Science.gov

Sample records for x-ray analysis electron

  1. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    NASA Astrophysics Data System (ADS)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles. Measurements were performed on the development of coherent scatter imaging to provide tissue type information in mammography. Atomic coordinates from x-ray diffraction data were used to study the nuclear quadrupole interactions and nature of molecular binding in DNA/RNA nucleobases and molecular solid BF3 systems.

  2. Calcium measurements with electron probe X-ray and electron energy loss analysis

    SciTech Connect

    LeFurgey, A.; Ingram, P. )

    1990-03-01

    This paper presents a broad survey of the rationale for electron probe X-ray microanalysis (EPXMA) and the various methods for obtaining qualitative and quantitative information on the distribution and amount of elements, particularly calcium, in cryopreserved cells and tissues. Essential in an introductory consideration of microanalysis in biological cryosections is the physical basis for the instrumentation, fundamentals of X-ray spectrometry, and various analytical modes such as static probing and X-ray imaging. Some common artifacts are beam damage and contamination. Inherent pitfalls of energy dispersive X-ray systems include Si escape peaks, doublets, background, and detector calibration shifts. Quantitative calcium analysis of thin cryosections is carried out in real time using a multiple least squares fitting program on filtered X-ray spectra and normalizing the calcium peak to a portion of the continuum. Recent work includes the development of an X-ray imaging system where quantitative data can be retrieved off-line. The minimum detectable concentration of calcium in biological cryosections is approximately 300 mumole kg dry weight with a spatial resolution of approximately 100 A. The application of electron energy loss (EELS) techniques to the detection of calcium offers the potential for greater sensitivity and spatial resolution in measurement and imaging. Determination of mass thickness with EELS can facilitate accurate calculation of wet weight concentrations from frozen hydrated and freeze-dried specimens. Calcium has multiple effects on cell metabolism, membrane transport and permeability and, thus, on overall cell physiology or pathophysiology. Cells can be rapidly frozen for EPXMA during basal or altered functional conditions to delineate the location and amount of calcium within cells. 72 references.

  3. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  4. Calcium measurements with electron probe X-ray and electron energy loss analysis.

    PubMed Central

    LeFurgey, A; Ingram, P

    1990-01-01

    This paper presents a broad survey of the rationale for electron probe X-ray microanalysis (EPXMA) and the various methods for obtaining qualitative and quantitative information on the distribution and amount of elements, particularly calcium, in cryopreserved cells and tissues. Essential in an introductory consideration of microanalysis in biological cryosections is the physical basis for the instrumentation, fundamentals of X-ray spectrometry, and various analytical modes such as static probing and X-ray imaging. Some common artifacts are beam damage and contamination. Inherent pitfalls of energy dispersive X-ray systems include Si escape peaks, doublets, background, and detector calibration shifts. Quantitative calcium analysis of thin cryosections is carried out in real time using a multiple least squares fitting program on filtered X-ray spectra and normalizing the calcium peak to a portion of the continuum. Recent work includes the development of an X-ray imaging system where quantitative data can be retrieved off-line. The minimum detectable concentration of calcium in biological cryosections is approximately 300 mumole kg dry weight with a spatial resolution of approximately 100 A. The application of electron energy loss (EELS) techniques to the detection of calcium offers the potential for greater sensitivity and spatial resolution in measurement and imaging. Determination of mass thickness with EELS can facilitate accurate calculation of wet weight concentrations from frozen hydrated and freeze-dried specimens. Calcium has multiple effects on cell metabolism, membrane transport and permeability and, thus, on overall cell physiology or pathophysiology. Cells can be rapidly frozen for EPXMA during basal or altered functional conditions to delineate the location and amount of calcium within cells and the changes in location and concentration of cations or anions accompanying calcium redistribution. Recent experiments in our laboratory document that EPXMA in combination with other biochemical and electrophysiological techniques can be used to study, for example, sodium and calcium compartmentation in cultured cardiac cells. Such analyses can also be used to clarify the role of calcium in anoxic renal cell injury and to evaluate proposed ionic defects in cells of individuals with cystic fibrosis. PMID:2190819

  5. Sensitivity Analysis of X-ray Spectra from Scanning Electron Microscopes

    SciTech Connect

    Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.; Bekar, Kursat B.

    2014-10-01

    The primary goal of this project is to evaluate x-ray spectra generated within a scanning electron microscope (SEM) to determine elemental composition of small samples. This will be accomplished by performing Monte Carlo simulations of the electron and photon interactions in the sample and in the x-ray detector. The elemental inventories will be determined by an inverse process that progressively reduces the difference between the measured and simulated x-ray spectra by iteratively adjusting composition and geometric variables in the computational model. The intended benefit of this work will be to develop a method to perform quantitative analysis on substandard samples (heterogeneous phases, rough surfaces, small sizes, etc.) without involving standard elemental samples or empirical matrix corrections (i.e., true standardless quantitative analysis).

  6. Feasibility analysis for attosecond X-ray pulses at FERMI@ELETTRA free electron laser

    SciTech Connect

    Zholents, Alexander

    2004-09-01

    We present preliminary analysis for the feasibility of the attosecond x-ray pulses at a proposed FERMI@ELETTRA free electron laser (FEL) [1]. In part 1 we restrict ourselves to minimal modifications to the proposed FEL and consider a scheme for attosecond x-ray production which can be qualified as a small add-on to a primary facility. We demonstrate that at 5-nm wavelength our scheme is capable for production of pulses with an approximate duration of 100 attoseconds at approximately 2 MW peak power and with an absolute temporal synchronization to a pump laser pulse. In part 2 we propose to use an FEL amplifier seeded by a VUV signal and to follow it by the scheme for attosecond x-ray production described in part 1.

  7. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  8. 12.141 Electron Microprobe Analysis by Wavelength Dispersive X-ray Spectrometry, January (IAP) 2006

    E-print Network

    Chatterjee, Nilanjan

    Introduction to the theory of x-ray microanalysis through the electron microprobe including ZAF matrix corrections. Techniques to be discussed are wavelength and energy dispersive spectrometry, scanning backscattered ...

  9. Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.

    PubMed

    Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D

    2015-10-01

    We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens. PMID:26004522

  10. 12.141 Electron Microprobe Analysis by Wavelength Dispersive X-ray Spectrometry, January IAP 2010

    E-print Network

    Chatterjee, Nilanjan

    2010-01-01

    This lab-oriented course introduces the student to the subject of X-ray spectrometry and micro-scale chemical quantitative analysis of solid samples through an intensive series of hands-on laboratory exercises that use the ...

  11. Quantitative analysis of shadow x-ray magnetic circular dichroism photoemission electron microscopy

    NASA Astrophysics Data System (ADS)

    Jamet, S.; Da, S., Col; Rougemaille, N.; Wartelle, A.; Locatelli, A.; Mente?, T. O.; Santos Burgos, B.; Afid, R.; Cagnon, L.; Bochmann, S.; Bachmann, J.; Fruchart, O.; Toussaint, J. C.

    2015-10-01

    Shadow x-ray magnetic circular dichroism photoemission electron microscopy is a recent technique, in which the photon intensity in the shadow of an object lying on a surface may be used to gather information about the three-dimensional magnetization texture inside the object. Our purpose here is to lay the basis of a quantitative analysis of this technique. We first discuss the principle and implementation of a method to simulate the contrast expected from an arbitrary micromagnetic state. Textbook examples and successful comparison with experiments are then given. Instrumental settings are finally discussed, having an impact on the contrast and spatial resolution: photon energy, microscope extraction voltage and plane of focus, microscope background level, electric-field related distortion of three-dimensional objects, Fresnel diffraction, or photon scattering.

  12. Fast Detection Allows Analysis of the Electronic Structure of Metalloprotein by X-ray Emission Spectroscopy at Room Temperature

    PubMed Central

    Davis, Katherine M.; Mattern, Brian A.; Pacold, Joseph I.; Zakharova, Taisiya; Brewe, Dale; Kosheleva, Irina; Henning, Robert W.; Graber, Timothy J.; Heald, Steve M.; Seidler, Gerald T.; Pushkar, Yulia

    2012-01-01

    The paradigm of “detection-before-destruction” was tested for a metalloprotein complex exposed at room temperature to the high x-ray flux typical of third generation synchrotron sources. Following the progression of the x-ray induced damage by Mn K? x-ray emission spectroscopy, we demonstrated the feasibility of collecting room temperature data on the electronic structure of native Photosystem II, a trans-membrane metalloprotein complex containing a Mn4Ca cluster. The determined non-damaging observation timeframe (about 100 milliseconds using continuous monochromatic beam, deposited dose 1*107 photons/µm2 or 1.3*104 Gy, and 66 microseconds in pulsed mode using pink beam, deposited dose 4*107 photons/µm2 or 4.2*104 Gy) is sufficient for the analysis of this protein’s electron dynamics and catalytic mechanism at room temperature. Reported time frames are expected to be representative for other metalloproteins. The described instrumentation, based on the short working distance dispersive spectrometer, and experimental methodology is broadly applicable to time-resolved x-ray emission analysis at synchrotron and x-ray free-electron laser light sources. PMID:22919444

  13. Investigation of lithiated carbons by transmission electron microscopy and x-ray diffraction analysis

    SciTech Connect

    Tran, T D; Song, X Y; Kinoshita, K

    2000-10-26

    The microstructures of lithiated synthetic graphite and carbon black were studied by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analysis. Information about the crystal structure of carbon containing various Li compositions can provide useful insights to our understanding of the Li storage mechanism in carbonaceous materials. Samples with compositions of Li{sub 0.93}C{sub 6} or Li{sub 0.45}C{sub 6} were found to contain both stage-one and stage-two compounds. These observations are consistent with XRD data. The changes in sample microstructure as the results of lithiation and exposure to electron irradiation were observed by TEM and recorded over several minutes in the microscope environment. Selected area electron diffraction patterns indicated that the lithiated samples quickly changed composition to LiC{sub 24}, which appeared to dominate during the brief analysis period. The layer planes in the lattice image of a disordered carbon black after Li insertion are poorly defined, and changes in the microstructure of these lithiated carbons was not readily apparent. Observations on these lithium intercalation compounds as well as the limitation of the experimental procedure will be presented.

  14. Scanning electron microscope/energy dispersive x ray analysis of impact residues on LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1992-01-01

    To better understand the nature of particulates in low-Earth orbit (LEO), and their effects on spacecraft hardware, we are analyzing residues found in impacts on the Long Duration Exposure Facility (LDEF) tray clamps. LDEF experiment trays were held in place by 6 to 8 chromic-anodized aluminum (6061-T6) clamps that were fastened to the spacecraft frame using three stainless steel hex bolts. Each clamp exposed an area of approximately 58 sq cm (4.8 cm x 12.7 cm x .45 cm, minus the bolt coverage). Some 337 out of 774 LDEF tray clamps were archived at JSC and are available through the Meteoroid & Debris Special Investigation Group (M&D SIG). Optical scanning of clamps, starting with Bay/Row A01 and working toward H25, is being conducted at JSC to locate and document impacts as small as 40 microns. These impacts are then inspected by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis (SEM/EDXA) to select those features which contain appreciable impact residue material. Based upon the composition of projectile remnants, and using criteria developed at JSC, we have made a preliminary discrimination between micrometeoroid and space debris residue-containing impact features. Presently, 13 impacts containing significant amounts of unmelted and semi-melted micrometeoritic residues were forwarded to Centre National d'Etudes Spatiales (CNES) in France. At the CNES facilities, the upgraded impacts were analyzed using a JEOL T330A SEM equipped with a NORAN Instruments, Voyager X-ray Analyzer. All residues were quantitatively characterized by composition (including oxygen and carbon) to help understand interplanetary dust as possibly being derived from comets and asteroids.

  15. Application of scanning electron microscopy to x-ray analysis of frozen- hydrated sections. I. Specimen handling techniques

    PubMed Central

    1981-01-01

    X-ray microanalysis of frozen-hydrated tissue sections permits direct quantitative analysis of diffusible elements in defined cellular compartments. Because the sections are hydrated, elemental concentrations can be defined as wet-weight mass fractions. Use of these techniques should also permit determination of water fraction in cellular compartments. Reliable preparative techniques provide flat, smooth, 0.5 micrometers-thick sections with little elemental and morphological disruption. The specimen support and transfer system described permits hydrated sections to be transferred to the scanning electron microscope cold stage for examination and analysis without contamination or water loss and without introduction of extraneous x- ray radiation. PMID:7204491

  16. Comprehensive Study of Hydrated IDPs: X-Ray Diffraction, IR Spectroscopy and Electron Microscopic Analysis

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Keller, L. P.; Nakamura, T.; Noguchi, T.; Nozaki, W.; Tomeoka, K.

    2003-01-01

    Chondritic hydrated interplanetary dust particles (IDPs) comprise up to 50% of all IDPs collected in the stratosphere(1). Although much is known about the mineralogy, chemistry and carbon abundance of hydrated IDPs (2-4) controversies still exist regarding their formation, history, and relationship to other primitive solar system materials. Hydrated IDPs are generally believed to be derived from asteroidal sources that have undergone some degree of aqueous alteration. However, the high C contents of hydrated IDPs (by 2 to 6X CI levels (3,4) indicate that they are probably not derived from the same parent bodies sampled by the known chondritic meteorites. We report the comprehensive study of individual hydrated IDPs. The strong depletion in Ca (I) has been used as a diagnostic feature of hydrated IDPs. The particles are embedded in elemental sulfur or low viscosity epoxy and ultramicrotomed thin sections are observed using a transmission electron microscope (TEM) equipped with an energy-dispersive X-ray detector (EDX) followed by other measurements including: 1) FTIR microspectroscopy to understand the significant constraints on the organic functionality and the nature of the C-bearing phases and 2) powder X-ray difiaction using a synchrotron X-ray source to understand the bulk mineralogy of the particles.

  17. Stimulated Electronic X-Ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Purvis, Michael; Ryan, Duncan; London, Richard A.; Bozek, John D.; Bostedt, Christoph; Graf, Alexander; Brown, Gregory; Rocca, Jorge J.; Rohringer, Nina

    2013-12-01

    We demonstrate strong stimulated inelastic x-ray scattering by resonantly exciting a dense gas target of neon with femtosecond, high-intensity x-ray pulses from an x-ray free-electron laser (XFEL). A small number of lower energy XFEL seed photons drive an avalanche of stimulated resonant inelastic x-ray scattering processes that amplify the Raman scattering signal by several orders of magnitude until it reaches saturation. Despite the large overall spectral width, the internal spiky structure of the XFEL spectrum determines the energy resolution of the scattering process in a statistical sense. This is demonstrated by observing a stochastic line shift of the inelastically scattered x-ray radiation. In conjunction with statistical methods, XFELs can be used for stimulated resonant inelastic x-ray scattering, with spectral resolution smaller than the natural width of the core-excited, intermediate state.

  18. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  19. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    SciTech Connect

    Janssens, K.; Adams, F.; Rivers, M.L.; Jones, K.W.

    1992-10-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ({mu}-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  20. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy

    SciTech Connect

    Janssens, K.; Adams, F. . Dept. of Chemistry); Rivers, M.L.; Jones, K.W. )

    1992-01-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ([mu]-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  1. Ultrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS)

    E-print Network

    Guo, Ting

    Ultrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS) Guangjun Shields Avenue, Davis, CA 95616 ABSTRACT A laser driven electron x-ray source (LEXS) using a high it more suitable for the generation of hard x-ray pulses. These features include a simplified pumping

  2. Scanning electron microscopy, x-ray diffraction, and electron microprobe analysis of calcific deposits on intrauterine contraceptive devices

    SciTech Connect

    Khan, S.R.; Wilkinson, E.J.

    1985-07-01

    Deposits found on intrauterine contraceptive devices (IUDs) were studied by scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray microanalysis. All seven devices, including five plastic and two copper IUDs, were coated with a crust containing cellular, acellular, and fibrillar material. The cellular material was composed of erythrocytes, leukocytes, cells of epithelial origin, sperm, and bacteria. Some of the bacteria were filamentous, with acute-angle branching. The fibrillar material appeared to be fibrin. Most of the acellular material was amorphous; calcite was identified by x-ray diffraction, and x-ray microanalysis showed only calcium. Some of the acellular material, particularly that on the IUD side of the crust, was organized in spherulitic crystals and was identified as calcium phosphate by x-ray microanalysis. The crust was joined to the IUD surface by a layer of fibrillar and amorphous material. It is suggested that the initial event in the formation of calcific deposits on IUD surfaces is the deposition of an amorphous and fibrillar layer. Various types of cells present in the endometrial environment adhere to this layer and then calcify. Thus, the deposition of calcific material on the IUDs is a calcification phenomenon, not unlike the formation of plaque on teeth.

  3. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    PubMed Central

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas; Seiboth, Frank; Feng, Yiping; Alonso-Mori, Roberto; Chollet, Matthieu; Lemke, Henrik T.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zhang, Wenkai; Robert, Aymeric; Zhu, Diling

    2015-01-01

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus’ location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging. PMID:25931074

  4. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    DOE PAGESBeta

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas; Deutsches Elektronen-Synchrotron, Hamburg; Seiboth, Frank; Feng, Yiping; Alonso-Mori, Roberto; Chollet, Matthieu; Lemke, Henrik T.; Sokaras, Dimosthenis; et al

    2015-04-14

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

  5. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS.

    PubMed

    Lee, Sooheyong; Roseker, W; Gutt, C; Fischer, B; Conrad, H; Lehmkühler, F; Steinke, I; Zhu, D; Lemke, H; Cammarata, M; Fritz, D M; Wochner, P; Castro-Colin, M; Hruszkewycz, S O; Fuoss, P H; Stephenson, G B; Grübel, G; Robert, A

    2013-10-21

    The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse mode ?Ms? = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Finally the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage. PMID:24150309

  6. Independent-electron analysis of the x-ray spectra from single-electron capture in Ne10 + collisions with He, Ne, and Ar atoms

    NASA Astrophysics Data System (ADS)

    Leung, Anthony C. K.; Kirchner, Tom

    2015-09-01

    We present a theoretical study on the x-ray spectra from single-electron capture in 4.54 keV/amu Ne10 +-He, -Ne, and -Ar collisions. Single-particle capture probabilities were calculated using the two-center basis generator method within the independent electron model. In this framework we investigated the effects of a time-dependent screening potential that models target response on capture cross sections and x-ray spectra. Excellent agreement is shown with the previously measured relative cross sections and x-ray spectra and calculations based on the classical trajectory Monte Carlo method using the no-response single-particle electron capture probabilities in a multinomial single-electron capture analysis. Our results demonstrate the importance of using this consistent statistical analysis of single-electron capture within the independent electron model; a requirement that a previous calculation for the same collision problem using the two-center atomic-orbital close-coupling method may not have considered.

  7. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  8. Classification and assessment of retrieved electron density maps in coherent X-ray diffraction imaging using multivariate analysis.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2016-01-01

    Coherent X-ray diffraction imaging (CXDI) is one of the techniques used to visualize structures of non-crystalline particles of micrometer to submicrometer size from materials and biological science. In the structural analysis of CXDI, the electron density map of a sample particle can theoretically be reconstructed from a diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction is difficult because diffraction patterns are affected by Poisson noise and miss data in small-angle regions due to the beam stop and the saturation of detector pixels. In contrast to X-ray protein crystallography, in which the phases of diffracted waves are experimentally estimated, phase retrieval in CXDI relies entirely on the computational procedure driven by the PR algorithms. Thus, objective criteria and methods to assess the accuracy of retrieved electron density maps are necessary in addition to conventional parameters monitoring the convergence of PR calculations. Here, a data analysis scheme, named ASURA, is proposed which selects the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a diffraction pattern. Each electron density map composed of J pixels is expressed as a point in a J-dimensional space. Principal component analysis is applied to describe characteristics in the distribution of the maps in the J-dimensional space. When the distribution is characterized by a small number of principal components, the distribution is classified using the k-means clustering method. The classified maps are evaluated by several parameters to assess the quality of the maps. Using the proposed scheme, structure analysis of a diffraction pattern from a non-crystalline particle is conducted in two stages: estimation of the overall shape and determination of the fine structure inside the support shape. In each stage, the most accurate and probable density maps are objectively selected. The validity of the proposed scheme is examined by application to diffraction data that were obtained from an aggregate of metal particles and a biological specimen at the XFEL facility SACLA using custom-made diffraction apparatus. PMID:26698079

  9. NASA Li/CF(x) cell problem analysis: Scanning electron microscopy with energy dispersive x ray spectrometry

    NASA Technical Reports Server (NTRS)

    Baker, John

    1991-01-01

    An analysis was made of Lithium/carbon fluoride cell parts for possible chloride contamination induced by exposure to thionyl chloride (SOCl2); various samples were submitted for analysis. Only a portion of the analysis which has been conducted is covered, herein, namely analysis by scanning electron microscopy with energy dispersive x ray spectrometry (SEM/EDS). A strip of nickel was exposed to SOCl2 vapors to observe variations in surface concentrations of sulfur and chlorine with time. By detecting chlorine one can not infer contamination by SOCl2 only that contamination is present. Six samples of stainless steel foil were analyzed for chlorine using EDS. Chlorine was not detected on background samples but was detected on the samples which had been handled including those which had been cleaned. Cell covers suspected of being contaminated while in storage and covers which were not exposed to the same storage conditions were analyzed for chlorine. Although no chlorine was found on the covers from cells, it was found on all stored covers. Results are presented with techniques shown for analysis and identification. Relevant photomicrographs are presented.

  10. STATISTICAL CONSIDERATIONS IN THE EMPLOYMENT OF SAX (SCANNING ELECTRON MICROSOPY WITH AUTOMATED IMAGE ANALYSIS AND X-RAY ENERGY SPECTROSCOPY) RESULTS FOR RECEPTOR MODELS

    EPA Science Inventory

    Hundreds of thousands of individual particle measurements may be accumulated in a receptor model study employing Scanning electron microscopy with Automated image analysis and X-ray energy spectroscopy (SAX). At present, the summaries of these data are utilized in apportionment c...

  11. Analysis of x-ray emission and electron dynamics in a capillary-guided laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Ju, J.; Genoud, G.; Ferrari, H. E.; Dadoun, O.; Paradkar, B.; Svensson, K.; Wojda, F.; Burza, M.; Persson, A.; Lundh, O.; Andreev, N. E.; Wahlström, C.-G.; Cros, B.

    2014-05-01

    The dynamics of electron acceleration driven by laser wakefield inside a 30.5 mm long dielectric capillary tube is analyzed using radiation emitted in the x-ray range. 3D particle-in-cell simulations, performed with parameters close to the experimental ones, show that in long plasmas, the accelerated electrons catch up and finally overrun the driving laser owing to a higher velocity of the electrons in the plasma. The electrons are then transversely scattered by the laser pulse, and penetrate the capillary wall where they generate bremsstrahlung radiation, modeled using geant4 simulations. The signature of bremsstrahlung radiation is detected using an x-ray camera, together with the betatron radiation emitted during electron acceleration in the plasma bubble. The reflection of betatron radiation from the inner capillary surface also accounts for a fraction of the observed signal on the x-ray camera. The simulation results are in agreement with the experimental ones and provide a detailed description of the electron and radiation properties, useful for the design of laser wakefield accelerators or radiation sources using long plasma media.

  12. ANALYSIS OF PASSIVATED SURFACES FOR MASS SPECTROMETER INLET SYSTEMS BY AUGER ELECTRON AND X-RAY PHOTOELECTRON SPECTROSCOPY

    SciTech Connect

    Ajo, H.; Clark, E.

    2010-09-01

    Stainless steel coupons approximately 0.5' in diameter and 0.125' thick were passivated with five different surface treatments and an untreated coupon was left as a control. These surface treatments are being explored for use in tritium storage containers. These coupons were made to allow surface analysis of the surface treatments using well-know surface analysis techniques. Depth profiles using Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were performed on these coupons to characterize the surface and near surface regions. Scanning electron microscope (SEM) images were collected as well. All of the surface treatments studied here appear to change the surface morphology dramatically, as evidenced by lack of tool marks on the treated samples. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7-0.9 nm thick) as well as the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E's silicon coating appears to be on the order of 200 nm thick.

  13. Localization of electron acceleration in solar flares based on the spectrum analysis of hard X-ray time delays

    NASA Astrophysics Data System (ADS)

    Charikov, Yu. E.; Globina, V. I.; Shabalin, A. N.; Elfimova, E.

    2015-12-01

    Data on hard X-rays of solar flares recorded by the BATSE spectrometer are analyzed. Time delays were determined and their spectra were constructed for X-ray profiles at different energies. The X-ray emission of 82 flares was analyzed, and three types of time delay spectra were identified, i.e., decaying spectra, U-shaped spectra, and spectra that grow with increasing photon energy. In order to interpret delay spectra, the kinetic model of accelerated electrons that propagate in the plasma of the flare loop with a converging magnetic field was considered. Two cases of electron injection were investigated, i.e., isotropic injection and injection in a pitch-angle cone. Of particular note is that delay spectra that decay with increasing energy can be explained only in the case of the spatial diversity of areas of injection and acceleration and a small change in the magnetic field with altitude or if magnetic inhomogeneities is present. Calculations have also shown different types of delay spectra at the top and footpoints of the loop, which are determined by the dynamics of electrons in the loop when selecting different initial conditions, loop geometry, and spatial localization of the areas of acceleration and injection.

  14. Innovations in X-ray-induced electron emission spectroscopy (XIEES)

    SciTech Connect

    Pogrebitsky, K. Ju. Sharkov, M. D.

    2010-06-15

    Currently, a pressing need has arisen for controlling the local atomic and electron structure of materials irrespective of their aggregate state. Efficient approaches to the studies of short-range order are based on phenomena accompanied by interference of secondary electrons excited by primary X-ray radiation. The set of such approaches are commonly referred to as the X-ray absorption fine structure (XAFS) methods. In reality, the XAFS methods are based on the use of synchrotron radiation and applied to structural studies in two modes of measurements, transmission analysis and recording of secondary effects. Only two such effects-specifically, the X-ray fluorescence an d X-ray-induced electron emission effect-are commonly discussed. Access to synchrotron accelerators is problematic for most researchers, so a demand is created for designing laboratory systems that make direct access possible. Since the power of laboratory systems is much lower than that of synchrotrons, it is essential to use much more efficient detectors of secondary electrons. In addition, it is of interest to analyze energy characteristics with a high spatial resolution. Channel multipliers and multichannel boards are incapable of providing such a possibility. For this reason, an improved electron detector has been developed to analyze the photoemission effect in an accelerating field.

  15. VETA-I x ray test analysis

    NASA Technical Reports Server (NTRS)

    Brissenden, R. J. V.; Chartas, G.; Freeman, M. D.; Hughes, J. P.; Kellogg, E. M.; Podgorski, W. A.; Schwartz, D. A.; Zhao, P.

    1992-01-01

    This interim report presents some definitive results from our analysis of the VETA-I x-ray testing data. It also provides a description of the hardware and software used in the conduct of the VETA-I x-ray test program performed at the MSFC x-ray Calibration Facility (XRCF). These test results also serve to supply data and information to include in the TRW final report required by DPD 692, DR XC04. To provide an authoritative compendium of results, we have taken nine papers as published in the SPIE Symposium, 'Grazing Incidence X-ray/EUV Optics for Astronomy and Projection Lithography' and have reproduced them as the content of this report.

  16. Electron dynamics in WDM with x-ray pump/x-ray probe at LCLS

    NASA Astrophysics Data System (ADS)

    Barbrel, Benjamin; Falcone, Roger; Heimann, Phil; Glenzer, Siegfried; Ravasio, Alessandra; Galtier, Eric; Engelhorn, Kyle; Chung, Hyun-Kyung; Monaco, Giulio; Saunders, Alison; Fletcher, Luke; Hastings, Jerome; Zastrau, Ulf; MacDonald, Mac; Schumaker, Will; Gautier, Maxence; Lee, Hae Ja; Nagler, Bob; Gamboa, Eliseo

    2014-10-01

    Recent machine developments at LCLS have led to the capability for the FEL to deliver two x-ray pulses separated both in time and photon energy. This enables x-ray pump/x-ray probe experiments to be performed to study the ultrafast dynamics of electrons in warm dense matter (WDM) plasmas. Such experiments open a window over the first tens of femtoseconds of the time evolution of non-equilibrium electronic distribution in dense plasmas. We recently conducted an LCLS-MEC experiment in which thin metallic foils where irradiated with two x-ray pulses. The first x-ray pulse isochorically heats up the material, and the second one probes the electronics properties of the sample in the first 100 fs of its evolution via x-ray Thomson scattering. In this presentation I will discuss the first results of this experiments as well as the potential of x-ray pump/x-ray probe experiments for WDM science.

  17. Soft X-Ray Absorption Spectroscopy at an X-ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Higley, Daniel; Schlotter, William; Turner, Joshua; Moeller, Stefan; Mitra, Ankush; Tsukamoto, Arata; Marvel, Robert; Haglund, Richard; Durr, Hermann; Stohr, Joachim; Dakovski, Georgi

    2015-03-01

    X-ray free electron lasers, providing coherent, ultrafast, high intensity x-ray pulses, have enabled groundbreaking scattering experiments to probe the atomic structure of materials on femtosecond timescales. Nonetheless, x-ray absorption spectroscopy (XAS), one of the most fundamental and common x-ray techniques practiced at synchrotron light sources, has proven challenging to conduct with satisfactory signal-to-noise levels at soft x-ray energies using free electron laser sources. The ability to routinely collect high quality XAS spectra, especially in a time-resolved manner, will open many new scientific possibilities in the areas of ultrafast demagnetization, phase transitions and chemical dynamics to highlight a few. Here, we report how XAS using total fluorescence yield detection yields high signal-to-noise x-ray absorption spectra at an x-ray free electron laser source. Data were collected over multiple absorption edges on technologically relevant materials. These measurements were recorded on the Soft X-Ray Materials Science instrument at the Linac Coherent Light Source. The results are easily extendable to time-resolved measurements.

  18. Use of electron microprobe x-ray analysis for determination of low calcium concentrations across leaves deficient in calcium

    NASA Technical Reports Server (NTRS)

    Barta, D. J.; Tibbitts, T. W.

    1991-01-01

    An electron microprobe with wavelength-dispersive x-ray spectrometry (WDS) was found to be useful for the determination of Ca concentrations in leaf tissue deficient in Ca. WDS effectively detected Ca concentrations as low as 0.2 mg/g dry wt in the presence of high levels of K and Mg (120 and 50 mg/g dry wt, respectively). Leaf specimens were prepared for analysis by quick-freezing in liquid nitrogen and freeze-drying at -20 degrees C to maintain elemental integrity within the tissue. Because dry material was analyzed, sample preparation was simple and samples could be stored for long periods before analysis. A large beam diameter of 50 gm was used to minimize tissue damage under the beam and analyze mineral concentrations within several cells at one time. Beam penetration was between 50 and 55 microns, approximately one-third of the thickness of the leaf. For analysis of concentrations in interveinal areas, analyses directed into the abaxial epidermis were found most useful. However, because of limited beam penetration, analyses of veinal areas would require use of cross sections [correction of crosssections]. Solid mineral standards were used for instrument standardization. To prevent measurement errors resulting from differences between the matrix of the mineral standards and the analyzed tissue, concentrations in leaves were corrected using gelatin standards prepared and analyzed under the same conditions. WDS was found to be useful for documenting that very low Ca levels occur in specific areas of lettuce leaves exhibiting the Ca deficiency injury termed tipburn.

  19. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser

    SciTech Connect

    Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Kameshima, Takashi; Inubushi, Yuichi; Sato, Takahiro; Hatsui, Takaki; Yabashi, Makina; Obara, Yuki; Misawa, Kazuhiko; Bhattacharya, Atanu; Kurahashi, Naoya; Ogi, Yoshihiro; Suzuki, Toshinori; Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198

    2013-09-23

    We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (?E/E ? 5 × 10{sup ?3}), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ?3 × 10{sup ?3}, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.

  20. Muscle cell membranes from early degeneration muscle cell fibers in Solenopsis are leaky to lanthanum: electron microscopy and X-ray analysis

    SciTech Connect

    Jones, R.G.; Davis, W.L.

    1985-06-01

    Lanthanum infusion techniques, transmission electron microscopy, and X-ray microanalysis were utilized to compare the permeability of muscle cell membranes from normal and degenerating muscle fibers of Solenopsis spp. In normal fibers, the electron-dense tracer was limited to components of the sarcotubular system. However, the insemination-induced degeneration of muscle fibers was characterized by the presence of an electron-dense precipitate within the myofibrils and mitochondria as well as in the extramyofibrillar spaces. The electron-dense material was subsequently identified by elemental analysis to be lanthanum. Such data indicate that one of the earliest stages of muscle degeneration involves an alteration in cell membrane permeability.

  1. Advances in X-Ray Chemical Analysis, Japan, 45 (2014) ISSN 0911-7806 X ray-tracing

    E-print Network

    Jun, Kawai

    2014-01-01

    Advances in X-Ray Chemical Analysis, Japan, 45 (2014) ISSN 0911-7806 © X ray-tracing Ray-tracing of a Real-time X-Ray Fluorescence Microscope Shoji KUWABARA #12;#12;45 115 X ray-tracing Adv. X-Ray. Chem. Anal., Japan 45, pp.115-127 (2014) 606-8501 X ray-tracing Ray-tracing of a Real-time X-Ray Fluorescence

  2. DEDUCING ELECTRON PROPERTIES FROM HARD X-RAY OBSERVATIONS

    E-print Network

    Piana, Michele

    , but also the angular distributions of the X-ray-emitting electrons. In addition, RHESSI's imaging plasma 35 5 ELECTRON ANGULAR DISTRIBUTION 36 5.1 Early Results 37 5.2 Anisotropy of X-ray bremsstrahlung-ray emission process(es) in question with the electron distribution function, which is in turn a function

  3. The preparation, examination and analysis of frozen hydrated tissue sections by scanning transmission electron microscopy and x-ray microanalysis.

    PubMed

    Saubermann, A J; Echlin, P

    1975-11-01

    A method is reported for preparing, examining and analysing frozen hydrated tissue sections using transmission electron microscopy and X-ray microanalysis. Use of this method permits localization and measurement of water soluble or diffusible elements within the hydrated cell matrix. Since any change in total fresh weight of the specimen will affect the concentration of all components, great care has been taken to demonstrate that the mass neither increases nor decreases and to ensure that the tissue remains frozen-hydrated. Criteria for assessing whether or not the tissue remains frozen-hydrated are reported. After quench freezing, 1-2 mum thick sections of mouse liver were cut at 193 degrees K and picked up on a specially designed annular specimen holder covered with an aluminium coated nylon film. Using a transfer device which prevents contamination of the tissue sections while maintaining them at a low temperature (below 143 degrees K), the sections are transferred either to the vacuum evaporator cold stage or the scanning microscope cold stage. The tissue sections may be coated with an aluminium layer to improve electrical and thermal conductivity. The specimens are examined in the scanning transmission imaging mode and analysed using an energy dispersive X-ray analyser. Concentration of intra-nuclear and intra-cytoplasmic K, P, S and Cl are reported for mouse hepatocytes as ratios of the characteristic radiation to the continuum radiation used as a measure of mass. Ratios for all four elements were higher in the nucleus than the cytoplasm. Examples are given of this method as applied to plant and insect tissue. PMID:765465

  4. Density gradient free electron collisionally excited x-ray laser

    DOEpatents

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  5. Density gradient free electron collisionally excited X-ray laser

    DOEpatents

    Campbell, Edward M. (Pleasanton, CA); Rosen, Mordecai D. (Berkeley, CA)

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  6. Microspectroscopic soft X-ray analysis of keratin based biofibers.

    PubMed

    Späth, Andreas; Meyer, Markus; Semmler, Sonja; Fink, Rainer H

    2015-03-01

    Scanning soft X-ray transmission microspectroscopy (STXM) and transmission electron microscopy (TEM) have been employed for a high-resolution morphological and chemical analysis of hair fibers from human, sheep and alpaca. STXM allows optimum contrast imaging of the main hair building blocks due to tuneable photon energy. Chemical similarities and deviations for the human hair building blocks as well as for the three investigated species are discussed on the basis of the local near-edge X-ray absorption fine structure (NEXAFS). The spectra of melanosomes corroborate the state-of-the-art model for the chemical structure of eumelanin. Complementary TEM micrographs reveal the occurrence of cortex sectioning in alpaca hair to some extent. A spectroscopic analysis for human hair cortex indicates low mass loss upon soft X-ray irradiation, but transformation of chemical species with decreasing amount of peptide bonds and increasing NEXAFS signal for unsaturated carbon-carbon bonds. PMID:25553413

  7. Electron beam welder X-rays its own welds

    NASA Technical Reports Server (NTRS)

    Roden, W. A.

    1967-01-01

    Beam of an electron beam welder X rays its own welds, enabling rapid weld quality checks to be made without removing the work from the vacuum chamber. A tungsten target produces X rays when hit by the beam. They are directed at the weld specimen and recorded on polaroid film.

  8. X-ray tube with magnetic electron steering

    DOEpatents

    Reed, Kim W. (Albuquerque, NM); Turman, Bobby N. (Albuquerque, NM); Kaye, Ronald J. (Albuquerque, NM); Schneider, Larry X. (Albuquerque, NM)

    2000-01-01

    An X-ray tube uses a magnetic field to steer electrons. The magnetic field urges electrons toward the anode, increasing the proportion of electrons emitted from the cathode that reach desired portions of the anode and consequently contribute to X-ray production. The magnetic field also urges electrons reflected from the anode back to the anode, further increasing the efficiency of the tube.

  9. X-ray framing camera for pulsed, high current, electron beam x-ray sources

    NASA Astrophysics Data System (ADS)

    Failor, B. H.; Rodriguez, J. C.; Riordan, J. C.; Lojewski, D. Y.

    2007-07-01

    High power x-ray sources built for nuclear weapons effects testing are evolving toward larger overall diameters and smaller anode cathode gaps. We describe a framing camera developed to measure the time-evolution of these 20-50 ns pulsed x-ray sources produced by currents in the 1.5-2.5 MA range and endpoint voltages between 0.2 and 1.5 MV. The camera has up to 4 frames with 5 ns gate widths; the frames are separated by 5 ns. The image data are recorded electronically with a gated intensified CCD camera and the data are available immediately following a shot. A fast plastic scintillator (2.1 ns decay time) converts the x-rays to visible light and, for high sensitivity, a fiber optic imaging bundle carries the light to the CCD input. Examples of image data are shown.

  10. SU-E-J-09: A Monte Carlo Analysis of the Relationship Between Cherenkov Light Emission and Dose for Electrons, Protons, and X-Ray Photons

    SciTech Connect

    Glaser, A; Zhang, R; Gladstone, D; Pogue, B

    2014-06-01

    Purpose: A number of recent studies have proposed that light emitted by the Cherenkov effect may be used for a number of radiation therapy dosimetry applications. Here we investigate the fundamental nature and accuracy of the technique for the first time by using a theoretical and Monte Carlo based analysis. Methods: Using the GEANT4 architecture for medically-oriented simulations (GAMOS) and BEAMnrc for phase space file generation, the light yield, material variability, field size and energy dependence, and overall agreement between the Cherenkov light emission and dose deposition for electron, proton, and flattened, unflattened, and parallel opposed x-ray photon beams was explored. Results: Due to the exponential attenuation of x-ray photons, Cherenkov light emission and dose deposition were identical for monoenergetic pencil beams. However, polyenergetic beams exhibited errors with depth due to beam hardening, with the error being inversely related to beam energy. For finite field sizes, the error with depth was inversely proportional to field size, and lateral errors in the umbra were greater for larger field sizes. For opposed beams, the technique was most accurate due to an averaging out of beam hardening in a single beam. The technique was found to be not suitable for measuring electron beams, except for relative dosimetry of a plane at a single depth. Due to a lack of light emission, the technique was found to be unsuitable for proton beams. Conclusions: The results from this exploratory study suggest that optical dosimetry by the Cherenkov effect may be most applicable to near monoenergetic x-ray photon beams (e.g. Co-60), dynamic IMRT and VMAT plans, as well as narrow beams used for SRT and SRS. For electron beams, the technique would be best suited for superficial dosimetry, and for protons the technique is not applicable due to a lack of light emission. NIH R01CA109558 and R21EB017559.

  11. Atmospheric electron-induced x-ray spectrometer development

    NASA Technical Reports Server (NTRS)

    Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; Crisp, Joy

    2005-01-01

    This paper extends the work reported at the IEEE Aerospace conference in 2001 and 2003 where the concept and progress in the development of the so called atmospheric Electron X-ray Spectrometer (AEXS) has been described.

  12. Advances in X-Ray Chemical Analysis, Japan, 45 (2014) ISSN 0911-7806 Portable X-Ray Reflectometer Using

    E-print Network

    Jun, Kawai

    2014-01-01

    Advances in X-Ray Chemical Analysis, Japan, 45 (2014) ISSN 0911-7806 © X X Portable X-Ray Reflectometer Using a Low Power Polychromatic X-Ray Tube Tsunemasa OHNISHI, Susumu IMASHUKU, Koretaka YUGE, Jun KAWAI and Naomi SHIMURA #12;#12;45 211 X X Adv. X-Ray. Chem. Anal., Japan 45, pp.211-215 (2014) 606

  13. Spectral analysis of X-ray binaries

    E-print Network

    Fridriksson, Joel Karl

    2011-01-01

    In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

  14. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    SciTech Connect

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures.

  15. Advances in X-Ray Chemical Analysis, Japan, 41 (2010) ISSN 0911-7806 X-Ray Measurement Using

    E-print Network

    Jun, Kawai

    2010-01-01

    Advances in X-Ray Chemical Analysis, Japan, 41 (2010) ISSN 0911-7806 © A/D X X-Ray Measurement A/D X Adv. X-Ray. Chem. Anal., Japan 41, pp.157-163 (2010) 606-8501 A/D X X-Ray Measurement Using, Revised 31 January 2010, Accepted 1 February 2010) X-ray measurements without a pulse height analyzer (PHA

  16. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis

    NASA Astrophysics Data System (ADS)

    Habibi, Neda

    2015-02-01

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33 nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the Nsbnd CH3 functional group about 2850 cm-1 is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field.

  17. X-ray Emission from Electron Betatron Motion in a Laser-Plasma Accelerator

    SciTech Connect

    Plateau, G. R.; Geddes, C. G. R.; Matlis, N. H.; Mittelberger, D. E.; Battaglia, M.; Kim, T. S.; Nakamura, K.; Esarey, E.; Leemans, W. P.; Thorn, D. B.; Stoehlker, T.

    2010-11-04

    Single-shot x-ray spectra from electron bunches produced by a laser-plasma wakefield accelerator (LPA) were measured using a photon-counting single-shot pixelated Silicon-based detector, providing for the first time single-shot direct spectra without assumptions required by filter based techniques. In addition, the electron bunch source size was measured by imaging a wire target, demonstrating few micron source size and stability. X-rays are generated when trapped electrons oscillate in the focusing field of the wake trailing the driver laser pulse. In addition to improving understanding of bunch emittance and wake structure, this provides a broadband, synchronized femtosecond source of keV x-rays. Electron bunch spectra and divergence were measured simultaneously and preliminary analysis shows correlation between x-ray and electron spectra. Bremsstrahlung background was managed using shielding and magnetic diversion.

  18. Making use of x-ray optical effects in photoelectron-, Auger electron-, and x-ray emission spectroscopies: Total reflection, standing-wave excitation,

    E-print Network

    Fadley, Charles

    Making use of x-ray optical effects in photoelectron-, Auger electron-, and x-ray emission-separated scintillator fibers for high-resolution X-ray imaging Appl. Phys. Lett. 102, 051907 (2013) Full-field transmission x-ray imaging with confocal polycapillary x-ray optics J. Appl. Phys. 113, 053104 (2013) Large

  19. Femtosecond all-optical synchronization of an X-ray free-electron laser.

    PubMed

    Schulz, S; Grguraš, I; Behrens, C; Bromberger, H; Costello, J T; Czwalinna, M K; Felber, M; Hoffmann, M C; Ilchen, M; Liu, H Y; Mazza, T; Meyer, M; Pfeiffer, S; Pr?dki, P; Schefer, S; Schmidt, C; Wegner, U; Schlarb, H; Cavalieri, A L

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30?fs r.m.s. for 90?fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  20. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE PAGESBeta

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; et al

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore »by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  1. X-ray Emission from Electron Betatron Motion in a Laser-Plasma Accelerator

    SciTech Connect

    Plateau, Guillaume; Geddes, Cameron; Thorn, Daniel; Matlis, Nicholas; Mittelberger, Daniel; Stoehlker, T; Battaglia, Marco; Kim, Tae; Nakamura, Kei; Esarey, Eric; Leemans, Wim

    2011-07-19

    Single-shot x-ray spectra from electron bunches produced by a laser-plasma wakefield accelerator (LPA) were measured using a photon-counting single-shot pixelated Silicon-based detector [3], providing for the first time direct spectra without assumptions required by filter based techniques. In addition, the electron bunch source size was measured by imaging a wire target, demonstrating few micron source size and stability. X-rays are generated when trapped electrons oscillate in the focusing field of the wake trailing the driver laser pulse. In addition to improving understanding of bunch emittance and wake structure, this provides a broadband, synchronized femtosecond source of keV x-rays. Electron bunch spectra and divergence were measured simultaneously and preliminary analysis shows correlation between x-ray andelectron spectra. Bremsstrahlung background was managed using shielding and magnetic diversion.

  2. Femtosecond all-optical synchronization of an X-ray free-electron laser

    PubMed Central

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Pr?dki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30?fs r.m.s. for 90?fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  3. Femtosecond all-optical synchronization of an X-ray free-electron laser

    SciTech Connect

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Pr?dki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.

  4. Exotic X-ray Sources from Intermediate Energy Electron Beams

    SciTech Connect

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J.L.; Lancaster, G.

    2003-08-26

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, 'novel' x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic 'structure' of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR)

  5. Bremsstrahlung X-rays from Jovian auroral electrons

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1990-01-01

    The spectrum of X-rays from the planet Jupiter is calculated according to an auroral electron beam model. The electrons are assumed to be accelerated by a field-aligned potential drop and penetrate into the atmosphere as a Maxwellian beam of primaries which are scattered, degraded in energy, and merged with a population of ionization secondaries having a power law energy distribution. The soft X-rays observed by the Einstein Observatory satellite are due to bremsstrahlung from the secondary electrons in the H2 atmosphere. The X-ray intensity is best reconciled with a beam of primaries having a characteristic energy 30-100 keV and penetrating the homopause with an auroral energy flux typically of 10-20 ergs/sq cm s but no greater than 50 ergs/sq cm s.

  6. Structural and electron density changes in dense guest-host systems: Analysis of X-ray diffraction data by the Rietveld and Maximum Entropy Methods

    NASA Astrophysics Data System (ADS)

    Flacau, Roxana Ioana

    2007-12-01

    When studying the high-pressure structural behavior of crystalline materials, it is highly desirable to determine structural changes accurately, preferably at electron density levels. The Maximum Entropy Method (MEM) has already proven to be a very powerful tool for extracting the most probable charge density distributions directly from X-ray diffraction data. This thesis presents high pressure X-ray diffraction studies on two distinct, but structurally similar, classes of guest-host materials: gas clathrate hydrates (M8(H2O)46, with M= Kr, Xe) and silicon clathrate (Ba8Si46). In order to characterize the change of crystalline structure and electron distribution resulting from the increase of density due to the application of high pressure, we have used a recently developed approach wherein the classical Rietveld analysis is complemented iteratively with MEM calculations. It is found that charge density distributions derived from probability maps obtained by MEM provide further, in-depth insights into the structural changes induced by pressure in guest-host compounds. Clathrate hydrates are inclusion compounds, in which guest atoms or molecules are trapped in cages formed by an ice-like host lattice of water molecules. In recent years, large deposits of methane hydrate (a clathrate hydrate) have been found on the oceanic floors, leading to a considerable interest in the physical properties of gas hydrates. In the present study the crystalline structure I of xenon and krypton hydrates was investigated by powder X-ray diffraction at room temperature, over the pressure ranges for which these compounds are stable. Structure I, which has a cubic symmetry with Pm3n space group, is formed by two types of polyhedron, also referred to as small and large cages. The pressure dependence of the structural parameters was determined by applying a Rietveld analysis to the X-ray diffraction data. To further explore the effect of pressure on the guest atoms and the water molecule framework, we used the combined Rietveld/MEM method to derive the most probable charge density distributions at each pressure. Our results show that the charge density distribution of the encaged atoms differs depending on the type of the host cage, small or large, at all pressures. Spherical density distributions were observed for the guest atoms in the small cages, while the atoms in the large cages showed longitudinal elongated electronic distributions. These findings are common to both Kr and Xe hydrates. Along with the observed cage deformations, this is a clear indication that the guest-host interaction differs significantly between the small and large cages at high pressures. A similar behavior has been previously reported in low-temperature studies of methane clathrate hydrate. The combined Rietveld/MEM method was also successfully applied to explore the subtle changes in the electronic density distribution induced in Ba 8Si46 clathrate by the application of high pressure. This compound has been the object of extensive studies since its superconductivity has been discovered. Previous X-ray diffraction, near-edge X-ray absorption, and Raman spectroscopy studies have revealed two iso-structural phase transitions occurring at 5 and 17 GPa in Ba8Si46; their physical origin, however, was still not clearly understood. In our study, the most probable electron density distributions were calculated using the combined Rietveld/MEM method, with the goal to propose possible mechanisms for the two observed transitions. The examination of the electron density maps, and also electron density difference distributions, revealed that the low pressure transition is related to an enhanced charge transfer of Ba atoms to the Si framework, while the 17 GPa transition is a result of a sudden change in the electron density topology of the Si-Si bonds. As the pressure is increased, the electrons in the Si-Si bonds are displaced from the bonding region into the interstitial region, leading to a weakening of the Si-Si bonds, which explains the large volume reduction accompanying thi

  7. Closing the gap between electron and X-ray crystallography.

    PubMed

    Mugnaioli, Enrico

    2015-12-01

    The development of a proper refinement algorithm that takes into account dynamical scattering guarantees, for electron crystallography, results approaching X-rays in terms of precision, accuracy and reliability. The combination of such dynamical refinement and electron diffraction tomography establishes a complete pathway for the structure characterization of single sub-micrometric crystals. PMID:26634731

  8. Electron crystallography as a complement to X-ray powder diffraction techniques

    E-print Network

    Giger, Christine

    Electron crystallography as a complement to X-ray powder diffraction techniques Lynne B. Mc. Electron microscopy techniques yield informa- tion for crystal structure analysis that is remarkably com, while those obtained from a typical selected area electron diffraction (SAED) or preces- sion electron

  9. The History of X-ray Free-Electron Lasers

    SciTech Connect

    Pellegrini, C.; ,

    2012-06-28

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  10. The history of X-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Pellegrini, C.

    2012-10-01

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 Å, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 1013 to 1011, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  11. Search for X-rays and relativistic electrons in laboratory discharge experiments

    NASA Astrophysics Data System (ADS)

    Ostgaard, Nikolai; Carlson, Brant E.; Grøndahl, Øystein; Kochkin, Pavlo; Nisi, Ragnhild S.; Gjesteland, Thomas

    2014-05-01

    In 2013 discharge experiments were carried out at the Technical University of Eindhoven. The experimental set-up was designed to search for both X-rays and electrons produced in meter-scale sparks using a 1 MV Marx generator. In this paper we present the spatial distribution of signals and examine whether they are X-rays only or X-rays and electrons. Other characteristics of the signals will be presented as well. These experiments are carried out in the context of a larger effort to understand the various phenomena of X-rays and gammas from natural lightning. We acknowledge Z. Scherrer, K. Weber and K. LeCaptain at the Carthage college for supporting the initial data-analysis.

  12. Molecular Imaging Using X-Ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Barty, Anton; Küpper, Jochen; Chapman, Henry N.

    2013-04-01

    The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 1013 transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 1018 to 1021 W cm-2 or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available.

  13. Deducing Electron Properties from Hard X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; Piana, M.; Prato, M.; Schmahl, E. J.; Suarez-Garcia, E.

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  14. Deducing Electron Properties from Hard X-ray Observations

    NASA Astrophysics Data System (ADS)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kašparová, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; Piana, M.; Prato, M.; Schmahl, E. J.; Suarez-Garcia, E.

    2011-09-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager ( RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  15. OSO-8 soft X-ray wheel experiment: Data analysis

    NASA Technical Reports Server (NTRS)

    Kraushaar, W. L.

    1982-01-01

    The soft X-ray experiment hardware and its operation are described. The device included six X-ray proportional counters, two of which, numbers 1 and 4, were pressurized with on-board methane gas supplies. Number 4 developed an excessive leak rate early in the mission and was turned off on 1975 day number 282 except for brief (typically 2-hour) periods up to day 585 after which it as left off. Counter 1 worked satisfactorily until 1975 day number 1095 (January 1, 1978) at which time the on-board methane supply was depleted. The other four counters were sealed and all except number 3 worked satisfactorily throughout the mission which terminated with permanent satellie shut-down on day 1369. This was the first large area thin-window, gas-flow X-ray detector to be flown in orbit. The background problems were severe and consumed a very large portion of the data analysis effort. These background problems were associated with the Earth's trapped electron belts.

  16. ELECTRON INJECTORS FOR NEXT GENERATION X-RAY SOURCES.

    SciTech Connect

    BLUEM,H.; BEN-ZVI,I.; SRINIVASAN-RAO,T.; ET AL.

    2004-08-02

    Next generation x-ray sources require very high-brightness electron beams that are typically at or beyond the present state-of-the-art, and thus place stringent and demanding requirements upon the electron injector parameters. No one electron source concept is suitable for all the diverse applications envisaged, which have operating characteristics ranging from high-average-current, quasi-CW, to high-peak-current, single-pulse electron beams. Advanced Energy Systems, in collaboration with various partners, is developing several electron injector concepts for these x-ray source applications. The performance and design characteristics of five specific RF injectors, spanning ''L'' to ''X''-band, normal-conducting to superconducting, and low repetition rate to CW, which are presently in various stages of design, construction or testing, is described. We also discuss the status and schedule of each with respect to testing.

  17. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  18. PARTICULATE MATTER ELEMENTAL COMPOSITION BY X-RAY FLUORESCENCE ANALYSIS

    EPA Science Inventory

    This task is primarily concerned with the elemental characterization, by X-ray fluorescence analysis, of particulate matter (PM) collected during active or passive sampling of ambient air. The NERL X-ray fluorescence laboratory is an in-house research facility dedicated to quant...

  19. Harmonic lasing in x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2012-08-01

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned x-ray free electron laser (FEL) facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of x-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned x-ray FEL (XFEL) facilities. In particular, Linac Coherent Light Source (LCLS) after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multigigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow one to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other x-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact x-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the parameter space, corresponding to the operating range of soft x-ray beam lines of x-ray FEL facilities (like SASE3 beam line of the European XFEL), harmonics can grow faster than the fundamental wavelength. This feature can be used in some experiments, but might also be an unwanted phenomenon, and we discuss possible measures to diminish it.

  20. Chemical Shifts in X-ray and Photo-Electron Spectroscopy: A Historical review

    E-print Network

    Lindgren, Ingvar

    Chemical Shifts in X-ray and Photo-Electron Spectroscopy: A Historical review Ingvar Lindgren 1 Introduction 2 2 Chemical shift in X-ray spectroscopy 2 2.1 Discovery of the chemical shift in X-ray spectroscopy . . . . . . . . . . . . . 3 2.2 Interpretation of the chemical shift in X-ray spectroscopy

  1. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    SciTech Connect

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks on the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.

  2. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    DOE PAGESBeta

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks onmore »the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.« less

  3. A Study of the Oxidation Behaviour of Pile Grade A (PGA) Nuclear Graphite Using Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and X-Ray Tomography (XRT).

    PubMed

    Payne, Liam; Heard, Peter J; Scott, Thomas B

    2015-01-01

    Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK's first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600-1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment. PMID:26575374

  4. A Study of the Oxidation Behaviour of Pile Grade A (PGA) Nuclear Graphite Using Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and X-Ray Tomography (XRT)

    PubMed Central

    Payne, Liam; Heard, Peter J.; Scott, Thomas B.

    2015-01-01

    Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK’s first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600–1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment. PMID:26575374

  5. Electronic structure of Ni{sub 3}Al and NiAl{sub 3} alloys: X-ray-absorption fine-structure analysis

    SciTech Connect

    Mansour, A.N.; Dmitrienko, A.; Soldatov, A.V.

    1997-06-01

    X-ray-absorption fine structure (XAFS) above the Ni K edge in Ni{sub 3}Al and NiAl{sub 3} alloys has been measured and theoretical full multiple-scattering analysis of these data have been done. The theoretical XAFS are found to be in agreement with experimental data. The XAFS of Ni{sub 3}Al and NiAl{sub 3} alloys are rather different. Since the dipole transition matrix element is not a very sharp function of the energy the experimental XAFS reflects the averaged in space partial Ni p unoccupied states in the conduction bands of the Ni{sub 3}Al and NiAl{sub 3} alloys, showing changes in the electronic structure going from Ni{sub 3}Al to NiAl{sub 3} alloy. Theoretical partial density of states curves calculated along the axis parallel to the c vector differ from the partial density of states curves calculated in the {ital ab} plane for both alloys. {copyright} {ital 1997} {ital The American Physical Society}

  6. Bulk sensitive hard x-ray photoemission electron microscopy

    SciTech Connect

    Patt, M. Wiemann, C.; Weber, N.; Escher, M.; Merkel, M.; Gloskovskii, A.; Drube, W.; Schneider, C. M.

    2014-11-15

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. The high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.

  7. X-ray spectrometry and X-ray microtomography techniques for soil and geological samples analysis

    NASA Astrophysics Data System (ADS)

    Kubala-Kuku?, A.; Bana?, D.; Braziewicz, J.; Dziadowicz, M.; Kope?, E.; Majewska, U.; Mazurek, M.; Pajek, M.; Sobisz, M.; Stabrawa, I.; Wudarczyk-Mo?ko, J.; Gó?d?, S.

    2015-12-01

    A particular subject of X-ray fluorescence analysis is its application in studies of the multielemental sample of composition in a wide range of concentrations, samples with different matrices, also inhomogeneous ones and those characterized with different grain size. Typical examples of these kinds of samples are soil or geological samples for which XRF elemental analysis may be difficult due to XRF disturbing effects. In this paper the WDXRF technique was applied in elemental analysis concerning different soil and geological samples (therapeutic mud, floral soil, brown soil, sandy soil, calcium aluminum cement). The sample morphology was analyzed using X-ray microtomography technique. The paper discusses the differences between the composition of samples, the influence of procedures with respect to the preparation of samples as regards their morphology and, finally, a quantitative analysis. The results of the studies were statistically tested (one-way ANOVA and correlation coefficients). For lead concentration determination in samples of sandy soil and cement-like matrix, the WDXRF spectrometer calibration was performed. The elemental analysis of the samples was complemented with knowledge of chemical composition obtained by X-ray powder diffraction.

  8. Near Edge X-Ray Absorption Fine Structure Spectroscopy with X-Ray Free-Electron Lasers

    SciTech Connect

    Bernstein, D.P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stohr, J.; Beye, M.; Schlotter, W.F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Fohlisch, A.; /Hamburg U.

    2009-12-11

    We demonstrate the feasibility of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the Free-Electron Laser at Hamburg (FLASH), used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example we recorded the {sup 3}D{sub 1} N{sub 4,5}-edge absorption resonance of La{sup 3+}-ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  9. Stochastic stimulated electronic x-ray Raman spectroscopy

    E-print Network

    Kimberg, Victor

    2015-01-01

    Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear and collective dynamics of excited atoms, molecules and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator set up to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, that uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, that serves as seed in the stimulated scattering process. The limit...

  10. X ray microscope assembly and alignment support and advanced x ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1991-01-01

    Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.

  11. Atmospheric Electron-Induced X-Ray Spectrometer (AEXS) Development

    NASA Technical Reports Server (NTRS)

    Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; George, Thomas; Douglas, Susanne; Crisp, Joy

    2005-01-01

    This paper describes the progress in the development of the so-called Atmospheric Electron X-ray Spectrometer (AEXS) instrument in our laboratory at JPL. The AEXS is a novel miniature instrument concept based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam, for non-destructive evaluation of surfaces of samples in situ, in planetary ambient atmosphere. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum within the AEXS electron source from the outside ambient atmosphere. By using a focused electron beam, the impinging electrons on samples in the external atmosphere excite XRF spectra from the irradiated spots with high-to-medium spatial resolution. The XRF spectra are analyzed using an energy-dispersive detector to determine surface elemental composition. The use of high- intensity electron beam results in rapid spectrum acquisition (several minutes), and consequently low energy consumption (several tens of Joules) per acquired XRF spectrum in comparison to similar portable instruments.

  12. XAP, a program for deconvolution and analysis of complex X-ray spectra

    USGS Publications Warehouse

    Quick, James E.; Haleby, Abdul Malik

    1989-01-01

    The X-ray analysis program (XAP) is a spectral-deconvolution program written in BASIC and specifically designed to analyze complex spectra produced by energy-dispersive X-ray analytical systems (EDS). XAP compensates for spectrometer drift, utilizes digital filtering to remove background from spectra, and solves for element abundances by least-squares, multiple-regression analysis. Rather than base analyses on only a few channels, broad spectral regions of a sample are reconstructed from standard reference spectra. The effects of this approach are (1) elimination of tedious spectrometer adjustments, (2) removal of background independent of sample composition, and (3) automatic correction for peak overlaps. Although the program was written specifically to operate a KEVEX 7000 X-ray fluorescence analytical system, it could be adapted (with minor modifications) to analyze spectra produced by scanning electron microscopes, electron microprobes, and probes, and X-ray defractometer patterns obtained from whole-rock powders.

  13. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    NASA Astrophysics Data System (ADS)

    Kapilashrami, M.; Conti, G.; Zegkinoglou, I.; Nemšák, S.; Conlon, C. S.; Törndahl, T.; Fjällström, V.; Lischner, J.; Louie, Steven G.; Hamers, R. J.; Zhang, L.; Guo, J.-H.; Fadley, C. S.; Himpsel, F. J.

    2014-10-01

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se2 (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO = VBMCIGS - VBMdiamond = 0.3 eV ± 0.1 eV at the CIGS/Diamond interface and 0.0 eV ± 0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  14. University of California electron and X-ray experiments on ISEE-3

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1981-01-01

    The history of the University of California solar and interplanetary electron experiment and the solar X-ray experiment is outlined, and the two instruments used are described. The roles of personnel are mentioned and the data analysis projects completed or begun are summarized. A bibliography is included.

  15. Measurement of Total Calcium in Neurons by Electron Probe X-ray Microanalysis

    PubMed Central

    Pivovarova, Natalia B.; Andrews, S. Brian

    2013-01-01

    In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ?-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis provided critical insight into mechanisms of excitotoxic injury and another that revealed the basis of ischemia resistance. PMID:24300079

  16. Measurement of total calcium in neurons by electron probe X-ray microanalysis.

    PubMed

    Pivovarova, Natalia B; Andrews, S Brian

    2013-01-01

    In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ?-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis provided critical insight into mechanisms of excitotoxic injury and another that revealed the basis of ischemia resistance. PMID:24300079

  17. Defect Analysis in Crystals using X-ray Topography

    SciTech Connect

    Raghothamachar,B.; Dhanaraj, G.; Bai, J.; Dudley, M.

    2006-01-01

    A brief review of X-ray topography - a nondestructive method for direct observation and characterization of defects in single crystals - is presented here. The origin and development of this characterization method and the different techniques derived from it are described. Emphasis is placed on synchrotron X-ray topography and its application in studying various crystal imperfections. Mechanisms of contrast formation on X-ray topographs are discussed, with emphasis on contrast associated with dislocations. Determination of Burgers vectors and line directions of dislocations from analysis of X-ray topographs is explained. Contrast from inclusions is illustrated, and their differentiation from dislocations is demonstrated with the aid of simulated topographs. Contrast arising from the deformation fields associated with cracks is also briefly covered.

  18. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    NASA Technical Reports Server (NTRS)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  19. X-ray absorption and soft x-ray fluorescence analysis of KDP optics

    SciTech Connect

    Nelson, A J; van Buuren, T; Miller, E; Land, T A; Bostedt, C; Franco, N; Whitman, P K; Baisden, P A; Terminello, L J; Callcott, T A

    2000-08-09

    Potassium Dihydrogen Phosphate (KDP) is a non-linear optical material used for laser frequency conversion and optical switches. Unfortunately, when KDP crystals are coated with a porous silica anti-reflection coating [1] and then exposed to ambient humidity, they develop dissolution pits [2,3]. Previous investigations [2] have shown that thermal annealing renders KDP optics less susceptible to pitting suggesting that a modification of surface chemistry has occurred. X-ray absorption and fluorescence were used to characterize changes in the composition and structure of KDP optics as a function of process parameters. KDP native crystals were also analyzed to provide a standard basis for interpretation. Surface sensitive total electron yield and bulk sensitive fluorescence yield from the K 2p, P 2p (L{sub 2,3}-edge) and O 1s (K-edge) absorption edges were measured at each process step. Soft X-ray fluorescence was also used to observe changes associated with spectral differences noted in the absorption measurements. Results indicate that annealing at 160 C dehydrates the surface of KDP resulting in a metaphosphate surface composition with K:P:O = 1:1:3.

  20. Fourier Analysis and Structure Determination--Part III: X-ray Crystal Structure Analysis.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Discussed is single crystal X-ray crystal structure analysis. A common link between the NMR imaging and the traditional X-ray crystal structure analysis is reported. Claims that comparisons aid in the understanding of both techniques. (MVL)

  1. High-resolution x-ray photoemission electron microscopy at the Advanced Light Source

    SciTech Connect

    Stammler, T.; Anders, S.; Padmore, H.A.; Stoehr, J.; Scheinfein, M.; Ade, H.

    1998-12-31

    X-ray Photoemission Electron Microscopy (X-PEEM) is a full-field imaging technique where the sample is illuminated by an x-ray beam and the photoemitted electrons are imaged on a screen by means of an electron optics. It therefore combines two well-established materials analysis techniques--photoemission electron microscopy (PEEM) and x-ray spectroscopy such as near edge x-ray absorption fine structure (NEXAFS) spectroscopy. This combination opens a wide field of new applications in materials research and has proven to be a powerful tool to investigate simultaneously topological, elemental, chemical state, and magnetic properties of surfaces, thin films, and multilayers at high spatial resolution. A new X-PEEM installed at the bend magnet beamline 7.3.1.1 at the Advanced Light Source (ALS) is designed for a spatial resolution of 20 nm and is currently under commissioning. An overview of the ongoing experimental program using X-PEEM in the field of materials research at the ALS is given by elemental and chemical bonding contrast imaging of hard disk coatings and sliders, field emission studies on diamond films as possible candidates for field-emission flat-panel displays, and the study of dewetting and decomposition phenomena of thin polymer blends and bilayers.

  2. Synchrotron X-ray topography of electronic materials.

    PubMed

    Tuomi, T

    2002-05-01

    Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast. PMID:11972374

  3. European X-Ray Free Electron Laser (EXFEL): local implications

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    European X-Ray FEL - free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5GeV energy and more than 2km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in frequency. The prototype of EXFEL is FLASH Laser (200 m in length), where the "proof of principle" was checked, and from the technologies were transferred to the bigger machine. The project was stared in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.

  4. Food Irradiation Using Electron Beams and X-Rays

    NASA Astrophysics Data System (ADS)

    Miller, Bruce

    2003-04-01

    In this presentation we will discuss the technology of food irradiation using electron accelerators. Food irradiation has generally come to describe the use of ionizing radiation to decrease the population of, or prevent the growth of, undesirable biological organisms in food. The many beneficial applications include insect disinfestation, sprouting inhibition, delayed ripening, and the enhanced safety and sterilization of fresh and frozen meat products, seafood, and eggs. With special regard to food safety, bacteria such as Salmonella enteridis, Listeria monocytogenes, Campylobacter jejuni and Escherichia coli serotype O157:H7 are the primary causes of food poisoning in industrialized countries. Ionizing doses in the range of only 1-5 kilogray (kGy) can virtually eliminate these organisms from food, without affecting the food's sensory and nutritional qualities, and without inducing radioactivity. The key elements of an accelerator-based irradiation facility include the accelerator system, a scanning system, and a material handling system that moves the product through the beam in a precisely controlled manner. Extensive radiation shielding is necessary to reduce the external dose to acceptable levels, and a safety system is necessary to prevent accidental exposure of personnel during accelerator operation. Parameters that affect the dose distribution must be continuously monitored and controlled with process control software. The choice of electron beam vs x-ray depends on the areal density (density times thickness) of the product and the anticipated mass throughput. To eliminate nuclear activation concerns, the maximum kinetic energy of the accelerator is limited by regulation to 10 MeV for electron beams, and 5 MeV for x-rays. From penetration considerations, the largest areal density that can be treated by double-sided electron irradiation at 10 MeV is about 8.8 g/cm2. Products having greater areal densities must be processed using more penetrating x-rays. The mass throughput (dM/dt in kg/s) of an accelerator-based system is proportional to the average beam power (P in kW), and inversely proportional to the minimum required dose (Dm in kGy, with 1 kGy = 1 kJ/kg). The constant of proportionality is the mass throughput efficiency. Throughput efficiencies of 0.4 or better are typical of electron beam installations, but are only 0.025-0.035 for x-ray installations, primarily because of the inefficiency of bremsstrahlung generation at 5 MeV (about 8an axially-coupled, standing-wave, L-band linac with an average power in excess of 100 kW to achieve reasonable throughput rates with x-ray processing. Various design aspects of this new machine will be presented.

  5. X-ray scattering and spectroscopy in correlated electron systems

    NASA Astrophysics Data System (ADS)

    Sawatzky, George

    2002-03-01

    Resonant x ray scattering is evolving as a very important technique to study the interplay between the atomic structure and the electronic structure of correlated systems like the high Tc superconductors, collossal magneto resistance materials and transition metal compounds in general. The interpretation of the measurements is however far from trivial and reguires approaches which depend strongly on which core levels and valence bands are involved. I will present the basic physics regarding the approximations most suitable for several cases and demonstrate their success with examples from the classes of systems above. It turns out that the transition metal K edge data is not really a direct measure of orbital ordering but rather a measure of the local bond length distortions accompanying the orbital ordering and is well described in density functional band theory. On the other hand soft x ray L edge data is more directly a measure of the orbital as well as spin ordering. These data cannot be described with a band theory approach because of the importance of correlation effects and one must resort to methods like cluster approaches including the strong correlation effects explicitly. In cases where the atom of interest is not at an inversion center new effects in volving dipole and quadrupole channels are important and the experimental studies in these sytems provides direct information on the p-d hybridization in the conduction band. Resonant inelastic scattering in addition provides direct k dependent dispersion relations for a variety of elementary excitations including magnons, phonons and excitons. At soft x ray energies we can expect very strong inelastic scattering for spin flip excitations provided the core state used has a resolved spin orbit coupling.

  6. Electron probe X-ray analysis on human hepatocellular lysosomes with copper deposits: copper binding to a thiol-protein in lysosomes

    SciTech Connect

    Hanaichi, T.; Kidokoro, R.; Hayashi, H.; Sakamoto, N.

    1984-11-01

    Livers of eight patients with chronic liver diseases were investigated by energy dispersive x-ray analysis. First, three kinds of preparations (osmium-Epon sections, glutaraldehyde-frozen sections, and unfixed-frozen sections) were compared for element detectability at a subcellular level. The glutaraldehyde-frozen sections were satisfactory as far as copper, sulfur, and phosphorus were concerned. Five patients (one patient with Wilson's disease, one chronic cholestasis, one chronic hepatitis, and two asymptomatic primary biliary cirrhosis) yielded x-ray images of copper and sulfur consistent with hepatocellular lysosomes. Second, the glutaraldehyde-frozen sections were utilized for a study of copper deposits in the patients' livers. There was a significant correlation between copper and sulfur contents in the lysosomes of all patients studied but no correlation in the remainder of the cytoplasm. Zinc was not detected in the lysosomes. Whatever the content of copper in the lysosomes, the ratio of delta copper to phosphorus (weight/weight) to delta sulfur to phosphorus was 0.60. These data indicate that most lysosomal copper binds to a thiol protein, probably metallothionein, in the liver.

  7. Advances in X-Ray Chemical Analysis, Japan, 45 (2014) ISSN 0911-7806 Discharge Phenomena during X-Ray Emission from Pyroelectric Crystal

    E-print Network

    Jun, Kawai

    2014-01-01

    Advances in X-Ray Chemical Analysis, Japan, 45 (2014) ISSN 0911-7806 © X X Discharge Phenomena during X-Ray Emission from Pyroelectric Crystal and Energy Dependence of X-Ray Intensity Kengo OHIRA, Susumu IMASHUKU and Jun KAWAI #12;#12;45 181 X X Adv. X-Ray. Chem. Anal., Japan 45, pp.181-190 (2014) 606

  8. Experiments with Parametric X-Ray Radiation (PXR) from Non-Relativistic Electrons

    E-print Network

    V. G. Baryshevsky; K. G. Batrakov; I. D. Feranchuk; A. A. Gurinovich; A. O. Grubich; A. S. Lobko; A. A. Rouba; B. A. Tarnopolsky; P. F. Safronov; V. I. Stolyarsky; A. P. Ulyanenkov

    2005-07-06

    Interaction of non-relativistic electrons with single crystal target may produce coherent x-rays. That is the result of interference between two known x-ray generation mechanisms having orientational behavior, namely parametric x-rays and coherent {\\it Bremsstrahlung}. Experiments aimed to PXR research were performed with 50-100 keV electrons and its distinctive features were observed. Requirements to the experimental set-up, detector instrumental response, and targets as well as experiment geometry are discussed in detail. Series of PXR spectra in various conditions were recorded and their distinctive features were observed. Tuning of radiation frequency with crystal-target rotation was observed for the first time for low energy electrons. Dependence of the x-ray frequency on the beam energy was detected. Soft PXR peak with energy below 1 keV was observed for the first time. Possible applications of PXR for structure analysis and crystallography are discussed. These results are obtained in the framework of ISTC project {#}B626

  9. Detection of terrestrial radionuclides with X-ray fluorescence analysis.

    PubMed

    Trojek, T; ?echák, T

    2015-06-01

    This paper provides an overview of analytical methods frequently used to identify terrestrial radionuclides in samples. While radioactivity is normally measured through the ionising radiation produced during the spontaneous decay of unstable atoms, selected radionuclides or their chemical elements can be quantified with instrumental techniques based on stimulated emission or counting of atoms. The advantages and disadvantages of these analytical methods are discussed. Particular attention is paid to X-ray fluorescence analysis of materials containing uranium and thorium. It is also possible to determine the area distributions of these chemical elements in samples with the use of scanning X-ray fluorescence systems. PMID:25977354

  10. Inner-Shell Excitation Spectroscopy and X-ray Photoemission Electron Microscopy of Adhesion Promoters

    E-print Network

    Hitchcock, Adam P.

    Inner-Shell Excitation Spectroscopy and X-ray Photoemission Electron Microscopy of Adhesion spectra from X-ray photoemission electron microscopy of as-spun and cured vinyltriacetoxysilane of techniques including atomic force microscopy (AFM), electron energy loss (EELS) using transmission electron

  11. Advances in X-Ray Chemical Analysis, Japan, 45 (2014) ISSN 0911-7806 Report on 10th Chinese X-Ray Spectrometry Conference (CXRSC)

    E-print Network

    Jun, Kawai

    2014-01-01

    Advances in X-Ray Chemical Analysis, Japan, 45 (2014) ISSN 0911-7806 © Report on 10th Chinese X-Ray Spectrometry Conference (CXRSC) Ying LIU #12;#12;45 345 Report on 10th Chinese X-Ray Spectrometry Conference (CXRSC) Adv. X-Ray. Chem. Anal., Japan 45, pp.345-348 (2014) Report on 10th Chinese X-Ray Spectrometry

  12. Copyright The Discussion Group of X-Ray Analysis,

    E-print Network

    Jun, Kawai

    ;37 27 2005 X 6 ED-XAS 7 XRD 8 XANES 9 1 Pigment Identification by Spectroscopic Means: Evidence.Adriaens, 77(17), 5512-5519. 7 Analysis of Time-Resolved Energy-Dispersive X-ray Absorption Spectroscopy Data

  13. X-RAY EMISSION ANALYSIS: SAMPLE LOSSES DURING EXCITATION

    EPA Science Inventory

    Many samples of atmospheric aerosols and biological materials containing volatile or unstable species are now being examined by X-ray emission analysis, and loss of these species by sample heating is a critical consideration. The amount of heat energy deposited in a sample by the...

  14. A study on electron density imaging using the Compton scattered X-ray CT technique

    NASA Astrophysics Data System (ADS)

    Masuji, Ryota; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira

    2011-10-01

    We propose a novel electron density imaging technique based on a Compton scattered X-ray CT (CSX-CT) technique. We design fundamental configuration of the CSX-CT system, which consists of a fan-shaped X-ray beam, two-dimensional sensors for scattered X-ray detection, parallel plate collimators for limitation of the direction of scattered X-rays and a line sensor for the transmission of X-ray CT (TX-CT). An image obtained by the TX-CT can be used to correct the attenuation effect of scattered X-rays. Through Monte Carlo simulation modeling studies of the CSX-CT system, we demonstrate that the utilization of the information of scattered X-rays is useful to obtain the electron density image. We additionally confirm that the medical exposure irradiated in the CSX-CT is estimated to be lower than the maximum dose recommended in the guideline of some committees.

  15. In Situ X-Ray Analysis of Protein Crystals in Low-Birefringent And X-Ray Transmissive Plastic Microchannels

    SciTech Connect

    Ng, J.D.; Clark, P.J.; Stevens, R.C.; Kuhn, P.

    2009-05-22

    Plastic microchannel crystallization template designs made from inexpensive cyclic olefin copolymers have been shown to be low-birefringent, X-ray transmissive and compatible with microfluidic fabrication in restricted geometry. The model proteins thaumatin, lysozyme and bacteriorhodopsin demonstrated the feasibility of conducting counter-diffusion equilibration within the new plastic configuration. Crystals of each of these proteins were directly evaluated in situ using synchrotron radiation and their diffraction quality was evaluated without invasive manipulation or cryofreezing. Protein crystals able to produce complete X-ray data sets were used to calculate electron-density maps for structure determination. Fluidic crystallization in the plastic platform was also coupled with a commercialized automated imager and an in situ X-ray scanner that allowed optical and X-ray inspection of crystallization hits. The results demonstrate the feasibility of rapid nanovolume counter-diffusion crystallization experiments without the need for additional instrumentation.

  16. Focusing mirror for x-ray free-electron lasers

    SciTech Connect

    Mimura, Hidekazu; Kimura, Takashi; Yamakawa, Daisuke; Matsuyama, Satoshi; Morita, Shinya; Uehara, Yoshihiro; Ohmori, Hitoshi; Lin, Weimin; Yumoto, Hirokatsu; Ohashi, Haruhiko

    2008-08-15

    We present the design, fabrication, and evaluation of a large total-reflection mirror for focusing x-ray free-electron laser beams to nanometer dimensions. We used an elliptical focusing mirror made of silicon that was 400 mm long and had a focal length of 550 mm. Electrolytic in-process dressing grinding was used for initial-step figuring and elastic emission machining was employed for final figuring and surface smoothing. A figure accuracy with a peak-to-valley height of 2 nm was achieved across the entire area. Characterization of the focused beam was performed at BL29XUL of SPring-8. The focused beam size was 75 nm at 15 keV, which is almost equal to the theoretical size.

  17. X-Ray Free Electron Laser Interaction With Matter

    SciTech Connect

    Hau-Riege, S

    2009-05-12

    X-ray free electron lasers (XFELs) will enable studying new areas of laser-matter interaction. We summarize the current understanding of the interaction of XFEL pulses with matter and describe some of the simulation approaches that are used to design experiments on future XFEL sources. Modified versions of these models have been successful in guiding and analyzing experiments performed at the extreme-ultraviolet FEL FLASH at wavelengths of 6 nm and longer. For photon energies of several keV, no XFEL-matter interaction experiments have been performed yet but data is anticipated to become available in the near future, which will allow to test our understanding of the interaction physics in this wavelength regime.

  18. Manganese binding properties of human calprotectin under conditions of high and low calcium: X-ray crystallographic and advanced electron paramagnetic resonance spectroscopic analysis.

    PubMed

    Gagnon, Derek M; Brophy, Megan Brunjes; Bowman, Sarah E J; Stich, Troy A; Drennan, Catherine L; Britt, R David; Nolan, Elizabeth M

    2015-03-01

    The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin-echo envelope modulation and electron-nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed (15)N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ?-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal ?-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin. PMID:25597447

  19. Correlative analysis of hard and soft x ray observations of solar flares

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1994-01-01

    We have developed a promising new technique for jointly analyzing BATSE hard X-ray observations of solar flares with simultaneous soft X-ray observations. The technique is based upon a model in which electric currents and associated electric fields are responsible for the respective heating and particle acceleration that occur in solar flares. A useful by-product of this technique is the strength and evolution of the coronal electric field. The latter permits one to derive important flare parameters such as the current density, the number of current filaments composing the loop, and ultimately the hard X-ray spectrum produced by the runaway electrons. We are continuing to explore the technique by applying it to additional flares for which we have joint BATSE/Yohkoh observations. A central assumption of our analysis is the constant of proportionality alpha relating the hard X-ray flux above 50 keV and the rate of electron acceleration. For a thick-target model of hard X-ray production, it can be shown that cv is in fact related to the spectral index and low-energy cutoff of precipitating electrons. The next step in our analysis is to place observational constraints on the latter parameters using the joint BATSE/Yohkoh data.

  20. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    SciTech Connect

    Arp, U.; LeBrun, T.; Southworth, S.H.; Jung, M.; MacDonald, M.A.

    1996-12-01

    Argon L{sub 2.3}-M{sub 2.3}M{sub 2.3} Auger-electron spectra were measured in coincidence with K{alpha} fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons.

  1. Portable total reflection x-ray fluorescence analysis in the identification of unknown laboratory hazards

    SciTech Connect

    Liu, Ying Imashuku, Susumu; Sasaki, Nobuharu; Ze, Long; Kawai, Jun; Takano, Shotaro; Sohrin, Yoshiki; Seki, Hiroko; Miyauchi, Hiroya

    2014-05-15

    In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient to determine all the elements (Z?>?11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.

  2. Quantitative characterization of epitaxial superlattices by x-ray diffraction and high resolution electron microscopy

    SciTech Connect

    Fullerton, E.E. ); Cao, W.; Thomas, G. ); Schuller, I.K. ); Carey, M.J.; Berkowitz, A.E. )

    1993-07-26

    Quantitative x-ray diffraction (XRD) and high resolution electron microscopy (HREM) have been applied to the analysis of an epitaxial CoO/NiO superlattice. This example shows that the qualitative information determined directly from a XRD spectrum or HREM image is limited and can even be misleading. However, by a combination of quantitative intensity measurements and structural modeling, a detailed quantitative characterization of the superlattice structure is possible.

  3. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging

    NASA Astrophysics Data System (ADS)

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S. Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-01

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  4. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    SciTech Connect

    Kojima, Sadaoki Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi; Nishimura, Yasuhiko; Togawa, Hiromi; Ozaki, Tetsuo; Kato, Ryukou

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  5. Intravenous coronary angiography utilizing K-emission and bremsstrahlung X-rays produced by electron bombardment

    SciTech Connect

    1992-12-31

    The screening of the general population for coronary artery disease would be practical if a method existed for visualizing the extent of occlusion after an intravenous injection of contrast agent. Measurements performed with synchrotron radiation at SSRL and NSLS have shown that such an intravenous angiography procedure would be possible with an intense source of monochromatic X-rays. Because of the high cost of an electron synchrotron, theoretical analysis and experiments using inanimate phantoms has been undertaken to demonstrate the feasibility of using the spectrum produced by two appropriately chosen anode materials when bombarded with electrons in the 100--500 keV energy range for angiography. By using the X-rays emitted at 120{degree} to the incident electron direction, about 20--30% of the X-ray intensity would be due to K-emission lines. Calculations using the TIGERP Monte Carlo Code, have shown that high quality angiograms of human coronary arteries should be possible with a contrast agent containing ytterbium, if an electron beam pulses of 16 kJ were used for each anode target. The experimental program supported in part by the DOE has consisted of these theoretical calculations and experiments at the Dynamitron Electron Accelerator Facility at BNL.

  6. Simulation of x-ray absorption near edge spectra of electronically excited ruthenium tris-2,2 -bipyridine

    E-print Network

    Mukamel, Shaul

    Simulation of x-ray absorption near edge spectra of electronically excited ruthenium tris-2 17 September 2004 The L3 edge x-ray absorption near edge spectrum XANES of the ground electronic of Physics. DOI: 10.1063/1.1814101 I. INTRODUCTION X-ray absorption near edge spectroscopy XANES uses x-ray

  7. Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser

    SciTech Connect

    Vartanyants, I.A.; Singer, A.; Mancuso, A.P.; Yefanov, O.M.; Sakdinawat, A.; Liu, Y.; Bang, E.; Williams, G.J.; Cadenazzi, G.; Abbey, B.; Sinn, H.; Attwood, D.; Nugent, K.A.; Weckert, E.; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J.J.; Schlotter, W.F.; /SLAC /LERMA, Ivry /Zurich, ETH /LBL, Berkeley /ANL, APS /Argonne /SLAC /LLNL, Livermore /Latrobe U. /SLAC /SLAC /European XFEL, Hamburg /SLAC /Hamburg U.

    2012-06-06

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in 'diffract-and-destroy' mode. We determined a coherence length of 17 {micro}m in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  8. ANALYSIS OF THE MICROBIOLOGICAL PARTICULATES IN MUNICIPAL DRINKING-WATER BY SCANNING ELECTRON MICROSCOPY/X-RAY ENERGY SPECTROSCOPY (ANALYSE VON BIOLOGISCHEN PARTIKELN IM TRINKWASSER DURCH RASTERELEKTRONEN-MIKROSKOPIE UND ELEKTRONENSTRAHLMIKROANALYSE)

    EPA Science Inventory

    Scanning electron microscopy and X-ray energy spectroscopy (SEM/XES) were used to survey the biological and nonbiological particles in two different municipal drinking-water systems. Microbiological particles could be differentiated from nonbiological by their qualitative element...

  9. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.

    PubMed

    Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi

    2015-07-01

    Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles. PMID:25745031

  10. A controlled dispersion parallel wavelength x ray spectrometer for electron microscopy

    NASA Astrophysics Data System (ADS)

    Fiori, C. E.; Wight, S. A.; Romig, A. D., Jr.

    1991-04-01

    A new technique is described for the detection of x rays in electron column instruments used in microanalysis. In electron column instruments, the point source of x rays is produced by the interaction of a focused electron beam with the sample. Neither of the conventional methods, wavelength dispersive (WDS) nor energy dispersive (EDS) based spectrometry, is optimized for low Z element quantitative analysis. In WDS applications, where the analyte elements are Be through P, chemical effects complicate the x ray measurement process. Peak positions and shapes are altered, sometimes very strongly, by the electron configurations of the analyte atoms and neighboring atoms. In these cases, the ideal spectrometer would profile the peak and some small amount of continuum on either side of the peak such that an accurate peak area could be calculated. Present WDS spectrometers are serial in nature and cannot directly measure peak areas, often causing errors in the determination of light element concentrations. Bastin and co-workers have developed an elegant method to provide accurate area determinations, using the serial spectrometer, by a three point procedure. The parallel wavelength dispersive spectrometer (PWDS) proposed here is ideally suited for those applications.

  11. Search for X-rays and relativistic electrons in laboratory discharge experiments

    NASA Astrophysics Data System (ADS)

    Ostgaard, N.; Carlson, B. E.; Grøndahl, Ø.; Kochkin, P.; Nisi, R.; Gjesteland, T.

    2014-12-01

    In 2013 discharge experiments were carried out at the Technical University of Eindhoven. The experimental set-up was designed to search for both X-rays and electrons produced in meter-scale sparks using a 1 MV Marx generator. In this paper we present the spatial distribution of signals and examine whether they are X-rays only or X-rays and electrons. Other characteristics of the signals will be presented as well. These experiments are carried out in the context of a larger effort to understand the various phenomena of X-rays and gammas from natural lightning.

  12. MSE 603 / Diffraction April 19, 2002 p.5 X-ray Scattering by an electron

    E-print Network

    Shen, Qun

    scattered x-ray wave by an electron, so-called Thomson Scattering. One of the characteristics of ThomsonMSE 603 / Diffraction April 19, 2002 p.5 X-ray Scattering by an electron: So far we talked about refraction and reflection only. For scattering, we go back to the classical model that we introduced

  13. Limitations of ZAF correction factors in the determination of calcium/phosphorus ratios: Important forensic science considerations relevant to the analysis of bone fragments using scanning electron microscopy and energy-dispersive x-ray microanalysis

    SciTech Connect

    Payne, C.M.; Cromey, D.W. )

    1990-05-01

    A series of calcium phosphate standards having calcium/phosphorus (Ca/P) molar ratios of 0.50, 1.00, 1.50, and 1.67, respectively, was prepared for bulk specimen analysis using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDXA). The standards were mounted on carbon planchettes as either pure crystals or crystals embedded in epoxy resin. Ten different samples of each embedded and non-embedded standard were analyzed in a JEOL 100 CX electron microscope interfaced with a Kevex 8000 EDXA system using a lithium-drifted silicon detector and a multichannel analyzer. The Ca/P ratios were determined by calculating both net peak intensities without matrix corrections and atomic kappa-ratios using the MAGIC V computer program with ZAF correction factors for quantitative analysis. There was such extensive absorption of phosphorus X-rays in standards embedded in an epoxy matrix that the observed Ca/P ratios were statistically compatible with four different standards ranging in theoretical Ca/P ratios from 1.0 to 1.67. Although the non-embedded crystals showed a greater separation in the Ca/P ratios, both methods of preparation produced serious flaws in analysis. Direct application of the discovery of this caveat to the identification of suspected bone fragments for forensic science purposes is discussed.

  14. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOEpatents

    Radley, Ian (Glenmont, NY); Bievenue, Thomas J. (Delmar, NY); Burdett, John H. (Charlton, NY); Gallagher, Brian W. (Guilderland, NY); Shakshober, Stuart M. (Hudson, NY); Chen, Zewu (Schenectady, NY); Moore, Michael D. (Alplaus, NY)

    2008-06-08

    An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  15. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOEpatents

    Radley, Ian; Bievenue, Thomas J.; Burdett Jr., John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2007-04-24

    An x-ray source assembly (2700) and method of operation are provided having enhanced output stability. The assembly includes an anode (2125) having a source spot upon which electrons (2120) impinge and a control system (2715/2720) for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure (2710) notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  16. Analysis of sculptures using XRF and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Calza, C.; Oliveira, D. F.; Freitas, R. P.; Rocha, H. S.; Nascimento, J. R.; Lopes, R. T.

    2015-11-01

    This work reports the analysis of two sacred images on polychrome wood using X-ray Radiography and Energy Dispersive X-Ray Fluorescence. The first case is the analysis of a sculpture portraying Saint Sebastian, the patron saint of Rio de Janeiro, which is considered the second most ancient sacred image of Brazil. This sculpture was made in Portugal and was transported to Brazil by Estácio Sá, founder of the city of Rio de Janeiro, in 1565. Nowadays, it is located on the main altar of the Church of Capuchin Friars. The second case is the analysis of a sculpture representing Our Lady of Conception, which is located in the D. João VI Museum (EBA/UFRJ, Rio de Janeiro). The objective of these analyses was to evaluate the general conditions of the sculptures, identifying possible problems and internal damages, areas that revealed signs of previous retouchings and the materials and pigments employed by the artists, in order to assist its restoration procedures. EDXRF measurements were carried out with a portable system, developed at the Nuclear Instrumentation Laboratory, consisting of a Si-PIN XR-100CR detector from Amptek and an Oxford TF3005 X-ray tube with W anode. An X-ray source, a CR System GE CR50P and IP detectors were used to perform the radiographs. The XRF analysis of the sculptures identified the original pigments in both cases and the radiographic images revealed details of the manufacture; restored regions; extensive use of lead white; presence of cracks on the wood; use of nails and spikes, etc.

  17. X-ray scattering measurements of the structure of strongly coupled plasmas at x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Neumayer, Paul; Döppner, Tilo; Fletcher, Luke; Galtier, Eric; Gericke, Dirk; Glenzer, Siegfried; Gregori, Gianluca; Hartley, Nicholas; Khaghani, Dimitri; Lee, Hae Ja; Ma, Tammy; Nagler, Bob; Pak, Art; Redmer, Ronald; Zastrau, Ulf

    2013-10-01

    Laser-plasma x-ray sources have been an indispensable probe to diagnose and characterize plasmas in the warm-dense matter regime. The latest generation of bright x-ray free-electron lasers now enables such diagnostic techniques to be implemented at FEL facilities. Even more, FEL parameters, such as collimation, pulse duration, focusability, bandwidth, or repetition rate, are far superior compared to laser-driven sources, enabling measurements of unprecedented resolution and accuracy. As an example, we present measurements of the static structure factor in high energy density matter. Angle-resolved x-ray scattering was performed at the Matter at Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS). Strongly coupled warm-dense aluminium was produced by laser shock compression. Covering a wide range of scattering angles with unprecedented angular resolution the correlation peak of the ion-ion structure factor could be well resolved. The exceptional collimation of the LCLS beam enabled measurements at small scattering angles, thus approaching the long wavelength limit.

  18. MONOGRAPHThe dynamics of energetic electron precipitation during substorms Utilization of the remote sensing technique of X rays

    E-print Network

    Ã?stgaard, Nikolai

    of the remote sensing technique of X rays N. Ã?stgaard Abstract. Based on the remote sensing technique of X rays emission and X rays a localized maximum of energetic electron precipitation in the morning sector delayed with respect to substorm onset is clearly seen in the X- ray aurora, but only occasionally in the ultraviolet

  19. Crystal quality analysis and improvement using x-ray topography.

    SciTech Connect

    Maj, J.; Goetze, K.; Macrander, A.; Zhong, Y.; Huang, X.; Maj, L.; Univ. of Chicago

    2008-01-01

    The Topography X-ray Laboratory of the Advanced Photon Source (APS) at Argonne National Laboratory operates as a collaborative effort with APS users to produce high performance crystals for APS X-ray beamline experiments. For many years the topography laboratory has worked closely with an on-site optics shop to help ensure the production of crystals with the highest quality, most stress-free surface finish possible. It has been instrumental in evaluating and refining methods used to produce high quality crystals. Topographical analysis has shown to be an effective method to quantify and determine the distribution of stresses, to help identify methods that would mitigate the stresses and improve the Rocking curve, and to create CCD images of the crystal. This paper describes the topography process and offers methods for reducing crystal stresses in order to substantially improve the crystal optics.

  20. Design and analysis of multilayer x ray/XUV microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1990-01-01

    The design and analysis of a large number of normal incidence multilayer x ray microscopes based on the spherical mirror Schwarzschild configuration is examined. Design equations for the spherical mirror Schwarzschild microscopes are summarized and used to evaluate mirror parameters for microscopes with magnifications ranging from 2 to 50x. Ray tracing and diffraction analyses are carried out for many microscope configurations to determine image resolution as a function of system parameters. The results are summarized in three publication included herein. A preliminary study of advanced reflecting microscope configurations, where aspherics are used in place of the spherical microscope mirror elements, has indicated that the aspherical elements will improve off-axis image resolution and increase the effective field of view.

  1. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    SciTech Connect

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen K? x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-?m scale three-dimensional fine structures were resolved.

  2. X-Ray Microanalysis and Electron Energy Loss Spectrometry in the Analytical Electron Microscope: Review and Future Directions

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.; Williams, D. B.

    1992-01-01

    This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be the development of new spectrometers and improvements in thin specimen preparation. The microanalysis technique needs to be simplified and software developed so that the EELS technique approaches the relative simplicity of the X-ray technique. Finally, one can expect major improvements in EELS imaging as data storage and processing improvements occur.

  3. Advances in X-Ray Chemical Analysis, Japan, 41 (2010) ISSN 0911-7806 Applying Pyroelectric Crystal to Small High Energy X-Ray Source

    E-print Network

    Jun, Kawai

    2010-01-01

    Advances in X-Ray Chemical Analysis, Japan, 41 (2010) ISSN 0911-7806 © X Applying Pyroelectric Crystal to Small High Energy X-Ray Source Eisuke HIRO, Takashi YAMAMOTO and Jun KAWAI #12;#12;41 195 X Adv. X-Ray. Chem. Anal., Japan 41, pp.195-200 (2010) 606-8501 1-1 770-8502 X Applying Pyroelectric

  4. Advances in X-Ray Chemical Analysis, Japan, 41 (2010) ISSN 0911-7806 Portable Total Reflection X-Ray Fluorescence Spectrometer

    E-print Network

    Jun, Kawai

    2010-01-01

    Advances in X-Ray Chemical Analysis, Japan, 41 (2010) ISSN 0911-7806 © X Portable Total Reflection X-Ray Fluorescence Spectrometer for Ultra Trace Elemental Determination Shinsuke KUNIMURA and Jun KAWAI #12;#12;41 29 X Adv. X-Ray. Chem. Anal., Japan 41, pp.29-44 (2010) 606-8501 X Portable Total

  5. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    SciTech Connect

    Kapilashrami, M.; Zegkinoglou, I.; Conti, G.; Nemšák, S.; Conlon, C. S.; Fadley, C. S.; Törndahl, T.; Fjällström, V.; Lischner, J.; Louie, Steven G.; Hamers, R. J.; Zhang, L.; Guo, J.-H.; Himpsel, F. J.

    2014-10-14

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se? (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO=VBM{sub CIGS} – VBM{sub diamond}=0.3 eV±0.1 eV at the CIGS/Diamond interface and 0.0 eV±0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  6. Validation of X-ray Line Ratios for Electron Temperature Profiles in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Rosen, Andrew; Reinke, Matthew; Rice, John; Hubbard, Amanda; Hughes, Jerry

    2013-10-01

    X-ray imaging crystal spectroscopy (XICS) has been implemented on magnetic confinement fusion devices as a novel means of measuring local plasma temperature and flow profiles. At Alcator C-Mod, XICS allows for spatially-resolved, high spectral resolution measurements between 0.3 nm and 0.4 nm, enabling detailed analysis of He-like and H-like argon x-ray emission. Electron temperature profiles in the range of 0.5 keV < Te < 5.0 keV are computed from ratios of the n = 3 dielectronic satellites to the 1s2-1s2p resonance lines in He-like argon. These data are validated against existing measurements of Te from electron cyclotron emission and Thomson scattering. Line ratio data are analyzed via a tomographic inversion procedure, overcoming the traditional issue of data being averaged over the plasma cross-section. The implications of utilizing x-ray line ratios as valid local temperature diagnostics are not limited to Alcator C-Mod; plasma properties in future experiments as well as in astrophysical phenomena can also be investigated. This work supported by USDoE award DE-FC02-99ER54512 and the Office of Fusion Energy Sciences through the National Undergraduate Fellowship.

  7. Novel multi-beam X-ray source for vacuum electronics enabled medical imaging applications

    NASA Astrophysics Data System (ADS)

    Neculaes, V. Bogdan

    2013-10-01

    For almost 100 of years, commercial medical X-ray applications have relied heavily on X-ray tube architectures based on the vacuum electronics design developed by William Coolidge at the beginning of the twentieth century. Typically, the Coolidge design employs one hot tungsten filament as the electron source; the output of the tube is one X-ray beam. This X-ray source architecture is the state of the art in today's commercial medical imaging applications, such as Computed Tomography. Recently, GE Global Research has demonstrated the most dramatic extension of the Coolidge vacuum tube design for Computed Tomography (CT) in almost a century: a multi-beam X-ray source containing thirty two cathodes emitting up to 1000 mA, in a cathode grounded - anode at potential architecture (anode up to 140 kV). This talk will present the challenges of the X-ray multi-beam vacuum source design - space charge electron gun design, beam focusing to compression ratios needed in CT medical imaging applications (image resolution is critically dependent on how well the electron beam is focused in vacuum X-ray tubes), electron emitter choice to fit the aggressive beam current requirements, novel electronics for beam control and focusing, high voltage and vacuum solutions, as well as vacuum chamber design to sustain the considerable G forces typically encountered on a CT gantry (an X-ray vacuum tube typically rotates on the CT gantry at less than 0.5 s per revolution). Consideration will be given to various electron emitter technologies available for this application - tungsten emitters, dispenser cathodes and carbon nano tubes (CNT) - and their tradeoffs. The medical benefits potentially enabled by this unique vacuum multi-beam X-ray source are: X-ray dose reduction, reduction of image artifacts and improved image resolution. This work was funded in part by NIH grant R01EB006837.

  8. Plasma X-ray Spectra Analysis Using Genetic Algorithms Igor E. Golovkin

    E-print Network

    Louis, Sushil J.

    Plasma X-ray Spectra Analysis Using Genetic Algorithms Igor E. Golovkin Department of Physics Reno Reno, NV 89557 sushil@cs.unr.edu Abstract X-ray spectroscopic analysis is a powerful tool for plasma diagnostics. We use genetic algorithms to automatically analyze experi- mental X-ray line spectra

  9. Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser Fluences

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Beye, Martin; Sellberg, Jonas A.; McQueen, Trevor; Laksmono, Hartawan; Kennedy, Brian; Eckert, Sebastian; Schlesinger, Daniel; Nordlund, Dennis; Ogasawara, Hirohito; Sierra, Raymond G.; Segtnan, Vegard H.; Kubicek, Katharina; Schlotter, William F.; Dakovski, Georgi L.; Moeller, Stefan P.; Bergmann, Uwe; Techert, Simone; Pettersson, Lars G. M.; Wernet, Philippe; Bogan, Michael J.; Harada, Yoshihisa; Nilsson, Anders; Föhlisch, Alexander

    2014-10-01

    We report on oxygen K-edge soft x-ray emission spectroscopy from a liquid water jet at the Linac Coherent Light Source. We observe significant changes in the spectral content when tuning over a wide range of incident x-ray fluences. In addition the total emission yield decreases at high fluences. These modifications result from reabsorption of x-ray emission by valence-excited molecules generated by the Auger cascade. Our observations have major implications for future x-ray emission studies at intense x-ray sources. We highlight the importance of the x-ray pulse length with respect to the core-hole lifetime.

  10. Comparison of the data of X-ray microtomography and fluorescence analysis in the study of bone-tissue structure

    NASA Astrophysics Data System (ADS)

    Asadchikov, V. E.; Senin, R. A.; Blagov, A. E.; Buzmakov, A. V.; Gulimova, V. I.; Zolotov, D. A.; Orekhov, A. S.; Osadchaya, A. S.; Podurets, K. M.; Savel'ev, S. V.; Seregin, A. Yu.; Tereshchenko, E. Yu.; Chukalina, M. V.; Kovalchuk, M. V.

    2012-09-01

    The possibility of localizing clusters of heavy atoms is substantiated by comparing the data of X-ray microtomography at different wavelengths, scanning electron microscopy, and X-ray fluorescence analysis. The proximal tail vertebrae of Turner's thick-toed gecko ( Chondrodactylus turneri) have been investigated for the first time by both histological and physical methods, including X-ray microtomography at different wavelengths and elemental analysis. This complex methodology of study made it possible to reveal the regions of accumulation of heavy elements in the aforementioned bones of Turner's thick-toed gecko.

  11. Phase contrast: the frontier of x-ray and electron imaging

    NASA Astrophysics Data System (ADS)

    Hwu, Y.; Margaritondo, G.

    2013-12-01

    Phase contrast has been a fundamental component of microscopy since the early 1940s. In broad terms, it refers to the formation of images using not the combination of wave intensities but their amplitudes with the corresponding phase factors. The impact on visible microscopy of biological specimens has been major. This contrast mechanism is now playing an increasingly important role in other kinds of microscopy, notably those based on electrons or x-rays. It notably solves the background problem of weak absorption contrast. New breakthroughs and new techniques are continuously produced, unfortunately unknown to most of the scientists that could exploit them. The present special cluster issue of reviews was inspired by this situation. The case of x-rays is very interesting. Phase contrast requires a high degree of longitudinal and lateral coherence. But conventional x-ray sources are not coherent. The progress of synchrotron sources yielded high coherence as a key byproduct—and started a rapid expansion of phase contrast radiology. No review—or cluster of reviews—can possibly cover all the facets of the recent progress. Without trying to be absolutely comprehensive, the present special cluster issue touches a variety of issues, giving a very broad picture. Liu et al review in general terms the different phase-based hard-x-ray techniques, with an interesting variety of examples. Then, Suortti et al and Wang et al present more specialized overviews of crystal and grating based x-ray imaging techniques, very powerful in the analysis of biological specimens. Mokso et al discuss the many facets of tomography using phase effects, expanding the picture of tomographic reconstruction of the three previous reviews. Wu et al treat the rapid progress in hard-x-ray focusing and its impact on radiology and tomography for materials science and biomedical research. The next two reviews deal with special and very interesting classes of applications. Specifically, Lee et al discuss the use of the new radiology techniques in the study of liquids, and Coan et al present the progress in phase-contrast radiology analysis of real patients. Although x-ray imaging is the main focus of the special cluster issue, the picture would not be complete without a view on the parallel and very exciting developments in electron microscopy. The last review, by Wu et al , is dedicated indeed to this broader picture, presenting recent progress in Zernike-related electron phase contrast. We trust that the special cluster issue will not only update readers on the evolution of a very important class of experimental techniques, but also prepare them for the forthcoming developments. We are indeed at the threshold of another revolution. The recently inaugurated first x-ray free electron lasers bring, together with many other record performances, full lateral coherence and excellent longitudinal coherence. The first imaging experiments show in practice their impact, and indicate that this field, far from saturating its progress, is ready for new major breakthroughs.

  12. Study of titanate nanotubes by X-ray and electron diffraction and electron microscopy

    SciTech Connect

    Brunatova, Tereza; Popelkova, Daniela; Wan, Wei; Oleynikov, Peter; Danis, Stanislav; Zou, Xiaodong; Kuzel, Radomir

    2014-01-15

    The structure of titanate nanotubes (Ti-NTs) was studied by a combination of powder X-ray diffraction (PXRD), electron diffraction and high resolution transmission electron microscopy (HRTEM). Ti-NTs are prepared by hydrothermal treatment of TiO{sub 2} powder. The structure is identified by powder X-ray diffraction as the one based on the structure of H{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O phase. The same structure is obtained by projected potential from HRTEM through-focus image series. The structure is verified by simulated PXRD pattern with the aid of the Debye formula. The validity of the model is tested by computing Fourier transformation of a single nanotube which is proportional to measured electron diffraction intensities. A good agreement of this calculation with measured precession electron diffraction data is achieved. - Highlights: • Titanate nanotubes were prepared by hydrothermal method. • X-ray powder diffraction indicated their structure based on that of H{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O. • Structural model was created with the aid of high-resolution electron microscopy. • The model was verified with electron diffraction data. • X-ray powder diffraction pattern was calculated with the aid of the Debye formula.

  13. Specimen preparation for x-ray fluorescence analysis of solutions

    SciTech Connect

    Eksperiandova, L.P.; Spolnik, Z.M.; Blank, A.B.; Aliseychik, B.B.

    1995-12-31

    Specimens for x-ray fluorescence analysis (XRFA) were prepared by adding dry gelatine (10%) to the analysis solution, homogenizing the mixture and cooling for 20 minutes. Thus, a compact resilient mass could be formed with the required shape and size; the roughness of the surface was determined by the roughness of the surface on which the specimen was formed, much the same as highly polished. Various calibration methods can be applied in the XRFA of a variety of materials if such specimens are used. 12 refs., 1 fig., 2 tabs.

  14. The First Angstrom X-Ray Free-Electron Laser

    SciTech Connect

    Galayda, John; /SLAC

    2012-08-24

    The Linac Coherent Light Source produced its first x-ray laser beam on 10 April 2009. Today it is routinely producing x-ray pulses with energy >2 mJ across the operating range from 820-8,200 eV. The facility has begun operating for atomic/molecular/optical science experiments. Performance of the facility in its first user run (1 October - 21 December) and current machine development activities will be presented. Early results from the preparations for the start of the second user run is also reported.

  15. The use of Resonant X-ray Emission Spectroscopy (RXES) for the electronic analysis of metal complexes and their interactions with biomolecules.

    PubMed

    Sá, Jacinto; Czapla-Masztafiak, Joanna; Lipiec, Ewelina; Kayser, Yves; Kwiatek, Wojciech; Wood, Bayden; Deacon, Glen B; Berger, Gilles; Dufrasne, François; Fernandes, Daniel L A; Szlachetko, Jakub

    2015-09-01

    This review presents a new application of Resonant X-ray Emission Spectroscopy (RXES) to study the mechanism of action of metal containing anticancer derivatives and in particular platinum in situ and in vivo. The technique is an example of a photon-in photon-out X-ray spectroscopic approach, which enables chemical speciation of drugs to be determined and therefore to derive action mechanisms, and to determine drug binding rates under physiological conditions and therapeutic concentrations. This is made feasible due to the atomic specificity and high penetration depth of RXES. The review presents examples of the three main types of information that can be obtained by RXES and establishes an experimental protocol to perfect the measurements within cells. PMID:26547415

  16. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    SciTech Connect

    Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G.; Heimann, P.; Krupin, O.; Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S.; Kelez, N.; Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W.; and others

    2012-04-15

    The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

  17. Towards adaptive, streaming analysis of x-ray tomography data

    SciTech Connect

    Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.; Kuprat, Andrew P.; Carson, James P.; Lansing, Carina S.; Guillen, Zoe C.; Miller, Erin A.; Lanekoff, Ingela; Laskin, Julia

    2015-03-04

    Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing a framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.

  18. An investigation on some of the tumor treatment cases using x-rays and electron beams

    NASA Astrophysics Data System (ADS)

    Ucar, Burcu; Yigitoglu, Ibrahim; Arslan Kabalay, Ipek; Altiparmak, Duygu; Kilicaslan, Sinem

    2015-07-01

    In this work, we discussed some of the applications which X-rays and electron beam used in radiotherapy for tumor treatments. This study has been performed at Radiation Oncology Department, Medicine Faculty in Gaziosmanpasa University by using the VARIAN CLINICA DHX linear accelerator which is operated in the range of 6 MeV - 15 MeV. Processes for the treatments that X-rays used for pancreas, bladder and prostate tumors and the processes that the electron beam used for some of the derm tumors are studied. Effects of X-rays and electron beams to treatments process are examined and the obtained results are presented comparatively.

  19. 77 FR 12226 - Sadex Corp.; Filing of Food Additive Petition (Animal Use); Electron Beam and X-Ray Sources for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ...Food Additive Petition (Animal Use); Electron Beam and X-Ray Sources for Irradiation...amended to provide for the safe use of electron beam and x-ray sources for irradiation...579) to provide for the safe use of electron beam and x- ray sources for...

  20. 77 FR 12226 - Sadex Corp.; Filing of Food Additive Petition (Animal Use); Electron Beam and X-Ray Sources for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Use); Electron Beam and X-Ray Sources for Irradiation of Poultry Feed and Poultry Feed Ingredients... regulations be amended to provide for the safe use of electron beam and x-ray sources for irradiation of... use of electron beam and x- ray sources for irradiation of poultry feed and poultry feed...

  1. ANALYSIS OF ASTM X-RAY SHRINKAGE RATING FOR STEEL CASTINGS

    E-print Network

    Beckermann, Christoph

    1 ANALYSIS OF ASTM X-RAY SHRINKAGE RATING FOR STEEL CASTINGS Kent Carlson1 , Shouzhu Ou1 , Richard, IA ABSTRACT This paper presents the results of two different studies that examined the ASTM x on 128 x-rays that were each given seven ASTM shrinkage x-ray ratings (ratings from five radiographers

  2. Enhanced Electron Efficiency in an X-ray Diode

    SciTech Connect

    K. Sun, L. MacNeil

    2010-05-20

    The goal for this research is to optimize the XRD structure and usage configurations and increase the efficiency of the XRD. This research was successful in optimizing the XRD structure and usage configurations, thus creating a high efficiency XRD. Best efficiency occurs when there is an angle between the photocathode and incident X-rays.

  3. Methods development for diffraction and spectroscopy studies of metalloenzymes at X-ray free-electron lasers

    PubMed Central

    Kern, Jan; Hattne, Johan; Tran, Rosalie; Alonso-Mori, Roberto; Laksmono, Hartawan; Gul, Sheraz; Sierra, Raymond G.; Rehanek, Jens; Erko, Alexei; Mitzner, Rolf; Wernet, Phillip; Bergmann, Uwe; Sauter, Nicholas K.; Yachandra, Vittal; Yano, Junko

    2014-01-01

    X-ray free-electron lasers (XFELs) open up new possibilities for X-ray crystallographic and spectroscopic studies of radiation-sensitive biological samples under close to physiological conditions. To facilitate these new X-ray sources, tailored experimental methods and data-processing protocols have to be developed. The highly radiation-sensitive photosystem II (PSII) protein complex is a prime target for XFEL experiments aiming to study the mechanism of light-induced water oxidation taking place at a Mn cluster in this complex. We developed a set of tools for the study of PSII at XFELs, including a new liquid jet based on electrofocusing, an energy dispersive von Hamos X-ray emission spectrometer for the hard X-ray range and a high-throughput soft X-ray spectrometer based on a reflection zone plate. While our immediate focus is on PSII, the methods we describe here are applicable to a wide range of metalloenzymes. These experimental developments were complemented by a new software suite, cctbx.xfel. This software suite allows for near-real-time monitoring of the experimental parameters and detector signals and the detailed analysis of the diffraction and spectroscopy data collected by us at the Linac Coherent Light Source, taking into account the specific characteristics of data measured at an XFEL. PMID:24914169

  4. Advanced water window x-ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Wang, C.; Jiang, W.; Lin, J.

    1992-01-01

    The project was focused on the design and analysis of an advanced water window soft-x-ray microscope. The activities were accomplished by completing three tasks contained in the statement of work of this contract. The new results confirm that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use aspherical mirror surfaces and to use graded multilayer coatings on the secondary (to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater). The results are included in a manuscript which is enclosed in the Appendix.

  5. Chandra X-ray Data Analysis in Educational Environments

    NASA Astrophysics Data System (ADS)

    Matilsky, T.; Etkina, E.; Lestition, K.; Mandel, E.; Joye, W.

    2004-12-01

    Recent progress in both software and remote connectivity capabilities have made it possible for authentic data analysis tasks to be presented in a wide range of educational venues. No longer are precollege teachers and students, and interested members of the public limited by their lack of access to the scientific workstations and UNIX-based imaging and analytical software used by the research community. Through a suite of programs that couples a simplified graphical user interface using the "DS9" imaging software with a "virtual observatory" capability that processes the analytical algorithms used by X-ray astronomers, we can access archived Chandra observations and generate images, as well as light curves, energy spectra, power spectra and other common examples of science tasks. The system connects to a remote UNIX server, but the user may be sited on a PC or Mac platform. Furthermore, the use of VNC (a remote desktop display environment) allows a teacher to view, comment on and debug any analysis task in real time, from anywhere in the world, and across any computer platform. This makes these programs especially useful in distance learning settings. We have developed, tested and used these capabilities in a wide variety of educational arenas, from 4 week intensive courses in X-ray astronomy research techniques for precollege students and teachers, to one day teacher enrichment workshops, to modules of classroom activities suitable for precollege grade levels, using a variety of cosmic X-ray sources. Examples using archived Chandra observations will be presented demonstrating the flexibility and usefulness of these resources.

  6. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    NASA Astrophysics Data System (ADS)

    Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.

    2010-10-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will directly translate to use at hard x-ray free electron lasers.

  7. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    E-print Network

    Hao, Yajiang; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-01-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.

  8. PAPER 1Simultaneous measurements of X rays and electrons during a pulsating aurora

    E-print Network

    Ã?stgaard, Nikolai

    Pulsaur II was a sounding rocket aimed at the study of generat- ing mechanisms of pulsating aurora of energetic electron precipitation. As balloon and rocket experiments have recorded auroral X- rays since

  9. Simultaneous measurements of X rays and electrons during a pulsating aurora

    E-print Network

    Ã?stgaard, Nikolai

    Pulsaur II was a sounding rocket aimed at the study of generat- ing mechanisms of pulsating aurora of energetic electron precipitation. As balloon and rocket experiments have recorded auroral X- rays since

  10. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    E-print Network

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; Read, Randy J.; Wiedenheft, Blake

    2015-07-30

    Structures of multisubunit macromolecular machines are primarily determined either by electron microscopy (EM) or by X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail...

  11. Femtosecond electron and x-ray generation by laser andplasma-based sources

    SciTech Connect

    Esarey, E.; Leemans, W.P.

    2000-02-01

    The generation of ultra-short x-rays by Thomson scattering intense laser pulses from electron beams is discussed, including recent experimental results and methods for enhancing the x-ray flux. A high flux of x-rays in a femtosecond pulse requires the generation of femtosecond electron bunches and a head-on Thomson scattering geometry. The generation of ultrashort electron bunches in a plasma-based accelerator with an injection technique that uses two colliding laser pulses is discussed. Simulations indicate the bunches as short as a few fs can be produced. Conversion of the fs electron pulse to a fs x-ray pulse can be accomplished by Bremsstrahlung or Thomson scattering.

  12. Controlled Betatron X-ray radiation from tunable optically injected electrons

    E-print Network

    Corde, S; Fitour, R; Faure, J; Tafzi, A; Goddet, J P; Malka, V; Rousse, A

    2011-01-01

    The features of Betatron X-ray emission produced in a laser-plasma accelerator are closely linked to the properties of the relativistic electrons which are at the origin of the radiation. While in interaction regimes explored previously the source was by nature unstable, following the fluctuations of the electron beam, we demonstrate in this Letter the possibility to generate X-ray Betatron radiation with controlled and reproducible features, allowing fine studies of its properties. To do so, Betatron radiation is produced using monoenergetic electrons with tunable energies from a laser-plasma accelerator with colliding pulse injection [J. Faure et al., Nature (London), 444, 737 (2006)]. The presented study provides evidence of the correlations between electrons and X-rays, and the obtained results open significant perspectives toward the production of a stable and controlled femtosecond Betatron X-ray source in the keV range.

  13. Controlled Betatron X-Ray Radiation from Tunable Optically Injected Electrons

    E-print Network

    Corde, S; Fitour, R; Faure, J; Tafzi, A; Goddet, J P; Malka, V; Rousse, A

    2011-01-01

    The features of Betatron x-ray emission produced in a laser-plasma accelerator are closely linked to the properties of the relativistic electrons which are at the origin of the radiation. While in interaction regimes explored previously the source was by nature unstable, following the fluctuations of the electron beam, we demonstrate in this Letter the possibility to generate x-ray Betatron radiation with controlled and reproducible features, allowing fine studies of its properties. To do so, Betatron radiation is produced using monoenergetic electrons with tunable energies from a laser-plasma accelerator with colliding pulse injection [J. Faure et al., Nature (London) 444, 737 (2006)]. The presented study provides evidence of the correlations between electrons and x-rays, and the obtained results open significant perspectives toward the production of a stable and controlled femtosecond Betatron x-ray source in the keV range.

  14. Controlled Betatron X-Ray Radiation from Tunable Optically Injected Electrons

    NASA Astrophysics Data System (ADS)

    Corde, S.; Phuoc, K. Ta; Fitour, R.; Faure, J.; Tafzi, A.; Goddet, J. P.; Malka, V.; Rousse, A.

    2011-12-01

    The features of Betatron x-ray emission produced in a laser-plasma accelerator are closely linked to the properties of the relativistic electrons which are at the origin of the radiation. While in interaction regimes explored previously the source was by nature unstable, following the fluctuations of the electron beam, we demonstrate in this Letter the possibility to generate x-ray Betatron radiation with controlled and reproducible features, allowing fine studies of its properties. To do so, Betatron radiation is produced using monoenergetic electrons with tunable energies from a laser-plasma accelerator with colliding pulse injection [J. Faure , Nature (London) 444, 737 (2006)].NATUAS0028-083610.1038/nature05393 The presented study provides evidence of the correlations between electrons and x-rays, and the obtained results open significant perspectives toward the production of a stable and controlled femtosecond Betatron x-ray source in the keV range.

  15. Controlled Betatron X-Ray Radiation from Tunable Optically Injected Electrons

    SciTech Connect

    Corde, S.; Phuoc, K. Ta; Fitour, R.; Faure, J.; Tafzi, A.; Goddet, J. P.; Malka, V.; Rousse, A.

    2011-12-16

    The features of Betatron x-ray emission produced in a laser-plasma accelerator are closely linked to the properties of the relativistic electrons which are at the origin of the radiation. While in interaction regimes explored previously the source was by nature unstable, following the fluctuations of the electron beam, we demonstrate in this Letter the possibility to generate x-ray Betatron radiation with controlled and reproducible features, allowing fine studies of its properties. To do so, Betatron radiation is produced using monoenergetic electrons with tunable energies from a laser-plasma accelerator with colliding pulse injection [J. Faure et al., Nature (London) 444, 737 (2006)]. The presented study provides evidence of the correlations between electrons and x-rays, and the obtained results open significant perspectives toward the production of a stable and controlled femtosecond Betatron x-ray source in the keV range.

  16. A simulation of X-ray shielding for a superconducting electron cyclotron resonance ion source

    SciTech Connect

    Park, Jin Yong; Won, Mi-Sook; Lee, Byoung-Seob; Yoon, Jang-Hee; Choi, Seyong; Ok, Jung-Woo; Choi, Jeong-Sik; Kim, Byoung-Chul

    2014-02-15

    It is generally assumed that large amounts of x-rays are emitted from the ion source of an Electron Cyclotron Resonance (ECR) instrument. The total amount of x-rays should be strictly limited to avoid the extra heat load to the cryostat of the superconducting ECR ion source, since they are partly absorbed by the cold mass into the cryostat. A simulation of x-ray shielding was carried out to determine the effective thickness of the x-ray shield needed via the use of Geant4. X-ray spectra of the 10 GHz Nanogan ECR ion source were measured as a function of the thickness variation in the x-ray shield. The experimental results were compared with Geant4 results to verify the effectiveness of the x-ray shield. Based on the validity in the case of the 10 GHz ECR ion source, the x-ray shielding results are presented by assuming the spectral temperature of the 28 GHz ECR ion source.

  17. Entangled Valence Electron-Hole Dynamics Revealed by Stimulated Attosecond X-ray Raman Scattering

    PubMed Central

    Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan

    2012-01-01

    We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by stimulated resonant Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction. PMID:23755318

  18. Entangled valence electron-hole dynamics revealed by stimulated attosecond x-ray Raman scattering

    SciTech Connect

    Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; Mukamel, Shaul

    2012-09-06

    We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by resonant stimulated Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.

  19. Optimal Charge of a Photocathode Gun for a Compact X-ray Free-Electron Laser

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Yeon; Chae, Moon Sik; Ko, In Soo

    2010-02-01

    For a photocathode gun, the optimal charge per gun pulse is derived to give the theoretically allowed smallest saturation length of the X-ray free-electron laser based on the self amplified spontaneous emission scheme. The derivation is approximate, but the result is practically independent of specific machine design. The objective is to contribute to the study of a compact X-ray free-electron laser.

  20. Imaging Electron Trajectories in a Laser-Wakefield Cavity Using Betatron X-Ray Radiation

    SciTech Connect

    Kim Ta Phuoc; Corde, Sebastien; Shah, Rahul; Albert, Felicie; Fitour, Romuald; Rousseau, Jean-Philippe; Burgy, Frederic; Mercier, Brigitte; Rousse, Antoine

    2006-12-01

    We demonstrate that betatron x-ray radiation accurately provides direct imaging of electrons trajectories accelerated in laser wakefields. Experimental far field x-ray beam profiles reveal that electrons can follow similar transverse trajectories with typical excursions of 1.5 {mu}m{+-}0.5 {mu}m in the plane of laser polarization and 0.7 {mu}m{+-}0.2 {mu}m in the plane perpendicular.

  1. Simulation of heat transfer in zone plate optics irradiated by X-ray free electron laser radiation

    E-print Network

    Simulation of heat transfer in zone plate optics irradiated by X-ray free electron laser radiation Zone plate XFEL Heat transfer a b s t r a c t Zone plates are high quality optics that have substrate irradiated by 0.1 nm X-rays from the European X-ray Free Electron Laser. The heat transfer

  2. X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer

    E-print Network

    California at Berkeley, University of

    X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer R. M-resolution germanium detector aboard the MAXIS (MeV Auroral X-ray Imaging and Spectroscopy) balloon payload detected, and M. P. McCarthy, X-ray observations of MeV electron precipitation with a balloon-borne germanium

  3. Quantitative Evaluation of Radiation Damage to Polyethylene Terephthalate by Soft X-rays and High-energy Electrons

    E-print Network

    Hitchcock, Adam P.

    Quantitative Evaluation of Radiation Damage to Polyethylene Terephthalate by Soft X-rays and High to polyethylene terephthalate (PET) caused by soft X-rays and energetic electrons have been measured using a scanning transmission X-ray microscope (STXM). Electron beam damage at two different dose rates and a range

  4. Development of a hard X-ray delay line for X-ray photon correlation spectroscopy and jitter-free pump–probe experiments at X-ray free-electron laser sources

    PubMed Central

    Roseker, Wojciech; Franz, Hermann; Schulte-Schrepping, Horst; Ehnes, Anita; Leupold, Olaf; Zontone, Federico; Lee, Sooheyong; Robert, Aymeric; Grübel, Gerhard

    2011-01-01

    A hard X-ray delay line capable of splitting and delaying single X-ray pulses has been developed with the aim of performing X-ray photon correlation spectroscopy (XPCS) and X-ray pump–probe experiments at hard X-ray free-electron laser sources. The performance of the device was tested with 8.39?keV synchrotron radiation. Time delays up to 2.95?ns have been demonstrated. The feasibility of the device for performing XPCS studies was tested by recording static speckle patterns. The achieved speckle contrast of 56% indicates the possibility of performing ultra-fast XPCS studies with the delay line. PMID:21525658

  5. Predicting X-ray absorption spectra of semiconducting polymers for electronic structure and morphology characterization

    NASA Astrophysics Data System (ADS)

    Su, Gregory; Patel, Shrayesh; Pemmaraju, C. Das; Kramer, Edward; Prendergast, David; Chabinyc, Michael

    2015-03-01

    Core-level X-ray absorption spectroscopy (XAS) reveals important information on the electronic structure of materials and plays a key role in morphology characterization. Semiconducting polymers are the active component in many organic electronics. Their electronic properties are critically linked to device performance, and a proper understanding of semiconducting polymer XAS is crucial. Techniques such as resonant X-ray scattering rely on core-level transitions to gain materials contrast and probe orientational order. However, it is difficult to identify these transitions based on experiments alone, and complementary simulations are required. We show that first-principles calculations can capture the essential features of experimental XAS of semiconducting polymers, and provide insight into which molecular model, such as oligomers or periodic boundary conditions, are best suited for XAS calculations. Simulated XAS can reveal contributions from individual atoms and be used to visualize molecular orbitals. This allows for improved characterization of molecular orientation and scattering analysis. These predictions lay the groundwork for understanding how chemical makeup is linked to electronic structure, and to properly utilize experiments to characterize semiconducting polymers.

  6. X-Ray, a software for the analysis of X-ray diffraction patterns of polymers recorded with image plates

    NASA Astrophysics Data System (ADS)

    Dosiere, Marcel

    1998-03-01

    X-Ray , a software for the analysis of X-ray diffraction patterns of polymers recorded with image plates. O. Hernaut, D. Villers, M. Puaud, M. Dosiere Universite de Mons-Hainaut, Lab. de Physicochimie des Polymeres, place du Parc, 20, B- 7000 - Mons (Belgique) A software dedicated to the analysis of X-ray diffraction patterns of polymers recorded with an area detector has been developed. Its main purpose is to add specific functionalities which allow the analysis (or improve the speed and accuracy) of WAXD and SAXS data obtained on isotropic or oriented polymer samples : use of the scattering vector, Miller=92s indices, determination of lattice parameters, diffraction intensities, degree of crystallinity, orientation function, long period, crystal thickness,... A lmost all applied procedures need the knowledge of the center of the pattern (the primary beam). Indeed, a good accuracy is required to avoid deviations of the Bragg spacing or smearing at the time of intensity integration. Therefore an automatic and ac curate method to find centers has been implemented. The program currently performs numerous analysis operations as follows : a) Settings, corrections, calibration, normalization; b) Diffraction commands; c) Classical image processing functions; d) On e-dimensional profile analysis operations.

  7. Soft X-ray, microwave, and hard X-ray emission from a solar flare - Implications for electron heating and acceleration in current channels

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.

    1989-01-01

    The soft X-ray, microwave, and hard X-ray emissions from the solar flare of May 14, 1980 are studied. The flare consists of a gradual component in soft X-rays and microwaves and a superposed impulsive burst accompanied by hard X-ray emission. The impulsive phase of the flare appears in the soft X-ray emission as a temperature spike and as an increased rate of energy dissipation into the plasma. A new, spatially and spectrally distinct, microwave component appears during the impulsive burst. The data are interpreted in terms of Joule heating and the electric field acceleration of electrons in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft X-ray emitting plasma can be heated by a single current sheet only if the resistivity in the sheet is well above the classical, collisional resistivity. Conditions are also given for the hard X-ray emission to be from nonthermal electrons with classical resistivity.

  8. A Sealed, UHV Compatible, Soft X-ray Detector Utilizing Gas Electron Multipliers

    SciTech Connect

    Schaknowski, N.A.; Smith, G.

    2009-10-25

    An advanced soft X-ray detector has been designed and fabricated for use in synchrotron experiments that utilize X-ray absorption spectroscopy in the study a wide range of materials properties. Fluorescence X-rays, in particular C{sub K} at 277eV, are converted in a low pressure gas medium, and charge multiplication occurs in two gas electron multipliers, fabricated in-house from glass reinforced laminate, to enable single photon counting. The detector satisfies a number of demanding characteristics often required in synchrotron environments, such as UHV compatibility compactness, long-term stability, and energy resolving capability.

  9. New X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of long working distance

    NASA Astrophysics Data System (ADS)

    Terada, Yasuko; Yumoto, Hirokatsu; Takeuchi, Akihisa; Suzuki, Yoshio; Yamauchi, Kazuto; Uruga, Tomoya

    2010-05-01

    A new X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of 300 mm long working distance has been developed at beamline 37XU of SPring-8. A focusing test has been performed in the X-ray energy range 20-37.7 keV. A focused beam size of 1.3 ?m ( V)×1.5 ?m ( H) has been achieved at an X-ray energy of 30 keV, and a total photon flux of the focused beam was about 2.7×10 10 photons/s. Micro-X-ray fluorescence (?-XRF) analysis of eggplant roots has been carried out using the developed microprobe. It is clearly observed in the XRF images that cadmium is highly accumulated in the endodermis, exodermis and epidermis of roots. This study demonstrates the potential of scanning microscopy for heavy elements analysis in the high-energy X-ray region.

  10. X-ray analysis of wurtzite-type CoO(111) films on Ir(001): Correlation of structure, stress, electronic, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Roy, Sumalay; Meyerheim, H. L.; Mohseni, K.; Tian, Z.; Sander, D.; Hoffmann, M.; Adeagbo, W.; Ernst, A.; Hergert, W.; Felici, R.; Kirschner, J.

    2014-04-01

    We present a surface x-ray diffraction study in combination with stress experiments and ab initio calculations to investigate the structure and magnetic properties of 1.6 and 2.0 bilayer thick CoO(111) films grown on Ir(001). The CoO films grow in a wurtzite-like structure characterized by reduced distances between cobalt and oxygen atoms within one bilayer. The double-bilayer film is under tensile stress of +2.1 N/m which can be quantitatively attributed to epitaxial misfit and excludes the presence of significant Coulomb interactions. First-principles calculations reveal that the CoO films are metallic and that the magnetic order is noncollinear.

  11. X-RAY NONLINEAR OPTICAL PROCESSES IN ATOMS USING A SELF-AMPLIFIED SPONTANEOUS EMISSION FREE-ELECTRON LASER

    SciTech Connect

    Rohringer, N

    2008-08-08

    X-ray free electron lasers (xFEL) will open new avenues to the virtually unexplored territory of non-linear interactions of x rays with matter. Initially xFELs will be based on the principle of self-amplified spontaneous emission (SASE). Each SASE pulse consists of a number of coherent intensity spikes of random amplitude, i.e. the process is chaotic and pulses are irreproducible. The coherence time of SASE xFELs will be a few femtoseconds for a photon energy near 1 keV. The importance of coherence properties of light in non-linear optical processes was theoretically discovered in the early 1960s. In this contribution we will illustrate the impact of field chaoticity on x-ray non-linear optical processes on neon for photon energies around 1 keV and intensities up to 10{sup 18} W/cm{sup 2}. Resonant and non-resonant processes are discussed. The first process to be addressed is the formation of a double-core hole in neon by photoionization with x rays above 1.25 keV energy. In contrast to the long-wavelength regime, non-linear optical processes in the x-ray regime are characterized in general by sequential single-photon single-electron interactions. Despite this fact, the sequential absorption of multiple x-ray photons depends on the statistical properties of the radiation field. Treating the x rays generated by a SASE FEL as fully chaotic, a quantum-mechanical analysis of inner-shell two-photon absorption is performed. By solving a system of time-dependent rate equations, we demonstrate that double-core hole formation in neon via x-ray two-photon absorption is enhanced by chaotic photon statistics. At an intensity of 10{sup 16} W/cm{sup 2}, the statistical enhancement is about 30%, much smaller than typical values in the optical regime. The second part of this presentation discusses the resonant Auger effect of atomic neon at the 1s-3p transition (at 867.1 eV). For low X-ray intensity, the excitation process 1s {yields} 3p in Neon can be treated perturbatively. The core-hole excited 1s{sup -1} 3p state is embedded in the continuum and decays via Auger-process on the timescale of approximately 5 fs. Increasing the x-ray intensity above 1.5 x 10{sup 18} W/cm{sup 2}, a peak intensity accessible with xFEL sources in the near future, x-ray induced emission from 3p back to 1s becomes possible, i.e. Rabi oscillations between these two levels can be induced. For the numerical analysis of this process, an effective two-level model, including a description of the resonant Auger decay process, is employed. The observation of x-ray-driven atomic populations dynamics in the time domain is challenging for chaotic xFEL pulses. In addition to requiring single-shot measurements, sub-femtosecond temporal resolution would be needed. The Rabi oscillations will, however, be imprinted on the kinetic energy distribution of the resonant Auger electron (see Fig. 1). Measuring the resonant Auger-electron line profile will provide information on both atomic population dynamics and x-ray pulse properties.

  12. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    SciTech Connect

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-09-26

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  13. Electron charge distribution of CaAl{sub 2-x}Zn{sub x}: Maximum entropy method combined with Rietveld analysis of high-resolution-synchrotron X-ray powder diffraction data

    SciTech Connect

    Soederberg, Karin; Kubota, Yoshiki; Muroyama, Norihiro; Gruener, Daniel; Yoshimura, Arisa; Terasaki, Osamu

    2008-08-15

    Using short wavelength X-rays from synchrotron radiation (SPring-8), high-resolution powder diffraction patterns were collected. In order to study both the structural relationship and the mechanism of stability in the CaAl{sub 2-x}Zn{sub x} system, among the Laves phases (MgCu{sub 2} and MgNi{sub 2} type) and KHg{sub 2}-type structures, the charge density distribution of CaAl{sub 2-x}Zn{sub x} as a function of x was obtained from the diffraction data by Rietveld analysis combined with the maximum entropy method (MEM). In the MEM charge density maps overlapping electron densities were clearly observed, especially in the Kagome nets of the Laves phases. In order to clarify the charge redistribution in the system, the deformation charge densities from the densities formed by the constituent free atoms are discussed. In the ternary MgNi{sub 2}-type phase, partial ordering of Al and Zn atoms is observed, a finding that is supported by ab-initio total energy calculations. - Graphical abstract: Using short wavelength X-rays from synchrotron radiation (SPring-8), high-resolution powder diffraction patterns of the Laves (MgCu{sub 2} and MgNi{sub 2} type) and KHg{sub 2}-type phases in the CaAl{sub 2-x}Zn{sub x} system were collected. The charge density distribution in the Laves phases as a function of x was obtained from the diffraction data by Rietveld analysis combined with the maximum entropy method (MEM)

  14. High-intensity double-pulse X-ray free-electron laser

    PubMed Central

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F.-J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T.J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-01-01

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion. PMID:25744344

  15. High-intensity double-pulse X-ray free-electron laser

    SciTech Connect

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T. J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.

  16. High-intensity double-pulse X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F.-J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T. J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-03-01

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.

  17. High-intensity double-pulse X-ray free-electron laser

    DOE PAGESBeta

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; et al

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore »in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  18. Resonant soft x-ray inelastic scattering and soft x-ray emission study of the electronic structure of ?-MoO3

    NASA Astrophysics Data System (ADS)

    Learmonth, T.; McGuinness, C.; Glans, P.-A.; Kennedy, B.; St. John, J.; Guo, J.-H.; Greenblatt, M.; Smith, K. E.

    2009-01-01

    The electronic structure of quasi-low-dimensional solids is a topic of enduring interest due to the complex many-body interactions that exist in such materials and their resulting exotic physical properties. A well studied class of such materials is the quasi-low-dimensional metals known collectively as molybdenum oxide bronzes. These materials are all derived from the band insulator ?-MoO3 . We report here a study of the electronic structure of ?-MoO3 using resonant inelastic x-ray scattering and soft x-ray emission spectroscopy. We observe significant variation in x-ray scattering as a function of the relative orientation of the polarization vector of the incident light and the crystal axes. We interpret our data using a model of k -selective soft x-ray scattering.

  19. Fully Coherent X-ray Pulses from a Regenerative Amplifier Free Electron Laser

    E-print Network

    Huang, Z; Huang, Zhirong; Ruth, Ronald D.

    2006-01-01

    We propose and analyze a novel regenerative amplifier free electron laser (FEL) to produce fully coherent x-ray pulses. The method makes use of narrow-bandwidth Bragg crystals to form an x-ray feedback loop around a relatively short undulator. Self-amplified spontaneous emission (SASE) from the leading electron bunch in a bunch train is spectrally filtered by the Bragg reflectors and is brought back to the beginning of the undulator to interact repeatedly with subsequent bunches in the bunch train. The FEL interaction with these short bunches not only amplifies the radiation intensity but also broadens its spectrum, allowing for effective transmission of the x-rays outside the crystal bandwidth. The spectral brightness of these x-ray pulses is about two to three orders of magnitude higher than that from a single-pass SASE FEL.

  20. X-rays generated by relativistic electrons in a waveguide radiator mounted inside a betatron

    NASA Astrophysics Data System (ADS)

    Kaplin, V. V.; Sohoreva, V. V.; Uglov, S. R.; Bulaev, O. F.; Voronin, A. A.; Piestrup, M.; Gary, C.

    2011-07-01

    We have observed X-ray emission from an X-ray waveguide radiator excited by relativistic electrons in the experiments carried out at Tomsk betatron B-35. A stratified radiator of a new type was mounted on a goniometer head inside the betatron toroid. The radiator consisted of the W-C-W layers placed on Si substrate. The photographs of the angular distributions of the radiation generated in the radiator by 20 and 33 MeV electrons showed the waveguide effect of the three-layer structure on X-rays generated in the radiator. The effect appeared in the angular distribution of the radiation as an additional peak attributed to guided X-rays inside a wide cone of usual Bremsstrahlung.

  1. Observation of X-rays generated by relativistic electrons in waveguide target mounted inside a betatron

    E-print Network

    Kaplin, V V; Uglov, S R; Bulaev, O F; Voronin, A A; Piestrup, M; Gary, C

    2006-01-01

    In this work we have observed x-ray emission from x-ray waveguide radiator excited by relativistic electrons. The experiment carried out at Tomsk betatron B-35. Such new type stratified target was mounted on goniometer head inside the betatron toroid. The target is consisted of the W-C-W layers placed on Si substrate. The photographs of the angular distributions of the radiation generated in the target by 20-33 MeV electrons have shown the waveguide effect of the three-layer structure on x-rays generated in the target. The effect proved in an angular distribution of radiation as an additional narrow peak of guided x-rays intensity inside a wide cone of usual Bremsstrahlung.

  2. Observation of X-rays generated by relativistic electrons in waveguide target mounted inside a betatron

    E-print Network

    V. V. Kaplin; V. V. Sohoreva; S. R. Uglov; O. F. Bulaev; A. A. Voronin; M. Piestrup; C. Gary

    2006-05-06

    In this work we have observed x-ray emission from x-ray waveguide radiator excited by relativistic electrons. The experiment carried out at Tomsk betatron B-35. Such new type stratified target was mounted on goniometer head inside the betatron toroid. The target is consisted of the W-C-W layers placed on Si substrate. The photographs of the angular distributions of the radiation generated in the target by 20-33 MeV electrons have shown the waveguide effect of the three-layer structure on x-rays generated in the target. The effect proved in an angular distribution of radiation as an additional narrow peak of guided x-rays intensity inside a wide cone of usual Bremsstrahlung.

  3. Visualizing a protein quake with time resolved X-ray scattering at a free electron laser

    PubMed Central

    Arnlund, David; Johansson, Linda C.; Wickstrand, Cecilia; Barty, Anton; Williams, Garth J.; Malmerberg, Erik; Davidsson, Jan; Milathianaki, Despina; DePonte, Daniel P.; Shoeman, Robert L.; Wang, Dingjie; James, Daniel; Katona, Gergely; Westenhoff, Sebastian; White, Thomas A.; Aquila, Andrew; Bari, Sadia; Berntsen, Peter; Bogan, Mike; van Driel, Tim Brandt; Doak, R. Bruce; Kjær, Kasper Skov; Frank, Matthias; Fromme, Raimund; Grotjohann, Ingo; Henning, Robert; Hunter, Mark S.; Kirian, Richard A.; Kosheleva, Irina; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nielsen, Martin Meedom; Messerschmidt, Marc; Seibert, M. Marvin; Sjöhamn, Jennie; Stellato, Francesco; Weierstall, Uwe; Zatsepin, Nadia A.; Spence, John C. H.; Fromme, Petra; Schlichting, Ilme; Boutet, Sébastien; Groenhof, Gerrit; Chapman, Henry N.; Neutze, Richard

    2014-01-01

    A ‘protein quake’ describes the hypothesis that proteins rapidly dissipate energy through quake like structural motions. Here we measure ultrafast structural changes in the Blastochloris viridis photosynthetic reaction center following multi-photon excitation using time-resolved wide angle X-ray scattering at an X-ray free electron laser. A global conformational change arises within picoseconds, which precedes the propagation of heat through the protein. This motion is damped within a hundred picoseconds. PMID:25108686

  4. Caustic structures in the spectrum of x-ray Compton scattering off electrons driven by a short intense laser pulse

    E-print Network

    D. Seipt; A. Surzhykov; S. Fritzsche; B. Kampfer

    2015-07-31

    We study the Compton scattering of x-rays off electrons that are driven by a relativistically intense short optical laser pulse. The frequency spectrum of the laser-assisted Compton radiation shows a broad plateau in the vicinity of the laser-free Compton line due to a nonlinear mixing between x-ray and laser photons. Special emphasis is placed on how the shape of the short assisting laser pulse affects the spectrum of the scattered x-rays. In particular, we observe sharp peak structures in the plateau region, whose number and locations are highly sensitive to the laser pulse shape. These structures are interpreted as spectral caustics by using a semiclassical analysis of the laser-assisted QED matrix element.

  5. Caustic structures in the spectrum of x-ray Compton scattering off electrons driven by a short intense laser pulse

    E-print Network

    Seipt, D; Fritzsche, S; Kampfer, B

    2015-01-01

    We study the Compton scattering of x-rays off electrons that are driven by a relativistically intense short optical laser pulse. The frequency spectrum of the laser-assisted Compton radiation shows a broad plateau in the vicinity of the laser-free Compton line due to a nonlinear mixing between x-ray and laser photons. Special emphasis is placed on how the shape of the short assisting laser pulse affects the spectrum of the scattered x-rays. In particular, we observe sharp peak structures in the plateau region, whose number and locations are highly sensitive to the laser pulse shape. These structures are interpreted as spectral caustics by using a semiclassical analysis of the laser-assisted QED matrix element.

  6. Ultrafast X-ray and Electron Diffraction: Theoretical Considerations M. Ben-Nun, Jianshu Cao, and Kent R. Wilson*

    E-print Network

    Cao, Jianshu

    ARTICLES Ultrafast X-ray and Electron Diffraction: Theoretical Considerations M. Ben-Nun, Jianshu surfaces) for their inversion. We consider here how to derive time-dependent diffraction (the X-ray or X-ray probe pulse, are presented. The quantum mechanical basis of the breaking of symmetry due

  7. X-Ray Radiation from Nonlinear Thomson Scattering of an Intense Femtosecond Laser on Relativistic Electrons in a Helium Plasma

    E-print Network

    Umstadter, Donald

    X-Ray Radiation from Nonlinear Thomson Scattering of an Intense Femtosecond Laser on Relativistic November 2003) We have generated x-ray radiation from the nonlinear Thomson scattering of a 30 fs=1:5 J laser beam on plasma electrons. A collimated x-ray radiation with a broad continuous spectrum peaked

  8. Imaging electron trajectories in a laser-wakefield accelerator by measuring the betatron x-ray spectrum angular dependence

    NASA Astrophysics Data System (ADS)

    Albert, Felicie; Pollock, Bradley; Shaw, Jessica; Barnwell, Alethia; Campbell, Paul; Chavez, Nicholas; Marsh, Ken; Chen, Yu Hsin; Alessi, David; Clayton, Chris; Pak, Arthur; Ralph, Joseph; Glenzer, Sigfried; Joshi, Chan

    2013-10-01

    We have performed experiments using the 200 TW Callisto laser system at LLNL to produce GeV-class electron beams and keV Betatron x-rays. The laser was focused into various gas cells with sizes ranging from 3 to 10 mm that contained a mixure of gases (He, N, Ar). We demonstrate that it is possible to do a tomographic reconstruction of electron trajectories inside the channel of the laser-wakefield accelerator from the angular dependence of the Betatron x-ray spectrum, using an image plate-based spectrometer with differential filtering. Experimental results are benchmarked against a code that solves the equation of motion of electrons oscillating in the plasma wake and by calculating the corresponding x-ray radiation spectrum and profile. This combined single-shot, simultaneous spectral and spatial x-ray analysis allows for a 3D reconstruction of electron trajectories in the plasma with micrometer resolution. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52- 07NA27344, and supported by the Laboratory Directed Research and Development (LDRD) Program under tracking code 13-LW-076.

  9. Note: Theoretical study on the gas pressure dependence of x-ray yield in TE{sub 111} cavity based electron cyclotron resonance x-ray source

    SciTech Connect

    Selvakumaran, T. S. Sen, Soubhadra; Baskaran, R.

    2014-11-15

    Adopting Langevin methodology, a pressure dependent frictional force term which represents the collisional effect is added to the Lorentz equation. The electrons are assumed to be starting from the uniformly distributed co-ordinates on the central plane. The trajectory of each electron is numerically simulated by solving the modified Lorentz equation for a given pressure. The Bremsstrahlung x-ray energy spectrum for each electron crossing the cavity wall boundary is obtained using the Duane-Hunt law. The total x-ray yield is estimated by adding the spectral contribution of each electron. The calculated yields are compared with the experimental results and a good agreement is found.

  10. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  11. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments

    SciTech Connect

    Kameshima, Takashi; Ono, Shun; Kudo, Togo; Ozaki, Kyosuke; Kirihara, Yoichi; Kobayashi, Kazuo; Inubushi, Yuichi; Yabashi, Makina; Hatsui, Takaki; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 ; Horigome, Toshio; Holland, Andrew; Holland, Karen; Burt, David; Murao, Hajime

    2014-03-15

    This paper presents development of an X-ray pixel detector with a multi-port charge-coupled device (MPCCD) for X-ray Free-Electron laser experiments. The fabrication process of the CCD was selected based on the X-ray radiation hardness against the estimated annual dose of 1.6 × 10{sup 14} photon/mm{sup 2}. The sensor device was optimized by maximizing the full well capacity as high as 5 Me- within 50 ?m square pixels while keeping the single photon detection capability for X-ray photons higher than 6 keV and a readout speed of 60 frames/s. The system development also included a detector system for the MPCCD sensor. This paper summarizes the performance, calibration methods, and operation status.

  12. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments

    NASA Astrophysics Data System (ADS)

    Kameshima, Takashi; Ono, Shun; Kudo, Togo; Ozaki, Kyosuke; Kirihara, Yoichi; Kobayashi, Kazuo; Inubushi, Yuichi; Yabashi, Makina; Horigome, Toshio; Holland, Andrew; Holland, Karen; Burt, David; Murao, Hajime; Hatsui, Takaki

    2014-03-01

    This paper presents development of an X-ray pixel detector with a multi-port charge-coupled device (MPCCD) for X-ray Free-Electron laser experiments. The fabrication process of the CCD was selected based on the X-ray radiation hardness against the estimated annual dose of 1.6 × 1014 photon/mm2. The sensor device was optimized by maximizing the full well capacity as high as 5 Me- within 50 ?m square pixels while keeping the single photon detection capability for X-ray photons higher than 6 keV and a readout speed of 60 frames/s. The system development also included a detector system for the MPCCD sensor. This paper summarizes the performance, calibration methods, and operation status.

  13. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments.

    PubMed

    Kameshima, Takashi; Ono, Shun; Kudo, Togo; Ozaki, Kyosuke; Kirihara, Yoichi; Kobayashi, Kazuo; Inubushi, Yuichi; Yabashi, Makina; Horigome, Toshio; Holland, Andrew; Holland, Karen; Burt, David; Murao, Hajime; Hatsui, Takaki

    2014-03-01

    This paper presents development of an X-ray pixel detector with a multi-port charge-coupled device (MPCCD) for X-ray Free-Electron laser experiments. The fabrication process of the CCD was selected based on the X-ray radiation hardness against the estimated annual dose of 1.6 × 10(14) photon/mm(2). The sensor device was optimized by maximizing the full well capacity as high as 5 Me- within 50 ?m square pixels while keeping the single photon detection capability for X-ray photons higher than 6 keV and a readout speed of 60 frames/s. The system development also included a detector system for the MPCCD sensor. This paper summarizes the performance, calibration methods, and operation status. PMID:24689567

  14. Effect of an electron scattering cloud on X-ray oscillations produced by beaming

    NASA Technical Reports Server (NTRS)

    Brainerd, J.; Lamb, F. K.

    1987-01-01

    The effect of a scattering cloud on the amplitude of oscillations produced by a rotating beam of X-rays is investigated using analytical and Monte Carlo methods. The scattering cloud was modeled as a uniform density sphere, and the source was represented as an anistropic distribution of radiation emerging from a point at the center of the scattering cloud. The intensity distribution produced by the source beam is examined as a function of optical depth. The relation between electron scattering optical depth and the forward-backward ratio is studied. It is observed that the scattering in a central corona of various optical depths reduces the amplitude of the oscillation. The data suggest that the quasi-periodic oscillations observed in the X-ray intensities of some luminous low-mass X-ray binaries are caused by oscillations in the luminosity of the X-ray star.

  15. High sensitive X-ray films to detect electron showers in 100 GeV region

    NASA Technical Reports Server (NTRS)

    Taira, T.; Shirai, T.; Tateyama, N.; Torii, S.; Nishimura, J.; Fujii, M.; Yoshida, A.; Aizu, H.; Nomura, Y.; Kazuno, M.

    1985-01-01

    Nonscreen type X-ray films were used in emulsion chamber experiments to detect high energy showers in cosmic rays. Ranges of the detection threshold is from about 1 to 2 TeV depending on the exposure conditions. Different types of X-ray films and sheets i.e. high sensitive screen type X-ray films and luminescence sheets were tested. The threshold of the shower detection is found to be about 200 GeV, which is much lower than that of nonscreen type X-ray films. These films are useful to detect showers in the medium energy range, a few hundred GeV, of the cosmic ray electrons.

  16. Generation of femtosecond to sub-femtosecond x-ray pulses in free-electron lasers

    NASA Astrophysics Data System (ADS)

    Ding, Yuantao

    2015-05-01

    Generation of high power, femtosecond to sub-femtosecond x-ray pulses is attracting much attention within the x-ray free-electron laser (FEL) user community. At the existing FEL facilities, such as the Linac Coherent Light Source at SLAC, several methods have been developed to produce such short x-rays. Low-charge operation mode and emittance-spoiling scheme have successfully delivered short pulses for user experiments with duration less than 10 fs. A nonlinear compression mode has been recently developed and the pulse duration could be about 200 as. We will review the recent experimental progress at the LCLS for achieving few-femtosecond x-rays, and also discuss other short pulse schemes for reaching sub-femtosecond regime.

  17. Analysis of urinary stone components by x-ray coherent scatter: characterizing composition beyond laboratory x-ray diffractometry.

    PubMed

    Davidson, Melanie T M; Batchelar, Deidre L; Velupillai, Sujeevan; Denstedt, John D; Cunningham, Ian A

    2005-08-21

    Monoenergetic x-ray diffraction (XRD) analysis is an established standard for the assessment of urinary stone composition. The inherent low energy of x-rays used (8 keV), however, restricts penetration depth and imposes a requirement for small powdered samples. A technique capable of producing detailed information regarding component structural arrangements in calculi non-destructively would provide clearer insights into causes of formation and subsequent growth and allow the selection of more appropriate courses of therapy. We describe a new method based on the detection of coherent scatter (CS) in stone components using polyenergetic x-rays (70 kVp) from diagnostic equipment. While the higher energy allows the analysis of intact calculi, the polyenergetic source causes an angular broadening of measured CS patterns. We show that it is possible to relate the polyenergetic (CS) and monoenergetic (XRD) measurements through a superposition integral of the monoenergetic XRD cross-section with a function representative of the polyenergetic spectrum used in CS. Experimentally acquired diffractometry cross-sections of the seven major urinary stone components were subjected to this operation, revealing good agreement of diffraction features with CS. Therefore, our CS analysis is sensitive to stone component structure, similar to conventional XRD analysis. This indicates that CS analysis can be used as a basis to classify urinary calculi by composition. The potential of identifying stone components non-destructively was demonstrated from a tomographic CS analysis of a stone-mimicking phantom. Tomographic composition maps were generated from CS patterns, showing the structural arrangement of multiple stone components within the phantom. CS analysis has the ability to detect components in the presence of many others. The ability to perform CS measurements in intact calculi would allow for the identification of stone structures critical to patient metaprophylaxis. PMID:16077226

  18. Application of Strong Field Physics Techniques to X-Ray Free Electron Laser Science

    NASA Astrophysics Data System (ADS)

    Roedig, Christoph Antony

    With the commissioning of the Linac Coherent Light Source (LCLS), the first x-ray free electron laser (XFEL) was realized at the Stanford Linear Accelerator Center. This novel device brings an unprecedented parameter set to a diverse community of scientists. The short wavelengths and short pulse durations enable an entire new class of time resolved structural analysis. The imaging capabilities enabled by the machine will lead to many breakthroughs in the fields of biophysics and nano technology. With the new capabilities of the LCLS come many challenges. The understanding required to effectively utilize the XFEL on complex molecular or biological systems goes back to the basic atomic physics of the interaction of light and matter. The parameter set of this machine is as unprecedented as it will be untested. To make informed measurements with the LCLS beam, a set of novel diagnostic techniques will be required. This report outlines major contributions made to the early experimental atomic physics and diagnostic efforts at LCLS. Building on a rich history of techniques used for ultra short optical lasers and atomic physics experimentation, a diagnostic instrument and experimental techniques are developed to make spectral, energy and temporal measurements of the LCLS pulses possible. Expanding on earlier studies of ionization performed on optical lasers and synchrotron sources, new ionization mechanisms such as multiphoton ionization in the x-ray regime are observed. Leveraging the unique combination of hard x-ray photon energy, extremely short pulse duration and high pulse energy, a technique for the time resolved study of ultrafast inner shell electronic relaxation processes is developed and studied for feasibility. The common theme to the efforts described here is the advancement of proven techniques and interesting atomic physics phenomena to the next generation of ultra short pulsed x-ray laser systems. The atomic physics explored here lay the groundwork for the next level of understanding the new experiments to be performed on molecular, biological and condensed phase systems using XFEL light pulses. The application of basic atomic physics established over the past 40 years with optical laser systems to diagnostic techniques suitable for the new properties of XFELs will lend crucial insight into the orchestration of future XFEL experiments.

  19. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    SciTech Connect

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  20. TOPICAL REVIEW Quantitative strain analysis of surfaces and interfaces using extremely asymmetric x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Akimoto, Koichi; Emoto, Takashi

    2010-12-01

    Strain can reduce carrier mobility and the reliability of electronic devices and affect the growth mode of thin films and the stability of nanometer-scale crystals. To control lattice strain, a technique for measuring the minute lattice strain at surfaces and interfaces is needed. Recently, an extremely asymmetric x-ray diffraction method has been developed for this purpose. By employing Darwin's dynamical x-ray diffraction theory, quantitative evaluation of strain at surfaces and interfaces becomes possible. In this paper, we review our quantitative strain analysis studies on native SiO2/Si interfaces, reconstructed Si surfaces, Ni/Si(111)-H interfaces, sputtered III-V compound semiconductor surfaces, high-k/Si interfaces, and Au ion-implanted Si.

  1. Infrared Line Emission from Molecular Gas Heated by X-Rays and Energetic Electrons

    NASA Technical Reports Server (NTRS)

    Maloney, Philip R.

    1997-01-01

    "I propose to carry out a detailed study using infrared observations (and in some cases, optical and ultraviolet observations) of dense interstellar gas exposed to intense fluxes of X-rays and/or energetic electrons. This is undoubtedly the dominant source of line emission for clouds exposed to X-rays from active galactic nuclei, supernova shocks, or embedded X-ray sources (e.g., X-ray binaries), or to high-temperature or relativistic electrons in galaxy clusters, near powerful radio sources, or supernova remnants. Detailed physical and chemical models of such clouds will be used to analyze infrared observations of the Great Annihilator X-ray source in the Galactic Center, cD galaxies in massive cooling flows, and the nuclei of Seyfert galaxies which will be obtained with the Infrared Space Observatory (ISO), UV and optical observations of the Crab Nebula obtained with the Hubble Space Telescope, and ground-based near-infrared observations of Seyfert nuclei. Results from this work will also be of great relevance to observations obtained with the Submillimeter Wave Astronomical Satellite (SWAS). In the first year of funding of this proposal, my chief collaborators (D.J. Hollenbach and A.G.G.M. Tielens, both of NASA Ames Research Center) and I concentrated on completing our models of the physical conditions in, and the resulting line emission from, dense gas irradiated by X-rays. As noted in the original proposal, some important physical processes were not yet thoroughly incorporated into our models at the time of submission. We completed our modeling of the physical conditions and line emission for essentially the entire range of parameter space (five orders of magnitude in X-ray flux to gas density ratio) occupied by typical dense interstellar clouds in which the gas is mostly neutral and X-rays are important for the ionization, chemistry, and thermal balance.

  2. Direct observation of unstained wet biological samples by scanning-electron generation X-ray microscopy

    SciTech Connect

    Ogura, Toshihiko

    2010-01-01

    Analytical tools of nanometre-scale resolution are indispensable in the fields of biology, physics and chemistry. One suitable tool, the soft X-ray microscope, provides high spatial resolution of visible light for wet specimens. For biological specimens, X-rays of water-window wavelength between carbon (284 eV; 4.3 nm) and oxygen (540 eV; 2.3 nm) absorption edges provide high-contrast imaging of biological samples in water. Among types of X-ray microscope, the transmission X-ray microscope using a synchrotron radiation source with diffractive zone plates offers the highest spatial resolution, approaching 15-10 nm. However, even higher resolution is required to measure proteins and protein complexes in biological specimens; therefore, a new type of X-ray microscope with higher resolution that uses a simple light source is desirable. Here we report a novel scanning-electron generation X-ray microscope (SGXM) that demonstrates direct imaging of unstained wet biological specimens. We deposited wet yeasts in the space between two silicon nitride (Si{sub 3}N{sub 4}) films. A scanning electron beam of accelerating voltage 5 keV and current 1.6 nA irradiates the titanium (Ti)-coated Si{sub 3}N{sub 4} film, and the soft X-ray signal from it is detected by an X-ray photodiode (PD) placed below the sample. The SGXM can theoretically achieve better than 5 nm resolution. Our method can be utilized easily for various wet biological samples of bacteria, viruses, and protein complexes.

  3. Runaway electron energy measurement using hard x-ray spectroscopy in "Damavand" tokamak.

    PubMed

    Rasouli, C; Iraji, D; Farahbod, A H; Akhtari, K; Rasouli, H; Modarresi, H; Lamehi, M

    2009-01-01

    Set of experiments has been developed to study existing runaway electrons in "Damavand" tokamak plasma upon characteristics of hard x-ray emissions produced by collision of the runaway electrons with the plasma particles and limiters. As a first step, spatial distribution of hard x-ray emissions on the equatorial plane of the torus was considered. Obtained spectra of hard x-ray emissions for different alignments of shielded detector indicate isotropic emissivity in the equatorial plane. This is in agreement with wide angle cone of bremsstrahlung radiations, deduced from the mean value of energy of the runaway electrons. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons. In the second stage in order to investigate time evolution of energy of the runaway electrons, similar technique were applied to obtain hard x-ray energy in every 3 ms intervals, from the beginning to the end of plasma. The mean energy of the runaway electrons increases during the ramp up phase and reaches its maximum between 3 and 9 ms after plasma formation. Also considering the time dependence of the counted photons in each energy range shows that energetic photons are emitted during the ramp up phase of the plasma current in Damavand tokamak. PMID:19191433

  4. Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector

    SciTech Connect

    Ding, Y.; Behrens, C.; Emma, P.; Frisch, J.; Huang, Z.; Loos, H.; Krejcik, P.; Wang, M-H.; /SLAC

    2011-12-13

    We propose a novel method to characterize the temporal duration and shape of femtosecond x-ray pulses in a free-electron laser (FEL) by measuring the time-resolved electron-beam energy loss and energy spread induced by the FEL process, with a transverse radio-frequency deflector located after the undulator. Its merits are simplicity, high resolution, wide diagnostic range, and non-invasive to user operation. When the system is applied to the Linac Coherent Light Source, the first hard x-ray free-electron laser in the world, it can provide single-shot measurements on the electron beam and x-ray pulses with a resolution on the order of 1-2 femtoseconds rms.

  5. High-gain X-ray free electron laser by beat-wave terahertz undulator

    NASA Astrophysics Data System (ADS)

    Chang, Chao; Hei, DongWei; Pellegrin, Claudio; Tantawi, Sami

    2013-12-01

    The THz undulator has a higher gain to realize a much brighter X-ray at saturation, compared with the optical undulator under the same undulator strength and beam quality. In order to fill the high-power THz gap and realize the THz undulator, two superimposed laser pulses at normal incidence to the electron-beam moving direction form an equivalent high-field THz undulator by the frequency difference to realize the high-gain X-ray Free electron laser. The pulse front tilt of lateral fed lasers is used to realize the electron-laser synchronic interaction. By PIC simulation, a higher gain and a larger X-ray radiation power by the beat wave THz undulator could be realized, compared with the optical undulator for the same electron beam parameters.

  6. High-gain X-ray free electron laser by beat-wave terahertz undulator

    SciTech Connect

    Chang, Chao; Hei, DongWei; Institute of Energy, Tsinghua University, Beijing 100084 ; Pellegrin, Claudio; Tantawi, Sami

    2013-12-15

    The THz undulator has a higher gain to realize a much brighter X-ray at saturation, compared with the optical undulator under the same undulator strength and beam quality. In order to fill the high-power THz gap and realize the THz undulator, two superimposed laser pulses at normal incidence to the electron-beam moving direction form an equivalent high-field THz undulator by the frequency difference to realize the high-gain X-ray Free electron laser. The pulse front tilt of lateral fed lasers is used to realize the electron-laser synchronic interaction. By PIC simulation, a higher gain and a larger X-ray radiation power by the beat wave THz undulator could be realized, compared with the optical undulator for the same electron beam parameters.

  7. Electronic ground states of Fe2 (+) and Co2 (+) as determined by x-ray absorption and x-ray magnetic circular dichroism spectroscopy.

    PubMed

    Zamudio-Bayer, V; Hirsch, K; Langenberg, A; ?awicki, A; Terasaki, A; V Issendorff, B; Lau, J T

    2015-12-28

    The (6)? electronic ground state of the Co2 (+) diatomic molecular cation has been assigned experimentally by x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap. Three candidates, (6)?, (8)?, and (8)?, for the electronic ground state of Fe2 (+) have been identified. These states carry sizable orbital angular momenta that disagree with theoretical predictions from multireference configuration interaction and density functional theory. Our results show that the ground states of neutral and cationic diatomic molecules of 3d transition elements cannot generally be assumed to be connected by a one-electron process. PMID:26723682

  8. Nanop: An x-ray to gold nanoparticle electron and photon emission software

    NASA Astrophysics Data System (ADS)

    Casta, R.; Champeaux, J.-P.; Sence, M.; Moretto-Capelle, P.; Cafarelli, P.

    2015-08-01

    Nanoparticles have been explored as radiosensitizers for cancer radiotherapy. While the nanoparticle radiotherapy improvement has been clearly observed, there is still a debate over the physical and biological mechanisms leading to this result. In particular, the role of electrons and photons emitted by nanoparticle after x-ray absorption is not well understood and their energies are not well known. Therefore, we developed in this paper a new model to determine the electron and photon emission spectra of nanoparticles irradiated by x-ray photons. This model is implemented, for a gold nanoparticle, in a newly available software called Nanop which allows anyone to determine gold nanoparticle photon and electron emissions.

  9. Processing of X-ray Microcalorimeter Data with Pulse Shape Variation using Principal Component Analysis

    E-print Network

    Yan, Daikang; Gades, Lisa; Jacobsen, Chris; Madden, Timothy; Miceli, Antonino

    2016-01-01

    We present a method using principal component analysis (PCA) to process x-ray pulses with severe shape variation where traditional optimal filter methods fail. We demonstrate that PCA is able to noise-filter and extract energy information from x-ray pulses despite their different shapes. We apply this method to a dataset from an x-ray thermal kinetic inductance detector which has severe pulse shape variation arising from position-dependent absorption.

  10. Biomedical and agricultural applications of energy dispersive X-ray spectroscopy in electron microscopy.

    PubMed

    Wyroba, El?bieta; Suski, Szymon; Miller, Karolina; Bartosiewicz, Rafa?

    2015-09-01

    Energy dispersive X-ray spectroscopy (EDS) in electron microscopy has been widely used in many research areas since it provides precise information on the chemical composition of subcellular structures that may be correlated with their high resolution images. In EDS the characteristic X-rays typical of each element are analyzed and the new detectors - an example of which we describe - allow for setting precisely the area of measurements and acquiring signals as a point analysis, as a linescan or in the image format of the desired area. Mapping of the elements requires stringent methods of sample preparation to prevent redistribution/loss of the elements as well as elimination of the risk of overlapping spectra. Both qualitative and quantitative analyses may be performed at a low probe current suitable for thin biological samples. Descriptions of preparation techniques, drawbacks and precautions necessary to obtain reliable results are provided, including data on standards, effects of specimen roughness and quantification. Data on EPMA application in different fields of biomedical and agricultural studies are reviewed. In this review we refer to recent EDS/EPMA applications in medical diagnostics, studies on air pollution and agrochemicals as well as on plant models used to monitor the environment. PMID:26208393

  11. Electron density characterization by use of a broadband x-ray-compatible wave-front sensor.

    PubMed

    Baker, K L; Brase, J; Kartz, M; Olivier, S S; Sawvel, B; Tucker, J

    2003-02-01

    The use of a Hartmann wave-front sensor to accurately measure the line-integrated electron density gradients formed in laser-produced and z-pinch plasma experiments is examined. This wave-front sensor may be used with a soft-x-ray laser as well as with incoherent line emission at multikilovolt x-ray energies. This diagnostic is significantly easier to use than interferometery and moiré deflectometry, both of which have been demonstrated with soft-x-ray lasers. This scheme is experimentally demonstrated in the visible region by use of a Shack-Hartmann wave-front sensor and a liquid-crystal spatial light modulator to simulate a phase profile that could occur when an x-ray probe passes through a plasma. The merits of using a Hartmann sensor include a wide dynamic range, broadband or low-coherence-length light capability, high x-ray efficiency, two-dimensional gradient determination, multiplexing capability, and experimental simplicity. Hartmann sensors could also be utilized for wavelength testing of extreme-ultraviolet lithography components and x-ray phase imaging of biological specimens. PMID:12656314

  12. Digital x-ray analysis for monitoring fracture healing 

    E-print Network

    Dawson, Sarah P.

    2009-01-01

    X-ray based evaluation of different stages of fracture healing is a well established clinical standard. However, several studies have shown plain radiography alone to be an unreliable method to assess healing. The advent ...

  13. X-ray Near Field Speckle: Implementation and Critical Analysis

    E-print Network

    Xinhui Lu; Simon GJ Mochrie; S. Narayanan; A. R. Sandy; M. Sprung

    2011-02-15

    We have implemented the newly-introduced, coherence-based technique of x-ray near-field speckle (XNFS) at 8-ID-I at the Advanced Photon Source. In the near field regime of high-brilliance synchrotron x-rays scattered from a sample of interest, it turns out, that, when the scattered radiation and the main beam both impinge upon an x-ray area detector, the measured intensity shows low-contrast speckles, resulting from interference between the incident and scattered beams. We built a micrometer-resolution XNFS detector with a high numerical aperture microscope objective and demonstrate its capability for studying static structures and dynamics at longer length scales than traditional far field x-ray scattering techniques. Specifically, we characterized the structure and dynamics of dilute silica and polystyrene colloidal samples. Our study reveals certain limitations of the XNFS technique, which we discuss.

  14. High-Performance X-ray Detection in a New Analytical Electron Microscope

    NASA Technical Reports Server (NTRS)

    Lyman, C. E.; Goldstein, J. I.; Williams, D. B.; Ackland, D. W.; vonHarrach, S.; Nicholls, A. W.; Statham, P. J.

    1994-01-01

    X-ray detection by energy-dispersive spectrometry in the analytical electron microscope (AEM) is often limited by low collected X-ray intensity (P), modest peak-to-background (P/B) ratios, and limitations on total counting time (tau) due to specimen drift and contamination. A new AFM has been designed with maximization of P. P/B, and tau as the primary considerations. Maximization of P has been accomplished by employing a field-emission electron gun, X-ray detectors with high collection angles, high-speed beam blanking to allow only one photon into the detector at a time, and simultaneous collection from two detectors. P/B has been maximized by reducing extraneous background signals generated at the specimen holder, the polepieces and the detector collimator. The maximum practical tau has been increased by reducing specimen contamination and employing electronic drift correction. Performance improvments have been measured using the NIST standard Cr thin film. The 0-3 steradian solid angle of X-ray collection is the highest value available. The beam blanking scheme for X-ray detection provides 3-4 times greater throughput of X-rays at high count rates into a recorded spectrum than normal systems employing pulse-pileup rejection circuits. Simultaneous X-ray collection from two detectors allows the highest X-ray intensity yet recorded to be collected from the NIST Cr thin film. The measured P/B of 6300 is the highest level recorded for an AEM. In addition to collected X-ray intensity (cps/nA) and P/B measured on the standard Cr film, the product of these can be used as a figure-of-merit to evaluate instruments. Estimated minimum mass fraction (MMF) for Cr measured on the standard NIST Cr thin film is also proposed as a figure-of-merit for comparing X-ray detection in AEMs. Determinations here of the MMF of Cr detectable show at least a threefold improvement over previous instruments.

  15. Detecting electronic coherence by multidimensional broadband stimulated x-ray Raman signals

    NASA Astrophysics Data System (ADS)

    Dorfman, Konstantin E.; Bennett, Kochise; Mukamel, Shaul

    2015-08-01

    Nonstationary molecular states which contain electronic coherences can be impulsively created and manipulated by using recently developed ultrashort optical and x-ray pulses via photoexcitation, photoionization, and Auger processes. We propose several stimulated-Raman detection schemes that can monitor the subsequent phase-sensitive electronic and nuclear dynamics. Three detection protocols of an x-ray broadband probe are compared: frequency-dispersed transmission, integrated photon number change, and total pulse energy change. In addition, each can be either linear or quadratic in the x-ray probe intensity. These various signals offer different gating windows into the molecular response, which is described by correlation functions of electronic polarizabilities. Off-resonant and resonant signals are compared.

  16. Time-resolved protein nanocrystallography using an X-ray free-electron laser

    PubMed Central

    Aquila, Andrew; Hunter, Mark S.; Doak, R. Bruce; Kirian, Richard A.; Fromme, Petra; White, Thomas A.; Andreasson, Jakob; Arnlund, David; Bajt, Saša; Barends, Thomas R. M.; Barthelmess, Miriam; Bogan, Michael J.; Bostedt, Christoph; Bottin, Hervé; Bozek, John D.; Caleman, Carl; Coppola, Nicola; Davidsson, Jan; DePonte, Daniel P.; Elser, Veit; Epp, Sascha W.; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Frank, Matthias; Fromme, Raimund; Graafsma, Heinz; Grotjohann, Ingo; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y.; Hartmann, Andreas; Hartmann, Robert; Hau-Riege, Stefan; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M.; Hömke, André; Johansson, Linda; Kimmel, Nils; Kassemeyer, Stephan; Krasniqi, Faton; Kühnel, Kai-Uwe; Liang, Mengning; Lomb, Lukas; Malmerberg, Erik; Marchesini, Stefano; Martin, Andrew V.; Maia, Filipe R.N.C.; Messerschmidt, Marc; Nass, Karol; Reich, Christian; Neutze, Richard; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schmidt, Carlo; Schmidt, Kevin E.; Schulz, Joachim; Seibert, M. Marvin; Shoeman, Robert L.; Sierra, Raymond; Soltau, Heike; Starodub, Dmitri; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wang, Xiaoyu; Williams, Garth J.; Weidenspointner, Georg; Weierstall, Uwe; Wunderer, Cornelia; Barty, Anton; Spence, John C. H.; Chapman, Henry N.

    2012-01-01

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. PMID:22330507

  17. TOPICAL REVIEW: Human soft tissue analysis using x-ray or gamma-ray techniques

    NASA Astrophysics Data System (ADS)

    Theodorakou, C.; Farquharson, M. J.

    2008-06-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus.

  18. X-RAY DIFFRACTION PHASE ANALYSIS OF PROCESS AND POLLUTION CONTROL DEVICE SAMPLES

    EPA Science Inventory

    The paper describes the application of x-ray diffraction (XRD) analysis to several samples which show the information available from the technique. X-ray fluorescence (XRF) spectrometry was used for the elemental analysis because it provides very complete information with minimal...

  19. Three-dimensional Radio and X-Ray Modeling and Data Analysis Software: Revealing Flare Complexity

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Fleishman, Gregory D.; Kuznetsov, Alexey A.; Kontar, Eduard P.; Gary, Dale E.

    2015-02-01

    Many problems in solar physics require analysis of imaging data obtained in multiple wavelength domains with differing spatial resolution in a framework supplied by advanced three-dimensional (3D) physical models. To facilitate this goal, we have undertaken a major enhancement of our IDL-based simulation tools developed earlier for modeling microwave and X-ray emission. The enhanced software architecture allows the user to (1) import photospheric magnetic field maps and perform magnetic field extrapolations to generate 3D magnetic field models; (2) investigate the magnetic topology by interactively creating field lines and associated flux tubes; (3) populate the flux tubes with user-defined nonuniform thermal plasma and anisotropic, nonuniform, nonthermal electron distributions; (4) investigate the spatial and spectral properties of radio and X-ray emission calculated from the model; and (5) compare the model-derived images and spectra with observational data. The package integrates shared-object libraries containing fast gyrosynchrotron emission codes, IDL-based soft and hard X-ray codes, and potential and linear force-free field extrapolation routines. The package accepts user-defined radiation and magnetic field extrapolation plug-ins. We use this tool to analyze a relatively simple single-loop flare and use the model to constrain the magnetic 3D structure and spatial distribution of the fast electrons inside this loop. We iteratively compute multi-frequency microwave and multi-energy X-ray images from realistic magnetic flux tubes obtained from pre-flare extrapolations, and compare them with imaging data obtained by SDO, NoRH, and RHESSI. We use this event to illustrate the tool's use for the general interpretation of solar flares to address disparate problems in solar physics.

  20. Study of runaway electrons with Hard X-ray spectrometry of tokamak plasmas

    SciTech Connect

    Shevelev, A.; Chugunov, I.; Khilkevitch, E.; Gin, D.; Doinikov, D.; Naidenov, V.; Kiptily, V.; Collaboration: EFDA-JET Contributors

    2014-08-21

    Hard-X-ray spectrometry is a tool widely used for diagnostic of runaway electrons in existing tokamaks. In future machines, ITER and DEMO, HXR spectrometry will be useful providing information on runaway electron energy, runaway beam current and its profile during disruption.

  1. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    SciTech Connect

    Marrs, R.E.; Bennett, C.; Chen, M.H.; Cowan, T.; Dietrich, D.; Henderson, J.R.; Knapp, D.A.; Levine, M.A.; Schneider, M.B.; Scofield, J.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab.

  2. PARTICLE ACCELERATION BY THE SUN: ELECTRONS, HARD X-RAYS/GAMMA-RAYS

    E-print Network

    California at Berkeley, University of

    PARTICLE ACCELERATION BY THE SUN: ELECTRONS, HARD X-RAYS/GAMMA-RAYS R. P. LIN Physics Department of the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun strongly energetic electrons and ions near 1 AU are reviewed, and the implications for the particle acceleration

  3. Thin-film thickness measurement using x-ray peak ratioing in the scanning electron microscope

    SciTech Connect

    Elliott, N.E.; Anderson, W.E.; Archuleta, T.A.; Stupin, D.M.

    1981-01-01

    The procedure used to measure laser target film thickness using a scanning electron microscope is summarized. This method is generally applicable to any coating on any substrate as long as the electron energy is sufficient to penetrate the coating and the substrate produces an x-ray signal which can pass back through the coating and be detected. (MOW)

  4. Surface investigation on prototype cavities for the European X-ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Singer, W.; Singer, X.; Aderhold, S.; Ermakov, A.; Twarowski, K.; Crooks, R.; Hoss, M.; Schölz, F.; Spaniol, B.

    2011-05-01

    The accelerating gradient Eacc of X-ray Free Electron Laser (XFEL) prototype cavities manufactured at the industry and treated at DESY demonstrates wide-range scattering from 15 to 41MV/m. Most cavities satisfy the XFEL specification. Few cavities with low performance (15-17MV/m) are limited by quench without field emission. The T-map analysis detected quench areas mainly close to the equator. Optical control by a high resolution camera has been applied and allowed to monitor the defects in some cases with good correlation to T-map observation. In order to understand the cause of reduced performance and get more detailed information of the origin of defects, some samples have been extracted from two cavities and investigated by light microscope, digital light microscope with 3D profile measurement, scanning electron microscope SEM, energy dispersive x-ray analysis, and Auger spectroscopy. The electron backscattered diffraction method in a SEM is used to make localized measurements of the lattice curvature. Several surface flaws with sizes from a few ?m to hundreds of ?m detected by microscopy. The defects can be separated into two categories. The first category of defects consists of foreign elements (often an increased content of carbon). Inclusions with increased content of carbon adhere on the surface and presumably have a hydrocarbon nature. Deviation from a smooth surface profile characterizes the second type of defects (holes, bumps, and pits). Some holes and bumps were found directly in the welding seam. The hot spots in the heat-affected zone (HAZ) of the equator welds have been partially associated with pits too. The study correlates the location of pits with the presence of plastic strain found to remain after welding. Pits near the HAZ were found either coincident with or near areas of high strain. Pits away from the weld were often found at grain boundary triple junctions.

  5. Micro-column Scanning Electron Microscope and X-ray Spectrometer (MSEMS) for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Ribaya, B.; Niemann, D.; Makarewicz, J.; Clevenson, H.; McKenzie, C.; Nguyen, C.; Blake, D. F.

    2009-12-01

    Scanning Electron Microscopy combined with electron-induced X-ray Fluorescence Spectroscopy (SEM-EDX) is one of the most powerful techniques for characterizing sub-µm surface morphology and composition. In terrestrial laboratories, SEM-EDX is used to elucidate natural processes such as low-temperature diagenesis, thermal or pressure induced metamorphism, volcanism/magmatism, atmosphere/crust interaction and biological activity. Such information would be highly useful for investigating the natural history of the terrestrial planets, satellites and primitive bodies, providing morphological and elemental information that is 2 orders of magnitude higher in resolution than optical techniques. Below we describe the development of a Micro-column Scanning Electron Microscope and X-ray Spectrometer (MSEMS) for flight. The enabling technology of the MSEMS is a carbon nanotube field emission (CNTFE) electron source that is integrated with micro-electro-mechanical-systems (MEMS) - based electron gun and electron optical structures. A hallmark of CNTFE electron sources is their low chromatic aberration, which reduces the need for high accelerating voltages to obtain small spot size. The CNTFE also offers exceptional brightness and nanometer source size, eliminating the need for condenser lenses, making simple electrostatic focusing optics possible. Moreover, the CNT field emission gun (CFEG) at low operating voltage dissipates 103 less power than thermally-assisted Schottky emitters. A key feature of the MSEMS design is the lack of scanning coils. Rather, a piezoelectric sample stage capable of sub-nanometer resolution scans the sample past the fixed crossover of the MSEMS electron beam. We will describe a MEMS-based templating technique for fabricating mechanically and electrically stable miniature CFEGs. Using existing silicon (Si) technology, we fabricated highly controlled and precise MEMS structures for both the CNT cathode and focusing optics for the micro-column. The reproducibility of anisotropic wet etching enables precise alignment of the CNT tip with the electron extracting first anode in a gun configuration by using an interlocking templating technique. The CFEG can be fully integrated with a MEMS-based microcolumn. Extensive electron trajectory analysis using Lorentz 2D/3D software demonstrates that 10-nm imaging resolution at 5 keV is achievable with a 10-mm working distance from a column measuring just 16 mm in length. We will present the design of the microcolumn as well as the MEMS fabrication process. We have also tested a piezoelectric scanning stage inside a laboratory SEM with a fixed electron beam. Additional, we implemented our own LabVIEW software interface for controlling the stage and for enabling communication with the secondary electron detector for image formation. SEM micrographs obtained employing this novel technique will be presented.

  6. Analysis of particles produced during airbag deployment by scanning electron microscopy with energy dispersive x-ray spectroscopy and their deposition on surrounding surfaces: a mid-research summary

    NASA Astrophysics Data System (ADS)

    Wyatt, J. Matney

    2011-06-01

    Airbags can be encountered in forensic work when investigating a car crash and are typically constructed with primerlike material to begin the deployment apparatus. The mechanisms of airbag deployment can produce particles ideal for scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS) analysis. A recent study published by Berk studied airbags with vents and showed that it is possible for particles generated from the deployment of these airbags to deposit on surfaces in the vehicle as the airbags deflate.1 Another paper published by Berk reported particles similar in morphology and composition to primer gunshot residue (GSR) are produced by side impact airbags.2 This paper's aim will be to show mid-point results of a study still in progress in which non-vented airbags were analyzed to determine if they exhibited the same particle depositing features as their vented airbag counterparts. Further investigation in this study is being performed to find more airbags which produce primer gunshot residue-like particles containing lead, barium, and antimony from airbag deployment. To date, the study has resulted in (1) non-vented airbags exhibiting deposition of particles suitable for SEM/EDS analysis and (2) no gunshot residue-like particles being detected from the airbag residues studied thus far.

  7. Electron beam-based sources of ultrashort x-ray pulses.

    SciTech Connect

    Zholents, A.; Accelerator Systems Division

    2010-09-30

    A review of various methods for generation of ultrashort x-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons is considered. The importance of the time-resolved studies of matter at picosecond (ps), femtosecond (fs), and atttosecond (as) time scales using x-rays has been widely recognized including by award of a Nobel Prize in 1999 [Zewa]. Extensive reviews of scientific drivers can be found in [BES1, BES2, BES3, Lawr, Whit]. Several laser-based techniques have been used to generate ultrashort x-ray pulses including laser-driven plasmas [Murn, Alte, Risc, Rose, Zamp], high-order harmonic generation [Schn, Rund, Wang, Arpi], and laser-driven anode sources [Ande]. In addition, ultrafast streak-camera detectors have been applied at synchrotron sources to achieve temporal resolution on the picosecond time scale [Wulf, Lind1]. In this paper, we focus on a different group of techniques that are based on the use of the relativistic electron beam produced in conventional accelerators. In the first part we review several techniques that utilize spontaneous emission of electrons and show how solitary sub-ps x-ray pulses can be obtained at existing storage ring based synchrotron light sources and linacs. In the second part we consider coherent emission of electrons in the free-electron lasers (FELs) and review several techniques for a generation of solitary sub-fs x-ray pulses. Remarkably, the x-ray pulses that can be obtained with the FELs are not only significantly shorter than the ones considered in Part 1, but also carry more photons per pulse by many orders of magnitude.

  8. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    SciTech Connect

    Rasouli, C.; Pourshahab, B.; Rasouli, H.; Hosseini Pooya, S. M.; Orouji, T.

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  9. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    NASA Astrophysics Data System (ADS)

    Rasouli, C.; Pourshahab, B.; Hosseini Pooya, S. M.; Orouji, T.; Rasouli, H.

    2014-05-01

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points - three TLDs per point - to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  10. Pair production from vacuum at the focus of an X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Ringwald, A.

    2001-06-01

    There are definite plans for the construction of X-ray free electron lasers (FEL), both at DESY, where the so-called XFEL is part of the design of the electron-positron linear collider TESLA, as well as at SLAC, where the so-called Linac Coherent Light Source (LCLS) has been proposed. Such an X-ray laser would allow for high-field science applications: one could make use of not only the high energy and transverse coherence of the X-ray beam, but also of the possibility of focusing it to a spot with a small radius, hopefully in the range of the laser wavelength. Along this route one obtains very large electric fields, much larger than those obtainable with any optical laser of the same power. In this Letter we discuss the possibility of obtaining an electric field so high that electron-positron pairs are spontaneously produced in vacuum (Schwinger pair production). We find that if X-ray optics can be improved to approach the diffraction limit of focusing, and if the power of the planned X-ray FELs can be increased to the terawatt region, then there is ample room for an investigation of the Schwinger pair production mechanism.

  11. Design and analysis of a Schwarzschild imaging multilayer X-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Hoover, Richard B.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1990-01-01

    Several Schwarzschild X-ray microscope optics were designed. Diffraction analysis indicates that better than 600 A spatial resolution in the object plane up to a 0.7 mm field of view can be achieved with 100 A radiation. Currently, a 20 x normal incidence multilayer X-ray microscope of 1.35 m overall length is being fabricated. Other microscope systems for use in conjunction with X-ray telescopes were also analyzed and designed. This paper reports on the results of these studies and the X-ray microscope fabrication effort.

  12. Automated Chemical Analysis of Internally Mixed Aerosol Particles Using X-ray Spectromicroscopy at the Carbon K-Edge

    SciTech Connect

    Gilles, Mary K; Moffet, R.C.; Henn, T.; Laskin, A.

    2011-01-20

    We have developed an automated data analysis method for atmospheric particles using scanning transmission X-ray microscopy coupled with near edge X-ray fine structure spectroscopy (STXM/NEXAFS). This method is applied to complex internally mixed submicrometer particles containing organic and inorganic material. Several algorithms were developed to exploit NEXAFS spectral features in the energy range from 278 to 320 eV for quantitative mapping of the spatial distribution of elemental carbon, organic carbon, potassium, and noncarbonaceous elements in particles of mixed composition. This energy range encompasses the carbon K-edge and potassium L2 and L3 edges. STXM/NEXAFS maps of different chemical components were complemented with a subsequent analysis using elemental maps obtained by scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX). We demonstrate the application of the automated mapping algorithms for data analysis and the statistical classification of particles.

  13. X rays from radiative electron capture into continuum states in relativistic heavy-ion collisions

    SciTech Connect

    Tawara, H.; Azuma, T.; Ito, T.; Komaki, K.; Yamazaki, Y.; Matsuo, T.; Tonuma, T.; Shima, K.; Kitagawa, A.; Takada, E.

    1997-01-01

    Continuum x rays originated from radiative electron capture into continuum states (RECC) of relativistic Ne{sup 10+} ions have been observed. It has been found that the intensities of x rays decrease as their energy increases and the observed spectra show a clear edge which corresponds to the maximum energy transferred to free electrons under energetic projectile-ion collisions. The edge becomes dramatically sharp as the incident projectile energy decreases from 290 to 75 MeV/amu, indicating that the cross sections for RECC sharply increase at low projectile energies, which is in agreement with the theoretical expectation. {copyright} {ital 1997} {ital The American Physical Society}

  14. X-ray analysis of filaments in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Walker, S. A.; Kosec, P.; Fabian, A. C.; Sanders, J. S.

    2015-11-01

    We perform a detailed X-ray study of the filaments surrounding the brightest cluster galaxies in a sample of nearby galaxy clusters using deep Chandra observations, namely the Perseus, Centaurus and Virgo clusters, and Abell 1795. We compare the X-ray properties and spectra of the filaments in all of these systems, and find that their Chandra X-ray spectra are all broadly consistent with an absorbed two-temperature thermal model, with temperature components at 0.75 and 1.7 keV. We find that it is also possible to model the Chandra ACIS filament spectra with a charge exchange model provided a thermal component is also present, and the abundance of oxygen is suppressed relative to the abundance of Fe. In this model, charge exchange provides the dominant contribution to the spectrum in the 0.5-1.0 keV band. However, when we study the high spectral resolution RGS spectrum of the filamentary plume seen in X-rays in Centaurus, the opposite appears to be the case. The properties of the filaments in our sample of clusters are also compared to the X-ray tails of galaxies in the Coma cluster and Abell 3627. In the Perseus cluster, we search for signs of absorption by a prominent region of molecular gas in the filamentary structure around NGC 1275. We do find a decrement in the X-ray spectrum below 2 keV, indicative of absorption. However, the spectral shape is inconsistent with this decrement being caused by simply adding an additional absorbing component. We find that the spectrum can be well fit (with physically sensible parameters) with a model that includes both absorption by molecular gas and X-ray emission from the filament, which partially counteracts the absorption.

  15. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser

    PubMed Central

    Lehmkühler, Felix; Kwa?niewski, Pawe?; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-01-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources. PMID:26610328

  16. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser.

    PubMed

    Lehmkühler, Felix; Kwa?niewski, Pawe?; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-01-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources. PMID:26610328

  17. Morphological study of energetic electron precipitation events using the satellite bremsstrahlung X ray technique

    NASA Technical Reports Server (NTRS)

    Imhof, W. L.; Kilner, J. R.; Reagan, J. B.

    1985-01-01

    The precipitation of energetic electrons into the atmosphere is investigated with simultaneous measurements of bremsstrahlung X-rays, emitted from different local time sectors. The measurements were performed from the low-altitude, polar-orbiting satellite P78-1 with an array of X-ray spectrometers (21-139 keV). Magnetic local-time (MLT) profiles of the intensities and energy spectra were obtained for a broad span of L values. From approximately 0930 to 1400 MLT the average X-ray intensity was found to decrease with increasing magnetic local time, whereas from 2200 to 0200 MLT no clear trend with local time was observed. The data presented are noted to correspond closely with the relative electron precipitation (REP)-type events, though no evidence of a distinct group of REP was found.

  18. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    SciTech Connect

    Lehmkühler, Felix; Kwa?niewski, Pawe?; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.

  19. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    DOE PAGESBeta

    Lehmkühler, Felix; Kwa?niewski, Pawe?; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; et al

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore »based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less

  20. Dual x-ray fluorescence spectrometer and method for fluid analysis

    DOEpatents

    Wilson, Bary W.; Shepard, Chester L.

    2005-02-22

    Disclosed are an X-ray fluorescence (SRF) spectrometer and method for on-site and in-line determination of contaminant elements in lubricating oils and in fuel oils on board a marine vessel. An XRF source block 13 contains two radionuclide sources 16, 17 (e.g. Cd 109 and Fe 55), each oriented 180 degrees from the other to excite separate targets. The Cd 109 source 16 excites sample lube oil flowing through a low molecular weight sample line 18. The Fe 55 source 17 excites fuel oil manually presented to the source beam inside a low molecular weight vial 26 or other container. Two separate detectors A and B are arranged to detect the fluorescent x-rays from the targets, photons from the analyte atoms in the lube oil for example, and sulfur identifying x-rays from bunker fuel oil for example. The system allows both automated in-line and manual on-site analysis using one set of signal processing and multi-channel analyzer electronics 34, 37 as well as one computer 39 and user interface 43.

  1. X-ray analysis of fully depleted CCDs with small pixel size

    NASA Astrophysics Data System (ADS)

    Kotov, I. V.; Haupt, J.; Kubánek, P.; O'Connor, P.; Takacs, P.

    2014-07-01

    X-rays frames offer a lot of information about CCD. 55Fe sources are traditionally being used for CCD gain and charge transfer efficiency (CTE) measurements. The pixel size of modern scientific CCDs is getting smaller. The charge diffusion causes the charge spread among neighboring pixels especially in thick fully depleted sensors. This enables measurement of the charge diffusion using 55Fe X-rays. On the other hand, the usual CTE char- acterization method based on single pixel X-ray events becomes statistically deficient. A new way of measuring CTE using shape and amplitude analysis of X-ray clusters is presented and discussed. This method requires high statistical samples. Advances in test automation and express analysis technique allows for acquiring such statistical samples in a short period of time. The details of our measurement procedure are presented. The lateral diffusion measured using e2v CCD250 is presented and implications for X-ray cluster size and expected cluster shape are discussed. The CTE analysis using total X-ray cluster amplitude is presented. This analysis can reveal CTE problems for certain conditions. The statistical analysis of average X-ray cluster shape is presented. Characteristics X-rays can be used for the whole system absolute calibration. We demonstrate how spectral features of 55Fe and 241Am rad. sources are used for system linearity measurements.

  2. X-ray analysis of fully depleted CCDs with small pixel size

    NASA Astrophysics Data System (ADS)

    Kotov, I. V.; Haupt, J.; Kubanek, P.; O`Connor, P.; Takacs, P.

    2015-07-01

    X-ray frames offer a lot of information about CCD. 55 Fe sources are traditionally being used for CCD gain and charge transfer efficiency (CTE) measurements. In addition X-rays can be used for the system linearity test. We demonstrate how spectral lines of 55Fe and 241Am rad. sources are used for system linearity measurements. The pixel size of modern scientific CCDs is getting smaller. The charge diffusion causes the charge spread among neighboring pixels especially in thick fully depleted sensors. This enables measurement of the charge diffusion using 55Fe X-rays. On the other hand, the usual CTE characterization method based on single pixel X-ray events becomes statistically deficient. A new way of measuring CTE using shape and amplitude analysis of X-ray clusters is presented and discussed. This method requires high statistical samples. Advances in test automation and express analysis technique allow for acquiring such statistical samples in a short period of time. The lateral diffusion measured using e2v CCD250 is presented and implications for X-ray cluster size and expected cluster shape are discussed. The CTE analysis using total X-ray cluster amplitude is presented. This analysis can reveal CTE problems for certain conditions. The statistical analysis of average X-ray cluster shape is presented. The details of our measurement procedure are presented.

  3. Multicomponent Signal Unmixing from Nanoheterostructures: Overcoming the Traditional Challenges of Nanoscale X-ray Analysis via Machine Learning

    PubMed Central

    2015-01-01

    The chemical composition of core–shell nanoparticle clusters have been determined through principal component analysis (PCA) and independent component analysis (ICA) of an energy-dispersive X-ray (EDX) spectrum image (SI) acquired in a scanning transmission electron microscope (STEM). The method blindly decomposes the SI into three components, which are found to accurately represent the isolated and unmixed X-ray signals originating from the supporting carbon film, the shell, and the bimetallic core. The composition of the latter is verified by and is in excellent agreement with the separate quantification of bare bimetallic seed nanoparticles. PMID:25760234

  4. Multicomponent signal unmixing from nanoheterostructures: overcoming the traditional challenges of nanoscale X-ray analysis via machine learning.

    PubMed

    Rossouw, David; Burdet, Pierre; de la Peña, Francisco; Ducati, Caterina; Knappett, Benjamin R; Wheatley, Andrew E H; Midgley, Paul A

    2015-04-01

    The chemical composition of core-shell nanoparticle clusters have been determined through principal component analysis (PCA) and independent component analysis (ICA) of an energy-dispersive X-ray (EDX) spectrum image (SI) acquired in a scanning transmission electron microscope (STEM). The method blindly decomposes the SI into three components, which are found to accurately represent the isolated and unmixed X-ray signals originating from the supporting carbon film, the shell, and the bimetallic core. The composition of the latter is verified by and is in excellent agreement with the separate quantification of bare bimetallic seed nanoparticles. PMID:25760234

  5. Development of an X-ray tube for irradiation experiments using a field emission electron gun

    NASA Astrophysics Data System (ADS)

    Kato, Hidetoshi; O`Rourke, Brian E.; Suzuki, Ryoichi; Wang, Jiayu; Ooi, Takashi; Nakajima, Hidetoshi

    2016-01-01

    A new X-ray tube using a ring-shaped emitter as a field emission electron source has been developed. By using a ring shaped cathode, X-rays can be extracted along the axial direction through the central hole. This cylindrically symmetrical design allows for the tube to be arranged in the axial direction with the high voltage target at one end and the X-ray beam at the other. The newly developed X-ray tube can operate at a tube voltage of more than 100 kV and at a tube current of more than 4 mA, and can be used for irradiation experiments with an irradiation dose range from mGy up to kGy. The X-ray tube can be used immediately after turning on (i.e. there is no stand-by time). In the experimental model, we demonstrated stable electron emission at a tube voltage of 100 kV and at a tube current of 4 mA during a 560 h continuous test.

  6. THE X-RAY DETECTABILITY OF ELECTRON BEAMS ESCAPING FROM THE SUN

    SciTech Connect

    Saint-Hilaire, Pascal; Krucker, Saem; Christe, Steven; Lin, Robert P.

    2009-05-01

    We study the detectability and characterization of electron beams as they leave their acceleration site in the low corona toward interplanetary space through their nonthermal X-ray bremsstrahlung emission. We demonstrate that the largest interplanetary electron beams ({approx}>10{sup 35} electrons above 10 keV) can be detected in X-rays with current and future instrumentation, such as RHESSI or the X-Ray Telescope (XRT) onboard Hinode. We make a list of optimal observing conditions and beam characteristics. Amongst others, good imaging (as opposed to mere localization or detection in spatially integrated data) is required for proper characterization, putting the requirement on the number of escaping electrons (above 10 keV) to {approx}>3 x 10{sup 36} for RHESSI, {approx}>3 x 10{sup 35} for Hinode/XRT, and {approx}>10{sup 33} electrons for the FOXSI sounding rocket scheduled to fly in 2011. Moreover, we have found that simple modeling hints at the possibility that coronal soft X-ray jets could be the result of local heating by propagating electron beams.

  7. Electron Acceleration for X-ray Production Using Paired Pyroelectric Crystals Jeffrey Geuther, Yaron Danon, Frank Saglime, Bryndol Sones

    E-print Network

    Danon, Yaron

    Electron Acceleration for X-ray Production Using Paired Pyroelectric Crystals Jeffrey Geuther-positive face. Literature has shown that this charge is great enough to accelerate electrons to energies of up to 170 keV. This phenomenon can be used to create small X-ray, electron and charged particle sources. X

  8. AMPHIBOLE FIBER CONCENTRATION DETERMINATION FOR A SERIES OF COMMUNITY AIR SAMPLES: USE OF X-RAY DIFFRACTION TO SUPPLEMENT ELECTRON MICROSCOPE ANALYSIS

    EPA Science Inventory

    The accurate measurement of annual average mineral fiber concentrations at various air sampling sites provides the best index of non-occupational inhalation exposure to fibers in a community located near an industrial source of airborne amphibole fibers. The transmission electron...

  9. Purification, crystallization and preliminary X-ray analysis of struthiocalcin 1 from ostrich (Struthio camelus) eggshell

    SciTech Connect

    Reyes-Grajeda, Juan Pablo; Marín-García, Liliana; Stojanoff, Vivian; Moreno, Abel

    2007-11-01

    The purification, crystallization and preliminary X-ray diffraction data of the protein struthiocalcin 1 isolated from ostrich eggshell are reported. The purification, crystallization and preliminary X-ray analysis of struthiocalcin 1 (SCA-1), a protein obtained from the intramineral part of ostrich (Struthio camelus) eggshell, is reported.

  10. RADIOCHEMICAL ANALYSIS BY HIGH SENSITIVITY DUAL-OPTIC MICRO X-RAY FLUORESCENCE

    EPA Science Inventory

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and...

  11. INK: A computer program for accurate analysis of particle-induced X-ray emission spectra

    NASA Astrophysics Data System (ADS)

    Jabr, I. J.; Saleh, N. S.; Hallak, A. B.

    A computer program, INK, for the analysis of spectra obtained in proton induced X-ray emission (PIXE) is described. It fits Gaussian-shaped lines to the characteristic peaks. The continuum is fitted by an exponential function representing bremsstrahlung of the incident particles, secondary electron induced bremsstrahlung and different Compton scattering processes. The program is largely automatic. It is capable of providing fits for up to 20 elements in one to four minutes on a small microcomputer. It locates all peaks in a read-in spectrum and determines their energies, areas and elemental abundances. Applications to biological and geological samples are discussed.

  12. X-ray irradiation induced changes in electron transport in stabilized a-Se photoconductors

    NASA Astrophysics Data System (ADS)

    Walornyj, M.; Kasap, S. O.

    2013-12-01

    We have examined the effect of high-dose x-ray irradiation on electron transport in stabilized amorphous selenium (a-Se) x-ray photoconductive films (of the type used in x-ray image detectors) by measuring the electron lifetime ?e through interrupted-field time-of-flight experiments. X-ray induced effects have been examined through two types of experiments. In recovery experiments, the a-Se was preirradiated with and without an applied field (5 V/?m) during irradiation with sufficient dose (typically ˜20 Gy at 21 °C) to significantly reduce the electron lifetime by ˜50%, and then the recovery of the lifetime was monitored as a function of time at three different temperatures, 10 °C, 21 °C, and 35 °C. The lifetime recovery kinetics was exponential with a relaxation time ?r that is thermally activated with an activation energy of 1.66 eV. ?r is a few hours at 21 °C and only a few minutes at 35 °C. In experiments examining the irradiation induced effects, the a-Se film was repeatedly exposed to x-ray radiation and the changes in the drift mobility and lifetime were monitored as a function of accumulated dose D. There was no observable change in the drift mobility. At 21 °C, the concentration of x-ray induced deep traps (or capture centers), Nd, increases linearly with D (Nd ˜ D) whereas at 35 °C, the recovery process prevents a linear increase in Nd with D, and Nd saturates. In all cases, even under high dose irradiation (˜50 Gy), the lifetime was recoverable to its original equilibrium (pre-exposure) value within a few relaxation times.

  13. X-ray irradiation induced changes in electron transport in stabilized a-Se photoconductors

    SciTech Connect

    Walornyj, M.; Kasap, S. O.

    2013-12-07

    We have examined the effect of high-dose x-ray irradiation on electron transport in stabilized amorphous selenium (a-Se) x-ray photoconductive films (of the type used in x-ray image detectors) by measuring the electron lifetime ?{sub e} through interrupted-field time-of-flight experiments. X-ray induced effects have been examined through two types of experiments. In recovery experiments, the a-Se was preirradiated with and without an applied field (5 V/?m) during irradiation with sufficient dose (typically ?20 Gy at 21 °C) to significantly reduce the electron lifetime by ?50%, and then the recovery of the lifetime was monitored as a function of time at three different temperatures, 10 °C, 21 °C, and 35 °C. The lifetime recovery kinetics was exponential with a relaxation time ?{sub r} that is thermally activated with an activation energy of 1.66 eV. ?{sub r} is a few hours at 21 °C and only a few minutes at 35 °C. In experiments examining the irradiation induced effects, the a-Se film was repeatedly exposed to x-ray radiation and the changes in the drift mobility and lifetime were monitored as a function of accumulated dose D. There was no observable change in the drift mobility. At 21 °C, the concentration of x-ray induced deep traps (or capture centers), N{sub d}, increases linearly with D (N{sub d} ? D) whereas at 35 °C, the recovery process prevents a linear increase in N{sub d} with D, and N{sub d} saturates. In all cases, even under high dose irradiation (?50 Gy), the lifetime was recoverable to its original equilibrium (pre-exposure) value within a few relaxation times.

  14. The application of photon, electron and proton induced X-ray analysis for the identification and characterisation of medieval silver coins

    NASA Astrophysics Data System (ADS)

    Linke, R.; Schreiner, M.; Demortier, G.

    2004-11-01

    Photons, electrons and protons beams applied to the scientific investigation of archaeological materials provide complementary information for characterising the state of preservation and the provenance of the objects. Investigations were carried out on medieval silver coins of the "Friesacher Pfennig" and the "Tiroler Kreuzer" from the Kunsthistorisches Museum Vienna and the Oesterreichische Nationalbank. Techniques employed were EDXRF, SEM/EDX and PIXE. By determining the trace elements of the alloys it was possible to assign coins to their mint. The results outline advantages and disadvantages of EDXRF, SEM/EDX and PIXE when applied to corroded objects.

  15. Resonantly excited betatron hard X-Rays from Ionization Injected Electron Beam in a Laser Plasma Accelerator

    E-print Network

    Huang, K; Li, Y F; Li, D Z; Tao, M Z; Mirzaie, M; Ma, Y; Zhao, J R; Li, M H; Chen, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2015-01-01

    A new scheme for bright hard x-ray emission from laser wakefield electron accelerator is reported, where pure nitrogen gas is adopted. Intense Betatron x-ray beams are generated from ionization injected K-shell electrons of nitrogen into the accelerating wave bucket. The x-ray radiation shows synchrotron-like spectrum with total photon yield 8$\\times$10$^8$/shot and $10^8$ over 110keV. In particular, the betatron hard x-ray photon yield is 10 times higher compared to the case of helium gas under the same laser parameters. Particle-in-cell simulation suggests that the enhancement of the x-ray yield results from ionization injection, which enables the electrons to be quickly accelerated to the driving laser region for subsequent betatron resonance. Employing the present scheme,the single stage nitrogen gas target could be used to generate stable high brightness betatron hard x-ray beams.

  16. X-ray fluorescence spectrometry for high throughput analysis of atmospheric aerosol samples: The benefits of synchrotron X-rays

    NASA Astrophysics Data System (ADS)

    Bukowiecki, Nicolas; Lienemann, Peter; Zwicky, Christoph N.; Furger, Markus; Richard, Agnes; Falkenberg, Gerald; Rickers, Karen; Grolimund, Daniel; Borca, Camelia; Hill, Matthias; Gehrig, Robert; Baltensperger, Urs

    2008-09-01

    The determination of trace element mass concentrations in ambient air with a time resolution higher than one day represents an urgent need in atmospheric research. It involves the application of a specific technique both for the aerosol sampling and the subsequent analysis of the collected particles. Beside the intrinsic sensitivity of the analytical method, the sampling interval and thus the quantity of collected material that is available for subsequent analysis is a major factor driving the overall trace element detection power. This is demonstrated for synchrotron radiation X-ray fluorescence spectrometry (SR-XRF) of aerosol samples collected with a rotating drum impactor (RDI) in hourly intervals and three particle size ranges. The total aerosol mass on the 1-h samples is in the range of 10 µg. An experimental detection of the nanogram amounts of trace elements with the help of synchrotron X-rays was only achievable by the design of a fit-for-purpose sample holder system, which considered the boundary conditions both from particle sampling and analysis. A 6-µm polypropylene substrate film has evolved as substrate of choice, due to its practical applicability during sampling and its suitable spectroscopic behavior. In contrast to monochromatic excitation conditions, the application of a 'white' beam led to a better spectral signal-to-background ratio. Despite the low sample mass, a counting time of less than 30 s per 1-h aerosol sample led to sufficient counting statistics. Therefore the RDI-SR-XRF method represents a high-throughput analysis procedure without the need for any sample preparation. The analysis of a multielemental mass standard film by SR-XRF, laboratory-based wavelength-dispersive XRF spectrometry and laboratory-based micro XRF spectrometry showed that the laboratory-based methods were no alternatives to the SR-XRF method with respect to sensitivity and efficiency of analysis.

  17. X-ray Mapping of Terrestrial and Extraterrestrial Materials Using the Electron Microprobe

    NASA Technical Reports Server (NTRS)

    Carpenter, P.

    2006-01-01

    Lunar samples returned from the Apollo program motivated development of the Bence-Albee algorithm for the rapid and accurate analysis of lunar materials, and established interlaboratory comparability through its common use. In the analysis of mineral and rock fragments it became necessary to combine micro- and macroscopic analysis by coupling electron-probe microanalysis (EPMA) with automated stage point counting. A coarse grid that included several thousand points was used, and initially wavelength-dispersive (WDS) and later energydispersive (EDS) data were acquired at discrete stage points using approx. 5 sec count times. A approx 50 micrometer beam diameter was used for WDS and up to 500 micrometer beam diameter for EDS analysis. Average analyses of discretely sampled phases were coupled with the point count data to calculate the bulk composition using matrix algebra. Use of a defocused beam resulted in a contribution from multiple phases to each analytical point, and the analytical data were deconvolved relative to end-member phase chemistry on the fly. Impressive agreement was obtained between WDS and EDS measurements as well as comparison with bulk chemistry obtained by other methods. In the 30 years since these methods were developed, significant improvements in EPMA automation and computer processing have taken place. Digital beam control allows routine collection of x-ray maps by EDS, and stage mapping for WDS is conducted continuously at slew speed and incrementally by sampling at discrete points. Digital pulse processing in EDS systems has significantly increased the throughput for EDS mapping, and the ongoing development of Si-drift detector systems promises mapping capabilities rivaling WDS systems. Spectrum imaging allows a data cube of EDS spectra to be acquired and sophisticated processing of the original data is possible using matrix algebra techniques. The study of lunar and meteoritic materials includes the need to conveniently: (1) Characterize the sample at microscopic and macroscopic scales with relatively high sensitivity, (2) Determine the modal abundance of minerals, and (3) Identify and relocate discrete features of interest in terms of size and chemistry. The coupled substitution of cations in minerals can result in significant variation in mineral chemistry, but at similar average Z, leading to poor backscattered-electron (BSE) contrast discrimination of mineralogy. It is necessary to discriminate phase chemistry at both the trace element level and the major element level. To date, the WDS of microprobe systems is preferred for mapping due to high throughput and the ability to obtain the necessary intensity to discriminate phases at both trace and major element concentrations. It is desirable to produce fully quantitative compositional maps of geological materials, which requires the acquisition of k-ratio maps that are background and dead-time corrected, and which have been corrected by phi(delta z> or an equivalent algorithm at each pixel. To date, turnkey systems do not allow the acquisition of k-ratio maps and the rigorous correction in this manner. X-ray maps of a chondrule from the Ourique meteorite, and a comb-layered xenolith from the San Francisco volcanic field, have been analyzed and processed to extract phase information. The Ourique meteorite presents a challenge due to relatively low BSE contrast, and has been studied using spectrum imaging. X-ray maps for Si, Mg, and FeK(alpha) were used to produce RGB images. The xenolith sample contains sector-zoned augite, olivine, plagioclase, and basaltic glass. X-ray maps were processed using Lispix and ImageJ software to produce mineral phase maps. The x-ray maps for Mg, Ca, and Ti were used with traceback to generate binary images that were converted to RGB images. These approaches are successful in discriminating phases, but it is desirable to achieve the methods that were used on lunar samples 30 years ago on current microprobe systems. Curnt research includes x-ray mapping analysis of the Dalgety Downs chondrite by micro x-ray fluo

  18. Investigation of magnetic field manipulated electrons produced from laser-driven ultrafast x-ray sources using x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Changju; Davidson, R. Andrew; Guo, Ting

    2015-03-01

    We used x-ray emission spectroscopy to study energetic electrons (10-100?keV) generated at the laser focus of an intense ultrafast laser interacting with a primary thin film tape target. The electrons penetrated the tape and reached a secondary target of thin metal foils as the probe. The trajectories of these electrons were manipulated with an external magnetic field generated from a home-made Halbach magnet. The interaction of these energetic electrons with the probe produced characteristic x-rays, which were used to infer the flux and temperature of the electrons emitted from the laser focus at the primary tape target. A potential application using these energetic electrons is discussed.

  19. Membrane protein structural biology using X-ray free electron lasers.

    PubMed

    Neutze, Richard; Brändén, Gisela; Schertler, Gebhard Fx

    2015-08-01

    Membrane protein structural biology has benefitted tremendously from access to micro-focus crystallography at synchrotron radiation sources. X-ray free electron lasers (XFELs) are linear accelerator driven X-ray sources that deliver a jump in peak X-ray brilliance of nine orders of magnitude and represent a disruptive technology with potential to dramatically change the field. Membrane proteins were amongst the first macromolecules to be studied with XFEL radiation and include proof-of-principle demonstrations of serial femtosecond crystallography (SFX), the observation that XFEL data can deliver damage free crystallographic structures, initial experiments towards recording structural information from 2D arrays of membrane proteins, and time-resolved SFX, time-resolved wide angle X-ray scattering and time-resolved X-ray emission spectroscopy studies. Conversely, serial crystallography methods are now being applied using synchrotron radiation. We believe that a context dependent choice of synchrotron or XFEL radiation will accelerate progress towards novel insights in understanding membrane protein structure and dynamics. PMID:26342349

  20. Electronic Structure of Warm Dense Copper Studied by Ultrafast X-Ray Absorption Spectroscopy

    SciTech Connect

    Cho, B. I.; Engelhorn, K.; Feng, J.; Heimann, P. A.; Correa, A. A.; Ogitsu, T.; Ping, Y.; Nelson, A. J.; Lee, R. W.; Weber, C. P.; Lee, H. J.; Ni, P. A.; Prendergast, D.; Falcone, R. W.

    2011-04-22

    We use time-resolved x-ray absorption spectroscopy to investigate the unoccupied electronic density of states of warm dense copper that is produced isochorically through the absorption of an ultrafast optical pulse. The temperature of the superheated electron-hole plasma, which ranges from 4000 to 10 000 K, was determined by comparing the measured x-ray absorption spectrum with a simulation. The electronic structure of warm dense copper is adequately described with the high temperature electronic density of state calculated by the density functional theory. The dynamics of the electron temperature is consistent with a two-temperature model, while a temperature-dependent electron-phonon coupling parameter is necessary.

  1. Prevailing features of X-ray induced molecular electron spectra revealed with fullerenes

    E-print Network

    Garibay, Abraham Camacho; Rost, Jan M

    2014-01-01

    Intense X-ray photo-absorption from short and intense pulses by a molecule triggers complicated electron and subsequently ion dynamics leading to photo-electron spectra which are difficult to interpret. Illuminating fullerenes offers a way to separate out the electron dynamics. Moreover, the fullerene cage confines spatially the origin of photo and Auger electrons. Together with the sequential nature of the photo processes at intensities available at X-ray free electron lasers, this allows for a remarkably detailed interpretation of the photo-electron spectra as we will demonstrate. The general features derived can serve as a paradigm for less well-defined situations in other large molecules or clusters.

  2. A Review of X-ray Free-Electron Laser Theory

    SciTech Connect

    Huang, Zhirong; Kim, Kwang-Je; /ANL, APS

    2006-12-18

    High-gain free-electron lasers (FELs) are being developed as extremely bright sources for a next-generation x-ray facility. In this paper, we review the basic theory of the startup, the exponential growth, and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission (SASE). The radiation characteristics of an x-ray FEL, including its transverse coherence, temporal characteristics, and harmonic content, are discussed. FEL performance in the presence of machine errors and undulator wakefields is examined. Various enhancement schemes through seeding and beam manipulations are summarized.

  3. Photoelectron diffraction from laser-aligned molecules with X-ray free-electron laser pulses

    PubMed Central

    Nakajima, Kyo; Teramoto, Takahiro; Akagi, Hiroshi; Fujikawa, Takashi; Majima, Takuya; Minemoto, Shinichirou; Ogawa, Kanade; Sakai, Hirofumi; Togashi, Tadashi; Tono, Kensuke; Tsuru, Shota; Wada, Ken; Yabashi, Makina; Yagishita, Akira

    2015-01-01

    We report on the measurement of deep inner-shell 2p X-ray photoelectron diffraction (XPD) patterns from laser-aligned I2 molecules using X-ray free-electron laser (XFEL) pulses. The XPD patterns of the I2 molecules, aligned parallel to the polarization vector of the XFEL, were well matched with our theoretical calculations. Further, we propose a criterion for applying our molecular-structure-determination methodology to the experimental XPD data. In turn, we have demonstrated that this approach is a significant step toward the time-resolved imaging of molecular structures. PMID:26369428

  4. Prospects for using X-ray free-electron lasers to investigate shock-compressed matter

    SciTech Connect

    Nagler, Bob; Higginbotham, Andrew; Kimminau, Giles; Murphy, William; Whitcher, Thomas; Wark, Justin; Hawreliak, James; Kalantar, Dan; Lee, Richard; Lorenzana, Hector; Remington, Bruce; Larsson, Jorgen; Park, Nigel; Sokolowski-Tinten, Klaus

    2007-12-12

    Within the next few years hard X-ray Free Electron Lasers will come on line. Such systems will have spectral brightnesses ten orders of magnitude greater than any extant synchrotron, with pulse lengths as short as a few femtoseconds. It is anticipated that large-scale optical lasers capable of shock-compressing matter to multi-megabar pressures will be sited alongside the X-ray source. We discuss how such systems can further our knowledge of shocked and isochorically heated matter, in particular investigating the potential to perform polycrystalline diffraction and the creation of warm dense matter.

  5. Refractive microlens array for wave-front analysis in the medium to hard x-ray range.

    PubMed

    Mayo, Sheridan C; Sexton, Brett

    2004-04-15

    We report an alternative approach to x-ray wave-front analysis that uses a refractive microlens array as a Shack-Hartmann sensor. The sensor was manufactured by self-assembly and electroplating techniques and is suitable for high-resolution wave-front analysis of medium to hard x rays. We demonstrate its effectiveness at an x-ray energy of 3 keV for analysis of x-ray wave-front perturbations caused by microscopic objects. The sensor has potential advantages over other methods for x-ray phase imaging and will also be useful for the characterization of x-ray beams and optics. PMID:15119404

  6. Implications of X-Ray Observations for Electron Acceleration and Propagation in Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.; Aschwanden, M. J.; Aurass, H.; Battaglia, M.; Grigis, P. C.; Kontar, E. P.; Liu, W.; Saint-Hilaire, P.; Zharkova, V. V.

    2011-01-01

    High-energy X-rays and gamma-rays from solar flares were discovered just over fifty years ago. Since that time, the standard for the interpretation of spatially integrated flare X-ray spectra at energies above several tens of keV has been the collisional thick-target model. After the launch of the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in early 2002, X-ray spectra and images have been of sufficient quality to allow a greater focus on the energetic electrons responsible for the X-ray emission, including their origin and their interactions with the flare plasma and magnetic field. The result has been new insights into the flaring process, as well as more quantitative models for both electron acceleration and propagation, and for the flare environment with which the electrons interact. In this article we review our current understanding of electron acceleration, energy loss, and propagation in flares. Implications of these new results for the collisional thick-target model, for general flare models, and for future flare studies are discussed.

  7. Liquid-metal-jet anode electron-impact x-ray source O. Hemberg,a)

    E-print Network

    Liquid-metal-jet anode electron-impact x-ray source O. Hemberg,a) M. Otendal, and H. M. Hertz 2003; accepted 18 June 2003 We demonstrate an anode concept, based on a liquid-metal jet, for improved.1,2 In this letter we introduce an anode concept, based on a liquid-metal jet, which has poten- tial

  8. X-ray Absorption Spectroscopy of Liquid Methanol Microjets: Bulk Electronic Structure and Hydrogen Bonding Network

    E-print Network

    Cohen, Ronald C.

    X-ray Absorption Spectroscopy of Liquid Methanol Microjets: Bulk Electronic Structure and Hydrogen) methanol at the oxygen and carbon K edges. The 4a1 orbital at the O K edge exhibits a pronounced. Comparison with DFT computed spectra of model methanol clusters indicates that the bulk liquid comprises long

  9. Coherent X-ray radiation generated by a relativistic electron in an artificial periodic structure

    SciTech Connect

    Blazhevich, S. V.; Kolosova, I. V.; Noskov, A. V.

    2012-04-15

    A theory of coherent X-ray radiation from a relativistic electron crossing an artificial periodic layered structure in the Laue scattering geometry is constructed. The expressions describing the spectral-angular radiation parameters are obtained. It is shown that the radiation yield in such a medium may substantially exceed the radiation yield in a crystal under analogous conditions.

  10. Microbial Origin of Desert Varnish Abstract. Scanning electron microscopy and energy dispersive x-ray analyse,

    E-print Network

    Dorn, Ron

    Reports Microbial Origin of Desert Varnish Abstract. Scanning electron microscopy and energy dispersive x-ray analyse, desert varnish reveal that microorganisms concentrate ambient manganese I becomes greatly enhanced in brown to black varnish. Specific characteristic. desert varnish and of varnish

  11. Electron Beam Production and Characterization for the PLEIADES Thomson X-ray Source

    NASA Astrophysics Data System (ADS)

    Brown, Winthrop J.; Hartemann, Frederic V.; Tremaine, Aaron M.; Barty, Christopher P.; Baldis, Hector A.; Crane, John K.; Cross, Robert R.; Fittinghoff, David N.; Le Sage, Gregory P.; Springer, Paul T.; Slaughter, Dennis R.; Gibson, David J.; Rosenzweig, James B.

    2002-11-01

    We report on the performance of an S-band RF photocathode electron gun and 100 MeV accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. The x-ray source is expected to produce picosecond x-ray pulses of brightness 10^20 photons/0.1% bandwidth/mm^2/mrad^2 by colliding a 20 ? m, 0.5-1.0 nC, 0.5-5 ps electron bunch with a 100 fs, 300 mJ, 800 nm laser pulse. Simulations of the electron beam production, transport, and final focus, including the implementation of velocity compression to produce picosecond to sub-picosecond bunches, will be presented. Electron beam measurements, including emittance, bunch length, and final focus spot size are presented and compared to simulation results. Initial measurements of x-ray production will also be reported and compared to theoretical calculations. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  12. Demonstration of self-seeding in a hard-X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Amann, J.; Berg, W.; Blank, V.; Decker, F.-J.; Ding, Y.; Emma, P.; Feng, Y.; Frisch, J.; Fritz, D.; Hastings, J.; Huang, Z.; Krzywinski, J.; Lindberg, R.; Loos, H.; Lutman, A.; Nuhn, H.-D.; Ratner, D.; Rzepiela, J.; Shu, D.; Shvyd'Ko, Yu.; Spampinati, S.; Stoupin, S.; Terentyev, S.; Trakhtenberg, E.; Walz, D.; Welch, J.; Wu, J.; Zholents, A.; Zhu, D.

    2012-10-01

    The Linac Coherent Light Source (LCLS) is an X-ray free-electron laser at the SLAC National Accelerator Laboratory, which has been operating since 2009 for a wide range of scientific research. The free-electron laser process at LCLS is based on self-amplified spontaneous emission (SASE) where spontaneous emission from the initial electron beam shot noise is amplified by its interaction with the electrons over a long magnetic undulator. Although SASE is very effective, producing tremendously powerful, ultrashort X-ray beams, the start-up from noise leaves poor temporal coherence and a broad, noisy spectrum. We present experimental results of a new method, suggested by colleagues at DESY, allowing self-seeding using X-rays from the first half of the undulator to seed the second half through a diamond-based monochromator, producing near Fourier-transform-limited X-ray pulses with 0.4-0.5 eV bandwidth at 8-9 keV. These results demonstrate self-seeding at ångstrom wavelengths with a relative bandwidth reduction of 40-50 with respect to SASE.

  13. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  14. Electron density measurement with dual-energy x-ray CT using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Torikoshi, Masami; Tsunoo, Takanori; Sasaki, Makoto; Endo, Masahiro; Noda, Yutaka; Ohno, Yumiko; Kohno, Toshiyuki; Hyodo, Kazuyuki; Uesugi, Kentaro; Yagi, Naoto

    2003-03-01

    Monochromatic x-ray computed tomography (CT) at two different energies provides information about electron density of human tissue without ambiguity due to the beam hardening effect. This information makes the treatment planning for proton and heavy-ion radiotherapy more precise. We have started a feasibility study on dual energy x-ray CT by using synchrotron radiation. A translation-rotation scanning CT system was developed for quantitative measurement in order to clarify what precision in the measurement was achieved. Liquid samples of solutions of K2HPO4 and solid samples of tissue equivalent materials were used to simulate human tissue. The experiments were carried out using monochromatic x-rays with energies of 40, 70 and 80 keV produced by monochromatizing synchrotron radiation. The solid samples were also measured in a complementary method using high-energy carbon beams to evaluate the electron densities. The measured electron densities were compared with the theoretical values or the values measured in the complementary method. It was found that these values were in agreement in 0.9% on average. Effective atomic numbers were obtained as well from dual-energy x-ray CT. The tomographic image based on each of the electron densities and the effective atomic number presents a different feature of the material, and its contrast drastically differs from that in a conventional CT image.

  15. The Mn4Ca photosynthetic water-oxidation catalyst studied by simultaneous X-ray spectroscopy and crystallography using an X-ray free-electron laser

    PubMed Central

    Tran, Rosalie; Kern, Jan; Hattne, Johan; Koroidov, Sergey; Hellmich, Julia; Alonso-Mori, Roberto; Sauter, Nicholas K.; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yano, Junko; Yachandra, Vittal K.

    2014-01-01

    The structure of photosystem II and the catalytic intermediate states of the Mn4CaO5 cluster involved in water oxidation have been studied intensively over the past several years. An understanding of the sequential chemistry of light absorption and the mechanism of water oxidation, however, requires a new approach beyond the conventional steady-state crystallography and X-ray spectroscopy at cryogenic temperatures. In this report, we present the preliminary progress using an X-ray free-electron laser to determine simultaneously the light-induced protein dynamics via crystallography and the local chemistry that occurs at the catalytic centre using X-ray spectroscopy under functional conditions at room temperature. PMID:24914152

  16. X-ray free-electron laser studies of dense plasmas

    NASA Astrophysics Data System (ADS)

    Vinko, Sam M.

    2015-10-01

    > The high peak brightness of X-ray free-electron lasers (FELs), coupled with X-ray optics enabling the focusing of pulses down to sub-micron spot sizes, provides an attractive route to generating high energy-density systems on femtosecond time scales, via the isochoric heating of solid samples. Once created, the fundamental properties of these plasmas can be studied with unprecedented accuracy and control, providing essential experimental data needed to test and benchmark commonly used theoretical models and assumptions in the study of matter in extreme conditions, as well as to develop new predictive capabilities. Current advances in isochoric heating and spectroscopic plasma studies on X-ray FELs are reviewed and future research directions and opportunities discussed.

  17. Characteristics of a contract electron beam and bremsstrahlung (X-ray) irradiation facility of Radia industry

    NASA Astrophysics Data System (ADS)

    Takehisa, Masaaki; Saito, Toshio; Takahashi, Thoru; Sato, Yoshishige; Sato, Toshio

    1993-07-01

    A contract electron beam(EB) and bremsstrahlung(X-ray) facility with use of NHV 5 MeV, 30 mA Cock-Croft Walton machine is operational for EB since April 1991, and X-ray commercial irradiation was started in 1992 summer. The facility is consisted of the EB machine, bremsstrahlung target, chain and roller conveyor, and automatic turnover machine for dual sided irradiation. The operation of the system is fully controlled by LAN of personal computers for client's order, EB characteristics, beam current control proportional to the conveyor speed, turnover of product in processing mid point, and output of processing record to clients. The control and recording systems avoid human errors. This paper mainly discusses X-ray processing.

  18. Investigating dynamics of complex system irradiated by intense x-ray free electron laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, L.; Jurek, Z.; Osipov, T.; Murphy, B. F.; Santra, R.; Berrah, N.

    2015-04-01

    We carried out experimental and theoretical investigation of the response of a complex molecule, C60, to intense x-ray photon beam from a free-electron-laser. We show good agreement between the modelling and the experiment. Our model, which can be scaled well to larger systems, reveals femotosecond molecular dynamics details, at the level of atomic resolution, which are inaccessible directly by our experiments. Our results illustrate the variety of physical and chemical processes in the interaction between large molecules and intense x- ray pulses, including photoelectric effect, secondary ionization, recombination and inter-atomic Auger decays. The understanding of these processes has a broad impact on research that implements intense x-ray pulses.

  19. XPCS at the European x-ray free electron laser facility.

    SciTech Connect

    Grubel, G.; Stephenon, G. B.; Gutt, C.; Sinn, H.; Tschentscher, T.; Hasylab /DESY

    2007-09-01

    The European X-ray free electron laser source (XFEL) will provide highly brilliant (B > 10{sup 33} ph/s/mm{sup 2}mrad{sup 2}/0.1% bw) and coherent X-ray beams. The pulse structure and the unprecedented brightness will allow one for the first time to study fast dynamics in the time domain, thus giving direct access to the dynamic response function S(Q, t), instead of S(Q, {omega}), which is of central importance for a variety of phenomena such as fast non-equilibrium dynamics initiated, e.g. by a short pump pulse. X-ray photon correlation spectroscopy (XPCS) measures the temporal changes in speckle patterns produced when coherent light is scattered by a disordered system and therefore allows to measure S(Q, t). This paper summarizes important aspects of the scientific case for an XPCS instrument at the planned XFEL. Novel XPCS set-ups are illustrated.

  20. Spectrometer for hard X-ray free-electron laser based on diffraction focusing.

    PubMed

    Kohn, V G; Gorobtsov, O Y; Vartanyants, I A

    2013-03-01

    X-ray free-electron lasers (XFELs) generate sequences of ultra-short spatially coherent pulses of X-ray radiation. A diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ?E/E 2 × 10(-6), is proposed. This is much better than for most modern X-ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single-crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from a metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. It is shown that the DFS can be used in a wide energy range from 5 keV to 20 keV. PMID:23412482

  1. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    SciTech Connect

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  2. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions.

    PubMed

    Murray, Thomas D; Lyubimov, Artem Y; Ogata, Craig M; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T; Berger, James M

    2015-10-01

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2?µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10-15?µm) loaded into the chips yielded a complete, high-resolution (<1.6?Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423

  3. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    PubMed Central

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-01-01

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2?µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15?µm) loaded into the chips yielded a complete, high-resolution (<1.6?Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423

  4. Electron Beam Production, Transport, and Final Focus for the PLEIADES Thomson X-ray Source

    NASA Astrophysics Data System (ADS)

    Brown, Winthrop J.; Anderson, Scott G.; Barty, Chris P.; Crane, John K.; Cross, Rick R.; Fittinghoff, Dave N.; Hartemann, Fred V.; Kuba, Jaroslav; Lesage, Greg P.; Slaughter, Dennis R.; Springer, Paul T.; Tremaine, Aaron M.; Gibson, David J.; Rosenzweig, James B.

    2003-10-01

    The small interaction area required for Thomson x-ray sources necessitates the production of high brightness electron beams and the use of very strong final focus optics. We report on the details of the electron beam production, transport and final focus for the PLEIADES Thomson X-ray Source at Lawrence Livermore National Laboratory, including the S-band RF photocathode electron gun and 100 MeV S-Band accelerator, as well as the beam diagnostics and final focus optics. According to simulations, a beam emittance ranging from 2 to 5 mm-mrad is obtainable for bunch charges ranging from 0.5 to 1.0 nC, with an obtainable final focus spot size as low as 15 micro-meters rms for these beam parameters. The x-ray source is expected to produced pico-second xray pulses of brightness 1020 photons/0.1% bandwidth/mm^2/mrad^2 by colliding a 20 micro-meter, 0.5-1.0 nC, 0.5-5 ps electron bunch with a 100 fs, 300 mJ, 800 nm laser pulse. Measurements of the electron beam parameters and x-ray production will also be reported and compared to the theoretical expectations. In addition, the possibility of improving the electron beam focus and ultimate x-ray source brightness by implementing the use of stronger final focus optics will be discussed. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  5. X-ray Radiation and Electron Injection from Beam Envelope Oscillations in Plasma Wakefield Accelerator Experiments at FACET

    NASA Astrophysics Data System (ADS)

    Marsh, K. A.; An, W.; Clayton, C. E.; Joshi, C.; Lu, W.; Mori, W. B.; Vafaei-Najafabadi, N.; Clarke, C.; Corde, S.; Delahaye, J. P.; England, J.; Fisher, A.; Frederico, J.; Gessner, S.; Hogan, M. J.; Li, S.; Litos, M.; Walz, D.; Wu, Z.; Adli, E.

    2013-10-01

    PWFA experiments at FACET at the SLAC National Accelerator Laboratory have shown a correlation between ionization-injected electrons and the betatron x-ray yield. The PWFA experiments were carried out using a rubidium vapor heat pipe oven. The vapor density was 2.5 × 1017 cm-3 and was ionized by the 20 GeV electron beam via tunneling ionization. The injected charge and x-ray yield are attributed to the beam envelope oscillations where at the oscillation minima, the field of the beam is strong enough to ionize RbII, and at the electron oscillation maxima, the beam electrons radiate x-rays. In general the x-ray yield scales as r2n2?2 , but for a matched beam the x-ray yield is reduced and scales as r3/2n3/2 ? . The FACET x-ray diagnostic can be used to tune the drive beam parameters for matched propagation by minimizing the x-ray yield. For a matched beam, there is no beam envelope oscillation, thus the x-ray yield and unwanted beam loading are greatly reduced. Injection of plasma electrons into the wake can limit the wake amplitude and deplete the accelerating gradient. Minimizing the x-ray yield should reduce unwanted beam loading. UCLA supported by: DE-FG02-92-ER40727 and PHY-0936266. SLAC supported by DE-AC02-76SF00515.

  6. Extended x-ray-absorption fine structure—Auger process for surface structure analysis: Theoretical considerations of a proposed experiment

    PubMed Central

    Landman, Uzi; Adams, David L.

    1976-01-01

    A method for surface structure analysis is proposed. The proposed process combines x-ray photoabsorption and Auger electron emission. The extended x-ray-absorption fine structure, occurring for photon energies above an atomic absorption edge, contains structural information of the microscopic environment due to the coupling of the photoelectron final state with the atomic initial state. Measurement of the variations in the intensity of particular Auger lines, as a function of the incident radiation energy, provides a surface sensitive measure of the photoabsorption cross section in the media. Theoretical considerations of the physical processes underlying the proposed experiment and its feasibility, and a discussion of background contributions are presented. PMID:16592339

  7. A Model Grid for the Spectral Analysis of X-ray Emission in Young Type Ia Supernova Remnants

    E-print Network

    C. Badenes; E. Bravo; K. Borkowski

    2005-01-14

    We address a new set of models for the spectral analysis of the X-ray emission from young, ejecta-dominated Type Ia supernova remnants. These models are based on hydrodynamic simulations of the interaction between Type Ia supernova explosion models and the surrounding ambient medium, coupled to self-consistent ionization and electron heating calculations in the shocked supernova ejecta, and the generation of synthetic spectra with an appropriate spectral code. The details are provided elsewhere, but in this paper we concentrate on a specific class of Type Ia explosion models (delayed detonations), commenting on the differences that arise between their synthetic X-ray spectra under a variety of conditions.

  8. Tomographic analysis of the nonthermal x-ray bursts during disruption instability in the T-10 tokamak

    SciTech Connect

    Savrukhin, P. V.; Ermolaeva, A. I.; Shestakov, E. A.; Khramenkov, A. V.

    2014-10-01

    Non-thermal x-ray radiation (E{sub ?} up to 150 keV) is measured in the T-10 tokamaks during disruption instability using two sets of CdTe detectors (10 vertical and 7 horizontal view detectors). Special narrow cupper tubes collimators with lead screening and CdTe detectors integrated with amplifiers inside metallic containers provides enhanced spatial resolution of the system (r ~ 3 cm) and assures protection from the parasitic hard x-ray (E{sub ?} up to 1.5 MeV) and electromagnetic loads during disruption. Spatial localization of the nonthermal x-ray emissivity is reconstructed using tomographic Cormack technique with SVD matrix inversion. Analysis indicated appearance of an intensive non-thermal x-ray bursts during initial stage of the disruptions at high density. The bursts are characterized by repetitive spikes (2–3 kHz) of the x-ray emissivity from the plasma core area. Analysis indicated that the spikes can be connected with acceleration of the non-thermal electrons in enhanced longitudinal electric fields induced during energy quench at the disruption instability.

  9. X-ray imaging of chemically active valence electrons during a pericyclic reaction.

    PubMed

    Bredtmann, Timm; Ivanov, Misha; Dixit, Gopal

    2014-01-01

    Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions. PMID:25424639

  10. X-ray imaging of chemically active valence electrons during a pericyclic reaction

    PubMed Central

    Bredtmann, Timm; Ivanov, Misha; Dixit, Gopal

    2014-01-01

    Time-resolved imaging of chemically active valence electron densities is a long-sought goal, as these electrons dictate the course of chemical reactions. However, X-ray scattering is always dominated by the core and inert valence electrons, making time-resolved X-ray imaging of chemically active valence electron densities extremely challenging. Here we demonstrate an effective and robust method, which emphasizes the information encoded in weakly scattered photons, to image chemically active valence electron densities. The degenerate Cope rearrangement of semibullvalene, a pericyclic reaction, is used as an example to visually illustrate our approach. Our work also provides experimental access to the long-standing problem of synchronous versus asynchronous bond formation and breaking during pericyclic reactions. PMID:25424639

  11. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    SciTech Connect

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; ,

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  12. Investigation of electron trajectories of an x-ray tube in magnetic fields of MR scanners

    SciTech Connect

    Wen Zhifei; Fahrig, Rebecca; Conolly, Steven; Pelc, Norbert J.

    2007-06-15

    A hybrid x-ray/MR system combining an x-ray fluoroscopic system and an open-bore magnetic resonance (MR) system offers advantages from both powerful imaging modalities and thus can benefit numerous image-guided interventional procedures. In our hybrid system configurations, the x-ray tube and detector are placed in the MR magnet and therefore experience a strong magnetic field. The electron beam inside the x-ray tube can be deflected by a misaligned magnetic field, which may damage the tube. Understanding the deflection process is crucial to predicting the electron beam deflection and avoiding potential damage to the x-ray tube. For this purpose, the motion of an electron in combined electric (E) and magnetic (B) fields was analyzed theoretically to provide general solutions that can be applied to different geometries. For two specific cases, a slightly misaligned strong field and a perpendicular weak field, computer simulations were performed with a finite-element method program. In addition, experiments were conducted using an open MRI magnet and an inserted electromagnet to quantitatively verify the relationship between the deflections and the field misalignment. In a strong (B>>E/c; c: speed of light) and slightly misaligned magnetic field, the deflection in the plane of E and B caused by electrons following the magnetic field lines is the dominant component compared to the deflection in the ExB direction due to the drift of electrons. In a weak magnetic field (B{<=}E/c), the main deflection is in the ExB direction and is caused by the perpendicular component of the magnetic field.

  13. The XMM Cluster Survey: X-ray analysis methodology

    NASA Astrophysics Data System (ADS)

    Lloyd-Davies, E. J.; Romer, A. Kathy; Mehrtens, Nicola; Hosmer, Mark; Davidson, Michael; Sabirli, Kivanc; Mann, Robert G.; Hilton, Matt; Liddle, Andrew R.; Viana, Pedro T. P.; Campbell, Heather C.; Collins, Chris A.; Dubois, E. Naomi; Freeman, Peter; Harrison, Craig D.; Hoyle, Ben; Kay, Scott T.; Kuwertz, Emma; Miller, Christopher J.; Nichol, Robert C.; Sahlén, Martin; Stanford, S. A.; Stott, John P.

    2011-11-01

    The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMM-Newton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we describe the data processing methodology applied to the 5776 XMM observations used to construct the current XCS source catalogue. A total of 3675 > 4? cluster candidates with >50 background-subtracted X-ray counts are extracted from a total non-overlapping area suitable for cluster searching of 410 deg2. Of these, 993 candidates are detected with >300 background-subtracted X-ray photon counts, and we demonstrate that robust temperature measurements can be obtained down to this count limit. We describe in detail the automated pipelines used to perform the spectral and surface brightness fitting for these candidates, as well as to estimate redshifts from the X-ray data alone. A total of 587 (122) X-ray temperatures to a typical accuracy of <40 (<10) per cent have been measured to date. We also present the methodology adopted for determining the selection function of the survey, and show that the extended source detection algorithm is robust to a range of cluster morphologies by inserting mock clusters derived from hydrodynamical simulations into real XMMimages. These tests show that the simple isothermal ?-profiles is sufficient to capture the essential details of the cluster population detected in the archival XMM observations. The redshift follow-up of the XCS cluster sample is presented in a companion paper, together with a first data release of 503 optically confirmed clusters.

  14. Monte Carlo Simulation of the Conversion X-Rays from the Electron Beam of PFMA-3

    SciTech Connect

    Ceccolini, E.; Mostacci, D.; Sumini, M.; Rocchi, F.; Tartari, A.

    2011-12-13

    PFMA-3, a dense Plasma Focus device, is being optimized as an X-ray generator. X-rays are obtained from the conversion of the electron beam emitted in the backward direction and driven to impinge on a 50 {mu}m brass foil. Monte Carlo simulations of the X-ray emission have been conducted with MCNPX. The electron spectrum had been determined experimentally and is used in the present work as input to the simulations. Dose to the brass foil has been determined both from simulations and from measurements with a thermographic camera, and the two results are found in excellent agreement, thus validating further the electron spectrum assumed as well as the simulation set-up. X-ray emission has been predicted both from bremsstrahlung and from characteristic lines. The spectrum has been found to be comprised of two components of which the one at higher energy, 30 divide 70 keV, is most useful for IORT applications. The results are necessary to estimate penetration in and dose to Standard Human Tissue.

  15. A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures

    E-print Network

    Espinosa, Horacio D.

    A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing system (MEMS) designed for the in situ electron and x-ray microscopy tensile testing of nanostructures, e to this purpose have been developed in the past decade includ- ing resonance test,1,2 bending test,3,4 and tensile

  16. Low-Emittance Electron Bunches from a Laser-Plasma Accelerator Measured using Single-Shot X-Ray Spectroscopy

    E-print Network

    Geddes, Cameron Guy Robinson

    . By matching x-ray spectra to betatron radiation models, the electron bunch radius inside the plasma the x-ray betatron radiation emitted by the electrons in the plasma as they accelerate [23. Measurements of betatron radiation from 2 to 20 keV used a CCD and single-photon counting techniques

  17. Three-dimensional X-ray imaging and analysis of fungi on and in wood1 Running head: X-ray imaging of fungi

    E-print Network

    Gent, Universiteit

    Three-dimensional X-ray imaging and analysis of fungi on and in wood1 2 3 4 Running head: X-ray imaging of fungi Jan Van den Bulcke1 , Matthieu Boone2 , Joris Van Acker1 , Luc Van Hoorebeke2 5 6 7 8 9 and analysis of fungi on and in wood. Microscopy and Microanalysis 15(5): 395-402. DOI: 10.1017/S

  18. X-ray standing wave analysis of nanostructures using partially coherent radiation

    NASA Astrophysics Data System (ADS)

    Tiwari, M. K.; Das, Gangadhar; Bedzyk, M. J.

    2015-09-01

    The effect of longitudinal (or temporal) coherence on total reflection assisted x-ray standing wave (TR-XSW) analysis of nanoscale materials is quantitatively demonstrated by showing how the XSW fringe visibility can be strongly damped by decreasing the spectral resolution of the incident x-ray beam. The correction for nonzero wavelength dispersion (?? ? 0) of the incident x-ray wave field is accounted for in the model computations of TR-XSW assisted angle dependent fluorescence yields of the nanostructure coatings on x-ray mirror surfaces. Given examples include 90 nm diameter Au nanospheres deposited on a Si(100) surface and a 3 nm thick Zn layer trapped on top a 100 nm Langmuir-Blodgett film coating on a Au mirror surface. Present method opens up important applications, such as enabling XSW studies of large dimensioned nanostructures using conventional laboratory based partially coherent x-ray sources.

  19. Electronic Structure of AC-Clusters and High-Resolution X-ray Spectra of Actinides in Solids

    SciTech Connect

    Kulagin, Nicolay Alex

    2007-07-01

    Ab initio calculations using SCF approach for and analysis of results of investigation of the electronic structure of the clusters RAn+:[L]k with rare earths or actinides were carried out for the clusters in solids and liquids. Theoretical results for the electronic structure, radial integrals and energy of X- ray lines are presented for AC ions with unoccupied 5f-shell in the clusters in oxides, chlorides and fluorides environment. Possibility of collapse of nf-shell for the separate clusters and identification of electronic state of ions with unstable nuclei, are discussed, too. (author)

  20. Hard X-ray Time-Resolved/Space-Resolved X-ray Absorption Fine Structure Analysis for Heterogeneous Metal Catalysts

    NASA Astrophysics Data System (ADS)

    Tada, Mizuki

    2013-02-01

    Our recent examples of time-resolved and space-resolved X-ray absorption fine structure (XAFS) for heterogeneous solid catalysts are highlighted. In-situ time-resolved XAFS analysis of heterogeneous catalysts has provided new pieces of information on the structures of real active species on heterogeneous catalyst surfaces and their dynamic structural changes under reaction conditions. The structural transformation and phase separation of Pt--Sn alloy particles on support surfaces and the structural kinetics and reaction mechanism of Pt/C and Pt3Co alloy/C cathode catalysts in polymer electrolyte fuel cells (PEFCs) were investigated by in-situ time-resolved XAFS. The recent development and example of space-resolved XAFS, which shows us microscopic structural information of practical catalyst particles, are also introduced.

  1. Laser Assisted Emittance Exchange: Downsizing the X-ray Free Electron Laser

    SciTech Connect

    Xiang, Dao; /SLAC

    2009-12-11

    A technique is proposed to generate electron beam with ultralow transverse emittance through laser assisted transverse-to-longitudinal emittance exchange. In the scheme a laser operating in the TEM10 mode is used to interact with the electron beam in a dispersive region and to initiate the emittance exchange. It is shown that with the proposed technique one can significantly downsize an x-ray free electron laser (FEL), which may greatly extend the availability of these light sources. A hard x-ray FEL operating at 1.5 {angstrom} with a saturation length within 30 meters using a 3.8 GeV electron beam is shown to be practically feasible.

  2. Conjugate observation of electron microburst groups by Bremsstrahlung X-ray and riometer techniques

    SciTech Connect

    Siren, J.C.; Rosenberg, T.J.; Detrick, D.; Lanzerotti, L.J.

    1980-12-01

    The first evidence is reported of simultaneous conjugate electron microburst group precipitation. Groups of bremsstrahlung X ray microbursts (E>25 keV) were observed during a substorm recovery phase by a balloon-borne scintillation counter over Roberval, Quebec, Canada. The microburst groups were accompanied one-to-one by time-delayed and broadened pulses of ionospheric absorption measured by a high sensitivity 30-MHz riometer at Siple Station, Antarctica (Lapprox. =4.1). For the interval of highest correlation, the absolute lag between the two data sets was 4 +- 1 s, to the limit of the relative timing accuracy. Approximately 2 s of the observed lag had been introduces by a low-pass filter in the riometer data acquistion unit. The remainder (2 s) was due to the ionospheric recombination process, which evidently had a response time (tauapprox.5 s) during this event much shorter than that ordinarily associated with the D region of the ionosphere. Model calculations of the ionspheric response to time-varying precipitation, derived from the profile of the measurement X ray flux, provide a consistent picture of simultaneous microburst group precipitation at conjugate points, absolute absorption and the electron spectrum derived from X rays, the degree of variation in absorption and X ray fluxes, and the characteristic ionospheric time constant at the altitude of maximum energy deposition.

  3. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    SciTech Connect

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  4. The soft X-ray background towards the northern sky. A detailed analysis of the Milky Way halo

    E-print Network

    J. Pradas; J. Kerp; P. M. W. Kalberla

    2002-11-19

    We present a correlation analysis of the diffuse X-ray background emission of the ROSAT all-sky survey with the Leiden/Dwingeloo 21-cm HI line survey. We derive a consistent model for the diffuse X-ray background emission over about 50% of the sky. Only three diffuse X-ray components are necessary to fit the ROSAT data from 0.1 keV to 2.4 keV: a) the Local Hot Bubble, b) the Milky Way Halo, and c) the extragalactic X-ray background. Only one temperature of the hot coronal gas in the Milky Way Halo is needed. Our model predicts, that a major fraction of the 1/4 keV and about 50% of the 3/4 keV diffuse X-ray emission originates from the Milky Way Halo. We detect a difference between the intensities towards the Galactic center and its anti-center, which is consistent with the electron density distribution independently derived from pulsar dispersion measurements.

  5. Local x-ray structure analysis of optically manipulated biological micro-objects

    SciTech Connect

    Cojoc, Dan; Ferrari, Enrico; Santucci, Silvia C.; Amenitsch, Heinz; Sartori, Barbara; Rappolt, Michael; Marmiroli, Benedetta; Burghammer, Manfred; Riekel, Christian

    2010-12-13

    X-ray diffraction using micro- and nanofocused beams is well suited for nanostructure analysis at different sites of a biological micro-object. To conduct in vitro studies without mechanical contact, we developed object manipulation by optical tweezers in a microfluidic cell. Here we report x-ray microdiffraction analysis of a micro-object optically trapped in three dimensions. We revealed the nanostructure of a single starch granule at different points and investigated local radiation damage induced by repeated x-ray exposures at the same position, demonstrating high stability and full control of the granule orientation by multiple optical traps.

  6. Measurement of electron energy distribution from X-rays diagnostics - foil techniques used with the hard X-ray camera on PBX-M

    SciTech Connect

    Goeler, S. von; Bell, R.; Bernabei, S.; Davis, W.; Ignat, D.

    1995-12-31

    A half-screen foil technique is used with the Hard X-ray Camera on the PBX-M tokamak to determine the energy distribution of the suprathermal electrons generated during lower hybrid current drive. The ratio of perpendicular to parallel temperature of the suprathermal electrons is deduced from the anisotropy of the bremsstrahlung emission utilizing Abel inversion techniques. Results from lower hybrid current drive discharges are discussed.

  7. Electronic intraoral dental x-ray imaging system employing a direct-sensing CCD array

    NASA Astrophysics Data System (ADS)

    Cox, John D.; Langford, D. S.; Williams, Donald W.

    1993-12-01

    A commercial prototype intraoral radiography system has been developed that can provide digital x-ray images for diagnosis. The system consists of an intraoral detector head, an intermediate drive electronics package, a main drive electronics package, and a PC-based digital image management system. The system has the potential to replace the use of dental film in intraoral radiographic examinations. High-resolution images are acquired, then displayed on a CRT within seconds of image acquisition.

  8. Gigavolt-Energy Electrons and Femtosecond-Duration Hard X-Rays Driven by Extreme Light

    NASA Astrophysics Data System (ADS)

    Umstadter, Donald

    2012-06-01

    The interactions of high-peak power laser light focused to extremely high intensity, or ``extreme light,'' is at the core of high-energy laser-driven electron accelerators, and novel laser-synchrotron x-ray light sources. The hallmark of extreme light is its ability to cause the instantaneous electron quiver motion to become relativistic. We discuss recent progress in understanding the physics of extreme light, and the advanced electron and x-ray technologies that it drives. Through the mechanism of relativistic self-guiding, focused light from our 100-TW Diocles laser was propagated in plasma at relativistic intensity for distance of 1 cm [corresponding to over 15 vacuum diffraction (Rayleigh) ranges]. As a result of this extended propagation length, electrons were accelerated by a laser-wakefield to near GeV energy in a well-collimated beam. The electron beam was measured to be tunable over a wide energy range, 100 -- 800 MeV, with 5-- 25% energy spread, and 1-- 4-mrad divergence angle. The experimental results were found to be in reasonable agreement with the results of numerical simulation, which predict even higher electron energy (multi-GeV) with our recently upgraded peak laser power (>0.5 PW). These characteristics, along with their lack of any measurable amount of dark-current, make these electron beams good candidates for driving synchrotron x-ray sources. The development of one such x-ray source will also be discussed, one driven by inverse Compton scattering of laser light by laser-accelerated electrons. Its small radiation source size (˜ 10 microns) and low angular beam divergence (< 10 mrad) make it quite promising for applications in radiology. By virtue of its ultra-short pulse duration (< 10 fs) and wide energy tunability (10 keV -- 10 MeV), it can also be used to probe matter with atomic-scale spatial and temporal resolution---simultaneously.

  9. Combining X-ray and electron-microscopy data to solve crystal structures

    SciTech Connect

    Navaza, Jorge

    2008-01-01

    Overview and examples of combined use of X-ray and electron-microscopy data. Low-resolution electron-microscopy reconstructions can be used as search models in molecular replacement or may be combined with existing monomeric structures in order to produce multimeric models suitable for molecular replacement. The technique is described in the case of viral and subviral particles as well as in the case of oligomeric proteins.

  10. Deducing the electron-beam diameter in a laser-plasma accelerator using x-ray betatron radiation.

    PubMed

    Schnell, Michael; Sävert, Alexander; Landgraf, Björn; Reuter, Maria; Nicolai, Maria; Jäckel, Oliver; Peth, Christian; Thiele, Tobias; Jansen, Oliver; Pukhov, Alexander; Willi, Oswald; Kaluza, Malte C; Spielmann, Christian

    2012-02-17

    We investigate the properties of a laser-plasma electron accelerator as a bright source of keV x-ray radiation. During the interaction, the electrons undergo betatron oscillations and from the carefully measured x-ray spectrum the oscillation amplitude of the electrons can be deduced which decreases with increasing electron energies. From the oscillation amplitude and the independently measured x-ray source size of (1.8±0.3) ?m we are able to estimate the electron bunch diameter to be (1.6±0.3) ?m. PMID:22401215

  11. Deducing the Electron-Beam Diameter in a Laser-Plasma Accelerator Using X-Ray Betatron Radiation

    NASA Astrophysics Data System (ADS)

    Schnell, Michael; Sävert, Alexander; Landgraf, Björn; Reuter, Maria; Nicolai, Maria; Jäckel, Oliver; Peth, Christian; Thiele, Tobias; Jansen, Oliver; Pukhov, Alexander; Willi, Oswald; Kaluza, Malte C.; Spielmann, Christian

    2012-02-01

    We investigate the properties of a laser-plasma electron accelerator as a bright source of keV x-ray radiation. During the interaction, the electrons undergo betatron oscillations and from the carefully measured x-ray spectrum the oscillation amplitude of the electrons can be deduced which decreases with increasing electron energies. From the oscillation amplitude and the independently measured x-ray source size of (1.8±0.3)?m we are able to estimate the electron bunch diameter to be (1.6±0.3)?m.

  12. Electron trapping in evolving coronal structures during a large gradual hard X-ray/radio burst

    NASA Technical Reports Server (NTRS)

    Bruggmann, G.; Vilmer, N.; Klein, K.-L.; Kane, S. R.

    1994-01-01

    Gradual hard X-ray/radio bursts are characterized by their long duration, smooth time profile, time delays between peaks at different hard X-ray energies and microwaves, and radiation from extended sources in the low and middle corona. Their characteristic properties have been ascribed to the dynamic evolution of the accelerated electrons in coronal magnetic traps or to the separate acceleration of high-energy electrons in a 'second step' process. The information available so far was drawn from quality considerations of time profiles or even only from the common occurrence of emissions in different spectral ranges. This paper presents model computations of the temporal evolution of hard X-ray and microwave spectra, together with a qualitative discussion of radio lightcurves over a wide spectral range, and metric imaging observations. The basis hypothesis investigated is that the peculiar 'gradual' features can be related to the dynamical evolution of electrons injected over an extended time interval in a coronal trap, with electrons up to relativistic energies being injected simultaneously. The analyzed event (26 April. 1981) is particularly challenging to this hypothesis because of the long time delays between peaks at different X-ray energies and microwave frequencies. The observations are shown to be consistent with the hypothesis, provided that the electrons lose their energy by Coulomb collisions and possibly betatron deceleration. The access of the electrons to different coronal structures varies in the course of the event. The evolution and likely destabilization of part of the coronal plasma-magnetic field configuration is of crucial influence in determining the access to these structures and possibly the dynamical evolution of the trapped electrons through betatron deceleration in the late phase of the event.

  13. Purification, crystallization and preliminary X-ray analysis of struthiocalcin 1 from ostrich (Struthio camelus) eggshell

    PubMed Central

    Reyes-Grajeda, Juan Pablo; Marín-García, Liliana; Stojanoff, Vivian; Moreno, Abel

    2007-01-01

    The purification, crystallization and preliminary X-ray analysis of struthiocalcin 1 (SCA-1), a protein obtained from the intramineral part of ostrich (Struthio camelus) eggshell, is reported. PMID:18007058

  14. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    SciTech Connect

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; Patthey, L.; Sikorski, M.; Song, S.; Feng, Y.; David, C.

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy of >1 mJ with a 120 Hz repetition rate, obtaining a resolving power of ?/?? > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.

  15. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE PAGESBeta

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; et al

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore »>1 mJ with a 120 Hz repetition rate, obtaining a resolving power of ?/?? > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  16. Bayesian analysis of X-ray jet features of the high redshift quasar jets observed with Chandra

    NASA Astrophysics Data System (ADS)

    McKeough, Kathryn; Siemiginowska, Aneta; Kashyap, Vinay; Stein, Nathan; Cheung, Chi C.

    2015-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet's relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. Results from Chandra X-ray and multi-frequency VLA imaging observations of a sample of 11 high- redshift (z > 2) quasars with kilo-parsec scale radio jets are reported. The sample consists of a set of four z ? 3.6 flat-spectrum radio quasars, and seven intermediate redshift (z = 2.1 - 2.9) quasars comprised of four sources with integrated steep radio spectra and three with flat radio spectra.We implement a Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) , to analyze jet features in the X-ray images of the high redshift quasars. Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. Significant detections are based on the upper bound p-value test based on LIRA simulations. The X-ray and radio properties of this sample combined are examined and compared to lower-redshift samples.This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. Work is also supported by the Chandra grant GO4-15099X.

  17. Three-dimensional attosecond resonant stimulated X-ray Raman spectroscopy of electronic excitations in core-ionized glycine.

    PubMed

    Zhang, Yu; Biggs, Jason D; Hua, Weijie; Dorfman, Konstantin E; Mukamel, Shaul

    2014-11-28

    We investigate computationally the valence electronic excitations of the amino acid glycine prepared by a sudden nitrogen core ionization induced by an attosecond X-ray pump pulse. The created superposition of cationic excited states is probed by two-dimensional transient X-ray absorption and by three dimensional attosecond stimulated X-ray Raman signals. The latter, generated by applying a second broadband X-ray pulse combined with a narrowband pulse tuned to the carbon K-edge, reveal the complex coupling between valence and core-excited manifolds of the cation. PMID:25297460

  18. THE XMM-NEWTON/EPIC X-RAY LIGHT CURVE ANALYSIS OF WR 6

    SciTech Connect

    Ignace, R.; Gayley, K. G.; Hamann, W.-R.; Oskinova, L. M.; Huenemoerder, D. P.; Pollock, A. M. T.; McFall, M.

    2013-09-20

    We obtained four pointings of over 100 ks each of the well-studied Wolf-Rayet star WR 6 with the XMM-Newton satellite. With a first paper emphasizing the results of spectral analysis, this follow-up highlights the X-ray variability clearly detected in all four pointings. However, phased light curves fail to confirm obvious cyclic behavior on the well-established 3.766 day period widely found at longer wavelengths. The data are of such quality that we were able to conduct a search for event clustering in the arrival times of X-ray photons. However, we fail to detect any such clustering. One possibility is that X-rays are generated in a stationary shock structure. In this context we favor a corotating interaction region (CIR) and present a phenomenological model for X-rays from a CIR structure. We show that a CIR has the potential to account simultaneously for the X-ray variability and constraints provided by the spectral analysis. Ultimately, the viability of the CIR model will require both intermittent long-term X-ray monitoring of WR 6 and better physical models of CIR X-ray production at large radii in stellar winds.

  19. A compact X-ray free-electron laser emitting in the sub-ångström region

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tetsuya; Aoyagi, Hideki; Asaka, Takao; Asano, Yoshihiro; Azumi, Noriyoshi; Bizen, Teruhiko; Ego, Hiroyasu; Fukami, Kenji; Fukui, Toru; Furukawa, Yukito; Goto, Shunji; Hanaki, Hirofumi; Hara, Toru; Hasegawa, Teruaki; Hatsui, Takaki; Higashiya, Atsushi; Hirono, Toko; Hosoda, Naoyasu; Ishii, Miho; Inagaki, Takahiro; Inubushi, Yuichi; Itoga, Toshiro; Joti, Yasumasa; Kago, Masahiro; Kameshima, Takashi; Kimura, Hiroaki; Kirihara, Yoichi; Kiyomichi, Akio; Kobayashi, Toshiaki; Kondo, Chikara; Kudo, Togo; Maesaka, Hirokazu; Maréchal, Xavier M.; Masuda, Takemasa; Matsubara, Shinichi; Matsumoto, Takahiro; Matsushita, Tomohiro; Matsui, Sakuo; Nagasono, Mitsuru; Nariyama, Nobuteru; Ohashi, Haruhiko; Ohata, Toru; Ohshima, Takashi; Ono, Shun; Otake, Yuji; Saji, Choji; Sakurai, Tatsuyuki; Sato, Takahiro; Sawada, Kei; Seike, Takamitsu; Shirasawa, Katsutoshi; Sugimoto, Takashi; Suzuki, Shinsuke; Takahashi, Sunao; Takebe, Hideki; Takeshita, Kunikazu; Tamasaku, Kenji; Tanaka, Hitoshi; Tanaka, Ryotaro; Tanaka, Takashi; Togashi, Tadashi; Togawa, Kazuaki; Tokuhisa, Atsushi; Tomizawa, Hiromitsu; Tono, Kensuke; Wu, Shukui; Yabashi, Makina; Yamaga, Mitsuhiro; Yamashita, Akihiro; Yanagida, Kenichi; Zhang, Chao; Shintake, Tsumoru; Kitamura, Hideo; Kumagai, Noritaka

    2012-08-01

    The free-electron laser, first proposed by Madey in 1971, has significantly reduced laser wavelengths to the vacuum ultraviolet and soft X-ray regions. Recently, an X-ray free-electron laser (XFEL) was operated at 1.2 Å at the Linac Coherent Light Source (LCLS). Here, we report the successful generation of sub-ångström laser light using a compact XFEL source, combining a short-period undulator with an 8 GeV electron beam. The shortest wavelength attained--0.634 Å (63.4 pm)--is four orders of magnitude smaller than the 694 nm generated by Maiman's first laser. The maximum power exceeded 10 GW with a pulse duration of 10-14 s. This achievement will contribute to the widespread use of XFEL sources and provide broad opportunities for exploring new fields in science.

  20. Electron Beam Production and Characterization for the PLEIADES Thomson X-Ray Source

    NASA Astrophysics Data System (ADS)

    Brown, W. J.; Hartemann, F. V.; Tremaine, A. M.; Springer, P. T.; Le Sage, G. P.; Barty, C. P. J.; Rosenzweig, J. B.; Crane, J. K.; Cross, R. R.; Fittinghoff, D. N.; Gibson, D. J.; Slaughter, D. R.; Anderson, S.

    2002-12-01

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. Simulations of beam production, transport, and focus are presented. It is shown that a 1 ps, 500 pC electron bunch with a normalized emittance of less than 5 ?mm-mrad can be delivered to the interaction point. Initial electron measurements are presented. Calculations of expected x-ray flux are also performed, demonstrating an expected peak spectral brightness of 1020 photons/s/mm2/mrad2/0.1% bandwidth. Effects of RF phase jitter are also presented, and planned phase measurements and control methods are discussed.

  1. Electron beams and X ray radiation generated by laser wakefield in capillary tubes

    NASA Astrophysics Data System (ADS)

    Cros, B.; Ju, J.; Döpp, A.; Cassou, K.; Ferrari, H. E.; Maynard, G.; Genoud, G.; Wojda, F.; Svensson, K.; Burza, M.; Lundh, O.; Persson, A.; Wahlström, C.-G.

    2012-12-01

    Laser wakefield is generated inside capillary tubes in order to study the conditions for self-injection of plasma electrons and their acceleration inside a large domain of parameters. Dielectric capillary tubes are employed to guide the laser pulse and collect laser energy around the central focal spot to favor laser propagation. Electrons are observed to be self-injected and accelerated to the 200 MeV range when a peak laser intensity as low as 5×1017 W/cm2 is used. X-rays emitted by betatron radiation constitute a precise diagnostic of the electron acceleration process. Furthermore, the peak brightness of X-rays is increased to 1021 ph/s/mm2/mrad2/0.1%BW when the laser pulse is focused to 5×1018 W/cm2, which is about 30 times higher than the value obtained by using a 2 mm gas jet.

  2. Boiling the Vacuum with AN X-Ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Ringwald, A.

    2004-10-01

    X-ray free electron lasers will be constructed in this decade, both at SLAC in the form of the so-called Linac Coherent Light Source as well as at DESY, where the so-called TESLA XFEL laboratory uses techniques developed for the design of the TeV energy superconducting electron-positron linear accelerator TESLA. Such X-ray lasers may allow also for high-field science applications by exploiting the possibility to focus their beams to a spot with a small radius, hopefully in the range of the laser wavelength. Along this route one obtains very large electric fields, much larger than those obtainable with any optical laser of the same power. We consider here the possibility of obtaining an electric field so high that electron-positron pairs are spontaneously produced in vacuum (Schwinger pair production) and review the prospects to verify this non-perturbative production mechanism for the first time in the laboratory.

  3. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    SciTech Connect

    Hamad, K.S.

    2000-05-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  4. Direct and secondary nuclear excitation with x-ray free-electron lasers

    E-print Network

    Jonas Gunst; Yuanbin Wu; Naveen Kumar; Christoph H. Keitel; Adriana Pálffy

    2015-11-23

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic theoretical model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of $^{93}$Mo, or it can be negligible, as it is the case for the 14.4 keV M\\"ossbauer transition in $^{57}\\mathrm{Fe}$. These findings are most relevant for future nuclear quantum optics experiments at x-ray free electron laser facilities.

  5. Direct and secondary nuclear excitation with x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Gunst, Jonas; Wu, Yuanbin; Kumar, Naveen; Keitel, Christoph H.; Pálffy, Adriana

    2015-11-01

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic theoretical model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of 93Mo, or it can be negligible, as it is the case for the 14.4 keV Mössbauer transition in 57Fe. These findings are most relevant for future nuclear quantum optics experiments at x-ray free electron laser facilities.

  6. Direct and secondary nuclear excitation with x-ray free-electron lasers

    E-print Network

    Jonas Gunst; Yuanbin Wu; Naveen Kumar; Christoph H. Keitel; Adriana Pálffy

    2015-08-27

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of $^{93}$Mo, or it can be negligible, as it is the case for the 14.4 keV M\\"ossbauer transition in $^{57}\\mathrm{Fe}$. These findings are most relevant for future nuclear quantum optics experiments at x-ray free electron laser facilities.

  7. Iron speciation in human cancer cells by K-edge total reflection X-ray fluorescence-X-ray absorption near edge structure analysis

    NASA Astrophysics Data System (ADS)

    Polgári, Zs.; Meirer, F.; Sasamori, S.; Ingerle, D.; Pepponi, G.; Streli, C.; Rickers, K.; Réti, A.; Budai, B.; Szoboszlai, N.; Záray, G.

    2011-03-01

    X-ray absorption near edge structure (XANES) analysis in combination with synchrotron radiation induced total reflection X-ray fluorescence (SR-TXRF) acquisition was used to determine the oxidation state of Fe in human cancer cells and simultaneously their elemental composition by applying a simple sample preparation procedure consisting of pipetting the cell suspension onto the quartz reflectors. XANES spectra of several inorganic and organic iron compounds were recorded and compared to that of different cell lines. The XANES spectra of cells, independently from the phase of cell growth and cell type were very similar to that of ferritin, the main Fe store within the cell. The spectra obtained after CoCl 2 or NiCl 2 treatment, which could mimic a hypoxic state of cells, did not differ noticeably from that of the ferritin standard. After 5-fluorouracil administration, which could also induce an oxidative-stress in cells, the absorption edge position was shifted toward higher energies representing a higher oxidation state of Fe. Intense treatment with antimycin A, which inhibits electron transfer in the respiratory chain, resulted in minor changes in the spectrum, resembling rather the N-donor Fe-?,?'-dipyridyl complex at the oxidation energy of Fe(III), than ferritin. The incorporation of Co and Ni in the cells was followed by SR-TXRF measurements.

  8. ELECTRON ENERGY PARTITION IN THE ABOVE-THE-LOOPTOP SOLAR HARD X-RAY SOURCES

    SciTech Connect

    Oka, Mitsuo; Krucker, Säm; Hudson, Hugh S.; Saint-Hilaire, Pascal

    2015-02-01

    Solar flares produce non-thermal electrons with energies up to tens of MeVs. To understand the origin of energetic electrons, coronal hard X-ray (HXR) sources, in particular above-the-looptop sources, have been studied extensively. However, it still remains unclear how energies are partitioned between thermal and non-thermal electrons within the above-the-looptop source. Here we show that the kappa distribution, when compared to conventional spectral models, can better characterize the above-the-looptop HXRs (?15 keV) observed in four different cases. The widely used conventional model (i.e., the combined thermal plus power-law distribution) can also fit the data, but it returns unreasonable parameter values due to a non-physical sharp lower-energy cutoff E{sub c}. In two cases, extreme-ultraviolet data were available from SDO/AIA and the kappa distribution was still consistent with the analysis of differential emission measure. Based on the kappa distribution model, we found that the 2012 July 19 flare showed the largest non-thermal fraction of electron energies about 50%, suggesting equipartition of energies. Considering the results of particle-in-cell simulations, as well as density estimates of the four cases studied, we propose a scenario in which electron acceleration is achieved primarily by collisionless magnetic reconnection, but the electron energy partition in the above-the-looptop source depends on the source density. In low-density above-the-looptop regions (few times 10{sup 9} cm{sup –3}), the enhanced non-thermal tail can remain and a prominent HXR source is created, whereas in higher-densities (>10{sup 10} cm{sup –3}), the non-thermal tail is suppressed or thermalized by Coulomb collisions.

  9. Hard x-ray tomographic studies of the destruction of an energetic electron ring

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W.; Pribyl, P.

    2013-05-01

    A tomography system was designed and built at the Large Plasma Device to measure the spatial distribution of hard x-ray (100 KeV-3 MeV) emissivity. The x-rays were generated when a hot electron ring was significantly disrupted by a shear Alfvén wave. The plasma is pulsed at 1 Hz (1 shot/s). A lead shielded scintillator detector with an acceptance angle defined by a lead pinhole is mounted on a rotary gimbal and used to detect the x-rays. The system measures one chord per plasma shot using only one detector. A data plane usually consists of several hundred chords. A novel Dot by Dot Reconstruction (DDR) method is introduced to calculate the emissivity profile from the line integrated data. In the experiments, there are often physical obstructions, which make measurements at certain angles impossible. The DDR method works well even in this situation. The method was tested with simulated data, and was found to be more effective than previously published methods for the specific geometry of this experiment. The reconstructed x-ray emissivity from experimental data by this method is shown.

  10. An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis

    SciTech Connect

    Geyer, Scott M.; Methaapanon, Rungthiwa; Kim, Woo-Hee; Bent, Stacey F.; Johnson, Richard W.; Van Campen, Douglas G.; Metha, Apurva

    2014-05-15

    The crystal structure of thin films grown by atomic layer deposition (ALD) will determine important performance properties such as conductivity, breakdown voltage, and catalytic activity. We report the design of an atomic layer deposition chamber for in situ x-ray analysis that can be used to monitor changes to the crystal structural during ALD. The application of the chamber is demonstrated for Pt ALD on amorphous SiO{sub 2} and SrTiO{sub 3} (001) using synchrotron-based high resolution x-ray diffraction, grazing incidence x-ray diffraction, and grazing incidence small angle scattering.

  11. An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis.

    PubMed

    Geyer, Scott M; Methaapanon, Rungthiwa; Johnson, Richard W; Kim, Woo-Hee; Van Campen, Douglas G; Metha, Apurva; Bent, Stacey F

    2014-05-01

    The crystal structure of thin films grown by atomic layer deposition (ALD) will determine important performance properties such as conductivity, breakdown voltage, and catalytic activity. We report the design of an atomic layer deposition chamber for in situ x-ray analysis that can be used to monitor changes to the crystal structural during ALD. The application of the chamber is demonstrated for Pt ALD on amorphous SiO2 and SrTiO3 (001) using synchrotron-based high resolution x-ray diffraction, grazing incidence x-ray diffraction, and grazing incidence small angle scattering. PMID:24880424

  12. An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis

    NASA Astrophysics Data System (ADS)

    Geyer, Scott M.; Methaapanon, Rungthiwa; Johnson, Richard W.; Kim, Woo-Hee; Van Campen, Douglas G.; Metha, Apurva; Bent, Stacey F.

    2014-05-01

    The crystal structure of thin films grown by atomic layer deposition (ALD) will determine important performance properties such as conductivity, breakdown voltage, and catalytic activity. We report the design of an atomic layer deposition chamber for in situ x-ray analysis that can be used to monitor changes to the crystal structural during ALD. The application of the chamber is demonstrated for Pt ALD on amorphous SiO2 and SrTiO3 (001) using synchrotron-based high resolution x-ray diffraction, grazing incidence x-ray diffraction, and grazing incidence small angle scattering.

  13. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator

    SciTech Connect

    Huang, Zhirong; Ding, Yuantao; Schroeder, Carl B.; /LBL, Berkeley

    2012-09-13

    Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent FEL radiation generation. In this paper, we discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for SASE and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

  14. X-ray fluorescence spectrum of highly charged Fe ions driven by strong free-electron-laser fields

    E-print Network

    Oreshkina, Natalia S; Keitel, Christoph H; Harman, Zoltán

    2015-01-01

    The influence of nonlinear dynamical effects is analyzed on the observed spectra of controversial 3C and 3D astrophysically relevant x-ray lines in neonlike Fe${}^{16+}$ and the A, B, C lines in natriumlike Fe${}^{15+}$ ions. First, a large-scale configuration-interaction calculation of oscillator strengths is performed with the inclusion of higher-order electron-correlation effects. Also, quantum-electrodynamic corrections to the transition energies are calculated. Further considered dynamical effects provide a possible resolution of the discrepancy between theory and experiment found by recent x-ray free-electron-laser measurements of these controversial lines. We find that, for strong x-ray sources, the modeling of the spectral lines by a peak with an area proportional to the oscillator strength is not sufficient and nonlinear dynamical effects have to be taken into account. Thus, we advocate the use of light-matter-interaction models also valid for strong light fields in the analysis and interpretation of...

  15. Multivariate statistics applications in scanning transmission electron microscopy X-ray spectrum imaging

    SciTech Connect

    Parish, Chad M

    2011-01-01

    A modern scanning transmission electron microscope (STEM) fitted with an energy dispersive X-ray spectroscopy (EDS) system can quickly and easily produce spectrum image (SI) datasets containing so much information (hundreds to thousands of megabytes) that they cannot be comprehensively interrogated by a human analyst. Therefore, advanced mathematical techniques are needed to glean materials science and engineering insight into the processing-structure-properties relationship of the examined material from the SI data. This review will discuss recent advances in the application of multivariate statistical analysis (MVSA) methods to STEM-EDS SI experiments. In particular, the fundamental mathematics of principal component analysis (PCA) and related methods are reviewed, and advanced methods such as multivariate curve resolution (MCR) are discussed. The applications of PCA and MCR-based techniques to solve difficult materials science problems, such as the analysis of a particle fully embedded in a matrix phase are discussed, as well as confounding effects such as rank deficiency that can confuse the results of MVSA computations. Possible future advances and areas in need of study are also mentioned.

  16. Catching Conical Intersections in the Act: Monitoring Transient Electronic Coherences by Attosecond Stimulated X-Ray Raman Signals

    E-print Network

    Mukamel, Shaul

    Catching Conical Intersections in the Act: Monitoring Transient Electronic Coherences by Attosecond is based on a coherent Raman process that employs a composite femtosecond or attosecond x-ray pulse recently developed attosecond broadband x-ray sources. Available optical techniques monitor state pop

  17. Pixel array detector for X-ray free electron laser experiments Hugh T. Philipp a,, Marianne Hromalik c

    E-print Network

    Gruner, Sol M.

    Pixel array detector for X-ray free electron laser experiments Hugh T. Philipp a,Ã, Marianne l e i n f o Available online 14 December 2010 Keywords: Pixel array detector X-ray detector XFEL at the many challenges of meeting the XFEL requirements [1,2]. This paper describes a pixel array detector

  18. Characterization of intense laser-produced fast electrons using hard x-rays via bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Sawada, H.; Sentoku, Y.; Bass, A.; Griffin, B.; Pandit, R.; Beg, F.; Chen, H.; McLean, H.; Link, A. J.; Patel, P. K.; Ping, Y.

    2015-11-01

    Energy distribution of high-power, short-pulse laser produced fast electrons was experimentally and numerically studied using high-energy bremsstrahlung x-rays. The hard x-ray photons and escaping electrons from various metal foils, irradiated by the 50 TW Leopard laser at Nevada Terawatt Facility, were recorded with a differential filter stack spectrometer that is sensitive to photons produced by mainly 0.5-2 MeV electrons and an electron spectrometer measuring >2 MeV electrons. The experimental bremsstrahlung and the slope of the measured escaped electrons were compared with an analytic calculation using an input electron spectrum estimated with the ponderomotive scaling. The result shows that the electron spectrum entering a Cu foil could be continuous single slope with the slope temperature of ˜1.5 MeV in the detector range. The experiment and analytic calculation were then compared with a 2D particle-in-cell code, PICLS, including a newly developed radiation transport module. The simulation shows that a two-temperature electron distribution is generated at the laser interaction region, but only the hot component of the fast electrons flow into the target during the interaction because the low energy electron component is trapped by self-generated magnetic field in the preformed plasma. A significant amount of the photons less than 100 keV observed in the experiment could be attributed to the low energy electrons entering the foil a few picoseconds later after the gating field disappears.

  19. The cyclotron spectrum of anisotropic ultrarelativistic electrons: interpretation of X-ray pulsar spectra

    E-print Network

    A. N. Baushev

    2008-04-10

    The spectrum of cyclotron radiation produced by electrons with a strongly anisotropic velocity distribution is calculated taking into account higher harmonics. The motion of the electrons is assumed to be ultrarelativistic along the magnetic field and nonrelativistic across the field. One characteristic feature of the resulting spectrum is that harmonics of various orders are not equally spaced. The physical properties and observed spectra of four X-ray pulsars displaying higher cyclotron harmonics are analyzed. The cyclotron features in the spectra of all four pulsars can be interpreted only as emission lines. Moreover, the observed harmonics are not equidistant, and display certain other properties characteristic of emission by strongly anisotropic ultrarelativistic electrons. In addition, there are indirect theoretical arguments that the electrons giving rise to cyclotron features in the spectra of X-ray pulsars are ultrarelativistic and characterized by strongly anisotropic distributions. As a result, estimates of the magnetic fields of X-ray pulsars (which are usually derived from the energies of cyclotron lines) and certain other physical parameters require substantial revision.

  20. Extended X-Ray Absorption Fine Structure Analysis of Crystalline Germanium at High Pressure

    NASA Astrophysics Data System (ADS)

    Mu, K.; Baldini, M.; Mao, W. L.

    2010-12-01

    Germanium (Ge) is an important semiconductor and analog material for Silicon. Crystalline Ge undergoes a series of pressure-induced transitions, including metallization and electronic changes [2], and a series of structural changes measured by XRD. The first phase transition of crystalline Ge from a diamond to ?-Sn structure, which is accompanied by metallization, has been well-documented at around 13 GPa, but the sequence of structural transitions at higher pressures is still debated [3, 4, 5]. We studied the structure changes of a crystalline Ge sample up to 90 GPa using Extended X-Ray Absorption Fine Structure (EXAFS). Structural phase transitions were observed at approximately 20, 77, and 90 GPa. At these pressures, several prominent peak shifts occur. In order to determine the local structure of crystalline Ge, the data were analyzed using Athena and Artemis software. The pressure behavior of the Ge-Ge bond lengths has been obtained, and this analysis of the various local structures of Ge will shed light on the material’s behavior at high pressure. [1.] Itié, J.-P., Baudelet, F., Dartyge, E., Fontaine, A., Tolentino, H., & San Miguel, A., X-ray absorption spectroscopy and high pressure. High Pressure Res. 8, 697-702 (1992). [2.] Struzhkin, V. V. et al., Valence band x-ray emission spectra of compressed germanium. Phys. Rev. Lett. 96, 137402 (2006). [3.] Vohra, Y. K., K. E. Brister, S. Desgreniers, A. L. Ruoff, K. J. Chang, and M. L. Cohen, Phys. Rev. Lett. 56, 1944 (1986). [4.] Nelmes, R. J., H. Liu, S. A. Belmonte, J. S. Loveday, M. I. McMahon, D. R. Allan, D. Hausermann, and M. Hanfland, Phys. Rev. B 53, R2907 (1996). [5.] Takemura, K., et al., High-Pressure Structures of Ge above 100 GPa, Phys. Stat. Sol. B 223, 385 (2001).

  1. Compression of X-ray Free Electron Laser Pulses to Attosecond Duration

    NASA Astrophysics Data System (ADS)

    Sadler, James D.; Nathvani, Ricky; Ole?kiewicz, Piotr; Ceurvorst, Luke A.; Ratan, Naren; Kasim, Muhammad F.; Trines, Raoul M. G. M.; Bingham, Robert; Norreys, Peter A.

    2015-11-01

    State of the art X-ray Free Electron Laser facilities currently provide the brightest X-ray pulses available, typically with mJ energy and several hundred femtosecond duration. Here we present one- and two-dimensional Particle-in-Cell simulations, utilising the process of stimulated Raman amplification, showing that these pulses are compressed to a temporally coherent, sub-femtosecond pulse at 8% efficiency. Pulses of this type may pave the way for routine time resolution of electrons in nm size potentials. Furthermore, evidence is presented that significant Landau damping and wave-breaking may be beneficial in distorting the rear of the interaction and further reducing the final pulse duration.

  2. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    SciTech Connect

    Luo, W.; College of Science, National University of Defense Technology, Changsha 410073 ; Zhuo, H. B.; Yu, T. P.; Ma, Y. Y.; Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 ; Song, Y. M.; Zhu, Z. C.; Yu, M. Y.; Theoretical Physics I, Ruhr University, D-44801 Bochum

    2013-10-21

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ?200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ?160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ?5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecond physics.”.

  3. Design considerations for the magnetic system of a prototype x-ray free electron laser

    SciTech Connect

    Vinokurov, N.A.; Dejus, R.; Friedsam, H.; Gluskin, E.S.; Maines, J.; Milton, S.V.; Moog, E.R.; Trakhtenberg, E.M.; Vasserman, I.B.

    1997-04-01

    A number of difficult technical challenges need to be solved in the fields of accelerator and free-electron laser (FEL) technologies in order to build an X-ray FEL. One of the tasks well suited to the Advanced Photon Source Low Energy Undulator Test Line (LEUTL) is to take the intermediate step of solving some of the problems of single-pass FEL operation in the ultraviolet range. The existing Advanced Photon Source (APS) linac, in addition to its role of supply positrons for the APS storage ring, will also be used to generate the particle beam for the LEUTL. Here, the design of the magnetic system for the high gain soft x-ray free electron laser is described.

  4. Optimization of an electron cold cathode tube for soft X-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Geyer, J.; Reisel, J.; Flock, J.; Broekaert, J. A. C.

    2000-01-01

    The electron cold cathode tube for soft X-ray spectrometry was optimized. Therefore, the use of different cathode materials (aluminium, titanium and steel) was investigated with respect to the produced plasma and its discharge conditions. The current/voltage characteristics for different materials and electrode distances were measured in dependence of the operating pressure. In addition the intensities and spectral properties of the generated soft X-rays of a steel sample were compared and the sputtered surfaces of the cathodes were analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found that aluminium cathodes yield high intensities of analytical lines, while the discharge can hardly be kept stable. Titanium cathodes produce a stable discharge over a long period of time and are very suitable for practical work.

  5. Compression of X-ray Free Electron Laser Pulses to Attosecond Duration.

    PubMed

    Sadler, James D; Nathvani, Ricky; Ole?kiewicz, Piotr; Ceurvorst, Luke A; Ratan, Naren; Kasim, Muhammad F; Trines, Raoul M G M; Bingham, Robert; Norreys, Peter A

    2015-01-01

    State of the art X-ray Free Electron Laser facilities currently provide the brightest X-ray pulses available, typically with mJ energy and several hundred femtosecond duration. Here we present one- and two-dimensional Particle-in-Cell simulations, utilising the process of stimulated Raman amplification, showing that these pulses are compressed to a temporally coherent, sub-femtosecond pulse at 8% efficiency. Pulses of this type may pave the way for routine time resolution of electrons in nm size potentials. Furthermore, evidence is presented that significant Landau damping and wave-breaking may be beneficial in distorting the rear of the interaction and further reducing the final pulse duration. PMID:26568520

  6. Compression of X-ray Free Electron Laser Pulses to Attosecond Duration

    PubMed Central

    Sadler, James D.; Nathvani, Ricky; Ole?kiewicz, Piotr; Ceurvorst, Luke A.; Ratan, Naren; Kasim, Muhammad F.; Trines, Raoul M. G. M.; Bingham, Robert; Norreys, Peter A.

    2015-01-01

    State of the art X-ray Free Electron Laser facilities currently provide the brightest X-ray pulses available, typically with mJ energy and several hundred femtosecond duration. Here we present one- and two-dimensional Particle-in-Cell simulations, utilising the process of stimulated Raman amplification, showing that these pulses are compressed to a temporally coherent, sub-femtosecond pulse at 8% efficiency. Pulses of this type may pave the way for routine time resolution of electrons in nm size potentials. Furthermore, evidence is presented that significant Landau damping and wave-breaking may be beneficial in distorting the rear of the interaction and further reducing the final pulse duration. PMID:26568520

  7. X-ray absorption study of the electronic structure of Mn-doped amorphous Si

    SciTech Connect

    Arenholz, Elke; Zeng, Li; Huegel, A.; Helgren, E.; Hellman, F.; Piamonteze, C.; Arenholz, E.

    2008-03-08

    The electronic structure of Mn in amorphous Si (a-Mn{sub x}Si{sub 1?x}) is studied by X-ray absorption spectroscopy at the Mn L{sub 3,2} edges for x = 0.005-0.18. Except the x = 0.005 sample, which shows a slight signature of Mn{sup 2+} atomic multiplets associated with a local Mn moment, all samples have broad and featureless L{sub 3,2} absorption peaks, corresponding to an itinerant state for all 3d electrons. The broad X-ray absorption spectra exclude the possibility of a localized 3d moment and explain the unexpectedly quenched Mn moment in this magnetically-doped amorphous semiconductor. Such a fully delocalized d state of Mn dopant in Si has not been previously suggested.

  8. State-of-the-art and problems of X-ray diffraction analysis of biomacromolecules

    SciTech Connect

    Andreeva, N. S.

    2006-12-15

    The state-of-the-art of X-ray diffraction studies of biomacromolecules is briefly characterized, and the challenge imposed by science is discussed. These studies are characterized by a wide scope and extensive use. This field of science is of great interest and is developed in many countries. The main purpose is to solve practical problems in medicine consisting in the design of drugs against various diseases. X-ray diffraction analysis of enzymes brought the pharmaceutical industry to a new level, thus allowing the rational design of drugs against formerly untreatable diseases. Modern X-ray diffraction studies of biomacromolecules laid the basis for a new science called structural biology. This method allows one to solve fundamental problems of physical chemistry for a new state of matter existing in living systems. Here, science poses numerous problems in analysis of X-ray diffraction data on biological macromolecules. Many of theses problems are in their infancy.

  9. [Study on spectrum analysis of X-ray based on rotational mass effect in special relativity].

    PubMed

    Yu, Zhi-Qiang; Xie, Quan; Xiao, Qing-Quan

    2010-04-01

    Based on special relativity, the formation mechanism of characteristic X-ray has been studied, and the influence of rotational mass effect on X-ray spectrum has been given. A calculation formula of the X-ray wavelength based upon special relativity was derived. Error analysis was carried out systematically for the calculation values of characteristic wavelength, and the rules of relative error were obtained. It is shown that the values of the calculation are very close to the experimental values, and the effect of rotational mass effect on the characteristic wavelength becomes more evident as the atomic number increases. The result of the study has some reference meaning for the spectrum analysis of characteristic X-ray in application. PMID:20545180

  10. Analysis and design of grazing incidence x-ray optics for pulsar navigation

    NASA Astrophysics Data System (ADS)

    Zuo, Fuchang; Chen, Jianwu; Li, Liansheng; Mei, Zhiwu

    2013-10-01

    As a promising new technology for deep space exploration due to autonomous capability, pulsar navigation has attracted extensive attentions from academy and engineering domains. The pulsar navigation accuracy is determined by the measurement accuracy of Time of Arrival (TOA) of X-ray photon, which can be enhanced through design of appropriate optics. The energy band of X-ray suitable for pulsar navigation is 0.1-10keV, the effective focusing of which can be primely and effectively realized by the grazing incidence reflective optics. The Wolter-I optics, originally proposed based on a paraboloid mirror and a hyperboloid mirror for X-ray imaging, has long been widely developed and employed in X-ray observatory. Some differences, however, remain in the requirements on optics between astronomical X-ray observation and pulsar navigation. X-ray concentrator, the simplified Wolter-I optics, providing single reflection by a paraboloid mirror, is more suitable for pulsar navigation. In this paper, therefore, the requirements on aperture, effective area and focal length of the grazing incidence reflective optics were firstly analyzed based on the characteristics, such as high time resolution, large effective area and low angular resolution, of the pulsar navigation. Furthermore, the preliminary design of optical system and overall structure, as well as the diaphragm, was implemented for the X-ray concentrator. Through optical and FEA simulation, system engineering analysis on the X-ray concentrator was finally performed to analyze the effects of environmental factors on the performance, providing basis and guidance for fabrication of the X-ray concentrator grazing incidence optics.

  11. Optimisation of X-ray micro-tomography for the low-dose analysis of highly-dosed gels

    E-print Network

    Doran, Simon J.

    . The scanner is based on a third-generation cone-beam X-ray CT scanner. A mini-focus X-ray source (Oxford XTFOptimisation of X-ray micro-tomography for the low-dose analysis of highly-dosed gels P M Jenneson to a polymer gel of 50 Gy was from 1.021 g/cm³ to 1.035 g/cm³ [2]. 2. Materials and methods An X-ray micro

  12. Analysis of microroughness evolution in X-ray astronomical multilayer mirrors by surface topography with the MPES program and by X-ray scattering

    E-print Network

    Canestrari, R; Pareschi, G

    2015-01-01

    Future hard X-ray telescopes (e.g. SIMBOL-X and Constellation-X) will make use of hard X-ray optics with multilayer coatings, with angular resolutions comparable to the achieved ones in the soft X-rays. One of the crucial points in X-ray optics, indeed, is multilayer interfacial microroughness that causes effective area reduction and X-Ray Scattering (XRS). The latter, in particular, is responsible for image quality degradation. Interfacial smoothness deterioration in multilayer deposition processes is commonly observed as a result of substrate profile replication and intrinsic random deposition noise. For this reason, roughness growth should be carefully investigated by surface topographic analysis, X-ray reflectivity and XRS measurements. It is convenient to express the roughness evolution in terms of interface Power Spectral Densities (PSD), that are directly related to XRS and, in turn, in affecting the optic HEW (Half Energy Width). In order to interpret roughness amplification and to help us to predict ...

  13. Contemporary X-ray electron-density studies using synchrotron radiation

    PubMed Central

    Jørgensen, Mads R. V.; Hathwar, Venkatesha R.; Bindzus, Niels; Wahlberg, Nanna; Chen, Yu-Sheng; Overgaard, Jacob; Iversen, Bo B.

    2014-01-01

    Synchrotron radiation has many compelling advantages over conventional radiation sources in the measurement of accurate Bragg diffraction data. The variable photon energy and much higher flux may help to minimize critical systematic effects such as absorption, extinction and anomalous scattering. Based on a survey of selected published results from the last decade, the benefits of using synchrotron radiation in the determination of X-ray electron densities are discussed, and possible future directions of this field are examined. PMID:25295169

  14. Suppression of x-rays generated by runaway electrons in ATF

    SciTech Connect

    Rasmussen, D.A.; England, A.C.; Eberle, C.C.; Devan, W.R.; Harris, J.H.; Jernigan, T.C.; Kindsfather, R.R.; Morris, R.N.; Murakami, M.; Neilson, G.H.

    1987-01-01

    X-ray emission from runaway electrons on ATF is a serious issue. Runaway suppression techniques used on Heliotron-E are not adequate for ATF. Three approaches have been developed to suppress runaway production. Monitoring devices have been installed in occupied areas and personnel access and exposure will be limited. Additional shielding will be added as required. These systems will be ready for installation and testing on ATF prior to commissioning or first plasma operation.

  15. Electron yield soft X-ray photoabsorption spectroscopy under normal ambient-pressure conditions.

    PubMed

    Tamenori, Yusuke

    2013-05-01

    Ambient-pressure soft X-ray photoabsorption spectroscopy (XAS) was demonstrated to be applicable to the chemical analysis of hydrated transition-metal compounds. For this purpose, even under ambient-pressure conditions, electron yield detection XAS (EY-XAS), based on a simple drain-current set-up, was used to overcome a weakness in fluorescence yield detection XAS (FY-XAS), which does not give a pure soft XAS. The feasibility of EY-XAS was investigated and it was clarified that the EY-XAS under ambient-pressure conditions corresponds to the mixed data of the total EY and conversion EY spectra. Normal ambient-pressure EY-XAS analysis was applied to anhydrous (CoCl2) and to hydrated (CoCl2·6H2O) cobalt chloride at the Co L23-edge. The present measurements demonstrated the ability to unambiguously distinguish the different chemical states of cobalt ions, relying upon spectral differences that indicate octahedral/quasi-octahedral structural changes as a result of hydration/dehydration reactions. PMID:23592620

  16. Microcalorimeter-type energy dispersive X-ray spectrometer for a transmission electron microscope.

    PubMed

    Hara, Toru; Tanaka, Keiichi; Maehata, Keisuke; Mitsuda, Kazuhisa; Yamasaki, Noriko Y; Ohsaki, Mitsuaki; Watanabe, Katsuaki; Yu, Xiuzhen; Ito, Takuji; Yamanaka, Yoshihiro

    2010-01-01

    A new energy dispersive X-ray spectrometer (EDS) with a microcalorimeter detector equipped with a transmission electron microscope (TEM) has been developed for high- accuracy compositional analysis in the nanoscale. A superconducting transition-edge-sensor-type microcalorimeter is applied as the detector. A cryogen-free cooling system, which consists of a mechanical and a dilution refrigerator, is selected to achieve long-term temperature stability. In order to mount these detector and refrigerators on a TEM, the cooling system is specially designed such that these two refrigerators are separated. Also, the detector position and arrangement are carefully designed to avoid adverse affects between the superconductor detector and the TEM lens system. Using the developed EDS system, at present, an energy resolution of 21.92 eV full-width-at-half maximum has been achieved at the Cr K alpha line. This value is about seven times better than that of the current typical commercial Si(Li) detector, which is usually around 140 eV. The developed microcalorimeter EDS system can measure a wide energy range, 1-20 keV, at one time with this high energy resolution that can resolve peaks from most of the elements. Although several further developments will be needed to enable practical use, highly accurate compositional analysis with high energy resolution will be realized by this microcalorimeter EDS system. PMID:19717388

  17. In-situ stoichiometry determination using x-ray fluorescence generated by reflection-high-energy-electron-diffraction

    SciTech Connect

    Keenan, Cameron; Chandril, Sandeep; Lederman, David; Myers, T. H.

    2011-06-01

    A major challenge in the stoichiometric growth of complex oxide compounds is the control of the relative compositions of the constituent materials. A potential avenue for compositional analysis during growth is the use of x-ray fluorescence generated during reflection high energy electron diffraction measurements. Using this technique, relative compositions of Y and Mn in molecular beam epitaxy grown YMnO{sub 3} samples were studied. Comparing the results with Rutherford back scattering spectroscopy suggests that the technique has the potential for real-time analysis of elemental fluxes and stoichiometry control during sample growth.

  18. In-situ stoichiometry determination using x-ray fluorescence generated by reflection-high-energy-electron-diffraction

    NASA Astrophysics Data System (ADS)

    Keenan, Cameron; Chandril, Sandeep; Myers, T. H.; Lederman, David

    2011-06-01

    A major challenge in the stoichiometric growth of complex oxide compounds is the control of the relative compositions of the constituent materials. A potential avenue for compositional analysis during growth is the use of x-ray fluorescence generated during reflection high energy electron diffraction measurements. Using this technique, relative compositions of Y and Mn in molecular beam epitaxy grown YMnO3 samples were studied. Comparing the results with Rutherford back scattering spectroscopy suggests that the technique has the potential for real-time analysis of elemental fluxes and stoichiometry control during sample growth.

  19. A long-lived coronal X-ray arcade. [force-free magnetic field analysis

    NASA Technical Reports Server (NTRS)

    Mcguire, J. P.; Tandberg-Hanssen, E.; Krall, K. R.; Wu, S. T.; Smith, J. B., Jr.; Speich, D. M.

    1977-01-01

    A large, long-lived, soft X-ray emitting arch system observed during a Skylab mission is analyzed. The supposition is that these arches owe their stability to the stable coronal magnetic-field configuration. A global constant alpha force-free magnetic field analysis, is used to describe the arches which stayed in the same approximate position for several solar rotations. A marked resemblance is noted between the theoretical magnetic field configuration and the observed X-ray emmitting feature.

  20. A review of advantages of high-efficiency X-ray spectrum imaging for analysis of nanostructured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Parish, Chad M.; Miller, Michael K.

    2015-07-01

    Nanostructured ferritic alloys (NFAs) exhibit complex microstructures consisting of 100-500 nm ferrite grains, grain boundary solute enrichment, and multiple populations of precipitates and nanoclusters (NCs). Understanding these materials' excellent creep and radiation-tolerance properties requires a combination of multiple atomic-scale experimental techniques. Recent advances in scanning transmission electron microscopy (STEM) hardware and data analysis methods have the potential to revolutionize nanometer-to micrometer-scale materials analysis. Modern high-brightness, high-X-ray collection STEM instruments are capable of enabling advanced experiments, such as simultaneous energy dispersive X-ray spectroscopy and electron energy loss spectroscopy spectrum imaging at nm to sub-nm resolution, that are now well-established for the study of nuclear materials. In this paper, we review past results and present new results illustrating the effectiveness of latest-generation STEM instrumentation and data analysis.

  1. Atomic holography with electrons and x-rays: Theoretical and experimental studies

    SciTech Connect

    Len, P M

    1997-06-01

    Gabor first proposed holography in 1948 as a means to experimentally record the amplitude and phase of scattered wavefronts, relative to a direct unscattered wave, and to use such a {open_quotes}hologram{close_quotes} to directly image atomic structure. But imaging at atomic resolution has not yet been possible in the way he proposed. Much more recently, Szoeke in 1986 noted that photoexcited atoms can emit photoelectron of fluorescent x-ray wavefronts that are scattered by neighboring atoms, thus yielding the direct and scattered wavefronts as detected in the far field that can then be interpreted as holographic in nature. By now, several algorithms for directly reconstructing three-dimensional atomic images from electron holograms have been proposed (e.g. by Barton) and successfully tested against experiment and theory. Very recently, Tegze and Faigel, and Grog et al. have recorded experimental x-ray fluorescence holograms, and these are found to yield atomic images that are more free of the kinds of aberrations caused by the non-ideal emission or scattering of electrons. The basic principles of these holographic atomic imaging methods are reviewed, including illustrative applications of the reconstruction algorithms to both theoretical and experimental electron and x-ray holograms. The author also discusses the prospects and limitations of these newly emerging atomic structural probes.

  2. Direct electron acceleration in plasma waveguides for compact high-repetition-rate x-ray sources

    NASA Astrophysics Data System (ADS)

    Lin, M.-W.; Jovanovic, I.

    2014-12-01

    Numerous applications in fundamental and applied research, security, and industry require robust, compact sources of x-rays, with a particular recent interest in monochromatic, spatially coherent, and ultrafast x-ray pulses in well-collimated beams. Such x-ray sources usually require production of high-quality electron beams from compact accelerators. Guiding a radially polarized laser pulse in a plasma waveguide has been proposed for realizing direct laser acceleration (DLA), where the electrons are accelerated by the axial electric field of a co-propagating laser pulse (Serafim et al 2000 IEEE Trans. Plasma Sci. 28 1190). A moderate laser peak power is required for DLA when compared to laser wakefield acceleration, thus offering the prospect for high repetition rate operation. By using a density-modulated plasma waveguide for DLA, the acceleration distance can be extended with pulse guiding, while the density-modulation with proper axial structure can realize the quasi-phase matching between the laser pulses and electrons for a net gain accumulation (York et al 2008 Phys. Rev. Lett. 100 195001; York et al 2008 J. Opt. Soc. Am. B 25 B137; Palastro et al 2008 Phys. Rev. E 77 036405). We describe the development and application of a test particle model and particle-in-cell model for DLA. Experimental setups designed for fabrication of optically tailored plasma waveguides via the ignitor-heater scheme, and for generation and characterization of radially polarized short pulses used to drive DLA, are presented.

  3. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-09-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron-betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators.

  4. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator

    PubMed Central

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron–betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators. PMID:24026068

  5. Virtual X-Ray and Electron Diffraction Patterns from Atomistic Simulations on Heterogeneous Computing Platforms

    NASA Astrophysics Data System (ADS)

    Coleman, Shawn; Wang, Yang; Cueva-Parra, Luis; Spearot, Douglas

    2014-03-01

    Electron and X-ray diffraction are well-established experimental methods used to explore the atomic scale structure of materials. In this work, a computational algorithm is developed to produce virtual electron and X-ray diffraction patterns directly from atomistic simulations. In this algorithm, the diffraction intensity is computed via the structure factor equation over a 3-dimensional mesh of {hkl} points in reciprocal space. To construct virtual selected area electron diffraction (SAED) patterns, a thin hemispherical slice of the reciprocal lattice map lying near the surface of the Ewald sphere is isolated and viewed parallel to a specified zone axis. X-ray diffraction 2 ? line profiles are created by virtually rotating the Ewald sphere around the origin of reciprocal space, binning intensities by their associated scattering angle. The diffraction code is parallelized using a heterogeneous mix of MPI and OpenMP. The atom positions are distributed via MPI while the reciprocal space mesh is parallelized using either OpenMP threads launched on regular CPU cores or offloaded to MIC hardware. The complexity of heterogeneous MPI/OpenMP parallelization on mixed hardware will be discussed. This work was supported in part by the NSF under grant 0954505. Simulations were performed on resources supported in part by NSF.

  6. A Computational Algorithm to Produce Virtual X-ray and Electron Diffraction Patterns from Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Coleman, Shawn P.; Sichani, Mehrdad M.; Spearot, Douglas E.

    2014-03-01

    Electron and x-ray diffraction are well-established experimental methods used to explore the atomic scale structure of materials. In this work, a computational algorithm is developed to produce virtual electron and x-ray diffraction patterns directly from atomistic simulations. This algorithm advances beyond previous virtual diffraction methods by using a high-resolution mesh of reciprocal space that eliminates the need for a priori knowledge of the crystal structure being modeled or other assumptions concerning the diffraction conditions. At each point on the reciprocal space mesh, the diffraction intensity is computed via explicit computation of the structure factor equation. To construct virtual selected-area electron diffraction patterns, a hemispherical slice of the reciprocal lattice mesh lying on the surface of the Ewald sphere is isolated and viewed along a specified zone axis. X-ray diffraction line profiles are created by binning the intensity of each reciprocal lattice point by its associated scattering angle, effectively mimicking powder diffraction conditions. The virtual diffraction algorithm is sufficiently generic to be applied to atomistic simulations of any atomic species. In this article, the capability and versatility of the virtual diffraction algorithm is exhibited by presenting findings from atomistic simulations of <100> symmetric tilt Ni grain boundaries, nanocrystalline Cu models, and a heterogeneous interface formed between ?-Al2O3 (0001) and ?-Al2O3 (111).

  7. DIFFUSE HARD X-RAY EMISSION IN STARBURST GALAXIES AS SYNCHROTRON FROM VERY HIGH ENERGY ELECTRONS

    SciTech Connect

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e {sup {+-}}) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e {sup {+-}} at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e {sup {+-}} created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e {sup {+-}} produced between the interactions between 10 and 100 TeV {gamma}-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R {<=} 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e {sup {+-}}. We compare these models to extant radio and GeV and TeV {gamma}-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to {approx}PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts' magnetic field. We also model generic starbursts, including submillimeter galaxies, in the context of the FIR-X-ray relation, finding that anywhere between 0% and 16% of the total hard X-ray emission is synchrotron for different parameters, and up to 2% in the densest starbursts assuming an E {sup -2.2} injection spectrum and a diffusive escape time of 10 Myr (E/3 GeV){sup -1/2} (h/100 pc). Neutrino observations by IceCube and TeV {gamma}-ray data from HESS, VERITAS, and CTA can further constrain the synchrotron X-ray emission of starbursts. Our models do not constrain the possibility of hard, second components of primary e {sup {+-}} from sources like pulsars in starbursts, which could enhance the synchrotron X-ray emission further.

  8. Micro-Scanning Electron Microscope and X-ray Spectrometer for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Nguyen, C. V.; Dholakia, G.; Ribaya, B. P.; Niemann, D.; Ngo, V.; McKenzie, C.; Rahman, M.; Alam, A.; Joy, D.; Espinosa, B.

    2007-12-01

    Scanning Electron Microscopy combined with electron-induced X-ray Fluorescence Spectroscopy (SEM-EDX) is one of the most powerful techniques for characterizing surface morphology and composition with spatial resolution of a micrometer or better. SEM-EDX can elucidate natural processes such as low-temperature diagenesis, thermal or pressure induced metamorphism, volcanism/magmatism, atmosphere/crust interaction and the like. This information is useful for the investigation of the natural history of solar system objects. We are developing a prototype micromachined scanning electron microscope with X-ray spectrometer (MSEMS) for solar system exploration. The MSEMS is comprised of a carbon nanotube field emission (CNTFE) electron source integrated with a micro-electro-mechanical-system (MEMS) based electron gun and electron optics structure. The MSEMS system will utilize a piezoelectric sample stage, having scan ranges from a few angstroms to several hundreds of microns. Compared with conventional electron sources, the CNTFE source offers advantages of low power usage, ultra-small source size and simplicity of electrostatic focusing. The MSEMS instrument, including CNTFE source, MEMS electron optic column and piezoelectric sample stage, is envisioned to be 1-2 cm in height and will operate in the range of 500 eV to 15 KeV. The imaging resolution of MEMS is predicted to be ~10 nm at 5 KeV and the spatial resolution of the X-ray spectrometer will be ~1 ?m at 15 KeV. We will present field emission data from our CNTFE source as well as the MEMS electron gun and piezostage designs.

  9. New spectral classification technique for X-ray sources: quantile analysis

    E-print Network

    Jaesub Hong; Eric M. Schlegel; Jonathan E. Grindlay

    2004-06-21

    We present a new technique called "quantile analysis" to classify spectral properties of X-ray sources with limited statistics. The quantile analysis is superior to the conventional approaches such as X-ray hardness ratio or X-ray color analysis to study relatively faint sources or to investigate a certain phase or state of a source in detail, where poor statistics does not allow spectral fitting using a model. Instead of working with predetermined energy bands, we determine the energy values that divide the detected photons into predetermined fractions of the total counts such as median (50%), tercile (33% & 67%), and quartile (25% & 75%). We use these quantiles as an indicator of the X-ray hardness or color of the source. We show that the median is an improved substitute for the conventional X-ray hardness ratio. The median and other quantiles form a phase space, similar to the conventional X-ray color-color diagrams. The quantile-based phase space is more evenly sensitive over various spectral shapes than the conventional color-color diagrams, and it is naturally arranged to properly represent the statistical similarity of various spectral shapes. We demonstrate the new technique in the 0.3-8 keV energy range using Chandra ACIS-S detector response function and a typical aperture photometry involving background subtraction. The technique can be applied in any energy band, provided the energy distribution of photons can be obtained.

  10. Study of annealing-induced interdiffusion in In2O3/Ag/In2O3 structures by a combined X-ray reflectivity and grazing incidence X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Caby, Bérenger; Brigidi, Fabio; Ingerle, Dieter; Nolot, Emmanuel; Pepponi, Giancarlo; Streli, Christina; Lutterotti, Luca; André, Agathe; Rodriguez, Guillaume; Gergaud, Patrice; Morales, Magali; Chateigner, Daniel

    2015-11-01

    The combination of X-ray reflectivity and grazing incidence X-ray fluorescence has been applied to the characterization of an In2O3/Ag/In2O3 stack for advanced photovoltaic applications. X-ray reflectivity is a well-known method for the characterization of multilayered structures by providing information on the thickness and the in-depth electronic density. Grazing incidence X-ray fluorescence provides information about the elemental depth distribution. As these techniques are based on similar measurement procedures and data evaluation approaches, their combination reduces the uncertainties of the individual techniques and provides an accurate depth-resolving analysis of multi-layers. It has been shown that the combination of the techniques give insight into the material composition and the layers structure (thickness, density) as well as modifications induced by a thermal annealing. As X-ray fluorescence signals have been acquired at different excitation energies, the influence of this parameter on the sensitivity of the measurements to the structural properties has been shown.

  11. Atmospheric Electron-induced X-Ray Spectrometer (AEXS) Instrument Development

    NASA Technical Reports Server (NTRS)

    Urgiles, E.; Wilcox, J. Z.; Toda, R.; Crisp, J.; George, T.

    2005-01-01

    Introduction: This paper describes the progress in data acquisition and establishing the observational capability of the AEXS instrument. The AEXS is a miniature instrument[1-4] based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam which enables nondestructive evaluation of sample surfaces in planetary ambient atmospheres. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum of the AEXS source from the outside ambient atmosphere. Thus eliminating the need for a vacuum pumped sample chamber as is common in all laboratory SEM s. The transmitted electrons impinge on the sample exciting XRF spectra from the irradiated spot on in-situ or collected samples with sub-mm to cm-scale spatial resolution at Mars atmospheric pressure. The AEXS system (Fig 1) consists of a high-energy (>10keV) electron gun encapsulated by the isolation membrane, an XRF detection and analyzer system, and a high voltage power supply. The XRF data are analyzed to determine the elemental abundance for the irradiated spots. The approach to demonstrating a proof of concept of the AEXS has been through 1) demonstrating the viability of microfabricated membranes, 2) assembling AEXS setups with increasingly integrated functional components, and 3) simulating the AEXS observational capabilities. The development of the instrument is described in detail in the poster paper[4] at this conference. This paper focuses on describing the progress of the AEXS instrument to acquire XRF data and using commercially available software to analyze the data streams and determine the accuracy, precision and resolution of the analysis compared to the certified elemental abundance.

  12. Fast electron slowing-down and diffusion in a high temperature coronal X-ray source

    E-print Network

    Ross K. Galloway; Alexander L. MacKinnon; Eduard P. Kontar; Per Helander

    2005-05-10

    Finite thermal velocity modifications to electron slowing-down rates may be important for the deduction of solar flare total electron energy. Here we treat both slowing-down and velocity diffusion of electrons in the corona at flare temperatures, for the case of a simple, spatially homogeneous source. Including velocity diffusion yields a consistent treatment of both `accelerated' and `thermal' electrons. It also emphasises that one may not invoke finite thermal velocity target effects on electron lifetimes without simultaneously treating the contribution to the observed X-ray spectrum from thermal electrons. We present model calculations of the X-ray spectra resulting from injection of a power-law energy distribution of electrons into a source with finite temperature. Reducing the power-law distribution low-energy cutoff to lower and lower energies only increases the relative magnitude of the thermal component of the spectrum, because the lowest energy electrons simply join the background thermal distribution. Acceptable fits to RHESSI flare data are obtained using this model. These also demonstrate, however, that observed spectra may in consequence be acceptably consistent with rather a wide range of injected electron parameters.

  13. Quantitative description of microstructure defects in hexagonal boron nitrides using X-ray diffraction analysis

    SciTech Connect

    Schimpf, C. Motylenko, M.; Rafaja, D.

    2013-12-15

    A routine for simultaneous quantification of turbostratic disorder, amount of puckering and the dislocation and stacking fault density in hexagonal materials was proposed and tested on boron nitride powder samples that were synthesised using different methods. The routine allows the individual microstructure defects to be recognised according to their effect on the anisotropy of the X-ray diffraction line broadening. For quantification of the microstructure defects, the total line broadening is regarded as a linear combination of the contributions from the particular defects. The total line broadening is obtained from the line profile fitting. As testing material, graphitic boron nitride (h-BN) was employed in the form of hot-isostatically pressed h-BN, pyrolytic h-BN or a h-BN, which was chemically vapour deposited at a low temperature. The kind of the dominant microstructure defects determined from the broadening of the X-ray diffraction lines was verified by high resolution transmission electron microscopy. Their amount was attempted to be verified by alternative methods. - Highlights: • Reliable method for quantification of microstructure defects in BN was suggested. • The method is based on the analysis of anisotropic XRD line broadening. • This XRD line broadening is unique and characteristic of the respective defect. • Thus, the quantification of coexistent microstructure defects is possible. • The method was tested on hexagonal BN, which was produced by different techniques.

  14. Using an electron beam to produce a bright isotropic subsurface x-ray source for back illumination in landmine detection

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2005-06-01

    Why is it so difficult to detect concealed shallow buried landmines while it is relatively easy to image and detect cancers within the human body? One reason is that in medical x-ray imaging, the source is on one side of the body and the detectors are on the other. This is back-illumination, the optimal orientation for x-ray imaging. Can back-illumination be used in landmine detection? That is, is it possible to generate sufficient xrays 10 or more cm below the soil surface so that suitable detectors above ground could be used to image shallow buried objects including landmines? In an x-ray tube, high voltage electron beams produce x-rays by electron deceleration (bremsstrahlung) and induced orbital transitions. It may be possible to produce 1000 amp short pulses of electrons at 30 MeV using an electron gun with multiple field emitters. (This is a section of an antiballistic missile device proposed at SPIE Defense and Security 2004.) Electron beams of such energy have range of approximately 100 m in air and 10-15 cm in soil. This 5-10 m tall device could be carried by balloon, helicopter or land vehicle. X-ray production efficiency at 30 MeV is over 50 fold higher compared to medical x-ray tube efficiency. Such a device would produce a bright isotropic source of x-rays in a subsurface plume that might be usable in landmine detection.

  15. Energetic electrons and x-ray photons from multiterawatt Ti:sapphire lasers

    SciTech Connect

    Nickles, P V; Kalachnikov, M P; Warwick, P J; Janulewicz, K A; Sandner, W; Jahnke, U; Hilscher, D; Schnurer, M; Nolte, R; Rousse, A

    1999-05-31

    The energy distribution and yield of electrons and hard x-ray photons were investigated by irradiating tungsten and tantalum targets with {approx} 30 fs pulses in the intensity range 10{sup 18} - 10{sup 19} W cm{sup -2} by using the Laboratoire d'Optique Appliquee (LOA) as well as the Max Born Institut (MBI) multiterawatt Ti:sapphire lasers. For the measurement of the hard x-ray emission in the energy range from 15 keV to 700 keV at the LOA a 9-channel spectrometer of calibrated thermoluminescence detectors (TLD) was used. The scaling of the hard x-rays was studied by varying the incident laser energy within one order of magnitude and the pulsewidth by a factor of 5. The hot electron output was investigated in the range 300 keV - 1 MeV with the new MBI Ti:sapphire laser by using a time-of-flight spectrometer. The results indicate a sensitive interplay between the temporal laser shape and laser intensity. (interaction of laser radiation with matter. laser plasma)

  16. Electronic structures of group-III-nitride nanorods studied by x-ray absorption, x-ray emission, and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pao, C. W.; Babu, P. D.; Tsai, H. M.; Chiou, J. W.; Ray, S. C.; Yang, S. C.; Chien, F. Z.; Pong, W. F.; Tsai, M.-H.; Hsu, C. W.; Chen, L. C.; Chen, C. C.; Chen, K. H.; Lin, H.-J.; Lee, J. F.; Guo, J. H.

    2006-05-01

    Nitrogen (N) and metal (Al, Ga, and In) K-edge x-ray absorption near-edge structure (XANES), x-ray emission spectroscopy (XES), and Raman scattering measurements were performed to elucidate the electronic structures of group-III-nitride nanorods and thin films of AlN, GaN, and InN. XANES spectra show slight increase of the numbers of unoccupied N p states in GaN and AlN nanorods, which may be attributed to a slight increase of the degree of localization of conduction band states. The band gaps of AlN, GaN, and InN nanorods are determined by an overlay of XES and XANES spectra to be 6.2, 3.5, and 1.9eV, respectively, which are close to those of AlN and GaN bulk/films and InN polycrystals.

  17. Reconstructing Three-dimensional Helical Structure With an X-Ray Free Electron Laser

    E-print Network

    M. Uddin

    2015-11-21

    Recovery of three-dimensional structure from single particle X-ray scattering of completely randomly oriented diffraction patterns as predicted few decades back has been real due to the advent of the new emerging X-ray Free Electron Laser (XFEL) technology. As the worlds first XFEL is in operation starting from June 2009 at SLAC National Lab at Stanford, the very first few experiments being conducted on larger objects such as viruses. Many of the important structures of nature such as helical viruses or deoxyribonucleic acids (DNA) consist of helical repetition of biological subunits. Hence development of method for reconstructing helical structure from collected XFEL data has been a top priority research. In this work we have developed a method for solving helical structure such as TMV (tobacco mosaic virus) from a set of randomly oriented simulated diffraction patterns exploiting symmetry and Fourier space constraint of the diffraction volume.

  18. Stochastic Electron Acceleration During the NIR and X-ray Flares in Sagittarius A*

    E-print Network

    Siming Liu; Fulvio Melia; Vahe Petrosian

    2005-06-07

    Recent near-IR (NIR) and X-ray observations of Sagittarius A*'s spectrum have yielded several strong constraints on the transient energization mechanism, justifying a re-examination of the stochastic acceleration model proposed previously for these events. We here demonstrate that the new results are fully consistent with the acceleration of electrons via the transit-time damping process. But more importantly, these new NIR and X-ray flares now can constrain the source size, the gas density, the magnetic field, and the wave energy density in the turbulent plasma. Future simultaneous multi-wavelength observations with good spectral information will, in addition, allow us to study their temporal evolution, which will eventually lead to an accurate determination of the behavior of the plasma just minutes prior to its absorption by the black hole.

  19. A Bragg beam splitter for hard x-ray free-electron lasers.

    PubMed

    Osaka, Taito; Yabashi, Makina; Sano, Yasuhisa; Tono, Kensuke; Inubushi, Yuichi; Sato, Takahiro; Matsuyama, Satoshi; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2013-02-11

    We report a Bragg beam splitter developed for utilization of hard x-ray free-electron lasers. The splitter is based on an ultrathin silicon crystal operating in the symmetric Bragg geometry to provide high reflectivity and transmissivity simultaneously. We fabricated frame-shaped Si(511) and (110) crystals with thicknesses below 10 ?m by a reactive dry etching method using atmospheric-pressure plasma. The thickness variation over an illuminated area is less than 300 nm peak-to-valley. High crystalline perfection was verified by topographic and diffractometric measurements. The crystal thickness was evaluated from the period of the Pendellösung beats measured with a highly monochromatic and collimated x-ray probe. The crystals provide two replica pulses with uniform wavefront [(<1/50)?] and low spatial intensity variation (<5%). These Bragg beam splitters will play an important role in innovating XFEL applications. PMID:23481739

  20. Simulation Studies of the X-Ray Free-Electron Laser Oscillator

    SciTech Connect

    Lindberg, R. R.; Shyd'ko, Y.; Kim, K.-J; Fawley, W. M.

    2009-08-14

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include transverse effects and realistic Bragg crystal properties with the two-dimensional code GINGER. In the present cases considered the radiation divergence is much narrower than the crystal acceptance, and the numerical algorithm can be simplified by ignoring the finite angular bandwidth of the crystal. In this regime GINGER shows that the saturated x-ray pulses have 109 photons and are nearly Fourier-limited with peak powers in excess of 1 MW. Wealso include preliminary results for a four-mirror cavity that can be tuned in wavelength over a few percent, with future plans to incorporate the full transverse response of the Bragg crystals into GINGER to more accurately model this tunable source.

  1. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; Cupane, Antonio; Cammarata, Marco

    2015-04-01

    Light absorption can trigger biologically relevant protein conformational changes. The light-induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations with a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.

  2. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    PubMed Central

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; Cupane, Antonio; Cammarata, Marco

    2015-01-01

    Light absorption can trigger biologically relevant protein conformational changes. The light-induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations with a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale. PMID:25832715

  3. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    SciTech Connect

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; KAIST, Daejeon; Cupane, Antonio; Cammarata, Marco

    2015-04-02

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations with a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.

  4. X-ray emission and absorption studies of silicides in relation to their electronic structure

    NASA Astrophysics Data System (ADS)

    Weijs, P. J. W.; Wiech, G.; Zahorowski, W.; Speier, W.; Goedkoop, J. B.; Czyzyk, M.; van Acker, J. F.; van Leuken, E.; de Groot, R. A.; van der Laan, G.; Sarma, D. D.; Kumar, L.; Buschow, K. H. J.; Fuggle, J. C.

    1990-04-01

    The valence bands and conduction bands of about 30 transition metal silicides (of which we concentrate on 4 here) have been investigated by measurements of Si X-ray emission bandsspectra, X-ray absorption spectra near the Si K (1s) edge, photoemission spectra, and Bremsstrahlung Isochromat spectra. The densities of states have also been calculated for the materials in their real crystal structures. The influence of the core hole on some spectra has been investigated using supercell calculations, a (Greens function) generalized Clogston-Wolff model, and Auger spectroscopy. A selection of results is presented to illustrate the utility of site and selective methods in investigations of the electronic structure of silicides and the nature of the "quasi-gap" of the partial density of Si p states in the region of the transition metal d bands.

  5. Sensing the wavefront of x-ray free-electron lasers using aerosol spheres

    SciTech Connect

    Loh, N.Duane; Starodub, Dimitri; Lomb, Lukas; Hampton, Christina Y.; Martin, Andrew V.; Sierra, Raymond G.; Barty, Anton; Aquila, Andrew; Schulz, Joachim; Steinbrener, Jan; Shoeman, Robert L.; Kassemeyer, Stephan; Bostedt, Christoph; Bozek, John; Epp, Sascha W.; Erk, Benjamin; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Rudek, Benedikt; Foucar, Lutz

    2014-04-22

    Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10 21 W/m2 can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wave-front sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, the paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.

  6. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    DOE PAGESBeta

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; KAIST, Daejeon; Cupane, Antonio; et al

    2015-04-02

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations withmore »a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.« less

  7. Reconstructing Three-dimensional Helical Structure With an X-Ray Free Electron Laser

    E-print Network

    M. Uddin

    2015-06-29

    Recovery of three-dimensional structure from single particle X-ray scattering of completely randomly oriented diffraction patterns as predicted few decades back has been real due to advent of the new emerging X-ray Free Electron Laser (XFEL) technology. As the world's first XFEL is in operation starting from June 2009 at SLAC National Lab at Stanford, the very first few experiments being conducted on larger objects such as viruses. Many of the important structures of nature such as helical viruses or deoxyribonucleic acids (DNA) consist of helical repetition of biological subunits. Hence development of method for reconstructing helical structure from collected XFEL data has been a top priority research. In this work we have developed a method for solving helical structure such as TMV from a set of randomly oriented simulated diffraction patterns exploiting symmetry and Fourier space constraint of the diffraction volume.

  8. High-Energy X-Ray Diffraction Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2011-11-29

    The functionality of heRXD includes the following: distance and angular calibration and viewing flat-panel detector images used for X-ray diffraction; image (polar) rebinning or "caking"; line position fitting in powder diffraction images; image segmentation or "blob finding"; crystal orentation indesing; and lattice vector refinement. These functionalities encompass a critical set analyzing teh data for high-energy diffraction measurements that are currently performed at synchrotron sources such as the Advanced Photon Source (APS). The software design modularmore »and open source under LGPL. The intent is to provide a common framework and graphical user interface that has the ability to utillize internal as well as external subroutines to provide various optins for performing the fuctionalities listed above. The software will initially be deployed at several national user facilities--including APS, ALS, and CHESS--and then made available for download using a hosting service such as sourceforge.« less

  9. Measurement of the unstained biological sample by a novel scanning electron generation X-ray microscope based on SEM

    SciTech Connect

    Ogura, Toshihiko

    2009-08-07

    We introduced a novel X-ray microscope system based on scanning electron microscopy using thin film, which enables the measurement of unstained biological samples without damage. An unstained yeast sample was adsorbed under a titanium (Ti)-coated silicon nitride (Si{sub 3}N{sub 4}) film 90 nm thick. The X-ray signal from the film was detected by an X-ray photodiode (PD) placed below the sample. With an electron beam at 2.6 kV acceleration and 6.75 nA current, the yeast image is obtained using the X-ray PD. The image is created by soft X-rays from the Ti layer. The Ti layer is effective in generating the characteristic 2.7-nm wavelength X-rays by the irradiation of electrons. Furthermore, we investigated the electron trajectory and the generation of the characteristic X-rays within the Ti-coated Si{sub 3}N{sub 4} film by Monte Carlo simulation. Our system can be easily utilized to observe various unstained biological samples of cells, bacteria, and viruses.

  10. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments

    PubMed Central

    Deutsch, Maxime; Gillon, Béatrice; Claiser, Nicolas; Gillet, Jean-Michel; Lecomte, Claude; Souhassou, Mohamed

    2014-01-01

    Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density) and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT) calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed. PMID:25075338

  11. The identification of the pigments used to paint statues of Feixiange Cliff in China in late 19th century by micro-Raman spectroscopy and scanning electron microscopy/energy dispersive X-ray analysis

    NASA Astrophysics Data System (ADS)

    Jin, Pu-jun; Huang, Wei; Jianhua-Wang; Zhao, Gang; Wang, Xiao-ling

    2010-11-01

    The application of micro-Raman spectroscopy (?-RS) and scanning electron microscopy (SEM)/energy dispersive X-ray spectrometer (EDS) to the research of pigments collected from Statues of Feixiange Cliff No. 67 and No. 69 niche of Tang Dynasty in China is reported. Five kinds of pigments were found in the experimental data, including black (carbon), white (gypsum + quartz), blue (lapis lazuli) and green (Paris green + Barium sulphate). After synthesized in 1814, Paris green was reported for a large import as a light and bright green pigment to paint architectures in China from the late 19th century. The analyzed blue pigment demonstrated the similar Raman spectra to the Lâjvardina blue glazed ceramics, which indicated lapis lazuli was an artificial product. This confirmed the painting of Feixiange Cliff in the early Republic of China as the historical record, and also reveals that some pigments were imported from abroad.

  12. X-ray free-electron lasers: Scientific goals and machine implications

    NASA Astrophysics Data System (ADS)

    Arthur, John

    2001-07-01

    Free electron lasers are now being designed which will operate at wavelengths down to about 1. [1] The physics of the high-gain, single pass FEL process requires extremely bright electron pulses in the 10-20 GeV range. This electron brightness should be achievable using an RF-photocathode source and a linear accelerator, such as the initial acceleration stage of a TeV-range linear electron-positron collider. The x-ray FEL radiation produced will have unique properties. In particular: • The FEL peak intensity and peak brightness will be many orders of magnitude higher than can be produced by any other source. • The pulse length will be less than 1 picosecond, orders of magnitude shorter than can be achieved with any other bright source such as a synchrotron. • The FEL radiation will have full transverse coherence and a degeneracy parameter (photons/coherence volume) equal to 109 or more. No other source can produce hard x-radiation with a degeneracy parameter significantly greater than 1. These properties offer the chance to study chemical, biological, and condensed matter dynamical processes with sub-picosecond time resolution and angstrom spatial resolution. [2] The high peak power of the FEL radiation (greater than 1014W/cm2) could be used to create precisely-controlled chemical and structural modifications inside samples. There is also the possibility that nonlinear x-ray interactions could be used to give increased resolution for spectroscopic studies, to greatly expand the parameter space for atomic physics studies, and to permit new fundamental tests of quantum mechanics. The exploration of these new x-ray techniques will require considerable development, not only in technical areas such as optics and detectors, but also in understanding the basic physics of the interaction of very intense x-radiation with matter. A large collaboration of US institutions is now conducting preliminary research and development in these areas, with the intention of creating an FEL operating at 1.5 in about the year 2006. [3] Germany also has a strong short-wavelength FEL research program, with a soft x-ray FEL under construction and a proposal for a future large facility based at the TESLA linear collider, [4] which would produce a variety of hard and soft x-ray laser beams. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, under contract DE-AC03-76SF00515.

  13. Progress Towards Improved Analysis of TES X-ray Data Using Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Busch, S. E.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Fixsen, D. J.; Kelley, R. L.; Kilbourne, C. A.; Lee, S.-J.; Moseley, S. H.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.

    2015-11-01

    The traditional method of applying a digital optimal filter to measure X-ray pulses from transition-edge sensor (TES) devices does not achieve the best energy resolution when the signals have a highly non-linear response to energy, or the noise is non-stationary during the pulse. We present an implementation of a method to analyze X-ray data from TESs, which is based upon principal component analysis (PCA). Our method separates the X-ray signal pulse into orthogonal components that have the largest variance. We typically recover pulse height, arrival time, differences in pulse shape, and the variation of pulse height with detector temperature. These components can then be combined to form a representation of pulse energy. An added value of this method is that by reporting information on more descriptive parameters (as opposed to a single number representing energy), we generate a much more complete picture of the pulse received. Here we report on progress in developing this technique for future implementation on X-ray telescopes. We used an ^{55} Fe source to characterize Mo/Au TESs. On the same dataset, the PCA method recovers a spectral resolution that is better by a factor of two than achievable with digital optimal filters.

  14. Radiological characterization and water equivalency of genipin gel for x-ray and electron beam dosimetry

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Bosi, Stephen; Davies, Justin B.; Baldock, Clive

    2011-08-01

    The genipin radiochromic gel offers enormous potential as a three-dimensional dosimeter in advanced radiotherapy techniques. We have used several methods (including Monte Carlo simulation), to investigate the water equivalency of genipin gel by characterizing its radiological properties, including mass and electron densities, photon interaction cross sections, mass energy absorption coefficient, effective atomic number, collisional, radiative and total mass stopping powers and electron mass scattering power. Depth doses were also calculated for clinical kilovoltage and megavoltage x-ray beams as well as megavoltage electron beams. The mass density, electron density and effective atomic number of genipin were found to differ from water by less than 2%. For energies below 150 keV, photoelectric absorption cross sections are more than 3% higher than water due to the strong dependence on atomic number. Compton scattering and pair production interaction cross sections for genipin gel differ from water by less than 1%. The mass energy absorption coefficient is approximately 3% higher than water for energies <60 keV due to the dominance of photoelectric absorption in this energy range. The electron mass stopping power and mass scattering power differ from water by approximately 0.3%. X-ray depth dose curves for genipin gel agree to within 1% with those for water. Our results demonstrate that genipin gel can be considered water equivalent for kilovoltage and megavoltage x-ray beam dosimetry. For megavoltage electron beam dosimetry, however, our results suggest that a correction factor may be needed to convert measured dose in genipin gel to that of water, since differences in some radiological properties of up to 3% compared to water are observed. Our results indicate that genipin gel exhibits greater water equivalency than polymer gels and PRESAGE formulations.

  15. Resonant inelastic soft x-ray scattering of CdS: a two-dimensional electronic structure map approach

    SciTech Connect

    Weinhardt, L.; Fuchs, O.; Fleszar, A.; Bar, M.; Blum, M.; Weigand, M.; Denlinger, J.D.; Yang, W.; Hanke, W.; Umbach, E.; Heske, C.

    2008-09-24

    Resonant inelastic x-ray scattering (RIXS) with soft x-rays is uniquely suited to study the elec-tronic structure of a variety of materials, but is currently limited by low (fluorescence yield) count rates. This limitation is overcome with a new high-transmission spectrometer that allows to measure soft x-ray RIXS"maps." The S L2,3 RIXS map of CdS is discussed and compared with density functional calculations. The map allows the extraction of decay channel-specific"absorp-tion spectra," giving detailed insight into the wave functions of occupied and unoccupied elec-tronic states.

  16. Double-quantum-coherence attosecond x-ray spectroscopy of spatially separated, spectrally overlapping core-electron transitions

    E-print Network

    Igor V. Schweigert; Shaul Mukamel

    2008-11-19

    X-ray four-wave mixing signals generated in the $k_1 + k_2 - k_3$ phase-matching direction are simulated for N1s transitions in para-nitroanline and two-ring hydrocarbons disubstituted with an amine and a nitroso groups. The two-dimensional x-ray correlation spectra (2DXCS) provide background-free probes of couplings between core-electron transitions even for multiple core shells of the same type. Features attributed to couplings between spatially-separated core transitions connected by delocalized valence excitations provide information about molecular geometry and electronic structure unavailable from linear near-edge x-ray absorption (XANES).

  17. EBT2 dosimetry of x-rays produced by the electron beam from a Plasma Focus for medical applications

    SciTech Connect

    Ceccolini, E.; Mostacci, D.; Sumini, M.; Rocchi, F.; Tartari, A.; Mariotti, F.

    2012-09-01

    The electron beam emitted from the back of Plasma Focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A Plasma Focus device is being developed to this aim, to be utilized as an x-ray source. The electron beam is driven to impinge on 50 {mu}m brass foil, where conversion x-rays are generated. Measurements with gafchromic film are performed to analyse the attenuation of the x-rays beam and to predict the dose given to the culture cell in radiobiological experiments to follow.

  18. Variable soft X-ray excesses in active galactic nuclei from nonthermal electron-positron pair cascades

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Coppi, Paolo S.

    1991-01-01

    In the present study of the formation of steep soft X-ray excesses that are superposed on flatter, hard X-ray power-law spectra in nonthermal electron-positron pair cascade sources, the soft excess in pair-cascade AGN models appears as a steep power law superposed on the tail of the UV bump and the flat nonthermal (hard X-ray) power law. The model-parameter space in which an excess in soft X-rays is visible is ascertained, and the time-variability of soft excesses in pair cascade models is examined. It is established that the parameter space in which soft excesses appear encompasses the range of preferred input parameters for a recently development Compton reflection model of UV and X-ray emission from the central engine of an AGN.

  19. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecture

    SciTech Connect

    Bogdan Neculaes, V. Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-05-15

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient.

  20. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecturea

    PubMed Central

    Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-01-01

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066

  1. EPR study of electron traps in x-ray-irradiated yttria-stabilized zirconia

    SciTech Connect

    Azzoni, C.B.; Paleari, A. )

    1989-10-01

    Single crystals of yttria-stabilized zirconia (12 mol % of Y{sub 2}O{sub 3}) have been x-ray irradiated at room temperature. The electron paramagnetic resonance spectrum of the filled electron traps is analyzed in terms of a single oxygen vacancy type of defect with its symmetry axis along the {l angle}111{r angle} direction. The angular dependence of the linewidth and the asymmetry of the line shape are attributed to the disordered rearrangements of the anion sublattice surrounding the oxygen vacancy. This affects the local crystal fields and the directions of the symmetry axis of the defects.

  2. Scattered hard X-ray and ?-ray generation from a chromatic electron beam

    NASA Astrophysics Data System (ADS)

    Coleman, J. E.; Welch, D. R.; Miller, C. L.

    2015-11-01

    An array of photon diagnostics has been deployed on a high power relativistic electron beam diode. Electrons are extracted through a 17.8 cm diode from the surface discharge of a carbon fiber velvet cathode with a nominal diode voltage of 3.8 MV. <10% of the 100 ns electron pulse is composed of off energy electrons (1-3 MeV) accelerated during the rise and fall of the pulse that impact the stainless steel beam pipe and generate a Bremsstrahlung spectrum of 0.1-3 MeV photons with a total count of 1011. The principal objective of these experiments is to quantify the electron beam dynamics and spatial dynamics of the hard X-ray and ?-ray flux generated in the diode region. A qualitative comparison of experimental and calculated results are presented, including time and energy resolved electron beam propagation and scattered photon measurements with X-ray PIN diodes and a photomultiplier tube indicating a dose dependence on the diode voltage >V4 and detected photon counts of nearly 106 at a radial distance of 1 m which corresponds to dose ˜40 ?rad at 1 m.

  3. The electronic structure of poly(pyridine-2,5-diyl) investigated by soft x-ray absorption and emission spectroscopies

    E-print Network

    Magnuson, M; Guo, J - H; Såthe, C; Agui, A; Nordgren, J; Luo, Y; Ågren, H; Johansson, N; Salaneck, W R; Horsburgh, L E; Monkman, A P; 10.1016/S0301-0104(98)00262-6

    2012-01-01

    The electronic structure of the poly-pyridine conjugated polymer has been investigated by resonant and nonresonant inelastic X-ray scattering and X-ray absorption spectroscopies using synchrotron radiation. The measurements were made for both the carbon and nitrogen contents of the polymer. The analysis of the spectra has been carried out in comparison with molecular orbital calculations taking the repeat-unit cell as a model molecule of the polymer chain. The simulations indicate no significant differences in the absorption and in the non-resonant X-ray scattering spectra for the different isomeric geometries, while some isomeric dependence of the resonant spectra is predicted. The resonant emission spectra show depletion of the {\\pi} electron bands in line with symmetry selection and momentum conservation rules. The effect is most vizual for the carbon spectra; the nitrogen spectra are dominated by lone pair n orbital emission of {\\sigma} symmetry and are less frequency dependent.

  4. Rotational dephasing of a gold complex probed by anisotropic femtosecond x-ray solution scattering using an x-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Kim, Jong Goo; Kim, Kyung Hwan; Oang, Key Young; Kim, Tae Wu; Ki, Hosung; Jo, Junbeom; Kim, Jeongho; Sato, Tokushi; Nozawa, Shunsuke; Adachi, Shin-ichi; Ihee, Hyotcherl

    2015-12-01

    The orientational dynamics of a gold trimer complex in a solution are investigated by using anisotropic femtosecond x-ray solution scattering measured by an x-ray free-electron laser. A linearly polarized laser pulse preferentially excites molecules with transition dipoles oriented parallel to the laser polarization, leading to the transient alignment of excited molecules. Such photoselectively aligned molecules give rise to an anisotropic scattering pattern that has different profiles in parallel and perpendicular directions with respect to laser polarization. Anisotropic x-ray scattering patterns obtained from the transiently aligned molecules contain information on the molecular orientation. By monitoring the time evolution of the anisotropic scattering pattern, we probe the rotational dephasing dynamics of [Au(CN)2 ?]3 in a solution. We found that rotational dephasing of [Au(CN)2 ?]3 occurs with a time constant of 13 ± 4 ps. By contrast, time-resolved scattering data on FeCl3 in a water solution, which does not accompany any structural change and gives only the contributions of solvent heating, lacks any anisotropy in the scattering signal.

  5. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    SciTech Connect

    WANG,X.J.; MURPHY,J.B.; YU,L.H.; FAATZ,B.; HUANG,Z.; REICHE,S.; ZOLOTOREV,M.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherence of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).

  6. Feasibility Study of Gas Electron Multiplier Detector as an X-Ray Image Sensor

    E-print Network

    Shin, Sukyoung; Lee, Soonhyouk

    2015-01-01

    For its ease manufacturing, flexible geometry, and cheap manufacturing cost, the gas electron multiplier (GEM) detector can be used as an x-ray image sensor. For this purpose, we acquired relative detection efficiencies and suggested a method to increase the detection efficiency in order to study the possibility of GEM detector as an x-ray image sensor. The GEM detector system is composed of GEM foils, the instrument system, the gas system, and the negative power supply. The instrument system consists of the A225 charge sensitive preamp, A206 discriminator, and MCA8000D multichannel analyzer. For the gas system, Argon gas was mixed with CO2 to the ratio of 8:2, and for the negative 2,000 volts, the 3106D power supply was used. The CsI-coated GEM foil was used to increase the detection efficiency. Fe-55 was used as an x-ray source and the relative efficiency was acquired by using the ratio of GEM detector to the CdTe detector. The total count method and the energy spectrum method were used to calculate the rel...

  7. Generation of Intense Attosecond X-Ray Pulses Using Ultraviolet Laser Induced Microbunching in Electron Beams

    SciTech Connect

    Xiang, D.; Huang, Z.; Stupakov, G.; /SLAC

    2011-11-29

    We propose a scheme that combines the echo-enabled harmonic generation technique with the bunch compression and allows one to generate harmonic numbers of a few hundred in a microbunched beam through up-conversion of the frequency of an ultraviolet seed laser. A few-cycle intense laser is used to generate the required energy chirp in the beam for bunch compression and for selection of an attosecond x-ray pulse. Sending this beam through a short undulator results in an intense isolated attosecond x-ray pulse. Using a representative realistic set of parameters, we show that 1 nm x-ray pulse with peak power of a few hundred MW and duration as short as 20 attoseconds (FWHM) can be generated from a 200 nm ultraviolet seed laser. The proposed scheme may enable the study of electronic dynamics with a resolution beyond the atomic unit of time ({approx}24 attoseconds) and may open a new regime of ultrafast sciences.

  8. Femtosecond Diffractive Imaging with a Soft-X-Ray Free-Electron Laser

    SciTech Connect

    Chapman, Henry N.; Barty, Anton: AUTHOR = Bogan, Michael J.; Boutet, Sebastian; Frank, Matthias; Hau-Riege, Stefan P.; Marchesini, Stefano; Woods, Bruce W.; Bajt, Sasa; Benner, W.Henry; London, Richard A.; Plonjes, Elke; Kuhlmann, Marion; Treusch, Rolf; Dusterer, Stefan; Tschentscher, Thomas; Schneider, Jochen R.; Spiller, Eberhard; Moller, Thomas; Bostedt, Christoph; Hoener, Matthias; Shapiro, David A.; /UC, Davis /SLAC /Uppsala U. /LLNL, Livermore /Uppsala U. /Uppsala U. /SLAC /Uppsala U.

    2010-10-07

    Theory predicts that with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus, or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft X-ray free-electron laser. An intense 25 fs, 4 x 10{sup 13} W/cm{sup 2} pulse, containing 10{sup 12} photons at 32 nm wavelength, produced a coherent diffraction pattern from a nano-structured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling, shows no measurable damage, and extends to diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one.

  9. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    PubMed Central

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie

    2015-01-01

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup. PMID:26144230

  10. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser.

    PubMed

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie

    2015-07-01

    Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup. PMID:26144230

  11. Fourier transform inelastic x-ray scattering from phonons using Free Electron Laser pulses

    NASA Astrophysics Data System (ADS)

    Trigo, Mariano; Henighan, Thomas; Reis, David

    2015-03-01

    We demonstrate that ultrafast x-ray scattering at Free Electron Lasers (FELs) provides a new approach for measuring phonon dispersion relations spanning the entire Brillouin zone, without the need for complex monochromators and spectrometers. Our method uses an ultrafast optical laser as pump and the dynamics are probed using femtosecond x-ray pulses from an FEL. We obtain the entire transverse acoustic phonon dispersion in germanium with ~ 0.5 meV energy resolution by a simple Fourier transform of the oscillatory dynamics of the scattered x-ray intensity. Using coherent control with a pair of pump pulses, we show that the femtosecond laser couples to pairs of phonons, analogous to a second order Raman scattering mechanism, which also explains the excitation of large-wavevector phonons by the long wavelength (optical) pump pulse. This shows that the generation mechanism is quite general and thus this ultrafast approach could be applicable as a general spectroscopic tool of phonons near to and far from equilibrium.

  12. Structural biology at the European X-ray free-electron laser facility

    PubMed Central

    Altarelli, Massimo; Mancuso, Adrian P.

    2014-01-01

    The European X-ray free-electron laser (XFEL) facility, under construction in the Hamburg region, will provide high-peak brilliance (greater than 1033 photons s?1 mm?2 mrad?2 per 0.1% BW), ultrashort pulses (approx. 10 fs) of X-rays, with a high repetition rate (up to 27 000 pulses s?1) from 2016 onwards. The main features of this exceptional X-ray source, and the instrumentation developments necessary to exploit them fully, for application to a variety of scientific disciplines, are briefly summarized. In the case of structural biology, that has a central role in the scientific case of this new facility, the instruments and ancillary laboratories that are being planned and built within the baseline programme of the European XFEL and by consortia of users are also discussed. It is expected that the unique features of the source and the advanced features of the instrumentation will allow operation modes with more efficient use of sample materials, faster acquisition times, and conditions better approaching feasibility of single molecule imaging. PMID:24914145

  13. Feasibility Study of Gas Electron Multiplier Detector as an X-Ray Image Sensor

    E-print Network

    Sukyoung Shin; Jaehoon Jung; Soonhyouk Lee

    2015-03-12

    For its ease manufacturing, flexible geometry, and cheap manufacturing cost, the gas electron multiplier (GEM) detector can be used as an x-ray image sensor. For this purpose, we acquired relative detection efficiencies and suggested a method to increase the detection efficiency in order to study the possibility of GEM detector as an x-ray image sensor. The GEM detector system is composed of GEM foils, the instrument system, the gas system, and the negative power supply. The instrument system consists of the A225 charge sensitive preamp, A206 discriminator, and MCA8000D multichannel analyzer. For the gas system, Argon gas was mixed with CO2 to the ratio of 8:2, and for the negative 2,000 volts, the 3106D power supply was used. The CsI-coated GEM foil was used to increase the detection efficiency. Fe-55 was used as an x-ray source and the relative efficiency was acquired by using the ratio of GEM detector to the CdTe detector. The total count method and the energy spectrum method were used to calculate the relative efficiency. The relative detection efficiency of GEM detector for Fe-55 by using total count method was 32 % and by using energy spectrum method, the relative efficiencies were 5, 43, 33, 37, 35, and 36 % respectively according to the energy spectrum of 2, 3, 4, 5, 6, and 7 KeV. In conclusion, we found that the detection efficiency of the two layered GEM detector is insufficient for the x-ray image sensor, so we suggested a CsI coated GEM foil to increase the efficiency rate and the result value was increased to 41 %.

  14. Feasibility study of a gas electron multiplier detector as an X-Ray image sensor

    NASA Astrophysics Data System (ADS)

    Shin, Sukyoung; Jung, Jaehoon; Lee, Soonhyouk

    2015-07-01

    For its ease of manufacture, flexible geometry, and cheap manufacturing cost, the gas electron multiplier (GEM) detector can be used as an X-ray image sensor. For this purpose, we acquired relative detection efficiencies and suggested a method to increase the detection efficiency in order to study the possibility of using a GEM detector as an X-ray image sensor. The GEM detector system is composed of GEM foils, the instrument system, the gas system, and the negative power supply. The instrument system consists of an A225 charge sensitive preamp, an A206 discriminator, and a MCA8000D multichannel analyzer. For the gas system, argon gas was mixed with CO2 in a ratio of 8:2, and for the negative 2,000 volts, a 3106D power supply was used. A CsI-coated GEM foil was used to increase the detection efficiency. Fe-55 was used as an X-ray source, and the relative efficiency was acquired by using the ratio of the efficiency of the GEM detector to that of the CdTe detector. The total count method and the energy spectrum method were used to calculate the relative efficiency. The relative detection efficiency of the GEM detector for Fe-55 by using total count method was 32%, and the relative detection efficiencies were 5, 43, 33, 37, 35, and 36%, respectively, for 2-, 3-, 4-, 5-, 6-, and 7- keV energy spectrum by using the energy spectrum method. In conclusion, we found that the detection efficiency of the two-layered GEM detector is insufficient for use as an X-ray image sensor, so we suggest a CsI-coated GEM foil to increase the efficiency, with resulting value being increased to 41%.

  15. Stereoscopic electron spectroscopy of solar hard X-ray flares with a single spacecraft

    E-print Network

    Eduard P. Kontar; John C. Brown

    2006-11-06

    Hard X-ray (HXR) spectroscopy is the most direct method of diagnosing energetic electrons in solar flares. Here we present a technique which allows us to use a single HXR spectrum to determine an effectively stereoscopic electron energy distribution. Considering the Sun's surface to act as a 'Compton mirror' allows us to look at emitting electrons also from behind the source, providing vital information on downward-propagating particles. Using this technique we determine simultaneously the electron spectra of downward and upward directed electrons for two solar flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The results reveal surprisingly near-isotropic electron distributions, which contrast strongly with the expectations from the standard model which invokes strong downward beaming, including collisional thick-target model.

  16. On the Statistical Analysis of X-ray Polarization Measurements

    NASA Technical Reports Server (NTRS)

    Strohmayer, T. E.; Kallman, T. R.

    2013-01-01

    In many polarimetry applications, including observations in the X-ray band, the measurement of a polarization signal can be reduced to the detection and quantification of a deviation from uniformity of a distribution of measured angles of the form alpha plus beta cosine (exp 2)(phi - phi(sub 0) (0 (is) less than phi is less than pi). We explore the statistics of such polarization measurements using both Monte Carlo simulations as well as analytic calculations based on the appropriate probability distributions. We derive relations for the number of counts required to reach a given detection level (parameterized by beta the "number of sigma's" of the measurement) appropriate for measuring the modulation amplitude alpha by itself (single interesting parameter case) or jointly with the position angle phi (two interesting parameters case). We show that for the former case when the intrinsic amplitude is equal to the well known minimum detectable polarization (MDP) it is, on average, detected at the 3sigma level. For the latter case, when one requires a joint measurement at the same confidence level, then more counts are needed, by a factor of approximately equal to 2.2, than that required to achieve the MDP level. We find that the position angle uncertainty at 1sigma confidence is well described by the relation sigma(sub pi) equals 28.5(degrees) divided by beta.

  17. Eigen analysis for classifying chest x-ray images

    NASA Astrophysics Data System (ADS)

    Bones, Philip J.; Butler, Anthony P. H.

    2004-10-01

    A method first employed for face recognition has been employed to analyse a set of chest x-ray images. After marking certain common features on the images, they are registered by means of an affine transformation. The differences between each registered image and the mean of all images in the set are computed and the first K principal components are found, where K is less than or equal to the number of images in the set. These form eigenimages (we have coined the term 'eigenchests') from which an approximation to any one of the original images can be reconstructed. Since the method effectively treats each pixel as a dimension in a hyperspace, the matrices concerned are huge; we employ the method developed by Turk and Pentland for face recognition to make the computations tractable. The K coefficients for the eigenimages encode the variation between images and form the basis for discriminating normal from abnormal. Preliminary results have been obtained for a set of eigenimages formed from a set of normal chests and tested on separate sets of normals and patients with pneumonia. The distributions of coefficients have been observed to be different for the two test sets and work is continuing to determine the most sensitive method for detecting the differences.

  18. SAVLOC, computer program for automatic control and analysis of X-ray fluorescence experiments

    NASA Technical Reports Server (NTRS)

    Leonard, R. F.

    1977-01-01

    A program for a PDP-15 computer is presented which provides for control and analysis of trace element determinations by using X-ray fluorescence. The program simultaneously handles data accumulation for one sample and analysis of data from previous samples. Data accumulation consists of sample changing, timing, and data storage. Analysis requires the locating of peaks in X-ray spectra, determination of intensities of peaks, identification of origins of peaks, and determination of a real density of the element responsible for each peak. The program may be run in either a manual (supervised) mode or an automatic (unsupervised) mode.

  19. Imaging interatomic electron current in crystals with ultrafast resonant x-ray scattering

    NASA Astrophysics Data System (ADS)

    Popova-Gorelova, Daria; Santra, Robin

    2015-11-01

    We demonstrate how the technique of ultrafast resonant x-ray scattering can be applied to imaging dynamics of electronic wave packets in crystals. We study scattering patterns from crystals with electron dynamics in valence bands taking into account that inelastic and elastic scattering events induced by a broadband probe pulse cannot be separated through the spectroscopy of the scattered photon. As a result, scattering patterns are not determined by the structure factor at the time of measurement, but can encode the instantaneous electron current between scattering atoms. We provide examples of how the interatomic electron current in a periodic structure can be extracted from a single scattering pattern by considering valence electron-hole motion in (KBr) 108 and Ge83 clusters.

  20. Imaging interatomic electron current in crystals with ultrafast resonant x-ray scattering

    E-print Network

    Popova-Gorelova, Daria

    2015-01-01

    We demonstrate how the technique of ultrafast resonant x-ray scattering can be applied to imaging dynamics of electronic wave packets in crystals. We study scattering patterns from crystals with electron dynamics in valence bands taking into account that inelastic and elastic scattering events induced by a broad-band probe pulse cannot be separated through the spectroscopy of the scattered photon. As a result, scattering patterns are not determined by the structure factor at the time of measurement, but can encode the instantaneous electron current between scattering atoms. We provide examples of how the interatomic electron current in a periodic structure can be extracted from a single scattering pattern by considering valence electron hole motion in (KBr)$_{108}$ and Ge$_{83}$ clusters.

  1. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Soejima, Narumasa; Iwasaki, Shiro; Nomoto, Toyokazu; Murai, Takaaki; Kimoto, Yasuji

    2015-11-01

    A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si3N4/SiO2/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  2. Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays

    SciTech Connect

    Leemans, W.P.; Esarey, E.; van Tilborg, J.; Michel, P.A.; Schroeder, C.B.; Toth, Cs.; Geddes, C.G.R.; Shadwick, B.A.

    2004-10-01

    Electron beam based radiation sources provide electromagnetic radiation for countless applications. The properties of the radiation are primarily determined by the properties of the electron beam. Compact laser driven accelerators are being developed that can provide ultra-short electron bunches (femtosecond duration) with relativistic energies reaching towards a GeV. The electron bunches are produced when an intense laser interacts with a dense plasma and excites a large amplitude plasma density modulation (wakefield) that can trap background electrons and accelerate them to high energies. The short pulse nature of the accelerated bunches and high particle energy offer the possibility of generating radiation from one compact source that ranges from coherent terahertz to gamma rays. The intrinsic synchronization to a laser pulse and unique character of the radiation offers a wide range of possibilities for scientific applications. Two particular radiation source regimes are discussed: Coherent terahertz emission and x-ray emission based on betatron oscillations and Thomson scattering.

  3. Nanopaleomagnetism of meteoritic Fe-Ni studied using X-ray photoemission electron microscopy

    NASA Astrophysics Data System (ADS)

    Bryson, James F. J.; Herrero-Albillos, Julia; Kronast, Florian; Ghidini, Massimo; Redfern, Simon A. T.; van der Laan, Gerrit; Harrison, Richard J.

    2014-06-01

    X-ray photoemission electron microscopy (XPEEM) enables natural remanent magnetisation to be imaged with ˜30 nm resolution across a field of view of 5-20 ?m. The method is applied to structural features typical of the Widmanstätten microstructure (kamacite - tetrataenite rim - cloudy zone - plessite) in the Tazewell IIICD iron meteorite. Kamacite lamellae and the tetrataenite rim are multidomain, whereas plessite consists of laths of different phases displaying a range of stable magnetisation directions. The cloudy zone (CZ) displays a complex interlocking domain pattern resulting from nanoscale islands of tetrataenite with easy axes distributed along three possible crystallographic directions. Quantitative analysis of the coarse and intermediate CZ was achieved using a combination of image simulations and histogram profile matching. Remanence information was extracted from individual regions of interest ˜400 nm wide, demonstrating for the first time the capability of XPEEM to perform quantitative paleomagnetic analysis at sub-micron length scales. The three tetrataenite easy axis orientations occur with equal probability in the coarse and intermediate CZ, suggesting that spinodal decomposition in these regions was not strongly influenced by internal interaction fields, and that they are suitable candidates for future paleomagnetic studies. The fine CZ shows a strong dominance of one easy axis. This effect is attributed to island-island exchange interactions that render the fine CZ unsuitable for paleomagnetic study. Variations in the relative strength (proportion of dominant easy axis) and direction (direction of dominant easy axis) of a paleomagnetic field can be resolved from different regions of the CZ using XPEEM, raising the prospect of obtaining a time-resolved measurement of the active dynamo period in meteorites originating from the upper unmelted regions of differentiated asteroids (e.g. chondrites, pallasites, mesosiderites).

  4. Study of mineralogical speciation of arsenic in soils using X ray microfluorescence and scanning electronic microscopy.

    PubMed

    Gómez-Parrales, Isidoro; Bellinfante, Nicolás; Tejada, Manuel

    2011-05-15

    In this paper we studied the As content in natural contaminated soils, classified as Dystric Leptosol, Chromic Luvisol, Eutric Cambisol and Mollic Leptosol. In soil samples, sieved (<2mm), total As was determined by XRF and chemical speciation by sequential extraction. As-bearing minerals were concentrated from fine sand fraction of soil (200-20 ?m) using heavy liquid. In this fraction, mineralogical speciation was studied by X-ray microfluorescence, XRD with Göbbel mirror and SEM-BEI-EDX. Total As contents ranging from 61.00 to 131.00 mg kg(-1). The results of the sequential extraction showed that As was, mainly, in the residual fraction (52.51-98.76 mg kg(-1)) and in the fraction bound to iron oxyhydroxides (0-36.5 mg kg(-1)). Mapping of As with X-ray microfluorescence show strongly relationship between Fe and As. Iron (III) oxyhydroxides (FeOHs) (lepidocrocite and goethite), scorodite, angelellite, schultenite and dussertite were identified by XRD analysis as most likely mineral phases. The contents of As, Fe, Pb and Ba obtained with EDX-microprobe, confirmed the results of XRD. The results of sequential extraction and X-ray microfluorescence indicate that As is strongly bound to the soils because the identified As-bearing mineral phases are very stable at the pH conditions of studied soils. Consequently, a low mobility of As can be assumed in these soils. PMID:21482293

  5. Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2.

    PubMed

    Santomauro, F G; Lübcke, A; Rittmann, J; Baldini, E; Ferrer, A; Silatani, M; Zimmermann, P; Grübel, S; Johnson, J A; Mariager, S O; Beaud, P; Grolimund, D; Borca, C; Ingold, G; Johnson, S L; Chergui, M

    2015-01-01

    Transition metal oxides are among the most promising solar materials, whose properties rely on the generation, transport and trapping of charge carriers (electrons and holes). Identifying the latter's dynamics at room temperature requires tools that combine elemental and structural sensitivity, with the atomic scale resolution of time (femtoseconds, fs). Here, we use fs Ti K-edge X-ray absorption spectroscopy (XAS) upon 3.49?eV (355?nm) excitation of aqueous colloidal anatase titanium dioxide nanoparticles to probe the trapping dynamics of photogenerated electrons. We find that their localization at Titanium atoms occurs in <300?fs, forming Ti(3+) centres, in or near the unit cell where the electron is created. We conclude that electron localization is due to its trapping at pentacoordinated sites, mostly present in the surface shell region. The present demonstration of fs hard X-ray absorption capabilities opens the way to a detailed description of the charge carrier dynamics in transition metal oxides. PMID:26437873

  6. Direct and secondary nuclear excitation with x-ray free-electron lasers

    E-print Network

    Gunst, Jonas; Kumar, Naveen; Keitel, Christoph H; Pálffy, Adriana

    2015-01-01

    The direct and secondary nuclear excitation produced by an x-ray free electron laser when interacting with a solid-state nuclear target is investigated theoretically. When driven at the resonance energy, the x-ray free electron laser can produce direct photoexcitation. However, the dominant process in that interaction is the photoelectric effect producing a cold and very dense plasma in which also secondary processes such as nuclear excitation by electron capture may occur. We develop a realistic model to quantify the temporal dynamics of the plasma and the magnitude of the secondary excitation therein. Numerical results show that depending on the nuclear transition energy and the temperature and charge states reached in the plasma, secondary nuclear excitation by electron capture may dominate the direct photoexcitation by several orders of magnitude, as it is the case for the 4.8 keV transition from the isomeric state of $^{93}$Mo, or it can be negligible, as it is the case for the 14.4 keV M\\"ossbauer trans...

  7. Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2

    PubMed Central

    Santomauro, F. G.; Lübcke, A.; Rittmann, J.; Baldini, E.; Ferrer, A.; Silatani, M.; Zimmermann, P.; Grübel, S.; Johnson, J. A.; Mariager, S. O.; Beaud, P.; Grolimund, D.; Borca, C.; Ingold, G.; Johnson, S.L.; Chergui, M.

    2015-01-01

    Transition metal oxides are among the most promising solar materials, whose properties rely on the generation, transport and trapping of charge carriers (electrons and holes). Identifying the latter’s dynamics at room temperature requires tools that combine elemental and structural sensitivity, with the atomic scale resolution of time (femtoseconds, fs). Here, we use fs Ti K-edge X-ray absorption spectroscopy (XAS) upon 3.49?eV (355?nm) excitation of aqueous colloidal anatase titanium dioxide nanoparticles to probe the trapping dynamics of photogenerated electrons. We find that their localization at Titanium atoms occurs in <300?fs, forming Ti3+ centres, in or near the unit cell where the electron is created. We conclude that electron localization is due to its trapping at pentacoordinated sites, mostly present in the surface shell region. The present demonstration of fs hard X-ray absorption capabilities opens the way to a detailed description of the charge carrier dynamics in transition metal oxides. PMID:26437873

  8. Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2

    NASA Astrophysics Data System (ADS)

    Santomauro, F. G.; Lübcke, A.; Rittmann, J.; Baldini, E.; Ferrer, A.; Silatani, M.; Zimmermann, P.; Grübel, S.; Johnson, J. A.; Mariager, S. O.; Beaud, P.; Grolimund, D.; Borca, C.; Ingold, G.; Johnson, S. L.; Chergui, M.

    2015-10-01

    Transition metal oxides are among the most promising solar materials, whose properties rely on the generation, transport and trapping of charge carriers (electrons and holes). Identifying the latter’s dynamics at room temperature requires tools that combine elemental and structural sensitivity, with the atomic scale resolution of time (femtoseconds, fs). Here, we use fs Ti K-edge X-ray absorption spectroscopy (XAS) upon 3.49?eV (355?nm) excitation of aqueous colloidal anatase titanium dioxide nanoparticles to probe the trapping dynamics of photogenerated electrons. We find that their localization at Titanium atoms occurs in <300?fs, forming Ti3+ centres, in or near the unit cell where the electron is created. We conclude that electron localization is due to its trapping at pentacoordinated sites, mostly present in the surface shell region. The present demonstration of fs hard X-ray absorption capabilities opens the way to a detailed description of the charge carrier dynamics in transition metal oxides.

  9. Nano-modulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    E-print Network

    Nanni, Emilio A; Moncton, David E

    2015-01-01

    A new method for generation of relativistic electron beams with current modulations at nanometer scale and below is presented. The current modulation is produced by diffracting relativistic electrons in perfect crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a device based on inverse Compton scattering with total length of a few meters. Electron beam simulations from cathode emission through diffraction, acceleration and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.

  10. Skylab ATM/S-056 X-ray event analyzer: Instrument description, parameter determination, and analysis example (15 June 1973 1B/M3 flare)

    NASA Technical Reports Server (NTRS)

    Wilson, R. M.

    1976-01-01

    The Skylab ATM/S-056 X-Ray Event Analyzer, part of an X-ray telescope experiment, is described. The techniques employed in the analysis of its data to determine electron temperatures and emission measures are reviewed. The analysis of a sample event - the 15 June 1973 1B/M3 flare - is performed. Comparison of the X-Ray Event Analyzer data with that of the SolRad 9 observations indicates that the X-Ray Event Analyzer accurately monitored the sun's 2.5 to 7.25 A X-ray emission and to a lesser extent the 6.1 to 20 A emission. A mean average peak temperature of 15 million K at 1,412 UT and a mean average peak electron density (assuming a flare volume of 10 to the 13 power cu km) of 27 million/cu mm at 1,416 to 1,417 UT are deduced for the event. The X-Ray Event Analyzer data, having a 2.5 s time resolution, should be invaluable in comparisons with other high-time resolution data (e.g., radio bursts).

  11. VizieR Online Data Catalog: GRB Swift X-ray light curves analysis (Margutti+, 2013)

    NASA Astrophysics Data System (ADS)

    Margutti, R.; Zaninoni, E.; Bernardini, M. G.; Chincarini, G.; Pasotti, F.; Guidorzi, C.; Angelini, L.; Burrows, D. N.; Capalbi, M.; Evans, P. A.; Gehrels, N.; Kennea, J.; Mangano, V.; Moretti, A.; Nousek, J.; Osborne, J. P.; Page, K. L.; Perri, M.; Racusin, J.; Romano, P.; Sbarufatti, B.; Stafford, S.; Stamatikos, M.

    2013-11-01

    We present a comprehensive statistical analysis of Swift X-ray light curves of gamma-ray bursts (GRBs) collecting data from more than 650 GRBs discovered by Swift and other facilities. The unprecedented sample size allows us to constrain the rest-frame X-ray properties of GRBs from a statistical perspective, with particular reference to intrinsic time-scales and the energetics of the different light-curve phases in a common rest-frame 0.3-30keV energy band. Temporal variability episodes are also studied and their properties constrained. Two fundamental questions drive this effort: (i) Does the X-ray emission retain any kind of 'memory' of the prompt ?-ray phase? (ii) Where is the dividing line between long and short GRB X-ray properties? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs in the X-rays, but are interestingly characterized by similar intrinsic absorption. We furthermore reveal the existence of a number of statistically significant relations that link the X-ray to prompt ?-ray parameters in long GRBs; short GRBs are outliers of the majority of these two-parameter relations. However and more importantly, we report on the existence of a universal three-parameter scaling that links the X-ray and the ?-ray energy to the prompt spectral peak energy of both long and short GRBs: EX,iso{prop.to}E1.00+/-0.06?,iso/E0.60+/-0.10pk. (3 data files).

  12. Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser.

    PubMed

    Lomb, Lukas; Barends, Thomas R M; Kassemeyer, Stephan; Aquila, Andrew; Epp, Sascha W; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Rudek, Benedikt; Rolles, Daniel; Rudenko, Artem; Shoeman, Robert L; Andreasson, Jakob; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Bozek, John D; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; Deponte, Daniel P; Doak, R Bruce; Ekeberg, Tomas; Fleckenstein, Holger; Fromme, Petra; Gebhardt, Maike; Graafsma, Heinz; Gumprecht, Lars; Hampton, Christina Y; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M; Hunter, Mark S; Kabsch, Wolfgang; Kimmel, Nils; Kirian, Richard A; Liang, Mengning; Maia, Filipe R N C; Meinhart, Anton; Marchesini, Stefano; Martin, Andrew V; Nass, Karol; Reich, Christian; Schulz, Joachim; Seibert, M Marvin; Sierra, Raymond; Soltau, Heike; Spence, John C H; Steinbrener, Jan; Stellato, Francesco; Stern, Stephan; Timneanu, Nicusor; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; White, Thomas A; Wunderer, Cornelia; Chapman, Henry N; Ullrich, Joachim; Strüder, Lothar; Schlichting, Ilme

    2011-12-01

    X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects. PMID:24089594

  13. The detection of sulphur in contamination spots in electron probe X-ray microanalysis

    USGS Publications Warehouse

    Adler, I.; Dwornik, E.J.; Rose, H.J., Jr.

    1962-01-01

    Sulphur has been identified as one of the elements present in the contamination spot which forms under the electron beam in the microprobe. The presence of the sulphur results in a rapid change in intensity measurements causing a loss of observed intensity for elements other than sulphur. The source of sulphur has been traced at least in part to the Apiezon B diffusion pump oil. A comparative X-ray fluorescence study of the Apiezon B and Octoil diffusion pump oils showed substantial amounts of sulphur in the Apiezon B. The Octoil was relatively free of sulphur.

  14. Generation of ultrashort pulses of electrons, X-rays and optical pulses by relativistically strong light

    SciTech Connect

    Umstadter, D.; Banerjee, S.; Chen, S.; Sepke, S.; Maksimchuk, A.; Valenzuela, A.; Rousse, A.; Shah, R.; Phuoc, K. Ta

    2006-04-07

    We report recent results of experiments in which relativistic optical effects play an important role, at peak laser intensities above 1019 W/cm2. These effects are leading to novel radiation sources, all with femtosecond pulse durations: (1) the generation of optical photons by means of pulse compression via relativistic cross-phase modulation, (2) ponderomotive deflection of laser accelerated electron beams, and (3) the generation of well-collimated keV-energy x-ray beams by means of either Thomson scattering or betatron oscillations in ion channels.

  15. Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser

    PubMed Central

    Lomb, Lukas; Barends, Thomas R. M.; Kassemeyer, Stephan; Aquila, Andrew; Epp, Sascha W.; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Rudek, Benedikt; Rolles, Daniel; Rudenko, Artem; Shoeman, Robert L.; Andreasson, Jakob; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J.; Bostedt, Christoph; Bozek, John D.; Caleman, Carl; Coffee, Ryan; Coppola, Nicola; DePonte, Daniel P.; Doak, R. Bruce; Ekeberg, Tomas; Fleckenstein, Holger; Fromme, Petra; Gebhardt, Maike; Graafsma, Heinz; Gumprecht, Lars; Hampton, Christina Y.; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Holton, James M.; Hunter, Mark S.; Kabsch, Wolfgang; Kimmel, Nils; Kirian, Richard A.; Liang, Mengning; Maia, Filipe R. N. C.; Meinhart, Anton; Marchesini, Stefano; Martin, Andrew V.; Nass, Karol; Reich, Christian; Schulz, Joachim; Seibert, M. Marvin; Sierra, Raymond; Soltau, Heike; Spence, John C. H.; Steinbrener, Jan; Stellato, Francesco; Stern, Stephan; Timneanu, Nicusor; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; White, Thomas A.; Wunderer, Cornelia; Chapman, Henry N.; Ullrich, Joachim; Strüder, Lothar; Schlichting, Ilme

    2013-01-01

    X-ray free-electron lasers deliver intense femtosecond pulses that promise to yield high resolution diffraction data of nanocrystals before the destruction of the sample by radiation damage. Diffraction intensities of lysozyme nanocrystals collected at the Linac Coherent Light Source using 2 keV photons were used for structure determination by molecular replacement and analyzed for radiation damage as a function of pulse length and fluence. Signatures of radiation damage are observed for pulses as short as 70 fs. Parametric scaling used in conventional crystallography does not account for the observed effects. PMID:24089594

  16. Crystallization and preliminary X-ray analysis of an arabinoxylan arabinofuranohydrolase from Bacillus subtilis

    SciTech Connect

    Vandermarliere, Elien; Bourgois, Tine M.; Van Campenhout, Steven; Strelkov, Sergei V.; Volckaert, Guido; Delcour, Jan A.; Courtin, Christophe M.; Rabijns, Anja

    2007-08-01

    The crystallization and preliminary X-ray analysis of the family 43 glycoside hydrolase arabinoxylan arabinofuranohydrolase from B. subtilis soaked with xylotriose is described in order to gain insight in the way the enzyme binds its substrates. Arabinoxylan arabinofuranohydrolases (AXH) are ?-l-arabinofuranosidases (EC 3.2.1.55) that specifically hydrolyse the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl residues from arabinoxylan, hence their name. In this study, the crystallization and preliminary X-ray analysis of the AXH from Bacillus subtilis, a glycoside hydrolase belonging to family 43, is described. Purified recombinant AXH crystallized in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 68.7, b = 73.7, c = 106.5 Å. X-ray diffraction data were collected to a resolution of 1.55 Å.

  17. Characterization of x-ray diffraction and electron spin resonance: Effects of sintering time and temperature on bovine hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Kusrini, Eny; Sontang, Muhammad

    2012-02-01

    The physical and chemical properties of a hydroxyapatite produced by the sintering of bovine bone were investigated by powder x-ray diffraction (PXRD), electron spin resonance (ESR), energy dispersive x-ray spectroscopy (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and differential thermal analysis (DTA). A bovine bone powder was sintered at different temperatures ranging from 500 to 1400 °C. The influences of post-irradiation storage on the radiation ESR response of the bovine bone powder before and after sintering were also studied. The results indicate that the sintered bovine bone powder contained hydroxyapatite. Diffraction patterns were sharp and clear based on the (211), (300), and (202) reflections corresponding to bovine hydroxyapatite (BHA), which confirmed the phase purity and high crystalline grade of the BHA produced. The PXRD profile of BHA was dependent on sintering temperatures and times. The molecular formula of BHA was determined by Rietveld analysis showed a similar structure and composition to calcium hydroxyapatite in hexagonal P6 3/m space group a= b=9.435 Å and c=6.895 Å. ESR data showed that the sintering process can decrease the number of free radicals in BHA; it also revealed that the number of free radicals is constant during long storage periods (75 days). The sintering technique described in this study may be used to extract hydroxyapatite from biowaste bovine bone, leading to its application as a bone filler.

  18. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C

    SciTech Connect

    Orville, A.M.; Buono, R.; Cowan, M.; Heroux, A.; Shea-McCarthy, G.; Schneider, D. K.; Skinner, J. M.; Skinner, M. J.; Stoner-Ma, D.; Sweet, R. M.

    2011-05-01

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

  19. Correlated Single-Crystal Electronic Absorption Spectroscopy and X-ray Crystallography at NSLS Beamline X26-C

    SciTech Connect

    A Orville; R Buono; M Cowan; A Heroux; G Shea-McCarthy; D Schneider; J Skinner; M Skinner; D Stoner-Ma; R Sweet

    2011-12-31

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

  20. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C

    PubMed Central

    Orville, Allen M.; Buono, Richard; Cowan, Matt; Héroux, Annie; Shea-McCarthy, Grace; Schneider, Dieter K.; Skinner, John M.; Skinner, Michael J.; Stoner-Ma, Deborah; Sweet, Robert M.

    2011-01-01

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population. PMID:21525643

  1. Optical Density Analysis of X-Rays Utilizing Calibration Tooling to Estimate Thickness of Parts

    NASA Technical Reports Server (NTRS)

    Grau, David

    2012-01-01

    This process is designed to estimate the thickness change of a material through data analysis of a digitized version of an x-ray (or a digital x-ray) containing the material (with the thickness in question) and various tooling. Using this process, it is possible to estimate a material's thickness change in a region of the material or part that is thinner than the rest of the reference thickness. However, that same principle process can be used to determine the thickness change of material using a thinner region to determine thickening, or it can be used to develop contour plots of an entire part. Proper tooling must be used. An x-ray film with an S-shaped characteristic curve or a digital x-ray device with a product resulting in like characteristics is necessary. If a film exists with linear characteristics, this type of film would be ideal; however, at the time of this reporting, no such film has been known. Machined components (with known fractional thicknesses) of a like material (similar density) to that of the material to be measured are necessary. The machined components should have machined through-holes. For ease of use and better accuracy, the throughholes should be a size larger than 0.125 in. (.3 mm). Standard components for this use are known as penetrameters or image quality indicators. Also needed is standard x-ray equipment, if film is used in place of digital equipment, or x-ray digitization equipment with proven conversion properties. Typical x-ray digitization equipment is commonly used in the medical industry, and creates digital images of x-rays in DICOM format. It is recommended to scan the image in a 16-bit format. However, 12-bit and 8-bit resolutions are acceptable. Finally, x-ray analysis software that allows accurate digital image density calculations, such as Image-J freeware, is needed. The actual procedure requires the test article to be placed on the raw x-ray, ensuring the region of interest is aligned for perpendicular x-ray exposure capture. One or multiple machined components of like material/ density with known thicknesses are placed atop the part (preferably in a region of nominal and non-varying thickness) such that exposure of the combined part and machined component lay-up is captured on the x-ray. Depending on the accuracy required, the machined component fs thickness must be carefully chosen. Similarly, depending on the accuracy required, the lay-up must be exposed such that the regions of the x-ray to be analyzed have a density range between 1 and 4.5. After the exposure, the image is digitized, and the digital image can then be analyzed using the image analysis software.

  2. LINAC DESIGN FOR AN ARRAY OF SOFT X-RAY FREE ELECTRON LASERS

    SciTech Connect

    Zholents, Alexander A.; Kur, E.; Penn, G.; Qiang, Ji; Venturini, M.; Wells, R. P.

    2008-09-22

    The design of the linac delivering electron bunches into ten independent soft x-ray free electron lasers (FELs) producing light at 1 nm and longer wavelengths is presented. The bunch repetition rate in the linac is 1 MHz and 100 kHz in each of ten FEL beam lines. Various issues regarding machine layout and lattice, bunch compression, collimation, and the beam switch yard are discussed. Particular attention is given to collective effects. A demanding goal is to preserve both a low beam slice emittance and low slice energy spread during acceleration, bunch compression and distribution of the electron bunches into the array of FEL beamlines. Detailed studies of the effect of the electron beam microbunching caused by longitudinal space-charge forces and coherent synchrotron radiation (CSR) have been carried out and their results are presented.

  3. Local electronic states of Fe{sub 4}N films revealed by x-ray absorption spectroscopy and x-ray magnetic circular dichroism

    SciTech Connect

    Ito, Keita; Toko, Kaoru; Suemasu, Takashi; Takeda, Yukiharu; Saitoh, Yuji; Oguchi, Tamio; Kimura, Akio

    2015-05-21

    We performed x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements at Fe L{sub 2,3} and N K-edges for Fe{sub 4}N epitaxial films grown by molecular beam epitaxy. In order to clarify the element specific local electronic structure of Fe{sub 4}N, we compared experimentally obtained XAS and XMCD spectra with those simulated by a combination of a first-principles calculation and Fermi's golden rule. We revealed that the shoulders observed at Fe L{sub 2,3}-edges in the XAS and XMCD spectra were due to the electric dipole transition from the Fe 2p core-level to the hybridization state generated by ?* anti-bonding between the orbitals of N 2p at the body-centered site and Fe 3d on the face-centered (II) sites. Thus, the observed shoulders were attributed to the local electronic structure of Fe atoms at II sites. As to the N K-edge, the line shape of the obtained spectra was explained by the dipole transition from the N 1s core-level to the hybridization state formed by ?* and ?* anti-bondings between the Fe 3d and N 2p orbitals. This hybridization plays an important role in featuring the electronic structures and physical properties of Fe{sub 4}N.

  4. Effects of electron beam dynamics on resolution of X-ray radiography

    NASA Astrophysics Data System (ADS)

    Christenson, P. J.; Kwan, T. J. T.

    2000-10-01

    In this study we link particle in cell (PIC) calculations from the code, MERLIN, with electron-photon Monte Carlo calculations using the code, MCNP, to produce synthetic radiographs. The results are used to examine several factors that may have an effect on the resolution of dynamic x-ray radiography such as done at the DARHT (Dual Axis Radiographic Hydro-Test) facility. Three properties are varied in this study, and the results of those variations are examined. First, the electron beam rise time from the accelerator is altered, and the difference on the temporal x-ray production is examined as well as the overall effects on the resolution of the radiographic image. Next, the effects of thermal velocity and energy spread of the electron beam as it exits the accelerator are studied by varying from a cold beam to a more realistic beam that fits with the expected or measured DARHT beam parameters. Finally, the bremsstrahlung conversion target composition is varied, and the effects of target materials and configurations are examined.

  5. Optical and x-ray imaging of electron beams using synchrotron emission

    SciTech Connect

    Wilke, M.

    1995-01-01

    In the case of very low emittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory.

  6. Characterization of the Electronic Structure of Silicon Nanoparticles Using X-ray Absorption and Emission

    SciTech Connect

    Vaverka, A M

    2008-07-15

    Resolving open questions regarding transport in nanostructures can have a huge impact on a broad range of future technologies such as light harvesting for energy. Silicon has potential to be used in many of these applications. Understanding how the band edges of nanostructures move as a function of size, surface termination and assembly is of fundamental importance in understanding the transport properties of these materials. In this thesis work I have investigated the change in the electronic structure of silicon nanoparticle assemblies as the surface termination is changed. Nanoparticles are synthesized using a thermal evaporation technique and sizes are determined using atomic force microscopy (AFM). By passivating the particles with molecules containing alcohol groups we are able to modify the size dependent band edge shifts. Both the valence and conduction bands are measured using synchrotron based x-ray absorption spectroscopy (XAS) and soft x-ray fluorescence (SXF) techniques. Particles synthesized via recrystallization of amorphous silicon/SiO{sub 2} multilayers of thicknesses below 10 nm are also investigated using the synchrotron techniques. These samples also show quantum confinement effects but the electronic structure is different from those synthesized via evaporation methods. The total bandgap is determined for all samples measured. The origins of these differences in the electronic structures are discussed.

  7. Hard X ray survey of energetic electrons from low-earth orbit

    SciTech Connect

    Feldman, W.C.; Symbalisty, E.M.D.; Roussel-Dupre, R.A.

    1996-03-01

    Hard X ray and neutron emissions measured in low-Earth orbit are surveyed to develop a global overview of lightning-related energetic-electron precipitation and acceleration process. Comparison of geographic intensity maps shows the dominance of enhanced hard X ray intensities measured when the satellite was above the continental United States and above the southern Indian Ocean between Madagascar and Australia. The emission is most enhanced during the northern summer months. Lesser although significant enhancements are seen between the Middle East and the Tibetan plateau, a stretch of ocean off the east Asian coast between the Phillipines and Korea, a stretch of equatorial Africa from the Ivory Coast to Mozambique, a region of the eastern equatorial Pacific just west of Columbia, and a patch of the Indian Ocean stretching between the southern tip of India and Indonesia. Although emissions from many of these regions are generally enhanced during the northern summer and fall seasons, none show any regularity relative to local time of day. Many but not all of these enhancements support natural interpretations in terms of lightning-induced energetic-electron precipitation from the terrestrial trapped radiation belts. Electron scattering induced by radio waves from VLF transmitters most likely contributes to this precipitation. 46 refs., 6 figs.

  8. Optical and x-ray imaging of electron beams using synchrotron emission

    SciTech Connect

    Wilke, M.D.

    1994-12-01

    In the case of very low eniittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory.

  9. Electron Bremsstrahlung Hard X-Ray Spectra, Electron Distributions and Energetics in the 2002 July 23 Solar Flare

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Sui, Lindhui; Schartz, Richard A.; Emslie, A. Gordon; Oegerle, William (Technical Monitor)

    2003-01-01

    We present and analyze the first high-resolution hard X-ray spectra from a solar flare observed in both X-ray/gamma-ray continuum and gamma-ray lines. The 2002 July 23 flare was observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The spatially integrated photon flux spectra are well fitted between 10 and 300 keV by the combination of an isothermal component and a double power law. The flare plasma temperature peaks at 40 MK around the time of peak hard X-ray emission and remains above 20 MK 37 min later. We derive the evolution of the nonthermal mean electron flux distribution by directly fitting the RHESSI X-ray spectra with the thin-target bremsstrahlung from a double power-law electron distribution with a low-energy cutoff. We also derive the evolution of the electron flux distribution on the assumption that the emission is thick-target bremsstrahlung. We find that the injected nonthermal electrons are well described throughout the flare by this double power-law distribution with a low-energy cutoff that is typically between 20-40 keV. Using our thick-target results, we compare the energy contained in the nonthermal electrons with the energy content of the thermal flare plasma observed by RHESSI and GOES. We find that the minimum total energy deposited into the flare plasma by nonthermal electrons, 2.6 x 10(exp 31)erg, is on the order of and possibly less than the energy in the thermal plasma. However, these fits do not rule out the possibility that the energy in nonthermal electrons exceeds the energy in the thermal plasma.

  10. Electron Bremsstrahlung Hard X-Ray Spectra, Electron Distributions and Energetics in the 2002 July 23 Solar Flare

    NASA Technical Reports Server (NTRS)

    Holman, G. D.; Sui, L.; Schwartz, R. A.; Emslie, A. G.

    2003-01-01

    We present and analyze the first high-resolution hard X-ray spectra from a solar flare observed in both X-ray/gamma-ray continuum and gamma-ray lines. The 2002 July 23 flare was observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The spatially integrated photon flux spectra are well fitted between 10 and 300 keV by the combination of an isothermal component and a double power law. The flare plasma temperature peaks at 40 MK around the time of peak hard X-ray emission and remains above 20 MK 37 min later. We derive the evolution of the nonthermal mean electron flux distribution by directly fitting the RHESSI X-ray spectra with the thin-target bremsstrahlung from a double power-law electron distribution with a low-energy cutoff. We also derive the evolution of the electron flux distribution on the assumption that the emission is thick-target bremsstrahlung. We find that the injected nonthermal electrons are well described throughout the flare by this double power-law distribution with a low-energy cutoff that is typically between 20 - 40 keV. Using our thick-target results, we compare the energy contained in the nonthermal electrons with the energy content of the thermal flare plasma observed by RHESSI and GOES. We find that the minimum total energy deposited into the flare plasma by nonthermal electrons, 2.6 x 10(exp 31) erg, is on the order of and possibly less than the energy in the thermal plasma. However, these fits do not rule out the possibility that the energy in nonthermal electrons exceeds the energy in the thermal plasma. This work was supported in part by the RHESSI Project and the NASA Sun-Earth Connection program.

  11. Saturable absorption of an x-ray free-electron-laser heated solid-density aluminum plasma.

    PubMed

    Rackstraw, D S; Ciricosta, O; Vinko, S M; Barbrel, B; Burian, T; Chalupský, J; Cho, B I; Chung, H-K; Dakovski, G L; Engelhorn, K; Hájková, V; Heimann, P; Holmes, M; Juha, L; Krzywinski, J; Lee, R W; Toleikis, S; Turner, J J; Zastrau, U; Wark, J S

    2015-01-01

    High-intensity x-ray pulses from an x-ray free-electron laser are used to heat and probe a solid-density aluminum sample. The photon-energy-dependent transmission of the heating beam is studied through the use of a photodiode. Saturable absorption is observed, with the resulting transmission differing significantly from the cold case, in good agreement with atomic-kinetics simulations. PMID:25615475

  12. Influence of diffraction in crystals on the coherence properties of X-ray free-electron laser pulses

    SciTech Connect

    Bushuev, V. A.; Samoylova, L.

    2011-09-15

    The spatial and temporal evolution of the field of random X-ray femtosecond pulses and their coherent properties upon pulse propagation in free space and under dynamical diffraction in perfect crystals in the Bragg and Laue geometries has been analyzed on the basis of the formalism developed in statistical optics. Particular attention is paid to the influence of large pulse propagation distances, which are characteristic of lengthy channels of X-ray free-electron lasers.

  13. Charge and Nuclear Dynamics Induced by Deep Inner-Shell Multiphoton Ionization of CH3I Molecules by Intense X-ray Free-Electron Laser Pulses.

    PubMed

    Motomura, Koji; Kukk, Edwin; Fukuzawa, Hironobu; Wada, Shin-ichi; Nagaya, Kiyonobu; Ohmura, Satoshi; Mondal, Subhendu; Tachibana, Tetsuya; Ito, Yuta; Koga, Ryosuke; Sakai, Tsukasa; Matsunami, Kenji; Rudenko, Artem; Nicolas, Christophe; Liu, Xiao-Jing; Miron, Catalin; Zhang, Yizhu; Jiang, Yuhai; Chen, Jianhui; Anand, Mailam; Kim, Dong Eon; Tono, Kensuke; Yabashi, Makina; Yao, Makoto; Ueda, Kiyoshi

    2015-08-01

    In recent years, free-electron lasers operating in the true X-ray regime have opened up access to the femtosecond-scale dynamics induced by deep inner-shell ionization. We have investigated charge creation and transfer dynamics in the context of molecular Coulomb explosion of a single molecule, exposed to sequential deep inner-shell ionization within an ultrashort (10 fs) X-ray pulse. The target molecule was CH3I, methane sensitized to X-rays by halogenization with a heavy element, iodine. Time-of-flight ion spectroscopy and coincident ion analysis was employed to investigate, via the properties of the atomic fragments, single-molecule charge states of up to +22. Experimental findings have been compared with a parametric model of simultaneous Coulomb explosion and charge transfer in the molecule. The study demonstrates that including realistic charge dynamics is imperative when molecular Coulomb explosion experiments using short-pulse facilities are performed. PMID:26267186

  14. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  15. Advances in X-Ray Chemical Analysis, Japan, 43 (2012) ISSN 0911-7806 Reviews on Forensic Analysis of Wakayama Arsenic Case

    E-print Network

    Jun, Kawai

    2012-01-01

    Analysis of Wakayama Arsenic Case ­ X-Ray Fluorescence Analysis ­ Submitted to Court Jun KAWAI #12 of Wakayama Arsenic Case ­ X-Ray Fluorescence Analysis ­ Submitted to Court Jun KAWAI Department of Materials at summer festival dated on July 25th , 1998, was poisoned by arsenic. The X-ray fluorescence analysis used

  16. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons.

    PubMed

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10(-6) Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system. PMID:23376878

  17. Identification and analysis of structures in the corona from X-ray photography

    NASA Technical Reports Server (NTRS)

    Vaiana, G. S.; Krieger, A. S.; Timothy, A. F.

    1973-01-01

    This paper summarizes the results of a program of rocket observations of the solar corona with grazing incidence X-ray telescopes. A series of five flights of a Kanigen-surfaced telescope with a few arc seconds resolution, together with the first flight of a newer telescope have resulted in the identification of six classes of coronal structures observable in the X-ray photographs. These are: active regions, active region interconnections, large loop structures associated with unipolar magnetic regions, coronal holes, coronal bright points, and the structures surrounding filament cavities. Two solar flares have been observed. The methods involved in deriving coronal temperature and density information from X-ray photographs are described and the analysis of a bright active region (McMath plage 11035) observed at the west limb on November 24, 1970 is presented as an example of these techniques.

  18. Inorganic chemical investigation by X-ray fluorescence analysis - The Viking Mars Lander

    NASA Technical Reports Server (NTRS)

    Toulmin, P., III; Rose, H. J., Jr.; Baird, A. K.; Clark, B. C.; Keil, K.

    1973-01-01

    The inorganic chemical investigation experiment added in August 1972 to the Viking Lander scientific package uses an energy-dispersive X-ray fluorescence spectrometer in which four sealed, gas-filled proportional counters detect X-rays emitted from samples of the Martian surface materials irradiated by X-rays from radioisotope sources (Fe-55 and Cd-109). The instrument is inside the Lander body, and samples are to be delivered to it by the Viking Lander Surface Sampler. Instrument design is described along with details of the data processing and analysis procedures. The results of the investigation will characterize the surface materials of Mars as to elemental composition with accuracies ranging from a few tens of parts per million (at the trace-element level) to a few per cent (for major elements) depending on the element in question.

  19. X-ray analysis of the proper motion and PWN for PSR J1741-2054

    NASA Astrophysics Data System (ADS)

    Auchettl, Katie

    2014-11-01

    We report on the X-ray analysis of PSR J1741-2054 carried out as a part of the Chandra XVP program (6 ACIS-S observations, totalling ~300 ks over 5 months). By registering this new epoch of observations using X-ray point sources in the field of view to an archival observation taken 3.2 years earlier, we are able to measure the proper motion of the pulsar with > 3 ? significance. We also investigate the spatial and spectral properties of the pulsar, its compact nebula and extended tail. We find that the compact nebula can be well described with an absorbed power-law with photon index of ?=1.6+/-0.2, while the tail shows no evidence of variation in the spectral index with the distance from the pulsar. We have also investigated the X-ray spectrum of the neutron star.

  20. Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.

    1990-01-01

    X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.

  1. Template assisted self-assembly of iron oxide nanoparticles: An x-ray structural analysis

    SciTech Connect

    Mishra, D.; Zabel, H.; Ulyanov, S. V.; Romanov, V. P.; Uzdin, V. M.

    2014-02-07

    We have fabricated by e-beam lithography periodic arrays of rectangular shaped trenches of different widths into Si substrates. The trenches were filled with iron oxide nanoparticles, 20?nm in diameter, by spin-coating them onto the Si substrate. The trenches have the purpose to assist the self-assembly of the iron oxide nanoparticles. Using x-ray scattering techniques, we have analyzed the structure factor of the trenches before and after filling in order to determine the filling factor. We present a theoretical analysis of the x-ray scattering function within the distorted-wave Born approximation and we present a quantitative comparison between theory and experiment.

  2. X-ray fluorescence analysis of malachite ore concentrates in the Narman region

    NASA Astrophysics Data System (ADS)

    Budak, G.; Karabulut, A.

    1999-06-01

    Analysis by energy dispersive X-ray fluorescence (EDXRF) spectroscopy of malachite ore of the Narman region in the city of Erzurum (Turkey) has been carried out for the determination of their elemental composition, using an annular 241Am radioisotope source. The elements Fe, Cu, Sr, Zr, In, Sn, Sb, I and Ba are analyzed. Samples are prepared from powder sifted by a 300 mesh sieve. The characteristic K X-rays of the different elements were detected with a Si(Li) detector. These results are presented and discussed in this paper.

  3. Crystallization and preliminary X-ray analysis of Escherichia coli RNase G.

    PubMed

    Fang, Pengfei; Wang, Jing; Li, Xu; Guo, Min; Xing, Li; Cao, Xu; Zhu, Yi; Gao, Yan; Niu, Liwen; Teng, Maikun

    2009-06-01

    The homologous RNases RNase E and RNase G are widely distributed in bacteria and function in many important physiological processes, including mRNA degradation, rRNA maturation and so on. In this study, the crystallization and preliminary X-ray analysis of RNase G from Escherichia coli is described. Purified recombinant E. coli RNase G, which has 497 amino acids, was crystallized in the cubic space group F432, with unit-cell parameters a = b = c = 219.84 A. X-ray diffraction data were collected to a resolution of 3.4 A. PMID:19478437

  4. Simple Method to Generate Terawatt-Attosecond X-Ray Free-Electron-Laser Pulses.

    PubMed

    Prat, Eduard; Reiche, Sven

    2015-06-19

    X-ray free-electron lasers (XFELs) are cutting-edge research tools that produce almost fully coherent radiation with high power and short-pulse length with applications in multiple science fields. There is a strong demand to achieve even shorter pulses and higher radiation powers than the ones obtained at state-of-the-art XFEL facilities. In this context we propose a novel method to generate terawatt-attosecond XFEL pulses, where an XFEL pulse is pushed through several short good-beam regions of the electron bunch. In addition to the elements of conventional XFEL facilities, the method uses only a multiple-slotted foil and small electron delays between undulator sections. Our scheme is thus simple, compact, and easy to implement both in already operating as well as future XFEL projects. We present numerical simulations that confirm the feasibility and validity of our proposal. PMID:26196979

  5. Simple Method to Generate Terawatt-Attosecond X-Ray Free-Electron-Laser Pulses

    NASA Astrophysics Data System (ADS)

    Prat, Eduard; Reiche, Sven

    2015-06-01

    X-ray free-electron lasers (XFELs) are cutting-edge research tools that produce almost fully coherent radiation with high power and short-pulse length with applications in multiple science fields. There is a strong demand to achieve even shorter pulses and higher radiation powers than the ones obtained at state-of-the-art XFEL facilities. In this context we propose a novel method to generate terawatt-attosecond XFEL pulses, where an XFEL pulse is pushed through several short good-beam regions of the electron bunch. In addition to the elements of conventional XFEL facilities, the method uses only a multiple-slotted foil and small electron delays between undulator sections. Our scheme is thus simple, compact, and easy to implement both in already operating as well as future XFEL projects. We present numerical simulations that confirm the feasibility and validity of our proposal.

  6. Generation of intense coherent attosecond X-ray pulses using relativistic electron mirrors

    SciTech Connect

    Kulagin, V V; Kornienko, V N; Cherepenin, Vladimir A; Suk, Hyyong

    2013-05-31

    We analyse the steepening of the leading edge of femtosecond petawatt pulses with the use of plasma layers and show that, at an electron density several times higher than the critical one, an asymmetric (in time domain) pulse can be produced with an amplitude of the first half-wave differing little from the maximum pulse amplitude. Using numerical simulation, we have studied the interaction of such pulses with nanometre-thick films, including the generation of relativistic electron mirrors and the reflection of a counterpropagating probe pulse from such mirrors. The resulting coherent X-ray pulses have a duration of {approx}120 as and a power of {approx}600 GW at a wavelength of {approx}13 nm. Our results demonstrate that the reflectivity of a relativistic electron mirror situated in the accelerating pulse field is independent of the probe pulse amplitude when it increases up to the accelerating pulse amplitude. (interaction of laser radiation with matter. laser plasma)

  7. A bunch killer for the NSLS x-ray electron storage ring

    SciTech Connect

    Nawrocky, R.J.; Bergmann, U.; Siddons, D.P.

    1993-07-01

    In the NSLS x-ray electron storage ring, which operates at a harmonic number of 30, the beam may be stored in many different bunch patterns. The minimum spacing between bunches is approximately 19 nsec. While most of the experimenters are primarily interested in photon flux, some experiments are sensitive to bunch spacing. Time resolved nuclear resonance scattering experiments, for example, need pulses of x-rays spaced of the order of 100 nsec apart and a very low noise floor (10{sup {minus}6}) between pulses. Perhaps even more important than the level of the background is that it be reproducible and homogeneous in time. It has been found in practice that a small number of electrons always get trapped in the ``empty`` rf buckets during injection into the storage ring and remain as low level stray bunches. These extra bunches produce an unacceptable temporally localized, non-reproducible background which is difficult if not impossible to correct for. A ``bunch killer`` system based on the rf knockout technique has been developed and installed on the ring to remove the unwanted bunches. The authors describe the operation of this system and present experimental results to illustrate its effectiveness.

  8. Room-temperature calorimeter for x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Kato, M.; Saito, N.; Tono, K.; Yabashi, M.; Ishikawa, T.

    2015-09-01

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (˜4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%).

  9. Room-temperature calorimeter for x-ray free-electron lasers.

    PubMed

    Tanaka, T; Kato, M; Saito, N; Tono, K; Yabashi, M; Ishikawa, T

    2015-09-01

    We have developed a room-temperature calorimeter for absolute radiant power measurements of x-ray free-electron lasers. This room-temperature calorimeter is an electrical substitution device based on the equivalence of electrical and radiant heating. Consequently, the measured radiant powers are traceable to electrical standards, i.e., the International System Units (SI). We demonstrated the performance of the room-temperature calorimeter by electrical power measurements (offline tests). In the offline tests, the room-temperature calorimeter was proven to be able to measure external powers up to at least 6.9 mW, which exceeds the upper limit (?4 mW) of a cryogenic radiometer (the primary standard detector in Japan). In addition, measurement uncertainties of the room-temperature calorimeter were evaluated to be less than 1.0%, which is adequate for the radiant power measurements of x-ray free-electron lasers. An indirect comparison with the cryogenic radiometer was performed using a synchrotron radiation source to confirm the validity of the absolute radiant powers measured with the room-temperature calorimeter. The absolute radiant powers measured by the calorimeter agreed with those measured by the cryogenic radiometer within 0.6%, which is less than the relative standard uncertainty of the comparison (1.0%). PMID:26429426

  10. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    SciTech Connect

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650?nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO{sub 2} exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500?nA/W and 11 × 10{sup ?6} for 445?nm illumination.

  11. EDITORIAL: Attosecond and x-ray free-electron laser physics Attosecond and x-ray free-electron laser physics

    NASA Astrophysics Data System (ADS)

    Moshammer, R.; Ullrich, J.

    2009-07-01

    Currently, we are witnessing a revolution in photon science, driven by the vision to time-resolve ultra-fast electronic motion in atoms, molecules, and solids as well as by the quest for the characterization of time-dependent structural changes in large molecules and solids. Quantum jumps in the development of light sources are the key technologies for this emerging field of research. Thus, high harmonic radiation bursts now penetrate the attosecond (10-18 s) regime and free-electron lasers (FELs) deliver ultra-brilliant femtosecond, coherent VUV and x-ray pulses. This special issue presents a snapshot of this ongoing revolution and brings together, for the first time, pioneering results in both of these fields that are expected to evolve synergetically in the future. The volume is based on the spirit of the International Conference on Multi-Photon Processes, ICOMP08, which was held at the Max Planck Institute for Nuclear Physics in Heidelberg in summer 2008. The first contributions include articles that envision tracing electronic motion on an attosecond time scale and its relation to nuclear motion. After more technical papers on the generation of attosecond pulses via high harmonic generation (HHG), molecular and two-electron atomic dynamics in strong optical fields at a typical wavelength of 800 nm are presented pointing to sub-cycle, attosecond features. Making the transition to shorter wavelengths, nonlinear dynamics in atoms and molecules is explored via experimental and theoretical methods, where the present measurements are nearly exclusively performed at FEL sources. A substantial number of articles focus on the investigation of the most simple many- (few-) photon two-electron processes in double ionization of helium at optical and VUV wavelengths, with the goal of characterizing this fundamental reaction, not yet consistently solved theoretically, in spite of huge efforts. Finally, the behaviour of more complex nanoscaled systems, i.e. clusters, is investigated bridging the gap from atoms and molecules to solids introduced to intense FEL radiation. Beyond the basic interest in many-particle dynamics in finite systems, these studies are of enormous practical relevance for upcoming research at X-ray FELs. Here, realizing the dream of coherent imaging of the structure of single bio-molecules in the gas phase with atomic resolution is critically dependent on ultra-fast dynamics initiated by the pulse. In other words, it is reduced to the simple question of whether the molecule is first imaged and then destroyed or vice versa! During the preparation of this Editorial, the first lasing at the Stanford Linac Coherent Light Source (LCLS) was achieved at a photon energy of about 8 keV - a further milestone in this exciting revolution in the science related to light.

  12. Orbital-selective electronic excitations in iron arsenides revealed by simulated nonresonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Tsutsui, Kenji; Kaneshita, Eiji; Tohyama, Takami

    2015-11-01

    Nonresonant inelastic x-ray scattering (NIXS) is a possible tool to detect charge excitations in electron systems. In addition, multipole transitions at high-momentum-transfer regions open a new possibility to determine orbital-selective electronic excitations in multiorbital itinerant 3 d electron systems. As a theoretical example, we choose the antiferromagnetic state of iron arsenides and demonstrate that the orbital-selective excitations are detectable by choosing appropriate momentum transfer in NIXS. We propose that both NIXS and resonant inelastic x-ray scattering are complementary to each other for fully understanding the nature of orbital excitations in multiorbital itinerant electron systems.

  13. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data

    PubMed Central

    Barty, Anton; Kirian, Richard A.; Maia, Filipe R. N. C.; Hantke, Max; Yoon, Chun Hong; White, Thomas A.; Chapman, Henry

    2014-01-01

    The emerging technique of serial X-ray diffraction, in which diffraction data are collected from samples flowing across a pulsed X-ray source at repetition rates of 100?Hz or higher, has necessitated the development of new software in order to handle the large data volumes produced. Sorting of data according to different criteria and rapid filtering of events to retain only diffraction patterns of interest results in significant reductions in data volume, thereby simplifying subsequent data analysis and management tasks. Meanwhile the generation of reduced data in the form of virtual powder patterns, radial stacks, histograms and other meta data creates data set summaries for analysis and overall experiment evaluation. Rapid data reduction early in the analysis pipeline is proving to be an essential first step in serial imaging experiments, prompting the authors to make the tool described in this article available to the general community. Originally developed for experiments at X-ray free-electron lasers, the software is based on a modular facility-independent library to promote portability between different experiments and is available under version 3 or later of the GNU General Public License. PMID:24904246

  14. Interpretation of very low resolution X-ray electron-density maps using core objects

    PubMed Central

    Heuser, Philipp; Langer, Gerrit G.; Lamzin, Victor S.

    2009-01-01

    A novel approach to obtaining structural information from macromolecular X-ray data extending to resolutions as low as 20?Å is presented. Following a simple map-segmentation procedure, the approximate shapes of the domains forming the structure are identified. A pattern-recognition comparative analysis of these shapes and those derived from the structures of domains from the PDB results in candidate structural models that can be used for a fit into the density map. It is shown that the placed candidate models can be employed for subsequent phase extension to higher resolution. PMID:19564689

  15. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    DOE PAGESBeta

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; et al

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore »the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less

  16. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    SciTech Connect

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th.; Heimann, P. A.; Dorchies, F.

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  17. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy

    SciTech Connect

    Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; Cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

    2011-03-24

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  18. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ioni Beam-scanning Electron Microscopy

    SciTech Connect

    G Nelson; W Harris; J Lombardo; J Izzo Jr.; W Chiu; P Tanasini; M Cantoni; J Van herle; C Comninellis; et al.

    2011-12-31

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB-SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB-SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  19. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals.

    SciTech Connect

    Stoupin, S.; Shvydko, Y.; Shu, D.; Khachatryan, R.; Xiao, X.

    2012-01-01

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub x} {approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  20. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals

    SciTech Connect

    Stoupin, Stanislav; Shvyd'ko, Yuri; Shu Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey

    2012-02-15

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub X}{approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.