray imaging combined with an image quality that equals or outperforms that of conventional systems. The temporal imaging characteristics of FPIs can be affected by ghosting (i.e., radiation-induced changes of sensitivity) when the dose to the detector is high (e.g., portal imaging and mammography) or the images are acquired at a high frame rate (e.g., fluoroscopy). In this paper, the x-ray time-of-flight (TOF) method is introduced as a tool for the investigation of ghosting inmore » a-Se photoconductor layers. The method consists of irradiating layers of a-Se with short x-ray pulses. From the current generated in the a-Se layer, ghosting is quantified and the ghosting parameters (charge carrier generation rate and carrier lifetimes and mobilities) are assessed. The x-ray TOF method is novel in that (1) x-ray sensitivity (S) and ghosting parameters can be measured simultaneously (2) the transport of both holes and electrons can be isolated, and (3) the method is applicable to the practical a-Se layer structure with blocking contacts used in FPIs. The x-ray TOF method was applied to an analysis of ghosting in a-Se photoconductor layers under portal imaging conditions, i.e., 1 mm thick a-Se layers, biased at 5 V/{mu}m, were irradiated using a 6 MV LINAC x-ray beam to a total dose (ghosting dose) of 30 Gy. The initial sensitivity (S{sub 0}) of the a-Se layers was 63{+-}2 nC cm{sup -2} cGy{sup -1}. It was found that S decreases to 30% of S{sub 0} after a ghosting dose of 5 Gy and to 21% after 30 Gy at which point no further change in S occurs. At an x-ray intensity of 22 Gy/s (instantaneous dose rate during a LINAC x-ray pulse), the charge carrier generation rate was 1.25{+-}0.1x10{sup 22} ehp m{sup -3} s{sup -1} and, to a first approximation, independent of the ghosting dose. However

  20. Scanning electron microscopy, X-ray diffraction and thermal analysis study of the TiH{sub 2} foaming agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandrino, Djordje, E-mail: djordje.mandrino@imt.si; Paulin, Irena; Skapin, Sreco D.

    2012-10-15

    The decomposition of commercially available TiH{sub 2} was investigated while performing different thermal treatments. TiH{sub 2} powder, which is widely used as a foaming agent, was heat treated at 450 Degree-Sign C for various times, from 15 min to 120 min. Scanning electron microscopy (SEM) images of the surfaces at different magnifications were obtained and interpreted. A Bragg-Brentano X-ray diffractometer was used to measure the X-ray diffraction (XRD) spectra on all five samples. A close examination of the diffraction spectra showed that for an as-received sample and samples undergoing the longest thermal treatment (1 and 2 h) these spectra canmore » be explained as deriving from cubic TiH{sub 1.924}, while for the other two samples they can be explained as deriving from tetragonal TiH{sub 1.924}. A constant-unit-cell-volume phase transition between the cubic and tetragonal phases in TiH{sub 2-y}-type compounds had been described in the literature. The unit-cell parameters obtained from measured spectra confirm that within the measurement uncertainty the unit-cell volume is indeed constant in all five samples. Thermo-gravimetry (TG) and differential thermal analysis (DTA) measurements were performed on all the samples, showing that the intensity of the dehydrogenation depends on the previous treatment of the TiH{sub 2}. After the thermal analysis XRD of the samples was performed again and the material was found to exhibit a Ti-like unit cell, but slightly enlarged due to the unreleased hydrogen. - Highlights: Black-Right-Pointing-Pointer TiH{sub 2} samples were cubic or tetragonal TiH{sub 1.924} Black-Right-Pointing-Pointer Onset of the hydrogen release temperature increases with the pre-treatment time. Black-Right-Pointing-Pointer Thermal dehydrogenation for the as-prepared TiH{sub 2} is a three-step process. Black-Right-Pointing-Pointer After thermal analysis 2 residual hydrogen TiH{sub x} phases, close to {alpha}Ti, appeared.« less

  1. X-ray scattering study of pyrochlore iridates: Crystal structure, electronic, and magnetic excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, J. P.; Gretarsson, H.; Lee, E. K. H.

    2016-07-06

    We have investigated the structural, electronic, and magnetic properties of the pyrochlore iridates Eu 2Ir 2O 7 and Pr 2Ir 2O 7 using a combination of resonant elastic x-ray scattering, x-ray powder diffraction, and resonant inelastic x-ray scattering (RIXS). The structural parameters of Eu 2Ir 2O 7 have been examined as a function of temperature and applied pressure, with a particular emphasis on regions of the phase diagram where electronic and magnetic phase transitions have been reported. We find no evidence of crystal symmetry change over the range of temperatures (~6 to 300 K) and pressures (~0.1 to 17 GPa)more » studied. We have also investigated the electronic and magnetic excitations in single-crystal samples of Eu 2Ir 2O 7 and Pr 2Ir 2O 7 using high-resolution Ir L- 3-edge RIXS. In spite of very different ground state properties, we find that these materials exhibit qualitatively similar excitation spectra, with crystal field excitations at ~3-5 eV, spin-orbit excitations at ~ 0.5-1 eV, and broad low-lying excitations below ~0.15 eV. In single-crystal samples of "Eu-rich" Eu 2Ir 2O 7 (found to possess an actual stoichiometry of Eu 2.18Ir 1.82O 7.06) we observe highly damped magnetic excitations at ~45 meV, which display significant momentum dependence. Here, we compare these results with recent dynamical structure factor calculations« less

  2. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  3. Diagnostic X-ray sources-present and future

    NASA Astrophysics Data System (ADS)

    Behling, Rolf; Grüner, Florian

    2018-01-01

    This paper compares very different physical principles of X-ray production to spur ideation. Since more than 120 years, bremsstrahlung from X-ray tubes has been the workhorse of medical diagnostics. Generated by X-ray segments comprised of X-ray tubes and high-voltage generators in the various medical systems, X-ray photons in the spectral range between about 16 keV and 150 keV deliver information about anatomy and function of human patients and in pre-clinical animal studies. Despite of strides to employ the wave nature of X-rays as phase sensitive means, commercial diagnostic X-ray systems available until the time of writing still rely exclusively on measuring the attenuation and scattering of X-rays by matter. Significant activities in research aim at building highly brilliant short pulse X-ray sources, based on e.g. synchrotron radiation, free electron lasers and/or laser wake-field acceleration of electrons followed by wiggling with magnetic structures or Thomson scattering in bunches of light. While both approaches, non-brilliant and brilliant sources, have different scope of application, we speculate that a combination may expand the efficacy in medical application. At this point, however, severe technical and commercial difficulties hinder closing this gap. This article may inspire further development and spark innovation in this important field.

  4. Scanning electron microscopic and X-ray micro analysis on tooth enamel exposed to alkaline agents.

    PubMed

    Taubee, Fabian; Steiniger, Frank; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    The background of this study comprises two clinical cases, where patients exposed to aerosols of an alkaline and surface active cleaning agent developed loss of enamel substance on their teeth, further resulting in loss of teeth and partially destroyed soft tissues. The alkaline cleaning agent consisted of potassium hydroxide and various surfactants. The purpose of this study was to investigate possible changes in morphology and composition in human teeth enamel exposed to alkaline solutions, by means of X-ray micro analysis (XRMA), FTIR-spectroscopic analyses and scanning electron microscopy (SEM). Extracted premolars, exposed to potassium hydroxide solutions and alkaline cleaning solution,were analyzed by means of XRMA and SEM. Enamel powder, exposed to cleaning solution, was analyzed by means of FTIR. The SEM analysis revealed an increased porosity of the enamel surface and partially loss of enamel substance after exposure to alkaline solutions. The XRMA analyses revealed a decrease in carbon concentration while phosphorous and calcium showed no marked changes. The FTIR analyses showed no significant changes in peak heights or peak positions for phosphate, carbonate or hydroxide. It was concluded that human teeth enamel exposed to alkaline solutions showed loss of organic substance, marked pores in enamel surface and loss of substance in the enamel surface.

  5. Control of the Low-energy X-rays by Using MCNP5 and Numerical Analysis for a New Concept Intra-oral X-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Huh, Jangyong; Ji, Yunseo; Lee, Rena

    2018-05-01

    An X-ray control algorithm to modulate the X-ray intensity distribution over the FOV (field of view) has been developed by using numerical analysis and MCNP5, a particle transport simulation code on the basis of the Monte Carlo method. X-rays, which are widely used in medical diagnostic imaging, should be controlled in order to maximize the performance of the X-ray imaging system. However, transporting X-rays, like a liquid or a gas is conveyed through a physical form such as pipes, is not possible. In the present study, an X-ray control algorithm and technique to uniformize the Xray intensity projected on the image sensor were developed using a flattening filter and a collimator in order to alleviate the anisotropy of the distribution of X-rays due to intrinsic features of the X-ray generator. The proposed method, which is combined with MCNP5 modeling and numerical analysis, aimed to optimize a flattening filter and a collimator for a uniform distribution of X-rays. Their size and shape were estimated from the method. The simulation and the experimental results both showed that the method yielded an intensity distribution over an X-ray field of 6×4 cm2 at SID (source to image-receptor distance) of 5 cm with a uniformity of more than 90% when the flattening filter and the collimator were mounted on the system. The proposed algorithm and technique are not only confined to flattening filter development but can also be applied for other X-ray related research and development efforts.

  6. Elemental Characterization and Discrimination of Nontoxic Ammunition Using Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis and Principal Components Analysis.

    PubMed

    Hogg, Seth R; Hunter, Brian C; Waddell Smith, Ruth

    2016-01-01

    Concerns over the toxic by-products produced by traditional ammunition have led to an increase in popularity of nontoxic ammunition. In this work, the chemical composition of six brands of nontoxic ammunition was investigated and compared to that of a road flare, which served as an environmental source with similar composition. Five rounds of each brand were fired while a further five were disassembled and the primer alone was fired. Particles collected from all samples, including the road flare, were analyzed by scanning electron microscopy with energy dispersive X-ray analysis. Common elements among the different ammunition brands included aluminum, potassium, silicon, calcium, and strontium. Spectra were then subjected to principal components analysis in which association of the primer to the intact ammunition sample was generally possible, with distinction among brands and from the road flare sample. Further, PCA loadings plots indicated the elements responsible for the association and discrimination observed. © 2015 American Academy of Forensic Sciences.

  7. Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy.

    PubMed

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    2017-07-01

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.

  8. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    USDA-ARS?s Scientific Manuscript database

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  9. Normal incidence x-ray mirror for chemical microanalysis

    DOEpatents

    Carr, M.J.; Romig, A.D. Jr.

    1987-08-05

    An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.

  10. Concept development of X-ray mass thickness detection for irradiated items upon electron beam irradiation processing

    NASA Astrophysics Data System (ADS)

    Qin, Huaili; Yang, Guang; Kuang, Shan; Wang, Qiang; Liu, Jingjing; Zhang, Xiaomin; Li, Cancan; Han, Zhiwei; Li, Yuanjing

    2018-02-01

    The present project will adopt the principle and technology of X-ray imaging to quickly measure the mass thickness (wherein the mass thickness of the item =density of the item × thickness of the item) of the irradiated items and thus to determine whether the packaging size and inside location of the item will meet the requirements for treating thickness upon electron beam irradiation processing. The development of algorithm of X-ray mass thickness detector as well as the prediction of dose distribution have been completed. The development of the algorithm was based on the X-ray attenuation. 4 standard modules, Al sheet, Al ladders, PMMA sheet and PMMA ladders, were selected for the algorithm development. The algorithm was optimized until the error between tested mass thickness and standard mass thickness was less than 5%. Dose distribution of all energy (1-10 MeV) for each mass thickness was obtained using Monte-carlo method and used for the analysis of dose distribution, which provides the information of whether the item will be penetrated or not, as well as the Max. dose, Min. dose and DUR of the whole item.

  11. Local x-ray structure analysis of optically manipulated biological micro-objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cojoc, Dan; Ferrari, Enrico; Santucci, Silvia C.

    2010-12-13

    X-ray diffraction using micro- and nanofocused beams is well suited for nanostructure analysis at different sites of a biological micro-object. To conduct in vitro studies without mechanical contact, we developed object manipulation by optical tweezers in a microfluidic cell. Here we report x-ray microdiffraction analysis of a micro-object optically trapped in three dimensions. We revealed the nanostructure of a single starch granule at different points and investigated local radiation damage induced by repeated x-ray exposures at the same position, demonstrating high stability and full control of the granule orientation by multiple optical traps.

  12. Micro X-ray diffraction analysis of thin films using grazing-exit conditions.

    PubMed

    Noma, T; Iida, A

    1998-05-01

    An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.

  13. Forward directed x-ray from source produced by relativistic electrons from a Self-Modulated Laser Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Albert, Felicie; Shaw, Jessica; King, Paul; Milder, Avi; Marsh, Ken; Pak, Arthur; Joshi, Chan

    2017-10-01

    Plasma-based particle accelerators are now able to provide the scientific community with novel light sources. Their applications span many disciplines, including high-energy density sciences, where they can be used as probes to explore the physics of dense plasmas and warm dense matter. A recent advance is in the experimental and theoretical characterization of x-ray emission from electrons in the self-modulated laser wakefield regime (SMLWFA) where little is known about the x-ray properties. A series of experiments at the LLNL Jupiter Laser Facility, using the 1 ps 150 J Titan laser, have demonstrated low divergence electron beams with energies up to 300 MeV and 6 nCs of charge, and betatron x-rays with critical energies up to 20 keV. This work identifies two other mechanisms which produce high energy broadband x-rays and gamma-rays from the SMLWFA: Bremsstrahlung and inverse Compton scattering. We demonstrate the use of Compton scattering and bremsstrahlung to generate x/Gamma-rays from 3 keV up to 1.5 MeV with a source size of 50um and a divergence of 100 mrad. This work is an important step towards developing this x-ray light source on large-scale international laser facilities, and also opens up the prospect of using them for applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  14. On the modulation of X ray fluxes in thunderstorms

    NASA Technical Reports Server (NTRS)

    Mccarthy, Michael P.; Parks, George K.

    1992-01-01

    The production of X-ray fluxes in thunderstorms has been attributed to bremsstrahlung. Assuming this, another question arises. How can a thunderstorm modulate the number density of electrons which are sufficiently energetic to produce X-rays? As a partial answer to this question, the effects of typical thunderstorm electric fields on a background population of energetic electrons, such as produced by cosmic ray secondaries and their decays or the decay of airborne radionuclides, are considered. The observed variation of X-ray flux is shown to be accounted for by a simple model involving typical electric field strengths. A necessary background electron number density is found from the model and is determined to be more than 2 orders of magnitude higher than that available from radon decay and a factor of 8 higher than that available from cosmic ray secondaries. The ionization enhancement due to energetic electrons and X-rays is discussed.

  15. Fabrication of compact electron gun for 6 MeV X-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghodke, S.R.; Barnwal, Rajesh; Kumar, Mahendra, E-mail: ghodke_barc@yahoo.co.in

    The 6 MeV X-Ray source for container cargo scanning application has been designed and developed by the Accelerator and Pulse Power Division, BARC, Mumbai. This compact linac has been designed as a mobile system, to be mounted on a moving container. In linac-based cargo-scanning system, to work electron gun on a movable container, it has to be robust. Electron gun is to work at 10{sup -7} mbar vacuum and 2000 degree Celsius temperature. An effort is made to engineer the gun assembly to make it more robust and aligned. The linac acts as the source of X-rays, which fall onmore » the cargo and are then detected by the detector system. Many components are indigenously developed like grid, insulating ring, Tungsten filament and filament guide, which are made from alumina ceramic and Tantalum which is to work at 1500 degree Celsius. Filament connector is made from Invar to reduce heat loss and to make rigid connection. It was CNC machined and wire cut by EDM. Invar and Copper electrode feed through is shrink fitted with the help of liquid Nitrogen. Shrink fit tolerances of 15 micrometer are achieved by jig boring machining processes. Tantalum cup for LaB6 cathode and heat shield are made from die and punch mechanism. For alignment of electron emitter with beam axis this Tantalum cup is a crucial component. Electron gun is assembled and aligned its components with the help of precision jigs. The whole assembly was Helium leak tested by MSLD up to 4 x 10{sup -10} mbar.l/s vacuum, no leak was found. This paper will describe the machining, Tantalum cup forming, ceramic components development, heat shields, ceramic feed through etc of electron gun. (author)« less

  16. X-Ray Spectral Variability Signatures of Flares in BL Lac Objects

    NASA Technical Reports Server (NTRS)

    Boettcher, Markus; Chiang, James; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We are presenting a detailed parameter study of the time-dependent electron injection and kinematics and the self-consistent radiation transport in jets of intermediate and low-frequency peaked BL Lac objects. Using a time-dependent, combined synchrotron-self-Compton and external-Compton jet model, we study the influence of variations of several essential model parameters, such as the electron injection compactness, the relative contribution of synchrotron to external soft photons to the soft photon compactness, the electron- injection spectral index, and the details of the time profiles of the electron injection episodes giving rise to flaring activity. In the analysis of our results, we focus on the expected X-ray spectral variability signatures in a region of parameter space particularly well suited to reproduce the broadband spectral energy distributions of intermediate and low-frequency peaked BL Lac objects. We demonstrate that SSC- and external-Compton dominated models for the gamma-ray emission from blazars are producing significantly different signatures in the X-ray variability, in particular in the soft X-ray light curves and the spectral hysteresis at soft X-ray energies, which can be used as a powerful diagnostic to unveil the nature of the high-energy emission from BL Lac objects.

  17. Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdivia, M. P., E-mail: mpvaldivia@pha.jhu.edu; Stutman, D.; Stoeckl, C.

    2016-11-15

    Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25–29 J, 8–30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  18. Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited).

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Mileham, C; Begishev, I A; Theobald, W; Bromage, J; Regan, S P; Klein, S R; Muñoz-Cordovez, G; Vescovi, M; Valenzuela-Villaseca, V; Veloso, F

    2016-11-01

    Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  19. X-Ray Detector for 1 to 30 keV

    NASA Technical Reports Server (NTRS)

    Alcorn, G.; Jackson, J., Jr; Grant, P.; Marshall, F.

    1983-01-01

    Array of silicon X-ray detecting diodes measures photon energy and provides image of X-ray pattern. Regardless of thickness of new X-ray detector, depletion region extends through it. Impinging X-rays generate electrons in quantities proportional to X-ray energy. X-ray detector is mated to chargecoupled-device array for image generation and processing. Useful in industrial part inspection, pulsed-plasma research and medical application.

  20. X-ray absorption fine structure and X-ray excited optical luminescence studies of II-VI semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Murphy, Michael Wayne

    2010-06-01

    Various II-VI semiconducting nanomaterials such as ZnO-ZnS nanoribbons (NRs), CdSxSe1-x nanostructures, ZnS:Mn NRs, ZnS:Mn,Eu nanoprsims (NPs), ZnO:Mn nanopowders, and ZnO:Co nanopowders were synthesized for study. These materials were characterized by techniques such as scanning electron microscopy, transmission electron microscopy, element dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The electronic and optical properties of these nanomaterials were studied by X-ray absorption fine structure (XAFS) spectroscopy and X-ray excited optical luminescence (XEOL) techniques, using tuneable soft X-rays from a synchrotron light source. The complementary nature ofthe XAFS and XEOL techniques give site, element and chemical specific measurements which allow a better understanding of the interplay and role of each element in the system. Chemical vapour deposition (CVD) of ZnS powder in a limited oxygen environment resulted in side-by-side biaxial ZnO-ZnS NR heterostructures. The resulting NRs contained distinct wurtzite ZnS and wurtzite ZnO components with widths of 10--100 nm and 20 --500 nm, respectively and a uniform interface region of 5-15 nm. XAFS and XEOL measurements revealed the luminescence of ZnO-ZnS NRs is from the ZnO component. The luminescence of CdSxSe1-x nanostructures is shown to be dependent on the S to Se ratio, with the band-gap emission being tunable between that of pure CdS and CdSe. Excitation of the CdSxSe 1-x nanostructures by X-ray in XEOL has revealed new de-excitation channels which show a defect emission band not seen by laser excitation. CVD of Mn2+ doped ZnS results in nanostructures with luminescence dominated by the yellow Mn2+ emission due to energy transfer from the ZnS host to the Mn dopant sites. The addition of EuCl3 to the reactants in the CVD process results in a change in morphology from NR to NP. Zn1-xMnxO and Zn1-xCOxO nanopowders were prepared by sol-gel methods at dopant concentrations

  1. Simulations of ultrafast x-ray laser experiments

    NASA Astrophysics Data System (ADS)

    Fortmann-Grote, C.; Andreev, A. A.; Appel, K.; Branco, J.; Briggs, R.; Bussmann, M.; Buzmakov, A.; Garten, M.; Grund, A.; Huebl, A.; Jurek, Z.; Loh, N. D.; Nakatsutsumi, M.; Samoylova, L.; Santra, R.; Schneidmiller, E. A.; Sharma, A.; Steiniger, K.; Yakubov, S.; Yoon, C. H.; Yurkov, M. V.; Zastrau, U.; Ziaja-Motyka, B.; Mancuso, A. P.

    2017-06-01

    Simulations of experiments at modern light sources, such as optical laser laboratories, synchrotrons, and free electron lasers, become increasingly important for the successful preparation, execution, and analysis of these experiments investigating ever more complex physical systems, e.g. biomolecules, complex materials, and ultra-short lived states of matter at extreme conditions. We have implemented a platform for complete start-to-end simulations of various types of photon science experiments, tracking the radiation from the source through the beam transport optics to the sample or target under investigation, its interaction with and scattering from the sample, and registration in a photon detector. This tool allows researchers and facility operators to simulate their experiments and instruments under real life conditions, identify promising and unattainable regions of the parameter space and ultimately make better use of valuable beamtime. In this paper, we present an overview about status and future development of the simulation platform and discuss three applications: 1.) Single-particle imaging of biomolecules using x-ray free electron lasers and optimization of x-ray pulse properties, 2.) x-ray scattering diagnostics of hot dense plasmas in high power laser-matter interaction and identification of plasma instabilities, and 3.) x-ray absorption spectroscopy in warm dense matter created by high energy laser-matter interaction and pulse shape optimization for low-isentrope dynamic compression.

  2. Electronic structure measurements of metal-organic solar cell dyes using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.

    The focus of this thesis is twofold: to report the results of X-ray absorption studies of metal-organic dye molecules for dye-sensitized solar cells and to provide a basic training manual on X-ray absorption spectroscopy techniques and data analysis. The purpose of our research on solar cell dyes is to work toward an understanding of the factors influencing the electronic structure of the dye: the choice of the metal, its oxidation state, ligands, and cage structure. First we study the effect of replacing Ru in several common dye structures by Fe. First-principles calculations and X-ray absorption spectroscopy at the C 1s and N 1s edges are combined to investigate transition metal dyes in octahedral and square planar N cages. Octahedral molecules are found to have a downward shift in the N 1s-to-pi* transition energy and an upward shift in C 1s-to-pi* transition energy when Ru is replaced by Fe, explained by an extra transfer of negative charge from Fe to the N ligands compared to Ru. For the square planar molecules, the behavior is more complex because of the influence of axial ligands and oxidation state. Next the crystal field parameters for a series of phthalocyanine and porphyrins dyes are systematically determined using density functional calculations and atomic multiplet calculations with polarization-dependent X-ray absorption spectra. The polarization dependence of the spectra provides information on orbital symmetries which ensures the determination of the crystal field parameters is unique. A uniform downward scaling of the calculated crystal field parameters by 5-30% is found to be necessary to best fit the spectra. This work is a part of the ongoing effort to design and test new solar cell dyes. Replacing the rare metal Ru with abundant metals like Fe would be a significant advance for dye-sensitized solar cells. Understanding the effects of changing the metal centers in these dyes in terms of optical absorption, charge transfer, and electronic

  3. Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser.

    PubMed

    Ekeberg, Tomas; Svenda, Martin; Seibert, M Marvin; Abergel, Chantal; Maia, Filipe R N C; Seltzer, Virginie; DePonte, Daniel P; Aquila, Andrew; Andreasson, Jakob; Iwan, Bianca; Jönsson, Olof; Westphal, Daniel; Odić, Duško; Andersson, Inger; Barty, Anton; Liang, Meng; Martin, Andrew V; Gumprecht, Lars; Fleckenstein, Holger; Bajt, Saša; Barthelmess, Miriam; Coppola, Nicola; Claverie, Jean-Michel; Loh, N Duane; Bostedt, Christoph; Bozek, John D; Krzywinski, Jacek; Messerschmidt, Marc; Bogan, Michael J; Hampton, Christina Y; Sierra, Raymond G; Frank, Matthias; Shoeman, Robert L; Lomb, Lukas; Foucar, Lutz; Epp, Sascha W; Rolles, Daniel; Rudenko, Artem; Hartmann, Robert; Hartmann, Andreas; Kimmel, Nils; Holl, Peter; Weidenspointner, Georg; Rudek, Benedikt; Erk, Benjamin; Kassemeyer, Stephan; Schlichting, Ilme; Strüder, Lothar; Ullrich, Joachim; Schmidt, Carlo; Krasniqi, Faton; Hauser, Günter; Reich, Christian; Soltau, Heike; Schorb, Sebastian; Hirsemann, Helmut; Wunderer, Cornelia; Graafsma, Heinz; Chapman, Henry; Hajdu, Janos

    2016-08-01

    Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.

  4. Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Ekeberg, Tomas; Svenda, Martin; Seibert, M. Marvin; Abergel, Chantal; Maia, Filipe R. N. C.; Seltzer, Virginie; Deponte, Daniel P.; Aquila, Andrew; Andreasson, Jakob; Iwan, Bianca; Jönsson, Olof; Westphal, Daniel; Odić, Duško; Andersson, Inger; Barty, Anton; Liang, Meng; Martin, Andrew V.; Gumprecht, Lars; Fleckenstein, Holger; Bajt, Saša; Barthelmess, Miriam; Coppola, Nicola; Claverie, Jean-Michel; Loh, N. Duane; Bostedt, Christoph; Bozek, John D.; Krzywinski, Jacek; Messerschmidt, Marc; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Frank, Matthias; Shoeman, Robert L.; Lomb, Lukas; Foucar, Lutz; Epp, Sascha W.; Rolles, Daniel; Rudenko, Artem; Hartmann, Robert; Hartmann, Andreas; Kimmel, Nils; Holl, Peter; Weidenspointner, Georg; Rudek, Benedikt; Erk, Benjamin; Kassemeyer, Stephan; Schlichting, Ilme; Strüder, Lothar; Ullrich, Joachim; Schmidt, Carlo; Krasniqi, Faton; Hauser, Günter; Reich, Christian; Soltau, Heike; Schorb, Sebastian; Hirsemann, Helmut; Wunderer, Cornelia; Graafsma, Heinz; Chapman, Henry; Hajdu, Janos

    2016-08-01

    Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.

  5. Liquid metal anode x-ray tubes: interesting, but are they useful?

    NASA Astrophysics Data System (ADS)

    Harding, Geoffrey

    2004-10-01

    An analysis is presented of factors affecting the specific loadability (W mm-2 K-1) of electron impact liquid metal anode x-ray sources (LIMAX). It is shown that in general, the limit to loadability is set by energy deposited in the electron window by inelastic electron scattering. Removal of this energy through convection cooling by the liquid metal stream represents the least efficient thermal transport process in LIMAX. As the electron window energy loss is approximately inversely proportional to the electron beam energy, the power loadability of a LIMAX source operated under otherwise constant conditions scales roughly with the square of the tube voltage. A comparison of the loadability of the liquid metal anode x-ray concept to conventional stationary anode x-ray tubes demonstrates the superiority of the former. The utility of LIMAX-based computed tomography in the field of air cargo container inspection is briefly discussed. In particular its characteristics relative to linac-based air cargo container inspection are highlighted: these include a higher contrast-to-noise ratio (CNR); compact radiation shielding and collimation; reduced detector cross-talk; improved image contrast; and the possibility of combining container CT with material-specific alarm resolution capability based on x-ray diffraction tomography.

  6. Explosives detection using photoneutrons produced by X-rays

    NASA Astrophysics Data System (ADS)

    Yang, Yigang; Li, Yuanjing; Wang, Haidong; Li, Tiezhu; Wu, Bin

    2007-08-01

    The detection of explosives has become a critical issue after recent terrorist attacks. This paper describes research on explosives detection using photoneutrons from a photoneutron convertor that consists of 20 kg heavy water in an aluminum container whose shape was optimized to most effectively convert X-rays to photoneutrons. The X-rays were produced by a 9 MeV electron accelerator with an average electron current of 100 μA, resulted in a photoneutron yield of >10 11 n/s. Monte-Carlo simulations show that the radiation field is composed of X-ray pulses, fast neutron pulses and thermal neutrons. Both the X-ray and fast neutron pulses are 5 μs wide with a 300 Hz repetition frequency. The thermal neutron flux, which is higher than 10 4 n/cm 2/s, is essentially time invariant. A time shielding circuit was developed for the spectrometry system to halt the sampling process during the intense X-ray pulses. Paraffin, boron carbide and lead were used to protect the detector from interference from the X-rays, fast neutrons, thermal neutrons and background γ-rays coming from the system materials induced by photoneutrons. 5″×5″ NaI (Tl) scintillators were chosen as the detectors to detect the photoneutrons induced γ-rays from the inspected explosive simulant. Nitrogen (6.01 cps) 10.828 MeV γ-rays were detected with one detector from a 50 kg carbamide block placed 60 cm in front of the detector. A collimator was used to reduce the number of background 10.828 MeV γ-rays coming from the nitrogen in the air to improve the signal to background ratio from 0.136 to 1.81. A detector array of seven 5″×5″ NaI (Tl) detectors was used to measure the 2-D distributions of N and H in the sample. The combination of photoneutron analysis and X-ray imaging shows promise for enhancing explosives detection capabilities.

  7. X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek

    1997-01-01

    Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.

  8. Analysis of sculptures using XRF and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Calza, C.; Oliveira, D. F.; Freitas, R. P.; Rocha, H. S.; Nascimento, J. R.; Lopes, R. T.

    2015-11-01

    This work reports the analysis of two sacred images on polychrome wood using X-ray Radiography and Energy Dispersive X-Ray Fluorescence. The first case is the analysis of a sculpture portraying Saint Sebastian, the patron saint of Rio de Janeiro, which is considered the second most ancient sacred image of Brazil. This sculpture was made in Portugal and was transported to Brazil by Estácio Sá, founder of the city of Rio de Janeiro, in 1565. Nowadays, it is located on the main altar of the Church of Capuchin Friars. The second case is the analysis of a sculpture representing Our Lady of Conception, which is located in the D. João VI Museum (EBA/UFRJ, Rio de Janeiro). The objective of these analyses was to evaluate the general conditions of the sculptures, identifying possible problems and internal damages, areas that revealed signs of previous retouchings and the materials and pigments employed by the artists, in order to assist its restoration procedures. EDXRF measurements were carried out with a portable system, developed at the Nuclear Instrumentation Laboratory, consisting of a Si-PIN XR-100CR detector from Amptek and an Oxford TF3005 X-ray tube with W anode. An X-ray source, a CR System GE CR50P and IP detectors were used to perform the radiographs. The XRF analysis of the sculptures identified the original pigments in both cases and the radiographic images revealed details of the manufacture; restored regions; extensive use of lead white; presence of cracks on the wood; use of nails and spikes, etc.

  9. Single-shot Monitoring of Ultrafast Processes via X-ray Streaking at a Free Electron Laser.

    PubMed

    Buzzi, Michele; Makita, Mikako; Howald, Ludovic; Kleibert, Armin; Vodungbo, Boris; Maldonado, Pablo; Raabe, Jörg; Jaouen, Nicolas; Redlin, Harald; Tiedtke, Kai; Oppeneer, Peter M; David, Christian; Nolting, Frithjof; Lüning, Jan

    2017-08-03

    The advent of x-ray free electron lasers has extended the unique capabilities of resonant x-ray spectroscopy techniques to ultrafast time scales. Here, we report on a novel experimental method that allows retrieving with a single x-ray pulse the time evolution of an ultrafast process, not only at a few discrete time delays, but continuously over an extended time window. We used a single x-ray pulse to resolve the laser-induced ultrafast demagnetisation dynamics in a thin cobalt film over a time window of about 1.6 ps with an excellent signal to noise ratio. From one representative single shot measurement we extract a spin relaxation time of (130 ± 30) fs with an average value, based on 193 single shot events of (113 ± 20) fs. These results are limited by the achieved experimental time resolution of 120 fs, and both values are in excellent agreement with previous results and theoretical modelling. More generally, this new experimental approach to ultrafast x-ray spectroscopy paves the way to the study of non-repetitive processes that cannot be investigated using traditional repetitive pump-probe schemes.

  10. The fundamental parameter method applied to X-ray fluorescence analysis with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Pantenburg, F. J.; Beier, T.; Hennrich, F.; Mommsen, H.

    1992-05-01

    Quantitative X-ray fluorescence analysis applying the fundamental parameter method is usually restricted to monochromatic excitation sources. It is shown here, that such analyses can be performed as well with a white synchrotron radiation spectrum. To determine absolute elemental concentration values it is necessary to know the spectral distribution of this spectrum. A newly designed and tested experimental setup, which uses the synchrotron radiation emitted from electrons in a bending magnet of ELSA (electron stretcher accelerator of the university of Bonn) is presented. The determination of the exciting spectrum, described by the given electron beam parameters, is limited due to uncertainties in the vertical electron beam size and divergence. We describe a method which allows us to determine the relative and absolute spectral distributions needed for accurate analysis. First test measurements of different alloys and standards of known composition demonstrate that it is possible to determine exact concentration values in bulk and trace element analysis.

  11. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS

    DOE PAGES

    Lee, Sooheyong; Roseker, W.; Gutt, C.; ...

    2013-10-08

    The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse modemore » $$\\langle$$M s$$\\rangle$$ = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Lastly the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.« less

  12. Atmospheric Electron-induced X-Ray Spectrometer (AEXS) Instrument Development

    NASA Technical Reports Server (NTRS)

    Urgiles, E.; Wilcox, J. Z.; Toda, R.; Crisp, J.; George, T.

    2005-01-01

    Introduction: This paper describes the progress in data acquisition and establishing the observational capability of the AEXS instrument. The AEXS is a miniature instrument[1-4] based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam which enables nondestructive evaluation of sample surfaces in planetary ambient atmospheres. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum of the AEXS source from the outside ambient atmosphere. Thus eliminating the need for a vacuum pumped sample chamber as is common in all laboratory SEM s. The transmitted electrons impinge on the sample exciting XRF spectra from the irradiated spot on in-situ or collected samples with sub-mm to cm-scale spatial resolution at Mars atmospheric pressure. The AEXS system (Fig 1) consists of a high-energy (>10keV) electron gun encapsulated by the isolation membrane, an XRF detection and analyzer system, and a high voltage power supply. The XRF data are analyzed to determine the elemental abundance for the irradiated spots. The approach to demonstrating a proof of concept of the AEXS has been through 1) demonstrating the viability of microfabricated membranes, 2) assembling AEXS setups with increasingly integrated functional components, and 3) simulating the AEXS observational capabilities. The development of the instrument is described in detail in the poster paper[4] at this conference. This paper focuses on describing the progress of the AEXS instrument to acquire XRF data and using commercially available software to analyze the data streams and determine the accuracy, precision and resolution of the analysis compared to the certified elemental abundance.

  13. Ultrafast X-Ray Spectroscopy of Conical Intersections

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2018-06-01

    Ongoing developments in ultrafast x-ray sources offer powerful new means of probing the complex nonadiabatically coupled structural and electronic dynamics of photoexcited molecules. These non-Born-Oppenheimer effects are governed by general electronic degeneracies termed conical intersections, which play a key role, analogous to that of a transition state, in the electronic-nuclear dynamics of excited molecules. Using high-level ab initio quantum dynamics simulations, we studied time-resolved x-ray absorption (TRXAS) and photoelectron spectroscopy (TRXPS) of the prototypical unsaturated organic chromophore, ethylene, following excitation to its S2(π π*) state. The TRXAS, in particular, is highly sensitive to all aspects of the ensuing dynamics. These x-ray spectroscopies provide a clear signature of the wave packet dynamics near conical intersections, related to charge localization effects driven by the nuclear dynamics. Given the ubiquity of charge localization in excited state dynamics, we believe that ultrafast x-ray spectroscopies offer a unique and powerful route to the direct observation of dynamics around conical intersections.

  14. Proton-Induced X-Ray Emission Analysis of Crematorium Emissions

    NASA Astrophysics Data System (ADS)

    Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Smith, Jeremy; Yoskowitz, Josh; Labrake, Scott; Vineyard, Michael

    2013-10-01

    There has been considerable concern in recent years about possible mercury emissions from crematoria. We have performed a particle-induced X-ray emission (PIXE) analysis of atmospheric aerosol samples collected on the roof of the crematorium at Vale Cemetery in Schenectady, NY, to address this concern. The samples were collected with a nine-stage cascade impactor that separates the particulate matter according to particle size. The aerosol samples were bombarded with 2.2-MeV protons from the Union College 1.1-MV Pelletron Accelerator. The emitted X-rays were detected with a silicon drift detector and the X-ray energy spectra were analyzed using GUPIX software to determine the elemental concentrations. We measured significant concentrations of sulfur, phosphorus, potassium, calcium, and iron, but essentially no mercury. The lower limit of detection for mercury in this experiment was approximately 0.2 ng/m3. We will describe the experimental procedure, discuss the PIXE analysis, and present preliminary results.

  15. Systematic design and three-dimensional simulation of X-ray FEL oscillator for Shanghai Coherent Light Facility

    NASA Astrophysics Data System (ADS)

    Li, Kai; Deng, Haixiao

    2018-07-01

    The Shanghai Coherent Light Facility (SCLF) is a quasi-continuous wave hard X-ray free electron laser facility, which is currently under construction. Due to the high repetition rate and high-quality electron beams, it is straightforward to consider X-ray free electron laser oscillator (XFELO) operation for the SCLF. In this paper, the main processes for XFELO design, and parameter optimization of the undulator, X-ray cavity, and electron beam are described. A three-dimensional X-ray crystal Bragg diffraction code, named BRIGHT, was introduced for the first time, which can be combined with the GENESIS and OPC codes for the numerical simulations of the XFELO. The performance of the XFELO of the SCLF is investigated and optimized by theoretical analysis and numerical simulation.

  16. Free Electron coherent sources: From microwave to X-rays

    NASA Astrophysics Data System (ADS)

    Dattoli, Giuseppe; Di Palma, Emanuele; Pagnutti, Simonetta; Sabia, Elio

    2018-04-01

    The term Free Electron Laser (FEL) will be used, in this paper, to indicate a wide collection of devices aimed at providing coherent electromagnetic radiation from a beam of "free" electrons, unbound at the atomic or molecular states. This article reviews the similarities that link different sources of coherent radiation across the electromagnetic spectrum from microwaves to X-rays, and compares the analogies with conventional laser sources. We explore developing a point of view that allows a unified analytical treatment of these devices, by the introduction of appropriate global variables (e.g. gain, saturation intensity, inhomogeneous broadening parameters, longitudinal mode coupling strength), yielding a very effective way for the determination of the relevant design parameters. The paper looks also at more speculative aspects of FEL physics, which may address the relevance of quantum effects in the lasing process.

  17. High-pressure studies with x-rays using diamond anvil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Guoyin; Mao, Ho Kwang

    2016-11-22

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. Thesemore » HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and

  18. High-pressure studies with x-rays using diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Shen, Guoyin; Mao, Ho Kwang

    2017-01-01

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials’ properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and

  19. Reflex Triode X-Ray Source Research on Gamble

    DTIC Science & Technology

    2007-06-01

    dosimeters ( TLDs ) located at the vacuum window (18-27 cm from the converter), near the pinhole camera and near the image plate. II. EXPERIMENTAL...MeV- electron beams to thin converters in order to optimize emission of sub-100- keV x-rays. Thin converters reduce self-absorption of low-energy...x-rays, but the beam electrons must pass many times through the converter for efficient x-ray production. The triode configuration was found to be

  20. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  1. Data collection strategies for time-resolved X-ray free-electron laser diffraction, and 2-color methods

    PubMed Central

    Li, Chufeng; Schmidt, Kevin; Spence, John C.

    2015-01-01

    We compare three schemes for time-resolved X-ray diffraction from protein nanocrystals using an X-ray free-electron laser. We find expressions for the errors in structure factor measurement using the Monte Carlo pump-probe method of data analysis with a liquid jet, the fixed sample pump-probe (goniometer) method (both diffract-and-destroy, and below the safe damage dose), and a proposed two-color method. Here, an optical pump pulse arrives between X-ray pulses of slightly different energies which hit the same nanocrystal, using a weak first X-ray pulse which does not damage the sample. (Radiation damage is outrun in the other cases.) This two-color method, in which separated Bragg spots are impressed on the same detector readout, eliminates stochastic fluctuations in crystal size, shape, and orientation and is found to require two orders of magnitude fewer diffraction patterns than the currently used Monte Carlo liquid jet method, for 1% accuracy. Expressions are given for errors in structure factor measurement for the four approaches, and detailed simulations provided for cathepsin B and IC3 crystals. While the error is independent of the number of shots for the dose-limited goniometer method, it falls off inversely as the square root of the number of shots for the two-color and Monte Carlo methods, with a much smaller pre-factor for the two-color mode, when the first shot is below the damage threshold. PMID:26798813

  2. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  3. X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy of tetragonal Mn72Ge28 epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyeok; Mizuguchi, Masaki; Inami, Nobuhito; Ueno, Tetsuro; Ueda, Shigenori; Takanashi, Koki

    2018-04-01

    An epitaxially grown Mn72Ge28 film with a tetragonal crystal structure was fabricated. It was clarified that the film had a perpendicular magnetization and a high perpendicular magnetic anisotropy energy of 14.3 Merg/cm3. The electronic structure was investigated by X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy. The obtained X-ray magnetic circular dichroism spectrum revealed that the Mn orbital magnetic moment governed the magnetocrystalline anisotropy of the Mn72Ge28 film. A doublet structure was observed for the Mn 2p3/2 peak of hard X-ray photoelectron spectrum, indicating the spin exchange interaction between the 2p core-hole and 3d valence electrons.

  4. X-rays diagnostics of the hot electron energy distribution in the intense laser interaction with metal targets

    NASA Astrophysics Data System (ADS)

    Kostenko, O. F.; Andreev, N. E.; Rosmej, O. N.

    2018-03-01

    A two-temperature hot electron energy distribution has been revealed by modeling of bremsstrahlung emission, measured by the radiation attenuation and half-shade methods, and Kα emission from a massive silver cylinder irradiated by a subpicosecond s-polarized laser pulse with a peak intensity of about 2 × 1019 W/cm2. To deduce parameters of the hot electron spectrum, we have developed semi-analytical models of generation and measurements of the x-rays. The models are based on analytical expressions and tabulated data on electron stopping power as well as cross-sections of generation and absorption of the x-rays. The Kα emission from thin silver foils deposited on low-Z substrates, both conducting and nonconducting, has been used to verify the developed models and obtained hot electron spectrum. The obtained temperatures of the colder and hotter electron components are in agreement with the values predicted by kinetic simulations of the cone-guided approach to fast ignition [Chrisman et al., Phys. Plasmas 15, 056309 (2008)]. The temperature of the low-energy component of the accelerated electron spectrum is well below the ponderomotive scaling and Beg's law. We have obtained relatively low conversion efficiency of laser energy into the energy of hot electrons propagating through the solid target of about 2%. It is demonstrated that the assumption about a single-temperature hot electron energy distribution with the slope temperature described by the ponderomotive scaling relationship, without detailed analysis of the hot electron spectrum, can lead to strong overestimation of the laser-to-electron energy-conversion efficiency, in particular, the conversion efficiency of laser energy into the high-temperature component of the hot electron distribution.

  5. Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity

    PubMed Central

    Abdullah, Malik Muhammad; Jurek, Zoltan; Son, Sang-Kil; Santra, Robin

    2016-01-01

    We present a generalized method to describe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from nanocrystals exposed to intense x-ray pulses. Our method involves the subdivision of a crystal into smaller units. In order to calculate the dynamics within every unit, we employ a Monte-Carlo-molecular dynamics-ab-initio hybrid framework using real space periodic boundary conditions. By combining all the units, we simulate the diffraction pattern of a crystal larger than the transverse x-ray beam profile, a situation commonly encountered in femtosecond nanocrystallography experiments with focused x-ray free-electron laser radiation. Radiation damage is not spatially uniform and depends on the fluence associated with each specific region inside the crystal. To investigate the effects of uniform and non-uniform fluence distribution, we have used two different spatial beam profiles, Gaussian and flattop. PMID:27478859

  6. From Relativistic Electrons to X-ray Phase Contrast Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Garson, A. B.; Anastasio, M. A.

    2017-10-09

    We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 μm (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphor’s 80-μm value. Potential fiber-optic plate depth-of-focus aspects and 33-μm diameter carbon fiber imaging are also addressed.

  7. CIAO: A Modern Data Analysis System for X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Fruscione, Antonella

    2017-08-01

    It is now eighteen years after launch and Chandra continues to produce spectacular results!A portion of the success is to be attributed to the data analysis software CIAO (Chandra Interactive Analysis of Observations) that the Chandra X-Ray Center (CXC) continues to improve and release year after year.CIAO is downloaded more than 1200 times a year and it is used by a wide variety of users around the world: from novice to experienced X-ray astronomers, high school, undergraduate and graduate students, archival users (many new to X-ray or Chandra data), users with extensive resources and others from smaller countries and institutions.The scientific goals and kinds of datasets and analysis cover a wide range: observations spanning from days to years, different instrument configurations and different kinds of targets, from pointlike stars and quasars, to fuzzy galaxies and clusters, to moving solar objects. These different needs and goals require a variety of specialized software and careful and detailed documentation which is what the CIAO software provides. In general, we strive to build a software system which is easy for beginners, yet powerful for advanced users.The complexity of the Chandra data require a flexible data analysis system which provides an environment where the users can apply our tools, but can also explore and construct their own applications. The main purpose of this talk is to present CIAO as a modern data analysis system for X-ray data analysis.CIAO has grown tremendously over the years and we will highlight (a) the most recent advancements with a particular emphasis on the newly developed high-level scripts which simplify the analysis steps for the most common cases making CIAO more accessible to all users - including beginners and users who are not X-ray astronomy specialists, (b) the python-based Sherpa modelling and fitting application and the new stand-alone version openly developed and distributed on Github and (c) progress on methods to

  8. Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–probe scheme

    PubMed Central

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru

    2016-01-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼1019 W/cm2) XFEL pulses. An X-ray pump–probe diffraction scheme was developed in this study; tightly focused double–5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray–induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray–matter interactions. The X-ray pump–probe scheme demonstrated here would be effective for understanding ultraintense X-ray–matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities. PMID:26811449

  9. Ultrafast X-Ray Coherent Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di racting properties of a x-ray di racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray freemore » electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the eld, and have laid the foundation for many experiments being performed on the LCLS, the world's rst hard x-ray free electron laser.« less

  10. Compton scattering artifacts in electron excited X-ray spectra measured with a silicon drift detector.

    PubMed

    Ritchie, Nicholas W M; Newbury, Dale E; Lindstrom, Abigail P

    2011-12-01

    Artifacts are the nemesis of trace element analysis in electron-excited energy dispersive X-ray spectrometry. Peaks that result from nonideal behavior in the detector or sample can fool even an experienced microanalyst into believing that they have trace amounts of an element that is not present. Many artifacts, such as the Si escape peak, absorption edges, and coincidence peaks, can be traced to the detector. Others, such as secondary fluorescence peaks and scatter peaks, can be traced to the sample. We have identified a new sample-dependent artifact that we attribute to Compton scattering of energetic X-rays generated in a small feature and subsequently scattered from a low atomic number matrix. It seems likely that this artifact has not previously been reported because it only occurs under specific conditions and represents a relatively small signal. However, with the advent of silicon drift detectors and their utility for trace element analysis, we anticipate that more people will observe it and possibly misidentify it. Though small, the artifact is not inconsequential. Under some conditions, it is possible to mistakenly identify the Compton scatter artifact as approximately 1% of an element that is not present.

  11. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE PAGES

    Kluge, T.; Rödel, C.; Rödel, M.; ...

    2017-10-23

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  12. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluge, T.; Rödel, C.; Rödel, M.

    In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibilitymore » of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.« less

  13. An optical storage cavity-based, Compton-backscatter x-ray source using the MKV free electron laser

    NASA Astrophysics Data System (ADS)

    Hadmack, Michael R.

    A compact, high-brightness x-ray source is presently under development at the University of Hawai`i Free Electron Laser Laboratory. This source utilizes Compton backscattering of an infrared laser from a relativistic electron beam to produce a narrow beam of monochromatic x-rays. The scattering efficiency is greatly increased by tightly focusing the two beams at an interaction point within a near-concentric optical storage cavity, designed with high finesse to coherently stack the incident laser pulses and greatly enhance the number of photons available for scattering with the electron beam. This dissertation describes the effort and progress to integrate and characterize the most important and challenging aspects of the design of this system. A low-power, near-concentric, visible-light storage cavity has been constructed as a tool for the exploration of the performance, alignment procedures, and diagnostics required for the operation of a high power infrared storage cavity. The use of off-axis reflective focussing elements is essential to the design of the optical storage cavity, but requires exquisite alignment to minimize astigmatism and other optical aberrations. Experiments using a stabilized HeNe laser have revealed important performance characteristics, and allowed the development of critical alignment and calibration procedures, which can be directly applied to the high power infrared storage cavity. Integration of the optical and electron beams is similarly challenging. A scanning-wire beam profiler has been constructed and tested, which allows for high resolution measurement of the size and position of the laser and electron beams at the interaction point. This apparatus has demonstrated that the electron and laser beams can be co-aligned with a precision of less than 10 microm, as required to maximize the x-ray production rate. Equally important is the stabilization of the phase of the GHz repetition rate electron pulses arriving at the interaction point

  14. Depth-resolved electronic structure of spintronic nanostructures and complex materials with soft and hard x-ray photoemission

    NASA Astrophysics Data System (ADS)

    Gray, Alexander

    In this dissertation we describe several new directions in the field of x-ray photoelectron spectroscopy, with a particular focus on the enhancement and control of the depth sensitivity and selectivity of the measurement. Enhancement of the depth sensitivity is achieved by going to higher photon energies with hard x-ray excitation and taking advantage of the resulting larger electron inelastic mean-free paths. This novel approach provides a more accurate picture of bulk electronic structure, when compared to the traditional soft x-ray photoelectron spectroscopy (XPS) which, for some systems, may be too strongly influenced by surface effects. We present three case-studies wherein such hard x-ray photoelectron spectroscopy (HAXPES) in the multi-keV regime is used to probe the bulk properties of complex thin-film materials, which would be otherwise impossible to investigate using conventional soft x-ray XPS. Namely, (1) we directly observe the opening of a semiconducting gap in epitaxial Cr0.80Al0.20 alloy thin films and confirm this with theory, (2) we study the electronic and structural properties of near-Heusler FexSi1-x alloy thin films of various composition and degrees of crystallinity, and (3) we observe the Mott metal-to-insulator transition in the ultra-thin epitaxial LaNiO3 films via core-level and valence-band spectroscopies. By performing the experiments at the photon energy of 5.95 keV, the bulk-sensitivity of the measurements, characterized by the inelastic mean-free path of the photoemitted electrons, is enhanced by a factor of 4--7 compared to the conventional soft x-ray photoelectron spectroscopy. The experimental results are compared to calculations performed using various first-principle theoretical approaches, such as the density-functional theory and the one-step theory of photoemission. Furthermore, we present the first results of hard x-ray angle-resolved photoemission measurements (HARPES), at excitation energies of 3.24 and 5.95 keV. In a

  15. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE PAGES

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  16. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  17. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary tomore » fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  18. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    PubMed Central

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-01-01

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423

  19. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Lin X.; Shelby, Megan L.; Lestrange, Patrick J.

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(II) tetramesitylporphyrin (NiTMP) were successfully measured for optically excited state at a timescale from 100 fs to 50 ps, providing insight into its sub-ps electronic and structural relaxation processes. Importantly, a transient reduced state Ni(I) (π, 3dx2-y2) electronic state is captured through the interpretation of a short-lived excited state absorption on the low-energy shoulder of the edge, which is aidedmore » by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of electronic configuration on specific metal orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could influence d-orbital energies up to a few eV and any attempt to steer the reaction pathway should account for this to ensure that external energies can be used optimally in driving desirable processes. NiTMP structural evolution and the influence of the porphyrin macrocycle conformation on relaxation kinetics can be likewise inferred from this study.« less

  20. Microgap x-ray detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  1. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    NASA Astrophysics Data System (ADS)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  2. Analyzing the Spectra of Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  3. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  4. Ultrafast Dynamics of a Nucleobase Analogue Illuminated by a Short Intense X-ray Free Electron Laser Pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaya, K.; Motomura, K.; Kukk, E.

    Understanding x-ray radiation damage is a crucial issue for both medical applications of x rays and x-ray free-electron-laser (XFEL) science aimed at molecular imaging. Decrypting the charge and fragmentation dynamics of nucleobases, the smallest units of a macro-biomolecule, contributes to a bottom-up understanding of the damage via cascades of phenomena following x-ray exposure. We investigate experimentally and by numerical simulations the ultrafast radiation damage induced on a nucleobase analogue (5-iodouracil) by an ultrashort (10 fs) high-intensity radiation pulse generated by XFEL at SPring-8 Angstrom Compact free electron Laser (SACLA). The present study elucidates a plausible underlying radiosensitizing mechanism of 5-iodouracil.more » This mechanism is independent of the exact composition of 5-iodouracil and thus relevant to other such radiosensitizers. Furthermore, we found that despite a rapid increase of the net molecular charge in the presence of iodine, and of the ultrafast release of hydrogen, the other atoms are almost frozen within the 10-fs duration of the exposure. Finally, this validates single-shot molecular imaging as a consistent approach, provided the radiation pulse used is brief enough.« less

  5. Ultrafast Dynamics of a Nucleobase Analogue Illuminated by a Short Intense X-ray Free Electron Laser Pulse

    DOE PAGES

    Nagaya, K.; Motomura, K.; Kukk, E.; ...

    2016-06-16

    Understanding x-ray radiation damage is a crucial issue for both medical applications of x rays and x-ray free-electron-laser (XFEL) science aimed at molecular imaging. Decrypting the charge and fragmentation dynamics of nucleobases, the smallest units of a macro-biomolecule, contributes to a bottom-up understanding of the damage via cascades of phenomena following x-ray exposure. We investigate experimentally and by numerical simulations the ultrafast radiation damage induced on a nucleobase analogue (5-iodouracil) by an ultrashort (10 fs) high-intensity radiation pulse generated by XFEL at SPring-8 Angstrom Compact free electron Laser (SACLA). The present study elucidates a plausible underlying radiosensitizing mechanism of 5-iodouracil.more » This mechanism is independent of the exact composition of 5-iodouracil and thus relevant to other such radiosensitizers. Furthermore, we found that despite a rapid increase of the net molecular charge in the presence of iodine, and of the ultrafast release of hydrogen, the other atoms are almost frozen within the 10-fs duration of the exposure. Finally, this validates single-shot molecular imaging as a consistent approach, provided the radiation pulse used is brief enough.« less

  6. Electronic structure change of NiS2- x Se x in the metal-insulator transition probed by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Jeong, Jinwon; Park, Kyung Ja; Cho, En-Jin; Noh, Han-Jin; Kim, Sung Baek; Kim, Hyeong-Do

    2018-01-01

    The electronic structure change of NiS2- x Se x as a function of Se concentration x has been studied by Ni L-edge X-ray absorption spectroscopy (XAS). The XAS spectra show distinct features in Ni L 3 edge, indicating whether the system is insulating or metallic. These features can be semi-quantitatively explained within the framework of the configurational interaction cluster model (CICM). In the S-rich region, relatively large charge-transfer energy (Δ 5 eV) from ligand p to Ni 3 d states and a little small p- d hybridization strength ( V pdσ 1.1 eV) can reproduce the experimental spectra in the CICM calculation, and vice versa in the Se-rich region. Our analysis result is consistent with the Zaanen-Sawatzky-Allen scheme that the systems in S-rich side ( x ≤ 0.5) are a charge transfer insulator. However, it also requires that the Δ value must change abruptly in spite of the small change of x near x = 0.5. As a possible microscopic origin, we propose a percolation scenario where a long range connection of Ni[(S,Se)2]6 octahedra with Se-Se dimers plays a key role to gap closure.

  7. Energetics of impulsive solar flares: Correlating BATSE hard x-ray bursts and the solar atmosphere's soft x-ray response

    NASA Technical Reports Server (NTRS)

    Newton, Elizabeth

    1996-01-01

    This investigation has involved the correlation of BATSE-observed solar hard X-ray emission with the characteristics of soft X-ray emitting plasma observed by the Yohkoh Bragg Crystal Spectrometers. The goal was to test the hypothesis that localized electron beam heating is the dominant energy transport mechanism in impulsive flares, as formulated in the thick-target electron-heated model of Brown.

  8. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, D. M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Harrison, F. A.; Grefenstette, B. W.; Stern, D.

    2012-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. Around the time of this meeting, the Nuclear Spectroscopic Telescope ARray (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. Three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux; 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating; 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum; 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes; 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched; 6) Study of particles at the coronal reconnection site when flare footpoints and loops are occulted; 7) Search for weak high-temperature coronal plasmas in active regions that are not flaring; and 8) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  9. Diffuse x-ray scattering and transmission electron microscopy study of defects in antimony-implanted silicon

    NASA Astrophysics Data System (ADS)

    Takamura, Y.; Marshall, A. F.; Mehta, A.; Arthur, J.; Griffin, P. B.; Plummer, J. D.; Patel, J. R.

    2004-04-01

    Ion implantation followed by laser annealing has been used to create supersaturated and electrically active concentrations of antimony in silicon. Upon subsequent thermal annealing, however, these metastable dopants deactivate towards the equilibrium solubility limit. In this work, the formation of inactive antimony structures has been studied with grazing incidence diffuse x-ray scattering, and transmission electron microscopy, and the results are correlated to previous high-resolution x-ray diffraction data. We find that at a concentration of 6.0×1020 cm-3, small, incoherent clusters of radius 3-4 Å form during annealing at 900 °C. At a higher concentration of 2.2×1021 cm-3, deactivation at 600 °C occurs through the formation of small, antimony aggregates and antimony precipitates. The size of these precipitates from diffuse x-ray scattering is roughly 15 Å in radius for anneal times from 15 to 180 seconds. This value is consistent with the features observed in high-resolution and mass contrast transmission electron microscopy images. The coherent nature of the aggregates and precipitates causes the expansion of the surrounding silicon matrix as the deactivation progresses. In addition, the sensitivity of the diffuse x-ray scattering technique has allowed us to detect the presence of small clusters of radius ˜2 Å in unprocessed Czochralski silicon wafers. These defects are not observed in floating zone silicon wafers, and are tentatively attributed to thermal donors.

  10. An upgraded x-ray spectroscopy diagnostic on MST.

    PubMed

    Clayton, D J; Almagri, A F; Burke, D R; Forest, C B; Goetz, J A; Kaufman, M C; O'Connell, R

    2010-10-01

    An upgraded x-ray spectroscopy diagnostic is used to measure the distribution of fast electrons in MST and to determine Z(eff) and the particle diffusion coefficient D(r). A radial array of 12 CdZnTe hard-x-ray detectors measures 10-150 keV Bremsstrahlung from fast electrons, a signature of reduced stochasticity and improved confinement in the plasma. A new Si soft-x-ray detector measures 2-10 keV Bremsstrahlung from thermal and fast electrons. The shaped output pulses from both detector types are digitized and the resulting waveforms are fit with Gaussians to resolve pileup and provide good time and energy resolution. Lead apertures prevent detector saturation and provide a well-known etendue, while lead shielding prevents pickup from stray x-rays. New Be vacuum windows transmit >2 keV x-rays, and additional Al and Be filters are sometimes used to reduce low energy flux for better resolution at higher energies. Measured spectra are compared to those predicted by the Fokker-Planck code CQL3D to deduce Z(eff) and D(r).

  11. Nanoplasma Formation by High Intensity Hard X-rays

    PubMed Central

    Tachibana, T.; Jurek, Z.; Fukuzawa, H.; Motomura, K.; Nagaya, K.; Wada, S.; Johnsson, P.; Siano, M.; Mondal, S.; Ito, Y.; Kimura, M.; Sakai, T.; Matsunami, K.; Hayashita, H.; Kajikawa, J.; Liu, X.-J.; Robert, E.; Miron, C.; Feifel, R.; Marangos, J. P.; Tono, K.; Inubushi, Y.; Yabashi, M.; Son, S.-K.; Ziaja, B.; Yao, M.; Santra, R.; Ueda, K.

    2015-01-01

    Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays. PMID:26077863

  12. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers.

    PubMed

    Neutze, Richard

    2014-07-17

    X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 10(12) X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.

  13. Anomalous X-Ray yields under surface wave resonance during reflection high energy electron diffraction and adatom site determination

    PubMed

    Yamanaka; Ino

    2000-05-08

    In L x-ray emissions from a Si(111)-sqrt[3]xsqrt[3]-In surface induced by electron beam irradiation were measured as functions of the incident glancing angle. Under surface wave resonance conditions, anomalous x-ray intensities were clearly observed. Using dynamical calculations, these intensities are well explained as changes in density of the electron wave field at adatom positions. From these intensities, the adatom site was analyzed, and it was found that the T4 model is better than the H3 model.

  14. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stead, A.D.; Ford, T.W.; Page, A.M.

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examinedmore » the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.« less

  15. X-ray generation using carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Parmee, Richard J.; Collins, Clare M.; Milne, William I.; Cole, Matthew T.

    2015-01-01

    Since the discovery of X-rays over a century ago the techniques applied to the engineering of X-ray sources have remained relatively unchanged. From the inception of thermionic electron sources, which, due to simplicity of fabrication, remain central to almost all X-ray applications, there have been few fundamental technological advances. However, with the emergence of ever more demanding medical and inspection techniques, including computed tomography and tomosynthesis, security inspection, high throughput manufacturing and radiotherapy, has resulted in a considerable level of interest in the development of new fabrication methods. The use of conventional thermionic sources is limited by their slow temporal response and large physical size. In response, field electron emission has emerged as a promising alternative means of deriving a highly controllable electron beam of a well-defined distribution. When coupled to the burgeoning field of nanomaterials, and in particular, carbon nanotubes, such systems present a unique technological opportunity. This review provides a summary of the current state-of-the-art in carbon nanotube-based field emission X-ray sources. We detail the various fabrication techniques and functional advantages associated with their use, including the ability to produce ever smaller electron beam assembles, shaped cathodes, enhanced temporal stability and emergent fast-switching pulsed sources. We conclude with an overview of some of the commercial progress made towards the realisation of an innovative and disruptive technology.

  16. Focusing X-ray free-electron laser pulses using Kirkpatrick-Baez mirrors at the NCI hutch of the PAL-XFEL.

    PubMed

    Kim, Jangwoo; Kim, Hyo Yun; Park, Jaehyun; Kim, Sangsoo; Kim, Sunam; Rah, Seungyu; Lim, Jun; Nam, Ki Hyun

    2018-01-01

    The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) is a recently commissioned X-ray free-electron laser (XFEL) facility that provides intense ultrashort X-ray pulses based on the self-amplified spontaneous emission process. The nano-crystallography and coherent imaging (NCI) hutch with forward-scattering geometry is located at the hard X-ray beamline of the PAL-XFEL and provides opportunities to perform serial femtosecond crystallography and coherent X-ray diffraction imaging. To produce intense high-density XFEL pulses at the interaction positions between the X-rays and various samples, a microfocusing Kirkpatrick-Baez (KB) mirror system that includes an ultra-precision manipulator has been developed. In this paper, the design of a KB mirror system that focuses the hard XFEL beam onto a fixed sample point of the NCI hutch, which is positioned along the hard XFEL beamline, is described. The focusing system produces a two-dimensional focusing beam at approximately 2 µm scale across the 2-11 keV photon energy range. XFEL pulses of 9.7 keV energy were successfully focused onto an area of size 1.94 µm × 2.08 µm FWHM.

  17. X-Ray photoelectron Spectroscopy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhard, Mark H.; Droubay, Timothy C.; Du, Yingge

    2017-01-03

    With capability for obtaining quantitative elemental composition, chemical and electronic state, and overlayer thickness information from the top ~10 nm of a sample surface, X-ray Photoelectron Spectroscopy (XPS) or Electron Spectroscopy for Chemical Analysis (ESCA) is a versatile and widely used technique for analyzing surfaces. The technique is applied to a host of materials, from insulators to conductors in virtually every scientific field and sub-discipline. More recently, XPS has been extended under in-situ and operando conditions. Following a brief introduction to XPS principles and instrument components, this article exemplifies widely ranging XPS applications in material and life sciences.

  18. Experimental demonstration of fresh bunch self-seeding in an X-ray free electron laser

    DOE PAGES

    Emma, C.; Lutman, A.; Guetg, M. W.; ...

    2017-04-10

    Here, we report the generation of ultrahigh brightness X-ray pulses using the Fresh Bunch Self-Seeding (FBSS) method in an X-ray Free Electron Laser (XFEL). The FBSS method uses two different electron slices or bunches, one to generate the seed and the other to amplify it after the monochromator. This method circumvents the trade-off between the seed power and electron slice energy spread, which limits the efficiency of regular self-seeded FELs. The experiment, the performance of which is limited by existing hardware, shows FBSS feasibility, generating 5.5 keV photon pulses which are 9 fs long and of 7.3 ×10 –5 bandwidthmore » and 50 GW power. FBSS performance is compared with Self Amplified Spontaneous Emission/self-seeding performance, measuring a brightness increase of twelve/two times, respectively. In an optimized XFEL, FBSS can increase the peak power a hundred times more than state-of-the-art to multi-TW, opening new research areas for nonlinear science and single molecule imaging.« less

  19. Accretion Disks and Coronae in the X-Ray Flashlight

    NASA Astrophysics Data System (ADS)

    Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan

    2018-02-01

    Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.

  20. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  1. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser.

    PubMed

    Ekeberg, Tomas; Svenda, Martin; Abergel, Chantal; Maia, Filipe R N C; Seltzer, Virginie; Claverie, Jean-Michel; Hantke, Max; Jönsson, Olof; Nettelblad, Carl; van der Schot, Gijs; Liang, Mengning; DePonte, Daniel P; Barty, Anton; Seibert, M Marvin; Iwan, Bianca; Andersson, Inger; Loh, N Duane; Martin, Andrew V; Chapman, Henry; Bostedt, Christoph; Bozek, John D; Ferguson, Ken R; Krzywinski, Jacek; Epp, Sascha W; Rolles, Daniel; Rudenko, Artem; Hartmann, Robert; Kimmel, Nils; Hajdu, Janos

    2015-03-06

    We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.

  2. Alternative difference analysis scheme combining R -space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions.R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure changemore » in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3spin crossover complex and yielded reliable distance change and excitation population.« less

  3. Line focus x-ray tubes—a new concept to produce high brilliance x-rays

    NASA Astrophysics Data System (ADS)

    Bartzsch, Stefan; Oelfke, Uwe

    2017-11-01

    Currently hard coherent x-ray radiation at high photon fluxes can only be produced with large and expensive radiation sources, such as 3rd generation synchrotrons. Especially in medicine, this limitation prevents various promising developments in imaging and therapy from being translated into clinical practice. Here we present a new concept of highly brilliant x-ray sources, line focus x-ray tubes (LFXTs), which may serve as a powerful and cheap alternative to synchrotrons and a range of other existing technologies. LFXTs employ an extremely thin focal spot and a rapidly rotating target for the electron beam which causes a change in the physical mechanism of target heating, allowing higher electron beam intensities at the focal spot. Monte Carlo simulations and numeric solutions of the heat equation are used to predict the characteristics of the LFXT. In terms of photon flux and coherence length, the performance of the line focus x-ray tube compares with inverse Compton scattering sources. Dose rates of up to 180 Gy s-1 can be reached in 50 cm distance from the focal spot. The results demonstrate that the line focus tube can serve as a powerful compact source for phase contrast imaging and microbeam radiation therapy. The production of a prototype seems technically feasible.

  4. Laser power meters as an X-ray power diagnostic for LCLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less

  5. Laser power meters as an X-ray power diagnostic for LCLS-II.

    PubMed

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; Song, Sanghoon; Dakovski, Georgi; Nordlund, Dennis; Fritz, David

    2018-01-01

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.

  6. Laser power meters as an X-ray power diagnostic for LCLS-II

    DOE PAGES

    Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; ...

    2018-01-01

    For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less

  7. Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance Raman, and UV-visible spectroscopic analysis of a Rieske-type demethylase.

    PubMed

    Daughtry, Kelly D; Xiao, Youli; Stoner-Ma, Deborah; Cho, Eunsun; Orville, Allen M; Liu, Pinghua; Allen, Karen N

    2012-02-08

    Herein, the structure resulting from in situ turnover in a chemically challenging quaternary ammonium oxidative demethylation reaction was captured via crystallographic analysis and analyzed via single-crystal spectroscopy. Crystal structures were determined for the Rieske-type monooxygenase, stachydrine demethylase, in the unliganded state (at 1.6 Å resolution) and in the product complex (at 2.2 Å resolution). The ligand complex was obtained from enzyme aerobically cocrystallized with the substrate stachydrine (N,N-dimethylproline). The ligand electron density in the complex was interpreted as proline, generated within the active site at 100 K by the absorption of X-ray photon energy and two consecutive demethylation cycles. The oxidation state of the Rieske iron-sulfur cluster was characterized by UV-visible spectroscopy throughout X-ray data collection in conjunction with resonance Raman spectra collected before and after diffraction data. Shifts in the absorption band wavelength and intensity as a function of absorbed X-ray dose demonstrated that the Rieske center was reduced by solvated electrons generated by X-ray photons; the kinetics of the reduction process differed dramatically for the liganded complex compared to unliganded demethylase, which may correspond to the observed turnover in the crystal.

  8. Hard X-ray emission from the solar corona

    NASA Astrophysics Data System (ADS)

    Krucker, S.; Battaglia, M.; Cargill, P. J.; Fletcher, L.; Hudson, H. S.; MacKinnon, A. L.; Masuda, S.; Sui, L.; Tomczak, M.; Veronig, A. L.; Vlahos, L.; White, S. M.

    2008-10-01

    This review surveys hard X-ray emissions of non-thermal electrons in the solar corona. These electrons originate in flares and flare-related processes. Hard X-ray emission is the most direct diagnostic of electron presence in the corona, and such observations provide quantitative determinations of the total energy in the non-thermal electrons. The most intense flare emissions are generally observed from the chromosphere at footpoints of magnetic loops. Over the years, however, many observations of hard X-ray and even γ-ray emission directly from the corona have also been reported. These coronal sources are of particular interest as they occur closest to where the electron acceleration is thought to occur. Prior to the actual direct imaging observations, disk occultation was usually required to study coronal sources, resulting in limited physical information. Now RHESSI has given us a systematic view of coronal sources that combines high spatial and spectral resolution with broad energy coverage and high sensitivity. Despite the low density and hence low bremsstrahlung efficiency of the corona, we now detect coronal hard X-ray emissions from sources in all phases of solar flares. Because the physical conditions in such sources may differ substantially from those of the usual “footpoint” emission regions, we take the opportunity to revisit the physics of hard X-radiation and relevant theories of particle acceleration.

  9. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    DOE PAGES

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; ...

    2015-04-02

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations withmore » a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.« less

  10. Periodicity Analysis of X-ray Light Curves of SS 433

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Lu, X. L.; Zhao, Q. W.; Dong, D. Q.; Lao, B. Q.; Lu, Y.; Wei, Y. H.; Wu, X. C.; An, T.

    2016-03-01

    SS 433 is the only X-ray binary to date that was detected to have a pair of well-collimated jets, and its orbital period, super orbital period, and nutation period were all detected at the same time. The study on the periodic X-ray variabilities is helpful for understanding its dynamic process of the central engine and the correlation with other bands. In the present paper, two time series analysis techniques, Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periodicities from the Swift/BAT (Burst Alert Telescope)(15--50 keV) and RXTE/ASM (Rossi X-Ray Timing Explorer/All-Sky Monitor)(1.5--3, 3--5 and 5--12 keV) light curves of SS 433, and the Monte Carlo simulation is performed. For the 15--50 keV energy band, five significant periodic signals are detected, which are P_1(˜6.29 d), P_2 (˜6.54 d), P_3 (˜13.08 d), P_4 (˜81.50 d), and P_5 (˜162.30 d). For the 3--5 and 5--12 keV energy bands, periodic signals P_3 (˜13 d) and P_5 (˜162 d) are detected in both energy bands. However, for the 1.5--3 keV energy band, no significant periodic signal is detected. P_5 has the strongest periodic signal in the power spectrum for all the energy bands of 3--5, 5--12, and 15--50 keV, and it is consistent with that obtained by previous study in optical band. Further, due to the existence of relativistic radio jets, the X-ray and optical band variability of P_5 (˜162 d) is probably related to the precession of the relativistic jets. High coherence between X-ray and optical light curves may also imply that the X-ray and optical emissions are of the same physical origin. P_3 shows a good agreement with the orbital period (˜13.07 d) first obtained by previous study, and P_2 and P_4 are the high frequency harmonic components of P_3 and P_5, respectively. P_1 is detected from the power spectrum of 15--50 keV energy band only, and it is consistent with the systematic nutation period. As the power of energy band decreases (from hard X-ray to

  11. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  12. Suzaku Detection of Diffuse Hard X-Ray Emission Outside Vela X

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea; hide

    2011-01-01

    Vela X is a large, 3 deg x 2 deg, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma approximates 2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.

  13. X-ray Emission from Thunderstorms and Lightning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, Joseph

    2009-07-08

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdownmore » plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. « less

  14. X-ray Emission from Thunderstorms and Lightning

    ScienceCinema

    Dwyer, Joseph [Florida Institute of Technology, Melbourne, Florida, United States

    2017-12-09

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. 

  15. A soft X-ray spectroscopic perspective of electron localization and transport in tungsten doped bismuth vanadate single crystals.

    PubMed

    Jovic, Vedran; Rettie, Alexander J E; Singh, Vijay R; Zhou, Jianshi; Lamoureux, Bethany; Buddie Mullins, C; Bluhm, Hendrik; Laverock, Jude; Smith, Kevin E

    2016-11-23

    Doped BiVO 4 is a promising photoelectrochemical water splitting anode, whose activity is hampered by poor charge transport. Here we use a set of X-ray spectroscopic methods to probe the origin and nature of localized electron states in W:BiVO 4 . Furthermore, using the polarized nature of the X-rays, we probe variations in the electronic structure along the crystal axes. In this manner, we reveal aspects of the electronic structure related to electron localization and observations consistent with conductivity anisotropy between the ab-plane and c-axis. We verify that tungsten substitutes as W 6+ for V 5+ in BiVO 4 . This is shown to result in the presence of inter-band gap states related to electrons at V 4+ sites of e symmetry. The energetic position of the states in the band gap suggest that they are highly localized and may act as recombination centres. Polarization dependent X-ray absorption spectra reveal anisotropy in the electronic structure between the ab-plane and c-axis. Results show the superior hybridization between V 3d and O 2p states, higher V wavefunction overlap and broader conduction bands in the ab-plane than in the c-axis. These insights into the electronic structure are discussed in the context of existing experimental and theoretical reports regarding charge transport in BiVO 4 .

  16. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    NASA Astrophysics Data System (ADS)

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-11-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering.

  17. Analysis of the X-ray emission of nine Swift afterglows

    NASA Astrophysics Data System (ADS)

    Panaitescu, A.; Mészáros, P.; Gehrels, N.; Burrows, D.; Nousek, J.

    2006-03-01

    The X-ray light curves of nine Swift XRT afterglows (050126, 050128, 050219A, 050315, 050318, 050319, 050401, 050408 and 050505) display a complex behaviour: a steep t-3.0+/-0.3 decay until ~400 s, followed by a significantly slower t-0.65+/-0.20 fall-off, which at 0.2-2 day after the burst evolves into a t-1.7+/-0.5 decay. We consider three possible models for the geometry of relativistic blast-waves (spherical outflows, non-spreading jets and spreading jets), two possible dynamical regimes for the forward shock (adiabatic and fully radiative), and we take into account a possible angular structure of the outflow and delayed energy injection in the blast-wave to identify the models which reconcile the X-ray light-curve decay with the slope of the X-ray continuum for each of the above three afterglow phases. By piecing together the various models for each phase in a way that makes physical sense, we identify possible models for the entire X-ray afterglow. The major conclusion of this work is that a long-lived episode of energy injection in the blast-wave, during which the shock energy increases at t1.0+/-0.5, is required for five afterglows and could be at work in the other four as well. For some afterglows, there may be other mechanisms that can explain the t < 400 s fast falling-off X-ray light curve (e.g. the large-angle gamma-ray burst emission), the 400 s to 5 h slow decay (e.g. a structured outflow), or the steepening at 0.2-2 day (e.g. a jet-break, a collimated outflow transiting from a wind with a r-3 radial density profile to a homogeneous or outward-increasing density region). Optical observations in conjunction with the X-ray can distinguish among these various models. Our simple tests allow the determination of the location of the cooling frequency relative to the X-ray domain and, thus, of the index of the electron power-law distribution with energy in the blast-wave. The resulting indices are clearly inconsistent with a universal value.

  18. Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser.

    PubMed

    Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto; Aquila, Andrew; Bajt, Saša; Barty, Anton; Bean, Richard; Koglin, Jason E; Messerschmidt, Marc; Ragazzon, Davide; Sokaras, Dimosthenis; Williams, Garth J; Hau-Riege, Stefan; Boutet, Sébastien; Chapman, Henry N; Tîmneanu, Nicuşor; Caleman, Carl

    2018-05-29

    The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 10 6 J/cm 2 These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.

  19. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  20. VETA-1 x ray detection system

    NASA Technical Reports Server (NTRS)

    Podgorski, W. A.; Flanagan, Kathy A.; Freeman, Mark D.; Goddard, R. G.; Kellogg, Edwin M.; Norton, T. J.; Ouellette, J. P.; Roy, A. G.; Schwartz, Daniel A.

    1992-01-01

    The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system.

  1. X-band RF gun and linac for medical Compton scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-12-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.

  2. Microgap x-ray detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  3. Characterization of wood dust from furniture by scanning electron microscopy and energy-dispersive x-ray analysis.

    PubMed

    Gómez Yepes, Milena Elizabeth; Cremades, Lázaro V

    2011-01-01

    Study characterized and analyzed form factor, elementary composition and particle size of wood dust, in order to understand its harmful health effects on carpenters in Quindío (Colombia). Once particle characteristics (size distributions, aerodynamic equivalent diameter (D(α)), elemental composition and shape factors) were analyzed, particles were then characterized via scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDXRA). SEM analysis of particulate matter showed: 1) cone-shaped particle ranged from 2.09 to 48.79 µm D(α); 2) rectangular prism-shaped particle from 2.47 to 72.9 µm D(α); 3) cylindrically-shaped particle from 2.5 to 48.79 µm D(α); and 4) spherically-shaped particle from 2.61 to 51.93 µm D(α). EDXRA reveals presence of chemical elements from paints and varnishes such as Ca, K, Na and Cr. SEM/EDXRA contributes in a significant manner to the morphological characterization of wood dust. It is obvious that the type of particles sampled is a complex function of shapes and sizes of particles. Thus, it is important to investigate the influence of particles characteristics, morphology, shapes and D(α) that may affect the health of carpenters in Quindío.

  4. X-ray Reflection

    NASA Astrophysics Data System (ADS)

    Fabian, A. C.; Ross, R. R.

    2010-12-01

    Material irradiated by X-rays produces backscattered radiation which is commonly known as the Reflection Spectrum. It consists of a structured continuum, due at high energies to the competition between photoelectric absorption and electron scattering enhanced at low energies by emission from the material itself, together with a complex line spectrum. We briefly review the history of X-ray reflection in astronomy and discuss various methods for computing the reflection spectrum from cold and ionized gas, illustrated with results from our own work reflionx. We discuss how the reflection spectrum can be used to obtain the geometry of the accretion flow, particularly the inner regions around black holes and neutron stars.

  5. Electronic structure and magnetic properties of the half-metallic ferrimagnet Mn2VAl probed by soft x-ray spectroscopies

    NASA Astrophysics Data System (ADS)

    Nagai, K.; Fujiwara, H.; Aratani, H.; Fujioka, S.; Yomosa, H.; Nakatani, Y.; Kiss, T.; Sekiyama, A.; Kuroda, F.; Fujii, H.; Oguchi, T.; Tanaka, A.; Miyawaki, J.; Harada, Y.; Takeda, Y.; Saitoh, Y.; Suga, S.; Umetsu, R. Y.

    2018-01-01

    We have studied the electronic structure of ferrimagnetic Mn2VAl single crystals by means of soft x-ray absorption spectroscopy (XAS), x-ray absorption magnetic circular dichroism (XMCD), and resonant soft x-ray inelastic scattering (RIXS). We have successfully observed the XMCD signals for all the constituent elements. The Mn L2 ,3 XAS and XMCD spectra are reproduced by spectral simulations based on density-functional theory, indicating the itinerant character of the Mn 3 d states. On the other hand, the V 3 d electrons are rather localized since the ionic model can qualitatively explain the V L2 ,3 XAS and XMCD spectra. This picture is consistent with local d d excitations revealed by the V L3 RIXS.

  6. Experimental characterization of an ultra-fast Thomson scattering x-ray source with three-dimensional time and frequency-domain analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuba, J; Slaughter, D R; Fittinghoff, D N

    We present a detailed comparison of the measured characteristics of Thomson backscattered x-rays produced at the PLEIADES (Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures) facility at Lawrence Livermore National Laboratory to predicted results from a newly developed, fully three-dimensional time and frequency-domain code. Based on the relativistic differential cross section, this code has the capability to calculate time and space dependent spectra of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser bandwidth, perpendicular wave vector components in themore » laser focus, and the transverse and longitudinal phase space of the electron beam are included. Electron beam energy, energy spread, and transverse phase space measurements of the electron beam at the interaction point are presented, and the corresponding predicted x-ray characteristics are determined. In addition, time-integrated measurements of the x-rays produced from the interaction are presented, and shown to agree well with the simulations.« less

  7. Airborne particulate matter (PM) filter analysis and modeling by total reflection X-ray fluorescence (TXRF) and X-ray standing wave (XSW).

    PubMed

    Borgese, L; Salmistraro, M; Gianoncelli, A; Zacco, A; Lucchini, R; Zimmerman, N; Pisani, L; Siviero, G; Depero, L E; Bontempi, E

    2012-01-30

    This work is presented as an improvement of a recently introduced method for airborne particulate matter (PM) filter analysis [1]. X-ray standing wave (XSW) and total reflection X-ray fluorescence (TXRF) were performed with a new dedicated laboratory instrumentation. The main advantage of performing both XSW and TXRF, is the possibility to distinguish the nature of the sample: if it is a small droplet dry residue, a thin film like or a bulk sample. Another advantage is related to the possibility to select the angle of total reflection to make TXRF measurements. Finally, the possibility to switch the X-ray source allows to measure with more accuracy lighter and heavier elements (with a change in X-ray anode, for example from Mo to Cu). The aim of the present study is to lay the theoretical foundation of the new proposed method for airborne PM filters quantitative analysis improving the accuracy and efficiency of quantification by means of an external standard. The theoretical model presented and discussed demonstrated that airborne PM filters can be considered as thin layers. A set of reference samples is prepared in laboratory and used to obtain a calibration curve. Our results demonstrate that the proposed method for quantitative analysis of air PM filters is affordable and reliable without the necessity to digest filters to obtain quantitative chemical analysis, and that the use of XSW improve the accuracy of TXRF analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Inter-satellites x-ray communication system

    NASA Astrophysics Data System (ADS)

    Mou, Huan; Li, Bao-quan

    2017-02-01

    An inter-satellite X-ray communication system is presented in this paper. X-ray has a strong penetrating power without almost attenuation for transmission in outer space when the energy of X-ray photons is more than 10KeV and the atmospheric pressure is lower than 10-1 Pa, so it is convincing of x-ray communication in inter-satellite communication and deep space exploration. Additionally, using X-ray photons as information carriers can be used in some communication applications that laser communication and radio frequency (RF) communication are not available, such as ionization blackout area communication. The inter-satellites X-ray communication system, including the grid modulated X-ray source, the high-sensitivity X-ray detector and the transmitting and receiving antenna, is described explicitly. As the X-ray transmitter, a vacuum-sealed miniature modulated X-ray source has been fabricated via the single-step brazing process in a vacuum furnace. Pulse modulation of X-rays, by means of controlling the voltage value of the grid electrode, is realized. Three focusing electrodes, meanwhile, are used to make the electron beam converge and finally 150μm focusing spot diameter is obtained. The X-ray detector based on silicon avalanche photodiodes (APDs) is chosen as the communication receiver on account of its high temporal resolution and non-vacuum operating environment. Furthermore, considering x-ray emission characteristic and communication distance of X-rays, the multilayer nested rotary parabolic optics is picked out as transmitting and receiving antenna. And as a new concept of the space communication, there will be more important scientific significance and application prospects, called "Next-Generation Communications".

  9. High-Resolution Detector For X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  10. Ultrafast isomerization initiated by X-ray core ionization

    NASA Astrophysics Data System (ADS)

    Liekhus-Schmaltz, Chelsea E.; Tenney, Ian; Osipov, Timur; Sanchez-Gonzalez, Alvaro; Berrah, Nora; Boll, Rebecca; Bomme, Cedric; Bostedt, Christoph; Bozek, John D.; Carron, Sebastian; Coffee, Ryan; Devin, Julien; Erk, Benjamin; Ferguson, Ken R.; Field, Robert W.; Foucar, Lutz; Frasinski, Leszek J.; Glownia, James M.; Gühr, Markus; Kamalov, Andrei; Krzywinski, Jacek; Li, Heng; Marangos, Jonathan P.; Martinez, Todd J.; McFarland, Brian K.; Miyabe, Shungo; Murphy, Brendan; Natan, Adi; Rolles, Daniel; Rudenko, Artem; Siano, Marco; Simpson, Emma R.; Spector, Limor; Swiggers, Michele; Walke, Daniel; Wang, Song; Weber, Thorsten; Bucksbaum, Philip H.; Petrovic, Vladimir S.

    2015-09-01

    Rapid proton migration is a key process in hydrocarbon photochemistry. Charge migration and subsequent proton motion can mitigate radiation damage when heavier atoms absorb X-rays. If rapid enough, this can improve the fidelity of diffract-before-destroy measurements of biomolecular structure at X-ray-free electron lasers. Here we study X-ray-initiated isomerization of acetylene, a model for proton dynamics in hydrocarbons. Our time-resolved measurements capture the transient motion of protons following X-ray ionization of carbon K-shell electrons. We Coulomb-explode the molecule with a second precisely delayed X-ray pulse and then record all the fragment momenta. These snapshots at different delays are combined into a `molecular movie' of the evolving molecule, which shows substantial proton redistribution within the first 12 fs. We conclude that significant proton motion occurs on a timescale comparable to the Auger relaxation that refills the K-shell vacancy.

  11. CIAO: CHANDRA/X-RAY DATA ANALYSIS FOR EVERYONE

    NASA Astrophysics Data System (ADS)

    McDowell, Jonathan; CIAO Team

    2018-01-01

    Eighteen years after the launch of Chandra, the archive is full of scientifically rich data and new observations continue. Improvements in recent years to the data analysis package CIAO (Chandra Interactive Analysis of Observations) and its extensive accompanying documentation make it easier for astronomers without a specialist background in high energy astrophysics to take advantage of this resource.The CXC supports hundreds of CIAO users around the world at all levels of training from high school and undergraduate students to the most experienced X-ray astronomers. In general, we strive to provide a software system which is easy for beginners, yet powerful for advanced users.Chandra data cover a range of instrument configurations and types of target (pointlike, extended and moving), requiring a flexible data analysis system. In addition to CIAO tools using the familiar FTOOLS/IRAF-style parameter interface, CIAO includes applications such as the Sherpa fitting engine which provide access to the data via Python scripting.In this poster we point prospective (and existing!) users to the high level Python scripts now provided to reprocess Chandra or other X-ray mission data, determine source fluxes and upper limits, and estimate backgrounds; and to the latest documentation including the CIAO Gallery, a new entry point featuring the system's different capabilities.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  12. Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.

    1974-01-01

    Gamma ray and X-ray spectrometers carried in the service module of the Apollo 15 and 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristics energy distribution of gamma rays and X-rays emitted from the lunar surface. A large scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. The objective of the gamma-ray experiment was to measure the natural and cosmic ray induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions.

  13. Overview of options for generating high-brightness attosecond x-ray pulses at free-electron lasers and applications at the European XFEL

    NASA Astrophysics Data System (ADS)

    Serkez, S.; Geloni, G.; Tomin, S.; Feng, G.; Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Meyer, M.

    2018-02-01

    The generation of attosecond, highbrightness x-ray pulses is a matter of great interest given their applications in the study of ultra-fast processes. In recent years, the production of x-ray pulses of high brightness, both in the soft and in the hard x-ray range, has been enabled by x-ray free-electron lasers (XFELs). In contrast to conventional quantum lasers, XFELs are based on the use of an ultra-relativistic electron beam as gain medium. They often work in the self-amplified spontaneous emission (SASE) regime, which provides pulses of duration down to a few femtoseconds, composed of several longitudinal modes. In order to further decrease the duration of these pulses, special methods need to be implemented. In this paper we review available methods, with particular focus on the x-ray laser-enhanced attosecond pulse generation, which is one of the most promising techniques. We illustrate the method using the SASE3 soft x-ray undulator of the European XFEL facility as a case study, emphasizing the importance of high-repetition rate attosecond x-ray pulses. The expected attosecond-level radiation output is used for simulations of sequential ionization processes in atoms in the case of ionization in the soft x-ray regime, demonstrating the importance of this opportunity for the user community.

  14. A whole-system approach to x-ray spectroscopy in cargo inspection systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langeveld, Willem G. J.; Gozani, Tsahi; Ryge, Peter

    The bremsstrahlung x-ray spectrum used in high-energy, high-intensity x-ray cargo inspection systems is attenuated and modified by the materials in the cargo in a Z-dependent way. Therefore, spectroscopy of the detected x rays yields information about the Z of the x-rayed cargo material. It has previously been shown that such ZSpectroscopy (Z-SPEC) is possible under certain circumstances. A statistical approach, Z-SCAN (Z-determination by Statistical Count-rate ANalysis), has also been shown to be effective, and it can be used either by itself or in conjunction with Z-SPEC when the x-ray count rate is too high for individual x-ray spectroscopy. Both techniquesmore » require fast x-ray detectors and fast digitization electronics. It is desirable (and possible) to combine all techniques, including x-ray imaging of the cargo, in a single detector array, to reduce costs, weight, and overall complexity. In this paper, we take a whole-system approach to x-ray spectroscopy in x-ray cargo inspection systems, and show how the various parts interact with one another. Faster detectors and read-out electronics are beneficial for both techniques. A higher duty-factor x-ray source allows lower instantaneous count rates at the same overall x-ray intensity, improving the range of applicability of Z-SPEC in particular. Using an intensity-modulated advanced x-ray source (IMAXS) allows reducing the x-ray count rate for cargoes with higher transmission, and a stacked-detector approach may help material discrimination for the lowest attenuations. Image processing and segmentation allow derivation of results for entire objects, and subtraction of backgrounds. We discuss R and D performed under a number of different programs, showing progress made in each of the interacting subsystems. We discuss results of studies into faster scintillation detectors, including ZnO, BaF{sub 2} and PbWO{sub 4}, as well as suitable photo-detectors, read-out and digitization electronics. We discuss high

  15. Scanning electron microscopy and X-ray energy dispersive spectroscopy - useful tools in the analysis of pharmaceutical products

    NASA Astrophysics Data System (ADS)

    Sarecka-Hujar, Beata; Balwierz, Radoslaw; Ostrozka-Cieslik, Aneta; Dyja, Renata; Lukowiec, Dariusz; Jankowski, Andrzej

    2017-11-01

    The quality of the drug, its purity and identification of degradation products provide the highest quality of pharmaceutical products. The energy dispersive spectroscopy (EDS) method analyses the percentage of each element form as well as their distribution, and morphological characteristics of the drug form. We analysed the usefulness of EDS method in testing orally disintegrating tablets (ODT) with trimetazidine hydrochloride with high resolution scanning electron microscopy (SEM, SUPRA25 Carl Zeiss company) with spectrophotometer equipped with an X-ray energy dispersion (EDAX Company). The samples of the analysed tablets were imaged after applying conductive layers of gold on their surface. In the EDS analysis the compositions of each sample of the obtained tablets were observed to be virtually identical. The differences in the content of carbon and oxygen came from differences in the composition of particular tablets. The presence of gold in the composition resulted from the sputtering the surface of tablets with gold during the analysis. Knowing the composition of the tablet, SEM-EDS method helps to locate and identify the impurities and degradation products of the compounds, leading to a better understanding of the mechanisms of their formation.

  16. CCD sensors in synchrotron X-ray detectors

    NASA Astrophysics Data System (ADS)

    Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.

    1988-04-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.

  17. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2002-12-18

    At a distance of 6,000 light years from Earth, the star cluster RCW 38 is a relatively close star-forming region. This area is about 5 light years across, and contains thousands of hot, very young stars formed less than a million years ago, 190 of which exposed x-rays to Chandra. Enveloping the star cluster, the diffused cloud of x-rays shows an excess of high energy x-rays, which indicates that the x-rays come from trillion-volt electrons moving in a magnetic field. Such particles are typically produced by exploding stars, or in the strong magnetic fields around neutron stars or black holes, none of which are evident in RCW 38. One possible origin for the particles, could be an undetected supernova that occurred in the cluster, possibly thousands of years ago, producing a shock wave that is interacting with the young stars. Regardless of the origin of these energetic electrons, their presence could change the chemistry of the disks that will eventually form planets around the stars in the cluster.

  18. X-Ray Study of Variable Gamma-Ray Pulsar PSR J2021+4026

    NASA Astrophysics Data System (ADS)

    Wang, H. H.; Takata, J.; Hu, C.-P.; Lin, L. C. C.; Zhao, J.

    2018-04-01

    PSR J2021+4026 showed a sudden decrease in the gamma-ray emission at the glitch that occurred around 2011 October 16, and a relaxation of the flux to the pre-glitch state at around 2014 December. We report X-ray analysis results of the data observed by XMM-Newton on 2015 December 20 in the post-relaxation state. To examine any change in the X-ray emission, we compare the properties of the pulse profiles and spectra at the low gamma-ray flux state and at the post-relaxation state. The phase-averaged spectra for both states can be well described by a power-law component plus a blackbody component. The former is dominated by unpulsed emission and probably originated from the pulsar wind nebula as reported by Hui et al. The emission property of the blackbody component is consistent with the emission from the polar cap heated by the back-flow bombardment of the high-energy electrons or positrons that were accelerated in the magnetosphere. We found no significant change in the X-ray emission properties between two states. We suggest that the change of the X-ray luminosity is at an order of ∼4%, which is difficult to measure with the current observations. We model the observed X-ray light curve with the heated polar cap emission, and we speculate that the observed large pulsed fraction is owing to asymmetric magnetospheric structure.

  19. Conformational analysis of an acyclic tetrapeptide: ab-initio structure determination from X-ray powder diffraction, Hirshfeld surface analysis and electronic structure.

    PubMed

    Das, Uday; Naskar, Jishu; Mukherjee, Alok Kumar

    2015-12-01

    A terminally protected acyclic tetrapeptide has been synthesized, and the crystal structure of its hydrated form, Boc-Tyr-Aib-Tyr-Ile-OMe·2H2O (1), has been determined directly from powder X-ray diffraction data. The backbone conformation of tetrapeptide (1) exhibiting two consecutive β-turns is stabilized by two 4 → 1 intramolecular N-H · · · O hydrogen bonds. In the crystalline state, the tetrapeptide molecules are assembled through water-mediated O-H · · · O hydrogen bonds to form two-dimensional molecular sheets, which are further linked by intermolecular C-H · · · O hydrogen bonds into a three-dimensional supramolecular framework. The molecular electrostatic potential (MEP) surface of (1) has been used to supplement the crystallographic observations. The nature of intermolecular interactions in (1) has been analyzed quantitatively through the Hirshfeld surface and two-dimensional fingerprint plot. The DFT optimized molecular geometry of (1) agrees closely with that obtained from the X-ray structure analysis. The present structure analysis of Boc-Tyr-Aib-Tyr-Ile-OMe·2H2 O (1) represents a case where ab-initio crystal structure of an acyclic tetrapeptide with considerable molecular flexibility has been accomplished from laboratory X-ray powder diffraction data. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  20. X-ray standing wave analysis of nanostructures using partially coherent radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in; Das, Gangadhar; Bedzyk, M. J.

    2015-09-07

    The effect of longitudinal (or temporal) coherence on total reflection assisted x-ray standing wave (TR-XSW) analysis of nanoscale materials is quantitatively demonstrated by showing how the XSW fringe visibility can be strongly damped by decreasing the spectral resolution of the incident x-ray beam. The correction for nonzero wavelength dispersion (δλ ≠ 0) of the incident x-ray wave field is accounted for in the model computations of TR-XSW assisted angle dependent fluorescence yields of the nanostructure coatings on x-ray mirror surfaces. Given examples include 90 nm diameter Au nanospheres deposited on a Si(100) surface and a 3 nm thick Zn layer trapped on top amore » 100 nm Langmuir-Blodgett film coating on a Au mirror surface. Present method opens up important applications, such as enabling XSW studies of large dimensioned nanostructures using conventional laboratory based partially coherent x-ray sources.« less