These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Apparent Linear Attenuation Coefficients in Phase Contrast X-Ray Tomography  

PubMed Central

In the inline phase contrast x-ray tomography the reconstructed apparent linear attenuation coefficient values may be greatly larger than sample’s linear attenuation coefficients or even be negative. In this work we present a general formula to quantitatively relate the apparent linear attenuation coefficient values in cone-beam phase contrast tomography to sample’s linear attenuation coefficients and refractive indices. This formula overcomes the gross inaccuracy of the existing formula in the literature in analyzing high-resolution phase contrast tomography, and it will be useful for correctly interpreting and quantifying the apparent linear attenuation coefficients in cone-beam x-ray phase contrast tomography. PMID:21691420

Yan, Aimin; Wu, Xizeng

2011-01-01

2

Measurement of mass attenuation coefficients around the K absorption edge by parametric X-rays  

NASA Astrophysics Data System (ADS)

When electrons at relativistic velocities pass through a crystal plate, such as silicon, photons are emitted around the Bragg angle for X-ray diffraction. This phenomenon is called parametric X-ray radiation (PXR). The monochromaticity and directivity of PXR are adequate and the energy can be changed continuously by rotating the crystal. This study measured the mass attenuation coefficient around the K-shell absorption edge of Nb, Zr and Mo as a PXR application of monochromatic hard X-ray radiation sources.

Tamura, Masaya; Akimoto, Tadashi; Aoki, Yohei; Ikeda, Jiro; Sato, Koichi; Fujita, Fumiyuki; Homma, Akira; Sawamura, Teruko; Narita, Masakuni

2002-05-01

3

New consistency tests for high-accuracy measurements of X-ray mass attenuation coefficients by the X-ray extended-range technique  

SciTech Connect

An extension of the X-ray extended-range technique is described for measuring X-ray mass attenuation coefficients by introducing absolute measurement of a number of foils - the multiple independent foil technique. Illustrating the technique with the results of measurements for gold in the 38-50 keV energy range, it is shown that its use enables selection of the most uniform and well defined of available foils, leading to more accurate measurements; it allows one to test the consistency of independently measured absolute values of the mass attenuation coefficient with those obtained by the thickness transfer method; and it tests the linearity of the response of the counter and counting chain throughout the range of X-ray intensities encountered in a given experiment. In light of the results for gold, the strategy to be ideally employed in measuring absolute X-ray mass attenuation coefficients, X-ray absorption fine structure and related quantities is discussed.

Chantler, C.T.; Islam, M.T.; Rae, N.A.; Tran, C.Q.; Glover, J.L.; Barnea, Z. (La Trobe); (Melbourne)

2012-09-25

4

Determination of the mass attenuation coefficients for X-ray fluorescence measurements correction by the Rayleigh to Compton scattering ratio  

NASA Astrophysics Data System (ADS)

X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at www.macx.net.br.

Conti, C. C.; Anjos, M. J.; Salgado, C. M.

2014-09-01

5

Measurement of the x-ray mass attenuation coefficients of gold in the 38?50-keV energy range  

SciTech Connect

We used synchrotron x rays to measure the x-ray mass attenuation coefficients of gold at nine energies from 38 to 50 keV with accuracies of 0.1%. Our results are much more accurate than previous measurements in this energy range. A comparison of our measurements with calculated mass attenuation coefficients shows that our measurements fall almost exactly midway between the XCOM and FFAST calculated theoretical values, which differ from one another in this energy region by about 4%, even though the range includes no absorption edge. The consistency and accuracy of these measurements open the way to investigations of the x-ray attenuation in the region of the L absorption edge of gold.

Islam, M.T.; Rae, N.A.; Glover, J.L.; Barnea, Z.; de Jonge, M.D.; Tran, C.Q.; Wang, J.; Chantler, C.T. (Melbourne)

2010-11-12

6

Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest  

Microsoft Academic Search

Tables and graphs of the photon mass attenuation coefficient mu\\/rho and the mass energy-absorption coefficient mu(en)\\/rho are presented for all of the elements Z=1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV. The mu\\/rho values are taken from the

J. H. Hubbell; Stephen M Seltzer

1995-01-01

7

Measurement of mass attenuation coefficients of Eremurus-Rhizophora spp. particleboards for X-ray in the 16.63-25.30 keV energy range  

NASA Astrophysics Data System (ADS)

The roots of Eremurus spp. were used as a bio-adhesive in the fabrication of Rhizophora spp. particleboards. The mass attenuation coefficients of Eremurus-Rhizophora spp. particleboard of six samples with two different weight percentages of the Eremurus spp. root (6% and 12%) and three various Rhizophora spp. particle sizes (?149 ?m, 149-500 ?m and 500-1000 ?m) were determined by using X-ray fluorescence (XRF) photons in 16.63 keV and 25.30 keV of the photon energy range. The results were compared with theoretically calculated mass attenuations using the XCOM computer program for younger-age (breast 1: 75% muscle+25% fat), middle-age (breast 2: 50% muscle+50% fat), and old-age (breast 3: 25% muscle+75% fat) breasts. The results indicated that Eremurus-Rhizophora spp. particleboard is the appropriate suitable phantom in the diagnostic energy region. The mass attenuation coefficient in the low weight percentage of the bio-adhesive and the large Rhizophora spp. particle size were found very close to breast 1. Moreover the mass attenuation coefficient of the sample with high weight percentage of the bio-adhesive and small Rhizophora spp. particle size was found very close to water as a standard material phantom. In addition, the viscosity of dissolved Eremurus spp. root in water could be considerably higher than that of formaldehyde-based adhesives, which affects on some properties such as high strength and high binding.

Tousi, E. T.; Bauk, S.; Hashim, R.; Jaafar, M. S.; Abuarra, A.; Aldroobi, K. S. A.; Al-Jarrah, A. M.

2014-10-01

8

X-ray mass attenuation coefficients and imaginary components of the atomic form factor of zinc over the energy range of 7.2-15.2 keV  

SciTech Connect

The x-ray mass attenuation coefficients of zinc are measured in a high-accuracy experiment between 7.2 and 15.2 keV with an absolute accuracy of 0.044% and 0.197%. This is the most accurate determination of any attenuation coefficient on a bending-magnet beamline and reduces the absolute uncertainty by a factor of 3 compared to earlier work by advances in integrated column density determination and the full-foil mapping technique described herein. We define a relative accuracy of 0.006%, which is not the same as either the precision or the absolute accuracy. Relative accuracy is the appropriate parameter for standard implementation of analysis of near-edge spectra. Values of the imaginary components f'' of the x-ray form factor of zinc are derived. Observed differences between the measured mass attenuation coefficients and various theoretical calculations reach a maximum of about 5% at the absorption edge and up to 2% further than 1 keV away from the edge. The measurements invite improvements in the theoretical calculations of mass attenuation coefficients of zinc.

Rae, Nicholas A.; Chantler, Christopher T.; Barnea, Zwi; Jonge, Martin D. de; Tran, Chanh Q.; Hester, James R. [School of Physics, University of Melbourne, Victoria 3010 (Australia); Australian Synchrotron, Victoria 3168 (Australia); La Trobe University, Victoria 3086 (Australia); Australian Nuclear Science and Technology Organisation, New South Wales 2234 (Australia)

2010-02-15

9

X-ray attenuation coefficients of Fe compounds in the Kedge region at different energies and the validity of the mixture rule  

Microsoft Academic Search

The total mass attenuation coefficients for element Fe and compounds FeF3, Fe2O3, FeCl2·4H2O, FeCl32NH4Cl·H2O were measured at different energies between 4.508–17.443keV range by using secondary excitation method. Ti, V, Cr, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo were chosen as secondary exciter. 59.5keV gamma rays emitted from an 241Am annular source were used to excite

U. Turgut; E. Buyukkasap; O. ?im?ek; M. Ertugrul

2005-01-01

10

Effective x-ray attenuation measurements with full field digital mammography  

SciTech Connect

This work shows that effective x-ray attenuation coefficients may be estimated by applying Beer's Law to phantom image data acquired with the General Electric Senographe 2000D full field digital mammography system. Theoretical developments are provided indicating that an approximate form of the Beer's relation holds for polychromatic x-ray beams. The theoretical values were compared with experimentally determined measured values, which were estimated at various detector locations. The measured effective attenuation coefficients are in agreement with those estimated with theoretical developments and numerical integration. The work shows that the measured quantities show little spatial variation. The main ideas are demonstrated with polymethylmethacrylate and breast tissue equivalent phantom imaging experiments. The work suggests that the effective attenuation coefficients may be used as known values for radiometric standardization applications that compensate for the image acquisition influences. The work indicates that it is possible to make quantitative attenuation coefficient measurements from a system designed for clinical purposes.

Heine, John J.; Behera, Madhusmita [The H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612-4799 (United States)

2006-11-15

11

The Identification Problem for the attenuated X-ray transform  

E-print Network

ers are injected into a patient's body and the emitted X-rays, attenuated by the body, are detected ... Our approach is based on the following. .... x + s? parametrize the same (directed) line, we will think of Xaf and Iwf as parameterized by (z, ?),.

2013-11-16

12

Extracting material parameters from x-ray attenuation: a CT feasibility study using kilovoltage synchrotron x-rays incident upon low atomic number absorbers  

Microsoft Academic Search

The work reported here is a feasibility study of the extraction of material parameters from measurements of the linear x-ray attenuation coefficient of low atomic number absorbers. Computed tomography (CT) scans of small samples containing several liquids and solids were carried out with synchrotron radiation at the Australian National Beamline Facility (BL 20B) in Japan. Average values of the x-ray

B J Kirby; J R Davis; J A Grant; M J Morgan

2003-01-01

13

Novel x-ray attenuation mechanism: role of interatomic distance.  

PubMed

Little progress has been made over the last 30 years for improving attenuation by x-ray contrast agents, in part because the mechanisms of x-ray attenuation are thought to be well understood. We hypothesized that x-ray absorbance can be modulated by altering the interatomic spacing between K-edge attenuating atoms. Iodomethane, diiodomethane, 2,6-diiodo-4-nitroanaline, and diiodobenzene isomers were dissolved in DMSO and imaged with an OEC Compact 7600 fluoroscope. At a tube voltage of 42 kVp, absorbance of equimolar diiodomethane (150 mM) was significantly (p<0.01) greater than iodomethane (150 mM) by 45%. Interestingly, 150 mM diiodomethane absorbance was significantly greater than 300 mM iodomethane (by 5%, p<0.01) despite equal amounts of iodine in both solutions. 1,3-diiodobenzene absorbance was significantly greater than 1,2- and 1,4-diiodobenzene (p<0.01). However, 2,6-diiodo-4-nitroanaline absorbance was similar to 1,3-diiodobenzene. When a linear model was fit for absorbance as a function of density and harmonic error (the fractional remainder of the inter-iodine distance and the K-shell ionizing wavelength) at different beam energies, a significant overall fit was obtained for both unfiltered and hardened beams (p<0.01). While the slope of absorbance as a function of harmonic error was significant for all conditions (p<0.01), the slope with respect to density was significant only when the beam was unfiltered (p<0.05). Also harmonic error, but not density, displayed significant energy-dependent effects on absorbance (p <0.01). These data suggest that harmonic error is a strong determinant of absorbance, particularly when the beam energy is concentrated near the iodine K-edge and is likely a descriptor of K-characteristic photon interactions. Therefore, x-ray absorbance may be modulated by the distance between covalently linked x-ray K-edge attenuating atoms. This finding has important implications for increasing contrast agent absorbance as well as for designing molecular transducers capable of modulating K-edge attenuating atomic distances and thereby x-ray absorbance. PMID:18975684

Poelzing, Steven; Smoot, Adam F; Veeraraghavan, Rengasayee

2008-10-01

14

Determination of total x-ray absorption coefficient using non-resonant x-ray emission  

PubMed Central

An alternative measure of x-ray absorption spectroscopy (XAS) called inverse partial fluorescence yield (IPFY) has recently been developed that is both bulk sensitive and free of saturation effects. Here we show that the angle dependence of IPFY can provide a measure directly proportional to the total x-ray absorption coefficient, µ(E). In contrast, fluorescence yield (FY) and electron yield (EY) spectra are offset and/or distorted from µ(E) by an unknown and difficult to measure amount. Moreover, our measurement can determine µ(E) in absolute units with no free parameters by scaling to µ(E) at the non-resonant emission energy. We demonstrate this technique with measurements on NiO and NdGaO3. Determining µ(E) across edge-steps enables the use of XAS as a non-destructive measure of material composition. In NdGaO3, we also demonstrate the utility of IPFY for insulating samples, where neither EY or FY provide reliable spectra due to sample charging and self-absorption effects, respectively. PMID:22355697

Achkar, A. J.; Regier, T. Z.; Monkman, E. J.; Shen, K. M.; Hawthorn, D. G.

2011-01-01

15

Determination of total x-ray absorption coefficient using non-resonant x-ray emission  

NASA Astrophysics Data System (ADS)

An alternative measure of x-ray absorption spectroscopy (XAS) called inverse partial fluorescence yield (IPFY) has recently been developed that is both bulk sensitive and free of saturation effects. Here we show that the angle dependence of IPFY can provide a measure directly proportional to the total x-ray absorption coefficient, µ(E). In contrast, fluorescence yield (FY) and electron yield (EY) spectra are offset and/or distorted from µ(E) by an unknown and difficult to measure amount. Moreover, our measurement can determine µ(E) in absolute units with no free parameters by scaling to µ(E) at the non-resonant emission energy. We demonstrate this technique with measurements on NiO and NdGaO3. Determining µ(E) across edge-steps enables the use of XAS as a non-destructive measure of material composition. In NdGaO3, we also demonstrate the utility of IPFY for insulating samples, where neither EY or FY provide reliable spectra due to sample charging and self-absorption effects, respectively.

Achkar, A. J.; Regier, T. Z.; Monkman, E. J.; Shen, K. M.; Hawthorn, D. G.

2011-12-01

16

Extracting material parameters from x-ray attenuation: a CT feasibility study using kilovoltage synchrotron x-rays incident upon low atomic number absorbers.  

PubMed

The work reported here is a feasibility study of the extraction of material parameters from measurements of the linear x-ray attenuation coefficient of low atomic number absorbers. Computed tomography (CT) scans of small samples containing several liquids and solids were carried out with synchrotron radiation at the Australian National Beamline Facility (BL 20B) in Japan. Average values of the x-ray linear attenuation coefficient were extracted for each material for x-ray energies ranging from 11 keV to 20.5 keV. The electron density was estimated by applying results derived from a parametrization of the x-ray linear attenuation coefficient first developed by Jackson and Hawkes and extended for this work. Average estimates for the electron density of triethanolamine and acetic acid were made to within +5.3% of the actual value. Other materials examined included furfuraldehyde, perspex and teflon, for which average estimates of the electron density were less than 10% in excess of the calculated value. PMID:14620065

Kirby, B J; Davis, J R; Grant, J A; Morgan, M J

2003-10-21

17

X-ray attenuation coefficient measurements for photon energies 4.508–13.375 keV in Cu, Cr and their compounds and the validity of the mixture rule  

Microsoft Academic Search

To investigate the validity of the mixture rule which is used to compute the mass attenuation coefficients in compounds, the total mass attenuation coefficients for Cu, Cr elements and Cu2O, CuC2O4, CuCl2·2H2O, Cu(C2H3O2)2·H2O, Cr2O3, Cr(NO3)3, Cr2(SO4)3·H2O, Cr3(CH3CO7)(OH)2 compounds were measured at photon energies between 4.508 and 13.375keV by using the secondary excitation method. Ti, Mn, Fe, Ni, Zn, Ge, As,

Ü Turgut; Ö ?im?ek; E Büyükkasap; M Ertu?rul

2004-01-01

18

Sparse signal reconstruction from polychromatic X-ray CT measurements via mass attenuation discretization  

NASA Astrophysics Data System (ADS)

We propose a method for reconstructing sparse images from polychromatic x-ray computed tomography (ct) measurements via mass attenuation coefficient discretization. The material of the inspected object and the incident spectrum are assumed to be unknown. We rewrite the Lambert-Beer's law in terms of integral expressions of mass attenuation and discretize the resulting integrals. We then present a penalized constrained least-squares optimization approach for reconstructing the underlying object from log-domain measurements, where an active set approach is employed to estimate incident energy density parameters and the nonnegativity and sparsity of the image density map are imposed using negative-energy and smooth ?1-norm penalty terms. We propose a two-step scheme for refining the mass attenuation discretization grid by using higher sampling rate over the range with higher photon energy, and eliminating the discretization points that have little effect on accuracy of the forward projection model. This refinement allows us to successfully handle the characteristic lines (Dirac impulses) in the incident energy density spectrum. We compare the proposed method with the standard filtered backprojection, which ignores the polychromatic nature of the measurements and sparsity of the image density map. Numerical simulations using both realistic simulated and real x-ray ct data are presented.

Gu, Renliang; Dogandži?, Aleksandar

2014-02-01

19

Phase Effects on Mesoscale Object X-ray Attenuation Radiographs  

SciTech Connect

Digital x-ray radiography and computed tomography methods are commonly used to characterize mesoscale objects (mm size objects with {micro}m size features). However the ability of these methods to provide high spatial resolution images is dependent, in part, on object recovery algorithms that account for phase effects [1]. The objective of this work is the development and validation of algorithms to model phase-contrast effects observed in x-ray radiographic systems, and to use these algorithms for quantitative object recovery. This work has three distinct tasks. First, we are modifying HADES [2,3] to model x-ray phase contrast and are investigating whether multislice techniques within the object are needed to fully capture the physics seen in x-ray data. Second, we are developing object recovery approaches. Third, we are validating these simulations against x-ray systems using well-known objects. At the end of this R&D, we will have a set of validated x-ray forward modeling codes including the effects of phase and an understanding of the current object recovery methods limitations.

Martz, Jr., H E; Aufderheide, M B; Barty, A; Hau-Riege, S; Lehman, S K; Kozioziemski, B J; Schneberk, D J

2005-11-08

20

NIST: X-Ray Form Factor, Attenuation, and Scattering Tables  

NSDL National Science Digital Library

This site gives the interactions of x-rays with isolated atoms, computed within a self-consistent Dirac-Hartree-Fock framework, across the range from 1-10 eV to 400-1000 keV. A reference paper gives information about the computation. A database of calculation results can be searched.

Chantler, C. T.; Olsen, K.; Dragoset, R. A.; Chang, J.; Kishore, A. R.; Kotochigova, S. A.

2003-10-10

21

Characteristics of X-ray attenuation in electrospun bismuth oxide/polylactic acid nanofibre mats.  

PubMed

The characteristics of the X-ray attenuation in electrospun nano(n)- and micro(m)-Bi2O3/polylactic acid (PLA) nanofibre mats with different Bi2O3 loadings were compared as a function of energy using mammography (i.e. tube voltages of 22-49?kV) and X-ray absorption spectroscopy (XAS) (7-20?keV). Results indicate that X-ray attenuation by electrospun n-Bi2O3/PLA nanofibre mats is distinctly higher than that of m-Bi2O3/PLA nanofibre mats at all energies investigated. In addition, with increasing filler loading (n-Bi2O3 or m-Bi2O3), the porosity of the nanofibre mats decreased, thus increasing the X-ray attenuation, except for the sample containing 38?wt% Bi2O3 (the highest loading in the present study). The latter showed higher porosity, with some beads formed, thus resulting in a sudden decrease in the X-ray attenuation. PMID:23955038

Noor Azman, Nurul Z; Siddiqui, Salim A; Haroosh, Hazim J; Albetran, Hani M M; Johannessen, Bernt; Dong, Yu; Low, It M

2013-09-01

22

Building Human Brain Network in 3D Coefficient Map Determined by X-ray Microtomography  

NASA Astrophysics Data System (ADS)

X-ray microtomography can visualize 3D structures of biological soft tissues at cellular to subcellular resolution. Such 3D structures are composed of a great number of cells and extracellular matrices that should be assigned separately as tissue constituents. Here, we report a method for building a skeletonized model of the human brain network in a 3D distribution map of linear absorption coefficients determined by microtomography. The 3D models of neurons were automatically built by using a Sobel filter and manually edited via a graphical interface. The simplification of the 3D coefficient map facilitates understanding of microtomographic structures composed of huge numbers of voxels. We suggest that x-ray microtomography along with model building in the 3D coefficient map is a potential method for understanding 3D microstructures relevant to biological functions, like x-ray crystallography in molecular biology.

Mizutani, R.; Takeuchi, A.; Uesugi, K.; Takekoshi, S.; Nakamura, N.; Suzuki, Y.

2011-09-01

23

The X-ray attenuation characteristics and density of human calcaneal marrow do not change significantly during adulthood  

NASA Technical Reports Server (NTRS)

Changes in the material characteristics of bone marrow with aging can be a significant source of error in measurements of bone density when using X-ray and ultrasound imaging modalities. In the context of computed tomography, dual-energy computed techniques have been used to correct for changes in marrow composition. However, dual-energy quantitative computed tomography (DE-QCT) protocols, while increasing the accuracy of the measurement, reduce the precision and increase the radiation dose to the patient in comparison to single-energy quantitative computed tomography (SE-QCT) protocols. If the attenuation properties of the marrow for a particular bone can be shown to be relatively constant with age, it should be possible to use single-energy techniques without experiencing errors caused by unknown marrow composition. Marrow was extracted by centrifugation from 10 mm thick frontal sections of 34 adult cadaver calcanei (28 males, 6 females, ages 17-65 years). The density and energy-dependent linear X-ray attenuation coefficient of each marrow sample were determined. For purposes of comparing our results, we then computed an effective CT number at two GE CT/i scan voltages (80 and 120 kVp) for each specimen. The coefficients of variation for the density, CT number at 80 kVp and CT number at 120 kVp were each less than 1%, and the parameters did not change significantly with age (p > 0.2, r2 < 0.02, power > 0.8 where the minimum acceptable r2 = 0.216). We could demonstrate no significant gender-associated differences in these relationships. These data suggest that calcaneal bone marrow X-ray attenuation properties and marrow density are essentially constant from the third through sixth decades of life.

Les, C. M.; Whalen, R. T.; Beaupre, G. S.; Yan, C. H.; Cleek, T. M.; Wills, J. S.

2002-01-01

24

The use of X-ray CT to measure diffusion coefficients of heavy ions in water-saturated porous media  

Microsoft Academic Search

X-ray computerized tomography (CT) was applied for the first time to the measurement of diffusion coefficients of heavy ions in water-saturated clay and rock. The mass absorption coefficient of X-rays is high for heavy elements. Thus the migration of heavy ions in the porous samples was measured by the spatio-temporal change in intensity of X-ray CT images. The measurements of

Yoshito Nakashima

2000-01-01

25

An empirical model of diagnostic x-ray attenuation under narrow-beam geometry  

SciTech Connect

Purpose: The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. Methods: An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49-33.03 mm Al on a computed tomography (CT) scanner, 0.09-1.93 mm Al on two mammography systems, and 0.1-0.45 mm Cu and 0.49-14.87 mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semilogarithmic (exponential) and linear interpolation]. Results: The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R{sup 2} > 0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and/or QVL than the traditional methods of semilogarithmic and linear interpolation. Conclusions: The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry).

Mathieu, Kelsey B.; Kappadath, S. Cheenu; White, R. Allen; Atkinson, E. Neely; Cody, Dianna D. [Department of Bioengineering, Rice University, Houston, Texas 77005 (United States); Division of Diagnostic Imaging, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Division of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Statistics, Rice University, Houston, Texas 77005 (United States); Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

2011-08-15

26

An empirical model of diagnostic x-ray attenuation under narrow-beam geometry  

PubMed Central

Purpose: The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. Methods: An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49–33.03 mm Al on a computed tomography (CT) scanner, 0.09–1.93 mm Al on two mammography systems, and 0.1–0.45 mm Cu and 0.49–14.87 mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semilogarithmic (exponential) and linear interpolation]. Results: The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R2?>?0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and?or QVL than the traditional methods of semilogarithmic and linear interpolation. Conclusions: The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry). PMID:21928626

Mathieu, Kelsey B.; Kappadath, S. Cheenu; White, R. Allen; Atkinson, E. Neely; Cody, Dianna D.

2011-01-01

27

Estimation of effective x-ray tissue attenuation differences for volumetric breast density measurement  

NASA Astrophysics Data System (ADS)

Breast density has been identified to be a risk factor of developing breast cancer and an indicator of lesion diagnostic obstruction due to masking effect. Volumetric density measurement evaluates fibro-glandular volume, breast volume, and breast volume density measures that have potential advantages over area density measurement in risk assessment. One class of volume density computing methods is based on the finding of the relative fibro-glandular tissue attenuation with regards to the reference fat tissue, and the estimation of the effective x-ray tissue attenuation differences between the fibro-glandular and fat tissue is key to volumetric breast density computing. We have modeled the effective attenuation difference as a function of actual x-ray skin entrance spectrum, breast thickness, fibro-glandular tissue thickness distribution, and detector efficiency. Compared to other approaches, our method has threefold advantages: (1) avoids the system calibration-based creation of effective attenuation differences which may introduce tedious calibrations for each imaging system and may not reflect the spectrum change and scatter induced overestimation or underestimation of breast density; (2) obtains the system specific separate and differential attenuation values of fibroglandular and fat for each mammographic image; and (3) further reduces the impact of breast thickness accuracy to volumetric breast density. A quantitative breast volume phantom with a set of equivalent fibro-glandular thicknesses has been used to evaluate the volume breast density measurement with the proposed method. The experimental results have shown that the method has significantly improved the accuracy of estimating breast density.

Chen, Biao; Ruth, Chris; Jing, Zhenxue; Ren, Baorui; Smith, Andrew; Kshirsagar, Ashwini

2014-03-01

28

Evaluation of a ventricular assist device: stability under x-rays and therapeutic beam attenuation.  

PubMed

Improved outcomes and quality of life of heart failure patients have been reported with the use of left ventricular assist devices (LVADs). However, little information exists regarding devices in patients undergoing radiation cancer treatment. Two HeartWare Ventricular Assist Device (HVAD) pumps were repeatedly irradiated with high intensity 18 MV x-rays to a dosage range of 64-75 Gy at a rate of 6 Gy/min from a radiation oncology particle accelerator to determine operational stability. Pump parameter data was collected through a data acquisition system. Second, a computerized tomography (CT) scan was taken of the device, and a treatment planning computer estimated characteristics of dose scattering and attenuation. Results were then compared with actual radiation measurements. The devices exhibited no changes in pump operation during the procedure, though the titanium components of the HVAD markedly attenuate the therapy beam. Computer modeling indicated an 11.8% dose change in the absorbed dosage that was distinctly less than the 84% dose change measured with detectors. Simulated and measured scattering processes were negligible. Computer modeling underestimates pretreatment dose to patients when the device is in the field of radiation. Future x-ray radiation dosimetry and treatment planning in HVAD patients should be carefully managed by radiation oncology specialists. PMID:22236626

Gossman, Michael S; Graham, Joel D; Tamez, Dan; Voskoboynikov, Neil; Larose, Jeffrey A

2012-01-01

29

Absolute determination of the x-ray absorption coefficient of strontium in the K edge region  

NASA Astrophysics Data System (ADS)

The x-ray absorption coefficient for strontium in the K edge region (15.6-17.6 keV) is determined on aqueous solution of Sr(NO3)2 in a micrometer cell. A series of absorption spectra of the solution and of solvent is recorded for the thickness of the liquid layer varied stepwise between 1 and 2.5 mm. The linear absorption coefficient of Sr and water is determined in a variational procedure whereby small systematic errors of the micrometer setting, of signal detection and of disclination of cell windows are eliminated in one step. The results confirm the data on Sr mass absorption coefficient in some recent tabulations in the smooth regions below the edge and further away from it, but show systematically higher values in the wider energy range above the edge. The tabulated data for water agree with the experiment within 4% in the entire range of measurement.

Hauko, R.; Gomilšek, J. Padežnik; Ar?on, I.; Kodre, A.

2014-10-01

30

Ultraprecise studies of the thermal expansion coefficient of diamond using backscattering x-ray diffraction.  

SciTech Connect

The linear thermal expansion coefficient of diamond crystals of type IIa and type Ia was measured in the temperature range from 10 to 295 K. Neither negative thermal expansion nor any substantial difference in the thermal expansion coefficient in crystals of the different types were observed. An empirical expression was obtained that approximates the temperature dependence of the thermal expansion coefficient of diamond. The T{sup 3} temperature dependence of a Debye solid holds below {approx}100 K with an accuracy of {approx}10{sup -8} K{sup -1}. A slight increase in the value of the lattice parameter was found for the Ia-type crystal, which suggests lattice dilatation by nitrogen impurity. The measurements were performed using Bragg diffraction in backscattering from diamond crystals of highly monochromatic 23.7 keV x rays with the recently demonstrated high relative accuracy of 1.2 x 10{sup -8} in the determination of the lattice parameter.

Stoupin, S.; Shvyd'ko, Y. (X-Ray Science Division)

2011-03-17

31

Measurement of breast-tissue x-ray attenuation by spectral mammography: first results on cyst fluid.  

PubMed

Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to better characterize cysts at mammography screening would be highly desirable to reduce recalls, but the development is hampered by the lack of attenuation data for cysts. We have developed a method to measure x-ray attenuation of tissue samples using a prototype photon-counting spectral mammography unit. The method was applied to measure the attenuation of 50 samples of breast cyst fluid and 50 samples of water. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The attenuation of cyst fluid was found to be significantly different from water. There was a relatively large natural spread between different samples of cyst fluid, whereas the homogeneity of each individual sample was found to be good; the variation within samples did not reach above the quantum noise floor. The spectral method proved stable between several measurements on the same sample. Further, chemical analysis and elemental attenuation calculation were used to validate the spectral measurement on a subset of the samples. The two methods agreed within the precision of the elemental attenuation calculation over the mammographic energy range. PMID:24254377

Fredenberg, Erik; Dance, David R; Willsher, Paula; Moa, Elin; von Tiedemann, Miriam; Young, Kenneth C; Wallis, Matthew G

2013-12-21

32

Measurement of breast-tissue x-ray attenuation by spectral mammography: first results on cyst fluid  

NASA Astrophysics Data System (ADS)

Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to better characterize cysts at mammography screening would be highly desirable to reduce recalls, but the development is hampered by the lack of attenuation data for cysts. We have developed a method to measure x-ray attenuation of tissue samples using a prototype photon-counting spectral mammography unit. The method was applied to measure the attenuation of 50 samples of breast cyst fluid and 50 samples of water. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The attenuation of cyst fluid was found to be significantly different from water. There was a relatively large natural spread between different samples of cyst fluid, whereas the homogeneity of each individual sample was found to be good; the variation within samples did not reach above the quantum noise floor. The spectral method proved stable between several measurements on the same sample. Further, chemical analysis and elemental attenuation calculation were used to validate the spectral measurement on a subset of the samples. The two methods agreed within the precision of the elemental attenuation calculation over the mammographic energy range.

Fredenberg, Erik; Dance, David R.; Willsher, Paula; Moa, Elin; von Tiedemann, Miriam; Young, Kenneth C.; Wallis, Matthew G.

2013-12-01

33

Image Fusion Using an Integrated, Dual-Head Coincidence Camera with X-Ray Tube-Based Attenuation Maps  

Microsoft Academic Search

The purpose of this study was to characterize a dual-head gamma camera capable of FDG imaging using coincidence detection and equipped with an integrated x-ray transmission system for attenuation correction, anatomic mapping, and image fusion. Methods: Radiation dose (425 mrads skin dose) and tissue contrast (0.7% deviation from expected values) were assessed for the x-ray system. Registration of transmission and

James A. Patton; Dominique Delbeke; Martin P. Sandier

34

The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure  

NASA Astrophysics Data System (ADS)

The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient ?bond(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient ?tens(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where ?bond prevails over ?tens; this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed.

Fornasini, P.; Grisenti, R.

2014-10-01

35

The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure.  

PubMed

The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient ?bond(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient ?tens(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where ?bond prevails over ?tens; this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed. PMID:25362321

Fornasini, P; Grisenti, R

2014-10-28

36

Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range  

DOEpatents

An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

Smith, Peter D. (Santa Fe, NM); Claytor, Thomas N. (White Rock, NM); Berry, Phillip C. (Albuquerque, NM); Hills, Charles R. (Los Alamos, NM)

2010-10-12

37

X ray attenuation measurements for high-temperature materials characterization and in situ monitoring of damage accumulation  

Microsoft Academic Search

The development and application is examined of x ray attenuation measurement systems that are capable of (1) characterizing density variations in high temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. Results are presented in the development of (1) a point

George Youssef Baaklini

1991-01-01

38

Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate  

NASA Astrophysics Data System (ADS)

Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image.

Warren, L. M.; Mackenzie, A.; Dance, D. R.; Young, K. C.

2013-04-01

39

Region of Interest Reconstruction in X-Ray Fluorescence Computed Tomography for Negligible Attenuation  

Microsoft Academic Search

X-ray fluorescence computed tomography (XFCT) is a synchrotron-based imaging modality employed for mapping the distribution of elements within slices or volumes of intact specimens. A pencil beam of external radiation is used to stimulate emission of characteristic X-rays from within a sample, which is scanned and rotated through the pencil beam in a first-generation tomographic geometry. One limitation of XFCT

Patrick La Riviere; Phillip Vargas; Dan Xia; Xiaochuan Pan

2010-01-01

40

Robust determination of mass attenuation coefficients of materials with unknown thickness and density  

NASA Astrophysics Data System (ADS)

An alternative approach is used to measure normalized mass attenuation coefficients (µ/?) of materials with unknown thickness and density. The adopted procedure is based on the use of simultaneous emission of K? and K? X-ray lines as well as gamma peaks from radioactive sources in transmission geometry. 109Cd and 60Co radioactive sources were used for the purpose of the investigation. It has been observed that using the simultaneous X- and/or gamma rays of different energy allows accurate determination of relative mass attenuation coefficients by eliminating the dependence of µ/? on thickness and density of the material.

Kurudirek, M.; Medhat, M. E.

2014-07-01

41

Noninvasive Femur Bone Volume Estimation Based on X-Ray Attenuation of a Single Radiographic Image and Medical Knowledge  

NASA Astrophysics Data System (ADS)

Bone Mineral Density (BMD) is an indicator of osteoporosis that is an increasingly serious disease, particularly for the elderly. To calculate BMD, we need to measure the volume of the femur in a noninvasive way. In this paper, we propose a noninvasive bone volume measurement method using x-ray attenuation on radiography and medical knowledge. The absolute thickness at one reference pixel and the relative thickness at all pixels of the bone in the x-ray image are used to calculate the volume and the BMD. First, the absolute bone thickness of one particular pixel is estimated by the known geometric shape of a specific bone part as medical knowledge. The relative bone thicknesses of all pixels are then calculated by x-ray attenuation of each pixel. Finally, given the absolute bone thickness of the reference pixel, the absolute bone thickness of all pixels is mapped. To evaluate the performance of the proposed method, experiments on 300 subjects were performed. We found that the method provides good estimations of real BMD values of femur bone. Estimates shows a high linear correlation of 0.96 between the volume Bone Mineral Density (vBMD) of CT-SCAN and computed vBMD (all P<0.001). The BMD results reveal 3.23% difference in volume from the BMD of CT-SCAN.

Kiattisin, Supaporn; Chamnongthai, Kosin

42

Investigation of coefficient of thermal expansion of silver thin film on different substrates using X-ray diffraction  

Microsoft Academic Search

Silver thin films (200nm) were deposited on two different substrates, SiO2 and polyethylene naphthalate (PEN) by e-beam evaporation. The thickness of the Ag thin film on both substrates was determined to be 200nm by Rutherford backscattering spectrometry. X-ray diffraction analysis showed that the coefficient of thermal expansion (CTE) of Ag on PEN (1.9×10?5\\/°C) was the same as that of bulk

Yeongseok Zoo; Daniel Adams; J. W. Mayer; T. L. Alford

2006-01-01

43

Measurement of the linear attenuation coefficients of breast tissues by synchrotron radiation computed tomography.  

PubMed

The measurement of the linear attenuation coefficients of breast tissues is of fundamental importance in the field of breast x-ray diagnostic imaging. Different groups have evaluated the linear attenuation coefficients of breast tissues by carrying out direct attenuation measurements in which the specimens were thin and selected as homogeneous as possible. Here, we use monochromatic and high-intensity synchrotron radiation computed tomography (SR CT) to evaluate the linear attenuation coefficients of surgical breast tissues in the energy range from 15 to 26.5 keV. X-ray detection is performed by a custom digital silicon micro-strip device, developed in the framework of the PICASSO INFN experiment. Twenty-three human surgical breast samples were selected for SR CT and histological study. Six of them underwent CT, both as fresh tissue and after formalin fixation, while the remaining 17 were imaged only as formalin-fixed tissues. Our results for fat and fibrous tissues are in good agreement with the published values. However, in contrast to the published data, our measurements show no significant differences between fibrous and tumor tissues. Moreover, our results for fresh and formalin-fixed tissues demonstrate a reduction of the linear attenuation coefficient for fibrous and tumor tissues after fixation. PMID:20702925

Chen, R C; Longo, R; Rigon, L; Zanconati, F; De Pellegrin, A; Arfelli, F; Dreossi, D; Menk, R-H; Vallazza, E; Xiao, T Q; Castelli, E

2010-09-01

44

Measurement of the linear attenuation coefficients of breast tissues by synchrotron radiation computed tomography  

NASA Astrophysics Data System (ADS)

The measurement of the linear attenuation coefficients of breast tissues is of fundamental importance in the field of breast x-ray diagnostic imaging. Different groups have evaluated the linear attenuation coefficients of breast tissues by carrying out direct attenuation measurements in which the specimens were thin and selected as homogeneous as possible. Here, we use monochromatic and high-intensity synchrotron radiation computed tomography (SR CT) to evaluate the linear attenuation coefficients of surgical breast tissues in the energy range from 15 to 26.5 keV. X-ray detection is performed by a custom digital silicon micro-strip device, developed in the framework of the PICASSO INFN experiment. Twenty-three human surgical breast samples were selected for SR CT and histological study. Six of them underwent CT, both as fresh tissue and after formalin fixation, while the remaining 17 were imaged only as formalin-fixed tissues. Our results for fat and fibrous tissues are in good agreement with the published values. However, in contrast to the published data, our measurements show no significant differences between fibrous and tumor tissues. Moreover, our results for fresh and formalin-fixed tissues demonstrate a reduction of the linear attenuation coefficient for fibrous and tumor tissues after fixation.

Chen, R. C.; Longo, R.; Rigon, L.; Zanconati, F.; De Pellegrin, A.; Arfelli, F.; Dreossi, D.; Menk, R.-H.; Vallazza, E.; Xiao, T. Q.; Castelli, E.

2010-09-01

45

Study on the influence of X-ray tube spectral distribution on the analysis of bulk samples and thin films: Fundamental parameters method and theoretical coefficient algorithms  

NASA Astrophysics Data System (ADS)

Knowledge of X-ray tube spectral distribution is necessary in theoretical methods of matrix correction, i.e. in both fundamental parameter (FP) methods and theoretical influence coefficient algorithms. Thus, the influence of X-ray tube distribution on the accuracy of the analysis of thin films and bulk samples is presented. The calculations are performed using experimental X-ray tube spectra taken from the literature and theoretical X-ray tube spectra evaluated by three different algorithms proposed by Pella et al. (X-Ray Spectrom. 14 (1985) 125-135), Ebel (X-Ray Spectrom. 28 (1999) 255-266), and Finkelshtein and Pavlova (X-Ray Spectrom. 28 (1999) 27-32). In this study, Fe-Cr-Ni system is selected as an example and the calculations are performed for X-ray tubes commonly applied in X-ray fluorescence analysis (XRF), i.e., Cr, Mo, Rh and W. The influence of X-ray tube spectra on FP analysis is evaluated when quantification is performed using various types of calibration samples. FP analysis of bulk samples is performed using pure-element bulk standards and multielement bulk standards similar to the analyzed material, whereas for FP analysis of thin films, the bulk and thin pure-element standards are used. For the evaluation of the influence of X-ray tube spectra on XRF analysis performed by theoretical influence coefficient methods, two algorithms for bulk samples are selected, i.e. Claisse-Quintin (Can. Spectrosc. 12 (1967) 129-134) and COLA algorithms (G.R. Lachance, Paper Presented at the International Conference on Industrial Inorganic Elemental Analysis, Metz, France, June 3, 1981) and two algorithms (constant and linear coefficients) for thin films recently proposed by Sitko (X-Ray Spectrom. 37 (2008) 265-272).

Sitko, Rafa?

2008-11-01

46

Evaluation of soft x-ray average recombination coefficient and average charge for metallic impurities in beam-heated plasmas  

SciTech Connect

The soft x-ray continuum radiation in TFTR low density neutral beam discharges can be much lower than its theoretical value obtained by assuming a corona equilibrium. This reduced continuum radiation is caused by an ionization equilibrium shift toward lower states, which strongly changes the value of the average recombination coefficient of metallic impurities anti ..gamma.., even for only slight changes in the average charge, anti Z. The primary agent for this shift is the charge exchange between the highly ionized impurity ions and the neutral hydrogen, rather than impurity transport, because the central density of the neutral hydrogen is strongly enhanced at lower plasma densities with intense beam injection. In the extreme case of low density, high neutral beam power TFTR operation (energetic ion mode) the reduction in anti ..gamma.. can be as much as one-half to two-thirds. We calculate the parametric dependence of anti ..gamma.. and anti Z for Ti, Cr, Fe, and Ni impurities on neutral density (equivalent to beam power), electron temperature, and electron density. These values are obtained by using either a one-dimensional impurity transport code (MIST) or a zero-dimensional code with a finite particle confinement time. As an example, we show the variation of anti ..gamma.. and anti Z in different TFTR discharges.

Sesnic, S.S.; Bitter, M.; Hill, K.W.; Hiroe, S.; Hulse, R.; Shimada, M.; Stratton, B.; von Goeler, S.

1986-05-01

47

Measurements of spectral attenuation coefficients in the lower Chesapeake Bay  

NASA Technical Reports Server (NTRS)

The spectral transmission was measured for water samples taken in the lower Chesapeake Bay to allow characterization of several optical properties. The coefficients of total attenuation, particle attenuation, and absorption by dissolved organic matter were determined over a wavelength range from 3500 A to 8000 A. The data were taken over a 3 year period and at a number of sites so that an indication of spatial and temporal variations could be obtained. The attenuations determined in this work are, on the average, 10 times greater than those obtained by Hulburt in 1944, which are commonly accepted in the literature for Chesapeake Bay attenuation.

Houghton, W. M.

1983-01-01

48

Hygrothermal degradation of 3-glycidoxypropyltrimethoxysilane films studied by neutron and X-ray reflectivity and attenuated total reflection infrared spectroscopy.  

SciTech Connect

Thin films of organosilanes have great technological importance in the areas of adhesion promotion, durability, and corrosion resistance. However, it is well-known that water can degrade organosilane films, particularly at elevated temperatures. In this work, X-ray and neutron reflectivity (XR and NR) were combined with attenuated total reflection infrared (ATR-IR) spectroscopy to study the chemical and structural changes within thin films of (3-glycidoxypropyl)trimethoxysilane (GPS) after exposure for various periods of time to air saturated with either D{sub 2}O or H{sub 2}O at 80 C. For NR and XR, ultrathin ({approx}100 {angstrom}) films were prepared by spin-coating. Both D{sub 2}O and H{sub 2}O provide neutron scattering contrast with GPS. Variations in the neutron scattering length density (SLD) profiles (a function of mass density and atomic composition) with conditioning time were measured after drying the samples out and also swelled with H{sub 2}O or D{sub 2}O vapor at room temperature. For samples that were dried out prior to measurement, little or no change was observed for H{sub 2}O conditioning up to 3.5 days, but large changes were observed after 30 days of conditioning. The range of conditioning time for this structural change was narrowed to between 4 and 10 days with XR. The SLD profiles indicated that the top portion of the GPS film was transformed into a thick low-density layer after conditioning, but the bottom portion showed little structural change. A previous NR study of as-prepared GPS films involving swelling with deuterated nitrobenzene showed that the central portion of the film has much lower cross-link density than the region nearest the substrate. The present data show that the central portion also swells to a much greater extent with water and hydrolyzes more rapidly. The chemical degradation mechanism was identified by IR as hydrolysis of siloxane bonds. For ATR-IR, GPS films were prepared by dip-coating, which resulted in a greater and more variable thickness than for the spin-coated samples. The IR spectra revealed an increase in vicinal silanol generation over the first 3 days of conditioning followed by geminal silanol generation. Thus, the structural change detected by NR and XR roughly coincided with the onset of geminal silanol generation. Finally, little change in the reflectivity data was observed for films conditioned with D{sub 2}O at 80 C for 1 month. This indicates that hydrolysis of Si-O-Si is much slower with D{sub 2}O than with H{sub 2}O.

Tallant, David Robert; Garcia, Manuel Joseph; Majewski, Jaroslaw (Los Alamos National Lab, Los Alamos, NM); Kent, Michael Stuart; Yim, Hyun

2005-05-01

49

Simultaneous determination of the X-ray refractive index and the attenuation length from a single digitally registered radiograph of rectangular prisms  

NASA Astrophysics Data System (ADS)

Prisms deflect and disperse X-rays due to refraction very similar to visible light. As X-rays are always attenuated while traversing material, the intensity distribution in the transmitted beam carries information about the prism transmission function. This study will show that sufficient information is contained in a single digitally registered radiograph from a rectangular prism, for deriving both the refractive index of the material and its attenuation length. The measured data can be prepared such that neither intensity fluctuations nor false light content in the incident beam will introduce systematic errors into the result. The strategy is thus very adapted, when single shot pictures are taken at X-ray sources with limited shot reproducibility. This technique is favourably be used at very grazing angles of incidence of the order of the critical angle for the prism material, when the beam deflection becomes significant. In such a geometry dimensional parameters, like sample thickness, do not affect the data analysis, which is particularly insensitive to even significant errors in the tip angle.

Jark, Werner; Rigon, Luigi; Oliver, Kevin

2011-09-01

50

Dose reduction in fluoroscopic interventions using a combination of a region of interest (ROI) x-ray attenuator and spatially different, temporally variable temporal filtering  

NASA Astrophysics Data System (ADS)

A novel dose reduction technique for fluoroscopic interventions involving a combination of a material x-ray region of interest (ROI) attenuator and spatially different, temporally variable ROI temporal recursive filter, was used to guide the catheter to the ROI in three live animal studies, two involving rabbits and one involving a sheep. In the two rabbit studies presented , a catheter was guided to the entrance of the carotid artery. With the added ROI attenuator the image under the high attenuation region is very noisy. By using temporal filtering with a filter weight of 0.6 on previous frames, the noise is reduced. In the sheep study the catheter was guided to the descending aorta of the animal. The sheep offered a relatively higher attenuation to the incident x-rays and thus a higher temporal filter weight of 0.8 on previous frames was used during the procedure to reduce the noise to levels acceptable by the interventionalist. The image sequences from both studies show that significant dose reduction of 5-6 times can be achieved with acceptable image quality outside the ROI by using the above mentioned technique. Even though the temporal filter weighting outside the ROI is higher, the consequent lag does not prevent perception of catheter movement.

Swetadri Vasan, S. N.; Pope, Liza; Ionita, Ciprian N.; Titus, A. H.; Bednarek, D. R.; Rudin, S.

2013-03-01

51

Synthesis, Characterization, and X-ray Attenuation Properties of Ultrasmall BiOI Nanoparticles: Toward Renal Clearable Particulate CT Contrast Agents.  

PubMed

A unique decelerated hydrolytic procedure is developed and reported here for the preparation of ultrasmall nanoparticles (NPs) of PVP-coated BiOI with a narrow size distribution, i.e., 2.8 ± 0.5 nm. The crystal structure of this compound is determined by X-ray powder diffraction using the bulk materials. The stability, cytotoxicity, and potential use of the PVP-coated ultrasmall BiOI NPs as a CT contrast agent are investigated. Because of the combined X-ray attenuation effect of bismuth and iodine, such NPs exhibit a CT value that is among the best of those of the inorganic nanoparticle-based CT contrast agents reported in the literature. PMID:25283335

Kandanapitiye, Murthi S; Gao, Min; Molter, Joseph; Flask, Chris A; Huang, Songping D

2014-10-01

52

Calculation of beta-ray attenuation coefficients through thin foils  

Microsoft Academic Search

Through the use of the P1 approximation to the linear transport equation and assuming that electrons only undergo elastic interactions with atoms, the fraction of transmitted beta-rays through foils is calculated arriving at the well-known exponential dependence with foil thickness. The resulting attenuation coefficients are in good agreement with experimental values.

F. Legarda; R. Idoeta

1995-01-01

53

Attenuation in the Chest Wall of 20 keV X-rays from an Inhaled Radioactive Aerosol  

Microsoft Academic Search

EXTERNAL counting of the low intensity L uranium X-rays (energies 13.6, 16.9 and 20.2 keV) is a promising technique for the estimation of insoluble compounds of plutonium in the human lung. These low energy radiations are, however, very easily absorbed in the tissues of the chest wall; the half-value thickness (HVT) is about 0.7 cm of soft tissue and only

J. Rundo; B. T. Taylor; D. V. Booker; D. Newton; D. Scargill

1968-01-01

54

Multielement imaging in computerised X-ray tomography  

Microsoft Academic Search

A method by which several elements can be independently imaged in a single X-ray CT scan is described. The method is based on measurements of differential absorption across absorption edges. The images produced show the distribution of element concentration. Mass attenuation coefficients for the elements comprising the matrix are not required because corrections for matrix effects are made. The method

Joseph Fryar; Kieran J. McCarthy; Adrian Fenelon

1988-01-01

55

Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner  

PubMed Central

Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a ?-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy. PMID:20107245

Taschereau, R; Silverman, R W; Chatziioannou, A F

2010-01-01

56

Flow visualization and void fraction measurement in liquid-metal/water direct contact heat exchange by X-ray attenuation technique  

NASA Astrophysics Data System (ADS)

One concept being considered for steam generation in particular next generation nuclear reactor designs, involves water coming into direct contact with a circulating molten metal. To optimize the design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. With the development of high performance digital detectors, radiography using X-rays or neutrons maybe a suitable technique to obtain information about that direct-contact interaction; i.e., void volume fractions, length scales and dynamic behavior. Under the basis of previous investigations, a complete methodology of the X-ray radiography for two-phase flow measurement has been developed from the facility and imaging analysis aspects. Through this developed methodology, a high energy X-ray imaging system is optimized for the direct-contact heat exchange experiment. Beside an on-line calibration procedure which practically quantifies the imaging system's performance, the extended linear system theory and Rose's model have also been used to evaluate the imaging system's performance, respectively. The bottleneck of the current imaging system and the future of system improvement direction have been pointed out. With our real-time, large-area high energy X-ray imaging system, the two-phase flow was visualized and stored digitally. An efficient image processing strategy has also been established by combining several optimal digital image processing algorithms. The approach has been implemented into a software computational tool written in MATLAB called T-XIP. Time-dependent heat transfer related variables, such as void fraction (void volume), local heat transfer coefficient, etc., were calculated using this software tool. Finally, an error analysis associated with the void fraction measurement has been given based on two procedures.

Liu, Xin

57

Attenuation coefficient estimates of mouse and rat chest wall  

Microsoft Academic Search

Attenuation coefficients of intercostal tissues were estimated from chest walls removed postmortem (pm) from 41 6-to-7-week-old female ICR mice and 27 10-to-11-week-old female Sprague-Dawley rats. These values were determined from measurements through the intercostal tissues, from the surface of the skin to the parietal pleura. Mouse chest walls were sealed in plastic wrap and stored at 4\\\\°C until evaluated, and

Geraldine A. Teotico; Rita J. Miller; Leon A. Frizzell; James F. Zachary; William D. O'Brien

2001-01-01

58

X-Ray Data Booklet  

NSDL National Science Digital Library

The X-Ray Data Booklet is provided by the Center for X-ray Optics and Advanced Light Source of the Lawrence Berkeley National Laboratory, which is funded by the US Department of Energy. The online publication contains topics such as x-ray properties of elements, mass absorption coefficients, synchrotron radiation, scattering processes, low-energy electron ranges in matter, optics and detectors, specular reflectivities for grazing-incidence mirrors, and other practical information that has been produced and gathered as a result of research at the center. Additional features of the informative site include an interactive periodic table of X-Ray properties and free deliverable hardcopies of the document.

Attwood, David.; Gullikson, Eric.; Howells, Malcolm.; Kim, Kwang-Je.; Kirz, Janos.; Kortright, Jeff.

2000-01-01

59

X-ray transmissive debris shield  

DOEpatents

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, Rick B. (Albuquerque, NM)

1996-01-01

60

X-ray transmissive debris shield  

DOEpatents

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, R.B.

1996-05-21

61

Temporal Variations of Seismic Coda: Attenuation-Coefficient View  

NASA Astrophysics Data System (ADS)

When monitoring spatial or temporal variations of the subsurface, it is important to use properties that objectively exist and are insensitive to observational uncertainties. Although the frequency-dependent seismic coda quality factor, Qc is often found to change prior and following relation to major earthquakes and volcanic eruptions, it does not represent such a property. Qc is strongly dependent on the assumed theoretical models, which are usually insufficiently accurate for constraining the actual relationships between the geometrical spreading, anelastic dissipation, and scattering of seismic waves. This inaccuracy often leads to significant exaggeration of attenuation effects, and particularly to interpretations of temporal variations in Qc as related to changes in lithospheric scattering. To overcome this bias, we use an approach based on the temporal attenuation-coefficient, ?(f), instead of Q(f) for describing coda attenuation. Several attenuation case studies suggest that ?(f) typically linearly depends on f, with both the intercept ? = ?(0) and slope d?(f)/df = ?Qe-1 being sensitive to the physical state of the subsurface. Two published examples of temporal variations of local-earthquake coda Q are revisited: non-volcanic (near Stone Canyon in central California) and volcanic (Mt. St. Helens, Washington). In both cases, linear ?(f) patterns are found, with the effects of geometrical spreading (?) on coda attenuation being significantly stronger than those of Qe-1. At Stone Canyon, ? values ranged from 0.035 to 0.06 s-1 and Qe varies from 3000 to 10000, with ? increasing and Qe decreasing during the winter season. At Mt. St. Helens, ? ? 0.18 s-1, and Qe changed from 400 before the eruption to 750 after it. The observed temporal variations are explained by near-surface effects (seasonal variations in the non-volcanic case and gas-, magma-, and geothermal-system related in the volcanic case),which mostly affect the geometrical spreading and anelastic attenuation. Scattering does not appear to be a significant attenuation factor in these areas, or otherwise it may be indistinguishable from the intrinsic attenuation in the data.

Morozov, I. B.

2010-12-01

62

X-Ray Spectroscopy of Gold Nanoparticles  

NASA Astrophysics Data System (ADS)

Inner shell transitions, such as 1s-2p, in heavy elements can absorb or produce hard X-rays, and hence are widely used in nanoparticles. Bio-medical research for cancer treatment has been using heavy element nanoparticles, embeded in malignant tumor, for efficient absorption of irradiated X-rays and leading emission of hard X-rays and energetic electrons to kill the surrounding cells. Ejection of a 1s electron during ionization of the element by absorption of a X-ray photon initiates the Auger cascades of emission of photons and electrons. We have investigated gold nanoparticles for the optimal energy range, below the K-edge (1s) ionization threshold, that corresponds to resonant absorption of X-rays with large attenuation coefficients, orders of magnitude higher over the background as well as to that at K-edge threshold. We applied these attenuation coefficients in Monte Carlo simulation to study the intensities of emission of photons and electrons by Auger cascades. The numerical experiments were carried out in a phantom of water cube with a thin layer, 0.1mm/g, of gold nanoparticles 10 cm inside from the surface using the well-known code Geant4. We will present results on photon and electron emission spectra from passing monochromatic X-ray beams at 67 keV, which is the resonant energy for resonant K_{?} lines, at 82 keV, the K-shell ionization threshold, and at 2 MeV where the resonant effect is non-existent. Our findings show a high peak in the gold nanoparticle absorption curve indicating complete absorption of radiation within the gold layer. The photon and electron emission spectra show resonant features. Acknowledgement: Partially supported by a Large Interdisciplinary Grant award of the Ohio State University and NASA APRA program (SNN). The computational work was carried out on the Cray X1 and Itanium 4 cluster at the Ohio Supercomputer Center, Columbus Ohio. "Resonant X-ray Irradiation of High-Z Nanoparticles For Cancer Theranostics" (refereed presentation), A Pradhan, S Nahar, M Montenegro, C Sur, M Mrozik, R Pitzer, E Silver, Y Yu, 50th Annual Meeting of the American Association of Physicists in Medicine in Houston, Texas, July 27 - 31, 2008

Nahar, Sultana N.; Montenegro, M.; Pradhan, A. K.; Pitzer, R.

2009-06-01

63

X-ray astronomy  

Microsoft Academic Search

The birth of X-ray astronomy and the nature of X-radiation are considered, taking into account the high-altitude rocket, orbiting observatories, the discovery of cosmic X-ray sources, X-rays and their place in the electromagnetic spectrum, the interaction of X-rays with matter, and X-ray detectors and spectrometers. X-rays from the sun are discussed along with solar-flare X-rays, X-rays from beyond the solar

J. Leonard Culhane; Peter W. Sanford

1981-01-01

64

Measurements of the hard-x-ray reflectivity of iridium  

SciTech Connect

In connection with the design of a hard-x-ray telescope for the Constellation X-Ray Observatory we measured the reflectivity of an iridium-coated zerodur substrate as a function of angle at 55, 60, 70, and 80 keV at the National Synchrotron Light Source of Brookhaven National Laboratory. The optical constants were derived from the reflectivity data. The real component of the index of refraction is in excellent agreement with theoretical values at all four energies. However, the imaginary component, which is related to the mass attenuation coefficient, is 50% to 70% larger at 55, 60, and 70 keV than theoretical values.

Romaine, S.; Bruni, R.; Gorenstein, P.; Zhong, Z

2007-01-10

65

Representative Elementary Length to Measure Soil Mass Attenuation Coefficient  

PubMed Central

With increasing demand for better yield in agricultural areas, soil physical property representative measurements are more and more essential. Nuclear techniques such as computerized tomography (CT) and gamma-ray attenuation (GAT) have been widely employed with this purpose. The soil mass attenuation coefficient (?s) is an important parameter for CT and GAT analysis. When experimentally determined (?es), the use of suitable sized samples enable to evaluate it precisely, as well as to reduce measurement time and costs. This study investigated the representative elementary length (REL) of sandy and clayey soils for ?es measurements. Two radioactive sources were employed (241Am and 137Cs), three collimators (2–4?mm diameters), and 14 thickness (x) samples (2–15?cm). Results indicated ideal thickness intervals of 12–15 and 2–4?cm for the sources 137Cs and 241Am, respectively. The application of such results in representative elementary area (REA) evaluations in clayey soil clods via CT indicated that ?es average values obtained for x?>?4?cm and source 241Am might induce to the use of samples which are not large enough for soil bulk density evaluations (?s). As a consequence, ?s might be under- or overestimated, generating inaccurate conclusions about the physical quality of the soil under study. PMID:24672338

Borges, J. A. R.; Pires, L. F.; Costa, J. C.

2014-01-01

66

Representative elementary length to measure soil mass attenuation coefficient.  

PubMed

With increasing demand for better yield in agricultural areas, soil physical property representative measurements are more and more essential. Nuclear techniques such as computerized tomography (CT) and gamma-ray attenuation (GAT) have been widely employed with this purpose. The soil mass attenuation coefficient (?(s)) is an important parameter for CT and GAT analysis. When experimentally determined (?(es)), the use of suitable sized samples enable to evaluate it precisely, as well as to reduce measurement time and costs. This study investigated the representative elementary length (REL) of sandy and clayey soils for ?(es) measurements. Two radioactive sources were employed ((241)Am and (137)Cs), three collimators (2-4 mm diameters), and 14 thickness (x) samples (2-15 cm). Results indicated ideal thickness intervals of 12-15 and 2-4 cm for the sources (137)Cs and (241)Am, respectively. The application of such results in representative elementary area (REA) evaluations in clayey soil clods via CT indicated that ?(es) average values obtained for x > 4 cm and source (241)Am might induce to the use of samples which are not large enough for soil bulk density evaluations (?(s)). As a consequence, ?(s) might be under- or overestimated, generating inaccurate conclusions about the physical quality of the soil under study. PMID:24672338

Borges, J A R; Pires, L F; Costa, J C

2014-01-01

67

Skull x-ray  

MedlinePLUS

X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... You will be asked to lie on the x-ray table or sit in a chair. Your ... there is little or no discomfort during an x-ray. If there is a head injury , positioning ...

68

X-Rays  

MedlinePLUS

X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

69

Cosmic x ray physics  

NASA Technical Reports Server (NTRS)

The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

1990-01-01

70

Cosmic x ray physics  

NASA Technical Reports Server (NTRS)

The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

1991-01-01

71

Electron-Ion Recombination Rate Coefficients and Photoionization Cross Sections for Astrophysically Abundant Elements. X. Ne VIII and Ne IX for Ultraviolet and X-Ray Modeling  

NASA Astrophysics Data System (ADS)

Results are presented for the inverse processes of photoionization and electron-ion recombination of (h?+Ne VIII<-->Ne IX+e) and (h?+Ne IX<-->Ne X+e) using the self-consistent unified method. The method employs an identical wave function expansion for both photoionization and recombination, and it includes both radiative and dielectronic recombination. Total, as well as level-specific, photoionization cross sections, ?PI(E nSLJ), and recombination rate coefficients, ?R(T nSLJ), are presented for all fine-structure levels up to n<=10. These correspond to a total of 98 bound fine-structure levels of Ne VIII with 1/2<=J<=17/2, and 178 bound levels of Ne IX with 0<=J<=10. Total recombination cross sections and rates as functions of electron energy are also presented. The coupled channel wave function expansions for the core ions include 17 levels of Ne IX and 16 levels of Ne X. Relativistic fine structure is considered through the Breit-Pauli R-matrix (BPRM) method. The photoionization and recombination cross sections include important atomic effects such as radiation damping, channel coupling, and interference and should be of definitive accuracy. Level-specific ?PI(nSLJ) and ?R(T nSLJ) are calculated for the first time. In addition, we describe the applicability of these comprehensive data sets to not only ionization balance and recombination-cascade models for astrophysical and laboratory plasmas, but also to (1) models of UV and X-ray lines in He-like ions from C V to Ne IX involving the 2 3Po0,1,2-->2 3S1 allowed triplet transitions in the UV, and 2(1Po1, 3Po1,2, 3S1)-->1 1S0 allowed, intercombination, and forbidden transitions in the X-ray, and (2) calculation of dielectronic satellite intensities from the highly resolved resonances in the unified recombination cross sections of He-like and Li-like ions through straightforward integration over a Maxwellian or other electron distribution functions.

Nahar, Sultana N.; Pradhan, Anil K.

2006-02-01

72

Electron-ion recombination rate coefficients and photoionization cross-sections for Al XI, Al XII, Si XII, Si XIII for UV and X-ray modeling  

NASA Astrophysics Data System (ADS)

Results are presented from detailed study of inverse processes of photoionization and electron-ion recombination of ( h? + Al XI ? Al XII + e), ( h? + Al XII ? Al XIII + e), ( h? + Si XII ? Si XIII + e), and ( h? + Si XIII ? Si XIV + e) using ab initio unified method. These are the first results on photoionization cross-sections ( ?PI( nSLJ)) with autoionizing resonances and level-specific recombination rate coefficients, incorporating both the radiative and dielectronic recombination, for these ions. All fine structure levels with n ? 10 and 0 ? l ? 9 are considered. A total of 98 fine structure levels with 1/2 ? J ? 17/2 for Al XI and Si XII, and 190 for Al XII and 189 for Si XIII with 0 ? J ? 10 are found. ?PI( nSLJ) show background enhancements due to core excitations and narrow high-peak resonances. Level-specific recombination rates show smooth decay with a small bump at high temperature. Present total recombination rate coefficients with temperature ( ?R( T)) show good agreement with available rates. Recombination rates over photoelectron energy ( ?R( E)) are presented for astrophysical and laboratory plasma applications. Total recombination rates for H-like Al XIII and Si XIV are given for completeness. Calculations are carried out in the relativistic Breit-Pauli R-matrix method using coupled channel wavefunctions. Inclusion of important atomic effects such as radiation damping, channel couplings, interference of DR and RR, and relativistic fine structure effects should provide accuracy within 10-15%. The comprehensive datasets are applicable for various models such as for ionization balance and recombination-cascade for UV and X-ray lines.

Nahar, Sultana N.

2008-11-01

73

X-Ray Imaging  

Cancer.gov

X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of different tissues. Calcium in bones absorbs X-rays the most, so bones look white on a film recording of the X-ray image,

74

Measurement of mass attenuation coefficients of some boron compounds and the trommel sieve waste in the energy range 15.746– 40.930 keV  

Microsoft Academic Search

Mass attenuation coefficients of some boron compounds (H3BO3,Na2B4O7 and B3Al2O3) and the trommel sieve waste (TSW) have been measured by using an extremely narrow collimated-beam transmission method in the energy range 15.746–40.930keV. The characteristic K? and K? X-rays of Zr, Mo, Ag, In, Sb, Ba and Pr passed through H3BO3,Na2B4O7, B3Al2O3 and TSW were detected with a high-resolution Si(Li) detector.

Orhan ?çelli; Salih Erzeneo?lu; Recep Boncukçuo?lu

2003-01-01

75

X-Ray Microscopy  

NASA Astrophysics Data System (ADS)

Preface; Acknowledgements; 1. Introduction; 2. Contact microradiography; 3. Microscopy by point projection; 4. Reflexion x-ray microscopy: mirror systems; 5. Reflexion x-ray microscopy: curved crystals; 6. X-ray absorption microanalysis; 7. X-ray emission microanalysis; 8. Production of x-rays; 9. Specimen preparation techniques; 10. Techniques of contact microradiography; 11. Techniques of projection microscopy; 12. Applications of x-ray microscopy in biology and medicine; 13. Inorganic applications of x-ray microscopy; 14. Microdiffraction; 15. Some new experimental methods; Appendix. Absorption and emission data; References; Index.

Cosslett, V. E.; Nixon, W. C.

2014-06-01

76

Electron-Iron Recombination Rate Coefficients and Photoionization Cross Section for S XIV and SXV for X-ray and UV modeling  

NASA Astrophysics Data System (ADS)

The inverse process of photoionization and electron-ion recombination of (h +SXIV SXV+e) and (h +SXV SXVI +e) are studied in details using ab into unified method that provides self-consistent sets of results for these processes. Results are presented for large number of fine structure levels where n 10 and 0 l 9; 98 levels for Li-likes S XIV with 1/2 J 17/2 and 188 levels for He-like S XV with 0 J 10. Photoionization cross section, :PI, of the levels of both S XIV and SXV decay smoothly in the lower region. However, narrow and high peak autoionizing Rhydberg series resonances belonging to various excited core levels appear in the high energy region and enhance the background cross section of the excited levels. The resonance series of n=2 core levels dominate while they become weaker with higher n. The prominent feature is the enhacement of the background cross section at n=2 core thresholds due to K-shell ionization leaving the ion in excited 2p states. PI also show wide PEG (photo-excitation-of-core) resonances at the photon energies that equal to the core excitation energies, Level-specific photoionization cross sections, PI(nSLJ), and recombination rate coefficients, ?RC(nSLJ),are obtained for the first time for these ions. Currently available results correspond to photoionization for 18 terms with missing features and to only total recombination rate coefficients. Present ?Rc(nSLJ) incorporates both the radiative recombination (RR) and dielectronic recombination (DR), and show a "bump" or "shoulder" in the high temperature region due to DR dominace. The total unified recombination rate coefficients show good agreement with the available RR, and DR rates. Recombination rates photoelectron energy are presented for the astrophysical and laboratory plasma applications. Total recombination rates for H-like S XVI are given for completeness. The The results should be accurate within 10-15% based on the unified method that includes important atomic effects such as radiation damping, channel couplings, interference of DR and RR, and relativistic fine structure effects. The comprehensive datasets are applicable for various models such as for ionization balance and recombil1ation-cascade for UV and X-ray lines.

Nahar, Sultana N.

2008-03-01

77

Determination of the attenuation coefficients by visible and ultraviolet radiation in heavy water  

Microsoft Academic Search

A long-path-length transmission cell has been used to measure the attenuation coefficients of purified HâO and DâO at various wavelengths between 250 and 580 nm. The principles governing the procedures and corrections for various sources of light attenuation in the transmission cell components are discussed. Detailed chemical histories of the HâO and DâO samples are given. The measured attenuation coefficients

L. P. Boivin; W. F. Davidson; R. S. Storey; D. Sinclair; E. D. Earle

1986-01-01

78

Biomedical elemental analysis and imaging using synchrotron x-ray microscopy  

SciTech Connect

The application of synchrotron x-ray microscopy to biomedical research is currently in progress at the Brookhaven National Synchrotron Light Source (NSLS). The current status of the x-ray microscope (XRM) is reviewed from a technical standpoint. Some of the items considered are photon flux, spatial resolution, quantitation, minimum detection limits, and beam-induced specimen damage. Images can be produced by measurement of fluorescent x rays or of the attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation of the incident beam by the specimen. Maps of the elemental distributions or linear attenuation coefficients can be made by scanning the specimen past the beam. Computed microtomography (CMT) can be used for non- destructive images through the specimen in either the emission or absorption mode. Examples of measurements made with the XRM are given.

Jones, K.W.; Gordon, B.M.; Schidlovsky, G.; Spanne, P.; Dejun, Xue (Brookhaven National Lab., Upton, NY (USA)); Bockman, R.S. (Hospital for Special Surgery, New York, NY (USA)); Saubermann, A.J. (State Univ. of New York, Stony Brook, NY (USA). Health Science Center)

1990-01-01

79

Sensitivity of Photon-Counting Based ${\\\\rm K}$Edge Imaging in X-ray Computed Tomography  

Microsoft Academic Search

The feasibility of -edge imaging using energy-re- solved, photon-counting transmission measurements in X-ray computed tomography (CT) has been demonstrated by simu- lations and experiments. The method is based on probing the discontinuities of the attenuation coefficient of heavy elements above and below the -edge energy by using energy-sensitive, photon counting X-ray detectors. In this paper, we investigate the dependence of

Ewald Roessl; Bernhard Brendel; Klaus-Jürgen Engel; Jens-Peter Schlomka; Axel Thran; Roland Proksa

2011-01-01

80

X-ray Observations of Mrk 231  

E-print Network

This paper presents new X-ray observations of Mrk 231, an active galaxy of particular interest due to its large infrared luminosity and the presence of several blueshifted broad absorption line (BAL) systems, a phenomenon observed in a small fraction of QSOs. A ROSAT HRI image of Mrk 231 is presented, this shows an extended region of soft X-ray emission, covering several tens of kpc, consistent with the extent of the host galaxy. An ASCA observation of Mrk 231 is also presented. Hard X-rays are detected but the data show no significant variability in X-ray flux. The hard X-ray continuum is heavily attenuated and X-ray column estimates range from ~ 2 x 10^{22} - 10^{23} cm^{-2} depending on whether the material is assumed to be neutral or ionized, and on the model assumed for the extended X-ray component. These ASCA data provide only the second hard X-ray spectrum of a BAL AGN presented to date. The broad-band spectral-energy-distribution of the source is discussed. While Mrk 231 is X-ray weak compared to Seyfert 1 galaxies, it has an optical-to-X-ray spectrum typical of a QSO.

T. J. Turner

1998-08-10

81

System design considerations for an x-ray phase-contrast imaging system based on in-line holography  

Microsoft Academic Search

Since Roentgen discovered x-ray and performed the first x-ray imaging more than 100 years ago, x-ray imaging has always been based on the biological tissue's differences in x-ray attenuation. However, x-ray-tissue interaction causes x-ray phase changes as well, and the tissue\\

Xizeng Wu; Hong Liu; Aimin Yan

2005-01-01

82

Determination of attenuation coefficients of single mode optical fiber standards to be used in OTDR calibrations  

NASA Astrophysics Data System (ADS)

The subject of this paper is the determination of attenuation coefficients of single mode optical fiber standards used in both loss and distance scales calibrations of OTDR instruments by applying "cut-back" method, and "loop transit time" measurements. In cut-back measurements a modified radiometer with InGaAs having 5 mm diameter active area, cooled to 77 K, was constructed and used. To derive attenuation coefficients after the completion of cut-back measurements, the loop transit time measurements were performed for standard fibers. Total expanded uncertainty was calculated as 3.30×10-3 for determination of attenuation coefficients.

Çelikel, Oguz; Küçüko?lu, Mehmet; Durak, Murat; Samadov, Farhad

2005-07-01

83

STUDIES ON PURE ELEMENT INTENSITIES, MASS ABSORPTION COEFFICIENTS AND PARAMETERS (n AND no FOR ENERGY-DISPERSIVE X-RAY FLUORESCENCE ANALYSIS  

Microsoft Academic Search

Determination of pure element intensities is important in EDS (energy-dispersive X-ray fluorescence analysis) analysis. In a previous paper, we have studied three determination methods of pure element intensities: the pure thick metal foil, oxide, and low concentration methods. The pure element intensities of Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, and

Hua Younan

2001-01-01

84

X-ray properties of an anthropomorphic breast phantom for MRI and x-ray imaging  

NASA Astrophysics Data System (ADS)

The purpose of this study is to characterize the x-ray properties of a dual-modality, anthropomorphic breast phantom whose MRI properties have been previously evaluated. The goal of this phantom is to provide a platform for optimization and standardization of two- and three-dimensional x-ray and MRI breast imaging modalities for the purpose of lesion detection and discrimination. The phantom is constructed using a mixture of lard and egg whites, resulting in a variable, tissue-mimicking structure with separate adipose- and glandular-mimicking components. The phantom can be produced with either a compressed or uncompressed shape. Mass attenuation coefficients of the phantom materials were estimated using elemental compositions from the USDA National Nutrient Database for Standard Reference and the atomic interaction models from the Monte Carlo code PENELOPE and compared with human values from the literature. The image structure was examined quantitatively by calculating and comparing spatial covariance matrices of the phantom and patient mammography images. Finally, a computerized version of the phantom was created by segmenting a computed tomography scan and used to simulate x-ray scatter of the phantom in a mammography geometry. Mass attenuation coefficients of the phantom materials were within 20% and 15% of the values for adipose and glandular tissues, respectively, which is within the estimation error of these values. Matching was improved at higher energies (>20 keV). Tissue structures in the phantom have a size similar to those in the patient data, but are slightly larger on average. Correlations in the patient data appear to be longer than those in the phantom data in the anterior-posterior direction; however, they are within the error bars of the measurement. Simulated scatter-to-primary ratio values of the phantom images were as high as 85% in some areas and were strongly affected by the heterogeneous nature of the phantom. Key physical x-ray properties of the phantom have been quantitatively evaluated and shown to be comparable to those of breast tissue. Since the MRI properties of the phantom have been previously evaluated, we believe it is a useful tool for quantitative evaluation of two- and three-dimensional x-ray and MRI breast imaging modalities for the purpose of lesion detection and characterization.

Freed, Melanie; Badal, Andreu; Jennings, Robert J.; de las Heras, Hugo; Myers, Kyle J.; Badano, Aldo

2011-06-01

85

X-Ray Telescopes  

NASA Astrophysics Data System (ADS)

X-ray telescopes produce images of x-ray-emitting objects within the telescope's FIELD OF VIEW by reflection from precisely shaped mirrors. Hans Wolter's design in the early 1950s of an x-ray microscope using reflective optics led Riccardo GIACCONI to suggest an `inverted' set of optics, not subject to the fabrication limitations of the microscope, could be used as a cosmic x-ray telescope. As de...

Reid, P.; Murdin, P.

2000-11-01

86

Sinus x-ray  

MedlinePLUS

Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Anslow P. Ear, nose and throat radiology. In: Adam A, Dixon AK, ... Radiology: A Textbook of Medical Imaging . 5th ed. Philadelphia, ...

87

Hand x-ray  

MedlinePLUS

X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

88

Microionization chamber air-kerma calibration coefficients as a function of photon energy for x-ray spectra in the range of 20-250 kVp relative to {sup 60}Co  

SciTech Connect

Purpose: To investigate the applicability of a wide range of microionization chambers for reference dosimetry measurements in low- and medium-energy x-ray beams. Methods: Measurements were performed with six cylindrical microchamber models, as well as one scanning chamber and two Farmer-type chambers for comparison purposes. Air-kerma calibration coefficients were determined at the University of Wisconsin Accredited Dosimetry Calibration Laboratory for each chamber for a range of low- and medium-energy x-ray beams (20-250 kVp), with effective energies ranging from 11.5 keV to 145 keV, and a {sup 60}Co beam. A low-Z proof-of-concept microchamber was developed and calibrated with and without a high-Z silver epoxy on the collecting electrode. Results: All chambers composed of low-Z materials (Z{<=} 13), including the Farmer-type chambers, the scanning chamber, and the PTW TN31014 and the proof-of-concept microchambers, exhibited air-kerma calibration coefficients with little dependence on the quality of the beam. These chambers typically exhibited variations in calibration coefficients of less than 3% with the beam quality, for medium energy beams. However, variations in air-kerma calibration coefficients of greater than 50% were measured over the range of medium-energy x-ray beams for each of the microchambers containing high-Z collecting electrodes (Z > 13). For these high-Z chambers, which include the Exradin A14SL and A16 chambers, the PTW TN31006 chamber, the IBA CC01 chamber, and the proof-of-concept chamber containing silver, the average variation in air-kerma calibration coefficients between any two calibration beams was nearly 25% over the entire range of beam qualities investigated. Conclusions: Due to the strong energy dependence observed with microchambers containing high-Z components, these chambers may not be suitable dosimeters for kilovoltage x-ray applications, as they do not meet the TG-61 requirements. It is recommended that only microchambers containing low-Z materials (Z{<=} 13) be considered for air-kerma calibrations for reference dosimetry in low- and medium-energy x-ray beams.

Snow, J. R.; Micka, J. A.; DeWerd, L. A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

2013-04-15

89

A Generalised Porosity Formalism for Isotropic and Anisotropic Effective Opacity and Its Effects on X-ray Line Attenuation in Clumped O Star Winds  

NASA Technical Reports Server (NTRS)

We present a generalised formalism for treating the porosity-associated reduction in continuum opacity that occurs when individual clumps in a stochastic medium become optically thick. As in previous work, we concentrate on developing bridging laws between the limits of optically thin and thick clumps. We consider geometries resulting in either isotropic or anisotropic effective opacity, and, in addition to an idealised model in which all clumps have the same local overdensity and scale, we also treat an ensemble of clumps with optical depths set by Markovian statistics. This formalism is then applied to the specific case of bound-free absorption of X- rays in hot star winds, a process not directly affected by clumping in the optically thin limit. We find that the Markov model gives surprisingly similar results to those found previously for the single clump model, suggesting that porous opacity is not very sensitive to details of the assumed clump distribution function. Further, an anisotropic effective opacity favours escape of X-rays emitted in the tangential direction (the venetian blind effect), resulting in a bump of higher flux close to line centre as compared to profiles computed from isotropic porosity models. We demonstrate how this characteristic line shape may be used to diagnose the clump geometry, and we confirm previous results that for optically thick clumping to significantly influence X-ray line profiles, very large porosity lengths, defined as the mean free path between clumps, are required. Moreover, we present the first X-ray line profiles computed directly from line-driven instability simulations using a 3-D patch method, and find that porosity effects from such models also are very small. This further supports the view that porosity has, at most, a marginal effect on X-ray line diagnostics in O stars, and therefore that these diagnostics do indeed provide a good clumping insensitive method for deriving O star mass-loss rates.

Sundqvist, Jon O.; Owocki, Stanley P.; Cohen, David H.; Leutenegger, Maurice A.; Townsend, Richard H. D.

2002-01-01

90

A Generalised Porosity Formalism for Isotropic and Anisotropic Effective Opacity and its Effects on X-ray Line Attenuation in Clumped O Star Winds  

NASA Technical Reports Server (NTRS)

We present a generalised formalism for treating the porosity-associated reduction in continuum opacity that occurs when individual clumps in a stochastic medium become optically thick. As in previous work, we concentrate on developing bridging laws between the limits of optically thin and thick clumps. We consider geometries resulting in either isotropic or anisotropic effective opacity, and, in addition to an idealised model in which all clumps have the same local overdensity and scale, we also treat an ensemble of clumps with optical depths set by Markovian statistics. This formalism is then applied to the specific case of bound-free absorption of X- rays in hot star winds, a process not directly affected by clumping in the optically thin limit. We find that the Markov model gives surprisingly similar results to those found previously for the single clump model, suggesting that porous opacity is not very sensitive to details of the assumed clump distribution function. Further, an anisotropic effective opacity favours escape of X-rays emitted in the tangential direction (the venetian blind effect), resulting in a bump of higher flux close to line centre as compared to profiles computed from isotropic porosity models. We demonstrate how this characteristic line shape may be used to diagnose the clump geometry, and we confirm previous results that for optically thick clumping to significantly influence X-ray line profiles, very large porosity lengths, defined as the mean free path between clumps, are required. Moreover, we present the first X-ray line profiles computed directly from line-driven instability simulations using a 3-D patch method, and find that porosity effects from such models also are very small. This further supports the view that porosity has, at most, a marginal effect on X-ray line diagnostics in O stars, and therefore that these diagnostics do indeed provide a good clumping insensitive method for deriving O star mass-loss rates.

Sundqvist, Jon O.; Owocki, Stanley P.; Cohen, David H.; Leutenegger, Maurice A.

2011-01-01

91

X-Ray Spectra  

NSDL National Science Digital Library

In this activity, learners use simple materials to simulate the effect of X-rays in a safe way. Learners place a piece of window screen over a box and a cardboard pattern on top of the screen. They sprinkle sand over the area of the box. The sand simulates X-rays passing through the screen to the bottom of the box, except where they are blocked by the cardboard. Use this activity to demonstrate how X-rays create an image, including "soft" and shorter wavelength X-rays as well as X-rays from space.

Fetter, Neil

2007-01-01

92

Effective density and mass attenuation coefficient for building material in Brazil  

Microsoft Academic Search

This paper presents values for density and mass attenuation coefficient of building materials commonly used in Brazil. Transmission measurements were performed to provide input information for simulations with MCNP4B code. The structure for the clay bricks was simulated as a mix of all material layers and an effective density determined. The mass attenuation coefficients were determined for the 50–3000keV gamma-ray

I. C. P. Salinas; C. C. Conti; R. T. Lopes

2006-01-01

93

Tomosynthesis reconstruction from multi-beam X-ray sources  

Microsoft Academic Search

We investigate methods for reconstructing tomosynthesis data using arrays of microfabricated X-ray sources and area CCD detectors. Tomosynthesis is a 3D imaging technique for limited-angle tomography that uses multiple radiographic images taken from an X-ray source placed at several positions to estimate a 3D distribution of X-ray attenuation. In our implementation, the moving X-ray source is replaced with multiple carbon

David S. Lalush; Enzhuo Quan; Ramya Rajaram; Jian Zhang; Jianping Lu; Otto Zhou

2006-01-01

94

Comparison of RNFL thickness and RPE-normalized RNFL attenuation coefficient for glaucoma diagnosis  

NASA Astrophysics Data System (ADS)

Recently, a method to determine the retinal nerve fiber layer (RNFL) attenuation coefficient, based on normalization on the retinal pigment epithelium, was introduced. In contrast to conventional RNFL thickness measures, this novel measure represents a scattering property of the RNFL tissue. In this paper, we compare the RNFL thickness and the RNFL attenuation coefficient on 10 normal and 8 glaucomatous eyes by analyzing the correlation coefficient and the receiver operator curves (ROCs). The thickness and attenuation coefficient showed moderate correlation (r=0.82). Smaller correlation coefficients were found within normal (r=0.55) and glaucomatous (r=0.48) eyes. The full separation between normal and glaucomatous eyes based on the RNFL attenuation coefficient yielded an area under the ROC (AROC) of 1.0. The AROC for the RNFL thickness was 0.9875. No statistically significant difference between the two measures was found by comparing the AROC. RNFL attenuation coefficients may thus replace current RNFL thickness measurements or be combined with it to improve glaucoma diagnosis.

Vermeer, K. A.; van der Schoot, J.; Lemij, H. G.; de Boer, J. F.

2013-03-01

95

Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary  

Microsoft Academic Search

Spectral diffuse attenuation coefficients were measured in the Rhode River and Chesapeake Bay, Maryland, on 28 occasions in 1988 and 1989. The model of Kirk was used to extract scattering and absorption coefficients from the measurements in waters considerably more turbid than those in which the model was previously applied. Estimated scattering coefftcients were linearly related to mineral suspended solids.

CHARLES L. GALLEGOS; DAVID L. CORRELL; J. W. PIERCE

1990-01-01

96

Point symmetry in x-ray shadow imaging systems  

SciTech Connect

General geometrical features have been examined to identify point-group symmetries in x-ray imaging systems. In a stereospecific system, the group is the b/w antisymmetry group 2/m'. In a computerized tomography system, the symmetry is described by the limiting Curie group /infinity//m/center dot/m, while for a tomosynthesis system (transaxial tomography), it is /infinity//m. The operations in these groups have been examined in the production of shadow images involving distributed attenuation coefficients, particularly for stereospecific images recorded with an MIR-3 x-ray microscope. Curie's principle is used to show that reconstructed paired images for two intersecting objects can be considered as the equivalent of stereoscopic pairs for computer-aided tomography, which is not so for transaxial tomography.

Aristov, V.V.; Shabel'nikov, L.G.

1988-04-01

97

X-ray Polarimetry  

NASA Astrophysics Data System (ADS)

1. X-ray polarimetry: historical remarks and other considerations; Part I. Polarimetry Techniques: 2. Scattering polarimetry in high energy astronomy; 3. Photoelectric polarimeters; 4. Bragg crystal polarimeters; 5. X-ray polarimetry with the photon counting pixel detector timepix; 6. HE polarized photon interactions with matter: simulations with geant4; 7. The GPD as a polarimeter: theory and facts; 8. Ideal gas electron multipliers (GEMs) for x-ray polarimeters; 9. Broad-band soft x-ray polarimetry; 10. Feasibility of x-ray photoelectric polarimeters with large field of view; 11. Angular resolution of a photoelectric polarimeter; 12. Development of a Thomson x-ray polarimeter; 13. Hard x / soft gamma ray polarimetry using a Laue lens; Part II. Polarized Emission in X-ray Sources: 14. Probing strong gravity effects with x-ray polarimetry; 15. X-ray polarization from black holes in the thermal state; 16. Strong-gravity effects acting on polarization from orbiting spots; 17. Polarization of thermal emission from accreting black holes; 18. X-ray polarimetry and radio-quiet AGN; 19. The soft x-ray polarization in obscured AGN; 20. The polarization of complex x-ray sources; 21. Polarization of Compton x-rays from jets in AGN; 22. Polarization of x-ray lines from galaxy clusters and elliptical galaxies; 23. Polarization characteristics of rotation-powered pulsars; 24. Polarized x-rays from magnetized neutron stars; 25. Polarization properties of x-ray millisecond pulsars; 26. X-ray polarization signatures of neutron stars; 27. Polarization from the oscillating magnetized accretion torus; 28. X-ray polarization from accreting white dwarfs and associated systems; 29. Polarization of pulsar wind nebulae; 30. X-ray polarization of gamma-ray bursts; 31. Central engine afterglow from GRBs and the polarization signature; 32. GRB afterglow polarimetry. Past, present and future; 33. Gamma-ray polarimetry with SPI; 34. INTEGRAL/IBIS observations of the Crab Nebula and GRB 041219A; 35. Fermi results on the origin of high energy emission in pulsars; 36. Diagnostics of the evolution of spiral galaxies in a cluster environment; Part III. Future Missions: 37. Gravity and extreme magnetism SMEX (GEMS); 38. Programs of x-ray polarimetry in Italy; 39. A polarimeter for IXO; 40. Polarimetry with ASTRO-H soft gamma-ray detector; 41. EXIST and its polarization sensitivity; 42. PoGOLite: a balloon-borne soft gamma-ray polarimeter; 43. Studies of neutron background rejection in the PoGOLite polarimeter; 44. Observing polarized x-rays with PoGOLite; 45. Pre-flight qualification tests of the PoGOLite detector system; 46. The gamma-ray polarimeter experiment (GRAPE) Balloon Payload; 47. POLAR: an instrument dedicated to GRB polarization measurement; 48. Polarisation detection capability of GRIPS; 49. X-ray and y-ray polarimetry small satellite mission polaris; 50. GAP aboard the solar powered sail mission; 51. Hard x-ray polarimeter for small satellite missions; 52. Performance of hard x-ray polarimeter: PHENEX; 53. GRB polarimetry with POET; Index.

Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Tagliaferri, Gianpiero

2010-07-01

98

The role of the reflection coefficient in precision measurement of ultrasonic attenuation  

NASA Technical Reports Server (NTRS)

Ultrasonic attenuation measurements using contact, pulse-echo techniques are sensitive to surface roughness and couplant thickness variations. This can reduce considerable inaccuracies in the measurement of the attenuation coefficient for broadband pulses. Inaccuracies arise from variations in the reflection coefficient at the buffer-couplant-sample interface. The reflection coefficient is examined as a function of the surface roughness and corresponding couplant thickness variations. Interrelations with ultrasonic frequency are illustrated. Reliable attenuation measurements are obtained only when the frequency dependence of the reflection coefficient is incorporated in signal analysis. Data are given for nickel 200 samples and a silicon nitride ceramic bar having surface roughness variations in the 0.3 to 3.0 microns range for signal bandwidths in the 50 to 100 MHz range.

Generazio, E. R.

1984-01-01

99

Chest x-ray  

MedlinePLUS

... ray is an x-ray of the chest, lungs, heart, large arteries, ribs, and diaphragm. ... asthma Bronchiectasis Bronchiolitis Bronchopulmonary dysplasia Byssinosis ... Hypertensive heart disease Hypertrophic cardiomyopathy ...

100

Multielement imaging in computerised X-ray tomography  

NASA Astrophysics Data System (ADS)

A method by which several elements can be independently imaged in a single X-ray CT scan is described. The method is based on measurements of differential absorption across absorption edges. The images produced show the distribution of element concentration. Mass attenuation coefficients for the elements comprising the matrix are not required because corrections for matrix effects are made. The method is capable of imaging elements which are consecutive in the periodic table. Detection limits, in the apparatus described, are of the order of mg/cm 3. The elements chosen for imaging were palladium, silver and cadmium.

Fryar, Joseph; McCarthy, Kieran J.; Fenelon, Adrian

1988-09-01

101

X-ray binaries  

Microsoft Academic Search

We review the nuclear astrophysics aspects of accreting neutron stars in\\u000aX-ray binaries. We summarize open astrophysical questions in light of recent\\u000aobservations and their relation to the underlying nuclear physics. Recent\\u000aprogress in the understanding of the nuclear physics, especially of X-ray\\u000abursts, is also discussed.

H. Schatz; K. E. Rehm

2006-01-01

102

X-ray beamsplitter  

DOEpatents

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

1989-01-01

103

X-ray monochromator  

NASA Technical Reports Server (NTRS)

An x-ray monochromator is described, wherin a housing supports a plurality of mirrors forming a plurality of opposed mirror faces in parallel with each other and having thereon multilayer coatings, with each of said pairs of mirror faces being provided with identical coatings which are different from the coatings on the other pairs of mirror faces such that each pair of mirror faces has a peak x-ray reflection at a different wavelength regime. The housing is moveable to bring into a polychromatic x-ray beam that pair of mirror faces having the best x-ray reflection for the desired wavelength, with the mirrors being pivotable to move the mirror faces to that angle of incidence at which the peak reflectivity of the desired wavelength x-rays occurs.

Hoover, Richard B. (inventor)

1992-01-01

104

Effective density and mass attenuation coefficient for building material in Brazil.  

PubMed

This paper presents values for density and mass attenuation coefficient of building materials commonly used in Brazil. Transmission measurements were performed to provide input information for simulations with MCNP4B code. The structure for the clay bricks was simulated as a mix of all material layers and an effective density determined. The mass attenuation coefficients were determined for the 50-3,000 keV gamma-ray energy range. A comparison with results for similar materials found in the literature showed good agreement. PMID:16257357

Salinas, I C P; Conti, C C; Lopes, R T

2006-01-01

105

Lumbosacral spine x-ray  

MedlinePLUS

X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray ...

106

Thoracic spine x-ray  

MedlinePLUS

Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

107

X-Ray Diffraction  

NSDL National Science Digital Library

This site from the University of London presents a tutorial on several methods of X-ray diffraction, including the powder, rotating crystal, and Laue methods Each section includes interactive Java applets, exercises, and links to a glossary of terms.

Matter.org

108

Pelvis x-ray  

MedlinePLUS

X-ray - pelvis ... Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... hip joint Tumors of the bones of the pelvis Sacroiliitis (inflammation of the area where the sacrum ...

109

X-Ray Diffraction.  

ERIC Educational Resources Information Center

Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

Smith, D. K.; Smith, K. L.

1980-01-01

110

Author's personal copy Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths  

E-print Network

form 16 October 2012 Accepted 4 December 2012 Available online xxxx Keywords: Ocean color Remote sensing MODIS SeaWiFS Bio-optical algorithm Diffuse attenuation coefficient Euphotic depth Optical data 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied

Meyers, Steven D.

111

Determination of power-law attenuation coefficient and dispersion spectra in multi-wall carbon nanotube  

E-print Network

for a set of multi-wall carbon nanotube MWCNT -nylon composites from pure nylon to 20% MWCNT by weight conductivity of copper. Incorporating nano-scale particles into a matrix to construct a macro-scale compositeDetermination of power-law attenuation coefficient and dispersion spectra in multi-wall carbon

Gladden, Josh

112

Cosmic x ray physics  

NASA Technical Reports Server (NTRS)

This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

1992-01-01

113

Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares  

NASA Astrophysics Data System (ADS)

Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (? A) and amplitude time delay (? t) (vis-á-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan-Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22? 27'N, 87? 45'E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient ( ? eff ) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (? t). For the C-class flares we find that there is a direct correspondence between ? t of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the ? t for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux ? max independent of these time slots, the goodness of fit, as measured by reduced- ? 2, actually worsens as the day progresses. The variation of the Z dependence of reduced- ? 2 seems to follow the variation of standard deviation of Z along the T x - R x propagation path. In other words, for the flares having almost constant Z over the path a tighter anti-correlation between ? t and ? max was observed.

Basak, Tamal; Chakrabarti, Sandip K.

2013-12-01

114

LXT. The determination of the internal conversion coefficient and branching ratio for the 80 kev ?-ray emitted by I by means of X-ray-?-ray coincidence measurements  

Microsoft Academic Search

The investigation of primary and secondary electron spectra as a means of determining conversion coefficients becomes difficult at low ?-ray energies. A method relying on the measurement of the ?-rays emitted as a result of internal conversion does not suffer from this disadvantage. Such a method has been applied to the 80 kev ?-ray emitted by I. This is believed

Patrick E. Cavanagh

1952-01-01

115

Practical energy response estimation of photon counting detectors for spectral X-ray imaging  

Microsoft Academic Search

Spectral X-ray imaging is a promising technique to drastically improve the diagnostic quality of radiography and computed tomography (CT), since it enables material decomposition and\\/or identification based on the energy dependency of material-specific X-ray attenuation. Unlike the charge-integration based X-ray detectors, photon counting X-ray detectors (PCXDs) can discriminate the energies of incident X-ray photons and thereby multi-energy images can be

Dong-Goo Kang; Jongha Lee; Younghun Sung; Seongdeok Lee

2010-01-01

116

Quantitative RNFL attenuation coefficient measurements by RPE-normalized OCT data  

NASA Astrophysics Data System (ADS)

We demonstrate significantly different scattering coefficients of the retinal nerve fiber layer (RNFL) between normal and glaucoma subjects. In clinical care, SD-OCT is routinely used to assess the RNFL thickness for glaucoma management. In this way, the full OCT data set is conveniently reduced to an easy to interpret output, matching results from older (non- OCT) instruments. However, OCT provides more data, such as the signal strength itself, which is due to backscattering in the retinal layers. For quantitative analysis, this signal should be normalized to adjust for local differences in the intensity of the beam that reaches the retina. In this paper, we introduce a model that relates the OCT signal to the attenuation coefficient of the tissue. The average RNFL signal (within an A-line) was then normalized based on the observed RPE signal, resulting in normalized RNFL attenuation coefficient maps. These maps showed local defects matching those found in thickness data. The average (normalized) RNFL attenuation coefficient of a fixed band around the optic nerve head was significantly lower in glaucomatous eyes than in normal eyes (3.0mm-1 vs. 4.9mm-1, P<0.01, Mann-Whitney test).

Vermeer, K. A.; van der Schoot, J.; Lemij, H. G.; de Boer, J. F.

2012-03-01

117

X-ray Crystallography  

NSDL National Science Digital Library

In this activity, by the Concord Consortium's Molecular Literacy project, students are introduced to the fundamental principles of X-ray crystallography and "guides students through a series of activities for learning how structural information can be derived from X-ray diffraction patterns." Upon completion of this activity students should be able to describe what can be detected with X-ray crystallography (proteins in particular) and explain the impact of temperature, atom size, and impurities in the test. The activity itself is a java-based interactive resource built upon the free, open source Molecular Workbench software. In the activity, students are allowed to explore at their own pace in a digital environment full of demonstrations, illustrations, and models they can manipulate. In addition to the activity, visitors will find an overview of the activity, a test and rubric, central concepts, and their correlation to AAAS standards.

2008-10-17

118

Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV  

NASA Astrophysics Data System (ADS)

For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.

Buhr, H.; Büermann, L.; Gerlach, M.; Krumrey, M.; Rabus, H.

2012-12-01

119

X-ray microtomography  

SciTech Connect

In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

Landis, Eric N., E-mail: landis@maine.edu [Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04469 (United States); Keane, Denis T., E-mail: dtkeane@northwestern.edu [Department of Materials Science and Engineering, Northwestern University (United States); DND-CAT, Advanced Photon Source, Argonne National Laboratory, Bldg. 432/A002, 9700 S. Cass Ave, Argonne, Illinois 60439 (United States)

2010-12-15

120

X-ray fluorescence experiment  

NASA Technical Reports Server (NTRS)

The preliminary results from the Sco X-1 and Cyg X-1 obtained from the Apollo 15 X-ray detector data are presented along with preliminary results of the X-ray fluorescence spectrometric data of the lunar surface composition. The production of the characteristic X-rays following the interaction of solar X-rays with the lunar surface is described along with the X-ray spectrometer. Preliminary analyses of the astronomical X-ray observation and the X-ray fluorescence data are presented.

Adler, I.; Trombka, J. I.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

1972-01-01

121

Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm  

SciTech Connect

Measurements have been made of the total attenuation coefficient sigma t and the scattering phase function, S(theta), of 632.8 nm of light for a number of animal model tissues, blood, and inert scattering and absorbing media. Polystyrene microspheres of known size and refractive index, for which sigma t and S(theta) can be calculated by Mie theory, were used to test the experimental methods. The purpose of the study was to define typical ranges for these optical properties of tissues, as a contribution to the development of experimental and theoretical methods of light dosimetry in tissue, particularly related to photodynamic therapy of solid tumors. The results demonstrate that, for the representative tissues studied, the total attenuation coefficients are of the order of 10-100 mm-1, and that the scattering is highly forward peaked, with average cosine of scatter in the range 0.6-0.97.

Flock, S.T.; Wilson, B.C.; Patterson, M.S.

1987-09-01

122

X-ray beam finder  

DOEpatents

An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

Gilbert, H.W.

1983-06-16

123

X-ray astronomical spectroscopy  

NASA Technical Reports Server (NTRS)

The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

Holt, Stephen S.

1987-01-01

124

X-ray radiography for container inspection  

DOEpatents

Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

Katz, Jonathan I. (Clayton, MO); Morris, Christopher L. (Los Alamos, NM)

2011-06-07

125

Effective atomic numbers and mass attenuation coefficients of some thermoluminescent dosimetric compounds for total photon interaction  

Microsoft Academic Search

Effective atomic numbers for total gamma-ray interaction with some selected thermoluminescent dosimetric compounds such as barium acetate, barium sulfate, calcium carbonate, calcium sulfate, calcium sulfate dihydrate, cadmium sulfate (anhydrous), cadmium sulfate, strontium sulfate, and lithium fluoride have been calculated in the 1-keV to 20-MeV energy region. Experimental mass attenuation coefficients and effective atomic numbers for these compounds at selected photon

Shivaramu; R. Amutha; V. Ramprasath

1999-01-01

126

Measurement of the x-ray mass energy-absorption coefficient of air using 3 keV to 10 keV synchrotron radiation.  

PubMed

For the first time absolute photon mass energy-absorption coefficients of air in the energy range 3 keV to 10 keV have been measured with relative standard uncertainties less than 1%, significantly smaller than those of up to 5% assumed hitherto for calculated data. Monochromatized synchrotron radiation was used to measure both the total radiant energy by means of silicon photodiodes calibrated against a cryogenic radiometer and the fraction of radiant energy that is deposited in dry air by means of a free air ionization chamber. The measured ionization charge was converted into energy absorbed in air by calculated effective W values of photons as a function of their energy based on new measurements of the W values in dry air for electron kinetic energies between 1 keV and 7 keV, also presented in this work. The measured absorption coefficients were compared with state-of-the art calculations and found to agree within 0.7% with data calculated earlier by Hubbell at energies above 4 keV but were found to differ by values up to 2.1% at 10 keV from more recent calculations of Seltzer. PMID:17019029

Büermann, L; Grosswendt, B; Kramer, H-M; Selbach, H-J; Gerlach, M; Hoffmann, M; Krumrey, M

2006-10-21

127

X-ray Diffraction  

NSDL National Science Digital Library

A series of laboratory activities on x-ray diffraction physics using the Teltron Tel-X-Ometer System. Detailed explanations on the production and delivery of the beam is included, as well as a very complete safety protocol for conducting the experiments.

Langan, Shawn

2012-03-08

128

High-energy synchrotron radiation x-ray microscopy: Present status and future prospects  

SciTech Connect

High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs.

Jones, K.W.; Gordon, B.M.; Spanne, P. (Brookhaven National Lab., Upton, NY (United States)); Rivers, M.L.; Sutton, S.R. (Illinois Univ., Chicago, IL (United States))

1991-01-01

129

Phase contrast imaging using a micro focus x-ray source  

NASA Astrophysics Data System (ADS)

Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten K?1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

2014-09-01

130

Results of a monte carlo investigation of the diffuse attenuation coefficient.  

PubMed

There has been a large effort to relate the apparent optical properties of ocean water to the inherent optical properties, which are the absorption coefficient a, the scattering coefficient b, and the scattering phase function rho(theta). The diffuse attenuation coefficient kdiff' has most often been considered an apparent optical property. However, kdiff' can be considered a quasi-inherent property kdiff' when defined as a steady-state light distribution attenuation coefficient. The Honey-Wilson research empirically relates kdiff' to a and b. The Honey-Wilson relation most likely applies to a limited range of water types because it does not include dependence on rho(theta). A series of Monte Carlo simulations were initiated to calculate kdiff' in an unstratified water column. The calculations, which reflected open ocean water types, used ranges of the single-scattering albedo omega(0) and the mean forward-scattering angle theta(m) for two analytic phase functions with different shapes. It was found that kdiff' is nearly independent of the shape of rho(theta) and can be easily parameterized in terms of a, b, and theta(m) for 0.11

Concannon, B M; Davis, J P

1999-08-20

131

X-ray lithography masking  

NASA Technical Reports Server (NTRS)

X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

1998-01-01

132

X-ray Dinosaurs  

NSDL National Science Digital Library

In this activity, learners explore dinosaur fossils and skeletons. First, learners listen to "Tyrannosaurus Rex" by Daniel Cohen to learn about T. rex dinosaurs specifically. Then, learners make dinosaur tracings and drawings similar to x-rays. Learners can repeat the activity using pictures of other dinosaurs to compare and contrast various dinosaurs. This activity is featured on page 38 of the "Dinosphere" unit of study for K-2 learners.

Crosslin, Rick; Fortney, Mary; Indianapolis, The C.

2004-01-01

133

Monitoring X-Ray Emission from X-Ray Bursters  

NASA Technical Reports Server (NTRS)

The goal of this investigation was to use the All-Sky Monitor on the Rossi X-Ray Timing Explorer (RXTE) in combination with the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory to simultaneously measure the x-ray (2-12 keV) and hard x-ray (20-100 keV) emission from x-ray bursters. The investigation was successful. We made the first simultaneous measurement of hard and soft x-ray emission and found a strong anticorrelation of hard and soft x-ray emission from the X-Ray Burster 4U 0614+091. The monitoring performed under this investigation was also important in triggering target of opportunity observations of x-ray bursters made under the investigation hard x-ray emission of x-ray bursters approved for RXTE cycles 1 and 2. These observations lead to a number of papers on high-frequency quasi-periodic oscillations and on hard x-ray emission from the x-ray bursters 4U 0614+091 and 4U 1705-44.

Kaaret, Philip

1998-01-01

134

Nondestructive scheme for measuring the attenuation coefficient of polymer optical fiber.  

PubMed

Based on the fiber macrobending and the refractive index matching technologies, a measurement scheme is proposed to gauge the attenuation coefficient of polymer optical fibers in this Letter. It is noteworthy that, by realizing both the light injecting into and the light extracting out the fiber core via the fiber cladding, this scheme will not induce any destruction during the whole measurement. Some related experiments and the theoretical verifications are given together with the nondestructive measurement principle. The comparison between the experimental results of this scheme and that of the cut-back scheme indicates a good feasibility of our scheme. As a result, it is promised to have a potential application for achieving the on-line attenuation monitoring that has never been introduced. PMID:23455125

Lin, Xiao; Ren, Liyong; Liang, Jian

2013-02-15

135

Fluctuation X-Ray Scattering  

SciTech Connect

The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

2013-01-25

136

Scanning X-ray microscope  

US Patent & Trademark Office Database

A scanning X-ray microscope including an X-ray source capable of emitting a beam of X-rays, a collimator positioned to receive the beam of X-rays and, to collimate this beam, a focusing cone means to focus the beam of X-rays, directed by the collimator, onto a focal plane, a specimen mount for supporting a specimen in the focal plane to receive the focused beam of X-rays, and X-ray beam scanning means to relatively move the specimen and the focusing cone means and collimator to scan the focused X-ray beam across the specimen, a detector disposed adjacent the specimen to detect flourescent photons emitted by the specimen upon exposure to the focused beam of X-rays to provide an electrical output representative of this detection, means for displaying and/or recording the information provided by the output from the detector, means for providing information to the recording and/or display means representative of the scan rate and position of the focused X-ray beam relative to the specimen whereby the recording and/or display means can correlate the information received to record and/or display quantitive and distributive information as to the quantity and distribution of elements detected in the specimen. Preferably there is provided an X-ray beam modulation means upstream, relative to the direction of emission of the X-ray beam, of the focusing cone means.

1982-02-23

137

Tunable X-ray source  

DOEpatents

A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

Boyce, James R. (Williamsburg, VA)

2011-02-08

138

Dimensionality and noise in energy selective x-ray imaging  

SciTech Connect

Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB.Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems.

Alvarez, Robert E. [Aprend Technology, Mountain View, California 94043 (United States)] [Aprend Technology, Mountain View, California 94043 (United States)

2013-11-15

139

Jovian X-ray emissions  

NASA Technical Reports Server (NTRS)

The Einstein and Rosat observations of X-ray emissions from Jupiter are summarized. Jupiter's soft X-ray emission is observed to originate from the planet's auroral zones, and specifically, from its equatorial region. The processes responsible for these emissions are not established. The brightness distribution of the Jovian X-rays is characterized by the dependence on central meridian longitude and by north-south and morning-afternoon asymmetries. The X-rays observed during the impact of the comet Shoemaker-Levy 9 are believed to be impact-induced brightenings of the X-ray aurora.

Waite, J. H.; Lewis, W. S.; Gladstone, G. R.; Fabian, A. C.; Brandt, W. N.

1996-01-01

140

Direct three-dimensional coherently scattered x-ray microtomography  

SciTech Connect

Purpose: It has been shown that coherently scattered x rays can be used to discriminate and identify specific components in a mixture of low atomic weight materials. The authors demonstrated a new method of doing coherently scattered x-ray tomography with a thin sheet of x ray. Methods: A collimated x-ray fan-beam, a parallel polycapillary collimator, and a phantom consisting of several biocompatible materials of low attenuation-based contrast were used to investigate the feasibility of the method. Because of the particular experimental setup, only the phantom translation perpendicular to the x-ray beam is needed and, thus, there is no need of Radon-type tomographic reconstruction, except for the correction of the attenuation to the primary and scattered x rays, which was performed by using a conventional attenuation-based tomographic image data set. The coherent scatter image contrast changes with momentum transfer among component materials in the specimen were investigated with multiple x-ray sources with narrow bandwidth spectra generated with anode and filter combinations of Cu/Ni (8 keV), Mo/Zr (18 keV), and Ag/Pd (22 keV) and at multiple scatter angles by orienting the detector and polycapillary collimator at different angles to the illuminating x ray. Results: The contrast among different materials changes with the x-ray source energy and the angle at which the image was measured. The coherent scatter profiles obtained from the coherent scatter images are consistent with the published results. Conclusions: This method can be used to directly generate the three-dimensional coherent scatter images of small animal, biopsies, or other small objects with low atomic weight biological or similar synthetic materials with low attenuation contrast. With equipment optimized, submillimeter spatial resolution may be achieved.

Cui Congwu; Jorgensen, Steven M.; Eaker, Diane R.; Ritman, Erik L. [Department of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street Southwest, Alfred Building 2-409, Rochester, Minnesota 55905 (United States)

2010-12-15

141

SMM x ray polychromator  

NASA Technical Reports Server (NTRS)

The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

Saba, J. L. R.

1993-01-01

142

X-ray satellite  

NASA Technical Reports Server (NTRS)

An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

1985-01-01

143

Refractive Optics for Hard X-ray Transmission Microscopy  

SciTech Connect

For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E. [Institute for Microstructure Technology, Karlsruhe Institute of Technology Kaiserstrasse 12, 76131 Karlsruhe (Germany); Ahrens, G.; Voigt, A. [Microresist Technology, Koepenikerstrasse 325, 12555 Berlin (Germany)

2011-09-09

144

Measurements of mass attenuation coefficient, effective atomic number and electron density of some amino acids  

NASA Astrophysics Data System (ADS)

The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids.

Kore, Prashant S.; Pawar, Pravina P.

2014-05-01

145

Remote sensing of the diffuse attenuation coefficient of ocean water. [coastal zone color scanner  

NASA Technical Reports Server (NTRS)

A technique was devised which uses remotely sensed spectral radiances from the sea to assess the optical diffuse attenuation coefficient, K (lambda) of near-surface ocean water. With spectral image data from a sensor such as the coastal zone color scanner (CZCS) carried on NIMBUS-7, it is possible to rapidly compute the K (lambda) fields for large ocean areas and obtain K "images" which show synoptic, spatial distribution of this attenuation coefficient. The technique utilizes a relationship that has been determined between the value of K and the ratio of the upwelling radiances leaving the sea surface at two wavelengths. The relationship was developed to provide an algorithm for inferring K from the radiance images obtained by the CZCS, thus the wavelengths were selected from those used by this sensor, viz., 443, 520, 550 and 670 nm. The majority of the radiance arriving at the spacecraft is the result of scattering in the atmospheric and is unrelated to the radiance signal generated by the water. A necessary step in the processing of the data received by the sensor is, therefore, the effective removal of these atmospheric path radiance signals before the K algorithm is applied. Examples of the efficacy of these removal techniques are given together with examples of the spatial distributions of K in several ocean areas.

Austin, R. W.

1981-01-01

146

Mass attenuation coefficients of soil and sediment samples using gamma energies from 46.5 to 1332 keV.  

PubMed

Mass attenuation coefficients of various soil and sediment samples (density range between 1.0 and 1.7 g cm(-3)) collected from 60 sites distributed in Syrian land have been determined for gamma lines of 46.5, 59.5, 88, 122, 165, 392, 661, 1173, and 1332 keV using gamma spectrometry and simulation software program X-com. The average mass attenuation coefficients for the studied samples were found to be 0.513, 0.316, 0.195, 0.155, 0.134, 0.096, 0.077, 0.058, and 0.055 cm(2) g(-1) at previous energies, respectively. The results have shown that Ca and Fe contents of the samples have strong effect on the mass attenuation coefficient at lower energies. In addition, self-attenuation correction factors determined using mass attenuation coefficient was in good agreement with addition spiked reference material method provided that the sample thickness is 2.7 cm. However, mass attenuation coefficients determined in this study can be used for determination of gamma emitters at energy ranges from 46.5 to 1332 keV in any soil and sediment samples having density of 1.0-1.7 g cm(-3). PMID:23103572

Al-Masri, M S; Hasan, M; Al-Hamwi, A; Amin, Y; Doubal, A W

2013-02-01

147

Tomographic imaging of coherent x-ray scatter momentum transfer distribution using spectral x-ray detection and polycapillary optic  

NASA Astrophysics Data System (ADS)

Quantitation of coherent x-ray scatter traditionally involves measuring the intensity of the scattered x-ray over a range of angles (?) from the illuminating monochromatic x-ray beam. Spectral x-ray imaging produces the same information at a single ? when bremsstrahlung x-ray exposure is used. We used a 200?m thick sheet-illumination of a phantom (lucite cylinder containing holes with water, polyethylene, collagen, polycarbonate, and nylon) and a polycapillary x-ray optic collimator to provide measurements at a fixed ?. A Medipix2 x-ray detection array (2562 (55?m)2 pixels) provided the spectral (E, 10 - 22 keV in 3keV energy bins) spread needed to generate the momentum transfer (q) profile information at one angle. The tungsten x-ray source anode (aluminum filter) was operated at 35kVp at 20mA. The detected scatter intensity was corrected for attenuation of the incident and the scattered x-ray by use of the regular CT image of the phantom generated at the same energy bins. The phantom was translated normal to the plane of the fan beam in 65, 0.2mm, steps to generate the 3D image data. The momentum transfer profiles generated with this approach were compared to published momentum transfer profiles obtained by other methods.

Eaker, Diane R.; Jorgensen, Steven M.; Butler, Anthony P. H.; Ritman, Erik L.

2010-09-01

148

Structural effects of insulin-loading into HII mesophases monitored by electron paramagnetic resonance (EPR), small angle X-ray spectroscopy (SAXS), and attenuated total reflection Fourier transform spectroscopy (ATR-FTIR).  

PubMed

Insulin entrapment within a monoolein-based reverse hexagonal (H(II)) mesophase was investigated under temperature-dependent conditions at acidic (pH 3) and basic (pH 8) conditions. Studying the structure of the host H(II) system and the interactions of insulin under temperature-dependent conditions has great impact on the enhancement of its thermal stabilization and controlled release for the purposes of transdermal delivery. Small angle X-ray spectroscopy (SAXS) measurements show that pH variation and/or insulin entrapment preserve the hexagonal structure and do not influence the lattice parameter. Attenuated total reflection Fourier transform spectroscopy (ATR-FTIR) spectra indicate that, although insulin interacts with hydroxyl groups of GMO in the interface region, it is not affected by pH variations. Hence different microenvironments within the H(II) mesophase were monitored by a computer-aided electron paramagnetic resonance (EPR) analysis using 5-doxylstearic acid (5-DSA) as a pH-dependent probe. The microviscosity, micropolarity, order of systems, and distribution of the probes in different microenvironments were influenced by three factors: temperature, pH, and insulin solubilization. When the temperature is increased, microviscosity and order parameters decreased at both pH 3 and 8, presenting different decrease trends. It was found that, at pH 3, the protein perturbs the lipid structure while "pushing aside" the un-ionized 5-DSA probe to fit into the narrow water cylinders. At the interface region (pH 8), the probe was distributed in two differently structured environments that significantly modifies by increasing temperature. Insulin loading within the H(II) mesophase decreased the order and microviscosity of both the microenvironments and increased their micropolarity. Finally, the EPR analysis also provides information about the unfolding/denaturation of insulin within the channel at high temperatures. PMID:21591776

Mishraki, Tehila; Ottaviani, Maria Francesca; Shames, Alexander I; Aserin, Abraham; Garti, Nissim

2011-06-30

149

Hard X-ray emission from X-ray bursters  

Microsoft Academic Search

Hard X-ray emission from compact objects has been considered a spectral signature of black hole candidates. However, SIGMA and BATSE recently detected transient emission in the energy range 30-200keV from several X-ray bursters (XRBs) believed to contain weakly magnetized neutron stars. At least seven XRBs (including Aquila X-1 and 4U 1608-52) are currently known to produce erratic hard X-ray outbursts

M. Tavani; E. Liang

1996-01-01

150

Miniature x-ray source  

DOEpatents

A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

2002-01-01

151

Whitebeam X-ray topography  

Microsoft Academic Search

After radiography, white-beam X-ray topography (XRT) is the simplest X-ray imaging technique for crystals. An X-ray topograph is formed by a Bragg reflexion and is in effect a high-spatial-resolution Laue ‘spot’. Synchrotron radiation has given XRT additional powers, with its broad continuous spectrum, small beam divergence, high intensity, strong polarization and regular pulsed time structure. Each Laue image, however, may

Moreton Moore

2012-01-01

152

Synchrotron X-ray topography  

Microsoft Academic Search

The various techniques of X-ray diffraction topography image imperfections in single-crystals by Bragg reflexion, with a spatial resolution of approximately one micrometre. Defects can be studied in relation to crystal growth and physical properties. X-ray interference effects can also be explored in perfect, and nearly perfect, crystals. Synchrotron radiation has given X-ray topography additional powers, including the rapid non-destructive assessment

Moreton Moore

1995-01-01

153

Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source  

NASA Astrophysics Data System (ADS)

Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 106 per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

Du, Yingchao; Yan, Lixin; Hua, Jianfei; Du, Qiang; Zhang, Zhen; Li, Renkai; Qian, Houjun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

2013-05-01

154

X-Ray Spectroscopy of Bromine Compounds and Biomedical Applications  

NASA Astrophysics Data System (ADS)

In conventional biomedical applications intense and broadband high energy X-rays are used in therapy and diagnostics (theranostics) to ensure sufficient tissue penetration for imaging or treatment. To avoid damages incurred by these, our proposed method, Resonant Theranosticsb,c, aims to find narrow energy regions that corresponds to resonant absorption or emission. We show that such energy bands lie below the K-shell ionization energy, contrary to the research focus on the K-shell ionization energy itself. Targeting these energy bands, Auger processes can be initiated to produce a number of photons and electrons from each atomic/molecular species via photon fluorescence and electron ejections. We will report our study on the bromine compound bromodeoxyuridyne (BUdR), widely used as radiological contrast agent in radiation imaging. The active system is Br^o-Br^+ combination, which can emit or absorb X-rays in the relative narrow energy range of 12 to 13.6 keV, through 1s-np transitions. We will present the oscillator strengths and transition probabilities for various Auger or K-shell 1s-np transitions. We will show that the corresponding cross sections and attenuation coefficients per unit mass, are orders of magnitude higher than the background and that at K-shell ionization energy. Employing these attenuation coefficients in the Monte Carlo simulation program Geant4, we study the intensities of photon and electron emission spectra. Acknowledgment: Partially support: Large Interdisciplinary Grant award of the Ohio State University and NASA (SNN). The computational work was carried out at the Ohio Supercomputer Center, Columbus Ohio. "Resonant X-Ray Enhancement of the Auger Effect in High-Z atoms, molecules, and Nanoparticles: Biomedical Applications", A. K. Pradhan, S. N. Nahar, M. Montenegro, Yan Yu, H. L. Zhang, C. Sur, M. Mrozik, R. M. Pitzer, J. of Phys. Chem. A, 113 (2009), 12356. "Monte Carlo Simulations and Atomic Calculations for Auger Processes in Biomedical Nanotheranostics", M. Montenegro, S. N. Nahar, A. K. Pradhan, Ke Huang, Yan Yu, J. of Phys. Chem. A, 113 (2009), 12364.

Nahar, Sultana N.; Luo, Yi; Le, Linh; Pradhan, A. K.; Chowdhury, E.; Pitzer, R.; Montenegro, M.

2010-06-01

155

Effective atomic numbers and mass attenuation coefficients of some thermoluminescent dosimetric compounds for total photon interaction  

SciTech Connect

Effective atomic numbers for total gamma-ray interaction with some selected thermoluminescent dosimetric compounds such as barium acetate, barium sulfate, calcium carbonate, calcium sulfate, calcium sulfate dihydrate, cadmium sulfate (anhydrous), cadmium sulfate, strontium sulfate, and lithium fluoride have been calculated in the 1-keV to 20-MeV energy region. Experimental mass attenuation coefficients and effective atomic numbers for these compounds at selected photon energies of 26.3, 33.2, 59.54, and 661.6 keV have been obtained from good geometry transmission measurements and compared with theoretical values. The effect of absorption edge on effective atomic numbers and its variation with energy, and nonvalidity of the Bragg`s mixture rule at incident photon energies closer to the absorption edges of constituent elements of compounds are discussed.

Shivaramu; Amutha, R.; Ramprasath, V. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Safety Research and Health Physics Group

1999-05-01

156

Electron-Ion Recombination Rate Coefficients and Photoionization Cross Sections for Astrophysically Abundant Elements. XI. N V-VI and F VII-VIII for Ultraviolet and X-Ray Modeling  

NASA Astrophysics Data System (ADS)

The inverse processes of photoionization and electron-ion recombination for h?+N V<-->N VI+e, h?+N VI<-->N VII+e, h?+F VII<-->F VIII+e, and h?+F VIII<-->F IX+e are studied in detail using a self-consistent unified method for the total electron-ion recombination. The method enables calculation of the total and level-specific recombination rate coefficients ?R and ?R(i), subsuming both radiative and dielectronic recombination (RR and DR). The photoionization and recombination cross sections ?PI and ?RC are computed using an identical wave function expansion for both processes in the close coupling approximation using the R-matrix method. The results include total and partial photoionization cross sections and recombination rate coefficients for all fine-structure levels up to n<=10, about 100 for Li-like N V and F VII with 1/2<=J<=17/2, and over 170 for He-like N VI and F VIII with 0<=J<=10. Level-specific ?PI(nSLJ) and ?R(T nSLJ) are calculated for the first time for these ions. The coupled-channel wave function expansions for N V and F VII consist of 17 levels of cores N VI and F VIII, respectively, and for N VI and F VIII consist of 16 levels of cores N VII and F IX, respectively. Relativistic fine structure is considered through the Breit-Pauli R-matrix method. The single-valued total ?R(T) is presented over an extended temperature range for astrophysical and laboratory plasma applications. Although the total unified ?R(T) for all ions agree well with the available published RR+DR rates, significant differences are noted at the DR peak for N V. Total ?RC(E) and ?R(E) as functions of photoelectron energy are presented for comparison with experiments. Total rates for H-like N VII and F IX are also given for completeness. The cross sections ?PI and ?RC include important atomic effects such as radiation damping, channel couplings, and interference of DR and RR, and should be accurate to within 10%-15%. The comprehensive data sets are applicable for ionization balance and recombination-cascade models for UV and X-ray lines.

Nahar, Sultana N.

2006-05-01

157

X-ray spectra and quality parameters from Monte Carlo simulation and analytical filters.  

PubMed

BEAMnrc was used to derive the X-ray spectra, from which HVL and homogeneity coefficient were determined, for different kVp and filtration settings. Except for the peak at 61 keV, the spectra are in good agreement with the IPEM report 78 data for the case of filtered beams, whereas the unfiltered beams exhibit softer spectra. Although the current attenuation data deviates from the IPEM 78 data by ~±0.5%, this has negligible effects on the calculated HVL values. PMID:22940409

Salehi, Z; Ya Ali, N K; Yusoff, A L

2012-11-01

158

Effect of x-ray tube window thickness of detection limits for light elements in XRF analysis  

SciTech Connect

Widespread interest in light element analysis using XRF has stimulated the development of thin x-ray tube windows. Thinner windows enhance the soft x-ray output of the tube, which more efficiently excite the light elements in the sample. A computer program that calculates the effect of window thickness on light element sample fluorescence has been developed. The code uses an NIST algorithm to calculate the x-ray tube spectrum given various tube parameters such as beryllium window thickness, operating voltage, anode composition, and take-off angle. The interaction of the tube radiation with the sample matrix is modelled to provide the primary and secondary fluorescence from the sample. For x-rays in the energy region 30 - 1000 eV the mass attenuation coefficients were interpolated from the photoabsorption data compilation of Henke, el al. The code also calculates the x-ray background due to coherent and incoherent scatter from the sample, as well as the contribution of such scatter to the sample fluorescence. Given the sample fluorescence and background the effect of tube window thickness on detection limits for light elements can be predicted. 17 refs., 3 figs., 2 tabs.

Whalen, D.J.; Turner, D.C. [MOXTEK, Inc., Orem, UT (United States)

1995-12-31

159

Diel variability of the beam attenuation and backscattering coefficients in the northwestern Mediterranean Sea (BOUSSOLE site)  

NASA Astrophysics Data System (ADS)

diel variability of the particulate beam attenuation coefficient, cp, and of the particulate backscattering coefficient, bbp, were investigated during five seasonal cycles at an oceanic site in the northwestern Mediterranean Sea, covering contrasting physical and trophic situations. We observed a diel cycle in cp and bbp, related to changes in phytoplankton properties (i.e., size and refractive index) induced by the accumulation of carbon within phytoplankton cells associated with photosynthetic processes, during the winter mixing of the water column, the development of the spring phytoplankton bloom, its decline, and during the summer oligotrophy. The relative amplitude of the cp diel variability was much larger during the spring bloom (20-50%) than during other seasons (10-20%), whereas that of bbp is steadily around 20% and does not show significant seasonal variability. The minimal cp and bbp occurred at sunrise and are synchronized, whereas maximum bbp values are often reached 3-6 h before those for cp (except during bloom conditions), which occur near sunset. These different amplitudes and timing are tentatively explained using Mie computations, which allow discerning the respective roles of changes in the particle size distribution and refractive index. The differences observed here in the diel cycles of cp and bbp show that they cannot be used interchangeably to determine the daily increase of the particle pool. This result has implications on the feasibility to determine net community production from the bbp diel changes, when only bbp is measured in situ or available from ocean color observations.

Kheireddine, Malika; Antoine, David

2014-08-01

160

X-Ray Exam: Forearm  

MedlinePLUS

What It Is A forearm X-ray is a safe and painless test that uses a small amount of radiation to take a picture of a person's ... radius, ulna, and elbow). During the examination, an X-ray machine sends a beam of radiation through ...

161

X-ray based extensometry  

NASA Technical Reports Server (NTRS)

A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

Jordan, E. H.; Pease, D. M.

1988-01-01

162

Nonthermal X-ray astronomy  

NASA Astrophysics Data System (ADS)

We provide a concise review of X-ray observations of synchrotron and inverse Compton radiation from relativistic electrons in cosmic sources, in the context of synergies between X-ray and ?-ray astronomy. Particular emphasis is placed on the cases of supernova remnants, pulsar wind nebulae, and relativistic jets of quasars. We discuss that imaging spectroscopy of synchrotron X-ray emission plays key roles in studying acceleration and transport of high-energy electrons, as well as in probing the magnetic field through a comparison with TeV ?-ray data. To demonstrate some prospects for future X-ray observations, we showcase the scientific capabilities of the next major X-ray observatory, ASTRO-H, which is a joint JAXA-NASA mission to be launched in 2014.

Uchiyama, Yasunobu

2012-12-01

163

X-Ray Diffraction Apparatus  

NASA Technical Reports Server (NTRS)

An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

1996-01-01

164

Focusing X-Ray Telescopes  

NASA Technical Reports Server (NTRS)

During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

2010-01-01

165

Development and application of low energy X-ray and electron physics  

Microsoft Academic Search

Contents: X-ray spectrometry in the 100-1000 eV region; the characterization of X-ray photocathodes in The 0.1-10 keV photon energy region; description of a fixed, elliptical analyzer spectrograph for pulsed source analysis; low energy X-ray interaction coefficients: photoionization, scattering and reflection; first-page abstracts of selected examples of some research publications; and the low energy X-ray and electron spectrographic systems developed under

B. L. Henke

1981-01-01

166

Hard X-Ray Emission of X-Ray Bursters  

NASA Technical Reports Server (NTRS)

The main results from this investigation were serendipitous. The long observation approved for the study of the hard X-ray emission of X-ray bursters lead, instead, to one of the largest early samples of the behavior of fast quasi-periodic oscillations (QPOS) in an atoll sources. Our analysis of this data set lead to the several important discoveries including the existence of a robust correlation between QPO frequency and the flux of a soft blackbody component of the X-ray spectrum in the atoll source 4U 0614+091.

Kaaret, Phillip

1997-01-01

167

Optimal calibration via virtual x-ray imaging for dual-energy techniques: application to glass wool  

NASA Astrophysics Data System (ADS)

We present in this paper a technique that makes benefit of a virtual X-ray simulation tool to both assess the optimal spectra and calibrate a dual-energy technique. The proposed method is applied to the selective imaging of glass wool materials. To optimize the choice of energy spectra, a signal-to-noise (SNR) criterion on the materials estimated thickness is derived using a constant absorbed energy constraint in the detector. To study further its reliability, the criterion is related to the measurement quality, expressed by a contrast to noise ratio of the input projections, and to the inversion stability, expressed by a contrast to noise ration of the input projections, and to the inversion stability, expressed by the numerical conditioning of the linear dual-energy attenuation system. Once the choice of energy spectra is settled, apparent thicknesses are modeled as third order polynomials expressed in terms of X-ray attenuation measures. The best polynomial fit and the choice of the degree can again be advantageously assessed using virtual X-ray imaging. A semi-empirical catalog is here used to characterize the X-ray source spectrum, and attenuation coefficients for each corresponding compound substance are obtained from standard databases. After completion of those calibration phases, a glass wool phantom composed of PMMA and glass (combined step wedges) is used to validate using real experimental data the selected dual-energy protocol obtained by virtual X-ray imaging. The worse error on the estimated thickness is about 5% for both the binder and the glass fibers. Quantitative imaging in thickness of glass fibers and binder is finally presented.

Letang, Jean-Michel; Freud, N.; Peix, Gilles

2003-04-01

168

Electron-Ion Recombination Rate Coefficients and Photoionization Cross Sections for Astrophysically Abundant Elements. XII. Na IX, Na X, Mg X, and Mg XI for Ultraviolet and X-Ray Modeling  

NASA Astrophysics Data System (ADS)

Detailed study on the inverse processes of photoionization and electron-ion recombination for Na IX+h?<-->Na X+e, Na X+h?<-->Na XI+e, Mg X+h?<-->Mg XI+e, and Mg XI+h?<-->Mg XII+e is reported. The unified method for the total electron-ion recombination is used for the self-consistent results of total and level-specific recombination rate coefficients ?R and ?R(i) (subsuming both radiative recombination [RR] and dielectronic recombination [DR]), total recombination cross sections ?RC, and total and partial level-specific photoionzation cross sections ?PI and ?PI(g). The total recombination spectrum of cross sections and recombination rates versus photoelectron energy are presented for experimental applications. The unified method employs close-coupling approximation in the relativistic Breit-Pauli R-matrix (BPRM) method. The coupled channel wave function expansions for Li-like Na IX and Mg X consist of 17 core levels with excitations up to 3d orbital and for He-like Na X and Mg XI consist of 16 core levels of excitations up to 4f orbital, respectively. The results are presented for all fine-structure levels of the ions up to n<=10, which correspond to 98 levels with 1/2<=J<=17/2 for Li-like Na IX and Mg X, 182 and 185 levels with 0<=J<=10 for He-like Na X and Mg XI, respectively. The level specific photoionization cross sections ?PI(nSLJ) and recombination rates ?R(T nSLJ) are obtained for the first time for these ions. The single-valued total ?R(T) is presented over an extended temperature range for astrophysical and laboratory plasma applications. The total unified ?R(T) for all ions agrees very well with the available published RR and DR rates. Total recombination rates for H-like Na XI and Mg XII are also presented for completeness. The results are expected to be accurate within 10%-15% from considerations of important atomic effects such as radiation damping, channel couplings, and interference of DR and RR. The comprehensive data sets are applicable for ionization balance and recombination-cascade models for UV and X-ray lines.

Nahar, Sultana N.

2006-12-01

169

Nanoimaging cells using soft X-ray tomography.  

PubMed

Soft X-ray microscopy is ideally suited to visualizing and quantifying biological cells. Specimens, including eukaryotic cells, are imaged intact, unstained and fully hydrated, and therefore visualized in a near-native state. The contrast in soft X-ray microscopy is generated by the differential attenuation of X-rays by the molecules in the specimen-water is relatively transmissive to this type of illumination compared to carbon and nitrogen. The attenuation of X-rays by the specimen follows the Beer-Lambert law, and therefore both linear and a quantitative measure of thickness and chemical species present at each point in the cell. In this chapter, we will describe the procedures and computational methods that lead to 50 nm (or better) tomographic reconstructions of cells using soft X-ray microscope data, and the subsequent segmentation and analysis of these volumetric reconstructions. In addition to being a high-fidelity imaging modality, soft X-ray tomography is relatively high-throughput; a complete tomographic data set can be collected in a matter of minutes. This new modality is being applied to imaging cells that range from small prokaryotes to stem cells obtained from mammalian tissues. PMID:23086890

Parkinson, Dilworth Y; Epperly, Lindsay R; McDermott, Gerry; Le Gros, Mark A; Boudreau, Rosanne M; Larabell, Carolyn A

2013-01-01

170

X-Ray Imaging Model  

NSDL National Science Digital Library

The X-Ray Imaging Model simulates the basic concepts of X-Ray imaging, exploring how different aspects of both the X-Ray source as well as the sample affect the X-Ray image. The simulation has a main window which contains the simulated image and the controls to manipulate the X-Ray characteristics and the physical characteristics of the sample to be imaged. In addition to the main panel, there are two optional windows. The first contains a graph of the X-ray spectrum and a second graph of the simulated exposure level of the film. The second optional window shows the geometry of the sample, which consists of a slab with two embedded cylinders within it. The X-Ray Imaging Model was created by Michael Gallis using the Easy Java Simulations (EJS) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. You can examine and modify this compiled EJS model if you run the model (double click on the model's jar file), right-click within a plot, and select "Open Ejs Model" from the pop-up menu. You must, of course, have EJS installed on your computer. 

Gallis, Michael R.

2014-04-16

171

Out-of-field activity in the estimation of mean lung attenuation coefficient in PET/MR  

NASA Astrophysics Data System (ADS)

In clinical PET/MR, photon attenuation is a source of potentially severe image artifacts. Correction approaches include those based on MR image segmentation, in which image voxels are classified and assigned predefined attenuation coefficients to obtain an attenuation map. In whole-body imaging, however, mean lung attenuation coefficients (LAC) can vary by a factor of 2, and the choice of inappropriate mean LAC can have significant impact on PET quantification. Previously, we proposed a method combining MR image segmentation, tissue classification and Maximum Likelihood reconstruction of Attenuation and Activity (MLAA) to estimate mean LAC values. In this work, we quantify the influence of out-of-field (OOF) accidental coincidences when acquiring data in a single bed position. We therefore carried out GATE simulations of realistic, whole-body activity and attenuation distributions derived from data of three patients. A bias of 15% was found and significantly reduced by removing OOF accidentals from our data, suggesting that OOF accidentals are the major contributor to the bias. We found approximately equal contributions from OOF scatter and OOF randoms, and present results after correction of the bias by rescaling of results. Results using temporal subsets suggest that 30-second acquisitions may be sufficient for estimation mean LAC with less than 5% uncertainty if mean bias can be corrected for.

Berker, Yannick; Salomon, André; Kiessling, Fabian; Schulz, Volkmar

2014-01-01

172

X-ray observations of ultraluminous X-ray sources  

E-print Network

Ultraluminous X-ray sources (ULXs) are amongst the most intriguing of X-ray source classes. Their extreme luminosities - greater than 10^39 erg/s in the 0.3 - 10 keV band alone - suggest either the presence of black holes larger than those regularly encountered in our own Galaxy (the Galactic centre excepted), or sources apparently radiating well above the Eddington limit. We review the insights afforded us by studies of their X-ray emission, focussing on what this reveals about the underlying compact object. In particular, we discuss recent deep observations of ULXs by the XMM-Newton observatory, and how the unprecedented data quality provided by this mission is starting to discriminate between the different physical models for these extraordinary X-ray emitters.

T. P. Roberts

2007-06-18

173

Evaluation of Moisture-Related Attenuation Coefficient and Water Diffusion Velocity in Human Skin Using Optical Coherence Tomography  

PubMed Central

In this study, time-resolved optical coherence tomography (OCT) scanning images of the process of water diffusion in the skin that illustrate the enhancement in the backscattered intensities due to the increased water concentration are presented. In our experiments, the water concentration in the skin was increased by soaking the hand in water, and the same region of the skin was scanned and measured with the OCT system and a commercial moisture monitor every three minutes. To quantitatively analyze the moisture-related optical properties and the velocity of water diffusion in human skin, the attenuation coefficients of the skin, including the epidermis and dermis layers, were evaluated. Furthermore, the evaluated attenuation coefficients were compared with the measurements made using the commercial moisture monitor. The results demonstrate that the attenuation coefficient increases as the water concentration increases. Furthermore, by evaluating the positions of center-of mass of the backscattered intensities from OCT images, the diffusion velocity can be estimated. In contrast to the commercial moisture monitor, OCT can provide three-dimensional structural images of the skin and characterize its optical property, which together can be used to observe morphological changes and quantitatively evaluate the moisture-related attenuation coefficients in different skin layers. PMID:23529149

Lee, Cheng-Kuang; Tsai, Meng-Tsan; Chang, Feng-Yu; Yang, Chih-Hsun; Shen, Su-Chin; Yuan, Ouyang; Yang, Chih-He

2013-01-01

174

Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls  

Microsoft Academic Search

For medical applications of ultrasound inside the brain, it is necessary to understand the relationship between the apparent density of skull bone and its corresponding speed of sound and attenuation coefficient. Although there have been previous studies exploring this phenomenon, there is still a need to extend the measurements to cover more of the clinically relevant frequency range. The results

Samuel Pichardo; Vivian W. Sin; Kullervo Hynynen

2011-01-01

175

Bone age assessment by dual-energy X-ray absorptiometry in children: an alternative for X-ray?  

PubMed Central

Objective The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Methods Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinology outpatient clinic of University Hospital Rotterdam, the Netherlands. We compared bone age assessments by DXA scan with those performed by X-ray. Bone age assessment was performed by two blinded observers according to the reference method of Greulich and Pyle. Intra-observer and interobserver reproducibility were investigated using the intraclass correlation coefficient (ICC), and agreement was tested using Bland and Altman plots. Results The intra-observer ICCs for both observers were 0.997 and 0.991 for X-ray and 0.993 and 0.987 for DXA assessments. The interobserver ICC was 0.993 and 0.991 for X-ray and DXA assessments, respectively. The mean difference between bone age assessed by X-ray and DXA was 0.11 years. The limits of agreement ranged from ?0.82 to 1.05 years, which means that 95% of all differences between the methods were covered by this range. Conclusions Results of bone age assessment by DXA scan are similar to those obtained by X-ray. The DXA method seems to be an alternative for assessing bone age in a paediatric hospital-based population. PMID:21586503

Heppe, D H M; Taal, H R; Ernst, G D S; Van Den Akker, E L T; Lequin, M M H; Hokken-Koelega, A C S; Geelhoed, J J M; Jaddoe, V W V

2012-01-01

176

Coherent X-rays at MAMI  

NASA Astrophysics Data System (ADS)

Coherent radiation in the range from soft X-rays up to hard X-rays, produced by the low-emittance electron beam of MAMI, can be used for various applications. Novel types of interferometers have been developed for the measurement of the complex index of refraction of thin self-supporting foils. For the vacuum ultraviolet and soft X-ray region the interferometer consists of two collinear undulators, and a grating spectrometer. A foil placed between the undulators causes a phase shift and an attenuation of the oscillation amplitude. The complex index of refraction has been measured at the L2,3-absorption edges of nickel. A novel method is described for the measurement of the X-ray magnetic circular birefringence. For the hard X-ray region the interferometer consists of two foils at which the 855MeV electron beam produces transition radiation. Distinct interference oscillations have been observed as a function of both, the photon emission angle and the distance between the foils. The refractive index decrement ?(?) of a 2?m thick nickel sample foil has been measured at X-ray energies around the K absorption edge at 8333eV and at 9930eV with an accuracy of better than 1.5 %. The line width of parametric X radiation (PXR) was measured in backward geometry with a Si single-crystal monochromator. Upper limits of the line width of 42meV, 50meV, and 44meV, have been determined for the (333), (444) and (555) reflections at photon energies of 5932eV, 7909eV, and 9887eV, respectively. Small angle scattering of the electrons in the crystal leads to a stochastic frequency modulation of the exponentially damped wave train which results in the line broadening. To elucidate the quest if the production of PXR is a kinematical or a dynamical process the radiation from silicon single-crystal targets, emitted close to the electron direction, has been studied. The observed interference structures and the narrow-band radiation in forward direction shows that PXR is produced in a dynamical process.

Lauth, W.; Backe, H.; Kettig, O.; Kunz, P.; Sharafutdinov, A.; Weber, T.

2006-05-01

177

An X-ray diffraction study of titanium oxidation  

NASA Technical Reports Server (NTRS)

Titanium specimens of commercial purity were exposed at 1100 to 1400 F to laboratory air for times up to 100 hours. The extent of substrate contamination by interstitial oxygen was was determined by a new X-ray diffraction analysis involving transformation of X-ray diffraction intensity bands. The oxygen solid-solubility at the oxide-metal interfaces and its variation with time at temperature were also determined. Diffusion coefficients are deduced from the oxygen depth profiles.

Wiedemann, K. E.; Unnam, J.

1984-01-01

178

Nanoscale X-ray imaging  

NASA Astrophysics Data System (ADS)

Recent years have seen significant progress in the field of soft- and hard-X-ray microscopy, both technically, through developments in source, optics and imaging methodologies, and also scientifically, through a wide range of applications. While an ever-growing community is pursuing the extensive applications of today's available X-ray tools, other groups are investigating improvements in techniques, including new optics, higher spatial resolutions, brighter compact sources and shorter-duration X-ray pulses. This Review covers recent work in the development of direct image-forming X-ray microscopy techniques and the relevant applications, including three-dimensional biological tomography, dynamical processes in magnetic nanostructures, chemical speciation studies, industrial applications related to solar cells and batteries, and studies of archaeological materials and historical works of art.

Sakdinawat, Anne; Attwood, David

2010-12-01

179

X-Ray Imaging System  

NASA Technical Reports Server (NTRS)

The Model 60007A InnerView Real-time X-ray Imaging System, produced by National Imaging Systems, a division of FlouroScan Imaging Systems, Inc. (formerly HealthMate, Inc.), Northbrook, IL, is a third generation spinoff from x-ray astronomy technology. Goddard Space Flight Center developed the original technology into the Lixiscope, a small, portable, minimal radiation x-ray instrument that could be used at the scene of an accident. FlouroScan Imaging Systems, Inc., adapted this technology to develop the FlouroScan, a low-intensity, x-ray system that could be used without the lead aprons, film badges and lead-lined walls that conventional systems require. The InnerView is a spinoff of non-destructive testing and product inspection.

1991-01-01

180

X-ray fluorescence microscopy  

SciTech Connect

Synchrotron x-ray fluorescence microscopy is used to quantitatively measure and image the distribution of trace elements in biological, geological and materials science specimens. The design and performance of the x-ray fluorescence (XFR) microprobe at the NSLS are discussed and compared with other XRF microprobe design. An example of a trace element image obtained with this instrument if presented. 6 refs., 5 figs.

Rivers, M.L.; Sutton, S.R. (Chicago Univ., IL (USA). Dept. of Geophysical Sciences); Jones, K.W. (Brookhaven National Lab., Upton, NY (USA))

1990-10-01

181

Tokamak x ray diagnostic instrumentation  

SciTech Connect

Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

1987-01-01

182

The precise measurement of the attenuation coefficients of various IR optical materials applicable to immersion grating  

NASA Astrophysics Data System (ADS)

Immersion grating is a next-generation diffraction grating which has the immersed the diffraction surface in an optical material with high refractive index of n > 2, and can provide higher spectral resolution than a classical reflective grating. Our group is developing various immersion gratings from the near- to mid-infrared region (Ikeda et al.1, 2, 3, 4, Sarugaku et al.5, and Sukegawa et al.6). The internal attenuation ?att of the candidate materials is especially very important to achieve the high efficiency immersion gratings used for astronomical applications. Nevertheless, because there are few available data as ?att < 0.01cm-1 in the infrared region, except for measurements of CVD-ZnSe, CVD-ZnS, and single-crystal Si in the short near-infrared region reported by Ikeda et al.7, we cannot select suitable materials as an immersion grating in an aimed wavelength range. Therefore, we measure the attenuation coefficients of CdTe, CdZnTe, Ge, Si, ZnSe, and ZnS that could be applicable to immersion gratings. We used an originally developed optical unit attached to a commercial FTIR which covers the wide wavelength range from 1.3?m to 28?m. This measurement system achieves the high accuracy of (triangle)?att ~ 0.01cm-1. As a result, high-resistivity single-crystal CdZnTe, single-crystal Ge, single-crystal Si, CVD-ZnSe, and CVD-ZnS show ?att < 0.01cm-1 at the wavelength range of 5.5 - 19.0?m, 2.0 - 10.5?m, 1.3 - 5.4?m, 1.7 - 13.2?m, and 1.9 - 9.2?m, respectively. This indicates that these materials are good candidates for high efficiency immersion grating covering those wavelength ranges. We plan to make similar measurement under the cryogenic condition as T <= 10K for the infrared, especially mid-infrared applications.

Kaji, Sayumi; Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Nakanishi, Kenshi; Kondo, Sohei; Yasui, Chikako; Kawakita, Hideyo

2014-07-01

183

X Rays: Another Form of Light  

NSDL National Science Digital Library

This Chandra X-ray Observatory website gives a brief history on the discovery of X-rays and how they are produced. There is also information on other forms of light. This website includes illustrations and information on X- ray production, inverse Compton scattering, atomic emission, and synchrotron radiation. There are also links to learn more about the differences between x-ray astronomy and medical x-rays, and to a word search for x-rays and light.

2004-11-17

184

Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography.  

PubMed

The feasibility of K-edge imaging using energy-resolved, photon-counting transmission measurements in X-ray computed tomography (CT) has been demonstrated by simulations and experiments. The method is based on probing the discontinuities of the attenuation coefficient of heavy elements above and below the K-edge energy by using energy-sensitive, photon counting X-ray detectors. In this paper, we investigate the dependence of the sensitivity of K-edge imaging on the atomic number Z of the contrast material, on the object diameter D , on the spectral response of the X-ray detector and on the X-ray tube voltage. We assume a photon-counting detector equipped with six adjustable energy thresholds. Physical effects leading to a degradation of the energy resolution of the detector are taken into account using the concept of a spectral response function R(E,U) for which we assume four different models. As a validation of our analytical considerations and in order to investigate the influence of elliptically shaped phantoms, we provide CT simulations of an anthropomorphic Forbild-Abdomen phantom containing a gold-contrast agent. The dependence on the values of the energy thresholds is taken into account by optimizing the achievable signal-to-noise ratios (SNR) with respect to the threshold values. We find that for a given X-ray spectrum and object size the SNR in the heavy element's basis material image peaks for a certain atomic number Z. The dependence of the SNR in the high- Z basis-material image on the object diameter is the natural, exponential decrease with particularly deteriorating effects in the case where the attenuation from the object itself causes a total signal loss below the K-edge. The influence of the energy-response of the detector is very important. We observed that the optimal SNR values obtained with an ideal detector and with a CdTe pixel detector whose response, showing significant tailing, has been determined at a synchrotron differ by factors of about two to three. The potentially very important impact of scattered X-ray radiation and pulse pile-up occurring at high photon rates on the sensitivity of the technique is qualitatively discussed. PMID:21507770

Roessl, Ewald; Brendel, Bernhard; Engel, Klaus-Jürgen; Schlomka, Jens-Peter; Thran, Axel; Proksa, Roland

2011-09-01

185

Auger Electrons via K? X-Ray Lines of Platinum Compounds for Nanotechnological Applications  

NASA Astrophysics Data System (ADS)

We will report study on the K? X-ray lines of platinum. Pt compounds, such as cisplatin, are common in biomedical applications. The active element Pt can emit or absorb hard X-rays. We have obtained the photoionization cross sections from the oscillator strengths of 1s-2p (K?) transitions in Pt ions. We find that these transitions appear as resonances in photoionization in the hard X-ray energy range of 64 - 71 keV (0.18 - 0.17 Å) below the K-shell ionization and with a strength orders of magnitude higher compared to that at the K-shell ionization. This is the focus of our study for possible initiation of an emission cascade of Auger electrons at the resonant energy. We will present the oscillator strengths and attenuation coefficients per unit mass for all the K? transitions in the event platinum cascades through various, namely from fluorine-like to hydrogen like, ionic states. The study is motivated by uur proposed method, Resonant Theranosticsb,C (RT) for biomedical appliations, which aims to find narrow band X-ray energy that corresponds to resonant photo-absorption and leads to emission of Auger electrons. As the next step of the RT method we will also report on experimental results on producing monochromatic X-rays, targeted to the resonant energy, from the wide band Bremstruhlung radiation of a conventional X-ray source. Partially support: DOE, Computational Facility: Ohio Supercomputer Center, Columbus, Ohio. "Resonant X-Ray Enhancement of the Auger Effect in High-Z atoms, molecules, and Nanoparticles: Biomedical Applications", A.K. Pradhan, S.N. Nahar, M. Montenegro, Yan Yu, H.L. Zhang, C. Sur, M. Mrozik, R.M. Pitzer, J. of Phys. Chem. A, 113 (2009), 12356. "Monte Carlo Simulations and Atomic Calculations for Auger Processes in Biomedical Nanotheranostics", M. Montenegro, S. N. Nahar, A. K. Pradhan, Ke Huang, Yan Yu, J. of Phys. Chem. A, 113 (2009), 12364.

Nahar, Sultana N.; Lim, Sara; Pradhan, A. K.; Pitzer, R. M.

2011-06-01

186

Single-experiment simultaneous-measurement of elemental mass-attenuation coefficients of hydrogen, carbon and oxygen for 0.123–1.33 MeV gamma rays  

Microsoft Academic Search

As it is inconvenient to use elements like hydrogen, carbon and oxygen in pure forms for measurement of their gamma mass-attenuation coefficients, the measurements are to be done indirectly, by using compounds of the elements or a mixture of them. We give here a simple method of measuring the total mass-attenuation coefficients ?\\/? of the elements in a compound simultaneously

M. T. Teli; R. Nathuram; C. S. Mahajan

2000-01-01

187

Automatic detection of bone fragments in poultry using multi-energy x-rays  

DOEpatents

At least two linear arrays of x-ray detectors are placed below a conveyor belt in a poultry processing plant. Multiple-energy x-ray sources illuminate the poultry and are detected by the detectors. Laser profilometry is used to measure the poultry thickness as the x-ray data is acquired. The detector readout is processed in real time to detect the presence of small highly attenuating fragments in the poultry, i.e., bone, metal, and cartilage.

Gleason, Shaun S [Knoxville, TN; Paulus, Michael J [Knoxville, TN; Mullens, James A [Knoxville, TN

2002-04-09

188

Spectral characterization of 4 MV Bremsstrahlung by attenuation analysis.  

PubMed

The "quality of radiation" for a high energy x-ray beam can be specified by its attenuation curve in a selected material. The inverse Laplace transform of the attenuation curve can be used as an approximate indication of the energy spectrum of the beam. Existing mathematical procedures for this purpose have been evaluated and were found to poorly represent measured transmission data for 4 MV x-rays from a linear accelerator. The transmission data between 1 and 0.002 could be fitted within the experimental uncertainty by expressing the logarithmic transmission as a second order polynomial of attenuator thickness. The inverse Laplace transform them becomes a Gaussian function of the attenuation coefficient. This new version of "attenuation analysis" provides a practical method for specification of the quality of the radiation in this energy range. PMID:6798393

Huang, P H; Kase, K R; Bjärngard, B E

1981-01-01

189

ImaSim, a software tool for basic education of medical x-ray imaging in radiotherapy and radiology  

NASA Astrophysics Data System (ADS)

Introduction: X-ray imaging is an important part of medicine and plays a crucial role in radiotherapy. Education in this field is mostly limited to textbook teaching due to equipment restrictions. A novel simulation tool, ImaSim, for teaching the fundamentals of the x-ray imaging process based on ray-tracing is presented in this work. ImaSim is used interactively via a graphical user interface (GUI). Materials and methods: The software package covers the main x-ray based medical modalities: planar kilo voltage (kV), planar (portal) mega voltage (MV), fan beam computed tomography (CT) and cone beam CT (CBCT) imaging. The user can modify the photon source, object to be imaged and imaging setup with three-dimensional editors. Objects are currently obtained by combining blocks with variable shapes. The imaging of three-dimensional voxelized geometries is currently not implemented, but can be added in a later release. The program follows a ray-tracing approach, ignoring photon scatter in its current implementation. Simulations of a phantom CT scan were generated in ImaSim and were compared to measured data in terms of CT number accuracy. Spatial variations in the photon fluence and mean energy from an x-ray tube caused by the heel effect were estimated from ImaSim and Monte Carlo simulations and compared. Results: In this paper we describe ImaSim and provide two examples of its capabilities. CT numbers were found to agree within 36 Hounsfield Units (HU) for bone, which corresponds to a 2% attenuation coefficient difference. ImaSim reproduced the heel effect reasonably well when compared to Monte Carlo simulations. Discussion: An x-ray imaging simulation tool is made available for teaching and research purposes. ImaSim provides a means to facilitate the teaching of medical x-ray imaging.

Landry, Guillaume; deBlois, François; Verhaegen, Frank

2013-11-01

190

Champlane X-ray Analysis  

NASA Astrophysics Data System (ADS)

We summarize the X-ray analysis results of the Chandra Multiwavelength Plane survey (ChaMPlane), which is to constrain low luminosity accretion source content in the Galaxy using the Chandra archival data and optical and IR follow-up observations. From the Chandra archival data (A01-A06), we have detected more than 12000 point sources over 105 distinct fields (156 observations) covering 8 deg^2 in the Galactic Plane. The source catalog and X-ray results are available through our project website (http://hea-www.cfa.harvard.edu/ChaMPlane/). We highlight some of X-ray analysis findings and outline the future plan. For many X-ray sources with no reliable counterpart from optical or IR observations, X-ray driven source properties are the only hint to the nature of the sources. Therefore, we introduce a quantile-based technique to drive extinction and spectral parameters of each source, which allows to estimate the flux and distance of the source.

Hong, JaeSub; Grindlay, J.; van den Berg, M.; Laycock, S.; Koenig, X.; Zhao, P.; Schlegel, E.

2006-06-01

191

Roentgen's Discovery of the x-ray  

NSDL National Science Digital Library

The text in this site describes how Roentgen's discovered x-rays, how he created the first x-ray image, and how he investigated x-ray properties. Early medical applications are explained. Also, the site contains a link to a small gallery of historical x-ray images.

2013-06-26

192

Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer  

NASA Astrophysics Data System (ADS)

A cataract is a clouding of the lens in the eye that affects vision. Phacoemulsification is the mostly common surgical method for treating cataracts, and determining that the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the use of an ultrasound needle transducer for invasive measurements of ultrasound attenuation coefficient to evaluate the hardness of the cataract lens. A 47 MHz high-frequency needle transducer with a diameter of 0.9 mm was fabricated by a polarized PMN-33%PT single crystal in the present study. The attenuation coefficients at different stages of an artificial porcine cataract lens were measured using the spectral shift approach. The hardness of the cataract lens was also evaluated by mechanical measurement of its elastic properties. The results demonstrated that the ultrasonic attenuation coefficient was increased from 0.048 ± 0.02 to 0.520 ± 0.06 dB mm-1 MHz-1 corresponding to an increase in Young's modulus from 6 ± 0.4 to 96 ± 6.2 kPa as the cataract further developed. In order to evaluate the feasibility of combining needle transducer and phacoemulsification probe for real-time measurement during cataract surgery, the needle transducer was mounted on the phacoemulsification probe for a vibration test. The results indicated that there was no apparent damage to the tip of the needle transducer and the pulse-echo test showed that a good performance in sensitivity was maintained after the vibration test.

Huang, Chih-Chung; Chen, Ruimin; Tsui, Po-Hsiang; Zhou, Qifa; Humayun, Mark S.; Shung, K. Kirk

2009-10-01

193

Cosmic X-ray physics  

NASA Technical Reports Server (NTRS)

The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.

Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

1986-01-01

194

Cooled window for X-rays or charged particles  

DOEpatents

A window is disclosed that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 {micro}m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons. 1 fig.

Logan, C.M.

1996-04-16

195

Cooled window for X-rays or charged particles  

DOEpatents

A window that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 .mu.m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons.

Logan, Clinton M. (Pleasanton, CA)

1996-01-01

196

X-ray exposure sensor and controller  

NASA Technical Reports Server (NTRS)

An exposure controller for x-ray equipment is provided, which comprises a portable and accurate sensor which can be placed adjacent to and directly beneath the area of interest of an x-ray plate, and which measures the amount of exposure received by that area, and turns off the x-ray equipment when the exposure for the particular area of interest on the x-ray plate reaches the value which provides an optimal x-ray plate.

Berdahl, C. Martin (Inventor)

1977-01-01

197

Compact x-ray source and panel  

DOEpatents

A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

Sampayon, Stephen E. (Manteca, CA)

2008-02-12

198

Focused X-ray source  

DOEpatents

Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

1990-08-21

199

Lights, X-rays, oxygen!  

PubMed

Photosystem II uses metal ions to oxidize water to form O2. Two recent papers employ the new technique of serial femtosecond crystallography utilizing X-ray free-electron lasers and nanocrystals to obtain initial structures of intermediate states of photosystem II catalysis at the site of oxygen production. PMID:25126779

Jez, Joseph M; Blankenship, Robert E

2014-08-14

200

Focused X-ray source  

DOEpatents

An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary I. (Sunnyvale, CA); Maccagno, Pierre (Stanford, CA)

1990-01-01

201

Energy determination in industrial X-ray processing facilities  

NASA Astrophysics Data System (ADS)

In industrial irradiation facilities, the determination of maximum photon or electron energy is important for regulated processes, such as food irradiation, and for assurance of treatment reproducibility. With electron beam irradiators, this has been done by measuring the depth-dose distribution in a homogeneous material. For X-ray irradiators, an analogous method has not yet been recommended. This paper describes a procedure suitable for typical industrial irradiation processes, which is based on common practice in the field of therapeutic X-ray treatment. It utilizes a measurement of the slope of the exponential attenuation curve of X-rays in a thick stack of polyethylene plates. Monte Carlo simulations and experimental tests have been performed to verify the suitability and accuracy of the method between 3 MeV and 8 MeV.

Cleland, M. R.; Gregoire, O.; Stichelbaut, F.; Gomola, I.; Galloway, R. A.; Schlecht, J.

2005-12-01

202

Dark-field X-ray imaging of unsaturated water transport in porous materials  

NASA Astrophysics Data System (ADS)

We introduce in this Letter an approach to X-ray imaging of unsaturated water transport in porous materials based upon the intrinsic X-ray scattering produced by the material microstructural heterogeneity at a length scale below the imaging system spatial resolution. The basic principle for image contrast creation consists in a reduction of such scattering by permeation of the porosity by water. The implementation of the approach is based upon X-ray dark-field imaging via Talbot-Lau interferometry. The proof-of-concept is provided by performing laboratory-scale dark-field X-ray radiography of mortar samples during a water capillary uptake experiment. The results suggest that the proposed approach to visualizing unsaturated water transport in porous materials is complementary to neutron and magnetic resonance imaging and alternative to standard X-ray imaging, the latter requiring the use of contrast agents because based upon X-ray attenuation only.

Yang, F.; Prade, F.; Griffa, M.; Jerjen, I.; Di Bella, C.; Herzen, J.; Sarapata, A.; Pfeiffer, F.; Lura, P.

2014-10-01

203

Determination of absorption coefficients in highly scattering media from changes in attenuation and phase  

Microsoft Academic Search

The accurate, quantitative analysis of absorption and scattering properties in tissue is a central problem in biochemical optics, in particular for the determination of hemoglobin and oxyhemoglobin concentrations. Because of light scattering, the absolute concentrations of these chromophores (i.e., the absorption coefficient) cannot easily be inferred. A new method for the estimation of the absorption coefficients in scattering media, based

Matthias Kohl; Russell Watson; Mark Cope

1996-01-01

204

Center for X-Ray Optics, 1986  

SciTech Connect

The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers. (LSP)

Not Available

1987-07-01

205

Recent advances in X-ray photoconductors for direct conversion X-ray image detectors  

Microsoft Academic Search

Recent research on flat panel X-ray image detectors has shown their potential for replacing existing X-ray film\\/screen cassettes and capturing X-ray images electronically, thus enabling the clinical transition to digital radiography. The present work examines the imaging properties of a number of potential X-ray photoconductors for these new X-ray image detectors. The X-ray sensitivity is discussed in terms of the

S. O. Kasap; M. Zahangir Kabir; J. A. Rowlands

2006-01-01

206

The Physics Analysis of a Gas Attenuator with Argon as a Working Gas  

SciTech Connect

A gas attenuator is an important element of the LCLS facility. The attenuator must operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. S. Shen has recently carried out a detailed design study of the attenuator based on the use of nitrogen as a working gas. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues, not the design features.

Ryutov,, D.D.

2010-12-07

207

Microgap x-ray detector  

DOEpatents

An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

1994-01-01

208

Microgap x-ray detector  

DOEpatents

An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

Wuest, C.R.; Bionta, R.M.; Ables, E.

1994-05-03

209

Material separation in x-ray CT with energy resolved photon-counting detectors  

SciTech Connect

Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experiments using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon-counting acquisition) or a 2-D space (for contrast agents using energy resolved photon-counting acquisition and all materials using dual-kVp acquisition) as a measure of the degree of separation. Compared to dual-kVp techniques, an energy resolved detector provided a larger separation and the ability to separate different target materials using measurements acquired in different energy window pairs with a single x-ray exposure. Conclusions: We concluded that x-ray CT with an energy resolved photon-counting detector with more than two energy windows allows the separation of more than two types of materials, e.g., soft-tissue-like, bone-like, and one or more materials with K-edges in the energy range of interest. Separating material types using energy resolved photon-counting detectors has a number of advantages over dual-kVp CT in terms of the degree of separation and the number of materials that can be separated simultaneously.

Wang Xiaolan; Meier, Dirk; Taguchi, Katsuyuki; Wagenaar, Douglas J.; Patt, Bradley E.; Frey, Eric C. [Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287 (United States); Gamma Medica-Ideas (AS), N-1364 Oslo (Norway); Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287 (United States); Gamma Medica-Ideas, Northridge, California 91324 (United States); Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland 21287 (United States)

2011-03-15

210

Producing X-rays at the APS  

SciTech Connect

An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

None

2011-01-01

211

X-ray Photography: Inner Beauty  

NSDL National Science Digital Library

This article from TIME features Nick Veasey, an x-ray photographer who combines art and science through his photographs. The short article explains how Veasey started his work and includes a link to more x-ray photographs.

2009-10-15

212

Computed tomographic x-ray velocimetry (CTXV)  

E-print Network

Computed tomographic x-ray velocimetry (CTXV) Australia n China n India n Italy n Malaysia n South of Engineering have developed a new computed tomographic X-ray velocimetry technique for simultaneous 3D

Albrecht, David

213

Advances in transmission x-ray optics  

SciTech Connect

Recent developments in x-ray optics are reviewed. Specific advances in coded aperture imaging, zone plate lens fabrication, time and space resolved spectroscopy, and CCD x-ray detection are discussed.

Ceglio, N.M.

1983-01-01

214

Spectral analysis of X-ray binaries  

E-print Network

In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

Fridriksson, Joel Karl

2011-01-01

215

Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls  

PubMed Central

For medical applications of ultrasound inside the brain, it is necessary to understand the relationship between the apparent density of skull bone and its corresponding speed of sound and attenuation coefficient. Although there have been previous studies exploring this phenomenon, there is still a need to extend the measurements to cover more of the clinically relevant frequency range. The results of measurements of the longitudinal speed of sound and attenuation coefficient are presented for specimens of human calvaria. The study was performed for the frequencies of 0.27, 0.836, 1.402, 1.965 and 2.525 MHz. Specimens were obtained from fresh cadavers through a protocol with the Division of Anatomy of the University of Toronto. The protocol was approved by the Research Ethics Board of Sunnybrook Health Sciences Centre. The specimens were mounted in polycarbonate supports that were marked for stereoscopic positioning. Computer tomography (CT) scans of the skulls mounted on their supports were performed, and a three-dimensional skull surface was reconstructed. This surface was used to guide a positioning system to ensure the normal sound incidence of an acoustic signal. This signal was produced by a focused device with a diameter of 5 cm and a focal length of 10 cm. Measurements of delay in time of flight were carried out using a needle hydrophone. Measurements of effective transmitted energy were carried out using a radiation force method with a 10 ?g resolution scale. Preliminary functions of speed of sound and attenuation coefficient, both of which are related to apparent density, were established using a multi-layer propagation model that takes into account speed of sound, density and thickness of the layer. An optimization process was executed from a large set of random functions and the best functions were chosen for those ones that closest reproduced the experimental observations. The final functions were obtained after a second pass of the optimization process was executed, but this time using a finite-difference time-difference solution of the Westervelt equation, which is more precise than the multi-layer model but much more time consuming for computation. For six of seven specimens, measurements were carried out on five locations on the calvaria, and for the other specimen three measurements were made. In total, measurements were carried out on 33 locations. Results indicated the presence of dispersion effects and that these effects are different according to the type of bone in the skull (cortical and trabecular). Additionally, both the speed of sound and attenuation showed dependence on the skull density that varied with the frequency. Using the optimal functions and the information of density from the CT scans, the average values (±s.d.) of the speed of sound for cortical bone were estimated to be 2384(±130), 2471(±90), 2504(±120), 2327(±90) and 2053(±40) m s?1 for the frequencies of 270, 836, 1402, 1965 and 2526 kHz, respectively. For trabecular bone, and in the same order of frequency values, the speeds of sound were 2140(±130), 2300(±100), 2219(±200), 2133(±130) and 1937(±40) m s?1, respectively. The average values of the attenuation coefficient for cortical bone were 33(±9), 240(±9) and 307(±30) Np m?1 for the frequencies of 270, 836, and 1402, respectively. For trabecular bone, and in the same order of frequency values, the average values of the attenuation coefficient were 34(±13), 216(±16) and 375(±30) Np m?1, respectively. For frequencies of 1.965 and 2.525 MHz, no measurable radiation force was detected with the setup used. PMID:21149950

Pichardo, Samuel; Sin, Vivian W; Hynynen, Kullervo

2011-01-01

216

Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls  

NASA Astrophysics Data System (ADS)

For medical applications of ultrasound inside the brain, it is necessary to understand the relationship between the apparent density of skull bone and its corresponding speed of sound and attenuation coefficient. Although there have been previous studies exploring this phenomenon, there is still a need to extend the measurements to cover more of the clinically relevant frequency range. The results of measurements of the longitudinal speed of sound and attenuation coefficient are presented for specimens of human calvaria. The study was performed for the frequencies of 0.27, 0.836, 1.402, 1.965 and 2.525 MHz. Specimens were obtained from fresh cadavers through a protocol with the Division of Anatomy of the University of Toronto. The protocol was approved by the Research Ethics Board of Sunnybrook Health Sciences Centre. The specimens were mounted in polycarbonate supports that were marked for stereoscopic positioning. Computer tomography (CT) scans of the skulls mounted on their supports were performed, and a three-dimensional skull surface was reconstructed. This surface was used to guide a positioning system to ensure the normal sound incidence of an acoustic signal. This signal was produced by a focused device with a diameter of 5 cm and a focal length of 10 cm. Measurements of delay in time of flight were carried out using a needle hydrophone. Measurements of effective transmitted energy were carried out using a radiation force method with a 10 µg resolution scale. Preliminary functions of speed of sound and attenuation coefficient, both of which are related to apparent density, were established using a multi-layer propagation model that takes into account speed of sound, density and thickness of the layer. An optimization process was executed from a large set of random functions and the best functions were chosen for those ones that closest reproduced the experimental observations. The final functions were obtained after a second pass of the optimization process was executed, but this time using a finite-difference time-difference solution of the Westervelt equation, which is more precise than the multi-layer model but much more time consuming for computation. For six of seven specimens, measurements were carried out on five locations on the calvaria, and for the other specimen three measurements were made. In total, measurements were carried out on 33 locations. Results indicated the presence of dispersion effects and that these effects are different according to the type of bone in the skull (cortical and trabecular). Additionally, both the speed of sound and attenuation showed dependence on the skull density that varied with the frequency. Using the optimal functions and the information of density from the CT scans, the average values (±s.d.) of the speed of sound for cortical bone were estimated to be 2384(± 130), 2471(± 90), 2504(± 120), 2327(± 90) and 2053(± 40) m s-1 for the frequencies of 270, 836, 1402, 1965 and 2526 kHz, respectively. For trabecular bone, and in the same order of frequency values, the speeds of sound were 2140(± 130), 2300(± 100), 2219(± 200), 2133(± 130) and 1937(± 40) m s-1, respectively. The average values of the attenuation coefficient for cortical bone were 33(± 9), 240(± 9) and 307(± 30) Np m-1 for the frequencies of 270, 836, and 1402, respectively. For trabecular bone, and in the same order of frequency values, the average values of the attenuation coefficient were 34(± 13), 216(± 16) and 375(± 30) Np m-1, respectively. For frequencies of 1.965 and 2.525 MHz, no measurable radiation force was detected with the setup used.

Pichardo, Samuel; Sin, Vivian W.; Hynynen, Kullervo

2011-01-01

217

The Physics of the Gas Attenuator for the Linac Coherent Light Source (LCLS)  

SciTech Connect

A systematic assessment of a variety of physics issues affecting the performance of the LCLS X-ray beam attenuator is presented. Detailed analysis of the gas flow in the gas attenuator and in the apertures is performed. A lot of attention is directed towards the gas ionization and heating by intense X-ray pulses. The role of these phenomena in possible deviations of the attenuation coefficient from its 'dialed in' value is evaluated and found small in most cases. Other sources of systematic and statistical errors are also discussed. The regimes where the errors may reach a few percent correspond to the lower X-ray energies (less than 2 keV) and highest beam intensities. Other effects discussed include chemical interaction of the gas with apertures, shock formation in the transonic flow in the apertures of the attenuator, generation of electromagnetic wakes in the gas, and head-to-tail variation of the attenuation caused by the ionization of gas or solid. Possible experimental tests of the consistency of the physics assumptions used in the concept of the gas attenuator are discussed. Interaction of X-rays with the solid attenuator (that will be used at higher X-ray energies, from 2.5 to 8 keV) is considered and thermo-mechanical effects caused by the beam heating are evaluated. Wave-front distortions induced by non-uniform heating of both the solid and the gas are found to be small. An overall conclusion drawn from the analysis presented is that the attenuator will be a reliable and highly versatile device, provided that some caution is exercised in its use for highest beam intensities at lowest X-ray energies.

Ryutov, D.D.; Bionta, R.M.; Hau-Riege, S.P.; Kishiyama, K.I.; McMahon, D.; Roeben, M.D.; Shen, S.; /LLNL, Livermore; Stefan, P.M.; /SLAC; ,

2011-02-07

218

Phase-sensitive X-ray imager  

DOEpatents

X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

Baker, Kevin Louis

2013-01-08

219

The Electromagnetic Spectrum: X-Rays  

NSDL National Science Digital Library

This site provided by NASA contains an introduction to X-rays and their uses in medicine and astronomy. Descriptions of the first X-ray observations, how they are used to visualize parts of the body, and results from X-ray astronomy are provided. The site contains striking astronomical images made with X-rays. Also provided are links to similar sites on the other electromagnetic spectrum regions.

2006-11-25

220

X-rays from old star clusters  

E-print Network

A brief overview is given of X-ray observations of old clusters. Most X-ray sources in old open clusters are interacting binaries, formed via evolution of a primordial binary, and emitting X-rays because of magnetic activity; however, a sizable fraction of the cluster sources is not well understood, including some of the most luminous ones. Globular clusters appear to contain fewer magnetically active X-ray sources than expected if one scales from old open clusters by mass.

Frank Verbunt

1999-07-15

221

Are X-Rays Safe during Pregnancy?  

MedlinePLUS

... And most of these deformities are minor, like skin tags or an extra finger or toe. Could I have another test instead of an X-ray? You might be able to have an ultrasound exam instead of an X-ray. Ultrasound, which is also called sonography, is the best alternative to an X-ray. ...

222

X-raying clumped stellar winds  

E-print Network

X-ray spectroscopy is a sensitive probe of stellar winds. X-rays originate from optically thin shock-heated plasma deep inside the wind and propagate outwards throughout absorbing cool material. Recent analyses of the line ratios from He-like ions in the X-ray spectra of O-stars highlighted problems with this general paradigm: the measured line ratios of highest ions are consistent with the location of the hottest X-ray emitting plasma very close to the base of the wind, perhaps indicating the presence of a corona, while measurements from lower ions conform with the wind-embedded shock model. Generally, to correctly model the emerging X-ray spectra, a detailed knowledge of the cool wind opacities based on stellar atmosphere models is prerequisite. A nearly grey stellar wind opacity for the X-rays is deduced from the analyses of high-resolution X-ray spectra. This indicates that the stellar winds are strongly clumped. Furthermore, the nearly symmetric shape of X-ray emission line profiles can be explained if the wind clumps are radially compressed. In massive binaries the orbital variations of X-ray emission allow to probe the opacity of the stellar wind; results support the picture of strong wind clumping. In high-mass X-ray binaries, the stochastic X-ray variability and the extend of the stellar-wind part photoionized by X-rays provide further strong evidence that stellar winds consist of dense clumps.

L. M. Oskinova; W. -R. Hamann; A. Feldmeier

2008-06-13

223

Columbia University X-Ray Measurements  

E-print Network

Columbia University X-Ray Measurements of the Levitated Dipole Experiment J. L. Ellsworth, J is stored in the fast electrons. The energy spectrum of the x-ray emission below 740 keV is measured multiple spectra during each shot. The electron temperature is inferred from the x-ray energy. A hard x

224

Grazing incidence parametric X-ray emission  

NASA Astrophysics Data System (ADS)

Parametric X-rays (PXR) from relativistic electrons incident at small angles on a surface of a crystalline target is considered as a method for increasing the X-ray yield. The yield can be increased by grazing incidence electrons than for perpendicular-incidence electrons by minimizing the photoabsorption of the emitted X-rays.

Nasonov, N. N.; Zhukova, P.; Piestrup, M. A.; Park, H.

2006-09-01

225

Center for X-ray Optics, 1988  

SciTech Connect

This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

Not Available

1989-04-01

226

Student X-Ray Fluorescence Experiments  

ERIC Educational Resources Information Center

Describes the experimental arrangement for x-ray analysis of samples which involves the following: the radioisotopic x-ray disk source; a student-built fluorescence chamber; the energy dispersive x-ray detector, linear amplifier and bias supply; and a multichannel pulse height analyzer. (GS)

Fetzer, Homer D.; And Others

1975-01-01

227

X-ray Emission from Massive Stars  

E-print Network

X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore #12;What is the mechanism by which massive stars produce x-rays? New results from the Chandra X the Sun - magnetic activity, x-ray spectra b. Hot stars c. Radiation-driven winds and the Doppler shift d

Cohen, David

228

X-ray Emission from Massive Stars  

E-print Network

X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore College http://astro.swarthmore.edu/~cohen Hot, massive stars are among the brightest objects be related to the production of X-rays on massive stars. If so, massive stars' X-rays are much different than

Cohen, David

229

X-RAY IMAGING MODALITIES FOR NUCLEAR WASTE DRUMS INSPECTION  

Microsoft Academic Search

X-ray imaging is a suitable technique for nuclear waste drums inspection, especially large and highly attenuating ones. It requires an energy source greater than 6MeV and dose rate over 0.1Gy\\/s. Controlling waste drums calls for a multi-level strategy: from systematic and fast controls to specific or detailed examinations. Using a high energy (8MeV) experimental set-up, we have studied and validated

V. Moulin; V. Rebuffel; M. Antonakios; R. Sauze; J. P. Gorius

230

Electron-ion recombination measurements of Fe7+ motivated by active galactic nuclei x-ray  

E-print Network

x-ray absorption features E W Schmidt1, S Schippers1, C Brandau1,4, D Bernhardt1, A M¨uller1, M coefficient. 1. Introduction In recent observations of active galactic nuclei (AGN) with the x-ray telescopes with an open M-shell. Based on atomic structure calculations and photoabsorption modeling Behar et al [2

Savin, Daniel Wolf

231

Rapid determination of multi-elements in thin specimens by X-ray spectrometry  

Microsoft Academic Search

A simple x-ray method for multielement determination in thin specimens ; was developed in which troublesome preparation of the thin film standards is not ; required. The x-ray fluorescence count rate of each element is calibrated by ; calculation with both the count rate of the pure element in saturation thickness ; and the effective mass-absorption coefficient. Corrections for matrix-absorption

H. Tominaga

1974-01-01

232

Quantitative measurement of optical attenuation coefficients of cell lines CNE1, CNE2, and NP69 using optical coherence tomography.  

PubMed

The radiotherapy-related types of nasopharyngeal carcinoma (NPC) have been established, which give the most effective treatment for NPC patients using the individual therapy. To diagnose the types of NPC, we assess the general NPC cell lines CNE1, CNE2 and normal nasopharyngeal cell line NP69 using optical coherence tomography (OCT) in two steps: firstly, the OCT images of the three different types of cell pellets are captured. Secondly, by fitting Beer's law to the averaged A-scans in these OCT datasets, the attenuation coefficients (? t ) of the cells can be extracted. The median attenuation coefficients (interquartile range) of CNE1, CNE2, and NP69 are 5.58 mm(-1) (IQR 5.55 to 5.65 mm(-1)), 5.91 mm(-1) (IQR 5.82 to 5.88 mm(-1)), and 8.96 mm(-1) (IQR 8.80 to 9.47 mm(-1)), respectively. The distinguishable quantitative OCT analysis (by ? t ) shows that the types of NPC could potentially be differentiated in real time and noninvasive. PMID:22618158

Li, Jianghua; Tu, Ziwei; Shen, Zhiyuan; Xia, Yunfei; He, Yonghong; Liu, Songhao; Chen, Changshui

2013-02-01

233

Prospects for in vivo estimation of photon linear attenuation coefficients using postprocessing dual-energy CT imaging on a commercial scanner: Comparison of analytic and polyenergetic statistical reconstruction algorithms  

SciTech Connect

Purpose: Accurate patient-specific photon cross-section information is needed to support more accurate model-based dose calculation for low energy photon-emitting modalities in medicine such as brachytherapy and kilovoltage x-ray imaging procedures. A postprocessing dual-energy CT (pDECT) technique for noninvasivein vivo estimation of photon linear attenuation coefficients has been experimentally implemented on a commercial CT scanner and its accuracy assessed in idealized phantom geometries. Methods: Eight test materials of known composition and density were used to compare pDECT-estimated linear attenuation coefficients to NIST reference values over an energy range from 10 keV to 1 MeV. As statistical image reconstruction (SIR) has been shown to reconstruct images with less random and systematic error than conventional filtered backprojection (FBP), the pDECT technique was implemented with both an in-house polyenergetic SIR algorithm, alternating minimization (AM), as well as a conventional FBP reconstruction algorithm. Improvement from increased spectral separation was also investigated by filtering the high-energy beam with an additional 0.5 mm of tin. The law of propagated uncertainty was employed to assess the sensitivity of the pDECT process to errors in reconstructed images. Results: Mean pDECT-estimated linear attenuation coefficients for the eight test materials agreed within 1% of NIST reference values for energies from 1 MeV down to 30 keV, with mean errors rising to between 3% and 6% at 10 keV, indicating that the method is unbiased when measurement and calibration phantom geometries are matched. Reconstruction with FBP and AM algorithms conferred similar mean pDECT accuracy. However, single-voxel pDECT estimates reconstructed on a 1 × 1 × 3 mm{sup 3} grid are shown to be highly sensitive to reconstructed image uncertainty; in some cases pDECT attenuation coefficient estimates exhibited standard deviations on the order of 20% around the mean. Reconstruction with the statistical AM algorithm led to standard deviations roughly 40% to 60% less than FBP reconstruction. Additional tin filtration of the high energy beam exhibits similar pDECT estimation accuracy as the unfiltered beam, even when scanning with only 25% of the dose. Using the law of propagated uncertainty, low Z materials are found to be more sensitive to image reconstruction errors than high Z materials. Furthermore, it is estimated that reconstructed CT image uncertainty must be limited to less than 0.25% to achieve a target linear-attenuation coefficient estimation uncertainty of 3% at 28 keV. Conclusions: That pDECT supports mean linear attenuation coefficient measurement accuracies of 1% of reference values for energies greater than 30 keV is encouraging. However, the sensitivity of the pDECT measurements to noise and systematic errors in reconstructed CT images warrants further investigation in more complex phantom geometries. The investigated statistical reconstruction algorithm, AM, reduced random measurement uncertainty relative to FBP owing to improved noise performance. These early results also support efforts to increase DE spectral separation, which can further reduce the pDECT sensitivity to measurement uncertainty.

Evans, Joshua D., E-mail: jevans2@mcvh-vcu.edu; Yu, Yaduo; Williamson, Jeffrey F. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)] [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Whiting, Bruce R. [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States)] [Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 (United States); O’Sullivan, Joseph A. [Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130 (United States)] [Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130 (United States); Politte, David G. [Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110 (United States)] [Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri 63110 (United States); Klahr, Paul H. [Philips Healthcare, 595 Miner Rd., Highland Hts., Ohio 44143 (United States)] [Philips Healthcare, 595 Miner Rd., Highland Hts., Ohio 44143 (United States)

2013-12-15

234

Coated x-ray filters  

DOEpatents

A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers. 4 figs.

Steinmeyer, P.A.

1992-11-24

235

Coated x-ray filters  

DOEpatents

A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers.

Steinmeyer, Peter A. (Farmington, NM)

1992-11-24

236

A whole-system approach to x-ray spectroscopy in cargo inspection systems  

SciTech Connect

The bremsstrahlung x-ray spectrum used in high-energy, high-intensity x-ray cargo inspection systems is attenuated and modified by the materials in the cargo in a Z-dependent way. Therefore, spectroscopy of the detected x rays yields information about the Z of the x-rayed cargo material. It has previously been shown that such ZSpectroscopy (Z-SPEC) is possible under certain circumstances. A statistical approach, Z-SCAN (Z-determination by Statistical Count-rate ANalysis), has also been shown to be effective, and it can be used either by itself or in conjunction with Z-SPEC when the x-ray count rate is too high for individual x-ray spectroscopy. Both techniques require fast x-ray detectors and fast digitization electronics. It is desirable (and possible) to combine all techniques, including x-ray imaging of the cargo, in a single detector array, to reduce costs, weight, and overall complexity. In this paper, we take a whole-system approach to x-ray spectroscopy in x-ray cargo inspection systems, and show how the various parts interact with one another. Faster detectors and read-out electronics are beneficial for both techniques. A higher duty-factor x-ray source allows lower instantaneous count rates at the same overall x-ray intensity, improving the range of applicability of Z-SPEC in particular. Using an intensity-modulated advanced x-ray source (IMAXS) allows reducing the x-ray count rate for cargoes with higher transmission, and a stacked-detector approach may help material discrimination for the lowest attenuations. Image processing and segmentation allow derivation of results for entire objects, and subtraction of backgrounds. We discuss R and D performed under a number of different programs, showing progress made in each of the interacting subsystems. We discuss results of studies into faster scintillation detectors, including ZnO, BaF{sub 2} and PbWO{sub 4}, as well as suitable photo-detectors, read-out and digitization electronics. We discuss high-duty-factor linear-accelerator x-ray sources and their associated requirements, and how such sources improve spectroscopic techniques. We further discuss how image processing techniques help in correcting for backgrounds and overlapping materials. In sum, we present an integrated picture of how to optimize a cargo inspection system for x-ray spectroscopy.

Langeveld, Willem G. J.; Gozani, Tsahi; Ryge, Peter; Sinha, Shrabani; Shaw, Tim; Strellis, Dan [Rapiscan Laboratories, Inc. 520 Almanor Ave. Sunnyvale, CA 94085 (United States)

2013-04-19

237

A whole-system approach to x-ray spectroscopy in cargo inspection systems  

NASA Astrophysics Data System (ADS)

The bremsstrahlung x-ray spectrum used in high-energy, high-intensity x-ray cargo inspection systems is attenuated and modified by the materials in the cargo in a Z-dependent way. Therefore, spectroscopy of the detected x rays yields information about the Z of the x-rayed cargo material. It has previously been shown that such ZSpectroscopy (Z-SPEC) is possible under certain circumstances. A statistical approach, Z-SCAN (Z-determination by Statistical Count-rate ANalysis), has also been shown to be effective, and it can be used either by itself or in conjunction with Z-SPEC when the x-ray count rate is too high for individual x-ray spectroscopy. Both techniques require fast x-ray detectors and fast digitization electronics. It is desirable (and possible) to combine all techniques, including x-ray imaging of the cargo, in a single detector array, to reduce costs, weight, and overall complexity. In this paper, we take a whole-system approach to x-ray spectroscopy in x-ray cargo inspection systems, and show how the various parts interact with one another. Faster detectors and read-out electronics are beneficial for both techniques. A higher duty-factor x-ray source allows lower instantaneous count rates at the same overall x-ray intensity, improving the range of applicability of Z-SPEC in particular. Using an intensity-modulated advanced x-ray source (IMAXS) allows reducing the x-ray count rate for cargoes with higher transmission, and a stacked-detector approach may help material discrimination for the lowest attenuations. Image processing and segmentation allow derivation of results for entire objects, and subtraction of backgrounds. We discuss R&D performed under a number of different programs, showing progress made in each of the interacting subsystems. We discuss results of studies into faster scintillation detectors, including ZnO, BaF2 and PbWO4, as well as suitable photo-detectors, read-out and digitization electronics. We discuss high-duty-factor linear-accelerator x-ray sources and their associated requirements, and how such sources improve spectroscopic techniques. We further discuss how image processing techniques help in correcting for backgrounds and overlapping materials. In sum, we present an integrated picture of how to optimize a cargo inspection system for x-ray spectroscopy.

Langeveld, Willem G. J.; Gozani, Tsahi; Ryge, Peter; Sinha, Shrabani; Shaw, Tim; Strellis, Dan

2013-04-01

238

X-ray diodes for laser fusion plasma diagnostics  

SciTech Connect

Photodiodes with x-ray sensitive photocathodes are commonly used as broadband x-ray detectors in fusion plasma diagnostics. We have measured the risetime of the detector system and have measured the quantum efficiency between 1 to 500 A of numerous photocathode materials of practical interest. The materials studied include aluminum, copper, nickel, gold, three forms of carbon, chromium, and cesium iodide. The results of the measurements are compared with Henke's semiempirical model of photoyield. We have studied the effects of long-term cathode aging and use as a plasma diagnostic on cathode quantum efficiency. In addition, we have measured the x-ray mass-absorption coefficient of several ultrasoft x-ray windows in energy regions where data were unavailable. Windows studied were made of aluminum, Formvar, polypropylene, and Kimfoil. Measurements between 1 to 50 A were performed with the Los Alamos Scientific Laboratory's low-energy x-ray calibration facility, and the measurements between 50 to 550 A were performed at the National Bureau of Standard's synchrotron ultraviolet radiation facility.

Day, R.H.; Lee, P.; Saloman, E.B.; Nagel, D.J.

1981-02-01

239

Atmospheric electron x-ray spectrometer  

NASA Technical Reports Server (NTRS)

The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

2002-01-01

240

X-ray Spectroscopy of Cooling Cluster  

SciTech Connect

We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

Peterson, J.R.; /SLAC; Fabian, A.C.; /Cambridge U., Inst. of Astron.

2006-01-17

241

X-ray Anomalous Scattering  

NSDL National Science Digital Library

This University of Washington Web site "is intended to serve both as an introductory tutorial to anomalous scattering and as a general tool for designing experiments based on anomalous scattering." Visitors can find a periodic table and a chart supplying X-ray absorption edge data. Students needing assistance with the concept of anomalous scattering will find the tutorial explaining the interactions of incident photons having relatively high and low energy with scattering electrons very instructive. The site also supplies users with information about Friedel's Law and MAD experiments.

242

Cosmic X-ray physics  

NASA Technical Reports Server (NTRS)

The soft X-ray sky survey data are combined with the results from the UXT sounding rocket payload. Very strong constraints can then be placed on models of the origin of the soft diffuse background. Additional observational constraints force more complicated and realistic models. Significant progress was made in the extraction of more detailed spectral information from the UXT data set. Work was begun on a second generation proportional counter response model. The first flight of the sounding rocket will have a collimator to study the diffuse background.

Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

1987-01-01

243

Fabrication of composite x-ray masks by micromilling  

NASA Astrophysics Data System (ADS)

An important aspect for the development of micromanufactured components and systems is to reduce the time and cost required to reach the prototype stage. At present, this development typically spans several years. Any fabrication approach which would reduce the cost and time-to-prototype would allow for the more rapid development of design concepts and the more rapid evolution of the design cycle. Direct fabrication of masks for X-ray lithography, by mechanical micromilling, is one potential avenue for rapid, lower cost development. The key process requirements for the fabrication of a typical X-ray mask involves the selection of both substrate and absorber materials. The substrate must provide a mechanically stable support for the patterned absorber without introducing excessive attenuation of the X- ray flux that ultimately reaches the resist surface. Frame supported, thin membranes (such as SiC, C, Si3N4, Si) are most often used as well as low atomic number bulk materials (Be). The choice of elemental composition and thickness for the absorber will be largely determined by the resist sensitivity and the X-ray wavelength used. Many process steps are required in order to define the final absorber pattern geometry and will generally involve either additive or subtractive processes. Mechanical micromilling techniques may be used with either a single bulk material which serves the dual role of both substrate and absorber or with a composite structure consisting of a thin gold layer deposited on a thick, low atomic number bulk substrate. Single material masks of aluminum and graphite have been investigated. A composite mask of graphite with a thin layer of sputtered gold has also been investigated. The paper will report on the developmental work for both types of masks and will give results for synchrotron X-ray exposure using these masks. Problems associated with using micromilling as an X- ray mask fabrication method will also be presented.

Coane, Philip J.; Friedrich, Craig R.

1996-09-01

244

Practical energy response estimation of photon counting detectors for spectral X-ray imaging  

NASA Astrophysics Data System (ADS)

Spectral X-ray imaging is a promising technique to drastically improve the diagnostic quality of radiography and computed tomography (CT), since it enables material decomposition and/or identification based on the energy dependency of material-specific X-ray attenuation. Unlike the charge-integration based X-ray detectors, photon counting X-ray detectors (PCXDs) can discriminate the energies of incident X-ray photons and thereby multi-energy images can be obtained in single exposure. However, the measured data are not accurate since the spectra of incident X-rays are distorted according to the energy response function (ERF) of a PCXD. Thus ERF should be properly estimated in advance for accurate spectral imaging. This paper presents a simple method for ERF estimation based on a polychromatic X-ray source that is widely used for medical imaging. The method consists of three steps: source spectra measurement, detector spectra reconstruction, and ERF inverse estimation. Real spectra of an X-ray tube are first measured at all kVs by using an X-ray spectrometer. The corresponding detector spectra are obtained by threshold scans. The ERF is then estimated by solving the inverse problem. Simulations are conducted to demonstrate the concept of the proposed method.

Kang, Dong-Goo; Lee, Jongha; Sung, Younghun; Lee, SeongDeok

2010-04-01

245

Evolution of X-ray astronomy  

NASA Technical Reports Server (NTRS)

The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

Rossj, B.

1981-01-01

246

X ray-to-luminous image conversion in x-ray image converter tubes  

Microsoft Academic Search

Classically-designed X-ray image intensifiers, in which the primary converter of X-ray image (X-ray luminescent screen) is placed inside the vacuum space of the X-ray image intensifier, and the photocathode converting light image into electronic one is in optical contact with the primary converter, have decisively displaced a combined systems -- external X-ray luminescent screen, light-transmission optics, image intensifier -- from

S. V. Kuklev; I. N. Zaidel

1999-01-01

247

Submicron X-ray diffraction  

SciTech Connect

At the Advanced Light Source in Berkeley the authors have instrumented a beam line that is devoted exclusively to x-ray micro diffraction problems. By micro diffraction they mean those classes of problems in Physics and Materials Science that require x-ray beam sizes in the sub-micron range. The instrument is for instance, capable of probing a sub-micron size volume inside micron sized aluminum metal grains buried under a silicon dioxide insulating layer. The resulting Laue pattern is collected on a large area CCD detector and automatically indexed to yield the grain orientation and deviatoric (distortional) strain tensor of this sub-micron volume. A four-crystal monochromator is then inserted into the beam, which allows monochromatic light to illuminate the same part of the sample. Measurement of diffracted photon energy allows for the determination of d spacings. The combination of white and monochromatic beam measurements allow for the determination of the total strain/stress tensor (6 components) inside each sub-micron sized illuminated volume of the sample.

MacDowell, Alastair; Celestre, Richard; Tamura, Nobumichi; Spolenak, Ralph; Valek, Bryan; Brown, Walter; Bravman, John; Padmore, Howard; Batterman, Boris; Patel, Jamshed

2000-08-17

248

X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth  

Microsoft Academic Search

Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth’s stone part and along the carinar process—central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase

S. R. Stock; J. Barss; T. Dahl; A. Veis; J. D. Almer

2002-01-01

249

Resonant X-ray Enhancement of the Auger Effect in High-Z Atoms, Molecules, and Nanoparticles: Potential Biomedical Applications  

NASA Astrophysics Data System (ADS)

It is shown that X-ray absorption can be considerably enhanced at resonant energies corresponding to K-shell excitation into higher shells with electron vacancies following Auger emissions in high-Z elements and compounds employed in biomedical applications. We calculate Auger resonant probabilities and cross sections to obtain total mass attenuation coefficients with resonant cross sections and detailed resonance structures corresponding to K?, K?, K?, K?, and K? complexes lying between 6.4-7.1 keV in iron and 67-80 keV in gold. The basic parameters were computed using the relativistic atomic structure codes and the R-matrix codes. It is found that the average enhancement at resonant energies is up to a factor of 1000 or more for associated K ? L, M, N, O, P transitions. The resonant energies in high-Z elements such as gold are sufficiently high to ensure significant penetration in body tissue, and hence the possibility of achieving X-radiation dose reduction commensurate with resonant enhancements for cancer theranostics using high-Z nanoparticles and molecular radiosensitizing agents embedded in malignant tumors. The in situ deposition of X-ray energy, followed by secondary photon and electron emission, will be localized at the tumor site. We also note the relevance of this work to the development of novel monochromatic or narrow-band X-ray emission sources for medical diagnostics and therapeutics.

Pradhan, Anil K.; Nahar, Sultana N.; Montenegro, Maximiliano; Yu, Yan; Zhang, H. L.; Sur, Chiranjib; Mrozik, Michael; Pitzer, Russell M.

2009-08-01

250

3D investigation of inclusions in diamonds using X-ray micro-tomography  

NASA Astrophysics Data System (ADS)

The study of mineral inclusions in diamonds is providing invaluable insights into the geochemistry, geodynamics and geophysics of the Earth's mantle. Over the last two decades, the identification of different inclusion assemblages allowed to recognize diamonds deriving from the deep upper mantle, the transition zone and even the lower mantle. In such research field the in-situ investigation of inclusions using non-destructive techniques is often essential but still remains a challenging task. In particular, conventional 2D imaging techniques (e.g. SEM) are limited to the investigation of surfaces and the lack of access to the third dimension represents a major limitation when trying to extract quantitative information. Another critical aspect is related to sample preparation (cutting, polishing) which is typically very invasive. Nowadays, X-ray computed micro-tomography (X-?CT) allows to overcome such limitations, enabling the internal microstructure of totally undisturbed samples to be visualized in a three-dimensional (3D) manner at the sub-micrometric scale. The final output of a micro-tomography experiment is a greyvalue 3D map of the variations of the X-ray attenuation coefficient (µ) within the studied object. The high X-ray absorption contrast between diamond (almost transparent to X-rays) and the typical inclusion-forming minerals (olivines, garnets, pyroxenes, oxides and sulphides) makes X-?CT a straightforward method for the 3D visualization of inclusions and for the study of their spatial relationships with the diamond host. In this work we applied microfocus X-?CT to investigate silicate inclusions still trapped in diamonds, in order to obtain in-situ information on their exact position, crystal size, shape and X-ray absorption coefficient (which is related to their composition). We selected diamond samples from different deposits containing mainly olivine and garnet inclusions. The investigated samples derived from the Udachnaya pipe (Siberia, Russia), the Jericho Kimberlite (Slave Craton, Canada) and São Luiz-Juina (Brazil). The information obtained by tomographic experiments were combined with X-ray single-crystal diffraction data (see Nestola et al 2011) in order to identify the inclusion parageneses (peridotitic, eclogitic or websteritic) and to finally determine the origin of the studied diamonds. Our results showed that, by combining X-?CT with X-ray diffraction data, it is possible to exactly determine the 3D position of each inclusion together with their crystal size, even though they cannot be detected by using an optical microscope. In addition, such method could have strong crystallographic implications for inclusions still trapped in diamonds as it enables the application of a reliable numerical absorption correction to the 3D intensity data collections. REF. Nestola, F., Nimis, P., Ziberna, L., Longo, M., Marzoli, A., Harris, J.W., Manghnani, M.H., Fedortchouk, Y. (2011): First crystal-structure determination of olivine in diamond: composition and implications for provenance in the Earth's mantle. Earth Planet. Sci. Lett., 305, 249-255.

Parisatto, M.; Nestola, F.; Artioli, G.; Nimis, P.; Harris, J. W.; Kopylova, M.; Pearson, G. D.

2012-04-01

251

Generation and use of parametric X-rays with an electron linear accelerator  

NASA Astrophysics Data System (ADS)

Parametric X-ray radiation (PXR) at energies from 15 to 30 keV was produced by a 45 MeV electron linear accelerator (LINAC) using a silicon (Si) single crystal. The appropriate conditions for generation of good monochromatic hard X-ray fields by PXR were obtained with the LINAC by theoretical calculations and experiments. The PXR intensity increased approximately linearly with the electron energy in the electron energy range of several tens of MeV. The PXR energy increased linearly with the crystal rotation angle that depended on the reflection plane and the observation angle and did not depend on the electron energy. The obtained counts of PXR increased at large observation angles although the energy decreased. The experiments used Si plates with thicknesses of 200, 300, 400, 500, 530, and 625 ?m. Differences in angular distribution by the thickness of the Si plates were established. The possibility for PXR applications to material research and other fields is discussed. The off angle of the polished (cut) plane of the crystal was accurately determined using the PXR and the attenuation coefficient around the K-shell absorption edge of Zr, Nb and Mo were measured.

Akimoto, Tadashi; Tamura, Masaya; Ikeda, Jiro; Aoki, Yohei; Fujita, Fumiyuki; Sato, Koichi; Honma, Akira; Sawamura, Teruko; Narita, Masakuni; Imai, Kazuaki

2001-02-01

252

Preliminary study of the advantages of X-ray energy selection in CT imaging  

NASA Astrophysics Data System (ADS)

It is well known that a monochromatic X-ray source with an energy optimized for the organ thickness to be imaged could result in a better image quality in transmission radiology. In this paper we present the preliminary investigation for the implementation of this technique in computer tomography (CT) imaging. The detection system is based on a 1 mm thick silicon pixel detector bump bonded to a VLSI read-out, Medipix2. This detector ensures a good detection efficiency (46%) in the used energy range (60 kVp) with a good spatial resolution that arises from a 55 ?m square pixel. The Medipix2 read-out electronics is not only a single photon counting system, but has also the capability of dual-energy threshold, that allows us to detect only photons that are in a chosen energy window. In this paper we present the results obtained in CT imaging of small samples, by selecting various energy windows within a standard X-ray tube spectrum so as to maximize the differentiation between significant attenuation coefficients. This study is preliminary for a future development of a dual-energy CT that could add functional information to the morphological information that is obtained in a CT examination.

Rosso, V.; Belcari, N.; Bisogni, M. G.; Carpentieri, C.; Del Guerra, A.; Delogu, P.; Mettivier, G.; Montesi, M. C.; Panetta, D.; Quattrocchi, M.; Russo, P.; Stefanini, A.

2007-03-01

253

Ultrashort x-ray pulse science  

NASA Astrophysics Data System (ADS)

A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90o Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, we generated ~300 fs, 30 keV (0.4 A) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, we performed time-resolved x-ray diffraction studies of laser-perturbed InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a means of measuring ultrashort x-ray pulse durations. LAPE may also serve as the basis for a gated x-ray detector. The development of the Thomson scattering x-ray source and its application to the study of laser-perturbed InSb represent some of the first steps towards studying ultrafast structural dynamics using ultrashort x-ray pulses. To allow a wider range of applications, sources with higher spectral brightness are required. Schemes to achieve higher spectral brightness are discussed.

Chin, Alan Hap

254

Optimization of the X-ray incidence angle in photoelectron spectrometers  

PubMed Central

The interplay between the angle-dependent X-ray reflectivity, X-ray absorption and the photoelectron attenuation length in the photoelectron emission process determines the optimal X-ray incidence angle that maximizes the photoelectron signal. Calculations in the wide VUV to the hard X-ray energy range show that the optimal angle becomes more grazing with increasing energy, from a few tens of degrees at 50?eV to about one degree at 3.5?keV. This is accompanied by an intensity gain of a few tens of times, as long as the X-ray footprint on the sample stays within the analyzer field of view. This trend is fairly material-independent. The obtained results bear immediate implications for the design of (synchrotron-based) photoelectron spectrometers. PMID:23765292

Strocov, Vladimir N.

2013-01-01

255

Measurements of an optimized beam for x-ray computed mammotomography  

NASA Astrophysics Data System (ADS)

Simulation results from previous studies indicate that a quasi-monochromatic x-ray beam can be produced using a newly developed beam filtration technique. This technique utilizes heavy filtration with novel high Z filter materials having k-edges just above those of CsI, producing a near monochromatic beam with mean energy optimized for detection. The value of a near monochromatic x-ray source for a fully 3D tomography application is the expected improved ability to separate tissues with very small differences in attenuation coefficients for a range of uncompressed breast sizes while maintaining dose levels at or below existing dual view mammography. In this study, we experimentally investigate a set of filter materials (Al, Cu, Ag, Ce, W, and Pb), filter thicknesses (10th, 100th, and 200th VL), and tube potentials (40-80 kVp) using a newly constructed test apparatus. Initial experimental results corroborate simulations and indicate that this approach can improve image quality (SNR) at constant dose. Al, Cu, W, and Pb provide optimal exposure efficiency results at 60 kVp and above. Decreasing relative improvements are observed above 100th VL filter thickness at 78 cm SID. Results are obtained without significant tube heating (except at 40 kVp). In addition, simulations indicate significant reductions in beam hardening. This optimized beam will be incorporated into a novel cone-beam x-ray computed mammotomography sub-system together with an emission tomograph in a dual modality CT/SPECT application specific emission and transmission tomography system for fully 3D uncompressed breast imaging.

McKinley, Randolph L.; Samei, Ehsan; Brzymialkiewicz, Caryl N.; Tornai, Martin P.; Floyd, Carey E., Jr.

2004-05-01

256

Ultrasonic Attenuation and Backscatter Coefficient Estimates of Rodent-Tumor-Mimicking Structures: Comparison of Results among Clinical Scanners  

PubMed Central

In vivo estimations of the frequency-dependent acoustic attenuation (?) and backscatter (?) coefficients using radio frequency (RF) echoes acquired with clinical ultrasound systems must be independent of the data acquisition setup and the estimation procedures. In a recent in vivo assessment of these parameters in rodent mammary tumors, overall agreement was observed among ? and ? estimates using data from four clinical imaging systems. In some cases, particularly in highly attenuating heterogeneous tumors, multi-system variability was observed. This paper compares ? and ? estimates of a well-characterized rodent-tumor-mimicking homogeneous phantom scanned using 7 transducers with the same four clinical imaging systems: a Siemens Acuson S2000, an Ultrasonix RP, a Zonare Z.one, and a VisualSonics Vevo2100. ? and ? estimates of lesion-mimicking spheres in the phantom were independently assessed by three research groups, who analyzed their system’s RF echo signals. Imaging-system-based estimates of ? and ? of both lesion-mimicking spheres were comparable to through-transmission laboratory estimates and to predictions using Faran’s theory, respectively. A few notable variations in results among the clinical systems were observed, but the average and maximum percent difference between ? estimates and laboratory-assessed values was 11% and 29%, respectively. Excluding a single outlier dataset, the average and maximum average difference between ? estimates for the clinical systems and values predicted from scattering theory was 16% and 33%, respectively. These results were an improvement over previous inter-laboratory comparisons of attenuation and backscatter estimates. Although the standardization of our estimation methodologies can be further improved, this study validates our results from previous rodent breast-tumor model studies. PMID:22518954

Nam, Kibo; Rosado-Mendez, Ivan M.; Wirtzfeld, Lauren A.; Pawlicki, Alexander D.; Kumar, Viksit; Madsen, Ernest L.; Ghoshal, Goutam; Lavarello, Roberto J.; Oelze, Michael L.; Bigelow, Timothy A.; Zagzebski, James A.; O'Brien, William D.; Hall, Timothy J.

2012-01-01

257

Near optimal energy selective x-ray imaging system performance with simple detectors  

PubMed Central

Purpose: This article describes a method to achieve near optimal performance with low energy resolution detectors. Tapiovaara and Wagner [Phys. Med. Biol. 30, 519–529 (1985)] showed that an energy selective x-ray system using a broad spectrum source can produce images with a larger signal to noise ratio (SNR) than conventional systems using energy integrating or photon counting detectors. They showed that there is an upper limit to the SNR and that it can be achieved by measuring full spectrum information and then using an optimal energy dependent weighting. Methods: A performance measure is derived by applying statistical detection theory to an abstract vector space of the line integrals of the basis set coefficients of the two function approximation to the x-ray attenuation coefficient. The approach produces optimal results that utilize all the available energy dependent data. The method can be used with any energy selective detector and is applied not only to detectors using pulse height analysis (PHA) but also to a detector that simultaneously measures the total photon number and integrated energy, as discussed by Roessl et al. [Med. Phys. 34, 959–966 (2007)]. A generalization of this detector that improves the performance is introduced. A method is described to compute images with the optimal SNR using projections in a “whitened” vector space transformed so the noise is uncorrelated and has unit variance in both coordinates. Material canceled images with optimal SNR can also be computed by projections in this space. Results: The performance measure is validated by showing that it provides the Tapiovaara–Wagner optimal results for a detector with full energy information and also a conventional detector. The performance with different types of detectors is compared to the ideal SNR as a function of x-ray tube voltage and subject thickness. A detector that combines two bin PHA with a simultaneous measurement of integrated photon energy provides near ideal performance across a wide range of operating conditions. Conclusions: Low energy resolution detectors can be used in energy selective x-ray imaging systems to produce images with near optimal performance. PMID:20229892

Alvarez, Robert E.

2010-01-01

258

Developments of x-ray grating imaging and trying of multiple information fusion  

NASA Astrophysics Data System (ADS)

The present paper reviews the X-ray grating imaging systems at home and abroad from the aspects of technological characterizations and the newest researching focus. First, not only the imaging principles and the frameworks of the typical X-ray grating imaging system based on Talbot-Lau interferometry method, but also the algorithms of retrieving the signals of attenuation, refraction and small-angle scattering are introduced. Second, the system optimizing methods are discussed, which involves mainly the relaxing the requirement of high positioning resolution and strict circumstances for gratings and designing large field of view with high resolution. Third, two and four-dimensional grating-based X-ray imaging techniques are introduced. Moreover, the trends of X-ray grating based imaging technology are discussed, especially the multiple information fusions are tried with attenuation, refraction and scattering obtained synchronously.

Han, Yueping; Li, Ruihong; Jiang, Xiaolei

2014-09-01

259

Industrial X-Ray Imaging  

NASA Technical Reports Server (NTRS)

In 1990, Lewis Research Center jointly sponsored a conference with the U.S. Air Force Wright Laboratory focused on high speed imaging. This conference, and early funding by Lewis Research Center, helped to spur work by Silicon Mountain Design, Inc. to break the performance barriers of imaging speed, resolution, and sensitivity through innovative technology. Later, under a Small Business Innovation Research contract with the Jet Propulsion Laboratory, the company designed a real-time image enhancing camera that yields superb, high quality images in 1/30th of a second while limiting distortion. The result is a rapidly available, enhanced image showing significantly greater detail compared to image processing executed on digital computers. Current applications include radiographic and pathology-based medicine, industrial imaging, x-ray inspection devices, and automated semiconductor inspection equipment.

1997-01-01

260

Diffractive X-Ray Telescopes  

NASA Technical Reports Server (NTRS)

Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

Skinner, Gerald K.

2010-01-01

261

X-rays for medical use  

NASA Astrophysics Data System (ADS)

1995 is the centenary of the discovery of X-rays by the German physicist Wilhelm C Rontgen. In the past hundred years, the new rays have developed from being unknown to finding application in many walks of life, not least in medicine. This is so much so that in common speech the word `x-ray` refers not to a form of radiation but to an X-ray photograph taken for the purposes of diagnosis (as in: `I had an X-ray done to see if my leg was broken`). X-rays are now used routinely, and they are used both for diagnosis and for therapy. This paper will give an outline of the use of X-rays in medicine throughout our present century.

Hessenbruch, A.

1995-11-01

262

Stimulated Electronic X-Ray Raman Scattering  

NASA Astrophysics Data System (ADS)

We demonstrate strong stimulated inelastic x-ray scattering by resonantly exciting a dense gas target of neon with femtosecond, high-intensity x-ray pulses from an x-ray free-electron laser (XFEL). A small number of lower energy XFEL seed photons drive an avalanche of stimulated resonant inelastic x-ray scattering processes that amplify the Raman scattering signal by several orders of magnitude until it reaches saturation. Despite the large overall spectral width, the internal spiky structure of the XFEL spectrum determines the energy resolution of the scattering process in a statistical sense. This is demonstrated by observing a stochastic line shift of the inelastically scattered x-ray radiation. In conjunction with statistical methods, XFELs can be used for stimulated resonant inelastic x-ray scattering, with spectral resolution smaller than the natural width of the core-excited, intermediate state.

Weninger, Clemens; Purvis, Michael; Ryan, Duncan; London, Richard A.; Bozek, John D.; Bostedt, Christoph; Graf, Alexander; Brown, Gregory; Rocca, Jorge J.; Rohringer, Nina

2013-12-01

263

Method for beam hardening correction in quantitative computed X-ray tomography  

NASA Technical Reports Server (NTRS)

Each voxel is assumed to contain exactly two distinct materials, with the volume fraction of each material being iteratively calculated. According to the method, the spectrum of the X-ray beam must be known, and the attenuation spectra of the materials in the object must be known, and be monotonically decreasing with increasing X-ray photon energy. Then, a volume fraction is estimated for the voxel, and the spectrum is iteratively calculated.

Yan, Chye Hwang (Inventor); Whalen, Robert T. (Inventor); Napel, Sandy (Inventor)

2001-01-01

264

Computerized X-ray tomography analysis of sandbox models: Examples of thin-skinned thrust systems  

Microsoft Academic Search

Computerized X-ray tomography applied to analog sandbox experiments performed in a normal gravity field makes possible the analysis of the kinematic evolution, as well as the three-dimensional geometry, of models that simulate tectonic deformations. Most of the plastic or viscous analog materials generally used in a normal gravity field for such models have X-ray attenuations compatible with medical scanner images.

Bernard Colletta; Jean Letouzey; Roberto Pinedo; Jean François Ballard; Pascal Balé

1991-01-01

265

X-ray structure of Centaurus A  

Microsoft Academic Search

Detailed study of the nearby radio galaxy Cen A = NGC 5128 with the imaging detectors on board the Einstein X-ray Observatory reveals X-ray emission associated with several components of the galaxy: the compact nucleus; an X-ray jet pointed toward the NE radio lobes; the ''middle'' NE radio lobe; the disk or dust lane; and diffuse emission extending several arc

E. D. Feigelson; E. J. Schreier; J. P. Delvaille; R. Giacconi; J. E. Grindlay; A. P. Lightman

1981-01-01

266

High speed x-ray beam chopper  

DOEpatents

A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

McPherson, Armon (Oswego, IL); Mills, Dennis M. (Naperville, IL)

2002-01-01

267

Handbook of X-ray Astronomy  

NASA Astrophysics Data System (ADS)

Practical guide to X-ray astronomy for graduate students, professional astronomers and researchers. Presenting X-ray optics, basic detector physics and data analysis. It introduces the reduction and calibration of X-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The appendices provide reference material often required during data analysis. The handbook web page contains figures and tables: http://xrayastronomyhandbook.com/

Arnaud, Keith; Smith, Randall; Siemiginowska, Aneta; Ellis, Richard; Huchra, John; Kahn, Steve; Rieke, George; Stetson, Peter B.

2011-11-01

268

Lobster-Eye X-Ray Astronomy  

SciTech Connect

We report on technical and astrophysical aspects of Lobster-Eye wide-field X-ray telescopes expected to monitor the sky with high sensitivity and angular resolution of order of 1 arcmin. They will contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc.

Hudec, R. [Astronomical Institute, AS CR, 25165 Ondrejov (Czech Republic); Czech Technical University in Prague, Faculty of Electrical Engineering (Czech Republic); Pina, L. [Czech Technical Universiry in Prague, Faculty of Nuclear Science, Prague (Czech Republic); Rigaku Innovative Technologies Europe, Prague (Czech Republic); Marsikova, V.; Inneman, A. [Rigaku Innovative Technologies Europe, Prague (Czech Republic)

2010-07-15

269

Negative affinity X-ray photocathodes  

NASA Technical Reports Server (NTRS)

A new X-ray image intensifier is described. The device should eventually have a quantum efficiency which is an order of magnitude greater than that of presently available high spatial resolution X-ray detectors, such as microchannel plates. The new intesifier is based upon a GaAs crystal photocathode which is activated to achieve negative electron affinity. Details concerning the detector concept are discussed together with the theoretical relations involved, X-ray data, and optical data.

Vanspeybroeck, L.; Kellogg, E.; Murray, S.; Duckett, S.

1974-01-01

270

A Plethora of X-ray Telescopes  

NSDL National Science Digital Library

This explanation describes the observatories we are currently using to study X-rays from space. Chandra, named for Nobel prize winner Subrahmanyan Chandrasekhar, was launched from the space shuttle in 1999. Current X-ray observatories include The Rossi X-ray Timing Explorer (RXTE), named after astronomer Bruno Rossi, and The Advanced Satellite for Cosmology and Astrophysics (ASCA). The site also discusses what observatories we will use in the coming years to explore the structure and evolution of the Universe.

271

X-ray transmissive debris shield  

DOEpatents

A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

Spielman, Rick B. (Albuquerque, NM)

1994-01-01

272

Deriving effective atomic numbers from DECT based on a parameterization of the ratio of high and low linear attenuation coefficients  

NASA Astrophysics Data System (ADS)

Dual energy computed tomography (DECT) can provide simultaneous estimation of relative electron density ?e and effective atomic number Zeff. The ability to obtain these quantities (?e, Zeff) has been shown to benefit selected radiotherapy applications where tissue characterization is required. The conventional analysis method (spectral method) relies on knowledge of the CT scanner photon spectra which may be difficult to obtain accurately. Furthermore an approximate empirical attenuation correction of the photon spectrum through the patient is necessary. We present an alternative approach based on a parameterization of the measured ratio of low and high kVp linear attenuation coefficients for deriving Zeff which does not require the estimation of the CT scanner spectra. In a first approach, the tissue substitute method (TSM), the Rutherford parameterization of the linear attenuation coefficients was employed to derive a relation between Zeff and the ratio of the linear attenuation coefficients measured at the low and high kVp of the CT scanner. A phantom containing 16 tissue mimicking inserts was scanned with a dual source DECT scanner at 80 and 140 kVp. The data from the 16 inserts phantom was used to obtain model parameters for the relation between Zeff and \\mu \\big|_{140kVp}^{80kVp}. The accuracy of the method was evaluated with a second phantom containing 4 tissue mimicking inserts. The TSM was compared to a more complex approach, the reference tissue method (RTM), which requires the derivation of stoichiometric fit parameters. These were derived from the 16 inserts phantom scans and used to calculate CT numbers at 80 and 140 kVp for a set of tabulated reference human tissues. Model parameters for the parameterization of \\mu \\big|_{140\\;kVp}^{80\\;kVp} were estimated for this reference tissue dataset and compared to the results of the TSM. Residuals on Zeff for the reference tissue dataset for both TSM and RTM were compared to those obtained from the spectral method. The tissue substitutes were well fitted by the TSM with R2 = 0.9930. Residuals on Zeff for the phantoms were similar between the TSM and spectral methods for Zeff < 8 while they were improved by the TSM for higher Zeff. The RTM fitted the reference tissue dataset well with R2 = 0.9999. Comparing the Zeff extracted from TSM and the more complex RTM to the known values from the reference tissue dataset yielded errors of up to 0.3 and 0.15 units of Zeff respectively. The parameterization approach yielded standard deviations which were up to 0.3 units of Zeff higher than those observed with the spectral method for Zeff around 7.5. Procedures for the DECT estimation of Zeff removing the need for estimates of the CT scanner spectra have been presented. Both the TSM and the more complex RTM performed better than the spectral method. The RTM yielded the best results for the reference human tissue dataset reducing errors from up to 0.3 to 0.15 units of Zeff compared to the simpler TSM. Both TSM and RTM are simpler to implement than the spectral method which requires estimates of the CT scanner spectra.

Landry, Guillaume; Seco, Joao; Gaudreault, Mathieu; Verhaegen, Frank

2013-10-01

273

Imaging with x-ray lasers  

SciTech Connect

Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 35--300 {Angstrom}. These sources have high peak brightness and are now being utilized for x-ray imaging and plasma interferometry. In this paper we will describe our efforts to probe long scalelength plasmas using Moire deflectrometry and soft x-ray imaging. The progress in the development of short pulse x-ray lasers using a double pulse irradiation technique which incorporates a travelling wave pump will also be presented.

Da Silva, L.B.; Cauble, B.; Frieders, G.; Koch, J.A.; MacGowan, B.J.; Matthews, D.L.; Mrowka, S.; Ress, D.; Trebes, J.E.; Weiland, T.L.

1993-11-01

274

Bent crystal X-ray topography  

NASA Technical Reports Server (NTRS)

A television X-ray topographic camera system was constructed. The system differs from the previous system in that it incorporates the X-ray TV imaging system and has a semi-automatic wafer loading system. Also the X-ray diffraction is in a vertical plane. This feature makes wafer loading easier and makes the system compatible with any commercial X-ray generating system. Topographs and results obtained from a study of the diffraction contrast variation with impurity concentration for both boron implanted and boron diffused silicon are included.

Parker, D. L.

1978-01-01

275

An Imaging X-Ray Polarimetry Mission  

NASA Astrophysics Data System (ADS)

Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful --- yet inexpensive --- dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --- particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

Weisskopf, Martin C.; Bellazzini, R.; Costa, E.; Ramsey, B.; O'Dell, S.; Tennant, A.; Elsner, R.; Pavlov, G.; Matt, G.; Kaspi, V.; Coppi, P.; Wu, K.; Siegmund, O.

2008-03-01

276

The Lunar X-ray Observatory (LXO)  

NASA Technical Reports Server (NTRS)

X-ray emission from charge exchange recombination between the highly ionized solar wind and neutral material i n Earth's magnetosheath has complicated x-ray observations of celestial objects with x-ray observatories including ROSAT, Chandra, XMM-Newton, and Suzaku. However, the charge-exchange emission can also be used as an important diagnostic of the solar-wind interacting with the magnetosheath. Soft x-ray observations from low-earth orbit or even the highly eccentric orbits of Chandra and XMM-Newton are likely superpositions of the celestial object of interest, the true extra-solar soft x-ray background, geospheric charge exchange, and heliospheric charge exchange. We show that with a small x-ray telescope placed either on the moon, in a similar vein as the Apollo ALSOP instruments, or at a stable orbit near L1, we can begin t o disentangle the complicated emission structure in the soft x-ray band. Here we present initial results of a feasibility study recently funded by NASA t o place a small x-ray telescope on the lunar surface. The telescope operates during lunar night to observe charge exchange interactions between the solar wind and magnetospheric neutrals, between the solar wind and the lunar atmosphere, and an unobstructed view of the soft x-ray background without the geospheric component.

Porter, F. Scott

2008-01-01

277

X-rays from supernova 1987A  

NASA Technical Reports Server (NTRS)

Detailed calculations of the development of the X-ray spectrum of 1987A are presented using more realistic models for the supernova composition and density structure provided by Woosley. It is shown how the emergence of the X-ray spectrum depends on the parameters of the model and the nature of its central energy source. It is shown that the soft X-ray spectrum should be dominated by a 6.4 keV Fe K(alpha) emission line that could be observed by a sensitive X-ray telescope.

Xu, Yueming; Sutherland, Peter; Mccray, Richard; Ross, Randy R.

1988-01-01

278

Compound refractive X-ray lens  

DOEpatents

An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

Nygren, David R. (Berkeley, CA); Cahn, Robert (Walnut Creek, CA); Cederstrom, Bjorn (Traellborg, SE); Danielsson, Mats (Stocksund, SE); Vestlund, Jonas (Stockholm, SE)

2000-01-01

279

An Imaging X-Ray Polarimetry Mission  

NASA Technical Reports Server (NTRS)

Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful - yet inexpensive - dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --- particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsiz:e the important physical and astrophysical questions such as mission would address.

Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Tennant, Allyn; Elsner, Ronald; Pavlov, George; Matt, Girogio; Kaspi, Vicky; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

2008-01-01

280

An Imaging X-Ray Polarimetry Mission  

NASA Technical Reports Server (NTRS)

Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

2008-01-01

281

High quality GaN layers grown by hydride vapor phase epitaxy — a high resolution X-ray diffractometry and synchrotron X-ray topography study  

Microsoft Academic Search

GaN films of different thicknesses grown on 6H-SiC (00.1) by hydride vapor-phase epitaxy(HVPE) method were characterized by high resolution X-ray diffractometry and synchrotron X-ray topography. Calculations of thermal stresses gave approximately same results as experimental stress indicating that most of the stress in the film is due to the difference in thermal expansion coefficient between the film and substrate. The

J Chaudhuri; C Ignatiev; S Stepanov; D Tsvetkov; A Cherenkov; V Dmitriev; Z Rek

2000-01-01

282

The Columbia University proton-induced soft x-ray microbeam  

PubMed Central

A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K? 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 ?m × 50 ?m spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced x-rays from this spot project a 50 ?m round x-ray generation spot into the vertical direction. The x-rays are focused to a spot size of 5 ?m in diameter using a Fresnel zone plate. The x-rays have an attenuation length of (1/e length of ~145 ?m) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultra soft x-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments. PMID:21811347

Harken, Andrew D.; Randers-Pehrson, Gerhard; Johnson, Gary W.; Brenner, David J.

2011-01-01

283

Modeling contamination migration on the Chandra X-Ray Observatory  

NASA Technical Reports Server (NTRS)

During its first 5 years of operation, the cold (-60 C) optical blocking filter of the Advanced CCD Imaging Spectrometer (ACIS), on board the Chandra X-ray Observatory, has accumulated a contaminating layer that attenuates the low-energy x rays. To assist in assessing the likelihood of successfully baking off the contaminant, members of the Chandra Team developed contamination-migration simulation software. The simulation follows deposition onto and (temperature-dependent) vaporization from surfaces comprising a geometrical model of the Observatory. A separate thermal analysis, augmented by on-board temperature monitoring, provides temperatures for each surface of the same geometrical model. This paper describes the physical basis for the simulations, the methodologies, and the predicted migration of the contaminant for various bake-out scenarios and assumptions.

O'Dell, Stephen L.; Swartz, Douglas A.; Anderson, Scot K.; Chen, Kenny C.; Giordano, Rino J.; Knollenberg, Perry J.; Morris, Peter A.; Plucinsky, Paul P.; Tice, Neil W.; Tran, Hien

2005-01-01

284

A comfortable procedure for correcting X-ray detector backlight  

NASA Astrophysics Data System (ADS)

A novel approach is suggested to strongly suppress artifacts in radiography and computed tomography caused by the effect of diffuse background signals "backlighting" of 2D X-ray detectors. Depending on the detector geometry the mechanism may be different. Either based on the optical scattering of the fluorescent screen materials into the optical detection devices or Compton or X-ray fluorescence scattering by the detector components. Consequently, these erroneous intensity portions result in locally different violations of Lambert Beer's law in single projections (radiographs) as a function of the detector area coverage and the magnitude of the attenuation. The absorption of multiple metal sheets is investigated by monochromatic synchrotron radiation, thus excluding beam hardening. The proposed correction procedure simply requires the individual subtraction of one and the same fraction of the primary and transmitted mean intensity, as a constant (non-local) scattering mechanism is assumed.

Müller, Bernd R.; Lange, Axel; Hentschel, Manfred P.; Kupsch, Andreas

2013-03-01

285

X-ray imaging using a tunable coherent X-ray source based on parametric X-ray radiation  

NASA Astrophysics Data System (ADS)

A novel X-ray source based on parametric X-ray radiation (PXR) has been employed for X-ray imaging at the Laboratory for Electron Beam Research and Application (LEBRA), Nihon University. Notable features of PXR are tunable energy, monochromaticity with spatial chirp, narrow local bandwidth and spatial coherence. Since the X-ray beam from the PXR system has a large irradiation area with uniform flux density, the PXR-based source is suited for X-ray imaging, especially for application to phase-contrast imaging. Despite the cone-like X-ray beam, diffraction-enhanced imaging (DEI) can be employed as a phase contrast imaging technique. DEI experiments were performed using 14- to 34-keV X-rays and the phase-gradient images were obtained. The results demonstrated the capability of PXR as an X-ray source for phase-contrast imaging with a large irradiation field attributed to the cone-beam effect. Given the significant properties of the LEBRA-PXR source, the result suggests the possible construction of a compact linac-driven PXR-Imaging instrument and its application to medical diagnoses.

Hayakawa, Y.; Takahashi, Y.; Kuwada, T.; Sakae, T.; Tanaka, T.; Nakao, K.; Nogami, K.; Inagaki, M.; Hayakawa, K.; Sato, I.

2013-08-01

286

Parametric X-ray radiation from polarized electrons  

NASA Astrophysics Data System (ADS)

Characteristics of parametric X-ray radiation (PXR) from polarized charged fermions based on the quantum theory have been investigated. Spin-dependent part of PXR cross-section on spin of the incident particle has been obtained near the K-edge of crystal target. Estimation of coefficient of PXR process asymmetry was made. The comparison with quantum effects in transition radiation has been carried out.

Potylitsyn, A. P.; Serdyutsky, V. A.; Mazunin, A. V.; Strikhanov, M. N.

2001-01-01

287

X-rays from Saturn Pose Puzzles  

NASA Astrophysics Data System (ADS)

The first clear detection of X-rays from the giant, gaseous planet Saturn has been made with NASA's Chandra X-ray Observatory. Chandra's image shows that the X-rays are concentrated near Saturn's equator, a surprising result since Jupiter's X-ray emission is mainly concentrated near the poles. Existing theories cannot easily explain the intensity or distribution of Saturn's X-rays. Chandra observed Saturn for about 20 hours in April of 2003. The spectrum, or distribution with energy of the X-rays, was found to be very similar to that of X-rays from the Sun. "This indicates that Saturn's X-ray emission is due to the scattering of solar X-rays by Saturn's atmosphere," said Jan-Uwe Ness, of the University of Hamburg in Germany and lead author of a paper discussing the Saturn results in an upcoming issue of Astronomy & Astrophysics. "It's a puzzle, since the intensity of Saturn's X-rays requires that Saturn reflects X-rays fifty times more efficiently than the Moon." The observed 90 megawatts of X-ray power from Saturn's equatorial region is roughly consistent with previous observations of the X-radiation from Jupiter's equatorial region. This suggests that both giant, gaseous planets reflect solar X-rays at unexpectedly high rates. Further observations of Jupiter will be needed to test this possibility. The weak X-radiation from Saturn's south-polar region presents another puzzle (the north pole was blocked by Saturn's rings during this observation). Saturn's magnetic field, like that of Jupiter, is strongest near the poles. X-radiation from Jupiter is brightest at the poles because of auroral activity due to the enhanced interaction of high-energy particles from the Sun with its magnetic field. Since spectacular ultraviolet polar auroras have been observed to occur on Saturn, Ness and colleagues expected that Saturn's south pole might be bright in X-rays. It is not clear whether the auroral mechanism does not produce X-rays on Saturn, or for some reason concentrates the X-rays at the north pole. "Another interesting result of the observation is that Saturn's rings were not detected in X-rays," noted Scott Wolk of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, a coauthor of the paper. "This requires Saturn's rings to be less efficient at scattering X-rays than the planet itself." The same team detected X-radiation from Saturn using the European Space Agency's XMM-Newton Observatory. Although these observations could not locate the X-rays on Saturn's disk, the intensity of the observed X-rays was very similar to what was found with Chandra and consistent with a marginal detection of X-rays from Saturn reported in 2000 using the German Roentgensatellite (ROSAT). The research team, which used Chandra's ACIS instrument to observed Saturn, also included J. Schmitt (Univ. of Hamburg) as well as Konrad Dennerl and Vadim Burwitz (Max Planck Institute, Garching Germany). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

2004-03-01

288

X-Ray Multilayer Database from the LBL Center for X-Ray Optics (CXRO)  

DOE Data Explorer

An important activity of the Center for X-ray Optics (CXRO) is research on x-ray mirrors and their use in optical devices to focus and deflect x-ray beams. The two kinds of mirrors most widely used are glancing incidence reflectors and multilayer coatings. The X-Ray Multilayer Database is based on the results of surveys taken at the biennial Physics of X-Ray Multilayer Structures conferences. It contains measured x-ray reflectances reported for various multilayers. The database is provided as a service to the x-ray and multilayer research communities and is intended to reflect the state-of-the-art in multilayer x-ray mirrors. (Specialized Interface)

289

X-ray spectroscopy of neutron star low-mass X-ray binaries  

E-print Network

In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

Krauss, Miriam Ilana

2007-01-01

290

Soft x-ray shock loading and momentum coupling in meteorite and planetary materials.  

SciTech Connect

X-ray momentum coupling coefficients, C{sub M}, were determined by measuring stress waveforms in planetary materials subjected to impulsive radiation loading from the Sandia National Laboratories Z-machine. Results from the velocity interferometry (VISAR) diagnostic provided limited equation-of-state data as well. Targets were iron and stone meteorites, magnesium rich olivine (dunite) solid and powder ({approx}5--300 {mu}m), and Si, Al, and Fe calibration targets. All samples were {approx}1 mm thick and, except for Si, backed by LiF single-crystal windows. The x-ray spectrum included a combination of thermal radiation (blackbody 170--237 eV) and line emissions from the pinch material (Cu, Ni, Al, or stainless steel). Target fluences 0.4--1.7 kJ/cm{sup 2} at intensities 43--260 GW/cm{sup 2} produced front surface plasma pressures 2.6--12.4 GPa. Stress waves driven into the samples were attenuating due to the short ({approx}5 ns) duration of the drive pulse. Attenuating wave impulse is constant allowing accurate C{sub M} measurements provided mechanical impedance mismatch between samples and the window are known. Impedance-corrected C{sub M} determined from rear-surface motion was 1.9--3.1 x 10{sup -5} s/m for stony meteorites, 2.7 and 0.5 x 10{sup -5} s/m for solid and powdered dunite, 0.8--1.4 x 10{sup -5}.

Lawrence, R. Jeffery; Remo, John L. (Harvard University, Cambridge, MA); Furnish, Michael David

2010-12-01

291

The X-ray energy response of silicon (B): Measurements  

NASA Astrophysics Data System (ADS)

In this, the second part of a detailed study of the interaction of soft X-rays with silicon, we summarise the results of a large number of experiments on charge coupled devices (CCDs), carried out both in our laboratory and at the Daresbury Synchrotron Radiation Source (SRS). Measurements of the energy variation of the W parameter and of the Fano factor F are in substantial agreement with the predictions of the model developed in Part (A) of the study [G.W. Fraser et al., Nucl. Instr. and Meth. A 350 (1994) 368]. The consequences of using a Gaussian pulse height distribution model in the experimental determination of F are discussed. Variations in X-ray event morphology (i.e. the frequency distribution of single-, two-, three-pixel events) across the silicon K edge are described. Measurements of CCD quantum detection efficiency Q (counts/photon) showing XAFS (X-ray absorption fine structure) modulation in the vicinity of the Si K edge are compared with calculations based upon new, experimentally-determined linear absorption coefficients for Si, SiO 2 and Si 3N 4. Finally, the X-ray photoyield from silicon is described, both experimentally and theoretically.

Owens, A.; Fraser, G. W.; Abbey, A. F.; Holland, A.; McCarthy, K.; Keay, A.; Wells, A.

1996-02-01

292

Novel space communication technology based on modulated x-ray source  

NASA Astrophysics Data System (ADS)

A novel space communication method is presented in this paper based on X-ray photons. As a result of its short wavelength and great penetrability, X-ray has no attenuation for transmission in space when its photon energy is more than 10keV (?<0.1nm). Thus a communication technology of long distance signal transmission in space can be achieved with smaller volume, lower weight and lower power. Therefore, X-ray communication (XCOM) is especially valuable to the deep space missions, which will be able to realize higher data rates, smaller SWAP than with RF and laser communications. Using X-ray photons as information carrier will not only be a good complement to laser and RF communications, but will also have unique applications when RF and laser signals are not available like the spacecraft's re-entering to the earth. High-speed modulation and high-sensitivity detection of X-rays are two major technical issues which should be addressed in order for the X-ray communication to take place. A Grid-controlled Modulated X-ray tube (GMXT) is proposed and developed as X-ray transmitter. One or more specially designed grid electrodes are added to the traditional X-ray tube to modulate the electrons. The communication signal is coded and applied to the modulated grid electrode, and then the corresponding X-ray signals are generated and sent out. X-ray detector based on micro-channel plate(MCP) is used as communication receiver because of its high temporal resolution. An audio communication experiment system based on XCOM is setup in laboratory including the X-ray transmitter and the receiver. X-ray communication is successfully demonstrated and the communication speed reaches 64 kilobits per second in a vacuum tube of 6 meters long. As a new concept of space communication, X-ray communication will have more important scientific significance and application prospects when technologies for X-ray modulation and detection are further developed.

Sheng, Li-zhi; Zhao, Bao-sheng; Liu, Yong-an

2014-09-01

293

A search for X-ray polarization in cosmic X-ray sources  

SciTech Connect

Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

Hughes, J.P.; Long, K.S.; Novick, R.

1983-02-01

294

SMM X-ray polychromator  

NASA Technical Reports Server (NTRS)

The range of observing and analysis programs accomplished with the X-Ray Polychromator (XRP) instruments during the decline of solar cycle 21 and the rise of the solar cycle 22 is summarized. Section 2 describes XRP operations and current status. This is meant as a guide on how the instrument is used to obtain data and what its capabilities are for potential users. The science section contains a series of representative abstracts from recently published papers on major XRP science topics. It is not meant to be a complete list but illustrates the type of science that can come from the analysis of the XRP data. There then follows a series of appendixes that summarize the major data bases that are available. Appendix A is a complete bibliography of papers and presentations produced using XRP data. Appendix B lists all the spectroscopic data accumulated by the Flat Crystal Spectrometer (FCS). Appendix C is a compilation of the XRP flare catalogue for events equivalent to a GOES C-level flare or greater. It lists the start, peak and end times as well as the peak Ca XIX flux.

Strong, Keith T.; Haisch, Bernhard M. (compiler); Lemen, James R. (compiler); Acton, L. W.; Bawa, H. S.; Claflin, E. S.; Freeland, S. L.; Slater, G. L.; Kemp, D. L.; Linford, G. A.

1988-01-01

295

SN X-ray Progenitor?  

NASA Technical Reports Server (NTRS)

Identifying stars that explode, right before they explode, is a tricky proposition since the end of starlife comes swiftly: in thermonuclear deflagrations, in nuclear exhaustion, or maybe in a rapid swirling merger of two dead stellar cores. On the right in the image above is an image of the galaxy NGC 1404 taken by the UV/optical Telescope (UVOT) on the Swift observatory. The circle surrounds SN 2007on, a supernova of Type Ia produced by the explosion of a white dwarf star in a binary system. These types of supernovae are important since they are believed to be 'standard candles', events which have the same intrinsic brightness which can serve as an important yardstick to measure cosmic distances. On the left is an image of the same galaxy taken by the Chandra X-ray observatory four years before the supernova. Conspicuous in the SN source circle is a bright source in the Chandra image, believed to be emission from a compact object+normal star companion: a similar system to the supposed precursor of SN 2007on. If true this would be the first time a Type Ia supernova precursor has ever been seen. But astronomers are still debating whether the Chandra source really is the precursor or not; it seems there's a slight but significant difference in the location of the Chandra source and the supernova. Stay tuned for more developments.

2008-01-01

296

X-ray satellite (Rosat)  

NASA Technical Reports Server (NTRS)

An overview of the current status of the ROSAT X-Ray satellite project is given. Areas discussed include an overview of problem areas, systems and mechanical subsystems, the electrical subsystem, power supply, data processing and transmission, the wide field camera, ground support equipment and the production scheduling. It is shown that the project is proceeding according to schedule, including the hardware production and costs. However, it is stated that estimated additional costs will exceed the plan. The previous schedule for production of the flight model will no longer be met. A modified milestone plan has been worked out with Dornier Systems. The current working schedule calls for a launch data of December 21, 1987; however, this does not take into account a 4-week buffer prior to transporting the flight model to the launch site. As of the date of this report, milestone M5 has been met. Previous problems with the gold vapor deposition on the flight model mirror due to contamination have been eliminated.

1986-01-01

297

Synchrotron X-ray Microtomography of Extraterrestrial Samples  

NASA Astrophysics Data System (ADS)

X-ray computed microtomography allows 3D analysis of the density structure of small samples, prior to sectioning. This is particularly useful for rare samples such as carbonaceous chondrites and their components, Martian meteorites, and samples returned by space missions. The Advanced Photon Source provides high-brightness x-rays yielding high quality images at resolutions of 1 to 20 microns per volume element (voxel) edge. Advances in the last year at APS-GeoCARS allow much faster imaging, sharper contrast, and reduced noise. Results are 12-bit grayscale values for x-ray attenuation at each voxel, suitable for image analysis, or display as movies. In chondritic meteorites, components of interest can be located in whole rock samples; melilite can be distinguished from pyroxene in Ca-Al-rich inclusions (CAIs); void spaces can be characterized prior to sectioning; metal grain locations and abundances can be accurately assessed; and size, shape and frequency statistics for chondrules determined. Crystal core-rim relations in Martian cumulates can be resolved due to FeO zoning. Potential melt-inclusion-bearing phenocrysts can be efficiently located in lunar fire-fountain glass spherules. Aerogel analogs to Stardust mission tiles (20mm x 40mm x 30mm deep) impacted by dust can be searched using tomography, before destructive cutting. Because the field of view for a typical CCD does not allow high-resolution imaging of a whole sample, we have developed and tested a new 'lambda tomography' technique to image sequential adjacent volumes, with rotation centers on a close-packed grid. Combining volumes, and whole-volume analysis are computationally challenging, given the ca. 500MB size of a single data volume. Calculated sample heating is negligible even for multiple scans of aerogel with very low thermal conductivity. Rotation of a large portion of low-attenuation aerogel tile outside the field of view has little effect on reconstruction of the voxel x-ray attenuation in the field. We have also applied 'lambda tomography' with success to adjacent rotation centers in meteorite (rock) samples, where sample density limits absolute size in the x-ray beam.

Ebel, D. S.; Rivers, M. L.

2006-05-01

298

Cluster research with x ray observations  

NASA Technical Reports Server (NTRS)

Past x ray surveys have shown that clusters of galaxies contain hot gas. Observations of this hot gas yield measurements of the fundamental properties of clusters. Results from a recent study of the x ray luminosity function of local Abell clusters are described. Future surveys are discussed and the potential for studying the evolution of clusters is analyzed.

Giacconi, Riccardo; Burg, Richard

1991-01-01

299

X-Ray Exam: Scoliosis (For Parents)  

MedlinePLUS

What It Is A scoliosis X-ray is a relatively safe and painless test that uses a small amount of radiation to create detailed images of the spine. During the examination, an X-ray machine sends a beam of radiation through ...

300

Phased Contrast X-Ray Imaging  

ScienceCinema

The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

Erin Miller

2012-12-31

301

X-ray spectroscopy of magnetic CVs  

NASA Astrophysics Data System (ADS)

I discuss two topics in X-ray spectroscopy of magnetic CVs: reflection from the white dwarf surface, and opacity effects in the post shock plasma. I also briefly mention future observational perspectives, with particular emphasis on the Constellation X-ray mission.

Matt, Giorgio

302

Device for detecting x-ray radiation  

Microsoft Academic Search

X rays detection devices, either for dose metering purposes or for display purposes are described. The device in accordance with the invention comprises a thin plate of ferroelectric material upon the faces of which electrical charges are deposited. X ray radiation produces an increase in the conductivity of the material and, consequently, modulation of the distribution of the charges. Determination

C. Mayeux; F. Micheron; J. P. Vasseur

1977-01-01

303

X-rays from intermediate mass stars  

NASA Astrophysics Data System (ADS)

I will review the X-ray properties of intermediate mass stars and discuss possible X-ray generating mechanisms. Main-sequence stars of spectral type mid B to mid A neither drive sufficiently strong winds to produce shock generated X-rays, nor possess an outer convection zone to generate dynamo driven magnetic activity and coronae. Consequently they should be virtually X-ray dark and occasionally detected X-ray emission was usually attributed to undetected low-mass companions. However, in magnetic intermediate mass stars, the Ap/Bp stars, a different X-ray production mechanism may operate. It is termed the magnetically channeled wind-shock model, where the stellar wind from both hemispheres is channelled towards the equatorial plane, collides and forms a rigidly rotating disk around the star. The strong shocks of the nearly head-on wind collision as well as the existence of magnetically confined plasma in a dynamic circumstellar disk can lead to diverse X-ray phenomena. In this sense Ap/Bp stars bridge the 'classical' X-ray regimes of cool and hot stars.

Robrade, Jan

304

Film - The versatile X-ray detector  

Microsoft Academic Search

A survey of films used for X-ray spectroscopy is presented, noting the historical evolution of the technique. The disadvantages of using film for X-ray spectroscopy are identified as the fact that film does not yield an immediate response and that it has been difficult to relate density to intensity quantitatively. However, it is noted that film offers excellent spatial resolution

L. S. Birks

1977-01-01

305

VETA-1 x ray detection system  

NASA Technical Reports Server (NTRS)

The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system.

Podgorski, W. A.; Flanagan, Kathy A.; Freeman, Mark D.; Goddard, R. G.; Kellogg, Edwin M.; Norton, T. J.; Ouellette, J. P.; Roy, A. G.; Schwartz, Daniel A.

1992-01-01

306

X-Ray Emissions from Jupiter  

NASA Technical Reports Server (NTRS)

X-ray emissions from Jupiter have been observed for over 20 years. Jovian x-ray emissions are associated with high-latitude aurora and with solar fluorescence and/or an energetic particle source at low-latitudes as identified by past Einstein and ROSAT observations. Enhanced auroral x-rays were also observed to be associated with the impact of Comet Shoemaker-Levy 9. The high-latitude x-ray emissions are best explained by energetic sulfur and oxygen ion precipitation from the Jovian magnetosphere, a suggestion that has been confirmed by recent Chandra ACIS observations. Exciting new information about Jovian x-ray emissions has been made possible with Chandra's High Resolution Camera. We report here for the first time the detection of a forty minute oscillation associated with the Jovian x-ray aurora. With the help of ultraviolet auroral observations from Hubble Space Telescope, we pinpoint the auroral mapping of the x-rays and provide new information on the x-ray source mechanism.

Gladstone, G. R.; Waite, J. H., Jr.; Grodent, D.; Crary, F. J.; Elsner, R. F.; Weisskopf, M. C.; Lewis, W. S.; Jahn, J.-M.; Bhardwaj, A.; Clarke, J. T.; Whitaker, Ann F. (Technical Monitor)

2001-01-01

307

The Zoo of X-ray Pulsars  

E-print Network

I review some recent developments in the field of X-ray pulsars: the discovery of millisecond pulsations in the Low Mass Binary System SAX J1808.4-3658, the large number of transient Be systems discovered in the Magellanic Clouds and the enigmatic class of objects known as Anomalous X-ray Pulsars.

S. Mereghetti

2001-02-01

308

X-Ray Detection Visits the Classroom  

ERIC Educational Resources Information Center

Film has been used to detect x-rays since the early days of their discovery by Rontgen. Although nowadays superseded by other techniques, film still provides a cheap means of x-ray detection, making it attractive in high-school or undergraduate university courses. If some sort of quantitative result is required, the film's optical absorbance or…

Peralta, Luis; Farinha, Ana; Pinto, Ana

2008-01-01

309

X-rays, clumping and wind structures  

NASA Astrophysics Data System (ADS)

X-ray emission is ubiquitous among massive stars. In the last decade, X-ray observations revolutionized our perception of stellar winds but opened a Pandora's box of urgent problems. X-rays penetrating stellar winds suffer mainly continuum absorption, which greatly simplifies the radiative transfer treatment. The small and large scale structures in stellar winds must be accounted for to understand the X-ray emission from massive stars. The analysis of X-ray spectral lines can help to infer the parameters of wind clumping, which is prerequisite for obtaining empirically correct stellar mass-loss rates. The imprint of large scale structures, such as CIRs and equatorial disks, on the X-ray emission is predicted, and new observations are testing theoretical expectations. The X-ray emission from magnetic stars proves to be more diverse than anticipated from the direct application of the magnetically-confined wind model. Many outstanding questions about X-rays from massive stars will be answered when the models and the observations advance.

Oskinova, Lidia; Hamann, Wolf-Rainer; Ignace, Richard; Feldmeier, Achim

2011-01-01

310

Subpicosecond Coherent Manipulation of X-Rays  

SciTech Connect

The Takagi-Taupin theory is synthesized with the eikonal theory in a unified space-time approach, based upon microscopic electromagnetism. It is designed specifically to address x-ray diffraction in crystal structures being modified within down to a few femtosconds. Possible applications in the subpicosecond coherent manipulation of x-rays are given.

Adams, Bernhard W. [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

2004-05-12

311

Carbon nanotubes and fullerites in high-energy and X-ray physics  

NASA Astrophysics Data System (ADS)

It is demonstrated that the unique structures of carbon nanotubes and single-crystals of C60 fullerenes may have applications to X-ray, neutron and high-energy particle physics, based on channeling, Bragg diffraction and coherent radiation. These are reviewed, pointing out the peculiarities and advantages of nanocrystals compared to ordinary crystals. New applications are explored: X-rays and neutron channeling, undulator radiation in periodically bent nanotubes, “channeled” transition radiation. Quantum and classical channeling, channeling in bent nanocrystals, Bragg scattering of X-rays and neutrons, channeling radiation, coherent bremsstrahlung, parametric X-ray and nanotube undulator radiation are particularly studied using both analytical and Monte-Carlo methods. Continuous potentials, electron densities, transverse energy levels, and spectra of various types of coherent radiation are calculated. Large dechanneling lengths of positive particles, bending efficiencies, reflecting coefficients of soft X-rays and PXR yields are predicted. Principles of particle detectors using photo- and secondary electron emissions are discussed.

Artru, X.; Fomin, S. P.; Shul'ga, N. F.; Ispirian, K. A.; Zhevago, N. K.

2005-06-01

312

Handbook Of X-ray Astronomy  

NASA Astrophysics Data System (ADS)

This poster advertises a book to be published in September 2011 by Cambridge University Press. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.

Arnaud, Keith A.; Smith, R. K.; Siemiginowska, A.; Edgar, R. J.; Grant, C. E.; Kuntz, K. D.; Schwartz, D. A.

2011-09-01

313

Hard X-ray astronomy at IAS  

NASA Astrophysics Data System (ADS)

Studies of hard X-ray emission from compact galactic sources and extragalactic objects are reviewed which have been carried out in Italy since 1976. The studies include observations of galactic binary systems and peculiar stars, deep surveys of extragalactic sources, observations of the galactic hard X-ray background, and the monitoring of transient X-ray sources, gamma-ray bursts, and X-ray bursters. Attention is given to early balloon experiments, sounding-rocket flights, later balloon experiments with multiwire spectroscopic proportional counters, equatorial balloon flights in India, and an abortive trans-Atlantic balloon flight from Sicily that was terminated over Spain. Some future programs are discussed, including a deep survey of the hard X-ray sky, deep-space observations of single galactic and extragalactic sources, and the development of an imaging telescope for soft gamma-ray astronomy.

Ubertini, P.

1981-03-01

314

Galactic centre X-ray sources  

E-print Network

We report on a campaign to identify the counterparts to the population of X-ray sources discovered at the centre of our Galaxy by Wang et al.(2002) using Chandra. We have used deep, near infrared images obtained on VLT/ISAAC to identify candidate counterparts as astrometric matches to the X-ray positions. Follow up Ks-band spectroscopic observations of the candidate counterparts are used to search for accretions signatures in the spectrum, namely the Brackett-Gamma emission line (Bandyopadhyay et al.1997). From our small initial sample, it appears that only a small percentage, ~2-3% of the ~1000 X-ray sources are high mass X-ray binaries or wind accreting neutron stars, and that the vast majority will be shown to be canonical low mass X-ray binaries and cataclysmic variables.

Andrew J. Gosling; Reba M. Bandyopadhyay; Katherine M. Blundell

2006-11-06

315

Laboratory-based X-ray phase-contrast imaging technique for material and medical science applications.  

PubMed

In-line X-ray phase-contrast imaging technique is an emerging method for the study of materials such as carbon fibers, carbon composite materials, polymers, etc. Similarly this technique is also well suited for the imaging of soft materials such as tissues, distinguishing between tumor and normal tissue. These represent the class of materials for which X-ray attenuation cross-section is very small. Thus this method promises a far better contrast for low X-ray absorbing substances than the conventional radiography method. We have set up an experimental facility using a combination of X-ray CCD detector and a microfocus X-ray source. This facility is dedicated to micro-imaging experiments such as microtomography and high-resolution phase-contrast experiments. In this paper, the results of X-ray phase-contrast imaging experiments are described. PMID:18313312

Kashyap, Yogesh S; Yadav, P S; Roy, Tushar; Sarkar, P S; Shukla, M; Sinha, Amar

2008-08-01

316

Globular Cluster X-ray Sources  

NASA Astrophysics Data System (ADS)

Globular clusters and X-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed a population of highly luminous (> 10^{36} erg/s) X-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low luminosity (< 10^{33} erg/s) X-ray sources. It was realized early on that the high luminosity sources were low-mass X-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the Galaxy. However, the low luminosity sources proved difficult to classify. Many ideas were put forth -- including low-mass X-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs) -- but secure identifications were scarce. In ROSAT observations of 55 globular clusters, about 25 low-luminosity X-ray sources were found. To date, Chandra has observed over 80 Galactic globular clusters, mainly with ACIS, and these observations have revealed over 1500 X-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogenous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of X-ray sources in a globular cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the X-ray sources and shows them to be excellent tracers of the complicated internal dynamics of globular clusters. The relation between the encounter frequency and the number of X-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters.

Pooley, David

2009-09-01

317

Detection of x ray sources in PROS  

NASA Technical Reports Server (NTRS)

The problem of detecting discrete sources in x-ray images has much in common with the problem of automatic source detection at other wavelengths. In all cases, one searches for positive brightness enhancements exceeding a certain threshold, which appear consistent with what one expects for a point source, in the presence of a (possibly) spatially variable background. Multidimensional point spread functions (e.g., dependent on detector position and photon energy) are also common. At the same time, the problem in x-ray astronomy has some unique aspects. For example, for typical x-ray exposures in current or recent observatories, the number of available pixels far exceeds the number of actual x-ray events, so Poisson, rather than Gaussian statistics apply. Further, extended cosmic x-ray sources are common, and one often desires to detect point sources in the vicinity or even within bright, diffuse x-ray emission. Finally, support structures in x-ray detectors often cast sharp shadows in x-ray images making it necessary to detect sources in a region of rapidly varying exposure. We have developed a source detection package within the IRAF/PROS environment which attempts to deal with some of the problems of x-ray source detection. We have patterned our package after the successful Einstein Observatory x-ray source detection programs. However, we have attempted to improve the flexibility and accessibility of the functions and to provide a graphical front-end for the user. Our philosophy has been to use standard IRAF tasks whenever possible for image manipulation and to separate general functions from mission-specific ones. We will report on the current status of the package and discuss future developments, including simulation tasks, to allow the user to assess detection efficiency and source significance, tasks to determine source intensity, and alternative detection algorithms.

Deponte, J.; Primini, F. A.

1992-01-01

318

Quantification and normalization of x-ray mammograms  

NASA Astrophysics Data System (ADS)

The analysis of (x-ray) mammograms remains qualitative, relying on the judgement of clinicians. We present a novel method to compute a quantitative, normalized measure of tissue radiodensity traversed by the primary beam incident on each pixel of a mammogram, a measure we term the standard attenuation rate (SAR). SAR enables: the estimation of breast density which is linked to cancer risk; direct comparison between images; the full potential of computer aided diagnosis to be utilized; and a basis for digital breast tomosynthesis reconstruction. It does this by removing the effects of the imaging conditions under which the mammogram is acquired. First, the x-ray spectrum incident upon the breast is calculated, and from this, the energy exiting the breast is calculated. The contribution of scattered radiation is calculated and subtracted. The SAR measure is the scaling factor that must be applied to the reference material in order to match the primary attenuation of the breast. Specifically, this is the scaled reference material attenuation which when traversed by an identical beam to that traversing the breast, and when subsequently detected, results in the primary component of the pixel intensity observed in the breast image. We present results using two tissue equivalent phantoms, as well as a sensitivity analysis to detector response changes over time and possible errors in compressed thickness measurement.

Tromans, Christopher E.; Cocker, Mary R.; Brady, Michael, Sir

2012-10-01

319

Gamma Ray Attenuation Coefficient Measurement in Energies 1172 keV and 1332 keV for Neutron Absorbent Saturated Solutions  

SciTech Connect

The compounds, Na{sub 2}B{sub 4}O{sub 7}, H{sub 3}BO{sub 3}, CdCl{sub 2} and NaCl and their solutions, attenuate gamma rays in addition to neutron absorption. These compounds are widely used in shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to saturated solutions of the above four compounds, in energies 1172 keV and 1332 keV have been measured by NaI detector and agree very well with the results obtained by Xcom code. Experiment and computation show that, H{sub 3}BO{sub 3} has the highest gamma ray attenuation coefficient among the aforementioned compounds. (author)

Jalali, Majid [Esfahan Nuclear Technology Center - ENTC (Iran, Islamic Republic of)

2006-07-01

320

Borman effect in resonant diffraction of X-rays  

SciTech Connect

A dynamic theory of resonant diffraction (occurring when the energy of incident radiation is close to the energy of the absorption edge of an element in the composition of a given substance) of synchronous X-rays is developed in the two-wave approximation in the coplanar Laue geometry for large grazing angles in perfect crystals. A sharp decrease in the absorption coefficient in the substance with simultaneously satisfied diffraction conditions (Borman effect) is demonstrated, and the theoretical and first experimental results are compared. The calculations reveal the possibility of applying this approach in analyzing the quadrupole-quadrupole contribution to the absorption coefficient.

Oreshko, A. P., E-mail: ap.oreshko@physics.msu.ru [Moscow State University (Russian Federation)

2013-08-15

321

Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse  

NASA Technical Reports Server (NTRS)

We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

2002-01-01

322

X-ray studies of near-frictionless carbon films.  

SciTech Connect

Carbon-based coatings exhibit many attractive properties that make them good candidates for a wide range of engineering applications. Tribological studies of the films have revealed a close correlation between the chemistry of the hydrocarbon source gases and the coefficients of friction and wear rates of the diamond-like carbon films. Those films grown in source gases with higher hydrogen-to-carbon ratios had much lower coefficients of friction and wear rates than did films derived from source gases with lower hydrogen-to-carbon ratios. The mechanism for this low friction is as yet not properly understood. Ongoing structural characterization of the films at Argonne National Laboratory is gradually revealing this mechanism. Recent studies have included x-ray photoelectron spectroscopy (XPS), near edge x-ray absorption fine structure (NEXAFS) and x-ray reflectivity (XRR). XPS showed {approx}10% oxygen at the surface, which was largely removed after a 1 minute sputter; NEXAFS showed a high sp2:sp3 ratio implying a highly graphitic material; and XRR has given a comprehensive depth profile, with three layers of increasing density as the substrate was approached. The paper discusses the results and correlation with previous friction measurements.

Mehta, N. J.; Roy, S.; Johnson, J. A.; Woodford, J.; Zinovev, A.; Islam, Z.; Erdemir, A.; Sinha, S.; Fenske, G.; Prorok, B.; Energy Technology; Univ. of California; Auburn Univ.

2005-01-01

323

X-ray detectors for astrophysics  

NASA Astrophysics Data System (ADS)

High-energy astrophysics provides a window to the hot and violent universe and the nature of compact objects, including black holes. Detector requirements are driven by the broad-radiation bandwidth of cosmic X-ray sources and also by their wide range of variability. The demands on X-ray cameras are described using science themes related to mass-accreting black holes. Wide-angle X-ray cameras (1-10keV) are needed to define the status of the X-ray sky, since the large majority of black holes in the Galaxy are initially discovered as X-ray transients. Pointed X-ray telescopes are needed with sub-ms time resolution and broad energy sensitivity (e.g. 2-200keV) to investigate accretion physics, relativistic jets, and possible applications for the theory of general relativity. On the other hand, the super-massive black holes in distant galaxies require X-ray focusing cameras with excellent spatial and spectral resolution. Astronomers must capitalize on the advances in detector technology with more efficient methods to adapt detectors to the space environment, while demonstrating the required level of assurances for acceptable risk.

Remillard, Ronald A.

2004-09-01

324

Exploring the X-Ray Universe  

NASA Astrophysics Data System (ADS)

Exploring the X-Ray Universe describes the view of the stars and galaxies that is obtained through X-ray telescopes. X-rays, which are invisible to human sight, are created in the cores of active galaxies, in cataclysmic stellar explosions, and in streams of gas expelled by the Sun and stars. The window on the heavens used by the X-ray astronomers shows the great drama of cosmic violence on the grandest scale.

This account of X-ray astronomy incorporates the latest findings from several observatories operating in space. These include the Einstein Observatory operated by NASA, and the EXOSAT satellite of the European Space Agency. The book covers the entire field, with chapters on stars, supernova remnants, normal and active galaxies, clusters of galaxies, the diffuse X-ray background, and much more. The authors review basic principles, include the necessary historical background, and explain exactly what we know from X-ray observations of the Universe.

Seward, Frederick D.; Charles, Philip A.

1995-11-01

325

Bulk sensitive hard x-ray photoemission electron microscopy.  

PubMed

Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. The high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO3 sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment. PMID:25430117

Patt, M; Wiemann, C; Weber, N; Escher, M; Gloskovskii, A; Drube, W; Merkel, M; Schneider, C M

2014-11-01

326

Quasar X-ray spectra revisited  

NASA Technical Reports Server (NTRS)

A sample of 45 quasars observed by the IPC on the Einstein satellite is used to reexamine the relationship of the soft X-ray energy index with radio properties and the optical Fe II emission. The tendency for radio-loud quasars to have systematically flatter X-ray energy indices than radio-quiet quasars is confirmed with the soft X-ray excess having negligible effect. There is a tendency for the flatness of the X-ray slope to correlate with radio core dominance for radio-loud quasars, suggesting that a component of the X-ray emission is relativistically beamed. For the radio-quiet quasars, the soft X-ray energy indices with a mean of about 1.0 are consistent with the indices found at higher energies, although steeper than those observed for Seyfert 1 galaxies where the reflection model gives a good fit to the data. The correlation of Fe II emission line strength with X-ray energy index is confirmed for radio-quiet quasars using a subset of 18 objects. The radio-loud quasars show no evidence for a correlation. This relation suggests a connection between the ionizing continuum and line emission from the broad emission-line region (BELR) of radio-quiet quasars, but in the opposite sense to that predicted by current photoionization models. The correlations of X-ray slope with radio core dominance and Fe II equivalent width within the radio-loud and radio-quiet subclasses, respectively, imply that the observed wide range of X-ray energy indices is real rather than due to the large measuring uncertainties for individual objects.

Shastri, P.; Wilkes, B. J.; Elvis, M.; Mcdowell, J.

1993-01-01

327

Quasar x-ray spectra revisited  

NASA Technical Reports Server (NTRS)

A sample of 45 quasars observed by the Imaging Proportional Counter (IPC) on the Einstein satellite is used to re-examine the relationship between the soft (0.2-3.5 keV) X-ray energy index and radio-loudness. We found the following: (1) the tendency for radio-loud quasars to have systematically flatter X-ray slopes than radio-quiet quasars (RQQ's) is confirmed with the soft X-ray excess having negligible effect; (2) there is a tendency for the flatness of the X-ray slope to correlate with radio core-dominance for radio-loud quasars, suggesting that a component of the X-ray emission is relativistically beamed; (3) for the RQQ's the soft X-ray slopes, with a mean of approximately 1.0, are consistent with the slopes found at higher energies (2-10 keV) although steeper than those observed for Seyfert 1 galaxies (also 2-10 keV) where the reflection model gives a good fit to the data; (4) the correlation of FeII emission line strength with X-ray energy index is confirmed for radio-quiet quasars using a subset of 18 quasars. The radio-loud quasars show no evidence for a correlation. This relation suggests a connection between the ionizing continuum and the line emission from the broad emission line region (BELR) of radio-quiet quasars, but in the opposite sense to that predicted by current photoionization models; and (5) the correlations of X-ray slope with radio core dominance and FeII equivalent width within the radio-loud and radio-quiet sub-classes respectively imply that the observed wide range of X-ray spectral slopes is real rather than due to the large measuring uncertainties for individual objects.

Shastri, P.; Wilkes, B. J.; Elvis, M.; Mcdowell, J.

1992-01-01

328

Globular cluster x-ray sources  

NASA Astrophysics Data System (ADS)

Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth - low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs) - but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters.

Pooley, David

2010-04-01

329

Globular cluster x-ray sources  

PubMed Central

Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

Pooley, David

2010-01-01

330

X-rays from Hot Stars: Stellar Astronomy Research with  

E-print Network

X-rays from Hot Stars: Stellar Astronomy Research with Swarthmore Students Professor David Cohen and how do the galaxy's most massive, hot, and luminous stars produce x-rays? The first x-ray telescopes unexpectedly discovered ubiquitous and strong x-ray emission from hot stars Einstein X-ray Observatory

Cohen, David

331

Imaging of Poly(?-hydroxy-ester) Scaffolds with X-ray Phase-Contrast Microcomputed Tomography  

PubMed Central

Porous scaffolds based on poly(?-hydroxy-esters) are under investigation in many tissue engineering applications. A biological response to these materials is driven, in part, by their three-dimensional (3D) structure. The ability to evaluate quantitatively the material structure in tissue-engineering applications is important for the continued development of these polymer-based approaches. X-ray imaging techniques based on phase contrast (PC) have shown a tremendous promise for a number of biomedical applications owing to their ability to provide a contrast based on alternative X-ray properties (refraction and scatter) in addition to X-ray absorption. In this research, poly(?-hydroxy-ester) scaffolds were synthesized and imaged by X-ray PC microcomputed tomography. The 3D images depicting the X-ray attenuation and phase-shifting properties were reconstructed from the measurement data. The scaffold structure could be imaged by X-ray PC in both cell culture conditions and within the tissue. The 3D images allowed for quantification of scaffold properties and automatic segmentation of scaffolds from the surrounding hard and soft tissues. These results provide evidence of the significant potential of techniques based on X-ray PC for imaging polymer scaffolds. PMID:22607529

Appel, Alyssa A.; Larson, Jeffery C.; Somo, Sami; Zhong, Zhong; Spicer, Patrick P.; Kasper, F. Kurtis; Garson, Alfred B.; Zysk, Adam M.; Mikos, Antonios G.; Anastasio, Mark A.

2012-01-01

332

Modeling of X-ray transport through polycapillary optics  

NASA Astrophysics Data System (ADS)

Polycapillary optics is highly efficient for focusing X-rays and thermal neutrons. Here we present our studies by modeling and simulating X-ray transport through cylindrical polycapillary optical system using PolyCAD, a ray-tracing original package developed by our group namely, experimental data obtained in various conditions are compared with theoretical predictions; focusing properties of a cylindrical lens have been visualized by collecting 3D images and reconstructed using PolyCAD simulations. The acquired images demonstrated how the focal spot profiles by the intensity and width at different projection distances agree with calculations. We present some characterization methodologies by means of the angular measurements to study several kind of polycapillary optics in order to learn the transmission coefficient and focusing properties, and the CCD images, of the focal spots.

Hampai, D.; Cappuccio, G.; Cibin, G.; Dabagov, S. B.; Sessa, V.

2007-09-01

333

Analyzer-based x-ray phase-contrast microscopy combining channel-cut and asymmetrically cut crystals  

SciTech Connect

An analyzer-based x-ray phase-contrast microscopy (ABM) setup combining a standard analyzer-based x-ray phase-contrast imaging (ABI) setup [nondispersive 4-crystal setup (Bonse-Hart setup)] and diffraction by asymmetrically cut crystals is presented here. An attenuation-contrast microscopy setup with conventional x-ray source and asymmetrically cut crystals is first analyzed. Edge-enhanced effects attributed to phase jumps or refraction/total external reflection on the fiber borders were detected. However, the long exposure times and the possibility to achieve high contrast microscopies by using extremely low attenuation-contrast samples motivated us to assemble the ABM setup using a synchrotron source. This setup was found to be useful for low contrast attenuation samples due to the low exposure time, high contrast, and spatial resolution found. Moreover, thanks to the combination with the nondispersive ABI setup, the diffraction-enhanced x-ray imaging algorithm could be applied.

Hoennicke, M. G.; Cusatis, C. [LORXI, Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19091, 81531-990 Curitiba, Parana (Brazil)

2007-11-15

334

On the Design of Wide-Field X-ray Telescopes  

NASA Technical Reports Server (NTRS)

X-ray telescopes having a relatively wide field-of-view and spatial resolution vs. polar off-axis angle curves much flatter than the parabolic dependence characteristic of Wolter I designs are of great interest for surveys of the X-ray sky and potentially for study of the Sun s X-ray emission. We discuss the various considerations affecting the design of such telescopes, including the possible use of polynomial mirror surface prescriptions, a method of optimizing the polynomial coefficients, scaling laws for mirror segment length vs. intersection radius, the loss of on-axis spatial resolution, and the positioning of focal plane detectors.

Elsner, Ronald F.; O'Dell, Stephen L.; Ramsey, Brian D.; Weiskopf, Martin C.

2009-01-01

335

X-ray streak crystal spectography  

SciTech Connect

We have built an x-ray streaked crystal spectrograph for making time-resolved x-ray spectral measurements. This instrument can access Bragg angles from 11/sup 0/ to 38/sup 0/ and x-ray spectra from 200 eV to greater than 10 keV. We have demonstrated resolving powers, E/..delta..E > 200 at 1 keV and time resolution less than 20 psec. A description of the instrument and an example of the data is given.

Kauffman, R.L.; Brown, T.; Medecki, H.

1983-07-01

336

X-ray quantum efficiencies of CCD's  

NASA Technical Reports Server (NTRS)

The X-ray quantum efficiency of a CCD was still high enough to obtain good X-ray imaging with this device. The range and response of the CCD to incident X-rays in the 5 to 14.1 KeV range were determined experimentally. Knowledge of this range and response allows direct measurement of quantum efficiency. Quantum efficiency decreased monotonically from 82% to 35% in the range studied. Comparison of experimental and theoretical quantum efficiencies allowed a determination of silicon bulk electron diffusion length. For the device studied, the electron diffusion length was 75 micrometers.

Peckerar, M.; Baker, W. D.; Nagel, D. J.

1976-01-01

337

Electromagnetically induced transparency for x-rays.  

SciTech Connect

Electromagnetically induced transparency is predicted for x rays in laser-dressed neon gas. The x-ray photoabsorption cross section and polarizability near the Ne K edge are calculated using an ab initio theory suitable for optical strong-field problems. The laser wavelength is tuned close to the transition between 1s-13s and 1s-13p ({approx}800 nm). The minimum laser intensity required to observe electromagnetically induced transparency is of the order of 1012 W/cm2. The ab initio results are discussed in terms of an exactly solvable three-level model. This work opens new opportunities for research with ultrafast x-ray sources.

Buth, C.; Santra, R.; Young, L.; Chemistry

2007-06-22

338

X-ray sources in globular clusters  

E-print Network

The twelve bright (Lx>10(36) erg/s) X-ray sources in the globular clusters have lower luminosities than the brightest sources in the bulge of our galaxy. The dim (Lx<10(35) erg/s) X-ray sources in globular clusters reach higher luminosities than the cataclysmic variables in the disk of our galaxy. The first difference is a statistical fluke, as comparison with M31 indicates. The second difference is explained because the brightest of the dim sources are not cataclysmic variables, but soft X-ray transients in quiescence. This article describes the BeppoSAX, ROSAT and first Chandra observations leading to these conclusions.

Frank Verbunt

2001-11-22

339

X-ray sources in globular clusters  

E-print Network

Observations with BeppoSAX, RXTE and Chandra suggest that many of the bright X-ray sources in globular clusters have ultrashort binary periods. This is remarkable as such systems are not easily formed. With accurate optical astrometry of HST images, the large numbers of low-luminosity X-ray sources discovered with Chandra can be classified as quiescent low-mass X-ray binaries, pulsars, cataclysmic variables, and magnetically active binaries. The number of cataclysmic variables is found to scale with the number of close stellar encounters.

Frank Verbunt

2004-12-20

340

X-ray scatter tomography using coded apertures  

NASA Astrophysics Data System (ADS)

This work proposes and studies a new field of x-ray tomography which combines the principles of scatter imaging and coded apertures, termed "coded aperture x-ray scatter imaging" (CAXSI). Conventional x-ray tomography reconstructs an object's electron density distribution by measuring a set of line integrals known as the x-ray transform, based physically on the attenuation of incident rays. More recently, scatter imaging has emerged as an alternative to attenuation imaging by measuring radiation from coherent and incoherent scattering. The information-rich scatter signal may be used to infer density as well as molecular structure throughout a volume. Some scatter modalities use collimators at the source and detector, resulting in long scan times due to the low efficiency of scattering mechanisms combined with a high degree of spatial filtering. CAXSI comes to the rescue by employing coded apertures. Coded apertures transmit a larger fraction of the scattered rays than collimators while also imposing structure to the scatter signal. In a coded aperture system each detector is sensitive to multiple ray paths, producing multiplexed measurements. The coding problem is then to design an aperture which enables de-multiplexing to reconstruct the desired physical properties and spatial distribution of the target. In this work, a number of CAXSI systems are proposed, analyzed, and demonstrated. One-dimensional "pencil" beams, two-dimensional "fan" beams, and three-dimensional "cone" beams are considered for the illumination. Pencil beam and fan beam CAXSI systems are demonstrated experimentally. The utility of energy-integrating (scintillation) detectors and energy-sensitive (photon counting) detectors are evaluated theoretically, and new coded aperture designs are presented for each beam geometry. Physical models are developed for each coded aperture system, from which resolution metrics are derived. Systems employing different combinations of beam geometry, coded apertures, and detectors are analyzed by constructing linear measurement operators and comparing their singular value decompositions. Since x-ray measurements are typically dominated by photon "shot" noise, iterative algorithms based on Poisson statistics are used to perform the reconstructions. This dissertation includes previously published and unpublished co-authored material.

MacCabe, Kenneth P.

341

Diffraction-Enhanced Imaging of Musculoskeletal Tissues Using a Conventional X-Ray Tube  

SciTech Connect

DEI based on a conventional x-ray tube allows the visualization of skeletal and soft tissues simultaneously. Although more in-depth testing and optimization of the DEI setup must be carried out, these data demonstrate a proof of principle for further development of the technology for future clinical imaging. In conventional projection radiography, cartilage and other soft tissues do not produce enough radiographic contrast to be distinguishable from each other. Diffraction-enhanced imaging (DEI) uses a monochromatic x-ray beam and a silicon crystal analyzer to produce images in which attenuation contrast is greatly enhanced and x-ray refraction at tissue boundaries can be detected. The aim of this study was to test the efficacy of conventional x-ray tube-based DEI for the detection of soft tissues in experimental samples.

Muehleman, C.; Li, J; Connor, D; Parham, C; Pisano, E; Zhong, Z

2009-01-01

342

Enhanced x-ray detection sensitivity in semiconducting polymer diodes containing metallic nanoparticles  

NASA Astrophysics Data System (ADS)

Semiconducting polymer X-radiation detectors are a completely new family of low-cost radiation detectors with potential application as beam monitors or dosimeters. These detectors are easy to process, mechanically flexible, relatively inexpensive, and able to cover large areas. However, their x-ray photocurrents are typically low as, being composed of elements of low atomic number (Z), they attenuate x-rays weakly. Here, the addition of high-Z nanoparticles is used to increase the x-ray attenuation without sacrificing the attractive properties of the host polymer. Two types of nanoparticles (NPs) are compared: metallic tantalum and electrically insulating bismuth oxide. The detection sensitivity of 5 µm thick semiconducting poly([9,9-dioctylfluorenyl-2,7-diyl]-co-bithiophene) diodes containing tantalum NPs is four times greater than that for the analogous NP-free devices; it is approximately double that of diodes containing an equal volume of bismuth oxide NPs. The x-ray induced photocurrent output of the diodes increases with an increased concentration of NPs. However, contrary to the results of theoretical x-ray attenuation calculations, the experimental current output is higher for the lower-Z tantalum diodes than the bismuth oxide diodes, at the same concentration of NP loading. This result is likely due to the higher tantalum NP electrical conductivity, which increases charge transport through the semiconducting polymer, leading to increased diode conductivity.

Mills, Christopher A.; Al-Otaibi, Hulayel; Intaniwet, Akarin; Shkunov, Maxim; Pani, Silvia; Keddie, Joseph L.; Sellin, Paul J.

2013-07-01

343

Supergiant X-Ray Binaries Observed by Suzaku  

NASA Technical Reports Server (NTRS)

Suzaku observations are presented for the high-mass X-ray binaries IGR 116207-5129 and IGR 117391-3021. For IGR 116207-5129, we provide the first X-ray broadband (0.5-60 keV) spectrum from which we confirm a large intrinsic column density (N(sub H) = 1.6 x 10(exp 23)/sq cm), and we constrain the cutoff energy for the first time (E(sub cut) = 19 keV). A prolonged (> 30 ks) attenuation of the X-ray flux was observed which we tentatively attribute to an eclipse of the probable neutron star by its massive companion, in a binary system with an orbital period between 4 and 9 days, and inclination angles> 50 degrees. For IGRJ17391-3021, we witnessed a transition from quiescence to a low-activity phase punctuated by weak flares whose peak luminosities in the 0.5-10keV band are only a factor of 5 times that of the pre-flare emission. These micro flares are accompanied by an increase in NH which suggests the accretion of obscuring clumps of wind. We now recognize that these low-activity epochs constitute the most common emission phase for this system, and perhaps in other supergiant fast X-ray transients (SFXTs) as well. We close with an overview of our upcoming program in which Suzaku will provide the first ever observation of an SFXT (IGRJ16479-4514) during a binary orbit enabling us to probe the accretion wind at every phase.

Bodaghee, A.; Tomsick, J. A.; Rodriquez, J.; Chaty, S.; Pottschmidt, K.; Walter, R.; Romano, P.

2011-01-01

344

Measurement of piezoelectric constants of lanthanum-gallium tantalate crystal by X-ray diffraction methods  

SciTech Connect

A method for measuring piezoelectric constants of crystals of intermediate systems by X-ray quasi-multiple-wave diffraction is proposed and implemented. This technique makes it possible to determine the piezoelectric coefficient by measuring variations in the lattice parameter under an external electric field. This method has been approved, its potential is evaluated, and a comparison with high-resolution X-ray diffraction data is performed.

Blagov, A. E.; Marchenkov, N. V., E-mail: marchenkov@ns.crys.ras.ru; Pisarevsky, Yu. V.; Prosekov, P. A.; Kovalchuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

2013-01-15

345

Experimental investigation of beam heating in a soft X-ray scanning transmission X-ray microscope  

E-print Network

Experimental investigation of beam heating in a soft X-ray scanning transmission X-ray microscope and an accuracy of �1 C has been fabricated for scanning transmission X-ray microscopes (STXM). Here we describe the current generation of soft X-ray (60­2500 eV) scan- ning transmission X-ray microscopes (STXM) to focus

Hitchcock, Adam P.

346

X-Ray Background Survey Spectrometer (XBSS)  

NASA Technical Reports Server (NTRS)

The objective of this investigation was to perform a spectral survey of the low energy diffuse X-ray background using the X-ray Background Survey Spectrometer (XBSS) on board the Space Station Freedom (SSF). XBSS obtains spectra of the X-ray diffuse background in the 11-24 A and 44-84 A wavelength intervals over the entire sky with 15 deg spatial resolution. These X-rays are almost certainly from a very hot (10(exp 6) K) component of the interstellar medium that is contained in regions occupying a large fraction of the interstellar volume near the Sun. Astrophysical plasmas near 10(exp 6) K are rich in emission lines, and the relative strengths of these lines, besides providing information about the physical conditions of the emitting gas, also provide information about its history and heating mechanisms.

Sanders, W. T. (Principal Investigator); Paulos, R. J.

1996-01-01

347

VETA-I x ray test analysis  

NASA Technical Reports Server (NTRS)

This interim report presents some definitive results from our analysis of the VETA-I x-ray testing data. It also provides a description of the hardware and software used in the conduct of the VETA-I x-ray test program performed at the MSFC x-ray Calibration Facility (XRCF). These test results also serve to supply data and information to include in the TRW final report required by DPD 692, DR XC04. To provide an authoritative compendium of results, we have taken nine papers as published in the SPIE Symposium, 'Grazing Incidence X-ray/EUV Optics for Astronomy and Projection Lithography' and have reproduced them as the content of this report.

Brissenden, R. J. V.; Chartas, G.; Freeman, M. D.; Hughes, J. P.; Kellogg, E. M.; Podgorski, W. A.; Schwartz, D. A.; Zhao, P.

1992-01-01

348

Spectra of cosmic X-ray sources  

NASA Technical Reports Server (NTRS)

X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term "spectroscopy" as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

Holt, S. S.; Mccray, R.

1982-01-01

349

Why Do I Need X-Rays?  

MedlinePLUS

... information you need from the Academy of General Dentistry Saturday, November 01, 2014 About | Contact InfoBites Quick ... Related Articles: X-Rays The Academy of General Dentistry (AGD) Sets the Record Straight on Dental X- ...

350

X-Ray Shawdowgraph Camera Design  

SciTech Connect

An imagining camera that is used with X-Ray radiography systems in high explosive experiments has been built and fielded. The camera uses a 40mm diameter Micro-Channel Plate Itensifier (MCPI) for optical gain and photographic film for image recording. In the normal location of the X-ray film pack, a scintillating screen is placed instead. The camera system views the screen and records the image. The sensitivity of the MCPI to light makes the camera design sensitive to small details that a film pack does not need to consider. The X-ray image recording system was designed and bulit for situations where the film pack of the X-ray shadowgraph is not retrievable after the experiment. The system has been used in a number of experiments.

Edward J. McCrea; Michael J. Doman; Randy A. Rohde

1999-01-01

351

Subnanosecond x-ray framing camera  

SciTech Connect

A subnanosecond x-ray framing camera is described. Experiments conducted at the Rutherford Appleton Laboratory in which the camera was used to observe six beam laser implosions of microballoons with an interframe time of 500 ps are also described.

Finn, N.; Hall, T.A.; McGoldrick, E.

1985-04-15

352

Chandra X-Ray Observatory Center  

NSDL National Science Digital Library

This week, Space Shuttle mission STS-93 deployed the Chandra X-Ray Observatory, the world's most powerful X-Ray telescope. The third of NASA's "Great Observatories," the Chandra X-Ray Observatory will study X-Rays rather than visible light (the Hubble Space Telescope) or gamma rays (the Compton Gamma Ray Observatory). This site offers overviews and news of the Observatory and its mission. Operated for NASA by the Harvard-Smithsonian Center for Astrophysics, this site provides resources for students, scientists, the press, and general users. In the Public Information and Education section, users will find photos, a field guide, and educational materials. The Scientific User Support Section includes detailed target information, various documents, newsletters, and information on the Emission Line Project (ELP). In addition, the site provides breaking mission news, links to live video feeds, telemetry diagrams, and a timeline.

353

X-ray ferromagnetic resonance spectroscopy  

SciTech Connect

We present a method to measure continuous-wave ferromagnetic resonance (FMR) spectra based on the core-level absorption of circularly polarized x rays. The technique is demonstrated by using a monochromatic x-ray beam incident on an yttrium-iron-garnet sample excited by a microwave field at 2.47 GHz. FMR spectra are obtained by monitoring the x-ray absorption intensity at the photon energy corresponding to the maximum of the magnetic circular dichroism effect at the iron L{sub 2,3} edges as a function of applied magnetic field. The x-ray FMR signal is shown to be energy dependent, which makes the technique element sensitive and opens up new possibilities to perform element-resolved FMR in magnetic alloys and multilayers.

Boero, G.; Rusponi, S.; Bencok, P.; Popovic, R.S.; Brune, H.; Gambardella, P. [Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); European Synchrotron Radiation Facility (ESRF), F-38043 Grenoble (France); Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

2005-10-10

354

5.8 X-ray Calorimeters  

NASA Technical Reports Server (NTRS)

X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures, can form the basis of a very high performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous band-passes, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated x-ray calorimeter array, allows true spectral-spatial instruments to be constructed. In this chapter I briefly review the detection scheme, the state-of-the-art in X-ray calorimeter instruments and the future outlook for this technology.

Porter, F. Scott

2008-01-01

355

X-ray observations of stellar flares  

NASA Astrophysics Data System (ADS)

The history of stellar X-ray flare observations prior to the Einstein Observatory is reviewed. X-ray light curves as measured by the IPC are then presented for all time resolved flare events discovered as of July 1982 in the Einstein data set. These light curves are analyzed in terms of solar-like loop models to derive densities, temperatures, loop lengths, magnetic field strength lower limits, etc. The failure of the model to adequately represent the observations in the case of the YZ CMi flares is discussed. The relationship of X-ray to optical emission, and X-ray to UV emission, is considered from both an observational and a theoretical viewpoint. It is concluded that the characterization of a flare by a single, time-averaged ratio, L(x)/L(opt), is not physically significant.

Haisch, B. M.

356

Coherent x-ray lasers for applications  

SciTech Connect

Many of the projected applications of x-ray lasers require high quality output radiation with properties such as short wavelength, high power, good focusability, short pulse, and high degree of coherence. We discuss the requirements of an x-ray laser for the application of holography of biological samples. We present ideas for achieving these properties. Given that population inversions can be established to provide laser gain, we discuss how the propagation and amplification of x-rays within the lasing medium affect the quality of the output radiation. Particular attention is given toward the development of transverse coherence. Results are presented from several methods for calculating the coherence, including a modal analysis and a numerical-wave propagation code. Calculations of the expected degree of coherence of standard x-ray lasers are given, as well as designs for more coherent lasers. 9 refs., 6 figs., 1 tab.

London, R.A.; Amendt, P.; Rosen, M.D.; Feit, M.D.; Fleck, J.A. (Lawrence Livermore National Lab., CA (USA)); Strauss, M. (Negev Nuclear Research Centre, Beersheba (Israel))

1990-12-01

357

X-ray source for mammography  

DOEpatents

An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

Logan, C.M.

1994-12-20

358

X-ray source for mammography  

DOEpatents

An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

Logan, Clinton M. (Pleasanton, CA)

1994-01-01

359

X-ray imaging: Status and trends  

SciTech Connect

There is a veritable renaissance occurring in x-ray imaging. X-ray imaging by radiography has been a highly developed technology in medicine and industry for many years. However, high resolution imaging has not generally been practical because sources have been relatively dim and diffuse, optical elements have been nonexistent for most applications, and detectors have been slow and of low resolution. Materials analysis needs have therefore gone unmet. Rapid progress is now taking place because we are able to exploit developments in microelectronics and related material fabrication techniques, and because of the availability of intense x-ray sources. This report describes the methods and uses of x-ray imaging along with a discussion of technology advances in these areas.

Ryon, R.W.; Martz, H.E.; Hernandez, J.M.; Haskins, J.J.; Day, R.A.; Brase, J.M.; Cross, B.; Wherry, D.

1987-08-01

360

X-rays from colliding stellar winds  

NASA Technical Reports Server (NTRS)

A stellar wind from a massive OB or Wolf-Rayet star in a binary system will strike the surface or stellar wind of its companion, forming shocked gas that can radiate X-rays. The X-ray spectrum from the shocked winds will vary in a predictable way with orbital phase, owing to photoelectric absorption by the stellar winds. Detailed models are calculated for the hydrodynamics and X-ray emission from two such systems. In one of these systems (HD 165052), the winds are nearly identical in strength. In the other (V444 Cygni), the wind of the Wolf-Rayet star overwhelms and crushes that of its companion. The calculated X-ray luminosities agree fairly well with the observed values for HD 165052 and for V444 Cygni. These results can be scaled to other such systems.

Luo, Ding; Mccray, Richard; Mac Low, Mordecai-Mark

1990-01-01

361

X-RAY MICROBEAM SPEECH PRODUCTION DATABASE  

E-print Network

X-RAY MICROBEAM SPEECH PRODUCTION DATABASE USER'S HANDBOOK Version 1.0 (June 1994) prepared by John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter Three: Speech & Task Sample) Physiology of Speech Production, the now-classic cineradiographic account of thirteen disyllables spoken

362

X-ray induced optical reflectivity  

The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity.Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4), a semiconductor(gallium arsenide,GaAs), and a metal (gold,Au), obtained with ?100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

Durbin, Stephen M.

2012-01-01

363

Small Angle X-Ray Scattering Detector  

DOEpatents

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

Hessler, Jan P.

2004-06-15

364

X ray opacity in cluster cooling flows  

NASA Technical Reports Server (NTRS)

We have calculated the emergent x-ray properties for a set of spherically symmetric, steady-state cluster cooling flow models including the effects of radiative transfer. Opacity due to resonant x-ray lines, photoelectric absorption, and electron scattering have been included in these calculations, and homogeneous and inhomogeneous gas distributions were considered. The effects of photoionization opacity are small for both types of models. In contrast, resonant line optical depths can be quite high in both homogeneous and inhomogeneous models. The presence of turbulence in the gas can significantly lower the line opacity. We find that integrated x-ray spectra for the flow cooling now are only slightly affected by radiative transfer effects. However x-ray line surface brightness profiles can be dramatically affected by radiative transfer. Line profiles are also strongly affected by transfer effects. The combined effects of opacity and inflow cause many of the lines in optically thick models to be asymmetrical.

Wise, Michael W.; Sarazin, Craig L.

1993-01-01

365

Microbubbles as a scattering contrast agent for grating-based x-ray dark-field imaging  

NASA Astrophysics Data System (ADS)

In clinically established—absorption-based—biomedical x-ray imaging, contrast agents with high atomic numbers (e.g. iodine) are commonly used for contrast enhancement. The development of novel x-ray contrast modalities such as phase contrast and dark-field contrast opens up the possible use of alternative contrast media in x-ray imaging. We investigate using ultrasound contrast agents, which unlike iodine-based contrast agents can also be administered to patients with renal impairment and thyroid dysfunction, for application with a recently developed novel x-ray dark-field imaging modality. To produce contrast from these microbubble-based contrast agents, our method exploits ultra-small-angle coherent x-ray scattering. Such scattering dark-field x-ray images can be obtained with a grating-based x-ray imaging setup, together with refraction-based differential phase-contrast and the conventional attenuation contrast images. In this work we specifically show that ultrasound contrast agents based on microbubbles can be used to produce strongly enhanced dark-field contrast, with superior contrast-to-noise ratio compared to the attenuation signal. We also demonstrate that this method works well with an x-ray tube-based setup and that the relative contrast gain even increases when the pixel size is increased from tenths of microns to clinically compatible detector resolutions about up to a millimetre.

Velroyen, A.; Bech, M.; Malecki, A.; Tapfer, A.; Yaroshenko, A.; Ingrisch, M.; Cyran, C. C.; Auweter, S. D.; Nikolaou, K.; Reiser, M.; Pfeiffer, F.

2013-02-01

366

Solar X-ray spectrum reproduced in vacuum  

NASA Technical Reports Server (NTRS)

Desired low energy X rays are produced by modifying commercial ion tubes and combining them with standard power supplies and control circuitry. These X rays have less deviation from the solar X ray spectrum in energy and intensity.

Erdman, C. A.; Kirchner, L. P.

1967-01-01

367

Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder  

NASA Astrophysics Data System (ADS)

Real-time grading of bladder urothelial carcinoma (UC) is clinically important, but the current standard for grading (histopathology) cannot provide this information. Based on optical coherence tomography (OCT)-measured optical attenuation (?t), the grade of bladder UC could potentially be assessed in real time. We evaluate ex vivo whether ?t differs between different grades of UC and benign bladder tissue. Human bladder tissue specimens are examined ex vivo by 850-nm OCT using dynamic focusing. Three observers independently determine the ?t from the OCT images, and three pathologists independently review the corresponding histology slides. For both methods, a consensus diagnosis is made. We include 76 OCT scans from 54 bladder samples obtained in 20 procedures on 18 patients. The median (interquartile range) ?t of benign tissue is 5.75 mm-1 (4.77 to 6.14) versus 5.52 mm-1 (3.47 to 5.90), 4.85 mm-1 (4.25 to 6.50), and 5.62 mm-1 (5.01 to 6.29) for grade 1, 2, and 3 UC, respectively (p = 0.732). Interobserver agreement of histopathology is ``substantial'' [Kappa 0.62, 95% confidence interval (IC) 0.54 to 0.70] compared to ``almost perfect'' [interclass correlation coefficient (ICC) 0.87, 95% CI 0.80 to 0.92] for OCT. Quantitative OCT analysis (by ?t) does not detect morphological UC changes. This may be due to factors typical for an ex-vivo experimental setting.

Cauberg, Evelyne C. C.; de Bruin, Daniël M.; Faber, Dirk J.; de Reijke, Theo M.; Visser, Mike; de La Rosette, Jean J. M. C. H.; van Leeuwen, Ton G.

2010-11-01

368

The Einstein X-ray Observatory  

Microsoft Academic Search

The High Energy Astronomical Observatory HEAO-2, launched in November, 1978, carries a 58-cm X-ray telescope which can be pointed with an accuracy of one minute of arc and has a resolution of four seconds of arc, an improvement of 1000 times over the X-ray detectors used previously. To date the observatory has examined more than 3000 celestial fields and in

Riccardo Giacconi

1980-01-01

369

X-ray laser program at MBI  

NASA Astrophysics Data System (ADS)

A survey of the Max Born Institute (MBI) activities in the field of X-ray lasers (XRLs) is presented. The main interest is focused on the transient soft X-ray lasers. Additionally, much work is put to look for new, efficient, compact (table-top) pumping schemes with a prospect to be applied in practice. The current state of the research and the plans for the future are described as well.

Nickles, P. V.; Janulewicz, K. A.; Lucianetti, A.; Priebe, G.; Zigler, A.; Rocca, J. J.; Sandner, W.

2002-11-01

370

X-Ray Fluorescent Recovers Ancient Text  

NSDL National Science Digital Library

This article from Cornell University News Service presents an interdisciplinary effort among physicists and classicists to read a weathered 2000-year-old inscription on stone with x-ray fluorescence. The article describes how a powerful x-ray light source at Cornell produced fluorescence in trace elements in the inscribed stone and includes images showing the original inscription. The article is written for the general public.

2008-10-27

371

High speed gated x-ray imagers  

SciTech Connect

Single and multi-frame gated x-ray images with time-resolution as fast as 150 psec are described. These systems are based on the gating of microchannel plates in a stripline configuration. The gating voltage comes from the avalanche breakdown of reverse biased p-n junction producing high power voltage pulses as short as 70 psec. Results from single and four frame x-ray cameras used on Nova are described. 8 refs., 9 figs.

Kilkenny, J.D.; Bell, P.; Hanks, R.; Power, G.; Turner, R.E.; Wiedwald, J.

1988-01-01

372

Handbook of X-ray Astronomy  

NASA Astrophysics Data System (ADS)

1. X-ray astronomy optics Daniel A. Schwartz; 2. Proportional counters and other detector techniques Richard J. Edgar; 3. CCDs for x-ray astronomy Catherine E. Grant; 4. Data reduction and calibration Keith A. Arnaud and Randall K. Smith; 5. Data analysis Randall K. Smith, Keith A. Arnaud and Aneta Siemiginowska; 6. Archives, surveys, catalogues and software Keith Arnaud; 7. Statistics Aneta Siemiginowska; 8. Analysis of extended emission K. D. Kuntz; Appendices; Index.

Arnaud, Keith; Smith, Randall; Siemiginowska, Aneta

2011-09-01

373

X-rays and Planet Formation  

Microsoft Academic Search

Planets form in cold circumstellar disks that can not emit X-rays. Nonetheless, X-ray band studies may have profound implications for the physical processes of planet formation in several ways. Observations of young stellar clusters, such as the recent Chandra Orion Ultradeep Project (COUP), demonstrate that all pre-main sequence stars produce powerful magnetic reconnection flares during the planet formation era. Calculations

E. D. Feigelson

2005-01-01

374

X-ray detectors for digital radiography  

Microsoft Academic Search

Digital radiography offers the potential of improved image quality as well as providing opportunities for advances in medical image management, computer-aided diagnosis and teleradiology. Image quality is intimately linked to the precise and accurate acquisition of information from the x-ray beam transmitted by the patient, i.e. to the performance of the x-ray detector. Detectors for digital radiography must meet the

M J Yaffe; J A Rowlands

1997-01-01

375

X-ray irradiation of yeast cells  

Microsoft Academic Search

Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers.

Alessandra Masini; Dimitri Batani; Fabio Previdi; Aldo Conti; Francesca Pisani; Cesare Botto; Fulvia Bortolotto; Flavia Torsiello; I. C. Edmund Turcu; Ric M. Allott; Nicola Lisi; Marziale Milani; Michele Costato; Achille Pozzi; Michel Koenig

1997-01-01

376

Spectroscopy in X-ray astronomy  

NASA Technical Reports Server (NTRS)

Detailed features in cosmic X-ray sources and their associated temporal variation over a wide energy range were studied. Excess emission and absorption at approximately 6 to 7 kiloelectron volts in the spectra of supernova remnants, binary X-ray sources, and clusters of galaxies were observed. A gas scintillation proportional counter (GSPC) will be used as the detector system. In the gas scintillator the principal limitation is due to the statistics of the initial ionization process only.

Andresen, R.

1981-01-01

377

Electromagnetically Induced Transparency for X Rays  

Microsoft Academic Search

Electromagnetically induced transparency is predicted for x rays in laser-dressed neon gas. The x-ray photoabsorption cross section and polarizability near the Ne K edge are calculated using an ab initio theory suitable for optical strong-field problems. The laser wavelength is tuned close to the transition between 1s-13s and 1s-13p (˜800nm). The minimum laser intensity required to observe electromagnetically induced transparency

Christian Buth; Robin Santra; Linda Young

2007-01-01

378

Electromagnetically Induced Transparency for X Rays  

Microsoft Academic Search

Electromagnetically induced transparency is predicted for x rays in laser-dressed neon gas. The x-ray photoabsorption cross section and polarizability near the Ne K edge are calculated using an ab initio theory suitable for optical strong-field problems. The laser wavelength is tuned close to the transition between 1s⁻¹3s and 1s⁻¹3p (â800 nm). The minimum laser intensity required to observe electromagnetically induced

Christian Buth; Robin Santra; Linda Young

2007-01-01

379

Oriented Graphite X-Ray Diffraction Telescope  

Microsoft Academic Search

A development program performed during the last year under a contract with the Office of Naval Research has indicated that diffraction focusing of X-rays may offer significant detection advantages when used to focus low energy gamma and X-radiation onto single detectors. The work which supports this conclusion includes a survey of diffraction crystalline materials, diffractometer X-ray measurements of selected crystal

J. B. Trice; R. J. Locker

1975-01-01

380

High Resolution X-ray Imaging  

Microsoft Academic Search

NAG5-5020 covered a period of 7.5 years during which a great deal of progress was made in x-ray optical techniques under this grant. We survived peer review numerous times during the effort to keep the grant going. In 1994, when the grant started we were actively pursuing the application of spherical mirrors to improving x-ray telescopes. We had found that

Webster Cash

2002-01-01

381

X-ray detectors for NDE applications  

Microsoft Academic Search

A tremendous development in the field of imaging radiation detectors has taken place in the last decade. Conventional X-ray film has been replaced by digital X-ray imaging systems in a number of ways. Such systems mainly consist of silicon charge coupled devices (CCDs) where incident photons create electron-hole pairs in the thin silicon absorption layer near the surface. In contrast

Michael Kroening; Revaz G. Melkadze; Tatiana M. Lezhneva; Levan B. Khvedelidze; Givi D. Kalandadze; Tilo Baumbach; Axel Berthold

2007-01-01

382

X-Ray Emission from Compact Sources  

SciTech Connect

This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

Cominsky, L

2004-03-23

383

Beryllium parabolic refractive x-ray lenses  

Microsoft Academic Search

Parabolic refractive x-ray lenses are novel optical components for the hard x-ray range from about 5 keV to about 120 keV. They focus in both directions. They are compact, robust, and easy to align and to operate. They can be used like glass lenses are used for visible light, the main difference being that the numerical aperture N.A. is much

Christian G. Schroer; Marion Kuhlmann; Til F. Günzler; Olga Kurapova; Federico Zontone; Alexandre S. Simionovici; Anatoly A. Snigirev; Irina Snigireva

2004-01-01

384

X-ray apparatus for tomosynthesis  

SciTech Connect

Apparatus for examining objects includes a group of x-ray sources, which are activated group-wise by a generator. A group of sub-images are separately projected onto a photographic film. During a subsequent step, the film is re-imaged with the aid of an optical lens matrix the lenses in the matrix are arranged in a manner similar to the x-ray sources.

Klotz, E.; Linde, R.; Tiemens, U.; Weiss, H.

1981-01-20

385

X-Ray Metrology for Quality Assurance  

Microsoft Academic Search

Abstract: There is considerable currentinterest in derivingaccurate dimensional measurements of the internal geometryof complex manufactured parts, particularlycastings. This paper describes an approachtothereconstructionof 3D part geometry from multiple digitalX-ray images. A novel method for radiographicstereo is described whichtakes into accountthespecialimaging geometry of the digital X-ray sensor modeledby a linear moving array, or pushbroom, camera.The 3D reconstruction algorithm employs ...

A. Noble; Richard I. Hartley; Joseph L. Mundy; J. Farley

1994-01-01

386

X-ray emission from Saturn  

Microsoft Academic Search

We report the first unambiguous detection of X-ray emission originating from Saturn with a Chandra observation, duration 65.5 ks with ACIS-S3. Beyond the pure detection we analyze the spatial distribution of X-rays on the planetary surface, the light curve, and some spectral properties. The detection is based on 162 cts extracted from the ACIS-S3 chip within the optical disk of

J.-U. Ness; J. H. M. M. Schmitt; S. J. Wolk; K. Dennerl; V. Burwitz

2004-01-01

387

Cosmic X-ray Physics: A Suborbital Investigation of the Diffuse X-ray Background Including Instrumentation Development  

NASA Astrophysics Data System (ADS)

We propose an investigation to improve our understanding of the Galactic diffuse X-ray background. The ultimate purpose of this is to determine the role of hot phases of the interstellar medium in mediating stellar feedback in star formation, in transport of metals, and in determining the structure and evolution of the Galaxy. This work will involve a flight of an existing payload with small modifications in Woomera, South Australia, to observe the Galactic soft X-ray bulge and attempt to determine its nature and emission mechanisms. It will also involve the development of detectors capable of 1-2 eV FWHM energy resolution in the 100-400 eV range with the intent of obtaining a scientifically useful spectrum on a sounding rocket flight of the emission from one million degree gas in this energy range. This will require a total area of 1-2 cm^2 for the detector array. With the collaboration and advice of microwave experts at the Goddard Space Flight Center, we will fabricate and test waveguide-below-cutoff filters to provide the necessary attenuation of infrared radiation for these detectors while still allowing relatively good x- ray transmission below 300 eV. The detectors, filters, and flight experience with the detector readouts are all relevant to future NASA major missions. The filters would be particularly valuable in allowing thermal detectors (microcalorimeters) similar to those used here in the X-ray range to be applied to the EUV and vacuum ultraviolet, where they offer large potential gains over existing detectors. These investigations will provide the primary training for our graduate students, and will involve a substantial number of undergraduates.

McCammon, Dan

388

X-ray diagnostics of runaway electrons generated during nanosecond discharge in gas at elevated pressures  

SciTech Connect

The properties of high-energy runaway electrons generated during a nanosecond discharge in an air filled diode at pressures up to 3 x 10{sup 5} Pa were studied using x-ray absorption spectroscopy. The results of studies of the discharge at different pressures and with different lengths of cathode-anode gap allow an insight into the factors that influence the energy distribution of runaway electrons. Energy distribution functions for runaway electrons produced in particle-in-cell simulation were used to create the x-ray attenuation curves via a computer-assisted technique simulating the generation of x-ray by energetic electrons. The simulated attenuation curves were compared to experimental results.

Yatom, S.; Levko, D.; Gleizer, J. Z.; Vekselman, V.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

2012-01-09

389

Differential X-Ray Absorption Model  

NSDL National Science Digital Library

The Differential X-Ray Absorption Model provides a qualitative exploration of how X-rays interact with varying material properties and how this difference can produce contrast in the x-ray image. For a typical medical diagnostic, images are created when X-rays from a source penetrate an object and then expose a film. This simulation shows how different materials in the X-rays beam produce the contrast that generates the detail of the image. The Differential X-Ray Absorption Model was created by Michael Gallis using the Easy Java Simulations (EJS) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. You can examine and modify this compiled EJS model if you run the model (double click on the model's jar file), right-click within a plot, and select "Open Ejs Model" from the pop-up menu. You must, of course, have EJS installed on your computer. 

Gallis, Michael R.

2014-04-16

390

Compton backscattered collmated X-ray source  

DOEpatents

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

2000-01-01

391

X-Ray Imaging with Phase Contrast  

NASA Astrophysics Data System (ADS)

The easiest way to obtain X-ray images of the internal structure of condensed objects is to register projections on an area detector like a photographic plate or a CCD and analyze the intensity of the transmitted beam. In such an arrangement the main cause of structures seen on the image is usually absorption contrast which scales with Z(Z/E)m where Z is atomic number, E is X-ray energy, and m ~ 2.5 to 3.5. Hence for light elements (which often are of main importance in the medical field) absorption contrast is quite small and sometimes unspecific compared to contrast caused by X-ray phase shift which scales with Z/E. In recent years various methods capable of registering X-ray phase shift have been developed, which include double crystal topography, X-ray interferometry, in-line phase-contrast imaging, the use of Talbot-mode grid devices, and others. A survey of existing approaches and examples of recent results will be given. -An important aspect in the application of X-ray imaging in the medical field is the amount of unavoidable irradiation dose to be applied to the patient under investigation. There is some hope that in the future, with a suitable phase-contrast method, the dose can be lowered.

Bonse, Ulrich; Beckmann, Felix

2010-04-01

392

Compton backscattered collimated x-ray source  

DOEpatents

A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

Ruth, R.D.; Huang, Z.

1998-10-20

393

The SAS-3 X-ray observatory  

NASA Technical Reports Server (NTRS)

The experiment section of the Small Astronomy Satellite-3 (SAS-3) launched in May 1975 is an X-ray observatory intended to determine the location of bright X-ray sources to an accuracy of 15 arc-seconds; to study a selected set of sources over a wide energy range, from 0.1 to 55 keV, while performing very specific measurements of the spectra and time variability of known X-ray sources; and to monitor the sky continuously for X-ray novae, flares, and unexpected phenomena. The improvements in SAS-3 spacecraft include a clock accurate to 1 part in 10 billion, rotatable solar panels, a programmable data format, and improved nutation damper, a delayed command system, improved magnetic trim and azimuth control systems. These improvements enable SAS-3 to perform three-axis stabilized observations of any point on the celestial sphere at any time of the year. The description of the experiment section and the SAS-3 operation is followed by a synopsis of scientific results obtained from the observations of X-ray sources, such as Vela X-1 (supposed to be an accreting neutron star), a transient source of hard X-ray (less than 36 min in duration) detected by SAS-3, the Crab Nebula pulsar, the Perseus cluster of galaxies, and the Vela supernova remnant.

Mayer, W. F.

1975-01-01

394

Compton backscattered collimated x-ray source  

DOEpatents

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

1998-01-01

395

Be/X-ray Binary Science for Future X-ray Timing Missions  

NASA Technical Reports Server (NTRS)

For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

Wilson-Hodge, Colleen A.

2011-01-01

396

Analysis of x-ray spectrum obtained in electron cyclotron resonance x-ray source  

SciTech Connect

The analysis of the x-ray spectrum obtained in electron cyclotron resonance (ECR) x-ray source is carried out. Assuming single-particle motion, the electron acceleration and its final energy are calculated for TE{sub 111} cylindrical cavity field and uniform external dc magnetic field. In the calculation, initial coordinates of 40 000 electrons were uniformly selected over the central plane of the cavity using random number generator. The final energy of each electron when it hits the wall is stored and the electron energy distribution is obtained. Using the general purpose Monte Carlo N-particle transport code version 4A, the geometry of the ECR x-ray source is modeled. The x-ray energy spectrum is calculated for the geometry model and the numerically calculated electron energy distribution. The calculated x-ray spectrum is compared with the experimentally measured x-ray spectrum.

Baskaran, R.; Selvakumaran, T.S.; Sunil Sunny, C. [Radiological Safety Division, Safety Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Safety Research Institute, Kalpakkam 603 102, Tamil Nadu (India)

2006-03-15

397

Indus-2 X-ray lithography beamline for X-ray optics and material science applications  

NASA Astrophysics Data System (ADS)

X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ˜100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and also irradiation of biological and liquid samples.

Dhamgaye, V. P.; Lodha, G. S.

2014-04-01

398

Development of X-ray excitable luminescent probes for scanning X-ray microscopy  

Microsoft Academic Search

Transmission soft X-ray microscopy is now capable of achieving resolutions that are typically 5 times better than the best-visible light microscopes. With expected improvements in zone plate optics, an additional factor of two may be realized within the next few years. Despite the high resolution now available with X-ray microscopes and the high X-ray contrast provided by biological molecules in

Mario M Moronne

1999-01-01

399

6MVp x-ray imaging with a transparent scintillator x-ray detector  

Microsoft Academic Search

In a previous paper an x-ray medical imaging system was described that used a liquid nitrogen cooled slow-scan CCD TV camera coupled to a Gd2O3(Eu) transparent ceramic scintillator plate with a high speed macro lens. This imaging system, which has a high spatial resolution and high x-ray quantum efficiency, suffers in the normal diagnostic x-ray energy range from added noise

Herbert D. Zeman; Sanjiv S. Samant; Jacob Rasmussen

1997-01-01

400

Measuring of soft x-ray flashes with the x-ray acoustic effect  

Microsoft Academic Search

An x-ray acoustic detector was found to be sensitive to extremely soft x-ray flashes (5 eV–10 keV, T?1 ?s). The total dose of the flash is measured by the x-ray acoustic effect. The absorbed energy induces an acoustical pulse that is registered with a microphone. The microphone signal only depends on the absorbed energy. It is independent of the wavelength

R. Germer

1984-01-01

401

A novel X-ray source for diagnosis: K-fluorescent enhanced X-ray tube  

Microsoft Academic Search

A novel X-ray source for diagnosis, K-fluorescent enhanced X-ray tube, has been developed. With selectively enhanced K characteristic lines of optimum photon energies for medical diagnosis, the novel X-ray tube will provide am imaging source of higher signal-to-noise ratio and lower radiation dose. Its working principle and structure are described. A prototype tube designed with K characteristic photon energy about

Dagang Tan

2000-01-01

402

Magnetar-like X-ray bursts from an anomalous X-ray pulsar  

Microsoft Academic Search

Anomalous X-ray Pulsars (AXPs) are a class of rare X-ray pulsars whose energy\\u000asource has been perplexing for some 20 years. Unlike other, better understood\\u000aX-ray pulsars, AXPs cannot be powered by rotation or by accretion from a binary\\u000acompanion, hence the designation ``anomalous.'' AXP rotational and radiative\\u000aproperties are strikingly similar to those of another class of exotic objects,

F. P. Gavriil; P. M. Woods; V. M. Kaspi

2002-01-01

403

Design and measurement of a Cu L-edge x-ray filter for free electron laser pumped x-ray laser experiments  

SciTech Connect

An inner-shell photoionized x-ray laser pumped by the Linac Coherent Light Source (LCLS) free electron laser has been proposed recently. The measurement of the on-axis 849 eV Ne K{alpha} laser and protection of the x-ray spectrometer from damage require attenuation of the 1 keV LCLS beam. An Al/Cu foil combination is well suited, serving as a low energy bandpass filter below the Cu L-edge at 933 eV. A high resolution grating spectrometer is used to measure the transmission of a candidate filter with an intense laser-produced x-ray backlighter developed at the Lawrence Livermore National Laboratory Jupiter Laser Facility Janus. The methodology and discussion of the observed fine structure above the Cu L-edge will be presented.

Dunn, J.; London, R. A.; Rohringer, N. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Cone, K. V. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Department of Applied Sciences, University of California, Davis, California 95616 (United States); Rocca, J. J. [NSF Center for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado 80523 (United States)

2010-10-15

404

Design and measurement of a Cu L-edge x-ray filter for free electron laser pumped x-ray laser experimentsa)  

NASA Astrophysics Data System (ADS)

An inner-shell photoionized x-ray laser pumped by the Linac Coherent Light Source (LCLS) free electron laser has been proposed recently. The measurement of the on-axis 849 eV Ne K? laser and protection of the x-ray spectrometer from damage require attenuation of the 1 keV LCLS beam. An Al/Cu foil combination is well suited, serving as a low energy bandpass filter below the Cu L-edge at 933 eV. A high resolution grating spectrometer is used to measure the transmission of a candidate filter with an intense laser-produced x-ray backlighter developed at the Lawrence Livermore National Laboratory Jupiter Laser Facility Janus. The methodology and discussion of the observed fine structure above the Cu L-edge will be presented.

Dunn, J.; London, R. A.; Cone, K. V.; Rocca, J. J.; Rohringer, N.

2010-10-01

405

A Monte Carlo study of x-ray fluorescence in x-ray detectors.  

PubMed

Advances in digital x-ray detector systems have led to a renewed interest in the performance of x-ray phosphors and other detector materials. Indirect flat panel x-ray detector and charged coupled device (CCD) systems require a more technologically challenging geometry, whereby the x-ray beam is incident on the front side of the scintillator, and the light produced must diffuse to the back surface of the screen to reach the photoreceptor. Direct detector systems based on selenium have also enjoyed a growing interest, both commercially and academically. Monte Carlo simulation techniques were used to study the x-ray scattering (Rayleigh and Compton) and the more prevalent x-ray fluorescence properties of seven different x-ray detector materials, Gd2O2S, CsI, Se, BaFBr, YTaO4, CaWO4, and ThO2. The redistribution of x-ray energy, back towards the x-ray source, in a forward direction through the detector, and lateral reabsorption in the detector was computed under monoenergetic conditions (1 keV to 130 keV by 1 keV intervals) with five detector thicknesses, 30, 60, 90, 120, and 150 mg/cm2 (Se was studied from 30 to 1000 mg/cm2). The radial distribution (related to the point spread function) of reabsorbed x-ray energy was also determined. Representative results are as follows: At 55 keV, more (31.3%) of the incident x-ray energy escaped from a 90 mg/cm2Gd2O2S detector than was absorbed (27.9%). Approximately 1% of the total absorbed energy was reabsorbed greater than 0.5 mm from the primary interaction, for 90 mg/cm2 CsI exposed at 100 kVp. The ratio of reabsorbed secondary (fluorescence + scatter) radiation to the primary radiation absorbed in the detectors (90 mg/cm2) (S/P) was determined as 10%, 16%, 2%, 12%, 3%, 3%, and 0.3% for a 100 kVp tungsten anode x-ray spectrum, for the Gd2O2S, CsI, Se, BaFBr, YTaO4, CaWO4, and ThO2 detectors, respectively. The results indicate significant x-ray fluorescent escape and reabsorption in common x-ray detectors. These findings suggest that x-ray fluorescent radiation redistribution should be considered in the design of digital x-ray imaging systems. PMID:10436891

Boone, J M; Seibert, J A; Sabol, J M; Tecotzky, M

1999-06-01

406

X-ray Properties of Pre--Main-Sequence Stars in the Orion Nebula Cluster with Known Rotation Periods  

E-print Network

We re-analyze all archival Chandra/ACIS observations of the Orion Nebula Cluster (ONC) to study the X-ray properties of a large sample of pre--main-sequence (PMS) stars with optically determined rotation periods. Our goal is to elucidate the origins of X-rays in PMS stars by seeking out connections between the X-rays and the mechanisms most likely driving their production--rotation and accretion. In our sample X-ray luminosity is significantly correlated with stellar rotation, in the sense of decreasing Lx/Lbol with more rapid rotation, suggesting that these stars are in the "super-saturated" regime of the rotation-activity relationship. However, we also find that stars with optical rotation periods are significantly biased to high Lx. This is not the result of magnitude bias in the optical rotation-period sample but rather to the diminishingly small amplitude of optical variations in stars with low Lx. Evidently, there exists in the ONC a population of stars whose rotation periods are unknown and that possess lower average X-ray luminosities than those of stars with known rotation periods. These stars may sample the linear regime of the rotation-activity relationship. Accretion also manifests itself in X-rays, though in a somewhat counterintuitive fashion: While stars with spectroscopic signatures of accretion show harder X-ray spectra than non-accretors, they show lower X-ray luminosities and no enhancement of X-ray variability. We interpret these findings in terms of a common origin for the X-ray emission observed from both accreting and non-accreting stars, with the X-rays from accreting stars simply being attenuated by magnetospheric accretion columns. This suggests that X-rays from PMS stars have their origins primarily in chromospheres, not accretion.

Keivan G. Stassun; David R. Ardila; Mary Barsony; Gibor Basri; Robert D. Mathieu

2004-03-05

407

Development of a prototype gantry system for preclinical x-ray phase-contrast computed tomography  

SciTech Connect

Purpose: To explore the potential of grating-based x-ray phase-contrast imaging for clinical applications, a first compact gantry system was developed. It is designed such that it can be implemented into an in-vivo small-animal phase-contrast computed tomography (PC-CT) scanner. The purpose of the present study is to assess the accuracy and quantitativeness of the described gantry in both absorption and phase-contrast. Methods: A phantom, containing six chemically well-defined liquids, was constructed. A tomography scan with cone-beam reconstruction of this phantom was performed yielding the spatial distribution of the linear attenuation coefficient {mu} and decrement {delta} of the complex refractive index. Theoretical values of {mu} and {delta} were calculated for each liquid from tabulated data and compared with the experimentally measured values. Additionally, a color-fused image representation is proposed to display the complementary absorption and phase-contrast information in a single image. Results: Experimental and calculated data of the phantom agree well confirming the quantitativeness and accuracy of the reconstructed spatial distributions of {mu} and {delta}. The proposed color-fused image representation, which combines the complementary absorption and phase information, considerably helps in distinguishing the individual substances. Conclusions: The concept of grating-based phase-contrast computed tomography (CT) can be implemented into a compact, cone-beam geometry gantry setup. The authors believe that this work represents an important milestone in translating phase-contrast x-ray imaging from previous proof-of-principle experiments to first preclinical biomedical imaging applications on small-animal models.

Tapfer, Arne; Bech, Martin; Pauwels, Bart; Liu Xuan; Bruyndonckx, Peter; Sasov, Alexander; Kenntner, Johannes; Mohr, Juergen; Walter, Marco; Schulz, Joachim; Pfeiffer, Franz [Department of Physics and Institute of Medical Engineering (IMETUM), Technische Universitaet Muenchen, 85748 Garching (Germany); SkyScan, 2550 Kontich (Belgium); Karlsruhe Institute of Technology, Institute of Microstructure Technology, 76344 Karlsruhe (Germany); Microworks, 76137 Karlsruhe (Germany); Department of Physics and Institute of Medical Engineering (IMETUM), Technische Universitaet Muenchen, 85748 Garching (Germany)

2011-11-15

408

Handbook of X-Ray Astronomy  

NASA Technical Reports Server (NTRS)

X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

2011-01-01

409

Simultaneous high speed digital cinematographic and X-ray radiographic imaging of a intense multi-fluid interaction with rapid phase changes  

SciTech Connect

As typical for the study of the vapor explosions, the qualitative and quantitative understanding of the phenomena requires visualization of both material and interface dynamics. A new approach to multi-fluid multiphase visualization is presented with the focus on the development of a synchronized high-speed visualization by digital cinematography and X-ray radiography. The developed system, named SHARP (simultaneous high-speed acquisition of X-ray radiography and photography), and its image processing methodology, directed to an image synchronization procedure and a separate quantification of vapor and molten material dynamics, is presented in this paper. Furthermore, we exploit an intrinsic property of the X-ray radiation, namely the differences in linear mass attenuation coefficients over the beam path through a multi-component system, to characterize the evolution of molten material distribution. Analysis of the data obtained by the SHARP system and image processing procedure developed granted new insights into the physics of the vapor explosion phenomena, as well as, quantitative information of the associated dynamic micro-interactions. (author)

Hansson, Roberta Concilio; Park, Hyun Sun; Dinh, Truc-Nam [Royal Institute of Technology, Division of Nuclear Power Safety, AlbaNova, Stockholm SE-106 91 (Sweden)

2009-04-15

410

X-Ray Methods to Estimate Breast Density Content in Breast Tissue  

NASA Astrophysics Data System (ADS)

This work focuses on analyzing x-ray methods to estimate the fat and fibroglandular contents in breast biopsies and in breasts. The knowledge of fat in the biopsies could aid in their wide-angle x-ray scatter analyses. A higher mammographic density (fibrous content) in breasts is an indicator of higher cancer risk. Simulations for 5 mm thick breast biopsies composed of fibrous, cancer, and fat and for 4.2 cm thick breast fat/fibrous phantoms were done. Data from experimental studies using plastic biopsies were analyzed. The 5 mm diameter 5 mm thick plastic samples consisted of layers of polycarbonate (lexan), polymethyl methacrylate (PMMA-lucite) and polyethylene (polyet). In terms of the total linear attenuation coefficients, lexan ? fibrous, lucite ? cancer and polyet ? fat. The detectors were of two types, photon counting (CdTe) and energy integrating (CCD). For biopsies, three photon counting methods were performed to estimate the fat (polyet) using simulation and experimental data, respectively. The two basis function method that assumed the biopsies were composed of two materials, fat and a 50:50 mixture of fibrous (lexan) and cancer (lucite) appears to be the most promising method. Discrepancies were observed between the results obtained via simulation and experiment. Potential causes are the spectrum and the attenuation coefficient values used for simulations. An energy integrating method was compared to the two basis function method using experimental and simulation data. A slight advantage was observed for photon counting whereas both detectors gave similar results for the 4.2 cm thick breast phantom simulations. The percentage of fibrous within a 9 cm diameter circular phantom of fibrous/fat tissue was estimated via a fan beam geometry simulation. Both methods yielded good results. Computed tomography (CT) images of the circular phantom were obtained using both detector types. The radon transforms were estimated via four energy integrating techniques and one photon counting technique. Contrast, signal to noise ratio (SNR) and pixel values between different regions of interest were analyzed. The two basis function method and two of the energy integrating methods (calibration, beam hardening correction) gave the highest and more linear curves for contrast and SNR.

Maraghechi, Borna

411

X-Ray Calorimeter Arrays for Astrophysics  

NASA Technical Reports Server (NTRS)

High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

Kilbourne, Caroline A.

2009-01-01

412

Supernova remnants: the X-ray perspective  

E-print Network

Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects.And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and thermal and non-thermal X-ray emission. The second half offers a review of the recen...

Vink, Jacco

2011-01-01

413

Ultrafast X-Ray Coherent Control  

SciTech Connect

This main purpose of this grant was to develop the nascent #12;eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di#11;racting properties of a x-ray di#11;racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti#12;c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the #12;eld, and have laid the foundation for many experiments being performed on the LCLS, the world's #12;rst hard x-ray free electron laser.

Reis, David

2009-05-01

414

X-ray polarimetry small satellite TSUBAME  

NASA Astrophysics Data System (ADS)

``TSUBAME'' is a university-built small satellite mission to measure polarization of hard X-ray photons (30-100 keV) from Gamma-ray bursts (GRBs) using azimuthal angle anisotropy of Compton-scattered photons. Polarimetry in the hard X-ray and soft ?-ray band plays a crucial role in the understanding of high energy emission mechanisms and the distribution of magnetic fields and radiation fields. TSUBAME has two instruments: the Wide-field Bust Monitor (WBM) and the Hard X-ray Compton Polarimeter (HXCP). The WBM determines on board the direction of the burst occurrence with an accuracy of 10 degrees, then using a high speed attitude control device, the HXCP is pointed to the GRB within 10 seconds after the burst occurrence to promptly detect polarized X-ray photons from the GRB. We present a TSUBAME mission overview, results of a Monte Carlo simulation of the X-ray polarization measurement and the plans for the future of this mission.

Arimoto, Makoto; Tsubuku, Yoshihiro; Toizumi, Takahiro; Kobayashi, Mitsuyoshi; Yatsu, Yoichi; Shimokawabe, Takashi; Kataoka, Jun; Kawai, Nobuyuki; Omagari, Kuniyuki; Fujiwara, Ken; Konda, Yasumi; Tanaka, Yohei; Maeno, Masaki; Yamanaka, Tomio; Ashida, Hiroki; Nishida, Junichi; Fujihashi, Kouta; Ikeda, Takuro; Inagawa, Shinichi; Miura, Yoshiyuki; Matunaga, Saburo

2008-05-01

415

Optics for coherent X-ray applications  

PubMed Central

Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8?II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1?km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10?nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986

Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

2014-01-01

416

Oscillations During Thermonuclear X-ray Bursts  

NASA Technical Reports Server (NTRS)

High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290Hz) has, been claimed.

Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

2001-01-01

417

The detection of X rays from Jupiter  

NASA Astrophysics Data System (ADS)

X rays in the energy band 0.2-3.0 keV have been detected coming from both polar regions of Jupiter. The observations were made in 1979 and 1981 by using the imaging proportional counter and high resolution imaging detectors on the Einstein X-ray astronomy satellite. The measured flux density of approximately 0.0006/sq cm-sec at earth corresponds to an X ray luminosity of approximately 4 x 10 to the 9th W in the 0.2- to 3.0-keV energy band. The energy spectrum of the X rays is extremely soft and can be characterized by a power law with an exponent of approximately 2.3. Detector energy resolution is insufficient to distinguish a soft line spectrum from a continuum. However, the shape of the response and the observed X ray power indicate that the source of this auroral emission is not electron bremsstrahlung as on the earth, but is most probably line emission from O and S ions with energies between 0.03 and 4.0 MeV/nucleon precipitating from the outer boundary of the Io plasma torus at L approximately 8.

Metzger, A. E.; Gilman, D. A.; Luthey, J. L.; Hurley, K. C.; Schnopper, H. W.; Seward, F. D.; Sullivan, J. D.

1983-10-01

418

Thin Shell, Segmented X-Ray Mirrors  

NASA Technical Reports Server (NTRS)

Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

Petre, Robert

2010-01-01

419

Radiographic X-Ray Pulse Jitter  

SciTech Connect

The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

2011-01-15

420

Imaging of x rays for magnetospheric investigations  

SciTech Connect

X-ray imagers can provide large-scale maps of bremsstrahlung x rays produced by electron precipitation into the atmosphere. Complete day and night coverage is obtained and the electron energy spectra at each position in space can be derived from the measured x-ray energy spectra. Early x-ray imagers were limited in field of view and to one map for each pass over the emitting regions. The Magnetospheric Atmospheric X-ray Imaging Experiment, launched on a TIROS satellite, makes time-space mappings by scanning a 16-pixel pinhole camera. The data distinguish intensity variations of a fixed auroral feature from motion of a steadily radiating feature. However, the spatial deconvolution is complex and features stay in the field of view for only [approximately]10 min. These problems will be resolved by a high-altitude ([approximately]9 R[sub e]) imaging spectrometer PIXIE on the ISTP/GGS Polar Satellite to be launched in 1994. PIXIE's position-sensitive proportional counter will continuously image the entire auroral zone for periods of hours.

Imhof, W.L.; Voss, H.D.; Datlowe, D.W. (Lockheed Palo Alto Research Lab., Palo Alto, CA (United States). Space Sciences Lab.)

1994-02-01

421

X-ray Emission from Extragalactic Jets  

E-print Network

This review focuses on the X-ray emission processes of extra-galactic jets on scales resolvable by the sub arcsec resolution of the Chandra X-ray Observatory. It is divided into 4 parts. The introductory chapter reviews the classical problems for jets, as well as those associated directly with the X-ray emission. Throughout this section, we deal with the dualisms of low powered radio sources versus high powered radio galaxies and quasars; synchrotron models versus inverse Compton models; and the distinction between the relativistic plasma responsible for the received radiation and the medium responsible for the transport of energy down the jet. The second part collects the observational and inferred parameters for the currently detected X-ray jets and attempts to put their relative sizes and luminosities in perspective. In part 3, we first give the relevant radio and optical jet characteristics, and then examine the details of the X-ray data and how they can be related to various jet attributes. The last section is devoted to a critique of the two non-thermal emission processes and to prospects for progress in our understanding of jets.

D. E. Harris; Henric Krawczynski

2006-07-11

422

New upper limits on Jovian X rays  

NASA Technical Reports Server (NTRS)

The paper presents results of a comprehensive search for X-ray emission from the Jovian magnetosphere, using data obtained with an X-ray telescope aboard OSO 3. This satellite scanned Jupiter for 33 days from a distance of 4.4 AU during a maximum phase of solar activity. No transient X-ray fluxes were observed to accompany decameter-wave radio bursts, but upper limits on the steady X-ray emission over the energy range from 7.7 to 210 keV are estimated. These limits are shown to be consistent with the fluxes measured by Pioneer 10 as well as with the trapped-particle fluxes predicted by recent precise modeling of the Jovian trapped radiation. Upper limits are determined for the energy dissipated on Jupiter in bremsstrahlung-producing collisions and also for the electron loss rate. The energy limit is found to be approximately equal to the total solar radiant energy intercepted by the Jovian disk. It is concluded that Jovian X-rays are unlikely to be detected by near-earth observations with sensitivities currently conceivable.

Peterson, L. E.; Hudson, H. S.; Tsikoudi, V.

1976-01-01

423

X-ray Pinhole Camera Measurements  

SciTech Connect

The development of the rod pinch diode [1] has led to high-resolution radiography for dynamic events such as explosive tests. Rod pinch diodes use a small diameter anode rod, which extends through the aperture of a cathode plate. Electrons borne off the aperture surface can self-insulate and pinch onto the tip of the rod, creating an intense, small x-ray source (Primary Pinch). This source has been utilized as the main diagnostic on numerous experiments that include high-value, single-shot events. In such applications there is an emphasis on machine reliability, x-ray reproducibility, and x-ray quality [2]. In tests with the baseline rod pinch diode, we have observed that an additional pinch (Secondary Pinch) occurs at the interface near the anode rod and the rod holder. This suggests that stray electrons exist that are not associated with the Primary Pinch. In this paper we present measurements on both pinches using an x-ray pinhole camera. The camera is placed downstream of the Primary Pinch at an angle of 60° with respect to the diode centerline. This diagnostic will be employed to diagnose x-ray reproducibility and quality. In addition, we will investigate the performance of hybrid diodes relating to the formation of the Primary and Secondary Pinches.

Nelson, D. S. [NSTec; Berninger, M. J. [NSTec; Flores, P. A. [NSTec; Good, D. E. [NSTec; Henderson, D. J. [NSTec; Hogge, K. W. [NSTec; Huber, S. R. [NSTec; Lutz, S. S. [NSTec; Mitchell, S. E. [NSTec; Howe, R. A. [NSTec; Mitton, C. V. [NSTec; Molina, I. [NSTec; Bozman, D. R. [SNL; Cordova, S. R. [SNL; Mitchell, D. R. [SNL; Oliver, B. V. [SNL; Ormond, E. C. [SNL

2013-07-01

424

Calibration of X-Ray Observatories  

NASA Technical Reports Server (NTRS)

Accurate calibration of x-ray observatories has proved an elusive goal. Inaccuracies and inconsistencies amongst on-ground measurements, differences between on-ground and in-space performance, in-space performance changes, and the absence of cosmic calibration standards whose physics we truly understand have precluded absolute calibration better than several percent and relative spectral calibration better than a few percent. The philosophy "the model is the calibration" relies upon a complete high-fidelity model of performance and an accurate verification and calibration of this model. As high-resolution x-ray spectroscopy begins to play a more important role in astrophysics, additional issues in accurately calibrating at high spectral resolution become more evident. Here we review the challenges of accurately calibrating the absolute and relative response of x-ray observatories. On-ground x-ray testing by itself is unlikely to achieve a high-accuracy calibration of in-space performance, especially when the performance changes with time. Nonetheless, it remains an essential tool in verifying functionality and in characterizing and verifying the performance model. In the absence of verified cosmic calibration sources, we also discuss the notion of an artificial, in-space x-ray calibration standard. 6th

Weisskopf, Martin C.; L'Dell, Stephen L.

2011-01-01