Sample records for x-ray beam intensity

  1. Thomson backscattered X-rays from an intense laser beam

    Microsoft Academic Search

    Cha-Mei Tang; B. Hafizi; Sally K. Ride

    1993-01-01

    We have formulated and obtained analytical expressions for Thomson backscattered X-ray radiation for an electron beam incident on a linearly polarized electromagnetic undulator at a small angle. The analytical expressions are valid for fundamental and harmonics with arbitrarily large laser intensities. The intensity distribution pattern is evaluated numerically.

  2. Compact integrated X-ray intensity and beam position monitor based on rare gas scintillation

    SciTech Connect

    Revesz, Peter; Ruff, Jacob; Dale, Darren; Krawczyk, Thomas [Cornell University, Cornell High Energy Synchrotron Source, Ithaca, New York 14853 (United States)

    2013-05-15

    We have created and tested a compact integrated X-ray beam intensity and position monitor using Ar-gas scintillation. The light generated inside the device's cavity is detected by diametrically opposed PIN diodes located above and below the beam. The intensity is derived from the sum of the top and bottom signals, while the beam position is calculated from the difference-over-sum of the two signals. The device was tested at Cornell High Energy Synchrotron Source with both 17 keV and 59 keV x-rays. For intensity monitoring, the Ar-scintillation monitor performance is comparable to standard ion chambers in terms of precision. As an X-ray beam position monitor the new device response is linear with vertical beam position over a 2 mm span with a precision of 2 {mu}m.

  3. Fundamental and harmonics of Thomson backscattered X-rays from an intense laser beam

    Microsoft Academic Search

    Cha-Mei Tang; B. Hafizi; Sally K. Ride

    1993-01-01

    We have formulated and obtained analytical expressions for Thomson backscattered X-ray radiation for an electron beam interacting with a linearly polarized electromagnetic undulator. The analytical expressions are valid for the fundamental and harmonics with arbitrarily large laser intensities. The formulation includes the effect of small angular misalignment between the laser pulse and the electron beam. This misalignment is found to

  4. Study on fundamental processes of laser welded metals observed with intense x-ray beams

    NASA Astrophysics Data System (ADS)

    Muramatsu, T.; Daido, H.; Shobu, T.; Takase, K.; Tsukimori, K.; Kureta, M.; Segawa, M.; Nishimura, A.; Suzuki, Y.; Kawachi, T.

    With use of photon techniques including visible light, soft and hard x-rays, precise fundamental laser welding processes in the repair and maintenance of nuclear plant engineering were reviewed mechanistically. We make discussions centered on the usefulness of an intense soft x-ray beams for evaluations of spatial residual strain distribution and welded metal convection behavior including the surface morphology. Numerical results obtained with a general purpose three-dimensional code SPLICE for the simulation of the welding and solidifying phenomena. Then it is concluded that the x-ray beam would be useful as one of the powerful tools for understanding the mechanisms of various complex phenomena with higher accuracy and higher resolution.

  5. Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines

    SciTech Connect

    Kummer, K.; Fondacaro, A.; Yakhou-Harris, F.; Sessi, V.; Brookes, N. B. [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, B.P. 220, F-38043 Grenoble Cedex (France); Pobedinskas, P.; Janssens, S. D.; Haenen, K. [Hasselt University, Institute for Materials Research (IMO), Wetenschapspark 1, B-3590 Diepenbeek (Belgium); IMEC vzw, IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek (Belgium); Williams, O. A. [Fraunhofer Institut Angewandte Festkoerperphysik, Tullastrasse 72, 79108 Freiburg (Germany); School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Hees, J. [Fraunhofer Institut Angewandte Festkoerperphysik, Tullastrasse 72, 79108 Freiburg (Germany)

    2013-03-15

    Quantitative analysis of X-ray absorption and dichroism data requires knowledge of the beamline photon flux during the measurements. We show that thin conductive (B-doped) diamond thin films can be an alternative to the widely used gold meshes for monitoring the beam intensity of soft X-ray beamlines in situ. Limited by the carbon extended x-ray absorption fine structure oscillations, the diamond films become applicable beginning from about 600 eV photon energy, where the important transition metal edges and the rare-earth edges are found. The 100 nm and 250 nm thick free-standing diamond films were grown and tested against standard gold meshes in real-life dichroism experiments performed at beamline ID08 of the European Synchrotron Radiation Facility, Grenoble, France. Quantitative agreement was found between the two experimental data sets. The films feature an extremely high transmission of about 90% and, at the same time, yield a sufficiently strong and clean reference signal. Furthermore, the thin films do not affect the shape of the transmitted beam. X-rays passing mesh-type monitors are subject to diffraction effects, which widen the beam and become particularly disturbing for small beamsizes in the micrometer range.

  6. Generating Intense Attosecond X-Ray Pulses Using Ultraviolet-Laser-Induced Microbunching in Electron Beams

    SciTech Connect

    Xiang, D.; Huang, Z.; Stupakov, G.; /SLAC

    2009-03-04

    We propose a scheme that combines the echo-enabled harmonic generation technique with the bunch compression and allows to generate harmonic numbers of a few hundred in a microbunched beam through up-conversion of the frequency of an ultraviolet seed laser. Sending this beam through a short undulator results in an isolated sub-100 attoseconds pulse of x-ray radiation. Using a representative realistic set of parameters, we show that 1 nm x-ray pulse with peak power exceeding 100 MW and duration as short as 34 attoseconds (FWHM) can be generated from a 200 nm ultraviolet seed laser.

  7. Quantitative Measurements of X-ray Intensity

    SciTech Connect

    Haugh, M. J., Schneider, M.

    2011-09-01

    This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

  8. Towards tabletop production of intense quasimonochromatic X-ray beams using small 2-20 MeV accelerators

    NASA Astrophysics Data System (ADS)

    Avakian, Robert O.; Ispirian, Karo A.

    2005-08-01

    The existing synchrotron radiation sources and the fourth generation x-ray sources, which are projected at SLAC, USA, and DESY, Germany, are very expensive. For this reason the search for the novel and cheaper sources using various types of radiation produced by 2-20 MeV electrons available at many hospitals, universities and firms in various countries is of great interest. A review of the physics, history, new theoretical and experimental results and of some applications is given with a purpose to consider the possibilities of construction of small tabletop sources of quasimonochromatic X-ray photon beams necessary for scientific, industrial, medicine and other applications.

  9. X-ray intensity interferometer for undulator radiation

    SciTech Connect

    Gluskin, E.; McNulty, I.; Viccaro, P.J. [Argonne National Lab., IL (United States); Howells, M.R. [Lawrence Berkeley Lab., CA (United States)

    1991-12-31

    Intensity interferometry is well established with visible light but has never been demonstrated with x-radiation. We propose to measure the transverse coherence of an x-ray beam, for the first time, using the method of Hanbury Brown and Twiss. The x-ray interferometer consists of an array of slits, a grazing incidence reflective beamsplitter, a pair of fast multichannel plate detectors and a broadband, low-noise correlator circuit. The NSLS X1 or X13 soft x-ray undulator will supply the partially coherent x-rays. We are developing this technique to characterize the coherence properties of x-ray beams from high brilliance insertion devices at third-generation synchrotron light facilities such as the Advanced Photon Source and the Advanced Light Source. 17 refs.

  10. X-ray intensity interferometer for undulator radiation

    SciTech Connect

    Gluskin, E.; McNulty, I.; Viccaro, P.J. (Argonne National Lab., IL (United States)); Howells, M.R. (Lawrence Berkeley Lab., CA (United States))

    1991-01-01

    Intensity interferometry is well established with visible light but has never been demonstrated with x-radiation. We propose to measure the transverse coherence of an x-ray beam, for the first time, using the method of Hanbury Brown and Twiss. The x-ray interferometer consists of an array of slits, a grazing incidence reflective beamsplitter, a pair of fast multichannel plate detectors and a broadband, low-noise correlator circuit. The NSLS X1 or X13 soft x-ray undulator will supply the partially coherent x-rays. We are developing this technique to characterize the coherence properties of x-ray beams from high brilliance insertion devices at third-generation synchrotron light facilities such as the Advanced Photon Source and the Advanced Light Source. 17 refs.

  11. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    NASA Astrophysics Data System (ADS)

    Habibi, M.; Ghamari, F.

    2014-05-01

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  12. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    SciTech Connect

    Habibi, M., E-mail: habibi.physics@gmail.com [Young Researchers and Elite Club, Shirvan Branch, Islamic Azad University, Shirvan (Iran, Islamic Republic of); Ghamari, F. [Young Researchers and Elite Club, Khorramabad Branch, Islamic Azad University, Khorramabad (Iran, Islamic Republic of)

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  13. New techniques for the measurement of x-ray beam or x-ray optics quality

    NASA Astrophysics Data System (ADS)

    Zeitoun, Philippe; Balcou, Philippe; Bucourt, Samuel; Benredjem, Djamel; Delmotte, Franck; Dovillaire, Guillaume; Douillet, Denis; Dunn, James; Faivre, G.; Fajardo, Marta; Goldberg, Kenneth A.; Idir, Mourad; Hubert, Sebastien; Hunter, Jim; Jacquemot, Sylvie; Kazamias, Sophie; le Pape, Sebastien; Levecq, Xavier; Lewis, Ciaran L. S.; Marmoret, Remy; Mercere, Pascal; Morlens, A. S.; Naulleau, Patrick P.; Remond, Christian; Rocca, Jorge J.; Sebban, Stephane; Smith, Raymond F.; Ravet, Marie-Francoise; Troussel, Philippe; Valentin, Constance; Vanbostal, Laurent

    2003-12-01

    Metrology of XUV beams and more specifically X-ray laser (XRL) beam is of crucial importance for development of applications. We have then developed several new optical systems enabling to measure the x-ray laser optical properties. By use of a Michelson interferometer working as a Fourier-Transform spectrometer, the line shapes of different x-ray lasers have been measured with an unprecedented accuracy (??/?~10-6). Achievement of the first XUV wavefront sensor has enable to measure the beam quality of laser-pumped as well as discharge pumped x-ray lasers. Capillary discharge XRL has demonstrated a very good wavefront allowing to achieve intensity as high 3*1014 Wcm-2 by focusing with a f = 5 cm mirror. The measured sensor accuracy is as good as ?/120 at 13 nm. Commercial developments are under way.

  14. The structural state of epitaxial ZnO layers assessed by measuring the integral intensity of three- and two-beam X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Kyutt, R. N.; Ivanov, S. V.

    2014-10-01

    Three-beam X-ray diffraction (XRD) has been measured using the Renninger scheme in epitaxial ZnO layers with various thicknesses and degrees of crystal perfection. The integral intensity of three-beam XRD reflections has been analyzed and compared to that of two-beam reflections in the Bragg and Laue geometry. It is established that, for thin ZnO layers grown in the presence of excess oxygen, the integral intensity of three-beam diffraction peaks and Laue reflections is much smaller than that for layers of the same thickness grown in the presence of excess zinc. This fact is explained by the formation of a textured sublayer in the former case.

  15. Bunch by Bunch X-Ray Beam Position and Intensity Monitoring Using a Single Crystal Diamond Detector

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Tallaire, A.; Achard, J.; Carrato, S.; Cautero, G.; de Sio, A.; di Fraia, M.; Giuressi, D.; Menk, R. H.; Pace, E.

    2012-08-01

    Diamond is an outstanding material for the production of semitransparent in situ photon beam monitors which can withstand the high dose rates occurring in new generation synchrotron radiation storage rings and in free electron lasers. Here we report on the development of a 500 ?m thick freestanding, single-crystal chemical vapor deposited diamond detector with segmented electrodes; it exhibits a high resistivity of some 1015 cm which allows charge integration operations. Using the latter at a frame rate of 8.33 kHz in combination with a needle synchrotron radiation beam and mesh scans, the inhomogeneity of the sensor was found to be of the order of 2%. With a measured electronics noise of 2 pA / Hz1/2 a 0.05% relative precision in the intensity measurements (at 1 ?A) and a 0.1 ?m resolution in the position encoding have been estimated. Moreover, the high electron-hole mobility of diamond compared with other active materials enables very fast charge collection. This allowed us to utilize single pulse integration to simultaneously detect the intensity and the position of each synchrotron radiation photon bunch generated by a bending magnet.

  16. Calibrating X-ray Imaging Devices for Accurate Intensity Measurement

    SciTech Connect

    Haugh, M. J.

    2011-07-28

    The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

  17. Effects of intense x-ray radiation on polycapillary fiber performance

    Microsoft Academic Search

    Bimal K. Rath; D. C. Aloisi; Donald H. Bilderback; N. Gao; Walter M. Gibson; F. A. Hofmann; B. E. Homan; Chris J. Jezewski; I. L. Klotzko; J. M. Mitchell; S. M. Owens; Johannes B. Ullrich; Lei Wang; Gregory M. Wells; Qi Fan Xiao; Carolyn A. MacDonald

    1995-01-01

    Several applications of Kumakhov polycapillary optics require extended exposure to intense x- ray radiation. No degradation of performance has been observed when using polycapillary x- ray optics with laboratory sources. As part of an ongoing study to develop an understanding of damage mechanisms and performance limitations, borosilicate glass polycapillaries have been exposed to white beam bending magnet synchrotron radiation with

  18. Beam-hardening in simulated X-ray tomography

    Microsoft Academic Search

    K. Ramakrishna; K. Muralidhar; P. Munshi

    2006-01-01

    Polychromatic X-ray sources are used universally in computerized tomography to obtain adequate intensity of photons. These sources, however, can produce some artifacts in the reconstructed image due to non-linearity. Beam-hardening is one such artifact, which produces false line integrals due the photon-energy dependence of the attenuation co-efficient.The present investigation deals with the process of estimating the equivalent monoenergetic data, m,

  19. Experimental investigation of beam heating in a soft X-ray scanning transmission X-ray microscope

    E-print Network

    Hitchcock, Adam P.

    Experimental investigation of beam heating in a soft X-ray scanning transmission X-ray microscope and an accuracy of Æ1 C has been fabricated for scanning transmission X-ray microscopes (STXM). Here we describe the current generation of soft X-ray (60­2500 eV) scan- ning transmission X-ray microscopes (STXM) to focus

  20. Generation of the Submicron Soft X-Ray Beam Using a Fresnel Zone Plate

    NASA Astrophysics Data System (ADS)

    Nishikino, M.; Kawazome, H.; Tanaka, M.; Kishimoto, M.; Hasegawa, N.; Ochi, Y.; Kawachi, T.; Sukegawa, K.; Yamatani, H.; Nagashima, K.; Kato, Y.

    We have developed a fully coherent x-ray laser at 13.9 nm and the application research has been started. The generation of submicron x-ray beam is important for the application of high intensity x-ray beam, such as the non-linear optics, the material science, and the biology. The submicron x-ray bee am is generated by the soft x-ray laser with using a Fresnel zone plate. The spot diameter is estimated about 680 nm (290 nm at FWHM) by the theoretical calculation. In this experiment, the diameter of the x-ray beam is measured by the knife-edge scan. The diameter and the intensity are estimated 730 nm (310 nm at FWHM) and 3x1011 W/cm2, respectively.

  1. Hard X-ray emission from high-intensity femtosecond laser plasma and its application to X-ray diffraction

    Microsoft Academic Search

    S. Grantham; C. Kim; C. DePriest; M. Richardson

    1998-01-01

    We present Laue diffraction experiments using a fs laser plasma X-ray ultrashort pulse source as preliminary experiments for time resolved X-ray Laue diffraction. The Laue method in X-ray diffraction experiments employs an X-ray beam consisting of a range of wavelengths to illuminate a stationary crystal

  2. High energy transmission annular beam X-ray diffraction.

    PubMed

    Dicken, Anthony; Shevchuk, Alex; Rogers, Keith; Godber, Simon; Evans, Paul

    2015-03-01

    We demonstrate material phase retrieval by linearly translating extended polycrystalline samples along the symmetry axis of an annular beam of high-energy X-rays. A series of pseudo-monochromatic diffraction images are recorded from the dark region encompassed by the beam. We measure Bragg maxima from different annular gauge volumes in the form of bright spots in the X-ray diffraction intensity. We present the experiment data from three materials with different crystallographic structural properties i.e. near ideal, large grain size and preferred orientation. This technique shows great promise for analytical inspection tasks requiring highly penetrating radiation such as security screening, medicine and non-destructive testing. PMID:25836851

  3. Two-dimensional measurement of focused hard X-ray beam profile using coherent X-ray diffraction of isolated nanoparticle

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukio; Kubo, Hideto; Tsutsumi, Ryosuke; Sakaki, Shigeyuki; Zettsu, Nobuyuki; Nishino, Yoshinori; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2010-05-01

    A method for evaluating the two-dimensional photon density distribution in focused hard X-ray beams is proposed and demonstrated in a synchrotron experiment at SPring-8. A synchrotron X-ray beam of 11.8 keV is focused to a ˜1 ?m spot by Kirkpatrick-Baez mirrors. The two-dimensional intensity distribution of the focused beam is derived by monitoring the forward diffracted intensity from an isolated silver nanocube with an edge length of ˜150 nm positioned in the beam waist, which is two-dimensionally scanned. Furthermore, the photon density of X-rays illuminated onto the nanocube is estimated by utilizing coherent X-ray diffraction microscopy. This method is useful for evaluating the photon density distribution of hard X-ray beams focused to a spot size of less than a few micrometers.

  4. Two-dimensional measurement of focused hard X-ray beam profile using coherent X-ray diffraction of isolated nanoparticle

    Microsoft Academic Search

    Yukio Takahashi; Hideto Kubo; Ryosuke Tsutsumi; Shigeyuki Sakaki; Nobuyuki Zettsu; Yoshinori Nishino; Tetsuya Ishikawa; Kazuto Yamauchi

    2010-01-01

    A method for evaluating the two-dimensional photon density distribution in focused hard X-ray beams is proposed and demonstrated in a synchrotron experiment at SPring-8. A synchrotron X-ray beam of 11.8keV is focused to a ?1?m spot by Kirkpatrick–Baez mirrors. The two-dimensional intensity distribution of the focused beam is derived by monitoring the forward diffracted intensity from an isolated silver nanocube

  5. Thermal deformation of cryogenically cooled silicon crystals under intense X-ray beams: measurement and finite-element predictions of the surface shape

    PubMed Central

    Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter

    2013-01-01

    X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298

  6. Thermal deformation of cryogenically cooled silicon crystals under intense X-ray beams: measurement and finite-element predictions of the surface shape.

    PubMed

    Zhang, Lin; Sánchez Del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I; Glatzel, Pieter

    2013-07-01

    X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298

  7. Generation of intense ultrashort x-ray pulses

    SciTech Connect

    Eder, D.C.; London, R.A.; Rosen, M.D. [Lawrence Livermore National Lab., CA (United States); Strobel, G.L. [Georgia Univ., Macon, GA (United States)

    1993-08-01

    Modeling of x-ray emission from targets heated by an ultrashort-pulse high-intensity optical laser is discussed. One application, using the emitted x rays, is pumping inner-shell photo-ionized x-ray lasers. Short wavelength lasing ({lambda} {le} 15 {Angstrom}) requires fast rise-time 1--3 key x rays to ionize inner K-shell electrons. It has been shown that structured targets, consisting of grooves on a solid material or a composite of clusters, have high absorption. We model grooved targets as an ensemble of exploding foils finding that the rise time of x rays is rapid enough for pumping inner-shell x-ray lasers. We show that simple atomic models can overestimate the energy in x-ray emission bands. High-Z materials are found to have the highest conversion efficiency but mid-Z materials can be used to provide a band of emission at a particular energy. We show that the pondermotive inhibition of expansion has only a small effect on the x-ray emission. The emission of a Au plasma is found to be appropriate for pumping inner-shell lasing at 14.6 {Angstrom} in Ne. The required optical laser intensity is of order 10{sup 17} W/cm{sup 2} using a 100 fsec FWHM duration pulse. To produce a laser with a gain-length product of order 10 requires 5--15 J of optical energy.

  8. Use of active-edge silicon detectors as X-ray beam monitors

    Microsoft Academic Search

    C. J. Kenney; J. Hasi; Sherwood Parker; A. C. Thompson; E. Westbrook

    2007-01-01

    Silicon detectors have been developed which are active to within several microns of the physical edge of the detector. These active-edge devices can be placed near an intense X-ray beam to accurately measure the X-ray beam properties. In addition, they can be fabricated in a variety of geometries that will be useful for monitoring the intensity, profile, and position of

  9. Saturable absorption of intense hard X-rays in iron

    NASA Astrophysics Data System (ADS)

    Yoneda, Hitoki; Inubushi, Yuichi; Yabashi, Makina; Katayama, Tetsuo; Ishikawa, Tetsuya; Ohashi, Haruhiko; Yumoto, Hirokatsu; Yamauchi, Kazuto; Mimura, Hidekazu; Kitamura, Hikaru

    2014-10-01

    In 1913, Maurice de Broglie discovered the presence of X-ray absorption bands of silver and bromine in photographic emulsion. Over the following century, X-ray absorption spectroscopy was established as a standard basis for element analysis, and further applied to advanced investigation of the structures and electronic states of complex materials. Here we show the first observation of an X-ray-induced change of absorption spectra of the iron K-edge for 7.1-keV ultra-brilliant X-ray free-electron laser pulses with an extreme intensity of 1020?W?cm?2. The highly excited state yields a shift of the absorption edge and an increase of transparency by a factor of 10 with an improvement of the phase front of the transmitted X-rays. This finding, the saturable absorption of hard X-rays, opens a promising path for future innovations of X-ray science by enabling novel attosecond active optics, such as lasing and dynamical spatiotemporal control of X-rays.

  10. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube

    NASA Astrophysics Data System (ADS)

    Kayser, Y.; B?achucki, W.; Dousse, J.-Cl.; Hoszowska, J.; Neff, M.; Romano, V.

    2014-04-01

    The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-ray tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO2 optical fibers.

  11. High-intensity laser synchrotron x-ray source

    SciTech Connect

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL`s Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0{sub 2} laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0{sub 2} laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV ({approximately}{Angstrom}) x-rays of 10-ps pulse duration, with a flux of {approximately}10{sup 19} photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10{sup 21}{minus}10{sup 22} photons/sec level, after the ongoing ATF CO{sub 2} laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO{sub 2} laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering.

  12. The low intensity X-ray imaging scope /Lixiscope/

    NASA Technical Reports Server (NTRS)

    Yin, L. I.; Trombka, J. I.; Seltzer, S. M.; Webber, R. L.; Farr, M. R.; Rennie, J.

    1978-01-01

    A fully portable, small-format X-ray imaging system, Lixiscope (low intensity X-ray imaging scope) is described. In the prototype, which has been built to demonstrate the feasibility of the Lixiscope concept, only well-developed and available components have been used. Consideration is given to the principles of operation of the device, some of its performance characteristics as well as possible dental, medical and industrial applications.

  13. X-ray beam hardening correction by minimizing reprojection distance

    NASA Astrophysics Data System (ADS)

    Kingston, Andrew M.; Myers, Glenn R.; Varslot, Trond K.

    2012-10-01

    We address the problem of tomographic image quality degradation due to the effects of beam hardening when using a polychromatic X-ray source. Beam hardening refers to the preferential attenuation of low-energy (or soft) X-rays resulting in a beam with a higher average energy (i.e., harder). In projection images, thin or low-Z materials appear more dense relative to thick or higher-Z materials. This misrepresentaion produces artifacts in the reconstructed image such as cupping and streaking. Our method involves a post-acquisition software correction that applies a beam-hardening correction curve to remap the linearised projection intensities. The curve is modelled by an eighth-order polynomial and assumes an average material for the object. The process to determine the best correction curve requires precisely 8 reconstructions and re-projections of the experiment data. The best correction curve is defined as that which generates a projection set p that minimises the reprojection distance. Reprojection distance is defined as the L2 norm of the difference between p, a set of projections, and RR†p, the result after p is reconstructed and then reprojected, i.e., ?RR†p - p?2. Here R denotes the projection operator and R† is its Moore-Penrose pseudoinverse, i.e., the reconstruction operator. This technique was designed for single-material objects and in this case the calculated curve matches that determined experimentally. However, this technique works very well for multiple-material objects where the resulting curve is a kind of average of all materials present. We show that this technique corrects for both cupping and streaking in tomographic images by including several experimental examples. Note that this correction method requires no knowledge of the X-ray spectrum or materials present and can therefore be applied to old data sets.

  14. X-ray beam size measurements on the Advanced Test Accelerator

    SciTech Connect

    Struve, K.W.; Chambers, F.W.; Lauer, E.J.; Slaughter, D.R.

    1986-01-01

    The electron beam size has been determined on the Advanced Test Accelerator (ATA) by intercepting the beam with a target and measuring the resulting x-ray intensity as a function of time as the target is moved through the beam. Several types of targets have been used. One is a tantalum rod which extends completely across the drift chamber. Another is a tungsten powder filled carbon crucible. Both of these probes are moved from shot to shot so that the x-ray signal intensity varies with probe position. A third is a larger tantalum disk which is inserted on beam axis to allow determining beam size on a one shot basis. The x-ray signals are detected with an MCP photomultiplier tube located at 90/sup 0/ to the beamline. It is sufficiently shielded to reject background x-rays and neutrons. The signals were digitized, recorded and later unfolded to produce plots of x-ray intensity versus probe position for several times during the pulse. The presumption that the x-ray intensity is proportional to beam current density is checked computationally. Details of the probe construction and PMT shielding, as well as sample measurements are given.

  15. Polycrystalline diamond x-ray sensors: intensity and field dependent response

    Microsoft Academic Search

    M. C. Rossi; G. Conte; V. Ralchenko

    2007-01-01

    X-ray photoconductive sensors based on high quality polycrystalline diamond were implemented and their response was measured as a function of the incident intensity, at different applied voltage in the range 0-100 V. At each beam intensity, the sensor current increases linearly with applied voltage up to about 50 V, then the increase slows toward a saturation. The sensor responsivity R

  16. Near-monochromatic X-ray beams produced by the free electron laser and Compton backscatter

    Microsoft Academic Search

    FRANK E. CARROLL; JAMES W. WATERS; RON R. PRICE; CHARLES A. BRAU; CARLTON F. ROOS; NORMAN H. TOLK; DAVID R. PICKENS; W. HOYT STEPHENS

    1990-01-01

    The intense photon output of a free electron laser may be made to collide with its own high energy electron beam to create nearly monochromatic x-rays using Compton backscatter techniques. These x-rays can be used for imaging and non-imaging diagnostic and therapeutic experiments. The initial configuration of the Vanderbilt Medical Free Electron Laser (Sierra Laser Systems, Sunnyvale, CA) produces intense

  17. Parametric X-ray radiation for calibration of X-ray space telescopes and generation of several X-ray beams

    Microsoft Academic Search

    A. V Shchagin; N. A Khizhnyak; R. B Fiorito; D. W Rule; X Artru

    2001-01-01

    The setup based on a moderate energy linear accelerator (linac) is proposed to provide users with a tunable, quasi-monochromatic, linearly polarized X-ray beam. The effect of parametric X-ray radiation (PXR) from relativistic electrons in a crystal is used in an X-ray source. The application of the setup for calibration of X-ray space telescopes and other equipment is considered. The setup

  18. Silicon single crystal as back-reflector for high-intensity hard x-rays

    NASA Astrophysics Data System (ADS)

    Pardini, Tom; Boutet, Sébastien; Bradley, Joseph; Doeppner, Tilo; Fletcher, Luke B.; Gardner, Dennis F.; Hill, Randy M.; Hunter, Mark S.; Krzywinski, Jacek; Messerschmidt, Marc; Pak, Arthur E.; Quirin, Florian; Sokolowski-Tinten, Klaus; Williams, Garth J.; Hau-Riege, Stefan P.

    2014-09-01

    At the Lawrence Livermore National Laboratory (LLNL) we have engineered a silicon prototype sample that can be used to reflect focused hard x-ray photons at high intensities in back-scattering geometry.1 Our work is motivated by the need for an all-x-ray pump-and-probe capability at X-ray Free Electron Lasers (XFELs) such as the Linac Coherent Light Source (LCSL) at SLAC. In the first phase of our project, we exposed silicon single crystal to the LCLS beam, and quantitatively studied the x-ray induced damage as a function of x-ray fluence. The damage we observed is extensive at fluences typical of pump-and-probe experiments. The conclusions drawn from our data allowed us to design and manufacture a silicon mirror that can limit the local damage, and reflect the incident beam before its single crystal structure is destroyed. In the second phase of this project we tested this prototype back-reflector at the LCLS. Preliminary results suggest that the new mirror geometry yields reproducible Bragg reflectivity at high x-ray fluences, promising a path forward for silicon single crystals as x-ray back-reflectors.

  19. An ultra fast electron beam x-ray tomography scanner

    Microsoft Academic Search

    F. Fischer; D. Hoppe; E. Schleicher; G. Mattausch; H. Flaske; R. Bartel; U. Hampel

    2008-01-01

    This paper introduces the design of an ultra fast x-ray tomography scanner based on electron beam technology. The scanner has been developed for two-phase flow studies where frame rates of 1 kHz and higher are required. Its functional principle is similar to that of the electron beam x-ray CT scanners used in cardiac imaging. Thus, the scanner comprises an electron

  20. Quantitative measurement of hard x-ray spectra for high intensity laser produced plasma

    SciTech Connect

    Zhang, Z.; Nishimura, H.; Namimoto, T.; Fujioka, S.; Arikawa, Y.; Hosoda, H.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishikino, M.; Kawachi, T.; Sagisaka, A.; Orimo, S.; Ogura, K.; Pirozhkov, A.; Yogo, A.; Kiriyama, H.; Kondo, K. [Quantum Beam Science Directorate, Kansai Photon Science Institute, JAEA, Kyoto 619-0215 (Japan); Okano, Y. [Laser Research Center for Molecular Science, Institute for Molecular Science, National Institute of Natural Science 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan); Ohshima, S. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Pioneering Research Unit for Next Generation, Kyoto University, Uji 611-0011 (Japan)

    2012-05-15

    X-ray line spectra ranging from 17 to 77 keV were quantitatively measured with a Laue spectrometer, composed of a cylindrically curved crystal and a detector. Either a visible CCD detector coupled with a CsI phosphor screen or an imaging plate can be chosen, depending on the signal intensities and exposure times. The absolute sensitivity of the spectrometer system was calibrated using pre-characterized laser-produced x-ray sources and radioisotopes. The integrated reflectivity for the crystal is in good agreement with predictions by an open code for x-ray diffraction. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer agency for specific x-ray line emissions, is derived as a consequence of this work.

  1. Investigating dynamics of complex system irradiated by intense x-ray free electron laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, L.; Jurek, Z.; Osipov, T.; Murphy, B. F.; Santra, R.; Berrah, N.

    2015-04-01

    We carried out experimental and theoretical investigation of the response of a complex molecule, C60, to intense x-ray photon beam from a free-electron-laser. We show good agreement between the modelling and the experiment. Our model, which can be scaled well to larger systems, reveals femotosecond molecular dynamics details, at the level of atomic resolution, which are inaccessible directly by our experiments. Our results illustrate the variety of physical and chemical processes in the interaction between large molecules and intense x- ray pulses, including photoelectric effect, secondary ionization, recombination and inter-atomic Auger decays. The understanding of these processes has a broad impact on research that implements intense x-ray pulses.

  2. Nanoplasma Formation by High Intensity Hard X-rays

    PubMed Central

    Tachibana, T.; Jurek, Z.; Fukuzawa, H.; Motomura, K.; Nagaya, K.; Wada, S.; Johnsson, P.; Siano, M.; Mondal, S.; Ito, Y.; Kimura, M.; Sakai, T.; Matsunami, K.; Hayashita, H.; Kajikawa, J.; Liu, X.-J.; Robert, E.; Miron, C.; Feifel, R.; Marangos, J. P.; Tono, K.; Inubushi, Y.; Yabashi, M.; Son, S.-K.; Ziaja, B.; Yao, M.; Santra, R.; Ueda, K.

    2015-01-01

    Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5?keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays. PMID:26077863

  3. Nanoplasma Formation by High Intensity Hard X-rays.

    PubMed

    Tachibana, T; Jurek, Z; Fukuzawa, H; Motomura, K; Nagaya, K; Wada, S; Johnsson, P; Siano, M; Mondal, S; Ito, Y; Kimura, M; Sakai, T; Matsunami, K; Hayashita, H; Kajikawa, J; Liu, X-J; Robert, E; Miron, C; Feifel, R; Marangos, J P; Tono, K; Inubushi, Y; Yabashi, M; Son, S-K; Ziaja, B; Yao, M; Santra, R; Ueda, K

    2015-01-01

    Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5?keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays. PMID:26077863

  4. Advances in kilovoltage x-ray beam dosimetry

    NASA Astrophysics Data System (ADS)

    Hill, Robin; Healy, Brendan; Holloway, Lois; Kuncic, Zdenka; Thwaites, David; Baldock, Clive

    2014-03-01

    This topical review provides an up-to-date overview of the theoretical and practical aspects of therapeutic kilovoltage x-ray beam dosimetry. Kilovoltage x-ray beams have the property that the maximum dose occurs very close to the surface and thus, they are predominantly used in the treatment of skin cancers but also have applications for the treatment of other cancers. In addition, kilovoltage x-ray beams are used in intra operative units, within animal irradiators and in on-board imagers on linear accelerators and kilovoltage dosimetry is important in these applications as well. This review covers both reference and relative dosimetry of kilovoltage x-ray beams and provides recommendations for clinical measurements based on the literature to date. In particular, practical aspects for the selection of dosimeter and phantom material are reviewed to provide suitable advice for medical physicists. An overview is also presented of dosimeters other than ionization chambers which can be used for both relative and in vivo dosimetry. Finally, issues related to the treatment planning and the use of Monte Carlo codes for solving radiation transport problems in kilovoltage x-ray beams are presented.

  5. Monitoring x-ray beam damage on lipid films by an integrated Brewster angle microscope/x-ray diffractometer

    NASA Astrophysics Data System (ADS)

    Danauskas, Stephen M.; Ratajczak, Maria K.; Ishitsuka, Yuji; Gebhardt, Jeffrey; Schultz, David; Meron, Mati; Lin, Binhua; Lee, Ka Yee C.

    2007-10-01

    We describe an integrated Brewster angle microscope (BAM), Langmuir trough, and grazing incidence x-ray diffraction assembly. The integration of these three techniques allows for the direct observation of radiative beam damage to a lipid monolayer at the air-water interface. Although beam damage has been seen in x-ray measurements, it has not been directly observed in situ at the micron scale. Using this integrated assembly, we examined the effects of radiative beam damage on Langmuir monolayers of 1,2-dimyristoyl-sn-glycero-3-[phospho-L-serine] (DMPS), 1:1 DMPS:1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 1:1 DMPS:1,2-dioleoyl-sn-glycero-3-phosphocholine held at a constant surface pressure. For constant surface pressure experiments, we observed a marked decrease in the surface area of the film upon exposure to the beam due to photodissociation. For a condensed lipid film, a change in refractive index of the film was observed post-beam-exposure, indicating areas of damage. For DMPS in an oxygenated environment, the Bragg peak intensity decreased with beam exposure. In mixed monolayer systems, with saturated and unsaturated lipids, an increase in the number of small saturated lipid domains was seen as the unsaturated lipid was preferentially damaged and lost from the monolayer. We show that BAM is a highly effective technique for in situ observation of the effects of radiative damage at the air/water interface during a synchrotron experiment.

  6. Interpretation of nanoparticle X-ray photoelectron intensities

    SciTech Connect

    Werner, Wolfgang S. M., E-mail: werner@iap.tuwien.ac.at; Chudzicki, Maksymillian; Smekal, Werner [Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna (Austria); Powell, Cedric J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8370 (United States)

    2014-06-16

    X-ray photoelectron (XPS) intensities have been simulated for spherical core-shell nanoparticles (NPs) in different geometrical arrangements in order to investigate the validity of commonly made assumptions for the interpretation of XPS NP intensities. The single-sphere approximation is valid for a powder sample when all spatial coordinates of the NP positions are uncorrelated. Correlations along either the depth coordinate or the lateral coordinates lead to features in the angular distribution that provide information on these correlations. The XPS intensity is proportional to the surface-to-volume ratio of nanoparticles but only for NP sizes exceeding the inelastic mean free path of the photoelectrons.

  7. L X-ray intensity ratios for high Z elements induced with X-ray tube

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Xu, Zhongfeng; Zhang, Limin

    2015-07-01

    We have studied the intensity ratios I(L?1,2)/I(L?1,2), I(L?1,2)/I(L?) and I(L?1,2)/I(L?) for elements Ta, W, Au and Pb by 13.1 keV bremsstrahlung radiation. In this work, experimental values were compared with the theoretical results and other experimental results. Theoretical results of the intensity ratios were calculated with theoretical subshell photoionization cross sections, fractional X-ray emission rates, fluorescence yields, and Coster-Kronig transition probabilities. Good agreement can be observed between experimental values and theoretical results. Comparing with L1 and L2 subshells, the ionization cross section of L3 subshell shows a large increase for Ta and W with the variation of excitation energy from 59.5 keV to 13.1 keV.

  8. High-intensity double-pulse X-ray free-electron laser.

    PubMed

    Marinelli, A; Ratner, D; Lutman, A A; Turner, J; Welch, J; Decker, F-J; Loos, H; Behrens, C; Gilevich, S; Miahnahri, A A; Vetter, S; Maxwell, T J; Ding, Y; Coffee, R; Wakatsuki, S; Huang, Z

    2015-01-01

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion. PMID:25744344

  9. High-intensity double-pulse X-ray free-electron laser

    PubMed Central

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F.-J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T.J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-01-01

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion. PMID:25744344

  10. High-intensity double-pulse X-ray free-electron laser

    DOE PAGESBeta

    Marinelli, A.; Ratner, D.; Lutman, A.A.; Turner, J.; Welch, J.; Decker, F.-J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A.A.; et al

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore »in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  11. High-intensity double-pulse X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F.-J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T. J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-03-01

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.

  12. Generation and application of the soft X-ray laser beam based on capillary discharge

    NASA Astrophysics Data System (ADS)

    Frolov, Oleksandr; Kolacek, Karel; Straus, Jaroslav; Schmidt, Jiri; Prukner, Vaclav; Shukurov, Andrey

    2014-05-01

    In this work we report on the generation and characterization of a focused soft X-ray laser beam with intensity and energy density that exceed the threshold for the ablation of PMMA. We demonstrate a feasibility of direct ablation of holes using a focused soft X-ray laser beam. Ablated craters in PMMA/gold-covered-PMMA samples were obtained by focusing the soft X-ray Ar8+ laser pulses generated by a 46.9 nm tabletop capillary-discharge-pumped driver with a spherical Si/Sc multilayer mirror. It was found that the focused beam is capable by one shot to ablate PMMA, even if the focus is significantly influenced by astigmatism. Analysis of the laser beam footprints by atomic force microscope shows that ablated holes have periodic surface structure (similarly as Laser-Induced Periodic Surface Structure) with period ~2,8 ?m and with peak-to-peak depth ~5-10 nm.

  13. Beam optics of exploding foil plasma x-ray lasers

    SciTech Connect

    London, R.A.

    1988-01-01

    In soft x-ray lasers, amplification is achieved as the x rays propagate down a long narrow plasma column. Refraction, due to electron density gradients, tends to direct the x-rays out of high density regions. This can have the undesirable effect of shortening the distance that the x ray stay within the plasma, thereby limiting the amount of amplification. The exploding foil design lessens refraction, but does not eliminate it. In this paper, a quantitative analysis of propagation and amplification in an exploding foil x-ray laser is presented. The density and gain profiles within the plasma are modeled in an approximate manner, which enables considerable analytic progress. It is found that refraction introduces a loss term to the laser amplification. The beam pattern from a parabolic gain profile laser has a dominant peak on the x-ray laser axis. The pattern from a quartic gain profile having a dip on-axis can produce a profile with off-axis peaks, in better agreement with recent experimental data.

  14. Highly porous nanoberyllium for X-ray beam speckle suppression.

    PubMed

    Goikhman, Alexander; Lyatun, Ivan; Ershov, Petr; Snigireva, Irina; Wojda, Pawel; Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor; Snigirev, Anatoly

    2015-05-01

    This paper reports a special device called a `speckle suppressor', which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1?mm thickness at 12?keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15?keV. It was applied for the transformation of the phase-amplitude contrast to the pure amplitude contrast in full-field microscopy. PMID:25931099

  15. Monolithic focused reference beam X-ray holography

    PubMed Central

    Geilhufe, J.; Pfau, B.; Schneider, M.; Büttner, F.; Günther, C. M.; Werner, S.; Schaffert, S.; Guehrs, E.; Frömmel, S.; Kläui, M.; Eisebitt, S.

    2014-01-01

    Fourier transform holography is a highly efficient and robust imaging method, suitable for single-shot imaging at coherent X-ray sources. In its common implementation, the image contrast is limited by the reference signal generated by a small pinhole aperture. Increased pinhole diameters improve the signal, whereas the resolution is diminished. Here we report a new concept to decouple the spatial resolution from the image contrast by employing a Fresnel zone plate to provide the reference beam. Superimposed on-axis images of distinct foci are separated with a novel algorithm. Our method is insensitive to mechanical drift or vibrations and allows for long integration times common at low-flux facilities like high harmonic generation sources. The application of monolithic focused reference beams improves the efficiency of high-resolution X-ray Fourier transform holography beyond all present approaches and paves the path towards sub-10?nm single-shot X-ray imaging. PMID:24394675

  16. Highly porous nanoberyllium for X-ray beam speckle suppression

    PubMed Central

    Goikhman, Alexander; Lyatun, Ivan; Ershov, Petr; Snigireva, Irina; Wojda, Pawel; Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor; Snigirev, Anatoly

    2015-01-01

    This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1?mm thickness at 12?keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15?keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy. PMID:25931099

  17. Nonlinear Atomic Response to Intense Ultrashort X Rays

    SciTech Connect

    Doumy, G. [Ohio State University, Columbus, Ohio 43210 (United States)] [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Roedig, C.; Blaga, C. I.; DiChiara, A. D.; Agostini, P.; DiMauro, L. F. [Ohio State University, Columbus, Ohio 43210 (United States); Son, S.-K. [Center for Free-Electron Laser Science, DESY, 22607 Hamburg (Germany); Santra, R. [Center for Free-Electron Laser Science, DESY, 22607 Hamburg (Germany)] [Department of Physics, University of Hamburg, 20355 Hamburg (Germany); Berrah, N.; Fang, L.; Hoener, M. [Western Michigan University, Kalamazoo, Michigan 49008 (United States); Bostedt, C.; Bozek, J. D.; Messerschmidt, M. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Bucksbaum, P. H.; Cryan, J. P.; Ghimire, S.; Glownia, J. M.; Reis, D. A. [Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kanter, E. P. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2011-02-25

    The nonlinear absorption mechanisms of neon atoms to intense, femtosecond kilovolt x rays are investigated. The production of Ne{sup 9+} is observed at x-ray frequencies below the Ne{sup 8+}, 1s{sup 2} absorption edge and demonstrates a clear quadratic dependence on fluence. Theoretical analysis shows that the production is a combination of the two-photon ionization of Ne{sup 8+} ground state and a high-order sequential process involving single-photon production and ionization of transient excited states on a time scale faster than the Auger decay. We find that the nonlinear direct two-photon ionization cross section is orders of magnitude higher than expected from previous calculations.

  18. Effects of the size of the X-ray beam in attenuation methods

    Microsoft Academic Search

    P F Judy; R M Witt

    1972-01-01

    X-ray attenuation methods to measure bone mineral mass and relative lean-fat composition of soft tissue utilize radionuclides as sources. The photon beam diameters are 1-3 mm to obtain adequate intensities for the activity of the sources used. Within these dimensions the bone mineral mass can change appreciably. To evaluate the effects of the finite size of the beam, the beam

  19. Ion beam induced surface graphitization of CVD diamond for x-ray beam position monitor applications

    Microsoft Academic Search

    Chian Liu; D. Shu; T. M. Kuzay; L. Wen; C. A. Melendres

    1996-01-01

    The Advanced Photon Source at ANL is a third-generation synchrotron facility that generates powerful x-ray beams on its undulator beamlines. It is important to know the position and angle of the x- ray beam during experiments. Due to very high heat flux levels, several patented x-ray beam position monitors (XBPM) exploiting chemical vapor deposition (CVD) diamond have been developed. These

  20. Beam hardening in X-ray reconstructive tomography

    Microsoft Academic Search

    R A Brooks; G Di Chiro

    1976-01-01

    As a polychromatic X-ray beam passes through matter, low energy photons are preferentially absorbed, and the (logarithmic) attenuation is no longer a linear function of absorber thickness. This leads to various artifacts in reconstructive tomography. If a water bag is used, the nonlinear attenuation in bone causes a distortion of the bone values and a spill-over inside the skull, or

  1. Tolerance of Arteries to Microplanar X-Ray Beams

    Microsoft Academic Search

    Boudewijn van der Sanden; Elke Braeuer-Krisch; Erik Albert Siegbahn; Clément Ricard; Jean-Claude Vial; Jean Laissue

    2010-01-01

    Purpose: The purpose is to evaluate effects of a new radiotherapy protocol, microbeam radiation therapy, on the artery wall. In previous studies on animal models, it was shown that capillaries recover well from hectogray doses of X-rays delivered in arrays of narrow ({<=}50 m) beams with a minimum spacing of 200 m. Here, short- and long-term effects of comparable microplanar

  2. Polarization spectroscopy of x-ray transitions from beam-excited highly charged ions

    SciTech Connect

    Beiersdorfer, P.; Lopez-Urrutia, J.C.; Decaux, V.; Widmann, K. [Department of Physics and Space Technology, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Department of Physics and Space Technology, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Neill, P. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States)] [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States)

    1997-01-01

    Polarization spectroscopy of x-ray lines represents a diagnostic tool to ascertain the presence of electron beams in high-temperature plasmas. Making use of the Livermore electron beam ion trap, which optimizes the linear x-ray line polarization by exciting highly charged ions with a monoenergetic electron beam, we have begun to develop polarization diagnostics and test theoretical models. Our measurement relies on the sensitivity of crystal spectrometers to the linear polarization of x-ray lines which depends on the value of the Bragg angle. We employed two spectrometers with differing analyzing crystals and simultaneously recorded the K-shell emission from heliumlike Fe{sup 24+} and lithiumlike Fe{sup 23+} ions at two different Bragg angles. A clear difference in the relative intensities of the dominant transitions is observed, which is attributed to the amount of linear polarization of the individual lines. {copyright} {ital 1997 American Institute of Physics.}

  3. Resonantly excited betatron hard X-Rays from Ionization Injected Electron Beam in a Laser Plasma Accelerator

    E-print Network

    Huang, K; Li, Y F; Li, D Z; Tao, M Z; Mirzaie, M; Ma, Y; Zhao, J R; Li, M H; Chen, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2015-01-01

    A new scheme for bright hard x-ray emission from laser wakefield electron accelerator is reported, where pure nitrogen gas is adopted. Intense Betatron x-ray beams are generated from ionization injected K-shell electrons of nitrogen into the accelerating wave bucket. The x-ray radiation shows synchrotron-like spectrum with total photon yield 8$\\times$10$^8$/shot and $10^8$ over 110keV. In particular, the betatron hard x-ray photon yield is 10 times higher compared to the case of helium gas under the same laser parameters. Particle-in-cell simulation suggests that the enhancement of the x-ray yield results from ionization injection, which enables the electrons to be quickly accelerated to the driving laser region for subsequent betatron resonance. Employing the present scheme,the single stage nitrogen gas target could be used to generate stable high brightness betatron hard x-ray beams.

  4. X-ray beam metrology and x-ray optic alignment by Hartmann wavefront sensing

    NASA Astrophysics Data System (ADS)

    Mercere, Pascal; Bucourt, Samuel; Cauchon, Gilles; Douillet, Denis; Dovillaire, Guillaume; Goldberg, Kenneth A.; Idir, Mourad; Levecq, Xavier; Moreno, Thierry; Naulleau, Patrick P.; Rekawa, Senajith; Zeitoun, Philippe

    2005-08-01

    In 2002, first experiments at the Advanced Light Source (ALS) at Berkeley, allowed us to test a first prototype of EUV Hartmann wave-front sensor. Wave-front measurements were performed over a wide wavelength range from 7 to 25 nm. Accuracy of the sensor was proved to be better than ?EUV/120 rms (?EUV = 13.4 nm, about 0.1 nm accuracy) with sensitivity exceeding ?EUV/600 rms, demonstrating the high metrological performances of this system. At the Swiss Light Source (SLS), we succeeded recently in the automatic alignment of a synchrotron beamline by Hartmann technique. Experiments were performed, in the hard X-ray range (E = 3 keV, ? = 0.414 nm), using a 4-actuators Kirkpatrick-Baez (KB) active optic. An imaging system of the KB focal spot and a hard X-ray Hartmann wave-front sensor were used alternatively to control the KB. The imaging system used a genetic algorithm to achieve the highest energy in the smallest spot size, while the wave-front sensor used the KB influence functions to achieve the smallest phase distortions in the incoming beam. The corrected beam achieved with help of the imaging system was used to calibrate the wave-front sensor. With both closed loops, we focused the beam into a 6.8x9 ?m2 FWHM focal spot. These results are limited by the optical quality of the imaging system.

  5. Full spatial characterization of a nanofocused x-ray free-electron laser beam by ptychographic imaging

    PubMed Central

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C.; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B.; Nilsson, Daniel; Uhlén, Fredrik; Vogt, Ulrich; Hertz, Hans M.; Schroer, Christian G.

    2013-01-01

    The emergence of hard X-ray free electron lasers (XFELs) enables new insights into many fields of science. These new sources provide short, highly intense, and coherent X-ray pulses. In a variety of scientific applications these pulses need to be strongly focused. In this article, we demonstrate focusing of hard X-ray FEL pulses to 125?nm using refractive x-ray optics. For a quantitative analysis of most experiments, the wave field or at least the intensity distribution illuminating the sample is needed. We report on the full characterization of a nanofocused XFEL beam by ptychographic imaging, giving access to the complex wave field in the nanofocus. From these data, we obtain the full caustic of the beam, identify the aberrations of the optic, and determine the wave field for individual pulses. This information is for example crucial for high-resolution imaging, creating matter in extreme conditions, and nonlinear x-ray optics. PMID:23567281

  6. Imaging quality assessment of multiplexing x-ray radiography based on multi-beam x-ray source technology

    Microsoft Academic Search

    J. Zhang; R. Peng; S. Chang; J. P. Lu; O. Zhou

    2010-01-01

    Multiplexing technique has been widely used in telecommunication, magnetic resonance imaging (MRI) and various spectroscopic applications to drastically increase system throughput. In the field of radiology, however, it was just getting started to attract researchers' attention recently due to the development of multi-beam x-ray source technology, especially the emergence of carbon nanotube (CNT) field emission based multi-beam x-ray source. The

  7. Initial study of quasi-monochromatic X-ray beam performance for X-ray computed mammotomography

    Microsoft Academic Search

    Randolph L. McKinley; Martin P. Tornai; Ehsan Samei; Marques L. Bradshaw

    2005-01-01

    We evaluate the feasibility, benefits, and operating parameters of a quasimonochromatic beam for a newly developed x-ray cone beam computed mammotomography application. The value of a near monochromatic x-ray source for fully 3D dedicated mammotomography is the expected improved ability to separate tissues with very small differences in attenuation coefficients while maintaining dose levels at or below that of existing

  8. Characterization of an x-ray laser beam

    NASA Astrophysics Data System (ADS)

    Le Pape, Sebastien; Zeitoun, Philippe; Rocca, Jorge J. G.; Carillon, Antoine; Dhez, Pierre; Francois, Marc; Hubert, S.; Idir, Mourad; Ros, David

    2001-12-01

    We report in this article the experimental and numerical tools, developed at the LSAI, for a complete characterization of an x-ray laser (XRL) beam. First, a Michelson interferometer has been used to realize a Fourrier transform spectroscopy experiment. A full comprehension of the measured linewidth requires a comparison of the XRL beam amplification in the plasma to raytrace simulation. Results of transient pumping XRL simulations are presented in this article. The last section is dedicated to a description of the XUV Shack-Hartmann wavefront sensor we have developed, and to the study of the capillary discharge XRL beam.

  9. Coherent convergent-beam time-resolved X-ray diffraction

    PubMed Central

    Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng

    2014-01-01

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153

  10. X-ray Intensity Fluctuation Spectroscopy Studies of Near-Atomic-Scale Disorder

    NASA Astrophysics Data System (ADS)

    Brauer, Stephan F.

    1996-03-01

    The technique of x-ray intensity fluctuation spectroscopy (XIFS) has been developed and used to make the first observations of the dynamics of critical fluctuations in a binary alloy at equilibrium.( S. Brauer, G.B. Stephenson, M. Sutton, R. Brüning, E. Dufresne, S.G.J. Mochrie, G. Grübel, J. Als-Nielsen, D.L. Abernathy, Phys. Rev. Lett. 74), 2010 (1995). A coherent beam of hard x-rays with 6 × 10^7 photons/second has been formed using a 4 ? m diameter pinhole aperture and a Si(111) crystal monochromator, at undulator beamline 9 (Troika) of the European Synchrotron Radiation Facility. The coherent x-ray beam was used to perform scattering measurements from a single crystal of Fe_3Al near the B2/DO3 order-disorder phase transition (T_c=824.1 K). Below T_c, static speckle patterns were observed near the (1/2 1/2 1/2) superlattice reflection, arising from antiphase domains in the ordered phase. Above Tc however, the scattered intensity was not constant but fluctuated in time. From the intensity time-correlation functions we deduce short-range order correlation times in the range 500-1600 seconds for temperatures 0.15-0.55 K above T_c. These results point the way to future studies of equilibrium dynamics using XIFS techniques.

  11. Theoretical analysis of the background intensity distribution in X-ray Birefringence Imaging using synchrotron bending-magnet radiation

    NASA Astrophysics Data System (ADS)

    Sutter, John P.; Dolbnya, Igor P.; Collins, Stephen P.; Harris, Kenneth D. M.; Edwards-Gau, Gregory R.; Palmer, Benjamin A.

    2015-04-01

    In the recently developed technique of X-ray Birefringence Imaging, molecular orientational order in anisotropic materials is studied by exploiting the birefringence of linearly polarized X-rays with energy close to an absorption edge of an element in the material. In the experimental setup, a vertically deflecting high-resolution double-crystal monochromator is used upstream from the sample to select the appropriate photon energy, and a horizontally deflecting X-ray polarization analyzer, consisting of a perfect single crystal with a Bragg reflection at Bragg angle of approximately 45°, is placed downstream from the sample to measure the resulting rotation of the X-ray polarization. However, if the experiment is performed on a synchrotron bending-magnet beamline, then the elliptical polarization of the X-rays out of the electron orbit plane affects the shape of the output beam. Also, because the monochromator introduces a correlation between vertical position and photon energy to the X-ray beam, the polarization analyzer does not select the entire beam, but instead selects a diagonal stripe, the slope of which depends on the Bragg angles of the monochromator and the polarization analyzer. In the present work, the final background intensity distribution is calculated analytically because the phase space sampling methods normally used in ray traces are too inefficient for this setup. X-ray Birefringence Imaging data measured at the Diamond Light Source beamline B16 agree well with the theory developed here.

  12. Calibration of a gated flat field spectrometer as a function of x-ray intensity

    SciTech Connect

    Xiong, Gang; Yang, Guohong; Li, Hang; Zhang, Jiyan, E-mail: zhangjiyanzjy@sina.com; Zhao, Yang; Hu, Zhimin; Wei, Minxi; Qing, Bo; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang 621900 (China)

    2014-04-15

    We present an experimental determination of the response of a gated flat-field spectrometer at the Shenguang-II laser facility. X-rays were emitted from a target that was heated by laser beams and then were divided into different intensities with a step aluminum filter and collected by a spectrometer. The transmission of the filter was calibrated using the Beijing Synchrotron Radiation Facility. The response characteristics of the spectrometer were determined by comparing the counts recorded by the spectrometer with the relative intensities of the x-rays transmitted through the step aluminum filter. The response characteristics were used to correct the transmission from two shots of an opacity experiment using the same samples. The transmissions from the two shots are consistent with corrections, but discrepant without corrections.

  13. Measurements of fusion reactions of low-intensity radioactive carbon beams on 12C and their implications for the understanding of X-ray bursts.

    PubMed

    Carnelli, P F F; Almaraz-Calderon, S; Rehm, K E; Albers, M; Alcorta, M; Bertone, P F; Digiovine, B; Esbensen, H; Niello, J O Fernández; Henderson, D; Jiang, C L; Lai, J; Marley, S T; Nusair, O; Palchan-Hazan, T; Pardo, R C; Paul, M; Ugalde, C

    2014-05-16

    The interaction between neutron-rich nuclei plays an important role for understanding the reaction mechanism of the fusion process as well as for the energy production through pycnonuclear reactions in the crust of neutron stars. We have performed the first measurements of the total fusion cross sections in the systems (10,14,15)C+(12)C using a new active target-detector system. In the energy region accessible with existing radioactive beams, a good agreement between the experimental and theoretical cross sections is observed. This gives confidence in our ability to calculate fusion cross sections for systems which are outside the range of today's radioactive beam facilities. PMID:24877935

  14. Measurements of Fusion Reactions of Low-Intensity Radioactive Carbon Beams on C12 and their Implications for the Understanding of X-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Niello, J. O. Fernández; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2014-05-01

    The interaction between neutron-rich nuclei plays an important role for understanding the reaction mechanism of the fusion process as well as for the energy production through pycnonuclear reactions in the crust of neutron stars. We have performed the first measurements of the total fusion cross sections in the systems C10,14,15+C12 using a new active target-detector system. In the energy region accessible with existing radioactive beams, a good agreement between the experimental and theoretical cross sections is observed. This gives confidence in our ability to calculate fusion cross sections for systems which are outside the range of today's radioactive beam facilities.

  15. FDTD simulation of high-intensity, ultrashort laser pulses for X-ray generation

    Microsoft Academic Search

    Dennis Sullivan

    1995-01-01

    Subpicosecond x-ray pulses are needed as sources for time-resolved x-ray scattering experiments. Ultrashort x-ray pulses can be generated by ultrashort, high-intensity laser pulses impinging on a solid target. A major limitation of this method is the low laser energy to x-ray energy conversion efficiency, This is due primarily to the large reflectivity of light on a solid target. A substantial

  16. Conceptual design study of an intense x-ray source for coronary angiography

    SciTech Connect

    Blumberg, L.N.

    1992-03-01

    Calculations are presented for several 1.4 GeV electron storage ring designs which, with an ultra-high field (80 kG) superconducting wiggler magnet and beam current I = 400 mA, will generate a 33.16 keV x-ray beam at 20 m from the wiggler of adequate intensity (6 10{sup 9}/mm{sup {minus}2} sec{sup {minus}1}) and areal size for iodine K-edge coronary dichromography in humans.

  17. Optimization of radiography applications using x-ray beams emitted by compact accelerators. Part I. Monte Carlo study of the hard x-ray spectrum

    SciTech Connect

    Marziani, M.; Taibi, A.; Di Domenico, G.; Gambaccini, M. [Dipartimento di Fisica, Universita di Ferrara, Ferrara FE-44100 (Italy) and INFN, Ferrara FE-44100 (Italy)

    2009-10-15

    Purpose: A 3-year project called LABSYNC has been recently funded by the European Commission, with the aim of designing a radiation facility based on a compact light source, i.e., a laboratory-sized commercial synchrotron, capable of accelerating electrons up to 6 or 20 MeV. An accurate spectral description of hard x rays emitted from thin targets, irradiated by electron beams circulating in the storage ring, is of primary interest for the design and the characterization of a beamline. This article, Part I, aims at optimizing some of the parameters which are critical for the design of medical applications based on the above compact light source. The goal was to evaluate the dependence of photon fluence and beam monochromaticity on electron-beam energy, target material, and thickness. Methods: The transport of 6 and 20 MeV electrons in a thin molybdenum, rhodium, and tungsten target is studied by means of Monte Carlo simulations using MCNPX. Configurations of the x-ray output port, different from the default forward-directed emission of the beam, are also investigated. A comparison with reference spectra for general diagnostic radiology and mammography is carried out. Results: It is shown that the emitted x-ray beams can be far more intense than those generated by conventional x-ray tubes for radiography applications. The profiles of the calculated polychromatic spectra resemble those generated by conventional x-ray tubes, with x-ray energies up to the energy of the incident-electron beam. An appreciable improvement in the monochromaticity of the beams can be obtained by viewing the x-ray emission from an output port antiparallel to the direction of the incident-electron beam. Conclusions: The optimum target thickness for tungsten target spectra is practically constrained by a trade-off between bremsstrahlung efficiency and focal-spot size requirements. A larger margin for optimization of target thickness is probably available for mammographic spectra. The constraint of a backward-directed (or, to a lesser extent, orthogonal) output port is to be considered mandatory for minimizing the high-energy tail of the spectral distribution and keeping the radiation dose to a reasonable level. It is also fundamental to evaluate the impact of the high-energy tail of the emitted spectra in x-ray imaging applications, since the energy range involved is significantly beyond the diagnostic range. This topic will be dealt with in Part II of the article.

  18. Fabrication of X-ray imaging zone plates by e-beam and X-ray lithography

    Microsoft Academic Search

    Longhua LiuGang; Gang Liu; Ying Xiong; Jie Chen; Wenjie Li; Yangchao Tian

    2010-01-01

    X-ray imaging and microscopy techniques have been developed in worldwide due to their capabilities of large penetration power\\u000a and high spatial resolution. Fresnel zone plates is considered to be one of the most convenient optic devices for X-ray imaging\\u000a and microscopy system. The zone plates with aspect ratio of 7 and 13 have been fabricated by e-beam lithography combined with

  19. A new high-speed x-ray beam chopper.

    SciTech Connect

    McPherson, A.; Wang, J.; Lee, P. L.; Mills, D. M.

    1999-10-29

    A new high-speed x-ray beam chopper using laser scanner technology has been developed and tested on the SRI-CAT sector 1 beamline at the Advanced Photon Source (APS) storage ring (1). As illustrated in figure 1, it is compact in size and has two sets of transmission windows: BK-7 glass for visible light transmission and 0.23-mm-thick Be for the transmission of x-rays. The rotor is made of aluminum and has a diameter of 50.8 mm. A 0.5-mm-wide and 2.29-mm-tall slit is cut through the center of the rotor. The circumference of the rotor has a coating of 1-mm-thick Ni, which gives an attenuation of 10{sup 8} at 30 keV. Turning at nearly 80000 RPM, this beam chopper has an opening time window of 2450 ns, corresponding to 67% of the revolution time of the APS storage ring. The primary feature in selecting laser scanner technology to develop into an x-ray beam chopper was the high level of rotational speed control of the rotor that makes up the beam chopper element (2). By using an optical feedback circuit to sample the rotational speed four times each revolution, the jitter in the position of the transmission open time window is only 3 ns at the 3 standard deviation level. The APS storage ring orbital frequency, supplied by the control room, is divided down to provide the appropriate drive frequency for the beam chopper motor controller. By this means, both the storage ring and the beam chopper are operating off the same master clock. After a turn-on time of about 15 to 20 seconds, the rotational precision of the motor results in immediate phase locking to the temporal structure of the APS storage ring. By inserting a Stanford delay generator between the frequency divider and the beam chopper motor controller, the phase between the storage ring temporal structure and the beam chopper rotation can be adjusted to position the transmission time window of the beam chopper on any desired part of the storage ring fill pattern. If an asymmetric fill pattern is used in the APS storage ring, as illustrated in figure 2, such that only one bucket falls within the transmission time window of the beam chopper, then time resolution as short as 100 ps becomes possible with this new compact beam chopper.

  20. Femtosecond electronic response of atoms to ultra-intense X-rays

    Microsoft Academic Search

    L. Young; E. P. Kanter; B. Krässig; Y. Li; A. M. March; S. T. Pratt; R. Santra; S. H. Southworth; N. Rohringer; L. F. Dimauro; G. Doumy; C. A. Roedig; N. Berrah; L. Fang; M. Hoener; P. H. Bucksbaum; J. P. Cryan; S. Ghimire; J. M. Glownia; D. A. Reis; J. D. Bozek; C. Bostedt; M. Messerschmidt

    2010-01-01

    An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength,

  1. Remote X ray measurements of the electron beam from the EXCEDE III experiment

    SciTech Connect

    Rappaport, S.A.; Rieder, R.J.; Reidy, W.P. [Visidyne, Burlington, MA (United States)] [and others

    1993-11-01

    The EXCEDE III rocket experiment successfully produced an artificial aurora on April 27, 1990, with an injected {approximately}18-A beam of {approximately}2.5-keV electrons. The experiment consisted on an accelerator module and a sensor module in a mother-daughter configuration. The beam was fired along the Earth`s magnetic field lines between the altitudes of {approximately}62 and 115 km during the flight. A major concern prior to the flight was that the injection of such an overdense electron beam into the lower ionosphere would charge the accelerator module to a significant fraction of the beam potential. To monitor the primary electrons remote from the rocket, two X ray proportional counters were included as part of the sensor module. X ray spectra from bremsstrahlung emission yield a direct measure of the primary electron beam energy outside the plasma sheath surrounding the accelerator module. Analysis of these spectra yields a beam energy of 2.2 {+-} 0.5 keV which indicates no substantial charging of the accelerator module for the entire time that the beam was on. The authors also find that the X ray intensity was modulated at the few percent level by firings of the attitude control jets. 121 refs., 7 figs.

  2. Cone-Beam X-Ray Tomography with Arbitrary-Orientation X-ray Tube

    Microsoft Academic Search

    D. Sueseenak; T. Chanwimalueang; W. Narkbuekaew; K. Chitsakul; C. Pintavirooj

    2006-01-01

    X-ray computed tomography is a technique to reconstruct an image of trans-axial slab of the object from a series of X-ray radiographs taken at a prior-known angle. Sequences of X-ray radiographs are served as two-dimensional projection data for a 3D tomography. The most popular Feldkamp algorithm which is based on filtered backprojection (FBP) approaches has shown to perform well for

  3. X-ray beam compression by tapered waveguides

    NASA Astrophysics Data System (ADS)

    Chen, H.-Y.; Hoffmann, S.; Salditt, T.

    2015-05-01

    We have fabricated linear tapered waveguide channels filled with air and imbedded in silicon for the hard x-ray regime, using a processing scheme involving e-beam lithography, reactive ion etching, and wafer bonding. Beam compression in such channels is demonstrated by coupling a pre-focused undulator beam into the channels, and recording the exit flux and far-field diffraction patterns. We achieved a compressed beam with a spot size of 16.48 nm (horizontal) × 14.6 nm (vertical) near the waveguide exit plane, as determined from the reconstructed near-field distribution, at an exit flux which is eight times higher than that of an equivalent straight channel. Simulations indicate that this gain could reach three to four orders of magnitude for longer channels with tapering in two directions.

  4. Tolerance of Arteries to Microplanar X-Ray Beams

    SciTech Connect

    Sanden, Boudewijn van der, E-mail: Boudewijn.vandersanden@ujf-grenoble.f [INSERM U836, Institute of Neuroscience Grenoble (France); Braeuer-Krisch, Elke [European Synchrotron Radiation Facility, Grenoble (France); Siegbahn, Erik Albert [Department of Oncology and Pathology, Karolinska Institutet, Stockholm (Sweden); Ricard, Clement [INSERM U836, Institute of Neuroscience Grenoble (France); Vial, Jean-Claude [CNRS UMR 5588, Physical Spectroscopy, Grenoble (France); Laissue, Jean [Institute of Pathology, University of Bern (Switzerland)

    2010-08-01

    Purpose: The purpose is to evaluate effects of a new radiotherapy protocol, microbeam radiation therapy, on the artery wall. In previous studies on animal models, it was shown that capillaries recover well from hectogray doses of X-rays delivered in arrays of narrow ({<=}50 {mu}m) beams with a minimum spacing of 200 {mu}m. Here, short- and long-term effects of comparable microplanar beam configurations on the saphenous artery of the mouse hind leg were analyzed in situ by use of nonlinear optics and compared with histopathologic findings. Methods and Materials: The left hind leg of normal mice including the saphenous artery was irradiated by an array of 26 microbeams of synchrotron X-rays (50 {mu}m wide, spaced 400 {mu}m on center) with peak entrance doses of 312 Gy and 2,000 Gy. Results: The artery remained patent, but narrow arterial smooth muscle cell layer segments that were in the microplanar beam paths became atrophic and fibrotic in a dose-dependent pattern. The wide tunica media segments between those paths hypertrophied, as observed in situ by two-photon microscopy and histopathologically. Conclusions: Clinical risks of long-delayed disruption or occlusion of nontargeted arteries from microbeam radiation therapy will prove less than corresponding risks from broad-beam radiosurgery, especially if peak doses are kept below 3 hectograys.

  5. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations. PMID:25322219

  6. Hard X-ray bremsstrahlung production in solar flares by high-energy proton beams

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.; Brown, J. C.

    1985-01-01

    The possibility that solar hard X-ray bremsstrahlung is produced by acceleration of stationary electrons by fast-moving protons, rather than vice versa, as commonly assumed, was investigated. It was found that a beam of protons which involves 1836 times fewer particles, each having an energy 1836 times greater than that of the electrons in the equivalent electron beam model, has exactly the same bremsstrahlung yield for a given target, i.e., the mechanism has an energetic efficiency equal to that of conventional bremsstrahlung models. Allowance for the different degrees of target ionization appropriate to the two models (for conventional flare geometries) makes the proton beam model more efficient than the electron beam model, by a factor of order three. The model places less stringent constraints than a conventional electron beam model on the flare energy release mechanism. It is also consistent with observed X-ray burst spectra, intensities, and directivities. The altitude distribution of hard X-rays predicted by the model agrees with observations only if nonvertical injection of the protons is assumed. The model is inconsistent with gamma-ray data in terms of conventional modeling.

  7. High intensity compact Compton X-ray sources: Challenges and potential of applications

    NASA Astrophysics Data System (ADS)

    Jacquet, M.

    2014-07-01

    Thanks to the exceptional development of high power femtosecond lasers in the last 15 years, Compton based X-ray sources are in full development over the world in the recent years. Compact Compton sources are able to combine the compactness of the instrument with a beam of high intensity, high quality, tunable in energy. In various fields of applications such as biomedical science, cultural heritage preservation and material science researches, these sources should provide an easy working environment and the methods currently used at synchrotrons could be largely developed in a lab-size environment as hospitals, labs, or museums.

  8. Food Irradiation Using Electron Beams and X-Rays

    NASA Astrophysics Data System (ADS)

    Miller, Bruce

    2003-04-01

    In this presentation we will discuss the technology of food irradiation using electron accelerators. Food irradiation has generally come to describe the use of ionizing radiation to decrease the population of, or prevent the growth of, undesirable biological organisms in food. The many beneficial applications include insect disinfestation, sprouting inhibition, delayed ripening, and the enhanced safety and sterilization of fresh and frozen meat products, seafood, and eggs. With special regard to food safety, bacteria such as Salmonella enteridis, Listeria monocytogenes, Campylobacter jejuni and Escherichia coli serotype O157:H7 are the primary causes of food poisoning in industrialized countries. Ionizing doses in the range of only 1-5 kilogray (kGy) can virtually eliminate these organisms from food, without affecting the food's sensory and nutritional qualities, and without inducing radioactivity. The key elements of an accelerator-based irradiation facility include the accelerator system, a scanning system, and a material handling system that moves the product through the beam in a precisely controlled manner. Extensive radiation shielding is necessary to reduce the external dose to acceptable levels, and a safety system is necessary to prevent accidental exposure of personnel during accelerator operation. Parameters that affect the dose distribution must be continuously monitored and controlled with process control software. The choice of electron beam vs x-ray depends on the areal density (density times thickness) of the product and the anticipated mass throughput. To eliminate nuclear activation concerns, the maximum kinetic energy of the accelerator is limited by regulation to 10 MeV for electron beams, and 5 MeV for x-rays. From penetration considerations, the largest areal density that can be treated by double-sided electron irradiation at 10 MeV is about 8.8 g/cm2. Products having greater areal densities must be processed using more penetrating x-rays. The mass throughput (dM/dt in kg/s) of an accelerator-based system is proportional to the average beam power (P in kW), and inversely proportional to the minimum required dose (Dm in kGy, with 1 kGy = 1 kJ/kg). The constant of proportionality is the mass throughput efficiency. Throughput efficiencies of 0.4 or better are typical of electron beam installations, but are only 0.025-0.035 for x-ray installations, primarily because of the inefficiency of bremsstrahlung generation at 5 MeV (about 8an axially-coupled, standing-wave, L-band linac with an average power in excess of 100 kW to achieve reasonable throughput rates with x-ray processing. Various design aspects of this new machine will be presented.

  9. Electromagnetic-Field Distribution Measurements in the Soft X-Ray Range: Full Characterization of a Soft X-Ray Laser Beam

    NASA Astrophysics Data System (ADS)

    Le Pape, S.; Zeitoun, Ph.; Idir, M.; Dhez, P.; Rocca, J. J.; François, M.

    2002-05-01

    We report direct measurement of the electromagnetic-field spatial distribution in a neonlike Ar capillary discharge-driven soft x-ray laser beam. The wave front was fully characterized in a single shot using a Shack-Hartmann diffractive optics sensor. The wave front was observed to be dependent on the discharge pressure and capillary length, as a result of beam refraction variations in the capillary plasma. The results predict ˜70% of the laser beam energy can be focused into an area 4 times the size of the diffraction-limited spot, reaching intensities of ˜4×1013W/cm2.

  10. Electromagnetic-field distribution measurements in the soft x-ray range: full characterization of a soft x-ray laser beam.

    PubMed

    Le Pape, S; Zeitoun, Ph; Idir, M; Dhez, P; Rocca, J J; François, M

    2002-05-01

    We report direct measurement of the electromagnetic-field spatial distribution in a neonlike Ar capillary discharge-driven soft x-ray laser beam. The wave front was fully characterized in a single shot using a Shack-Hartmann diffractive optics sensor. The wave front was observed to be dependent on the discharge pressure and capillary length, as a result of beam refraction variations in the capillary plasma. The results predict approximately 70% of the laser beam energy can be focused into an area 4 times the size of the diffraction-limited spot, reaching intensities of approximately 4 x 10(13) W/cm(2). PMID:12005683

  11. Monte Carlo simulator of realistic x-ray beam for diagnostic applications

    SciTech Connect

    Bontempi, Marco; Andreani, Lucia; Rossi, Pier Luca; Visani, Andrea [Biomechanics Laboratory, Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna (Italy); Department of Physics, University of Bologna, viale Berti Pichat 6/2, 40137 Bologna (Italy); Biomechanics Laboratory, Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna (Italy)

    2010-08-15

    Purpose: Monte Carlo simulation is a very useful tool for radiotherapy and diagnostic radiology. Yet even with the latest PCs, simulation of photon spectra emitted by an x-ray tube is a time-consuming task, potentially reducing the possibility to obtain relevant data such as dose evaluations, simulation of geometric settings, or monitor detector efficiency. This study developed and validated a method to generate random numbers for realistic beams in terms of photon spectrum and intensity to simulate x-ray tubes via Monte Carlo algorithms. Methods: Starting from literature data, the most common semiempirical models of bremsstrahlung are analyzed and implemented, adjusting their formulation to describe a large irradiation area (i.e., large field of view) and to take account of the heel effect as in common practice during patient examinations. Results: Simulation results show that Birch and Marshall's model is the fastest and most accurate for the aims of this work. Correction of the geometric size of the beam and validation of the intensity variation (heel effect) yielded excellent results with differences between experimental and simulated data of less than 6%. Conclusions: The results of validation and execution time showed that the tube simulator calculates the x-ray photons quickly and efficiently and is perfectly capable of considering all the phenomena occurring in a real beam (total filtration, focal spot size, and heel effect), so it can be used in a wide range of applications such as industry, medical physics, or quality assurance.

  12. Unveiling and Driving Hidden Resonances with High-Fluence, High-Intensity X-Ray Pulses

    SciTech Connect

    Kanter, E. P.; Kraessig, B.; Li, Y.; March, A. M.; Ho, P.; Southworth, S. H.; Young, L. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Rohringer, N. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Max Planck Institute for the Physics of Complex Systems, 01187 Dresden (Germany); Max Planck Advanced Study Group, Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); Santra, R. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (United States); DiMauro, L. F.; Doumy, G.; Roedig, C. A. [Ohio State University, Columbus, Ohio 43210 (United States); Berrah, N.; Fang, L.; Hoener, M. [Western Michigan University, Kalamazoo, Michigan 49008 (United States); Bucksbaum, P. H.; Ghimire, S.; Reis, D. A. [PULSE Center, SLAC, Menlo Park, California 94025 (United States); Bozek, J. D.; Bostedt, C. [Linac Coherent Light Source, SLAC, Menlo Park, California 94025 (United States)

    2011-12-02

    We show that high fluence, high-intensity x-ray pulses from the world's first hard x-ray free-electron laser produce nonlinear phenomena that differ dramatically from the linear x-ray-matter interaction processes that are encountered at synchrotron x-ray sources. We use intense x-ray pulses of sub-10-fs duration to first reveal and subsequently drive the 1s{r_reversible}2p resonance in singly ionized neon. This photon-driven cycling of an inner-shell electron modifies the Auger decay process, as evidenced by line shape modification. Our work demonstrates the propensity of high-fluence, femtosecond x-ray pulses to alter the target within a single pulse, i.e., to unveil hidden resonances, by cracking open inner shells energetically inaccessible via single-photon absorption, and to consequently trigger damaging electron cascades at unexpectedly low photon energies.

  13. Hard x-ray or gamma ray laser by a dense electron beam

    E-print Network

    S. Son; S. J. Moon

    2012-02-12

    A coherent x-ray or gamma ray can be created from a dense electron beam propagating through an intense laser undulator. It is analyzed by using the Landau damping theory which suits better than the conventional linear analysis for the free electron laser, as the electron beam energy spread is high. The analysis suggests that the currently available physical parameters would enable the generation of the coherent gamma ray of up to 100 keV. The electron quantum diffraction suppresses the FEL action, by which the maximum radiation energy to be generated is limited.

  14. Ground-based x-ray calibration of the Astro-E2 x-ray telescope: I. With pencil beam

    Microsoft Academic Search

    Akiharu Itoh; Yoshito Haba; Akira Hayakawa; Ryo Iizuka; Chiaki Inoue; Hirohiko Inoue; Manabu Ishida; Kei Itoh; Hideyo Kunieda; Yoshitomo Maeda; Kazutami Misaki; Hideyuki Mori; Masataka Naitou; Shunsaku Okada; Ryo Shibata; Tomoo Shimizu; Yushi Yokoyama

    2004-01-01

    We present X-ray characteristics of X-ray telescopes (XRTs) onboard the Astro-E2 satellite. It is scheduled to be launched in February 2005. We have been performed X-ray characterization measurements of XRTs at Institute of Space and Astronautical Science (ISAS) since January 2003. We adopted a raster scan method with a narrow X-ray pencil beam. Angular resolution of the Quadrants composed of

  15. Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)

    SciTech Connect

    Stafford, D

    2009-06-01

    2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

  16. X-ray framing camera for pulsed, high current, electron beam x-ray sources

    NASA Astrophysics Data System (ADS)

    Failor, B. H.; Rodriguez, J. C.; Riordan, J. C.; Lojewski, D. Y.

    2007-07-01

    High power x-ray sources built for nuclear weapons effects testing are evolving toward larger overall diameters and smaller anode cathode gaps. We describe a framing camera developed to measure the time-evolution of these 20-50 ns pulsed x-ray sources produced by currents in the 1.5-2.5 MA range and endpoint voltages between 0.2 and 1.5 MV. The camera has up to 4 frames with 5 ns gate widths; the frames are separated by 5 ns. The image data are recorded electronically with a gated intensified CCD camera and the data are available immediately following a shot. A fast plastic scintillator (2.1 ns decay time) converts the x-rays to visible light and, for high sensitivity, a fiber optic imaging bundle carries the light to the CCD input. Examples of image data are shown.

  17. Divergence measurements of soft x-ray laser beam

    SciTech Connect

    Suckewer, S.; Skinner, C.H.; Kim, D.; Valeo, E.; Voorhees, D.; Wouters, A.

    1986-07-01

    The divergence of the CVI 182 A lasing line generated in a rapidly recombining, magnetically confined plasma column was measured using soft x-ray spectrometers equipped with multichannel detectors. In addition to measurements of the relative divergence, an absolute divergence of approx.9 mrad at a magnetic field of 20 kG and approx.5 mrad at a magnetic field of 35 or 50 kG was obtained by a direct scan of the 182 A axial radiation. Based on this data a peak 182 A intensity of approx.100 kW is obtained. Calculations of the spatial distribution of gain in the plasma were in very good agreement with the experimental data.

  18. X-Ray Radiation Measurements With Photodiodes In Plasmas Generated By 1017 W/Cm2 Intensity Krf Excimer Laser Pulses

    NASA Astrophysics Data System (ADS)

    Rácz, E.; Földes, I. B.; Ry?, L.

    2006-01-01

    Experiments were carried out using a prepulse-free hybrid KrF excimer-dye laser system (700fs pulse duration, 248nm wavelength, 15mJ pulse energy). The intensity of the p-polarized, focused laser beam was 1.5?1017 W/cm2. Vacuum ultraviolet (VUV) and x-rays from solid state laser plasmas were generated in the laser-plasma interaction of subpicosecond laser pulses of nonrelativistic laser intensities. An x-ray sensitive FLM photodiode (ITE, Warsaw) was used to detect x-rays between 1-19 keV in front of the targets. The diode was filtered by a 4?m Al foil. The dependence of the x-ray flux on laser intensity and the angular distribution of x-rays for aluminum and copper targets in the half space of the front side of the targets were investigated.

  19. Impact of rare earth element added filters on the X-ray beam spectra: a Monte Carlo approach.

    PubMed

    Eskandarlou, Amir; Jafari, Amir Abbas; Mohammadi, Mohammad; Zehtabian, Mehdi; Faghihi, Reza; Shokri, Abbas; Pourolajal, Jalal

    2014-01-01

    The effectiveness of added filters including conventional and rare earth materials for dental radiography tasks was investigated using a simulation approach. Current study focuses on the combination of a range of various filters to investigate the reduction of radiation absorbed dose and improving the quality of a radiography image. To simulate the X-ray beam spectrum, a MCNP5 code was applied. Relative intensity, beam quality, and mean energy were investigated for a typical dental radiography machine. The impact of different rare-earth materials with different thicknesses and tube voltages on the X-ray spectrum was investigated. For Aluminum as a conventional filter, the modeled X-ray spectra and HVL values were in a good agreement with those reported by IPEM. The results showed that for a 70 kVp voltage, with an increase of the thickness and atomic number of a given added filters, an increase of HVL values were observed. However, with the increase of the attenuator thickness, X-ray beam intensity decreases. For mean energy, different results were observed. It was also found that rare earth made filters reduce high energy X-ray radiation due to k-edge absorption. This leads to an ideal beam for intra-oral radiography tasks. However, as a disadvantage of rare earth added filters, the reduction of the tube output levels should also be considered. PMID:25080114

  20. Studying planetary matter using intense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Appel, K.; Nakatsutsumi, M.; Pelka, A.; Priebe, G.; Thorpe, I.; Tschentscher, Th

    2015-01-01

    Free-electron laser facilities enable new applications in the field of high-pressure research including planetary materials. The European x-ray Free Electron Laser (European XFEL) in Hamburg, Germany will start user operation in 2017 and will provide photon energies of up to 25 keV. The high-energy density science instrument (HED) is one of the six baseline instruments at the European XFEL. It is dedicated to the study of dense material at strong excitation in a temperature range from eV to keV and pressures >100 GPa which is equivalent to an energy density >100 J mm?3. It will enable studying structural and electronic properties of excited states with hard x-rays. The instrument is currently in its technical design phase and first user experiments are foreseen for summer 2017. In this contribution, we present the x-ray instrumentation and foreseen x-ray techniques at HED and concentrate on prototype hard-condensed matter experiments in the field of planetary research as proposed during recent user consortium meetings for this instrument. These include quasi-isentropic (ramped) compression and shock compression experiments.

  1. Thirty-Meter X-Ray Pencil Beam Line at the Institute of Space and Astronautical Science

    Microsoft Academic Search

    Hideyo Kunieda; Yoshiyuki Tsusaka; Hisanori Suzuki; Yasushi Ogasaka; Hisamitsu Awaki; Yuzuru Tawara; Koujun Yamashita; Takashi Yamazaki; Masayuki Itoh; Tsuneo Kii; Fumiyoshi Makino; Yoshiaki Ogawara; Hiroshi Tsunemi; Kiyoshi Hayashida; Susumu Nomoto; Mikio Wada; Emi Miyata; Isamu Hatsukade

    1993-01-01

    A 30-m-long X-ray beam line has been built at the Institute of Space and Astronautical Science (ISAS) to evaluate the performance of X-ray optical instruments for space programs, in particular for the X-ray telescope onboard the Astro-D (Asca) satellite. This beam line consists of an X-ray generator, a 30-m-long vacuum duct, and measuring chambers. Strong and stable X-ray pencil beams

  2. Time dependence of X-ray polarizability of a crystal induced by an intense femtosecond X-ray pulse

    PubMed Central

    Leonov, A.; Ksenzov, D.; Benediktovitch, A.; Feranchuk, I.; Pietsch, U.

    2014-01-01

    The time evolution of the electron density and the resulting time dependence of Fourier components of the X-ray polarizability of a crystal irradiated by highly intense femtosecond pulses of an X-ray free-electron laser (XFEL) is investigated theoretically on the basis of rate equations for bound electrons and the Boltzmann equation for the kinetics of the unbound electron gas. The photoionization, Auger process, electron-impact ionization, electron–electron scattering and three-body recombination have been implemented in the system of rate equations. An algorithm for the numerical solution of the rate equations was simplified by incorporating analytical expressions for the cross sections of all the electron configurations in ions within the framework of the effective charge model. Using this approach, the time dependence of the inner shell populations during the time of XFEL pulse propagation through the crystal was evaluated for photon energies between 4 and 12?keV and a pulse width of 40?fs considering a flux of 1012?photons pulse?1 (focusing on a spot size of ?1?µm). This flux corresponds to a fluence ranging between 0.8 and 2.4?mJ?µm?2. The time evolution of the X-ray polarizability caused by the change of the atomic scattering factor during the pulse propagation is numerically analyzed for the case of a silicon crystal. The time-integrated polarizability drops dramatically if the fluence of the X-ray pulse exceeds 1.6?mJ?µm?2. PMID:25485121

  3. Femtosecond electronic response of atoms to ultra-intense x-rays.

    SciTech Connect

    Young, L.; Kanter, E .P.; Li, Y.; March, A.-M.; Pratt, S. T.; Santra, R.; Southworth, S. H.; Rohringer, N.; DiMauro, L. F.; Doumy, G.; Roedig, C. A.; Berrah, N.; Fang, L.; Hoener, M.; Bucksbaum, P. H.; Cryan, J. P .; Ghimire, S.; Glownia, J. M.; Reis, D. A.; Bozek, J. D.; Bostedt, C.; Messerschmidt, M.; Western Michigan Univ.; SLAC National Accelerator Lab.; The Ohio State Univ.; LLNL; Univ. of Chicago

    2010-07-01

    An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10{sup 18} W cm{sup -2}, 1.5-0.6 nm, {approx}10{sup 5} X-ray photons per {angstrom}{sup 2}). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse - by sequentially ejecting electrons - to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces 'hollow' atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.

  4. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    SciTech Connect

    van Thor, Jasper J. [Imperial College, London (United Kingdom); Madsen, Anders [European X-Ray Free-Electron Laser Facility, Hamburg (Germany)

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/?I) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ?F, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.

  5. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE PAGESBeta

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/?I) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ?F,more »in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  6. Correlation of photon beam motion with vacuum chamber cooling on the NSLS x-ray ring

    Microsoft Academic Search

    E. D. Johnson; A. M. Fauchet; Xiaohao Zhang

    1991-01-01

    The NSLS X-ray ring exhibits a direct correlation between photon beam motion, and distortion of the ring vacuum chamber induced by fluctuations in the cooling system. We have made long term measurements of photon beam vertical position, accelerator vacuum chamber motion, process water temperatures, and angular motions of the magnets around one superperiod of the NSLS x-ray ring. Short term

  7. Correlation of photon beam motion with vacuum chamber cooling on the NSLS x-ray ring

    Microsoft Academic Search

    Erik D. Johnson; Anne-Marie Fauchet; Xiaohao Zhang

    1992-01-01

    The NSLS x-ray ring exhibits a direct correlation between photon beam motion, and distortion of the ring vacuum chamber induced by fluctuations in the cooling system. We have made long term measurements of photon beam vertical position, accelerator vacuum chamber motion, process water temperatures, and angular motions of the magnets around one superperiod of the NSLS x-ray ring. Short term

  8. Silicon Mirrors for High-Intensity X-Ray Pump and Probe Experiments

    NASA Astrophysics Data System (ADS)

    Pardini, Tom; Boutet, Sébastien; Bradley, Joseph; Döppner, Tilo; Fletcher, Luke B.; Gardner, Dennis F.; Hill, Randy M.; Hunter, Mark S.; Krzywinski, Jacek; Messerschmidt, Marc; Pak, Arthur E.; Quirin, Florian; Sokolowski-Tinten, Klaus; Williams, Garth J.; Hau-Riege, Stefan P.

    2014-05-01

    An all-x-ray pump and probe capability is highly desired for the free-electron laser community. A possible implementation involves the use of an x-ray mirror downstream of the sample to backreflect the pump beam onto itself. We expose silicon single crystals, a candidate for this hard-x-ray mirror, to the hard-x-ray beam of the Linac Coherent Light Source (SLAC National Acceleration Laboratory) to assess its suitability. We find that silicon is an appropriate mirror material, but its reflectivity at high x-ray fluences is somewhat unpredictable. We attribute this behavior to x-ray-induced local damage in the mirror, which we have characterized post mortem via microdiffraction, scanning electron microscopy, and Raman spectroscopy. We demonstrate a strategy to reduce local damage by using a structured silicon-based mirror. Preliminary results suggest that the latter yields reproducible Bragg reflectivity at high x-ray fluences, promising a path forward for silicon single crystals as x-ray backreflectors.

  9. The VANILLA sensor as a beam monitoring device for X-ray radiation therapy.

    PubMed

    Velthuis, J J; Hugtenburg, R P; Cussans, D; Perry, M; Hall, C; Stevens, P; Lawrence, H; McKenzie, A

    2014-01-01

    Cancer treatments such as intensity-modulated radiotherapy (IMRT) require increasingly complex methods to verify the accuracy and precision of the treatment delivery. In vivo dosimetry based on measurements made in an electronic portal imaging device (EPID) has been demonstrated. The distorting effect of the patient anatomy on the beam intensity means it is difficult to separate changes in patient anatomy from changes in the beam intensity profile. Alternatively, upstream detectors scatter and attenuate the beam, changing the energy spectrum of the beam, and generate contaminant radiation such as electrons. We used the VANILLA device, a Monolithic Active Pixel Sensor (MAPS), to measure the 2D beam profile of a 6 MV X-ray beam at Bristol Hospital in real-time in an upstream position to the patient without clinically significant disturbance of the beam (0.1% attenuation). MAPSs can be made very thin (~20 ?m) with still a very good signal-to-noise performance. The VANILLA can reconstruct the collimated beam edge with approximately 64 ?m precision. PMID:24215812

  10. Ion beam induced surface graphitization of CVD diamond for x-ray beam position monitor applications

    SciTech Connect

    Liu, Chian; Shu, D.; Kuzay, T.M. [Argonne National Lab, IL (United States). Advanced Photon Source; Wen, L.; Melendres, C.A. [Argonne National Lab., IL (United States). Materials Science Div.]|[Argonne National Lab., IL (United States). Chemical Technology Div.

    1996-12-31

    The Advanced Photon Source at ANL is a third-generation synchrotron facility that generates powerful x-ray beams on its undulator beamlines. It is important to know the position and angle of the x- ray beam during experiments. Due to very high heat flux levels, several patented x-ray beam position monitors (XBPM) exploiting chemical vapor deposition (CVD) diamond have been developed. These XBPMs have a thin layer of low-atomic-mass metallic coating so that photoemission from the x rays generate a minute but measurable current for position determination. Graphitization of the CVD diamond surface creates a very thin, intrinsic and conducting layer that can stand much higher temperatures and minimal x-ray transmission losses compared to the coated metallic layers. In this paper, a laboratory sputter ion source was used to transform selected surfaces of a CVD diamond substrate into graphite. The effect of 1-5 keV argon ion bombardment on CVD diamond surfaces at various target temperatures from 200 to 500 C was studied using Auger electron spectroscopy and in-situ electrical resistivity measurements. Graphitization after the ion bombardment has been confirmed and optimum conditions for graphitization studied. Raman spectroscopy was used to identify the overall diamond structure in the bulk of CVD diamond substrate after the ion bombardments. It was found that target temperature plays an important role in stability and electrical conductivity of the irradiated CVD diamonds.

  11. Novel multi-beam X-ray source for vacuum electronics enabled medical imaging applications

    NASA Astrophysics Data System (ADS)

    Neculaes, V. Bogdan

    2013-10-01

    For almost 100 of years, commercial medical X-ray applications have relied heavily on X-ray tube architectures based on the vacuum electronics design developed by William Coolidge at the beginning of the twentieth century. Typically, the Coolidge design employs one hot tungsten filament as the electron source; the output of the tube is one X-ray beam. This X-ray source architecture is the state of the art in today's commercial medical imaging applications, such as Computed Tomography. Recently, GE Global Research has demonstrated the most dramatic extension of the Coolidge vacuum tube design for Computed Tomography (CT) in almost a century: a multi-beam X-ray source containing thirty two cathodes emitting up to 1000 mA, in a cathode grounded - anode at potential architecture (anode up to 140 kV). This talk will present the challenges of the X-ray multi-beam vacuum source design - space charge electron gun design, beam focusing to compression ratios needed in CT medical imaging applications (image resolution is critically dependent on how well the electron beam is focused in vacuum X-ray tubes), electron emitter choice to fit the aggressive beam current requirements, novel electronics for beam control and focusing, high voltage and vacuum solutions, as well as vacuum chamber design to sustain the considerable G forces typically encountered on a CT gantry (an X-ray vacuum tube typically rotates on the CT gantry at less than 0.5 s per revolution). Consideration will be given to various electron emitter technologies available for this application - tungsten emitters, dispenser cathodes and carbon nano tubes (CNT) - and their tradeoffs. The medical benefits potentially enabled by this unique vacuum multi-beam X-ray source are: X-ray dose reduction, reduction of image artifacts and improved image resolution. For almost 100 of years, commercial medical X-ray applications have relied heavily on X-ray tube architectures based on the vacuum electronics design developed by William Coolidge at the beginning of the twentieth century. Typically, the Coolidge design employs one hot tungsten filament as the electron source; the output of the tube is one X-ray beam. This X-ray source architecture is the state of the art in today's commercial medical imaging applications, such as Computed Tomography. Recently, GE Global Research has demonstrated the most dramatic extension of the Coolidge vacuum tube design for Computed Tomography (CT) in almost a century: a multi-beam X-ray source containing thirty two cathodes emitting up to 1000 mA, in a cathode grounded - anode at potential architecture (anode up to 140 kV). This talk will present the challenges of the X-ray multi-beam vacuum source design - space charge electron gun design, beam focusing to compression ratios needed in CT medical imaging applications (image resolution is critically dependent on how well the electron beam is focused in vacuum X-ray tubes), electron emitter choice to fit the aggressive beam current requirements, novel electronics for beam control and focusing, high voltage and vacuum solutions, as well as vacuum chamber design to sustain the considerable G forces typically encountered on a CT gantry (an X-ray vacuum tube typically rotates on the CT gantry at less than 0.5 s per revolution). Consideration will be given to various electron emitter technologies available for this application - tungsten emitters, dispenser cathodes and carbon nano tubes (CNT) - and their tradeoffs. The medical benefits potentially enabled by this unique vacuum multi-beam X-ray source are: X-ray dose reduction, reduction of image artifacts and improved image resolution. This work was funded in part by NIH grant R01EB006837.

  12. Quasitransient regimes of backward Raman amplification of intense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Malkin, V. M.; Fisch, N. J.

    2009-10-01

    New powerful soft x-ray sources may be able to access intensities needed for backward Raman amplification (BRA) of x-ray pulses in plasmas. However, high plasma densities, needed to provide enough coupling between the pump and seed x-ray pulses, cause strong damping of the Langmuir wave that mediates energy transfer from the pump to the seed pulse. Such damping could reduce the coupling, thus making efficient BRA impossible. This work shows that efficient BRA can survive despite the Langmuir wave damping significantly exceeding the linear BRA growth rate. Moreover, the strong Langmuir wave damping can automatically suppress deleterious instabilities of BRA to the thermal noise. The class of “quasitransient” BRA regimes identified here shows that it may be feasible to observe x-ray BRA within available x-ray facilities.

  13. Quasitransient regimes of backward Raman amplification of intense x-ray pulses

    SciTech Connect

    Malkin, V. M.; Fisch, N. J. [Princeton University, Princeton, New Jersey 08544 (United States)

    2009-10-15

    New powerful soft x-ray sources may be able to access intensities needed for backward Raman amplification (BRA) of x-ray pulses in plasmas. However, high plasma densities, needed to provide enough coupling between the pump and seed x-ray pulses, cause strong damping of the Langmuir wave that mediates energy transfer from the pump to the seed pulse. Such damping could reduce the coupling, thus making efficient BRA impossible. This work shows that efficient BRA can survive despite the Langmuir wave damping significantly exceeding the linear BRA growth rate. Moreover, the strong Langmuir wave damping can automatically suppress deleterious instabilities of BRA to the thermal noise. The class of 'quasitransient' BRA regimes identified here shows that it may be feasible to observe x-ray BRA within available x-ray facilities.

  14. CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT

    SciTech Connect

    Haugh, M J; Charest, M R; Ross, P W; Lee, J J; Schneider, M B; Palmer, N E; Teruya, A T

    2012-02-16

    National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID camera types differ significantly in some of their properties that affect the accuracy of X-ray intensity measurements. All cameras discussed here are silicon based. The measurements of quantum efficiency variation with X-ray energy are compared to models for the sensor structure. Cameras that are not back-thinned are compared to those that are.

  15. Structured x-ray beams from twisted electrons by inverse Compton scattering of laser light

    E-print Network

    D. Seipt; A. Surzhykov; S. Fritzsche

    2014-07-28

    The inverse Compton scattering of laser light on high-energetic twisted electrons is investigated with the aim to construct spatially structured x-ray beams. In particular, we analyze how the properties of the twisted electrons, such as the topological charge and aperture angle of the electron Bessel beam, affects the energy and angular distribution of scattered x-rays. We show that with suitably chosen initial twisted electron states one can synthesize tailor-made x-ray beam profiles with a well-defined spatial structure, in a way not possible with ordinary plane-wave electron beams.

  16. X-ray acoustic computed tomography with pulsed x-ray beam from a medical linear accelerator

    PubMed Central

    Xiang, Liangzhong; Han, Bin; Carpenter, Colin; Pratx, Guillem; Kuang, Yu; Xing, Lei

    2013-01-01

    Purpose: The feasibility of medical imaging using a medical linear accelerator to generate acoustic waves is investigated. This modality, x-ray acoustic computed tomography (XACT), has the potential to enable deeper tissue penetration in tissue than photoacoustic tomography via laser excitation. Methods: Short pulsed (?s-range) 10 MV x-ray beams with dose-rate of approximately 30 Gy/min were generated from a medical linear accelerator. The acoustic signals were collected with an ultrasound transducer (500 KHz central frequency) positioned around an object. The transducer, driven by a computer-controlled step motor to scan around the object, detected the resulting acoustic signals in the imaging plane at each scanning position. A pulse preamplifier, with a bandwidth of 20 KHz–2 MHz at ?3 dB, and switchable gains of 40 and 60 dB, received the signals from the transducer and delivered the amplified signals to a secondary amplifier. The secondary amplifier had bandwidth of 20 KHz–30 MHz at ?3 dB, and a gain range of 10–60 dB. Signals were recorded and averaged 128 times by an oscilloscope. A sampling rate of 100 MHz was used to record 2500 data points at each view angle. One set of data incorporated 200 positions as the receiver moved 360°. The x-ray generated acoustic image was then reconstructed with the filtered back projection algorithm. Results: The x-ray generated acoustic signals were detected from a lead rod embedded in a chicken breast tissue. The authors found that the acoustic signal was proportional to the x-ray dose deposition, with a correlation of 0.998. The two-dimensional XACT images of the lead rod embedded in chicken breast tissue were found to be in good agreement with the shape of the object. Conclusions: The first x-ray acoustic computed tomography image is presented. The new modality may be useful for a number of applications, such as providing the location of a fiducial, or monitoring x-ray dose distribution during radiation therapy. Although much work is needed to improve the image quality of XACT and to explore its performance in other irradiation energies, the benefits of this modality, as highlighted in this work, encourage further study. PMID:23298069

  17. An active optics system for EUV/soft x-ray beam shaping

    NASA Astrophysics Data System (ADS)

    Svetina, C.; Cocco, D.; Di Cicco, A.; Fava, C.; Gerusina, S.; Gobessi, R.; Mahne, N.; Masciovecchio, C.; Principi, E.; Raimondi, L.; Rumiz, L.; Sergo, R.; Sostero, G.; Spiga, D.; Zangrando, M.

    2012-10-01

    FERMI@Elettra is a VUV/Soft X-ray Free Electron Laser (FEL) user facility under commissioning in Trieste, Italy. It provides a spatially coherent transform-limited photon beam in the sub-ps regime with high fluence and tunable wavelength. One of the FERMI beamlines, TIMEX, will be dedicated to the study of matter under extreme and metastable conditions, created and probed by the FEL radiation. Moreover, an active optics dedicated to perform the beam shaping at focus is needed in order to provide the necessary flat-top intensity distribution for heating the sample uniformly. In this work the principles of the beam shaping applied to the TIMEX beamline will be discussed as well as the adopted solution. Ray tracing simulations will be shown for theoretical mirror profiles as well as the metrological measurements with an interferometer and the Long Trace Profiler (LTP).

  18. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    SciTech Connect

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; /SLAC; ,

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  19. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions

    SciTech Connect

    Hruszkewycz, S. O.; Fuoss, P. H. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Harder, R.; Xiao, X. [X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2010-12-15

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  20. The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.

    SciTech Connect

    Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H. (Materials Science Division); ( XSD)

    2010-12-01

    Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.

  1. X-ray QPOs from the Ultra-luminous X-ray Source in M82: Evidence Against Beaming

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Mushotzky, Richard F.

    2003-01-01

    We report the discovery with the European Photon Imaging Camera (EPIC) CCD cameras onboard XMM-Newton of a 54 mHz quasiperiodic oscillation (QPO) in the greater than 2 keV X-ray flux from the ultra-luminous X-ray source (ULX) X41.4+60 in the starburst galaxy M82. This is the first detection of a QPO in the X-ray flux from an extra-Galactic ULX, and confirms that the source is a compact object. The QPO is detected in the combined PN and MOS data at the approx. 6sigma level, and separately at lower significances in both the PN and MOS instruments. It had a centroid frequency of 54.3 +/- 0.9 mHz, a coherence Q is identical with nu(sub 0)/Delta nu(sub fwhm) is approx. 5, and an amplitude (rms) in the 2 - 10 keV band of 8.5%. Below about 0.2 Hz the power spectrum can be described by a power-law with index approx. 1, and integrated amplitude (rms) of 13.5%. The X-ray spectrum requires a curving continuum, with a disk-blackbody (diskbb) at T = 3.1 keV providing an acceptable, but not unique, fit. A broad Fe line centered at 6.55 keV is required in all fits, but the equivalent width (EW) of the line is sensitive to the choice of continuum model. There is no evidence of a reflection component. The implied bolometric luminosity is approx. 4 - 5 x 10(exp 40) ergs/s. Data from several archival Rossi X-ray Timing Explorer (RXTE) pointings at M82 also show evidence for QPOs in the 50 - 100 mHz frequency range. Several Galactic black hole candidates (BHCs), including GRS 1915+105, GRO J1655-40, and XTE 1550-564, show QPOs in the same frequency range as the 50 - 100 mHz QPOs in X41.4+60, which at first glance suggests a possible connection with such objects. However, strong, narrow QPOs provide solid evidence for disk emission, and thus present enormous theoretical difficulties for models which rely on either geometrically or relativistically beamed emission to account for the high X-ray luminosities. We discuss the implications of our findings for models of the ULX sources.

  2. Intensity-Modulated Advanced X-ray Source (IMAXS) for Homeland Security Applications

    NASA Astrophysics Data System (ADS)

    Langeveld, Willem G. J.; Johnson, William A.; Owen, Roger D.; Schonberg, Russell G.

    2009-03-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband require high x-ray energy and high x-ray intensity to penetrate dense cargo. On the other hand, low intensity is desirable to minimize the radiation footprint. A collaboration between HESCO/PTSE Inc., Schonberg Research Corporation and Rapiscan Laboratories, Inc. has been formed in order to design and build an Intensity-Modulated Advanced X-ray Source (IMAXS). Such a source would allow cargo inspection systems to achieve up to two inches greater imaging penetration capability, while retaining the same average radiation footprint as present fixed-intensity sources. Alternatively, the same penetration capability can be obtained as with conventional sources with a reduction of the average radiation footprint by about a factor of three. The key idea is to change the intensity of the source for each x-ray pulse based on the signal strengths in the inspection system detector array during the previous pulse. In this paper we describe methods to accomplish pulse-to-pulse intensity modulation in both S-band (2998 MHz) and X-band (9303 MHz) linac sources, with diode or triode (gridded) electron guns. The feasibility of these methods has been demonstrated. Additionally, we describe a study of a shielding design that would allow a 6 MV X-band source to be used in mobile applications.

  3. Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data

    NASA Technical Reports Server (NTRS)

    Carpenter, P. K.

    2005-01-01

    Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors.

  4. Production of intense, tunable, quasi-monochromatic X-rays using the RPI linear accelerator

    NASA Astrophysics Data System (ADS)

    Sones, Bryndol A.

    This research investigated the production of parametric X-rays (PXR) using the 60-MeV electron linear accelerator at Rensselaer Polytechnic Institute. PXR is an intense, energy tunable, and polarized X-ray source derived from the interaction of relativistic electrons and the periodic structure of crystal materials. In this work, PXR photon yields and the associated bremsstrahlung background were characterized for graphite, LiF, Si, Ge, Cu, and W target crystals. A model that considers the experimental geometry and crystal mosaicity was employed to predict PXR energy broadening. Measured energy linewidths consistently agreed with predicted values except in cases using poor quality graphite in which the mosaicity was greater than the PXR characteristic angle, 8.5 mrad for 60 MeV electrons. When the predicted energy linewidth was more narrow than our Si X-ray detector resolution, a near-absorption edge transmission technique was used to measure the PXR energy linewidth for Si(400) FWHM of 134 eV at 9.0 keV (2%) and Si(220) FWHM of 540 eV at 17.7 keV (3%). An experimental study was conducted to select PXR target crystals most appropriate for X-ray production at typical mammography energies (17--20 keV). Low Z materials like graphite and LiF were most suitable for PXR production because of their low Bremsstrahlung production, electron scattering, and photon absorption. Graphite was most efficient at producing PXR photons while the LiF energy linewidth was narrower. A theoretical model that considers electron multiple scattering, electron divergence, and crystal mosaicity was used to broaden the PXR photon distribution in order to calculate predicted PXR photon yield. This approach, proposed by A. P. Potylitsin, was allowed comparison of measured and predicted PXR yields. The relative error was typically below 0.5. In some cases with LiF, the differences between predicted and measured values were as low as 2% for LiF(400) and 13% for LiF(220). Finally, this work reports for the first time PXR imaging. This was achieved using LiF(220) interacting with 56 MeV electrons with electron beam currents up to 6 muA.

  5. X-ray beam induced current\\/microprobe x-ray fluorescence: synchrotron radiation based x-ray microprobe techniques for analysis of the recombination activity and chemical nature of metal impurities in silicon

    Microsoft Academic Search

    O F Vyvenko; T Buonassisi; A A Istratov; E R Weber

    2004-01-01

    In this study we report applications of the synchrotron radiation based x-ray microprobe techniques, x-ray beam induced current (XBIC) and microprobe x-ray fluorescence (?-XRF), to the analysis of the recombination activity and spatial distribution of transition metals in silicon. A combination of these two techniques enables one to study the elemental nature of defects and impurities and their recombination activity

  6. Electron-beam-based sources of ultrashort x-ray pulses

    SciTech Connect

    Zholents, A. (Accelerator Systems Division (APS))

    2010-01-01

    A review of various methods for generation of ultrashort X-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons are considered.

  7. Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses

    E-print Network

    Limpouch, Jiri

    Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double laser-produced plasmas are bright ultrafast line x-ray sources potentially suitable for different onto a solid target into the x-ray emission is significantly enhanced when a laser prepulse precedes

  8. Pseudopotential calculations of photoionization of atoms in the x-ray photon energy range and FEL beam monitor development

    NASA Astrophysics Data System (ADS)

    Chernov, V. E.; Dorofeev, D. L.; Elfimov, S. V.; Zon, B. A.; Gavrilov, G. E.; Naryshkin, Yu G.

    2015-03-01

    A pseudopotential model for calculation of atomic processes under interaction with hard x-ray photons is applied to calculation of Krypton photoionization cross sections by photons with energy in the 20–25 keV range. These cross sections, as well as the mean charge of the resulting ions calculated using the Monte Carlo simulation scheme, are in good agreement with the other theoretical calculations and with the experiment. The obtained results open the doors for new techniques in the design of gas-monitor detectors to control the intensity, coordinates and energy of x-ray free-electron laser (XFEL) beams in the hard x-ray photon energy range. First, Monte Carlo simulations of a scintillation detector application for gas-monitors have been performed.

  9. High-intensity quasi-monochromatic x-ray irradiation from the linear plasma target

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Suzuki, Yusaku; Hayasi, Yasuomi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takayama, Kazuyoshi; Ido, Hideaki; Tamakawa, Yoshiharu

    2001-12-01

    High-intensity quasi-monochromatic x-ray irradiation from the linear plasma target is described. The plasma x-ray generator employs a high-voltage power supply, a low- impedance coaxial transmission line, a high-voltage condenser with a capacity of about 200 nF, a turbo-molecular pump, a thyristor pulse generator as a trigger device, and a new flash x-ray tube. The high-voltage main condenser is charged up to 60 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to the turbo molecular pump with a pressure of approximately 1 mPa. As the electron flows from the cathode electrode are roughly converged to the nickel target by the electric field in the tube, the plasma x-ray source, which consists of metal ions and electrons, forms by the target evaporating. Both the tube voltage and current displayed damped oscillations, and their peak values increased according to increases in the charging voltage. In the present work, the peak tube voltage was almost equal to the initial charging voltage of the main condenser, and the peak current was about 29 kA with a charging voltage of 60 kV. When the charging voltage was increased, the linear plasma x-ray source formed, and the characteristic x-ray intensities of K-series lines increased. The quasi- monochromatic radiography was performed by a new film-less computed radiography system.

  10. Evolution dynamics of charge state distribution in neon interaction with x-ray pulses of variant intensities and durations

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2015-03-01

    The level population and charge state distribution (CSD) of the neon atomic system interacting with x-ray pulses of variant intensities and durations at a central photon energy of 1110 eV are investigated by solving the time-dependent rate equations. The laser beam has a circular spot size with a Gaussian intensity pattern and the time history of the intensity is represented by Gaussian distribution in time. As an example, the CSD as a function of time is given at different distances from the spot center for an x-ray beam of intensity 1.5 × 1017 W/cm2 and duration 75 fs (fs) for a spot size of 1 ?m (full width at half maximum). The final CSD after averaging over the space and time is compared with a recent experiment and good agreement is found between the theory and experiment. Then systematic investigations are carried out to study the evolution of CSD with a wide range of intensity from 1.0 × 1015 W/cm2 to 1.0 × 1019 W/cm2 and duration from 30 fs to 100 fs. The results show that at intensities lower than 1.0 × 1015 W/cm2, the CSD shows a typical physical picture of weak x-ray photoionization of the neutral atomic neon. At higher intensity, i.e., larger than 5.0 × 1016 W/cm2, the dominant ionization stages are Ne7+ and Ne8+, while the fractions of ions in the Ne3+-Ne6+ stages are low for all laser durations and intensities.

  11. Nano-beam X-ray microscopy of dried colloidal films.

    PubMed

    Schroer, Martin A; Gutt, Christian; Lehmkühler, Felix; Fischer, Birgit; Steinke, Ingo; Westermeier, Fabian; Sprung, Michael; Grübel, Gerhard

    2015-07-01

    We report on a nano-beam small angle X-ray scattering study on densely-packed, dried binary films made out of spherical silica particles with radii of 11.2 and 19.3 nm. For these three-dimensional thin films prepared by drop casting, only a finite number of colloidal particles contributes to the scattering signal due to the small beam size of 400 × 400 nm(2). By scanning the samples, the structure and composition of the silica particle films are determined spatially resolved revealing spatial heterogeneities in the films. Three different types of domains were identified: regions containing mainly large particles, regions containing mainly small particles, and regions where both particle species are mixed. Using the new angular X-ray cross-correlations analysis (XCCA) approach, spatial maps of the local type and degree of orientational order within the silica particle films are obtained. Whereas the mixed regions have dominant two-fold order, weaker four-fold and marginal six-fold order, regions made out of large particles are characterized by an overall reduced orientational order. Regions of small particles are highly ordered showing actually crystalline order. Distinct differences in the local particle order are observed by analyzing sections through the intensity and XCCA maps. The different degree of order can be understood by the different particle size polydispersities. Moreover, we show that preferential orientations of the particle domains can be studied by cross-correlation analysis yielding information on particle film formation. We find patches of preferential order with an average size of 8-10 ?m. Thus, by this combined X-ray cross-correlation microscopy (XCCM) approach the structure and orientational order of films made out of nanometer sized colloids can be determined. This method will allow to reveal the local structure and order of self-assembled structures with different degree of order in general. PMID:26061482

  12. X-ray radiation of clusters irradiated by ultrafast, high-intensity laser pulses.

    SciTech Connect

    Fukuda, Yuji; Akahane, Yutaka; Aoyama, Makoto; Inoue, Norihiro; Ueda, Hideki; Kishimoto, Yasuaki; Yamakawa, Koichi; Faenov, Anatoly Ya.; Magunov, Alexandr I.; Tatiana, A. Pikuz; Skobelev, Igor Yu.; Abdallah, Jr., Joseph; Csanak, G.; Boldarev, Alexei S.

    2003-08-12

    High resolution x-ray emission spectra of plasma created by laser irradiation of rare-gas (Ar, Kr, Xe) clusters have been measured at laser intensities over 10[sup 19] W/cm[sup 2] and 30-fs laser pulses. To make these measurements possible, micron-size clusters were produced using a specially designed conical nozzle and prepulse intensities were decreased using Pockels cell switches. The Boltzmann equation and a detailed collisional radiative model are solved simultaneously as a function of time to model the time integrated x-ray spectra of the transient plasma produced by a high intensity ultrafast laser pulses. The results are quantitatively in good agreement with the experimentally observed x-ray emission spectra of Ar clusters.

  13. Z-pinches as intense x-ray sources for high energy density physics applications

    NASA Astrophysics Data System (ADS)

    Matzen, M. Keith

    1996-11-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads (typically gas jets, arrays of wires, thin foils, or low density foams), producing implosions velocities as high as 100 cm/?s and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years as a source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case (a hohlraum). These large volume ( 6000 mm^3), long-lived ( 20 ns) radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Magneto-Rayleigh-Taylor instabilities and load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulsewidths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, reproducibility, and x-ray output power. X-ray pulsewidths of less than 5 ns and peak powers of 75?10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the accelerator, and are a record for x-ray powers in the laboratory. When the modification to enable z-pinch implosions on PBFA II is completed, x-ray energies in excess of 1.5 MJ at powers in excess of 150 TW should be reached. These intense x-ray sources offer the potential for performing many new basic physics and fusion-relevant experiments. *This work supported by the U.S. Department of Energy under Contract DE-AC04- 94AL85000.

  14. Focusing coherent soft-x-ray radiation to a micrometer spot size with an intensity of 10(14) W/cm2.

    PubMed

    Mashiko, Hiroki; Suda, Akira; Midorikawa, Katsumi

    2004-08-15

    We investigate the focusability of intense coherent soft-x-ray radiation generated by high-order harmonic conversion. The 27th-harmonic wave at 29.6 nm is focused by an off-axis parabolic mirror with a SiC/Mg multilayer coating. Focal-spot images are observed from the visible fluorescence induced by the soft-x-ray photons on a Ce:YAG scintillator. We demonstrate focusing of the soft-x-ray beam to a 1-microm spot size with a peak intensity of 1 x 10(14) W/cm2, which is to our knowledge the highest ever reported in the soft-x-ray region. PMID:15357362

  15. Intensity Interferometry of Single X-Ray Pulses from a Synchrotron Storage Ring

    NASA Astrophysics Data System (ADS)

    Singer, A.; Lorenz, U.; Marras, A.; Klyuev, A.; Becker, J.; Schlage, K.; Skopintsev, P.; Gorobtsov, O.; Shabalin, A.; Wille, H.-C.; Franz, H.; Graafsma, H.; Vartanyants, I. A.

    2014-08-01

    We report on measurements of second-order intensity correlations at the high-brilliance storage ring PETRA III using a prototype of the newly developed adaptive gain integrating pixel detector. The detector records individual synchrotron radiation pulses with an x-ray photon energy of 14.4 keV and repetition rate of about 5 MHz. The second-order intensity correlation function is measured simultaneously at different spatial separations, which allows us to determine the transverse coherence length at these x-ray energies. The measured values are in a good agreement with theoretical simulations based on the Gaussian Schell model.

  16. Intensity interferometry of single x-ray pulses from a synchrotron storage ring.

    PubMed

    Singer, A; Lorenz, U; Marras, A; Klyuev, A; Becker, J; Schlage, K; Skopintsev, P; Gorobtsov, O; Shabalin, A; Wille, H-C; Franz, H; Graafsma, H; Vartanyants, I A

    2014-08-01

    We report on measurements of second-order intensity correlations at the high-brilliance storage ring PETRA III using a prototype of the newly developed adaptive gain integrating pixel detector. The detector records individual synchrotron radiation pulses with an x-ray photon energy of 14.4 keV and repetition rate of about 5 MHz. The second-order intensity correlation function is measured simultaneously at different spatial separations, which allows us to determine the transverse coherence length at these x-ray energies. The measured values are in a good agreement with theoretical simulations based on the Gaussian Schell model. PMID:25148330

  17. Laser-plasma ion beams-experiments towards charge transfer x-ray laser

    SciTech Connect

    Crespo Lopez-Urrutia, J.R.; Fill, E.E. (Max-Planck-Institut fuer Quantenoptik, D-8046 Garching (Germany)); Bruch, R. (University of Nevada Reno, Nevada 89557 (United States)); Schneider, D. (Lawrence Livermore National Laboratory, California 94550 (United States))

    1993-06-05

    Laser plasmas produced at intensities of up to 10[sup 14] W/cm[sup 2] expand towards a secondary target a few millimeters away. The intense x-ray emission during the interaction plasma-target was recorded spectrally, spatially and time-resolved. A number of processes, like recombination and charge transfer may account for this strong radiation. The implications of these experiments to the design of a charge transfer x-ray laser are discussed.

  18. [Portable small size X-ray dosimeter DER-01M designed for dose control and its intensity in X-ray diagnostics].

    PubMed

    Vladimirov, L V; Kozlov, A A

    2003-01-01

    Described in the paper is a portable small-size X-ray dosimeter DER-0.1 M designed by the Research Institute for Introscopy, Research Production Amalgamation "Spectr", for monitoring the dose and its intensity in the manufacturing and exploitation of general-purpose and specialized X-ray units. A flat-parallel ionizing chamber is used in the device as a radiation detector. The related technical characteristics are contained in the paper. PMID:14603853

  19. Femtosecond X-ray-induced explosion of C60 at extreme intensity

    NASA Astrophysics Data System (ADS)

    Murphy, B. F.; Osipov, T.; Jurek, Z.; Fang, L.; Son, S.-K.; Mucke, M.; Eland, J. H. D.; Zhaunerchyk, V.; Feifel, R.; Avaldi, L.; Bolognesi, P.; Bostedt, C.; Bozek, J. D.; Grilj, J.; Guehr, M.; Frasinski, L. J.; Glownia, J.; Ha, D. T.; Hoffmann, K.; Kukk, E.; McFarland, B. K.; Miron, C.; Sistrunk, E.; Squibb, R. J.; Ueda, K.; Santra, R.; Berrah, N.

    2014-06-01

    Understanding molecular femtosecond dynamics under intense X-ray exposure is critical to progress in biomolecular imaging and matter under extreme conditions. Imaging viruses and proteins at an atomic spatial scale and on the time scale of atomic motion requires rigorous, quantitative understanding of dynamical effects of intense X-ray exposure. Here we present an experimental and theoretical study of C60 molecules interacting with intense X-ray pulses from a free-electron laser, revealing the influence of processes not previously reported. Our work illustrates the successful use of classical mechanics to describe all moving particles in C60, an approach that scales well to larger systems, for example, biomolecules. Comparisons of the model with experimental data on C60 ion fragmentation show excellent agreement under a variety of laser conditions. The results indicate that this modelling is applicable for X-ray interactions with any extended system, even at higher X-ray dose rates expected with future light sources.

  20. Femtosecond X-ray-induced explosion of C60 at extreme intensity.

    PubMed

    Murphy, B F; Osipov, T; Jurek, Z; Fang, L; Son, S-K; Mucke, M; Eland, J H D; Zhaunerchyk, V; Feifel, R; Avaldi, L; Bolognesi, P; Bostedt, C; Bozek, J D; Grilj, J; Guehr, M; Frasinski, L J; Glownia, J; Ha, D T; Hoffmann, K; Kukk, E; McFarland, B K; Miron, C; Sistrunk, E; Squibb, R J; Ueda, K; Santra, R; Berrah, N

    2014-01-01

    Understanding molecular femtosecond dynamics under intense X-ray exposure is critical to progress in biomolecular imaging and matter under extreme conditions. Imaging viruses and proteins at an atomic spatial scale and on the time scale of atomic motion requires rigorous, quantitative understanding of dynamical effects of intense X-ray exposure. Here we present an experimental and theoretical study of C60 molecules interacting with intense X-ray pulses from a free-electron laser, revealing the influence of processes not previously reported. Our work illustrates the successful use of classical mechanics to describe all moving particles in C60, an approach that scales well to larger systems, for example, biomolecules. Comparisons of the model with experimental data on C60 ion fragmentation show excellent agreement under a variety of laser conditions. The results indicate that this modelling is applicable for X-ray interactions with any extended system, even at higher X-ray dose rates expected with future light sources. PMID:24969734

  1. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Gilchrist, B. E.; Nishikawa, K.; Williams, A.

    2013-12-01

    Relativistic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and suborbital Reusable Launch Vehicle (sRLV) altitudes. The monoenergetic beam is modeled in cylindrical symmetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremmstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry that relies on sRLVs with a nominal apogee of 100 km. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  2. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    NASA Technical Reports Server (NTRS)

    Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi

    2013-01-01

    Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  3. X-ray laser

    DOEpatents

    Nilsen, Joseph (Livermore, CA)

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  4. A method for implementing the diffraction of a widely divergent X-ray beam

    SciTech Connect

    Avetyan, K. T.; Arakelyan, M. M., E-mail: marakelyan@ysu.am [Yerevan State University (Armenia)

    2008-11-15

    A method for implementing the diffraction of a widely divergent characteristic X-ray beam from a standard X-ray tube with a linear focal spot was improved. X rays, passing through a diaphragm 30 {mu}m in diameter, diffract from a crystal adjacent to the diaphragm. The crystal, together with a photographic plate, rotates around the axis perpendicular to the plate. It is shown that the diffraction image is a set of hyperbolas in this case. The equations of the hyperbolas are obtained and investigated. A method for interpreting the diffraction images in the case of small crystal asymmetry is proposed.

  5. Superficial dosimetry imaging based on ?erenkov emission for external beam radiotherapy with megavoltage x-ray beam

    SciTech Connect

    Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Glaser, Adam K. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J.; Fox, Colleen J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 and Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755 (United States)] [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 and Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W. [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States) [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States); Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2013-10-15

    Purpose: ?erenkov radiation emission occurs in all tissue, when charged particles (either primary or secondary) travel at velocity above the threshold for the ?erenkov effect (about 220 KeV in tissue for electrons). This study presents the first examination of optical ?erenkov emission as a surrogate for the absorbed superficial dose for MV x-ray beams.Methods: In this study, Monte Carlo simulations of flat and curved surfaces were studied to analyze the energy spectra of charged particles produced in different regions near the surfaces when irradiated by MV x-ray beams. ?erenkov emission intensity and radiation dose were directly simulated in voxelized flat and cylindrical phantoms. The sampling region of superficial dosimetry based on ?erenkov radiation was simulated in layered skin models. Angular distributions of optical emission from the surfaces were investigated. Tissue mimicking phantoms with flat and curved surfaces were imaged with a time domain gating system. The beam field sizes (50 × 50–200 × 200 mm{sup 2}), incident angles (0°–70°) and imaging regions were all varied.Results: The entrance or exit region of the tissue has nearly homogeneous energy spectra across the beam, such that their ?erenkov emission is proportional to dose. Directly simulated local intensity of ?erenkov and radiation dose in voxelized flat and cylindrical phantoms further validate that this signal is proportional to radiation dose with absolute average discrepancy within 2%, and the largest within 5% typically at the beam edges. The effective sampling depth could be tuned from near 0 up to 6 mm by spectral filtering. The angular profiles near the theoretical Lambertian emission distribution for a perfect diffusive medium, suggesting that angular correction of ?erenkov images may not be required even for curved surface. The acquisition speed and signal to noise ratio of the time domain gating system were investigated for different acquisition procedures, and the results show there is good potential for real-time superficial dose monitoring. Dose imaging under normal ambient room lighting was validated, using gated detection and a breast phantom.Conclusions: This study indicates that ?erenkov emission imaging might provide a valuable way to superficial dosimetry imaging in real time for external beam radiotherapy with megavoltage x-ray beams.

  6. Superficial dosimetry imaging based on ?erenkov emission for external beam radiotherapy with megavoltage x-ray beam

    PubMed Central

    Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Fox, Colleen J.; Pogue, Brian W.

    2013-01-01

    Purpose: ?erenkov radiation emission occurs in all tissue, when charged particles (either primary or secondary) travel at velocity above the threshold for the ?erenkov effect (about 220 KeV in tissue for electrons). This study presents the first examination of optical ?erenkov emission as a surrogate for the absorbed superficial dose for MV x-ray beams. Methods: In this study, Monte Carlo simulations of flat and curved surfaces were studied to analyze the energy spectra of charged particles produced in different regions near the surfaces when irradiated by MV x-ray beams. ?erenkov emission intensity and radiation dose were directly simulated in voxelized flat and cylindrical phantoms. The sampling region of superficial dosimetry based on ?erenkov radiation was simulated in layered skin models. Angular distributions of optical emission from the surfaces were investigated. Tissue mimicking phantoms with flat and curved surfaces were imaged with a time domain gating system. The beam field sizes (50 × 50–200 × 200 mm2), incident angles (0°–70°) and imaging regions were all varied. Results: The entrance or exit region of the tissue has nearly homogeneous energy spectra across the beam, such that their ?erenkov emission is proportional to dose. Directly simulated local intensity of ?erenkov and radiation dose in voxelized flat and cylindrical phantoms further validate that this signal is proportional to radiation dose with absolute average discrepancy within 2%, and the largest within 5% typically at the beam edges. The effective sampling depth could be tuned from near 0 up to 6 mm by spectral filtering. The angular profiles near the theoretical Lambertian emission distribution for a perfect diffusive medium, suggesting that angular correction of ?erenkov images may not be required even for curved surface. The acquisition speed and signal to noise ratio of the time domain gating system were investigated for different acquisition procedures, and the results show there is good potential for real-time superficial dose monitoring. Dose imaging under normal ambient room lighting was validated, using gated detection and a breast phantom. Conclusions: This study indicates that ?erenkov emission imaging might provide a valuable way to superficial dosimetry imaging in real time for external beam radiotherapy with megavoltage x-ray beams. PMID:24089916

  7. Evaluation of a ventricular assist device: stability under x-rays and therapeutic beam attenuation.

    PubMed

    Gossman, Michael S; Graham, Joel D; Tamez, Dan; Voskoboynikov, Neil; Larose, Jeffrey A

    2012-01-01

    Improved outcomes and quality of life of heart failure patients have been reported with the use of left ventricular assist devices (LVADs). However, little information exists regarding devices in patients undergoing radiation cancer treatment. Two HeartWare Ventricular Assist Device (HVAD) pumps were repeatedly irradiated with high intensity 18 MV x-rays to a dosage range of 64-75 Gy at a rate of 6 Gy/min from a radiation oncology particle accelerator to determine operational stability. Pump parameter data was collected through a data acquisition system. Second, a computerized tomography (CT) scan was taken of the device, and a treatment planning computer estimated characteristics of dose scattering and attenuation. Results were then compared with actual radiation measurements. The devices exhibited no changes in pump operation during the procedure, though the titanium components of the HVAD markedly attenuate the therapy beam. Computer modeling indicated an 11.8% dose change in the absorbed dosage that was distinctly less than the 84% dose change measured with detectors. Simulated and measured scattering processes were negligible. Computer modeling underestimates pretreatment dose to patients when the device is in the field of radiation. Future x-ray radiation dosimetry and treatment planning in HVAD patients should be carefully managed by radiation oncology specialists. PMID:22236626

  8. Generation of intense coherent soft x-ray with electron microbunches induced and frozen by lasers

    SciTech Connect

    Yu. L.H.

    1983-01-01

    We describe a new improved version of Transverse Optical Klystron Harmonic Generator that uses three lasers to replace the undulators in the modulator and radiator and freeze the electron microbunching. We show that intense soft x-rays can be generated.

  9. Survey of intensity variability of strong galactic X-ray sources from UHURU

    Microsoft Academic Search

    W. Forman; C. Jones; H. Tananbaum

    1976-01-01

    X-ray observations made with the Uhuru satellite have been used to study the characteristics of the intensity of 19 strong galactic sources. On a time scale of 0.1-1.0 s, all but two these sources showed variability at a significance level greater than 3 sigmas. On longer time scales - minutes to hours - all but three sources showed variations above

  10. Intensity of X-Ray (222) Line in InSb at 77 K Under Pressure

    NASA Astrophysics Data System (ADS)

    Okai, Bin; Takano, Kaoru J.; Yoshimoto, Jiichiro; Takahashi, Hiroki; Izawa, Atsushi; Tsuji, Kazuhiko

    The intensity of X-ray (222) line in InSb was measured at liquid nitrogen temperature up to the transition pressure. No abrupt decrease at ca. 3 GPa as reported by Yoder-Short, Colella and Weinstein was observed at 77 K, indicating that a smearing of the bonding charge is not responsible for the structural transition of InSb.

  11. Effect of Temperature on the Intensity of X-Rays Scattered by Powdered Sodium Fluoride

    Microsoft Academic Search

    J. J. Shonka

    1933-01-01

    The ratio of the integrated intensities of a number of regularly reflected x-ray lines from powdered sodium fluoride crystals at room and liquid air temperatures has been studied by means of a photographic method. The results of the experiments show that the ratio varies with the angle as predicted by the Debye-Waller formula. The characteristic temperature of sodium fluoride was

  12. An iterative reconstruction algorithm in cone beam geometry: simulation and application in X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Zolfaghari, Afsoun

    1996-02-01

    An X-ray microtomograph has been built in our laboratory from a conventional scanning electron microscope. An algorithm based on Algebraic Reconstruction Techniques (ART) has been developed to reconstruct the internal structure of the imaged object. This algorithm takes into account the diverging nature of the X-ray beam. In this paper we explain the reconstruction algorithm and we analyse the quality of the reconstructed objects in terms of signal-to-noise ratio (SNR), spatial resolution and cross-entropy.

  13. The on-ground calibrations of SuperAGILE: I. X-ray pencil beam

    Microsoft Academic Search

    Y. Evangelista; E. Costa; E. Del Monte; G. Di Persio; I. Donnarumma; M. Feroci; M. Frutti; A. Generosi; I. Lapshov; F. Lazzarotto; M. Mastropietro; E. Morelli; L. Pacciani; G. Porrovecchio; M. Rapisarda; V. Rossi-Albertini; A. Rubini; G. Sabatino; P. Soffitta

    2006-01-01

    The Flight Model of the SuperAGILE experiment was calibrated on-ground using an X-ray generator and individual radioactive sources at IASF Rome on August 2005. Here we describe the set-up, the measurements and the preliminary results of the calibration session carried out with the X-ray generator. The calibration with omnidirectional radioactive sources are reported elsewhere. The beam was collimated using a

  14. Computed Tomography with an X-Ray Transmission Pencil Beam Scanner

    Microsoft Academic Search

    George X. Kambic; Robert H. Wake

    1977-01-01

    The pencil beam x-ray transmission computed tomographic (CT) scanner was the first type of scanner to be applied to radiologic medicine. It utilizes a rotate and traverse scanning mechanism. The scanner provides 2 dimensional images of a cross-section of the human body and relates an arbitrary CT number scale to the linear x-ray attenuation coefficient. The scanner can discriminate small

  15. Optically-dressed resonant Auger processes induced by high-intensity x rays

    E-print Network

    Picón, Antonio; Doumy, Gilles; Southworth, Stephen H

    2015-01-01

    We have unveiled coherent multiphoton interferences originating from different quantum paths taken by the Auger electron induced by a high-intensity x-ray/XUV pulse under the presence of a strong optical field. These interferences give rise to a clear signature in the angle-resolved Auger electron spectrum: an asymmetry with respect to the energy of the Auger decay channel. In order to illustrate this effect we have considered the resonant Auger decay of the transition $2p^{5} \\!\\leftrightarrow\\! 1s^{-1}2p^{6}$ in Ne$^{+}$. The simulations show that these interferences are very sensitive to the parameters of the x-ray and optical fields.

  16. Quasitransient regimes of backward Raman amplification of intense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Malkin, Vladimir; Fisch, Nathaniel

    2008-11-01

    The backward Raman amplification (BRA) of laser pulses is considered under conditions when important features of the transient BRA survive, while BRA is noticeably affected by damping of the Langmuir wave mediating energy transfer from the pump to the pumped pulse. These quasitransient BRA regimes appear to be relevant to possible principle-of-proof experiments on BRA of intense x-ray laser pulses in plasmas. In particular, such experiments found to be feasible within the parameter range of currently built powerful soft x-ray sources.

  17. Absorption and x-ray measurements from ultra-intense laser-plasma interactions

    SciTech Connect

    Klem, D.E.; Darrow, C.; Lane, S.; Perry, M.D.

    1993-03-01

    The interaction of subpicosecond 1.06 mm laser light at intensities up to 10{sup 18} W/cm{sup 2} with dense performed plasmas is investigated by measurements of the absorption of the laser light in the plasma and by measurements of the production of bremsstrahlung x-rays. Absorption measurements are made by collecting the scattered light in an Ulbricht sphere. Light scattered in the backward and specular directions is collected separately. Measurements are presented for both high and low Z targets. X-ray production is measured using a nine channel filter/scintillator spectrometer.

  18. Investigation into the influence of x-ray scatter on the imaging performance of an x-ray flat-panel imager-based cone-beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    2001-06-01

    The advent of the x-ray flat panel imager (FPI) is making the study of cone beam volume CT (CBVCT) more competitive. Motivated by recent encouraging developments in CBVCT, this paper investigates the influence of x-ray scatter on the imaging performance of an x-ray FPI based CBVCT prototype. The prototype employs a circle-plus-two-arc orbit to meet the data sufficiency condition, and can reconstruct a region of interest within a longitudinally unbounded object using a cone beam filtered back-projection algorithm derived for the data acquisition orbit. First, the humanoid phantom is used to investigate the temporal variation of both scatter intensity and scatter to primary ratio (SPR) in the projection images acquired for CB reconstruction. Second, a 160 mm cylindrical water phantom consisting of four 16 mm rods made up of Acrylic, Polyethelene, Polycarborate and Polystrene respectively is utilized to evaluate the variation of interference caused by x-ray scatter (cupping effect) and signal to noise ratio vs. SPR in projection images. Third, a disc phantom consisting of seven acrylic discs stacked at even intervals is employed to evaluate the influence of x-ray scatter on reconstruction accuracy and the improvement of CBVCT image quality with recourse to an anti-scatter grid. Finally, the alleviation of the cupping effect in the presence of a beam-shaping (bow-tie) attenuator is assessed . The quantitative investigation shows that the influence of x-ray scatter on the SNR and CT number accuracy is a crucial problem to be addressed for the application of x-ray CBVCT.

  19. Survey of intensity variability of strong galactic X-ray sources from Uhuru

    NASA Technical Reports Server (NTRS)

    Forman, W.; Jones, C.; Tananbaum, H.

    1976-01-01

    X-ray observations made with the Uhuru satellite have been used to study the characteristics of the intensity of 19 strong galactic sources. On a time scale of 0.1-1.0 s, all but two these sources showed variability at a significance level greater than 3 sigmas. On longer time scales - minutes to hours - all but three sources showed variations above the 3-sigma level. In addition to characterizing in a systematic way the broad range of variability of the galactic X-ray sources, the results are applied to specific models of Cygnus X-1 and Cygnus X-3. Comments are also made on the similar nature of the strong galactic-center X-ray sources and the globular-cluster sources.

  20. Inclination Effects and Beaming in Black Hole X-ray Binaries

    E-print Network

    Ramesh Narayan; Jeffrey E. McClintock

    2005-01-11

    We investigate the dependence of observational properties of black hole X-ray binaries on the inclination angle i of their orbits. We find the following: (1) Transient black hole binaries show no trend in their quiescent X-ray luminosities as a function of i, suggesting that the radiation is not significantly beamed. This is consistent with emission from an accretion disk. If the X-rays are from a jet, then the Lorentz factor gamma of the jet is less than 1.24 at the 90% confidence level. (2) The X-ray binary 4U1543-47 with i of order 21 degrees has a surprisingly strong fluorescent iron line in the high soft state. Quantifying an earlier argument by Park et al. (2004), we conclude that if the continuum X-ray emission in this source is from a jet, then gamma 75 degrees. This fact, plus the lack of eclipses among the 20 black hole binaries in our sample, strongly suggests at the 99.5% confidence level that systems with large inclination angles are hidden from view. The obscuration could be the result of disk flaring, as suggested by Milgrom (1978) for neutron star X-ray binaries. (4) Transient black hole binaries with i ~ 70-75 degrees have significantly more complex X-ray light curves than systems with i < 65 degrees. This may be the result of variable obscuration and/or variable height above the disk of the radiating gas.

  1. Delivery confirmation of bolus electron conformal therapy combined with intensity modulated x-ray therapy

    SciTech Connect

    Kavanaugh, James A. [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, Louisiana 70803-4001 (United States); Hogstrom, Kenneth R.; Fontenot, Jonas P.; Henkelmann, Gregory [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, Louisiana 70803-4001 and Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809 (United States); Chu, Connel; Carver, Robert A. [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809 (United States)

    2013-02-15

    Purpose: The purpose of this study was to demonstrate that a bolus electron conformal therapy (ECT) dose plan and a mixed beam plan, composed of an intensity modulated x-ray therapy (IMXT) dose plan optimized on top of the bolus ECT plan, can be accurately delivered. Methods: Calculated dose distributions were compared with measured dose distributions for parotid and chest wall (CW) bolus ECT and mixed beam plans, each simulated in a cylindrical polystyrene phantom that allowed film dose measurements. Bolus ECT plans were created for both parotid and CW PTVs (planning target volumes) using 20 and 16 MeV beams, respectively, whose 90% dose surface conformed to the PTV. Mixed beam plans consisted of an IMXT dose plan optimized on top of the bolus ECT dose plan. The bolus ECT, IMXT, and mixed beam dose distributions were measured using radiographic films in five transverse and one sagittal planes for a total of 36 measurement conditions. Corrections for film dose response, effects of edge-on photon irradiation, and effects of irregular phantom optical properties on the Cerenkov component of the film signal resulted in high precision measurements. Data set consistency was verified by agreement of depth dose at the intersections of the sagittal plane with the five measured transverse planes. For these same depth doses, results for the mixed beam plan agreed with the sum of the individual depth doses for the bolus ECT and IMXT plans. The six mean measured planar dose distributions were compared with those calculated by the treatment planning system for all modalities. Dose agreement was assessed using the 4% dose difference and 0.2 cm distance to agreement. Results: For the combined high-dose region and low-dose region, pass rates for the parotid and CW plans were 98.7% and 96.2%, respectively, for the bolus ECT plans and 97.9% and 97.4%, respectively, for the mixed beam plans. For the high-dose gradient region, pass rates for the parotid and CW plans were 93.1% and 94.62%, respectively, for the bolus ECT plans and 89.2% and 95.1%, respectively, for the mixed beam plans. For all regions, pass rates for the parotid and CW plans were 98.8% and 97.3%, respectively, for the bolus ECT plans and 97.5% and 95.9%, respectively, for the mixed beam plans. For the IMXT component of the mixed beam plans, pass rates for the parotid and CW plans were 93.7% and 95.8%. Conclusions: Bolus ECT and mixed beam therapy dose delivery to the phantom were more accurate than IMXT delivery, adding confidence to the use of planning, fabrication, and delivery for bolus ECT tools either alone or as part of mixed beam therapy. The methodology reported in this work could serve as a basis for future standardization of the commissioning of bolus ECT or mixed beam therapy. When applying this technology to patients, it is recommended that an electron dose algorithm more accurate than the pencil beam algorithm, e.g., a Monte Carlo algorithm or analytical transport such as the pencil beam redefinition algorithm, be used for planning to ensure the desired accuracy.

  2. Un-Beamed Tidal Disruption Events at Hard X-Rays

    E-print Network

    Hryniewicz, Krzysztof

    2015-01-01

    Thanks to their thermal emission, Tidal Disruption Events (TDEs) were detected regularly in the soft X-rays and sometimes in the optical. Only few of them have been detected at hard X-rays: two are high redshift beamed events, one occurred at the core of a nearby galaxy and the last one is of a different nature, involving a compact object in the Milky Way. The aims of this work are to obtain a first sample of hard X-ray selected un-beamed TDEs, to determine their frequency and to probe if TDEs are usually or exceptionally emitting at hard X-rays. We performed extensive search for hard X-ray flares at the positions of over 53000 galaxies up to a distance of 100 Mpc in the Swift BAT archive. Light curves were extracted and parametrized. The quiescent hard X-ray emission was used to exclude persistently active galactic nuclei. Significant flares from non-active galaxies were derived and checked for possible contamination. We found a sample of nine TDE candidates, which translates in a rate of $2 \\times 10^{-5}$ ...

  3. Transverse Coherence of the LCLS X-Ray Beam

    SciTech Connect

    Not Available

    2010-12-01

    Self-amplifying spontaneous radiation free-electron lasers, such as the LCLS or the European X-FEL, rely on the incoherent, spontaneous radiation as the seed for the amplifying process. Though this method overcomes the need for an external seed source one drawback is the incoherence of the effective seed signal. The FEL process allows for a natural growth of the coherence because the radiation phase information is spread out within the bunch due to slippage and diffraction of the radiation field. However, at short wavelengths this spreading is not sufficient to achieve complete coherence. In this presentation we report on the results of numerical simulations of the LCLS X-ray FEL. From the obtained radiation field distribution the coherence properties are extracted to help to characterize the FEL as a light source.

  4. Transverse Coherence Properties of the LCLS X-Ray Beam

    SciTech Connect

    Reiche, S.; /UCLA

    2007-04-16

    Self-amplifying spontaneous radiation free-electron lasers, such as the LCLS or the European X-FEL, rely on the incoherent, spontaneous radiation as the seed for the amplifying process. Though this method overcomes the need for an external seed source one drawback is the incoherence of the effective seed signal. The FEL process allows for a natural growth of the coherence because the radiation phase information is spread out within the bunch due to slippage and diffraction of the radiation field. However, at short wavelengths this spreading is not sufficient to achieve complete coherence. In this presentation we report on the results of numerical simulations of the LCLS X-ray FEL. From the obtained radiation field distribution the coherence properties are extracted to help to characterize the FEL as a light source.

  5. Design and Implementation of an Acoustic X-ray Detector to Measure the LCLS Beam Energy

    SciTech Connect

    Not Available

    2010-08-25

    On April 11, 2009, first light was seen from LCLS. The present apparatus being used to measure the x-ray beam energy is the Total Energy Sensor which uses a suite of thermal sensors. Another device is needed to cross-check the energy measurements. This new diagnostic tool utilizes radiation acoustic phenomena to determine the x-ray beam energy. A target is hit by the x-rays from the beam, and a voltage is generated in two piezoelectric sensors attached to the target in response to the consequent deformation. Once the voltage is known, the power can be obtained. Thermal sensors will also be attached to the target for calibration purposes. Material selection and design were based on: durability, ultra-high vacuum compatibility, safety and thermal properties. The target material was also chosen for its acoustic properties which were determined from tests using a frequency generator and laser. Initial tests suggest the device will function as anticipated.

  6. X-ray beam-shaping via deformable mirrors: Analytical computation of the required mirror profile

    NASA Astrophysics Data System (ADS)

    Spiga, Daniele; Raimondi, Lorenzo; Svetina, Cristian; Zangrando, Marco

    2013-05-01

    X-ray mirrors with high focusing performances are in use in both mirror modules for X-ray telescopes and in synchrotron and FEL (Free Electron Laser) beamlines. A degradation of the focus sharpness arises in general from geometrical deformations and surface roughness, the former usually described by geometrical optics and the latter by physical optics. In general, technological developments are aimed at a very tight focusing, which requires the mirror profile to comply with the nominal shape as much as possible and to keep the roughness at a negligible level. However, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators as done at the EIS-TIMEX beamline of FERMI@Elettra. The resulting profile can be characterized with a Long Trace Profilometer and correlated with the expected optical quality via a wavefront propagation code. However, if the roughness contribution can be neglected, the computation can be performed via a ray-tracing routine, and, under opportune assumptions, the focal spot profile (the Point Spread Function, PSF) can even be predicted analytically. The advantage of this approach is that the analytical relation can be reversed; i.e., from the desired PSF the required mirror profile can be computed easily, thereby avoiding the use of complex and time-consuming numerical codes. The method can also be suited in the case of spatially inhomogeneous beam intensities, as commonly experienced at synchrotrons and FELs. In this work we expose the analytical method and the application to the beam shaping problem.

  7. Using E-Beam and X-Ray Lithography Techniques to Fabricate Zone Plates for Hard X-ray

    Microsoft Academic Search

    T. N. Lo; Y. T. Chen; C. J. Liu; W. D. Chang; T. Y. Lai; H. J. Wu; I. K. Lin; C. I. Su; B. Y. Shew; J. H. Je; G. Margaritondo; Y. Hwu

    2007-01-01

    A high-resolution zone plate for focusing and magnifying hard-x-rays require very high fabrication precision and high aspect ratio metal structures and therefore post perhaps the most challenging task to the nanofabrication. We present a nanofabrication strategy to fabricate such devices for x-ray applications which takes advantage of the state-of-the-art x-ray lithography and electroplating processes. The substrate used to fabricate the

  8. Characteristics of a tandem system of ionization chambers in X-ray beams, mammography level.

    PubMed

    Afonso, L C; Vivolo, V; Caldas, L V E

    2010-01-01

    Two parallel plate ionization chambers (inserted in slab phantoms) recently assembled at IPEN were studied in relation to their operational characteristics for use in quality control of X-ray beams, mammography level. The chambers present only one difference: one has an inner collecting electrode made of graphite and the other, of aluminum. These chambers make up a tandem system, which may be employed to verify X-ray beams energy constancy, by the confirmation of half-value layers and effective energies, and to determinate air kerma rates. The chambers presented good results for the operational tests, as recommended internationally. PMID:19910201

  9. A framework for 3-D coherent diffraction imaging by focused beam x-ray Bragg ptychography.

    SciTech Connect

    Hruszkewycz, S. O.; Holt, M. V.; Tripathi, A.; Maser, J.; Fuoss, P. H. (Center for Nanoscale Materials); ( MSD); (Univ. of California at San Diego)

    2011-06-15

    We present the framework for convergent beam Bragg ptychography, and, using simulations, we demonstrate that nanocrystals can be ptychographically reconstructed from highly convergent x-ray Bragg diffraction. The ptychographic iterative engine is extended to three dimensions and shown to successfully reconstruct a simulated nanocrystal using overlapping raster scans with a defocused curved beam, the diameter of which matches the crystal size. This object reconstruction strategy can serve as the basis for coherent diffraction imaging experiments at coherent scanning nanoprobe x-ray sources.

  10. Observation of the Talbot effect using broadband hard x-ray beam

    SciTech Connect

    Kim, J.M.; Conley, R.; Cho, I. H.; Lee, S. Y.; Kang, H. C.; Liu, C.; Macrander, A. T.; Noh, D. Y.

    2010-11-15

    We demonstrated the Talbot effect using a broadband hard x-ray beam ({Delta}{lambda}/{lambda} {approx}1). The exit wave-field of the x-ray beam passing through a grating with a sub micro-meter scale period was successfully replicated and recorded at effective Talbot distance, Z{sub T}. The period was reduced to half at Z{sub T}/4 and 3/4Z{sub T}, and the phase reversal was observed at Z{sub T}/2. The propagating wave-field recorded on photoresists was consistent with a simulated result.

  11. SU-E-I-01: A Fast, Analytical Pencil Beam Based Method for First Order X-Ray Scatter Estimation of Kilovoltage Cone Beam X-Rays

    SciTech Connect

    Liu, J; Bourland, J [Wake Forest University, Winston-salem, NC (United States)

    2014-06-01

    Purpose: To analytically estimate first-order x-ray scatter for kV cone beam x-ray imaging with high computational efficiency. Methods: In calculating first-order scatter using the Klein-Nishina formula, we found that by integrating the point-to-point scatter along an interaction line, a “pencil-beam” scatter kernel (BSK) can be approximated to a quartic expression when the imaging field is small. This BSK model for monoenergetic, 100keV x-rays has been verified on homogeneous cube and cylinder water phantoms by comparing with the exact implementation of KN formula. For heterogeneous medium, the water-equivalent length of a BSK was acquired with an improved Siddon's ray-tracing algorithm, which was also used in calculating pre- and post- scattering attenuation. To include the electron binding effect for scattering of low-kV photons, the mean corresponding scattering angle is determined from the effective point of scattered photons of a BSK. The behavior of polyenergetic x-rays was also investigated for 120kV x-rays incident to a sandwiched infinite heterogeneous slab phantom, with the electron binding effect incorporated. Exact computation and Monte Carlo simulations were performed for comparisons, using the EGSnrc code package. Results: By reducing the 3D volumetric target (o(n{sup 3})) to 2D pencil-beams (o(n{sup 2})), the computation expense can be generally lowered by n times, which our experience verifies. The scatter distribution on a flat detector shows high agreement between the analytic BSK model and exact calculations. The pixel-to-pixel differences are within (-2%, 2%) for the homogeneous cube and cylinder phantoms and within (0, 6%) for the heterogeneous slab phantom. However, the Monte Carlo simulation shows increased deviation of the BSK model toward detector periphery. Conclusion: The proposed BSK model, accommodating polyenergetic x-rays and electron binding effect at low kV, shows great potential in efficiently estimating the first-order scatter from small imaging fields. We are investigating more thoroughly to improve performance and explore applications.

  12. Generation of Attosecond X-ray Pulses Beyond the Atomic Unit of Time Using Laser Induced Microbunching in Electron Beams

    SciTech Connect

    Xiang, D.; Huang, Z.; Stupakov, G.; /SLAC

    2009-12-11

    Ever since the discovery of mode-locking, efforts have been devoted to reducing the duration of laser pulses since the ultrashort pulses are critical to explore the dynamics occurred on a ever-shorter timescale. In this paper we describe a scheme that's capable of generating intense attosecond x-ray pulses with duration beyond the atomic unit of time ({approx}24 attoseconds). The scheme combines the echo-enabled harmonic generation technique with the bunch compression which allows one to generate harmonic numbers of a few hundred in a microbunched beam through up-conversion of the frequency of a UV seed laser. A few-cycle intense IR laser is used to generate the required energy chirp in the beam for bunch compression and for selection of an attosecond x-ray pulse. Using a representative realistic set of parameters, we show that 1 nm x-ray pulse with peak power of a few hundred MW and duration as short as 20 attoseconds (FWHM) can be generated from a 200 nm UV seed laser. The proposed scheme may enable the study of electronic dynamics with a resolution beyond the atomic unit of time and may open a new regime of ultrafast sciences.

  13. Intense Non-Linear Soft X-Ray Emission from a Hydride Target during Pulsed D Bombardment

    Microsoft Academic Search

    George H. Miley; Yang Yang; Andrei Lipson; Munima Haque; Ian Percel; Michael Romer

    2006-01-01

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW\\/cm2 and a dose of 3.3 muJ\\/cm2 were

  14. Constraints on Off-Axis X-Ray Emission from Beamed GRBs

    E-print Network

    Eric Woods; Abraham Loeb

    1999-03-24

    We calculate the prompt x-ray emission as a function of viewing angle for beamed Gamma-Ray Burst (GRB) sources. Prompt x-rays are inevitable due to the less highly blueshifted photons emitted at angles greater than 1/gamma relative to the beam symmetry axis, where gamma is the expansion Lorentz factor. The observed flux depends on the combinations (gamma Delta theta) and (gamma theta_v), where (Delta theta) is the beaming angle and theta_v is the viewing angle. We use the observed source counts of gamma-ray-selected GRBs to predict the minimum detection rate of prompt x-ray bursts as a function of limiting sensitivity. We compare our predictions with the results from the Ariel V catalog of fast x-ray transients, and find that Ariel's sensitivity is not great enough to place significant constraints on gamma and (Delta theta). We estimate that a detector with fluence limit ~10^{-7} erg/cm^2 in the 2-10 keV channel will be necessary to distinguish between geometries. Because the x-ray emission is simultaneous with the GRB emission, our predicted constraints do not involve any model assumptions about the emission physics but simply follow from special-relativistic considerations.

  15. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    1997-03-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO2 laser may be used for prototype LSS demonstration. In a feasible demonstration experiment, 10-GW, 100-ps CO2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 Å) x-rays of 10-ps pulse duration, with a flux of ˜1019photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 1022 photons/sec level, after the ongoing ATF CO2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact "table-top" LSS of monochromatic gamma radiation may become feasible.

  16. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    SciTech Connect

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0{sub 2} laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0{sub 2} laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of {approximately}10{sup 19} photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10{sup 22} photon/sec level, after the ongoing ATF C0{sub 2} laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ``table- top`` LSS of monochromatic gamma radiation may become feasible.

  17. Cone beam x-ray luminescence computed tomography: A feasibility study

    SciTech Connect

    Chen Dongmei; Zhu Shouping; Yi Huangjian; Zhang Xianghan; Chen Duofang; Liang Jimin [School of Life Sciences and Technology, Xidian University, Xi'an 710071 (China); Tian Jie [School of Life Sciences and Technology, Xidian University, Xi'an 710071 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-03-15

    Purpose: The appearance of x-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging by x ray. In the previous XLCT system, the sample was irradiated by a sequence of narrow x-ray beams and the x-ray luminescence was measured by a highly sensitive charge coupled device (CCD) camera. This resulted in a relatively long sampling time and relatively low utilization of the x-ray beam. In this paper, a novel cone beam x-ray luminescence computed tomography strategy is proposed, which can fully utilize the x-ray dose and shorten the scanning time. The imaging model and reconstruction method are described. The validity of the imaging strategy has been studied in this paper. Methods: In the cone beam XLCT system, the cone beam x ray was adopted to illuminate the sample and a highly sensitive CCD camera was utilized to acquire luminescent photons emitted from the sample. Photons scattering in biological tissues makes it an ill-posed problem to reconstruct the 3D distribution of the x-ray luminescent sample in the cone beam XLCT. In order to overcome this issue, the authors used the diffusion approximation model to describe the photon propagation in tissues, and employed the sparse regularization method for reconstruction. An incomplete variables truncated conjugate gradient method and permissible region strategy were used for reconstruction. Meanwhile, traditional x-ray CT imaging could also be performed in this system. The x-ray attenuation effect has been considered in their imaging model, which is helpful in improving the reconstruction accuracy. Results: First, simulation experiments with cylinder phantoms were carried out to illustrate the validity of the proposed compensated method. The experimental results showed that the location error of the compensated algorithm was smaller than that of the uncompensated method. The permissible region strategy was applied and reduced the reconstruction error to less than 2 mm. The robustness and stability were then evaluated from different view numbers, different regularization parameters, different measurement noise levels, and optical parameters mismatch. The reconstruction results showed that the settings had a small effect on the reconstruction. The nonhomogeneous phantom simulation was also carried out to simulate a more complex experimental situation and evaluated their proposed method. Second, the physical cylinder phantom experiments further showed similar results in their prototype XLCT system. With the discussion of the above experiments, it was shown that the proposed method is feasible to the general case and actual experiments. Conclusions: Utilizing numerical simulation and physical experiments, the authors demonstrated the validity of the new cone beam XLCT method. Furthermore, compared with the previous narrow beam XLCT, the cone beam XLCT could more fully utilize the x-ray dose and the scanning time would be shortened greatly. The study of both simulation experiments and physical phantom experiments indicated that the proposed method was feasible to the general case and actual experiments.

  18. Scaling of Pressure with Intensity in Laser-Driven Shocks and Effects of Hot X-ray Preheat

    SciTech Connect

    Colvin, J D; Kalantar, D H

    2005-08-29

    To drive shocks into solids with a laser we either illuminate the material directly, or to get higher pressures, illuminate a plastic ablator that overlays the material of interest. In both cases the illumination intensity is low, <<10{sup 13} W/cm{sup 2}, compared to that for traditional laser fusion targets. In this regime, the laser beam creates and interacts with a collisional, rather than a collisionless, plasma. We present scaling relationships for shock pressure with intensity derived from simulations for this low-intensity collisional plasma regime. In addition, sometimes the plastic-ablator targets have a thin flashcoating of Al on the plastic surface as a shine-through barrier; this Al layer can be a source of hot x-ray preheat. We discuss how the preheat affects the shock pressure, with application to simulating VISAR measurements from experiments conducted on various lasers on shock compression of Fe.

  19. Scaling of Pressure with Intensity in Laser-Driven Shocks and Effects of Hot X-Ray Preheat

    SciTech Connect

    Colvin, Jeffrey D.; Kalantar, Daniel H. [Lawrence Livermore National Laboratory, L-356, P.O. Box 808, Livermore, CA 94551 (United States)

    2006-07-28

    To drive shocks into solids with a laser we either illuminate the material directly, or to get higher pressures, illuminate a plastic ablator that overlays the material of interest. In both cases the illumination intensity is low, <<1013 W/cm2, compared to that for traditional laser fusion targets. In this regime, the laser beam creates and interacts with a collisional, rather than a collisionless, plasma. We present scaling relationships for shock pressure with intensity derived from simulations for this low-intensity collisional plasma regime. In addition, sometimes the plastic-ablator targets have a thin flash-coating of Al on the plastic surface as a shine-through barrier; this Al layer can be a source of hot x-ray preheat. We discuss how the preheat affects the shock pressure, with application to simulating VISAR measurements from experiments conducted on various lasers on shock compression of Fe.

  20. X-ray Beaming in the High Magnetic Field Pulsar GX 1+4

    E-print Network

    D. K. Galloway; K. Wu

    1999-10-29

    Pulse profiles from X-ray pulsars often exhibit strong energy dependence and both periodic and aperiodic variations with time. The great variety of profiles observed in various sources, and even from individual sources, makes it difficult to separate the numerous factors influencing the phase-dependence of the X-ray emission. These factors include the system geometry and particularly the photon energy and angle dependence of emission about the neutron star poles. Comptonisation may play an important role in determining beam patterns and hence pulse profiles in X-ray pulsars. A Monte Carlo simulation is used to investigate the beaming due to Comptonisation in a simple accretion column geometry. We apply the model to the extremely variable pulse profiles of the high-magnetic field pulsar GX 1+4.

  1. X-ray beam stabilization at BL-17A, the protein microcrystallography beamline of the Photon Factory

    PubMed Central

    Igarashi, Noriyuki; Ikuta, Kazuyuki; Miyoshi, Toshinobu; Matsugaki, Naohiro; Yamada, Yusuke; Yousef, Mohammad S.; Wakatsuki, Soichi

    2008-01-01

    BL-17A is a new structural biology beamline at the Photon Factory, Japan. The high-brilliance beam, derived from the new short-gap undulator (SGU#17), allows for unique protein crystallographic experiments such as data collection from microcrystals and structural determination using softer X-rays. However, microcrystal experiments require robust beam stability during data collection and minor fluctuations could not be ignored. Initially, significant beam instability was observed at BL-17A. The causes of the beam instability were investigated and its various sources identified. Subsequently, several effective countermeasures have been implemented, and the fluctuation of the beam intensity successfully suppressed to within 1%. Here the instability reduction techniques used at BL-17A are presented. PMID:18421162

  2. Synchrotron-based coherent scatter x-ray projection imaging using an array of monoenergetic pencil beams

    SciTech Connect

    Landheer, Karl [Ottawa Medical Physics Institute and Ottawa-Carleton Institute for Physics, Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6 (Canada); Johns, Paul C. [Ottawa Medical Physics Institute and Ottawa-Carleton Institute for Physics, Department of Physics, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6 (Canada); Department of Radiology, University of Ottawa (Canada)

    2012-09-15

    Traditional projection x-ray imaging utilizes only the information from the primary photons. Low-angle coherent scatter images can be acquired simultaneous to the primary images and provide additional information. In medical applications scatter imaging can improve x-ray contrast or reduce dose using information that is currently discarded in radiological images to augment the transmitted radiation information. Other applications include non-destructive testing and security. A system at the Canadian Light Source synchrotron was configured which utilizes multiple pencil beams (up to five) to create both primary and coherent scatter projection images, simultaneously. The sample was scanned through the beams using an automated step-and-shoot setup. Pixels were acquired in a hexagonal lattice to maximize packing efficiency. The typical pitch was between 1.0 and 1.6 mm. A Maximum Likelihood-Expectation Maximization-based iterative method was used to disentangle the overlapping information from the flat panel digital x-ray detector. The pixel value of the coherent scatter image was generated by integrating the radial profile (scatter intensity versus scattering angle) over an angular range. Different angular ranges maximize the contrast between different materials of interest. A five-beam primary and scatter image set (which had a pixel beam time of 990 ms and total scan time of 56 min) of a porcine phantom is included. For comparison a single-beam coherent scatter image of the same phantom is included. The muscle-fat contrast was 0.10 {+-} 0.01 and 1.16 {+-} 0.03 for the five-beam primary and scatter images, respectively. The air kerma was measured free in air using aluminum oxide optically stimulated luminescent dosimeters. The total area-averaged air kerma for the scan was measured to be 7.2 {+-} 0.4 cGy although due to difficulties in small-beam dosimetry this number could be inaccurate.

  3. Synchrotron-based coherent scatter x-ray projection imaging using an array of monoenergetic pencil beams

    NASA Astrophysics Data System (ADS)

    Landheer, Karl; Johns, Paul C.

    2012-09-01

    Traditional projection x-ray imaging utilizes only the information from the primary photons. Low-angle coherent scatter images can be acquired simultaneous to the primary images and provide additional information. In medical applications scatter imaging can improve x-ray contrast or reduce dose using information that is currently discarded in radiological images to augment the transmitted radiation information. Other applications include non-destructive testing and security. A system at the Canadian Light Source synchrotron was configured which utilizes multiple pencil beams (up to five) to create both primary and coherent scatter projection images, simultaneously. The sample was scanned through the beams using an automated step-and-shoot setup. Pixels were acquired in a hexagonal lattice to maximize packing efficiency. The typical pitch was between 1.0 and 1.6 mm. A Maximum Likelihood-Expectation Maximization-based iterative method was used to disentangle the overlapping information from the flat panel digital x-ray detector. The pixel value of the coherent scatter image was generated by integrating the radial profile (scatter intensity versus scattering angle) over an angular range. Different angular ranges maximize the contrast between different materials of interest. A five-beam primary and scatter image set (which had a pixel beam time of 990 ms and total scan time of 56 min) of a porcine phantom is included. For comparison a single-beam coherent scatter image of the same phantom is included. The muscle-fat contrast was 0.10 ± 0.01 and 1.16 ± 0.03 for the five-beam primary and scatter images, respectively. The air kerma was measured free in air using aluminum oxide optically stimulated luminescent dosimeters. The total area-averaged air kerma for the scan was measured to be 7.2 ± 0.4 cGy although due to difficulties in small-beam dosimetry this number could be inaccurate.

  4. Intense high repetition rate Mo K? x-ray source generated from laser solid interaction for imaging application.

    PubMed

    Huang, K; Li, M H; Yan, W C; Guo, X; Li, D Z; Chen, Y P; Ma, Y; Zhao, J R; Li, Y F; Zhang, J; Chen, L M

    2014-11-01

    We report an efficient Mo K? x-ray source produced by interaction of femtosecond Ti: sapphire laser pulses with a solid Molybdenum target working at 1 kHz repetition rate. The generated Mo K? x-ray intensity reaches to 4.7 × 10(10) photons?sr(-1)?s(-1), corresponding to an average power of 0.8 mW into 2? solid angle. The spatial resolution of this x-ray source is measured to be 26 lp/mm. With the high flux and high spatial resolution characteristics, high resolving in-line x-ray radiography was realized on test objects and large size biological samples within merely half a minute. This experiment shows the possibility of laser plasma hard x-ray source as a new low cost and high resolution system for radiography and its ability of ultrafast x-ray pump-probe study of matter. PMID:25430107

  5. Femtosecond time-resolved X-ray absorption spectroscopy of liquid using a hard X-ray free electron laser in a dual-beam dispersive detection method.

    PubMed

    Obara, Yuki; Katayama, Tetsuo; Ogi, Yoshihiro; Suzuki, Takayuki; Kurahashi, Naoya; Karashima, Shutaro; Chiba, Yuhei; Isokawa, Yusuke; Togashi, Tadashi; Inubushi, Yuichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko

    2014-01-13

    We present femtosecond time-resolved X-ray absorption spectroscopy of aqueous solution using a hard x-ray free electron laser (SACLA) and a synchronized Ti:sapphire laser. The instrumental response time is 200 fs, and the repetition rate of measurement is 10 Hz. A cylindrical liquid beam 100 ?m in diameter of aqueous ammonium iron(III) oxalate solution is photoexcited at 400 nm, and the transient X-ray absorption spectra are measured in the K-edge region of iron, 7.10 - 7.26 keV, using a dual X-ray beam dispersive detection method. Each of the dual beams has the pulse energy of 1.4 ?J, and pump-induced absorbance change on the order of 10(-3) is successfully detected. The photoexcited iron complex exhibits a red shifted iron K-edge with the appearance time constant of 260 fs. The X-ray absorption difference spectra, with and without the pump pulses, are independent of time delay after 1.5 ps up to 100 ps, indicating that the photoexcited species is long-lived. PMID:24515070

  6. Correlated Intense X-Ray and TEV Activity of Markarian 501 in 1998 June

    NASA Astrophysics Data System (ADS)

    Sambruna, R. M.; Aharonian, F. A.; Krawczynski, H.; Akhperjanian, A. G.; Barrio, J. A.; Bernlöhr, K.; Bojahr, H.; Calle, I.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Gonzalez, J. C.; Götting, N.; Heinzelmann, G.; Hemberger, M.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Ibarra, A.; Kankanyan, R.; Kestel, M.; Kettler, J.; Köhler, C.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Lampeitl, H.; Lindner, A.; Lorenz, E.; Magnussen, N.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rauterberg, G.; Röhring, A.; Sahakian, V.; Samorski, M.; Schilling, M.; Schmele, D.; Schröder, F.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiebel-Sooth, B.; Wiedner, C.; Willmer, M.; Wittek, W.; Chou, L.; Coppi, P. S.; Rothschild, R.; Urry, C. M.

    2000-07-01

    We present exactly simultaneous X-ray and TeV monitoring with RXTE and HEGRA of the TeV blazar Mrk 501 during 15 days in 1998 June. After an initial period of very low flux at both wavelengths, the source underwent a remarkable flare in the TeV and X-ray energy bands, lasting for about 6 days and with a larger amplitude at TeV energies than in the X-ray band. At the peak of the TeV flare, rapid TeV flux variability on subhour timescales is found. Large spectral variations are observed at X-rays, with the 3-20 keV photon index of a pure power-law continuum flattening from ?=2.3 to ?=1.8 on a timescale of 2-3 days. This implies that during the maximum of the TeV activity the synchrotron peak shifted to energies >~50 keV, a behavior similar to that observed during the longer lasting, more intense flare in 1997 April. The TeV spectrum during the flare is described by a power law with photon index ?=1.9 and an exponential cutoff at ~4 TeV; an indication for spectral softening during the flare decay is observed in the TeV hardness ratios. Our results generally support a scenario in which the TeV photons are emitted via inverse Compton scattering of ambient seed photons by the same electron population responsible for the synchrotron X-rays. The simultaneous spectral energy distributions can be fit with a one-zone synchrotron self-Compton model assuming a substantial increase of the magnetic field and the electron energy by factors of 3 and 10, respectively.

  7. Ultra-thin optical grade scCVD diamond as X-ray beam position monitor.

    PubMed

    Desjardins, Kewin; Pomorski, Michal; Morse, John

    2014-11-01

    Results of measurements made at the SIRIUS beamline of the SOLEIL synchrotron for a new X-ray beam position monitor based on a super-thin single crystal of diamond grown by chemical vapor deposition (CVD) are presented. This detector is a quadrant electrode design processed on a 3?µm-thick membrane obtained by argon-oxygen plasma etching the central area of a CVD-grown diamond plate of 60?µm thickness. The membrane transmits more than 50% of the incident 1.3?keV energy X-ray beam. The diamond plate was of moderate purity (?1?p.p.m. nitrogen), but the X-ray beam induced current (XBIC) measurements nevertheless showed a photo-charge collection efficiency approaching 100% for an electric field of 2?V?µm(-1), corresponding to an applied bias voltage of only 6?V. XBIC mapping of the membrane showed an inhomogeneity of more than 10% across the membrane, corresponding to the measured variation in the thickness of the diamond plate before the plasma etching process. The measured XBIC signal-to-dark-current ratio of the device was greater than 10(5), and the X-ray beam position resolution of the device was better than a micrometer for a 1?kHz sampling rate. PMID:25343787

  8. A bimodal energy model for correcting beam hardening artefacts in X-ray tomography

    Microsoft Academic Search

    Elke Van de Casteele; Dirk Van Dyck; Jan Sijbers; Erik Raman

    2003-01-01

    As a consequence of the polychromatic X-ray sources, used in micro-computer tomography (?CT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. Here, a bimodal energy model for the energy spectrum is presented, which may be

  9. X-ray spectra from the Cornell Electron-Beam Ion Source (CEBIS I)

    SciTech Connect

    Johnson, B.M.; Jones, K.W.; Kostroun, V.O.; Ghanbari, E.; Janson, S.W.

    1985-01-01

    Radiation emitted from the Cornell electron beam ion source (CEBIS I) has been surveyed with a Si(Li) x-ray detector. These spectra can be used to estimate backgrounds from electron bremsstrahlung and to evaluate the feasibility of atomic physics experiments using the CEBIS I source in this configuration. 1 ref., 2 figs.

  10. Beam optics of gain-guided soft-x-ray lasers in cylindrical plasmas

    E-print Network

    Rocca, Jorge J.

    studied the beam optics of exploding foil x-ray lasers, which are well described by a model with a one-created plasmas.1 In the most common pumping configuration a powerful laser is focused onto a thin foil or a slab

  11. X-ray line spectroscopy method for magnetic field and electron beam energy measurements

    Microsoft Academic Search

    E. Baronova; V. Alexandrov

    1996-01-01

    Certain conditions in high temperature plasma (weak electrical field, temperature gradient, parametric instabilities) can lead to the spontaneous magnetic field and suprathermal electron generation. Suprathermal electrons are of great importance in energy transition processes and in plasma emission spectra formation. Soft X-ray line spectroscopy application for magnetic field and electron beam energy measurements in laser produced plasma are presented.

  12. Absorbed dose distributions for X-ray beams and beams of electrons from the Therac 20 Saturne linear accelerator.

    PubMed

    Tronc, D; Noël, A

    1978-11-01

    After a brief description of the Therac 20 Saturne linear accelerator a complete set of absorbed-dose distribution values is given. These values define the depths on the axis as a function of the depth dose and define the penumbra (as characterized by the positions of the intersections of the isodose curves with planes parallel to the phantom surface) for beams of X-rays and for beams of electrons. Tissue-maximum ratios are given for beams of X-rays. Analytical values for the electron depth dose curve are compared with the values obtained on the Sagittaire linear accelerator. PMID:715810

  13. X-ray diffraction imaging of metal–oxide epitaxial tunnel junctions made by optical lithography: use of focused and unfocused X-ray beams

    PubMed Central

    Mocuta, Cristian; Barbier, Antoine; Stanescu, Stefan; Matzen, Sylvia; Moussy, Jean-Baptiste; Ziegler, Eric

    2013-01-01

    X-ray diffraction techniques are used in imaging mode in order to characterize micrometre-sized objects. The samples used as models are metal–oxide tunnel junctions made by optical lithography, with lateral sizes ranging from 150?µm down to 10?µm and various shapes: discs, squares and rectangles. Two approaches are described and compared, both using diffraction contrast: full-field imaging (topography) and raster imaging (scanning probe) using a micrometre-sized focused X-ray beam. It is shown that the full-field image gives access to macroscopic distortions (e.g. sample bending), while the local distortions, at the micrometre scale (e.g. tilts of the crystalline planes in the vicinity of the junction edges), can be accurately characterized only using focused X-ray beams. These local defects are dependent on the junction shape and larger by one order of magnitude than the macroscopic curvature of the sample. PMID:23412494

  14. Evidence for beamed electrons in a limb X-ray flare observed by Hard X-Ray Imaging Spectrometer (HXIS)

    NASA Technical Reports Server (NTRS)

    Haug, Eberhard; Elwert, Gerhard

    1986-01-01

    The limb flare of November 18, 1980, 14:51 UT, was investigated on the basis of X-ray images taken by the Hard X-ray Imaging Spectrometer (HXIS) and of X-ray spectra from the Hard X-Ray Burst Spectrometer (HXRBS) aboard the Solar Maximum Mission (SMM). The impulsive burst was also recorded at microwave frequencies between 2 and 20 GHz whereas no optical flare and no radio event at frequencies below 1 GHz were reported. The flare occurred directly at the SW limb of the solar disk. Taking advantage of the spatial resolution of HXIS images, the time evolution of the X-radiation originating from relatively small source regions can be studied. Using Monte Carlo computations of the energy distribution of energetic electrons traversing the solar plasma, the bremsstrahlung spectra produced by the electrons were derived.

  15. Vagus nerve stimulator stability and interference on radiation oncology x-ray beams

    NASA Astrophysics Data System (ADS)

    Gossman, Michael S.; Ketkar, Amruta; Liu, Arthur K.; Olin, Bryan

    2012-10-01

    Five different models of Cyberonics, Inc. vagus nerve stimulation (VNS) therapy pulse generators were investigated for their stability under radiation and their ability to change the absorbed dose from incident radiation. X-ray beams of 6 MV and 18 MV were used to quantify these results up to clinical doses of 68-78 Gy delivered in a single fraction. In the first part, the effect on electronic stimulation signaling of each pulse generator was monitored during and immediately afterwards with computer interrogation. In the second part, the effects of having the pulse generators scatter or attenuate the x-ray beam was also characterized from dose calculations on a treatment planning system as well as from actual radiation measurements. Some device models were found to be susceptible to radiation interference when placed directly in the beam of high energy therapeutic x-ray radiation. While some models exhibited no effect at all, others showed an apparent loss of stimulation output immediately after radiation was experienced. Still, other models were observed to have a cumulative dose effect with a reduced output signal, followed by battery depletion above 49 Gy. Absorbed dose changes on computer underestimated attenuation by nearly half for both energies amongst all pulse generators, although the computer did depict the proper shape of the changed distribution of dose around the device. Measured attenuation ranged from 7.0% to 11.0% at 6 MV and 4.2% to 5.2% at 18 MV for x-rays. Processes of back-scatter and side-scatter were deemed negligible although recorded. Identical results from 6 MV and 18 MV x-ray beams conclude no neutron effect was induced for the 18 MV beam. As there were documented effects identified in this research regarding pulse generation, it emphasizes the importance of caution when considering radiation therapy on patients with implanted VNS devices with observed malfunctions consequential.

  16. The number-intensity distribution of X-ray sources observed by Uhuru.

    NASA Technical Reports Server (NTRS)

    Matilsky, T.; Gursky, H.; Kellogg, E.; Tanabaum, H.; Murray, S.; Giacconi, R.

    1973-01-01

    The Uhuru catalog of X-ray sources is used to analyze the number versus apparent-intensity relation of X-ray objects, by constructing (log N, log S)-plots similar to those used in radio astronomy. The source number distribution is corrected for nonuniform sky coverage of the spacecraft. Two distinct distributions for objects at low (less than 20 deg) and high (more than 20 deg) galactic latitude are discussed. The distribution for low galactic latitude objects (which are mainly galactic) gives further information on their location within the Galaxy and their intrinsic luminosity. The distribution for high-latitude objects is consistent with an extragalactic origin of these sources. Evidence from the longitudinal distribution of these objects is used to further demonstrate their extragalactic nature.

  17. Ground-based x-ray calibration of the Astro-E2 x-ray telescope: II. With diverging beam at PANTER

    NASA Astrophysics Data System (ADS)

    Itoh, Kei; Kunieda, Hideyo; Maeda, Yoshitomo; Misaki, Kazutami; Serlemitsos, Peter J.; Shibata, Ryo; Budau, Bernd; Burkert, Wolfgang; Freyberg, Michael J.; Hartner, Gisela; Chan, Kai-Wing; Haba, Yoshito; Hayakawa, Akira; Iizuka, Ryo; Inoue, Chiaki; Inoue, Hirohiko; Ishida, Manabu; Itoh, Akiharu; Lehan, John P.; Mori, Hideyuki; Naitou, Masataka; Okada, Shunsaku; Okajima, Takashi; Shimizu, Tomoo; Soong, Yang; Yokoyama, Yushi

    2004-10-01

    We report a ground-based X-ray calibration of the Astro-E2 X-ray telescope at the PANTER test facility. Astro-E2, to be launched in February 2005, has five X-Ray Telescopes (XRTs). Four of them focus on the X-Ray Imaging Spectrometers (XIS) while the other on the X-Ray Spectrometer (XRS). They are designed with a conical approximation of Wolter-I type optics, nested with thin foil mirrors to enhance their throughput. A calibration test of the first Astro-E2 flight XRT for XIS was carried out at the PANTER facility in August 2003. This facility has an 130 meter long diverging beam from X-ray generator to XRT. Owing to the small X-ray spot size of about 2 mm dia., we verified that the focal position of each quadrant unit converged within 10 arcsec. The energy band around Au-M edge structures was scanned with a graphite crystal. The edge energy (Au M5) is consistent with that listed in Henke et al. 1997. Owing to the large area coverage of the PSPC detector which is a spare of the ROSAT satellite, off-axis images including stray lights at large off-axis angle (up to 6 degree) were obtained with a large field of view. We also compared the results with those measured with the parallel pencil beam at ISAS which is in detail reported in our companion paper by Itoh A. et al..

  18. X-ray spectra of Hercules X-1. 2: Intrinsic beam

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.

    1977-01-01

    The X-ray spectrum of Hercules X-1 was observed in the energy range 2-24 keV with sufficient temporal resolution to allow detailed study of spectral correlations with the 1.24 sec pulse phase. A region of spectral hardening which extends over approximately the 1/10 pulse phase may be associated with the underlying beam. The pulse shape stability and its asymmetry relative to this intrinsic beam are discussed.

  19. A comparison of beam characteristics for gated and nongated clinical x-ray beams.

    PubMed

    Ramsey, C R; Cordrey, I L; Oliver, A L

    1999-10-01

    Respiratory gating has only recently been applied to conventional external beam radiotherapy. In order for respiratory gating to be used clinically, an evaluation of the dosimetric effects of small units of delivered dose must be performed. The purpose of this study is to systematically evaluate the effect of various gating sequences on x-ray central axis output, ionization ratios (nominal accelerating potential), beam flatness, and beam symmetry. Measurements were taken for 6 and 18 MV photons on a linear accelerator that generates the gate by using a gridded electron gun to stop the electron flow to the wave-guide. The beam output, energy, flatness, and symmetry did not vary by more than 0.8 percent in most of the gating sequences. The maximum output deviations (0.8 percent), flatness deviations (1.9 percent), and symmetry deviations (0.8 percent) occurred when a low number of monitor units (<5 MU) were delivered in the gating window. Although these deviations are not clinically significant, each linear accelerator should be evaluated carefully before clinical implementation. PMID:10535624

  20. Study of a new portable x-ray source with micro-beam

    NASA Astrophysics Data System (ADS)

    Wang, Kaige; Li, Ji; Yang, Qinlao; Guo, Jinchuan; Guo, Baoping; Kuo, Xiaomei; Zhou, Junlan; Niu, Hanben

    2006-02-01

    A novel X-ray source with micro-beam has been studied in theory and experiment. The source is composed of three portions: LaB 6 crystal cathode electron gun emitting system, electrostatic focusing system, and permutable metal target system. The electronic current emitted by the electron-gun are controlled by modulating cathode temperature and Wehnelt grid voltage and ratio D w/H, two-equal-radius-cylinder-electrodes focusing system concentrates electron beam, the X-ray photons are irradiated by high energy electron beam bombarding the metal target. The new x-ray source's general-purpose capabilities such as continuous radiation and pulse radiation, focus size and luminance, are also tested. When the temperature of LaB6 cathode is about 1900K and partial pressures being kept below 10 -7 torr, the minimal focus diameter is merely about 10 microns. The new micro focus x-ray source has other lots of advantages such as economy, safety and facility.

  1. Directionality effects in the transfer of X-rays from a magnetized atmosphere: Beam pulse shape

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Bonazzola, S.

    1981-01-01

    A formalism is presented for radiation transfer in two normal polarization modes in finite and semiinfinite plane parallel uniform atmospheres with a magnetic field perpendicular to the surface and arbitrary propagation angles. This method is based on the coupled integral equations of transfer, including emission, absorption, and scattering. Calculations are performed for atmosphere parameters typical of X-ray pulsars. The directionality of the escaping radiation is investigated for several cases, varying the input distributions. Theoretical pencil beam profiles and X-ray pulse shapes are obtained assuming the radiation is emitted from the polar caps of spinning neutron stars. Implications for realistic models of accreting magnetized X-ray sources are briefly discussed.

  2. Directionality effects in the transfer of x-rays from a magnetized atmosphere: beam pulse shape

    SciTech Connect

    Meszaros, P.; Bonazzola, S.

    1981-02-01

    A formalism is presented for radiation transfer in two normal polarization modes in finite and semiinfinite plane parallel uniform atmospheres with a magnetic field perpendicular to the surface and arbitrary propagation angles. This method is based on the coupled integral equations of transfer, including emission, absorption, and scattering. Calculations are performed for atmosphere parameters typical of X-ray pulsars. The directionality of the escaping radiation is investigated for several cases, varying the input distributions. Theoretical pencil beam profiles and X-ray pulse shapes are obtained assuming the radiation is emitted from the polar caps of spinning neutron stars. Implications for realistic models of accreting magnetized X-ray sources are briefly discussed.

  3. Radiation beam therapy evolution: From X-rays to hadrons

    SciTech Connect

    Khoroshkov, V. S. [Institute of Theoretical and Experimental Physics (Russian Federation)], E-mail: khoroshkov@itep.ru

    2006-10-15

    The history of external radiation beam therapy (radiotherapy)-in particular, proton therapy (PT)-is brietly outlined. Two possible strategies in increasing the efficacy of radiotherapy are considered. The radiotherapy methods and techniques are brietly described. The possibilities of PT in providing effective treatment and the main achievements are demonstrated. The state of the art in the PT development involving the active creation of large clinical PT centers since 1990 is analyzed.

  4. Simulations of a Johann/Johansson diffraction spectrometer for x-ray experiments at an electron beam ion source

    NASA Astrophysics Data System (ADS)

    Jab?o?ski, ?.; Jagodzi?ski, P.; Bana?, D.; Pajek, M.

    2013-09-01

    The ray tracing simulations of x-ray spectra for a compact six-crystal Johann/Johansson diffraction spectrometer covering a wide photon energy range (70 eV-15 keV), i.e. from the extended ultraviolet to the hard x-ray region, are discussed in the context of x-ray experiments at an electron beam ion source facility. In particular, the x-ray line profiles and energy resolution for different diffraction crystals and multilayers were studied, and the effects of extension of x-ray source size and misalignment were investigated. The simulations were also performed for x-ray emission from solid targets bombarded by electrons, which will be used for calibration of the x-ray spectrometer.

  5. Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography

    PubMed Central

    Yefanov, Oleksandr; Gati, Cornelius; Bourenkov, Gleb; Kirian, Richard A.; White, Thomas A.; Spence, John C. H.; Chapman, Henry N.; Barty, Anton

    2014-01-01

    Serial crystallography using X-ray free-electron lasers enables the collection of tens of thousands of measurements from an equal number of individual crystals, each of which can be smaller than 1 µm in size. This manuscript describes an alternative way of handling diffraction data recorded by serial femtosecond crystallography, by mapping the diffracted intensities into three-dimensional reciprocal space rather than integrating each image in two dimensions as in the classical approach. We call this procedure ‘three-dimensional merging’. This procedure retains information about asymmetry in Bragg peaks and diffracted intensities between Bragg spots. This intensity distribution can be used to extract reflection intensities for structure determination and opens up novel avenues for post-refinement, while observed intensity between Bragg peaks and peak asymmetry are of potential use in novel direct phasing strategies. PMID:24914160

  6. Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography.

    PubMed

    Yefanov, Oleksandr; Gati, Cornelius; Bourenkov, Gleb; Kirian, Richard A; White, Thomas A; Spence, John C H; Chapman, Henry N; Barty, Anton

    2014-07-17

    Serial crystallography using X-ray free-electron lasers enables the collection of tens of thousands of measurements from an equal number of individual crystals, each of which can be smaller than 1 µm in size. This manuscript describes an alternative way of handling diffraction data recorded by serial femtosecond crystallography, by mapping the diffracted intensities into three-dimensional reciprocal space rather than integrating each image in two dimensions as in the classical approach. We call this procedure 'three-dimensional merging'. This procedure retains information about asymmetry in Bragg peaks and diffracted intensities between Bragg spots. This intensity distribution can be used to extract reflection intensities for structure determination and opens up novel avenues for post-refinement, while observed intensity between Bragg peaks and peak asymmetry are of potential use in novel direct phasing strategies. PMID:24914160

  7. Effect of vacancy de-excitation parameters on L X-rays of Pb using H + beam

    NASA Astrophysics Data System (ADS)

    Jain, Arvind Kumar; Mohan, Harsh; Sharma, Sunita

    2010-06-01

    The collision progression including ionization of an inner-shell by an energetic proton and decay of vacancy is a motivating theme in ion-beam analysis. To explore measured vacancy de-excitation parameters for Pb, intensity ratios are experimentally determined from L X-rays with proton impact in the energy range 225-400 keV. Predictions of UAECPSSR theory are employed for ionization cross-sections. For atomic parameters such as transition rates, fluorescence, Auger and Coster-Kronig (CK) yields, various databases are used. In this paper, significance of these features and current progress are discussed.

  8. Electron beam-based sources of ultrashort x-ray pulses.

    SciTech Connect

    Zholents, A.; Accelerator Systems Division (APS)

    2010-09-30

    A review of various methods for generation of ultrashort x-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons is considered. The importance of the time-resolved studies of matter at picosecond (ps), femtosecond (fs), and atttosecond (as) time scales using x-rays has been widely recognized including by award of a Nobel Prize in 1999 [Zewa]. Extensive reviews of scientific drivers can be found in [BES1, BES2, BES3, Lawr, Whit]. Several laser-based techniques have been used to generate ultrashort x-ray pulses including laser-driven plasmas [Murn, Alte, Risc, Rose, Zamp], high-order harmonic generation [Schn, Rund, Wang, Arpi], and laser-driven anode sources [Ande]. In addition, ultrafast streak-camera detectors have been applied at synchrotron sources to achieve temporal resolution on the picosecond time scale [Wulf, Lind1]. In this paper, we focus on a different group of techniques that are based on the use of the relativistic electron beam produced in conventional accelerators. In the first part we review several techniques that utilize spontaneous emission of electrons and show how solitary sub-ps x-ray pulses can be obtained at existing storage ring based synchrotron light sources and linacs. In the second part we consider coherent emission of electrons in the free-electron lasers (FELs) and review several techniques for a generation of solitary sub-fs x-ray pulses. Remarkably, the x-ray pulses that can be obtained with the FELs are not only significantly shorter than the ones considered in Part 1, but also carry more photons per pulse by many orders of magnitude.

  9. A simple method of absorption and decay correction in intensities measured by area-detector X-ray diffractometer

    E-print Network

    Takusagawa, Fusao

    1987-01-01

    A simple numerical method has been developed to correct for absorption and decay effects in the intensities measured by area-detector X-ray diffractometers. Application of this method improves not only the internal consistency of symmetry...

  10. Considerations on Beam Quality Control in MIT X-Ray FEL

    SciTech Connect

    Wang, D.; Graves, W.; Wang, D.; Zwart, T.; /MIT, Bates Linear Accelerator; Emma, P.; Wu, J.; /SLAC; Huang, G.; /LBL, Berkeley

    2006-03-15

    The x-ray FEL at MIT is one example of a design for a new generation linac-based light source. Such a new machine requires very high quality electron beams. Besides the usual requirements on beam parameters such as emittance, energy spread, peak current, there are new challenges emerging in the design studies, e.g., the arrival timing of electron beam must reach precision below tens of femtoseconds level to ensure the laser seed overlaps the desired sections of electron bunch in the multiple-stage HGHG process. In this paper we report the progress on design optimization towards high quality and low sensitivity beams.

  11. Size-dependent ultrafast ionization dynamics of nanoscale samples in intense femtosecond x-ray free-electron-laser pulses.

    PubMed

    Schorb, Sebastian; Rupp, Daniela; Swiggers, Michelle L; Coffee, Ryan N; Messerschmidt, Marc; Williams, Garth; Bozek, John D; Wada, Shin-Ichi; Kornilov, Oleg; Möller, Thomas; Bostedt, Christoph

    2012-06-01

    All matter exposed to intense femtosecond x-ray pulses from the Linac Coherent Light Source free-electron laser is strongly ionized on time scales competing with the inner-shell vacancy lifetimes. We show that for nanoscale objects the environment, i.e., nanoparticle size, is an important parameter for the time-dependent ionization dynamics. The Auger lifetimes of large Ar clusters are found to be increased compared to small clusters and isolated atoms, due to delocalization of the valence electrons in the x-ray-induced nanoplasma. As a consequence, large nanometer-sized samples absorb intense femtosecond x-ray pulses less efficiently than small ones. PMID:23003953

  12. Reproducible radiation-damage processes in proteins irradiated by intense x-ray pulses.

    PubMed

    Hau-Riege, Stefan P; Bennion, Brian J

    2015-02-01

    X-ray free-electron lasers have enabled femtosecond protein nanocrystallography, a novel method to determine the structure of proteins. It allows time-resolved imaging of nanocrystals that are too small for conventional crystallography. The short pulse duration helps in overcoming the detrimental effects of radiation damage because x rays are scattered before the sample has been significantly altered. It has been suggested that, fortuitously, the diffraction process self-terminates abruptly once radiation damage destroys the crystalline order. Our calculations show that high-intensity x-ray pulses indeed trigger a cascade of damage processes in ferredoxin crystals, a particular metalloprotein of interest. However, we found that the damage process is initially not completely random. Correlations exist among the protein monomers, so that Bragg diffraction still occurs in the damaged crystals, despite significant atomic displacements. Our results show that the damage process is reproducible to a certain degree, which is potentially beneficial for the orientation step in single-molecule imaging. PMID:25768529

  13. Reproducible radiation-damage processes in proteins irradiated by intense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Hau-Riege, Stefan P.; Bennion, Brian J.

    2015-02-01

    X-ray free-electron lasers have enabled femtosecond protein nanocrystallography, a novel method to determine the structure of proteins. It allows time-resolved imaging of nanocrystals that are too small for conventional crystallography. The short pulse duration helps in overcoming the detrimental effects of radiation damage because x rays are scattered before the sample has been significantly altered. It has been suggested that, fortuitously, the diffraction process self-terminates abruptly once radiation damage destroys the crystalline order. Our calculations show that high-intensity x-ray pulses indeed trigger a cascade of damage processes in ferredoxin crystals, a particular metalloprotein of interest. However, we found that the damage process is initially not completely random. Correlations exist among the protein monomers, so that Bragg diffraction still occurs in the damaged crystals, despite significant atomic displacements. Our results show that the damage process is reproducible to a certain degree, which is potentially beneficial for the orientation step in single-molecule imaging.

  14. Kinetic effects and nonlinear heating in intense x-ray-laser-produced carbon plasmas

    NASA Astrophysics Data System (ADS)

    Sentoku, Y.; Paraschiv, I.; Royle, R.; Mancini, R. C.; Johzaki, T.

    2014-11-01

    The x-ray laser-matter interaction for a low-Z material, carbon, is studied with a particle-in-cell code that solves the photoionization and x-ray transport self-consistently. Photoionization is the dominant absorption mechanism and nonthermal photoelectrons are produced with energy near the x-ray photon energy. The photoelectrons ionize the target rapidly via collisional impact ionization and field ionization, producing a hot plasma column behind the laser pulse. The radial size of the heated region becomes larger than the laser spot size due to the kinetic nature of the photoelectrons. The plasma can have a temperature of more than 10 000 K (>1 eV ), an energy density greater than 104 J /cm3 , an ion-ion Coulomb coupling parameter ? ?1 , and electron degeneracy ? ?1 , i.e., strongly coupled warm dense matter. By increasing the laser intensity, the plasma temperature rises nonlinearly from tens of eV to hundreds of eV, bringing it into the high energy density matter regime. The heating depth and temperature are also controllable by changing the photon energy of the incident laser light.

  15. Kinetic effects and nonlinear heating in intense x-ray-laser-produced carbon plasmas.

    PubMed

    Sentoku, Y; Paraschiv, I; Royle, R; Mancini, R C; Johzaki, T

    2014-11-01

    The x-ray laser-matter interaction for a low-Z material, carbon, is studied with a particle-in-cell code that solves the photoionization and x-ray transport self-consistently. Photoionization is the dominant absorption mechanism and nonthermal photoelectrons are produced with energy near the x-ray photon energy. The photoelectrons ionize the target rapidly via collisional impact ionization and field ionization, producing a hot plasma column behind the laser pulse. The radial size of the heated region becomes larger than the laser spot size due to the kinetic nature of the photoelectrons. The plasma can have a temperature of more than 10 000 K (>1eV), an energy density greater than 10^{4} J/cm^{3}, an ion-ion Coulomb coupling parameter ??1, and electron degeneracy ??1, i.e., strongly coupled warm dense matter. By increasing the laser intensity, the plasma temperature rises nonlinearly from tens of eV to hundreds of eV, bringing it into the high energy density matter regime. The heating depth and temperature are also controllable by changing the photon energy of the incident laser light. PMID:25493733

  16. Multi-species beam hardening calibration device for x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Evershed, Anthony N. Z.; Mills, David; Davis, Graham

    2012-10-01

    Impact-source X-ray microtomography (XMT) is a widely-used benchtop alternative to synchrotron radiation microtomography. Since X-rays from a tube are polychromatic, however, greyscale `beam hardening' artefacts are produced by the preferential absorption of low-energy photons in the beam path. A multi-material `carousel' test piece was developed to offer a wider range of X-ray attenuations from well-characterised filters than single-material step wedges can produce practically, and optimization software was developed to produce a beam hardening correction by use of the Nelder-Mead optimization method, tuned for specimens composed of other materials (such as hydroxyapatite [HA] or barium for dental applications.) The carousel test piece produced calibration polynomials reliably and with a significantly smaller discrepancy between the calculated and measured attenuations than the calibration step wedge previously in use. An immersion tank was constructed and used to simplify multi-material samples in order to negate the beam hardening effect of low atomic number materials within the specimen when measuring mineral concentration of higher-Z regions. When scanned in water at an acceleration voltage of 90 kV a Scanco AG hydroxyapatite / poly(methyl methacrylate) calibration phantom closely approximates a single-material system, producing accurate hydroxyapatite concentration measurements. This system can then be corrected for beam hardening for the material of interest.

  17. Conceptual Design of Dielectric Accelerating Structures for Intense Neutron and Monochromatic X-ray Sources

    SciTech Connect

    Blanovsky, Anatoly [Teacher Technology Center, 7850 Melrose Ave., Los Angeles, CA 90046 (United States)

    2004-12-07

    Bright compact photon sources, which utilize electron beam interaction with periodic structures, may benefit a broad range of medical, industrial and scientific applications. A class of dielectric-loaded periodic structures for hard and soft X-ray production has been proposed that would provide a high accelerating gradient when excited by an external RF and/or primary electron beam. Target-distributed accelerators (TDA), in which an additional electric field compensates for lost beam energy in internal targets, have been shown to provide the necessary means to drive a high flux subcritical reactor (HFSR) for nuclear waste transmutation. The TDA may also be suitable for positron and nuclear isomer production, X-ray lithography and monochromatic computer tomography. One of the early assumptions of the theory of dielectric wake-field acceleration was that, in electrodynamics, the vector potential was proportional to the scalar potential. The analysis takes into consideration a wide range of TDA design aspects including the wave model of observed phenomena, a layered compound separated by a Van der Waals gap and a compact energy source based on fission electric cells (FEC) with a multistage collector. The FEC is a high-voltage power source that directly converts the kinetic energy of the fission fragments into electrical potential of about 2MV.

  18. Synchrotron-based coherent scatter x-ray projection imaging using an array of monoenergetic pencil beams

    NASA Astrophysics Data System (ADS)

    Landheer, Karl

    Traditional projection x-ray imaging utilizes only the information from the primary photons. Low-angle coherent scatter images can be acquired simultaneous to the primary images and provide additional information. A system at the Canadian Light Source synchrotron was configured which utilizes multiple 33.17 keV pencil beams (up to five) to create both primary and coherent scatter projection images, simultaneously. The sample was scanned through the beams using an automated step-and-shoot setup. Pixels were acquired in a hexagonal lattice to maximize packing efficiency. The typical pitch was between 1.0 and 1.6 mm. An MLEM-based iterative method was used to disentangle the overlapping information from the flat panel digital x-ray detector. The pixel value of the coherent scatter image was generated by integrating the radial profile (scatter intensity versus scattering angle) over an angular range. Different angular ranges maximize the contrast between different materials. For a five-beam porcine phantom image the muscle-fat contrast was 0.10 +/- 0.01 and 1.16 +/- 0.03 for the primary and scatter images, respectively. The air kerma was measured using Al2O3:C optically stimulated luminescent dosimeters. The total area-averaged air kerma for the scan was measured to be (7.2 +/- 0.4) cGy although, due to difficulties in small-beam dosimetry, this number could be inaccurate.

  19. Enhanced nonlinear response of Ne8+ to intense ultrafast x rays

    NASA Astrophysics Data System (ADS)

    Sytcheva, Arina; Pabst, Stefan; Son, Sang-Kil; Santra, Robin

    2012-02-01

    We investigate the possible reasons for the discrepancy between the theoretical two-photon ionization cross section, ˜10-56 cm4s, of Ne8+ obtained within the perturbative nonrelativistic framework for monochromatic light [S. Novikov and A. Hopersky, J. Phys. BJPAPEH0953-407510.1088/0953-4075/34/23/327 34, 4857 (2001)] and the experimental value, 7×10-54 cm4s, reported in [G. Doumy , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.106.083002 106, 083002 (2011)] at a photon energy of 1110 eV. To this end, we consider Ne8+ exposed to deterministic and chaotic ensembles of intense x-ray pulses. The time-dependent configuration interaction singles (TDCIS) method is used to quantitatively describe nonlinear ionization of Ne8+ induced by coherent intense ultrashort x-ray laser pulses. The impact of the bandwidth of a chaotic ensemble of x-ray pulses on the effective two-photon ionization cross section is studied within the lowest nonvanishing order of perturbation theory. We find that, at a bandwidth of 11 eV, the effective two-photon ionization cross section of Ne8+ at a photon energy of 1110 eV amounts to 5×10-57 and 1.6×10-55 cm4s for a deterministic ensemble and a chaotic ensemble, respectively. We show that the enhancement obtained for a chaotic ensemble of pulses originates from the presence of the one-photon 1s2-1s4p resonance located at 1127 eV. Using the TDCIS approach, we also show that, for currently available radiation intensities, two-photon ionization of a 1s electron in neutral neon remains less probable than one-photon ionization of a valence electron.

  20. Temperature- and energy-dependent phase shifts of resonant multiple-beam X-ray diffraction in germanium crystals.

    PubMed

    Liao, Po-Yu; Liu, Wen-Chung; Cheng, Chih-Hao; Chiu, Yi-Hua; Kung, Ying-Yu; Chang, Shih-Lin

    2015-07-01

    This paper reports temperature- and energy-dependent phase shifts of resonant multiple-beam X-ray diffraction in germanium crystals, involving forbidden (002) and weak (222) reflections. Phase determination based on multiple-beam diffraction is employed to estimate phase shifts from (002)-based {(002)(375)(373?)} four-beam cases and (222)-based { (222)(5?33?)} three-beam cases in the vicinity of the Ge K edge for temperatures from 20?K up to 300?K. The forbidden/weak reflections enhance the sensitivity of measuring phases at resonance. At room temperature, the resonance triplet phases reach a maximum of 8° for the four-beam cases and -19° for the three-beam cases. It is found that the peak intensities and triplet phases obtained from the (002) four-beam diffraction are related to thermal motion induced anisotropy and anomalous dispersion, while the (222) three-beam diffraction depends on the aspherical covalent electron distribution and anomalous dispersion. However, the electron-phonon interaction usually affects the forbidden reflections with increasing temperatures and seems to have less effect on the resonance triplet phase shifts measured from the (002) four-beam diffraction. The resonance triplet phase shifts of the (222) three-beam diffraction versus temperature are also small. PMID:26131901

  1. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecture.

    PubMed

    Bogdan Neculaes, V; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-05-01

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066

  2. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecturea

    PubMed Central

    Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-01-01

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066

  3. Conceptual design of a novel instrument for producing intense pulses of 10 ps X-rays for ultra-fast fluorescence measurements

    SciTech Connect

    Gruber, G.J.

    1996-05-01

    A novel bench-top device for producing intense, fast pulses of x-rays has been designed with 10 ps fwhm (full-width at half-maximum) x-ray pulse width, 120 keV maximum energy, 100 kHz repetition rate, and 1 A peak current onto the x-ray anode. The device includes three sections: (1) an electron gun that generates 5 ns wide pulses of 120 keV electrons at 100 kHz; (2) solenoidal magnetic lenses and deflection plates that focus the electrons onto an aperture plate and sweep the pulsed beam past the aperture, respectively; and (3) a tungsten anode onto which the post-aperture electrons are focused, producing pulses of x-rays. At a sweeping rate of 10{sup 13} V/s, the electron pulses and resulting x-ray pulses are reduced to about 10 ps. The design process used EGUN (an electron optics and gun design program) electron trajectory simulations, including calculation of important space charge effects. When built, this instrument will be used to excite new, fast, bright scintillator samples in crystal or powdered form, allowing fluorescent lifetimes and spectra to be measured with a microchannel PMT. The very narrow 10 ps x-ray pulse width is necessary for accurate measurements of the risetimes of very fast scintillators (e.g., BaF{sub 2}). In addition, the large x-ray flux (1 A peak current) is advantageous when using a reflection grating monochromator to measure decay times at different wavelengths.

  4. National Synchrotron Light Source users manual: Guide to the VUV and x-ray beam lines

    SciTech Connect

    Gmuer, N.F.; White-DePace, S.M. (eds.)

    1987-08-01

    The success of the National Synchrotron Light Source in the years to come will be based, in large part, on the size of the users community and the diversity of the scientific disciplines represented by these users. In order to promote this philosophy, this National Synchrotron Light Source (NSLS) Users Manual: Guide to the VUV and X-Ray Beam Lines, has been published. This manual serves a number of purposes. In an effort to attract new research, it will present to the scientific community-at-large the current and projected architecture and capabilities of the various VUV and x-ray beam lines and storage rings. We anticipate that this publication will be updated periodically in order to keep pace with the constant changes at the NSLS.

  5. An improved algorithm for beam-hardening corrections in experimental X-ray tomography

    Microsoft Academic Search

    V. S. V. M. Vedula; P. Munshi

    2008-01-01

    This paper is a follow-up of an earlier work dealing with beam-hardening (BH) correction for simulated X-ray tomography. Here, the projection data (obtained experimentally) is used directly for the initial step. Convolution back projection algorithm has been used to reconstruct the cross-section of the specimen from the BH corrected projection data. Removal of the cupping artifact is targeted. In addition,

  6. Functional characterization of planar sensors with active edges using laser and X-ray beam scans

    NASA Astrophysics Data System (ADS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Hasi, J.; Oh, A.; Zorzi, N.

    2013-08-01

    We report on the functional characterization of planar sensors with active edges fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. The measurements here reported were performed by means of laser and X-ray beam scans mainly focusing on the signal efficiency of the edge region of the devices. Results are very encouraging and show very good sensitivity up to few microns away from the device physical edge.

  7. Hard x-ray or gamma ray laser by a dense electron beam

    SciTech Connect

    Son, S. [18 Caleb Lane, Princeton, New Jersey 08540 (United States); Joon Moon, Sung [8 Benjamin Rush Ln., Princeton, New Jersey 08540 (United States)

    2012-06-15

    A dense electron beam propagating through a laser undulator can radiate a coherent x-ray or gamma ray. This lasing scheme is studied with the Landau damping theory. The analysis suggests that, with currently available physical parameters, coherent gamma rays of up to 50 keV can be generated. The electron quantum diffraction suppresses the free electron laser action, which limits the maximum radiation.

  8. X-ray interferometry with transmissive beam combiners for ultra-high angular resolution astronomy

    Microsoft Academic Search

    Gerald K. Skinner; John F. Krizmanic

    2009-01-01

    Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters

  9. X-ray interferometry with transmissive beam combiners for ultra-high angular resolution astronomy

    Microsoft Academic Search

    Gerald K. Skinner; John F. Krizmanic

    2009-01-01

    Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second\\u000a angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive\\u000a black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s\\u000a of meters

  10. X-ray study of a SODART flight telescope using the expanded beam x-ray optics beamline at the Daresbury synchrotron

    NASA Astrophysics Data System (ADS)

    Christensen, Finn E.; Hornstrup, Allan; Frederiksen, P. K.; Abdali, Salim; Grundsoe, P.; Polny, Josef; Westergaard, N. J.; Norgaard-Nielsen, H. U.; Schnopper, Herbert W.; Hall, C.; Lewis, R.

    1995-06-01

    The on- and off-axis imaging properties of the first of two SODART flight telescopes have been studied using the expanded beam x-ray facility at the Daresbury synchrotron. From on- axis measurements the encircled power distribution and the point spread function at three energies 6.627 keV, 8.837 keV, and 11.046 keV have been measured using a one dimensional position sensitive detector. The data have been used to calculate the half power diameter (HPD) for three different SODART focal plane detectors, the high energy proportional counter (HEPC), the low energy proportional counter (LEPC) and the 19 element solid state array detector (SIXA). We found that the HPD decreases with increasing energy due to poorer figure error of the outermost mirrors. The HPD falls in the range from 2.3 to 3 arcmin for all detectors. Residual misalignment of the individual quadrants of the telescope was found to contribute to the HPD by approximately 10%. If 33% of the geometric telescope area near the edges of the quadrants are covered a reduction of 10% of the HPD can be obtained. On- and off-axis images generated from the one dimensional intensity distribution are presented. Finally the data have been used to calculate the variation of the effective area versus the off- axis angle.

  11. EBT2 dosimetry of x-rays produced by the electron beam from a Plasma Focus for medical applications

    SciTech Connect

    Ceccolini, E.; Mostacci, D.; Sumini, M. [Montecuccolino Nuclear Engineering Laboratory - DIENCA, University of Bologna, via dei Colli 16, I-40136 Bologna (Italy); Rocchi, F. [Montecuccolino Nuclear Engineering Laboratory - DIENCA, University of Bologna, via dei Colli 16, I-40136 Bologna (Italy); UTFISSM-PRONOC, ENEA, via Martiri di Monte Sole 4, I-40129 Bologna (Italy); Tartari, A. [Department of Physics, Ferrara University, via Saragat 1, I-44122 Ferrara (Italy); Mariotti, F. [ENEA, IRP-DOS, via dei Colli 16, I-40136 Bologna (Italy)

    2012-09-01

    The electron beam emitted from the back of Plasma Focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A Plasma Focus device is being developed to this aim, to be utilized as an x-ray source. The electron beam is driven to impinge on 50 {mu}m brass foil, where conversion x-rays are generated. Measurements with gafchromic film are performed to analyse the attenuation of the x-rays beam and to predict the dose given to the culture cell in radiobiological experiments to follow.

  12. Monte Carlo Simulation of the Conversion X-Rays from the Electron Beam of PFMA-3

    SciTech Connect

    Ceccolini, E.; Mostacci, D.; Sumini, M. [Montecuccolino Nuclear Engineering Laboratory, University of Bologna, via dei Colli 16, I-40136 Bologna (Italy); Rocchi, F. [Montecuccolino Nuclear Engineering Laboratory, University of Bologna, via dei Colli 16, I-40136 Bologna (Italy); UTFISSM-PRONOC, ENEA, via Martiri di Monte Sole 4, I-40129 Bologna (Italy); Tartari, A. [Department of Physics, University of Ferrara, Via Saragat 1, I-44122 Ferrara (Italy)

    2011-12-13

    PFMA-3, a dense Plasma Focus device, is being optimized as an X-ray generator. X-rays are obtained from the conversion of the electron beam emitted in the backward direction and driven to impinge on a 50 {mu}m brass foil. Monte Carlo simulations of the X-ray emission have been conducted with MCNPX. The electron spectrum had been determined experimentally and is used in the present work as input to the simulations. Dose to the brass foil has been determined both from simulations and from measurements with a thermographic camera, and the two results are found in excellent agreement, thus validating further the electron spectrum assumed as well as the simulation set-up. X-ray emission has been predicted both from bremsstrahlung and from characteristic lines. The spectrum has been found to be comprised of two components of which the one at higher energy, 30 divide 70 keV, is most useful for IORT applications. The results are necessary to estimate penetration in and dose to Standard Human Tissue.

  13. Imaging single cells in a beam of live cyanobacteria with an X-ray laser

    NASA Astrophysics Data System (ADS)

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R. N. C.; Hantke, Max; Deponte, Daniel P.; Seibert, M. Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F. Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H.; Larsson, Daniel S. D.; Barty, Anton; Martin, Andrew V.; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D.; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N.; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2015-02-01

    There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.

  14. Structure in defocused beams of x-ray mirrors: causes and possible solutions

    NASA Astrophysics Data System (ADS)

    Sutter, John P.; Alcock, Simon G.; Rust, Fiona; Wang, Hongchang; Sawhney, Kawal

    2014-09-01

    Grazing incidence mirrors are now a standard optic for focusing X-ray beams. Both bimorph and mechanically bendable mirrors are widely used at Diamond Light Source because they permit a wide choice of focal lengths. They can also be deliberately set out of focus to enlarge the X-ray beam, and indeed many beamline teams now wish to generate uniform beam spots of variable size. However, progress has been slowed by the appearance of fine structure in these defocused beams. Measurements showing the relationship between the medium-frequency polishing error and this structure over a variety of beam sizes will be presented. A theoretical model for the simulations of defocused beams from general mirrors will then be developed. Not only the figure error and its first derivative the slope error, but also the second derivative, the curvature error, must be considered. In conclusion, possible ways to reduce the defocused beam structure by varying the actuators' configuration and settings will be discussed.

  15. Investigation of the pseudospark electron beam and its application for the generation of soft x-rays

    SciTech Connect

    Westheide, J. [Heinrich-Heine-Univ., Duesseldorf (Germany). Institut fuer Experimentalphysik] [Heinrich-Heine-Univ., Duesseldorf (Germany). Institut fuer Experimentalphysik

    1995-06-01

    An investigation on the pseudospark electron beam is presented in this paper. Time-integrated and time-resolved pictures of the X-rays generated by the electron beam are taken with a special X-ray pinhole camera. They show the spatial and temporal development of the pseudospark electron beam. Time-integrated pictures indicate spatial instabilities of the electron beam caused by a bent or broadened electron beam due to space charge effects. The results of the time-resolved measurements show X-ray emission only during two short periods at the very beginning of the discharge before the beam current reaches its maximum. Only during these periods does the electron beam contain high-energy electrons. In between these two periods the energy of the beam electrons decreases because of a space-charge-limited beam transport.

  16. Portable linear accelerators for X-ray and electron-beam applications in civil engineering

    Microsoft Academic Search

    Roger DeBaun Owen

    1998-01-01

    Portable linear accelerator systems are being used to provide high-intensity X-rays for structural engineering studies and non-destructive testing in the USA and Europe. These devices greatly enhance the ability of engineers to examine structural members for hidden defects, as well as to study internal design and construction details of large buildings, bridges, parking garages and other structures, including steel memebers

  17. MSGC tests with X-rays

    SciTech Connect

    Boulogne, Isabelle [F.R.I.A Grant, University of Mons-Hainaut, B-7000 (Belgium); Daubie, Evelyne [University of Mons-Hainaut, B-7000 Mons (Belgium)

    1998-02-01

    Tests of MSGC detectors using an X-ray generator are reported. Results are presented for gas mixtures composed of Ar or Ne and dimethylether. The influence of the drift field and of the X-ray beam intensity is investigated.

  18. Intensity distribution of the x ray source for the AXAF VETA-I mirror test

    NASA Technical Reports Server (NTRS)

    Zhao, Ping; Kellogg, Edwin M.; Schwartz, Daniel A.; Shao, Yibo; Fulton, M. Ann

    1992-01-01

    The X-ray generator for the AXAF VETA-I mirror test is an electron impact X-ray source with various anode materials. The source sizes of different anodes and their intensity distributions were measured with a pinhole camera before the VETA-I test. The pinhole camera consists of a 30 micrometers diameter pinhole for imaging the source and a Microchannel Plate Imaging Detector with 25 micrometers FWHM spatial resolution for detecting and recording the image. The camera has a magnification factor of 8.79, which enables measuring the detailed spatial structure of the source. The spot size, the intensity distribution, and the flux level of each source were measured with different operating parameters. During the VETA-I test, microscope pictures were taken for each used anode immediately after it was brought out of the source chamber. The source sizes and the intensity distribution structures are clearly shown in the pictures. They are compared and agree with the results from the pinhole camera measurements. This paper presents the results of the above measurements. The results show that under operating conditions characteristic of the VETA-I test, all the source sizes have a FWHM of less than 0.45 mm. For a source of this size at 528 meters away, the angular size to VETA is less than 0.17 arcsec which is small compared to the on ground VETA angular resolution (0.5 arcsec, required and 0.22 arcsec, measured). Even so, the results show the intensity distributions of the sources have complicated structures. These results were crucial for the VETA data analysis and for obtaining the on ground and predicted in orbit VETA Point Response Function.

  19. Circular grating interferometer for mapping transverse coherence area of X-ray beams

    SciTech Connect

    Shi, Xianbo, E-mail: xshi@aps.anl.gov; Marathe, Shashidhara; Wojcik, Michael J.; Kujala, Naresh G.; Macrander, Albert T.; Assoufid, Lahsen [Advanced Photon Source, Argonne National Laboratory, 9700 S Cass Ave, Lemont, Illinois 60439 (United States)

    2014-07-28

    A circular grating interferometer was used to map the transverse coherence area of an X-ray beam. Due to the radial symmetry of the circular grating, coherence lengths along all transverse directions were obtained simultaneously by measuring the visibility decay of interferograms recorded at different distances behind a single circular ?/2 phase grating. The technique is model-free and provides direct measurement of the complex coherence factor of the beam. The use of a circular grating also enables the unique capability of measuring the source shape profile. Sensitivity of this technique was demonstrated by detecting the small source tilt of a few degrees.

  20. X-ray study of a SODART flight telescope using the expanded beam x-ray optics beamline at the Daresbury synchrotron

    Microsoft Academic Search

    Finn E. Christensen; Allan Hornstrup; P. K. Frederiksen; Salim Abdali; P. Grundsoe; Josef Polny; N. J. Westergaard; H. U. Norgaard-Nielsen; Herbert W. Schnopper; C. Hall; R. Lewis

    1995-01-01

    The on- and off-axis imaging properties of the first of two SODART flight telescopes have been studied using the expanded beam x-ray facility at the Daresbury synchrotron. From on- axis measurements the encircled power distribution and the point spread function at three energies 6.627 keV, 8.837 keV, and 11.046 keV have been measured using a one dimensional position sensitive detector.

  1. X-ray study of a test quadrant of the SODART telescopes using the expanded beam x-ray optics facility at the Daresbury synchrotron

    Microsoft Academic Search

    Finn E. Christensen; Allan Hornstrup; P. K. Frederiksen; Carl C. Budtz-Joergensen; Salim Abdali; P. Jonasson; P. Grundsoe; Josef Polny; N. J. Westergaard; H. U. Norgaard-Nielsen; Herbert W. Schnopper; K. N. Borozdin; C. H. Hall; R. A. Lewis

    1994-01-01

    The imaging properties of a test model of the SODART telescopes have been studied using an expanded beam X-ray facility at the Daresbury synchrotron. The encircled power and the point spread function at three energies 6.627 keV, 8.837 keV and 11.046 keV have been measured using 1D and 2D position sensitive detectors. The data have been used to calculate the

  2. An x-ray microprobe beam line for trace element analysis

    SciTech Connect

    Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kwiatek, W.M.; Long, G.J.; Pounds, J.G.; Schidlovsky, G.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1987-01-01

    The application of synchrotron radiation to an x-ray microprobe for trace element analysis is a complementary and natural extension of existing microprobe techniques using electrons, protons, and heavier ions as excitation sources for x-ray fluorescence. The ability to focus charged particles leads to electron microprobes with spatial resolutions in the sub-micrometer range and down to 100 ppM detection limits and proton microprobes with micrometer resolution and ppM detection limits. The characteristics of synchrotron radiation that prove useful for microprobe analysis include a broad and continuous energy spectrum, a relatively small amount of radiation damage compared to that deposited by charged particles, a highly polarized source which reduces background scattered radiation in an appropriate counting geometry, and a small vertical divergence angle of approx.0.2 mrad which allows for focussing of the light beam into a small spot with high flux. The features of a dedicated x-ray microprobe beam line developed at the National Synchrotron Light Source (NSLS) are described. 4 refs., 3 figs.

  3. Fast z-pinches as dense plasma, intense x-ray sources for plasma physics and fusion applications

    NASA Astrophysics Data System (ADS)

    Matzen, M. K.; Deeney, C.; Leeper, R. J.; Porter, J. L.; Spielman, R. B.; Chandler, G. A.; Derzon, M. S.; Douglas, M. R.; Fehl, D. L.; Hebron, D. E.; Nash, T. J.; Olson, R. E.; Ruggles, L. E.; Sanford, T. W. L.; Seamen, J. F.; Struve, K. W.; Stygar, W. A.; Peterson, D. L.

    1999-03-01

    As a result of advances in fast pulsed-power technology and cylindrical load fabrication, the Z pulsed-power accelerator at Sandia National Laboratories drives currents approaching 20 MA with a rise time of approximately 100 ns through cylindrically-symmetric loads (typically a cylindrical array consisting of a few hundred wires) to produce plasma densities in excess of 0741-3335/41/3A/011/img21, x-ray output energies approaching 2 MJ, radiation pulses as short as 4 ns and peak x-ray powers as high as 0741-3335/41/3A/011/img22. More than 15% of the stored electrical energy in the Z pulsed-power accelerator is converted into x-rays. The plasma pressures at peak compression are several TPa with electron temperatures that can exceed 3 keV at containment magnetic fields exceeding 1000 T. Depending on the atomic number and composition of the imploding plasma, these z-pinches can be tailored to produce intense sources of thermal x-rays, keV x-rays or neutrons. Although applications of these x-ray sources have included research in radiation material interaction, equations of state, opacity, astrophysics and x-ray lasers, the principal focus of the present research is to use them for indirect-drive inertial confinement fusion (ICF).

  4. Spot size characterization of focused non-Gaussian X-ray laser beams.

    PubMed

    Chalupský, J; Krzywinski, J; Juha, L; Hájková, V; Cihelka, J; Burian, T; Vysín, L; Gaudin, J; Gleeson, A; Jurek, M; Khorsand, A R; Klinger, D; Wabnitz, H; Sobierajski, R; Störmer, M; Tiedtke, K; Toleikis, S

    2010-12-20

    We present a new technique for the characterization of non-Gaussian laser beams which cannot be described by an analytical formula. As a generalization of the beam spot area we apply and refine the definition of so called effective area (A(eff)) [1] in order to avoid using the full-width at half maximum (FWHM) parameter which is inappropriate for non-Gaussian beams. Furthermore, we demonstrate a practical utilization of our technique for a femtosecond soft X-ray free-electron laser. The ablative imprints in poly(methyl methacrylate) - PMMA and amorphous carbon (a-C) are used to characterize the spatial beam profile and to determine the effective area. Two procedures of the effective area determination are presented in this work. An F-scan method, newly developed in this paper, appears to be a good candidate for the spatial beam diagnostics applicable to lasers of various kinds. PMID:21197057

  5. Measurement of X-ray intensity in mammography by a ferroelectric dosimeter

    NASA Astrophysics Data System (ADS)

    Alter, Albert J.

    2005-07-01

    Each year in the US over 20 million women undergo mammography, a relatively high dose x-ray examination of the breast, which is relatively sensitive to the carcinogenic effect of ionizing radiation. The radiation risk from mammography is usually expressed in terms of mean glandular dose (MGD) which is calculated as the product of measured entrance exposure (ESE) and a dose conversion factor which is a function of anode material, peak tube voltage (23 to 35 kVp), half-value layer, filtration, compressed breast thickness and breast composition. Mammographic units may have anodes made of molybdenum, rhodium or tungsten and filters of molybdenum, rhodium, or aluminum. In order to accommodate all these parameters, multiple extensive tables of conversion factors are required to cover the range of possibilities. Energy fluence and energy imparted are alternative measures of radiation hazard, which have been used in situations where geometry or filtration is unconventional such as computed tomography or fluoroscopy. Unfortunately, at the present there is no way to directly measure these quantities clinically. In radiation therapy applications, calorimetry has been used to measure energy absorbed. A ferroelectric-based detector has been described that measures energy fluence rate (x-ray intensity) for diagnostic x-ray, 50 to 140 kVp, aluminum filtered tungsten spectrum [Carvalho & Alter: IEEE Transactions 44(6) 1997]. This work explores use of ferroelectric detectors to measure energy fluence, energy fluence rate and energy imparted in mammography. A detector interfaced with a laptop computer was developed to allow measurements on clinical units of five different manufactures having targets of molybdenum, rhodium and tungsten and filters of molybdenum, rhodium, and aluminum of various thicknesses. The measurements provide the first values of energy fluence and energy imparted in mammography. These measurements are compared with conventional parameters such as entrance exposure and mean glandular dose as well as published values of energy imparted for other types of x-ray examinations. Advantage of measuring dose in terms of energy imparted in mammography are simplicity of comparison with other sources of radiation exposure and potential (relative ease) of measurement across a variety of anode and filter combinations.

  6. Size dependent ionization dynamics of argon clusters in intense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Schorb, Sebastian; Swiggers, M.; Rupp, D.; Coffee, R.; Messerschmidt, M.; Möller, S.; Williams, G.; Bozek, J.; Osipov, T.; Wada, S.; Kornilov, O.; Möller, T.; Bostedt, C.

    2011-11-01

    Free Electron Lasers open the door for novel experiments in many science areas ranging from ultrafast chemical dynamics to single shot imaging of molecules. For the success of virtually all experiments with free electron lasers a detailed understanding of the light - matter interaction in the x-ray regime is pivotal. The Linac Coherent Light Source (LCLS) free electron laser in Stanford allows for the first time to study inner shell ionization dynamics of intense x-ray pulses on a femtosecond time scale. We performed experiments on the ionization dynamics of Argon clusters at different pulse length using the slotted spoiler foil in the second LCLS bunch compressor [1]. The Auger rate of argon clusters is predicted to be size dependent and lower than in atoms due to delocalization of the valence electrons [2]. We observe a dependence of the ionization dynamics on pulse length and cluster size. The results are discussed and also compared to recent atomic and molecular data from LCLS.[4pt] [1] P. Emma et al. PRL 92, 074801 (2004)[0pt] [2] U. Saalmann, JM Rost, PRL 89, 14 (2002)

  7. Size dependent ionization dynamics of argon clusters in intense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Schorb, Sebastian; Rupp, D.; Swiggers, M.; Coffee, R. N.; Messerschmidt, M.; Williams, G.; Bozek, J. D.; Wada, S.-I.; Möller, T.; Bostedt, C.

    2012-06-01

    Free Electron Lasers open the door for novel experiments in many science areas ranging from ultrafast chemical dynamics to single shot imaging of molecules. For the success of virtually all experiments with free electron lasers a detailed understanding of the light - matter interaction in the x-ray regime is pivotal. The Linac Coherent Light Source (LCLS) free electron laser in Stanford allows for the first time to study innershell ionization dynamics of intense x-ray pulses on a femtosecond time scale. We performed experiments on the ionization dynamics of Argon clusters at different pulse length using the slotted spoiler foil in the second LCLS bunch compressor [1]. The Auger rate of argon clusters is predicted to be size dependent and lower than in atoms due to delocalization of the valence electrons [2]. We observe a dependence of the ionization dynamics on pulse length and cluster size. The results are discussed and also compared to recent atomic and molecular data from LCLS.[4pt] [1] P. Emma et al. PRL 92, 074801 (2004)[0pt] [2] U. Saalmann, JM Rost PRL 89, 14 (2002)

  8. Windowless microfluidic platform based on capillary burst valves for high intensity x-ray measurements

    SciTech Connect

    Vig, Asger Laurberg; Enevoldsen, Nikolaj; Thilsted, Anil Haraksingh; Eriksen, Johan; Kristensen, Anders [Department of Micro and Nanotechnology, DTU Nanotech, Technical University of Denmark, Building 345east, Orsteds Plads, DK-2800 Kongens Lyngby (Denmark); Haldrup, Kristoffer; Feidenhans'l, Robert; Nielsen, Martin Meedom [Centre for Molecular Movies, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen East (Denmark)

    2009-11-15

    We propose and describe a microfluidic system for high intensity x-ray measurements. The required open access to a microfluidic channel is provided by an out-of-plane capillary burst valve (CBV). The functionality of the out-of-plane CBV is characterized with respect to the diameter of the windowless access hole, ranging from 10 to 130 {mu}m. Maximum driving pressures from 22 to 280 mbar corresponding to refresh rates of the exposed sample from 300 Hz to 54 kHz is demonstrated. The microfluidic system is tested at beamline ID09b at the ESRF synchrotron radiation facility in Grenoble, and x-ray scattering measurements are shown to be feasible and to require only very limited amounts of sample, <1 ml/h of measurements without recapturing of sample. With small adjustments of the present chip design, scattering angles up to 30 deg. can be achieved without shadowing effects and integration on-chip mixing and spectroscopy appears straightforward.

  9. Double-core-hole spectroscopy for chemical analysis with an intense X-ray femtosecond laser

    PubMed Central

    Berrah, Nora; Fang, Li; Murphy, Brendan; Osipov, Timur; Ueda, Kiyoshi; Kukk, Edwin; Feifel, Raimund; van der Meulen, Peter; Salen, Peter; Schmidt, Henning T.; Thomas, Richard D.; Larsson, Mats; Richter, Robert; Prince, Kevin C.; Bozek, John D.; Bostedt, Christoph; Wada, Shin-ichi; Piancastelli, Maria N.; Tashiro, Motomichi; Ehara, Masahiro

    2011-01-01

    Theory predicts that double-core-hole (DCH) spectroscopy can provide a new powerful means of differentiating between similar chemical systems with a sensitivity not hitherto possible. Although DCH ionization on a single site in molecules was recently measured with double- and single-photon absorption, double-core holes with single vacancies on two different sites, allowing unambiguous chemical analysis, have remained elusive. Here we report that direct observation of double-core holes with single vacancies on two different sites produced via sequential two-photon absorption, using short, intense X-ray pulses from the Linac Coherent Light Source free-electron laser and compare it with theoretical modeling. The observation of DCH states, which exhibit a unique signature, and agreement with theory proves the feasibility of the method. Our findings exploit the ultrashort pulse duration of the free-electron laser to eject two core electrons on a time scale comparable to that of Auger decay and demonstrate possible future X-ray control of physical inner-shell processes. PMID:21969540

  10. Intensity-dependent quasi-periodic oscillations in the X-ray flux of GX5 - 1

    NASA Technical Reports Server (NTRS)

    Van Der Klis, M.; Jansen, F.; Van Paradijs, J.; Van Den Heuvel, E. P. J.; Lewin, W. H. G.

    1985-01-01

    The X-ray flux of the bright galactic bulge source GX5 - 1 shows intensity-dependent quasi-periodic oscillations between 20 and 40 Hz, appearing as a broad peak in the power spectrum whose centroid frequency, width, and integrated excess power strongly depend on the source intensity. The strength and steepness of low-frequency noise present in the power spectra below 15 Hz also depend on the source intensity. No evidence is found for coherent X-ray pulsations between 0.5 and 2000 Hz. Possible mechanisms to explain these new phenomena are discussed.

  11. Short-wavelength soft-x-ray laser pumped in double-pulse single-beam non-normal incidence

    SciTech Connect

    Zimmer, D. [LASERIX-CLUPS, LPGP UMR 8578, Universite Paris-Sud 11, F-91405 Orsay (France); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, D-55099 Mainz (Germany); Ros, D.; Guilbaud, O.; Habib, J.; Kazamias, S. [LASERIX-CLUPS, LPGP UMR 8578, Universite Paris-Sud 11, F-91405 Orsay (France); Zielbauer, B. [LASERIX-CLUPS, LPGP UMR 8578, Universite Paris-Sud 11, F-91405 Orsay (France); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Friedrich-Schiller Universitaet, D-07743 Jena (Germany); Bagnoud, V. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Helmholtz Institut Jena, Friedrich-Schiller Universitaet, D-07743 Jena (Germany); Ecker, B.; Aurand, B.; Kuehl, T. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, D-55099 Mainz (Germany); Helmholtz Institut Jena, Friedrich-Schiller Universitaet, D-07743 Jena (Germany); Hochhaus, D. C.; Neumayer, P. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung, D-64291 Darmstadt (Germany); Institut fuer Angewandte Physik, Goethe-Universitaet Frankfurt am Main, D-60438 Frankfurt am Main (Germany)

    2010-07-15

    We demonstrated a 7.36 nm Ni-like samarium soft-x-ray laser, pumped by 36 J of a neodymium:glass chirped-pulse amplification laser. Double-pulse single-beam non-normal-incidence pumping was applied for efficient soft-x-ray laser generation. In this case, the applied technique included a single-optic focusing geometry for large beam diameters, a single-pass grating compressor, traveling-wave tuning capability, and an optimized high-energy laser double pulse. This scheme has the potential for even shorter-wavelength soft-x-ray laser pumping.

  12. Ion beam sputtering techniques for high-resolution concentration depth profiling with glancing-incidence X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Wiener, G.; Günther, R.; Michaelsen, C.; Knoth, J.; Schwenke, H.; Bormann, R.

    1997-07-01

    The application of ion beam sputtering in combination with glancing-incidence X-ray fluorescence spectrometry for high-resolution concentration depth profiling is presented. Two new techniques are described: first, in the "bevel-etching technique", the sample depth profile is uncovered on the sample surface either by sputter etching with a gradient of the ion beam intensity or by varying the sputtering time by moving a shutter in front of the sample; second, in the "deposition technique", samples are etched uniformly and the sputtered material is deposited on a moving substrate. The bevelled sample and also the material deposited on the substrate are characterized (laterally resolved) by glancing incidence X-ray fluorescence spectrometry. The apparatus and techniques are described in detail. Typical experiments showing the advantages of and problems with the two techniques are discussed. The achievable depth resolutions, 1.5 nm with the bevel-etching technique and 1.4 nm with the deposition technique, are comparable with the best results from other depth profiling methods.

  13. Energy distribution measurement of narrow-band ultrashort x-ray beams via K-edge filters subtraction

    SciTech Connect

    Cardarelli, Paolo; Di Domenico, Giovanni; Marziani, Michele; Mucollari, Irena; Pupillo, Gaia; Sisini, Francesco; Taibi, Angelo; Gambaccini, Mauro [Dipartimento di Fisica, Universita di Ferrara and INFN - Ferrara, via Saragat 1, I-44122 Ferrara (Italy)

    2012-10-01

    The characterization of novel x-ray sources includes the measurement of the photon flux and the energy distribution of the produced beam. The aim of BEATS2 experiment at the SPARC-LAB facility of the INFN National Laboratories of Frascati (Rome, Italy) is to investigate possible medical applications of an x-ray source based on Thomson relativistic back-scattering. This source is expected to produce a pulsed quasi-monochromatic x-ray beam with an instantaneous flux of 10{sup 20} ph/s in pulses 10 ps long and with an average energy of about 20 keV. A direct measurement of energy distribution of this beam is very difficult with traditional detectors because of the extremely high photon flux. In this paper, we present a method for the evaluation of the energy distribution of quasi-monochromatic x-ray beams based on beam filtration with K-edge absorbing foils in the energy range of interest (16-22 keV). The technique was tested measuring the energy distribution of an x-ray beam having a spectrum similar to the expected one (SPARC-LAB Thomson source) by using a tungsten anode x-ray tube properly filtered and powered. The energy distribution obtained has been compared with the one measured with a HPGe detector showing very good agreement.

  14. Analyzing X-ray pulsar profiles: geometry and beam pattern of A 0535+26

    NASA Astrophysics Data System (ADS)

    Caballero, I.; Kraus, U.; Santangelo, A.; Sasaki, M.; Kretschmar, P.

    2011-02-01

    Aims: We applied a decomposition method to the energy dependent pulse profiles of the accreting binary pulsar A 0535+26, in order to identify the contribution of the two magnetic poles of the neutron star and to obtain constraints on the geometry of the system and on the beam pattern. Methods: We analyzed pulse profiles obtained from RXTE observations in the X-ray regime. Basic assumptions of the method are that the asymmetry observed in the pulse profiles is caused by non-antipodal magnetic poles and that the emission regions have axisymmetric beam patterns. Results: Constraints on the geometry of the pulsar and a possible solution of the beam pattern are given. We interpreted the reconstructed beam pattern in terms of a geometrical model of a hollow column plus a halo of scattered radiation on the neutron star surface, which includes relativistic light deflection.

  15. Recent development of thin diamond crystals for X-ray FEL beam-sharing

    NASA Astrophysics Data System (ADS)

    Feng, Yiping; Alonso-Mori, Roberto; Blank, Vladimir; Boutet, Sébastien; Chollet, Mathieu; van Driel, Tim B.; Fritz, David M.; Glownia, James M.; Hastings, Jerome B.; Lemke, Henrik; Messerchmidt, Marc; Montanez, Paul A.; Robert, Aymeric; Robinson, Joseph; Samoylova, Liubov; Shvyd'ko, Yuri; Sikorski, Marcin; Sinn, Harald; Song, Sanghoon; Srinivasan, Venkat N.; Stoupin, Stanislav; Terentiev, Sergey; Williams, Garth; Zhu, Diling

    2013-05-01

    The recent success of the X-ray Free Electron Lasers has generated great interests from the user communities of a wide range of scientific disciplines including physics, chemistry, structural biology and material science, creating tremendous demand on FEL beamtime access. Due to the serial nature of FEL operation, various beam-sharing techniques have been investigated in order to potentially increase the FEL beamtime capacity. Here we report the recent development in using thin diamond single crystals for spectrally splitting the FEL beam at the Linac Coherent Light Source, thus potentially allowing the simultaneous operation of multiple instruments. Experimental findings in crystal mounting and its thermal performance, position and pointing stabilities of the reflected beam, and impact of the crystal on the FEL transmitted beam profile are presented.

  16. Development and application of glancing incident X-ray fluorescence spectrometry using parallel polycapillary X-ray lens

    Microsoft Academic Search

    Jun Yang; Dandan Zhao; Qing Xu; Xunliang Ding

    2009-01-01

    A new glancing incident X-ray fluorescence (GIXRF) spectrometer using parallel polycapillary X-ray lens has been developed. Integrated with a Zr filter and slits, a highly collimated and monochromatic X-ray beam has been achieved. This method eliminated the monochromator used in the conventional GIXRF method. Moreover the parallel X-ray lens increased the acceptance solid angle and hence increases intensities of the

  17. Effects of the external magnetic field and chemical combination on K ?\\/K ? X-ray intensity ratios of some nickel and cobalt compounds

    Microsoft Academic Search

    S. Porikli; Y. Kurucu

    2008-01-01

    A systematic study of X-ray intensity ratios of the K-series lines was made on compounds of nickel and cobalt to examine the influence of chemical state and 0.6 and 1.2T external magnetic fields on energy-dispersive X-ray fluorescence analysis. The samples were excited by 22.69keV X-rays emitted from a Cd-109 radioisotope source and characteristic K X-rays emitted from the samples were

  18. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    SciTech Connect

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectric actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.

  19. Probing the Transverse Coherence of an Undulator X-Ray Beam Using Brownian Particles

    SciTech Connect

    Alaimo, M. D. [Dipartimento di Fisica, Universita di Milano, I-20133 Milano, CNISM (Italy); European Synchrotron Radiation Facility, BP-220, F-38043 Grenoble (France); Potenza, M. A. C.; Manfredda, M.; Giglio, M. [Dipartimento di Fisica, Universita di Milano, I-20133 Milano, CNISM (Italy); Geloni, G. [Deutsches Elektronen-Synchrotron and European XFEL GmbH, D-22607 Hamburg (Germany); Sztucki, M.; Narayanan, T. [European Synchrotron Radiation Facility, BP-220, F-38043 Grenoble (France)

    2009-11-06

    We present a novel method to map the two-dimensional transverse coherence of an x-ray beam using the dynamical near-field speckles formed by scattering from colloidal particles. Owing to the statistical nature of the method, the coherence properties of synchrotron radiation from an undulator source is obtained with high accuracy. The two-dimensional complex coherence function is determined at the sample position and the imaging optical scheme further allowed us to evaluate the coherence factor at the undulator output despite the aberrations introduced by the focusing optics.

  20. Progress of the APS high heat load x-ray beam position monitor development

    SciTech Connect

    Shu Deming; Barraza, Juan; Ding Hai; Kuzay, Tuncer M.; Ramanathan, Mohan [Experimental Facilities Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    1997-07-01

    Several novel design developments have been established for the Advanced Photon Source (APS) insertion device (ID) X-ray beam position monitor (XBPM) to improve its performance: - optimized geometric configuration of the monitor's sensory blades; - smart XBPM system with an intelligent digital signal processor, which provides a self-learning and calibration function; and - Transmitting XBPM with prefiltering in the commissioning windows for the front end. In this write-up, we summarize the recent progress on the XBPM development for the APS ID front ends.

  1. Progress of the APS high heat load X-ray beam position monitor development

    SciTech Connect

    Shu, D.; Barraza, J.; Ding, H.; Kuzay, T.M.; Ramanathan, M.

    1997-09-01

    Several novel design developments have been established for the Advanced Photon Source (APS) insertion device (ID) X-ray beam position monitor (XBPM) to improve its performance: (1) optimized geometric configuration of the monitor`s sensory blades; (2) smart XBPM system with an intelligent digital signal processor, which provides a self-learning and calibration function; and (3) transmitting XBPM with prefiltering in the commissioning windows for the front end. In this write-up, the authors summarize the recent progress on the XBPM development for the APS ID front ends.

  2. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines

    SciTech Connect

    Slobodskyy, T. [Institute for Synchrotron Radiation, Karlsruhe Institute of Technology - 76344 Eggenstein-Leopoldshafen (Germany); Institut fuer Angewandte Physik und Zentrum fuer Mikrostrukturforschung, Jungiusstrasse 11, D-20355 Hamburg (Germany); Schroth, P.; Grigoriev, D.; Minkevich, A. A.; Baumbach, T. [Institute for Synchrotron Radiation, Karlsruhe Institute of Technology - 76344 Eggenstein-Leopoldshafen (Germany); Hu, D. Z.; Schaadt, D. M. [Institute for Applied Physics/DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Institute for Energy Research and Physical Technologies, Technical University Clausthal, Am Stollen 19B, 38640 Goslar (Germany)

    2012-10-15

    A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

  3. Projection phase contrast microscopy with a hard x-ray nanofocused beam: Defocus and contrast transfer

    SciTech Connect

    Salditt, T.; Giewekemeyer, K.; Fuhse, C.; Krueger, S. P. [Institut fuer Roentgenphysik, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Tucoulou, R.; Cloetens, P. [ESRF, BP 220, 38043 Grenoble (France)

    2009-05-01

    We report a projection phase contrast microscopy experiment using hard x-ray pink beam undulator radiation focused by an adaptive mirror system to 100-200 nm spot size. This source is used to illuminate a lithographic test pattern with a well-controlled range of spatial frequencies. The oscillatory nature of the contrast transfer function with source-to-sample distance in this holographic imaging scheme is quantified and the validity of the weak phase object approximation is confirmed for the experimental conditions.

  4. Progress toward a hard x-ray insertion device beam position monitor at the Advanced Photon Source.

    SciTech Connect

    Decker, G.; Den Hartog, P.; Singh, O.; Rosenbaum, G.; Univ. of Georgia

    2008-01-01

    Long-term pointing stability at synchrotron light sources using conventional rf-based particle beam position monitoring is limited by the mechanical stability of the pickup electrode assembly. Photoemission-based photon beam position monitors for insertion device beams suffer from stray radiation backgrounds and other gap- dependent systematic errors. To achieve the goal of 500-nanoradian peak-to-peak pointing stability over a one-week period, the development of a photon beam position detector sensitive only to hard X-rays (> several keV) using copper X-ray fluorescence has been initiated. Initial results and future plans are presented.

  5. X-ray beam lines and beam line components for the SLAC Linac Coherent Light Source (LCLS)

    SciTech Connect

    Tatchyn, R.; Pianetta, P.

    1993-04-01

    The LCLS is a novel high-brightness x-ray source designed to operate in the 300--400 eV range. In contrast to conventional synchrotron radiation sources, its output pulses will be characterized by unprecedented levels of brevity and peak power. In this paper we present recently-developed beam line layouts and design features intended to optimize the delivery of the LCLS photons to various experimental stations.

  6. An empirical model of diagnostic x-ray attenuation under narrow-beam geometry

    SciTech Connect

    Mathieu, Kelsey B.; Kappadath, S. Cheenu; White, R. Allen; Atkinson, E. Neely; Cody, Dianna D. [Department of Bioengineering, Rice University, Houston, Texas 77005 (United States); Division of Diagnostic Imaging, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Division of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Statistics, Rice University, Houston, Texas 77005 (United States); Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2011-08-15

    Purpose: The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. Methods: An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49-33.03 mm Al on a computed tomography (CT) scanner, 0.09-1.93 mm Al on two mammography systems, and 0.1-0.45 mm Cu and 0.49-14.87 mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semilogarithmic (exponential) and linear interpolation]. Results: The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R{sup 2} > 0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and/or QVL than the traditional methods of semilogarithmic and linear interpolation. Conclusions: The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry).

  7. Fast-electron refluxing effects on anisotropic hard-x-ray emission from intense laser-plasma interactions.

    PubMed

    McKeever, K; Makita, M; Nersisyan, G; Dzelzainis, T; White, S; Kettle, B; Dromey, B; Zepf, M; Sarri, G; Doria, D; Ahmed, H; Lewis, C L S; Riley, D; Robinson, A P L

    2015-03-01

    Fast-electron generation and dynamics, including electron refluxing, is at the core of understanding high-intensity laser-plasma interactions. This field is itself of strong relevance to fast ignition fusion and the development of new short-pulse, intense, x-ray, ?-ray, and particle sources. In this paper, we describe experiments that explicitly link fast-electron refluxing and anisotropy in hard-x-ray emission. We find the anisotropy in x-ray emission to be strongly correlated to the suppression of refluxing. In contrast to some previous work, the peak of emission is directly along the rear normal to the target rather than along either the incident laser direction or the specular reflection direction. PMID:25871224

  8. X-ray spectropolarimeter

    SciTech Connect

    Baronova, E. O.; Stepanenko, M. M.; Stepanenko, A. M. [RRC Kurchatov Institute, 123182 Moscow (Russian Federation)

    2008-08-15

    We have constructed a novel single-crystal x-ray spectropolarimeter that separates spatially the two perpendicularly polarized components of an x-ray beam. We have tested this device by using an x-ray tube, and confirmed its performance to be satisfactory as expected from its design.

  9. Intense Non-Linear Soft X-Ray Emission from a Hydride Target during Pulsed D Bombardment

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Yang, Yang; Lipson, Andrei; Haque, Munima; Percel, Ian; Romer, Michael

    Radiation emission from low-energy nuclear radiation (LENR) electrodes (both charged-particle and X-rays) represents an important feature of LENR in general. Here, calibration, measurement techniques, and soft X-ray emission results from deuterium bombardment of a Pd target (cathode) placed in a pulsed deuterium glow discharge (PGD) are described. An X-ray intensity of 13.4 mW/cm2 and a dose of 3.3 ?J/cm2 were calculated over a 0.5 ms pulse time from AXUV photodiode radiation detector measurements. A most striking feature is that X-ray energies >600 V are observed with a discharge voltage only about half of that value. To further investigate this phenomenon, emission during room temperature D-desorption from electrolytically loaded Pd:Dx cathodes was also studied. The X-ray emission energy observed was quite similar to the PGD case. However, the intensity in this case was almost 13 orders of magnitude lower due to the much lower deuterium fluxes involved.

  10. Fresnel zone plate telescopes for X-ray imaging I: experiments with a quasi-parallel beam

    Microsoft Academic Search

    Sandip K. Chakrabarti; S. Palit; D. Debnath; A. Nandi; V. Yadav; Ritabrata Sarkar

    2009-01-01

    Combination of Fresnel Zone Plates (FZP) can make an excellent telescope for imaging in X-rays. We present here the results\\u000a of our experiments with several pairs of tungsten made Fresnel Zone plates in presence of an X-ray source kept at a distance\\u000a of about 45 ft. The quasi-parallel beam allowed us to study sources placed on the axis as well as

  11. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOEpatents

    Shu, Deming (Darien, IL); Kuzay, Tuncer M. (Naperville, IL)

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  12. Separation of hard x-ray synchrotron radiation from electron beam slices

    NASA Astrophysics Data System (ADS)

    He, A.; Chubar, O.; Yu, L. H.

    2014-09-01

    In the electron beam slicing scheme1, 2 considered for National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory, when a low energy electron bunch crosses from top of a high energy storage ring electron bunch, its coulomb force will kick a short slice (slicing bunch) from the core (core bunch) of the storage ring electron bunch. The short slice bunch and the long core bunch when passing through the 3 m long U20 in-vacuum undulator will radiate X-ray pulses with pulse length ~150 fs and 30 ps respectively. To separate the satellite radiation from the core radiation, we propose a conceptual optical scheme allowing for the separation. To get reliable estimates of the separation performances, we apply the Synchrotron Radiation Workshop (SRW) physical optics computer code3, 4 to study the wavefront propagation. As calculations show, at 7.8 keV, the separation signal-to-noise ratio can reach 5~12 and the satellite photon flux per pulse at sample can be 5000~20000 photons/0.1%BW with x-ray pulse length 150 ~ 330 fs depending on the separation method and the crossing angle between the low energy electron bunch and the high energy storage ring bunch. Since the repetition rate of the electron beam slicing system can reach 100 kHz, the average flux per second can reach 5 x 108 ` 2 x 109 photons/sec/0.1%BW.

  13. X-ray laser beam propagation in double-foil targets

    SciTech Connect

    Boswell, B.; Shvarts, D.; Boehly, T.; Yaakobi, B. (Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (US))

    1990-02-01

    Refraction effects on the gain of an x-ray laser propagating in a convex (lateral) plasma density profile have been studied previously. Here the corresponding case of concave density profile is studied theoretically. Experimentally, the convex profile is obtained by irradiating a single (exploding) foil target; the concave case can be realized by various two-beam irradiation configurations. Such geometries have been studied experimentally at the Laboratory for Laser Energetics (LLE) ({ital SPIE} {ital Proceedings} (SPIE, Bellingham, WA, 1987), Vol. 831, Paper 40, p. 283; Paper 42, p. 305). The concave profile has a waveguiding effect on the propagation of the x-ray laser and can reduce the deleterious effects of refraction. The output power, its dependence on the length of the amplifying medium, and its angular distribution are studied and compared with the convex profile case. An amplifier mode (in which a collimated beam is incident on an amplifying medium) is compared with an amplified spontaneous emission mode (where spontaneous emission sources exist throughout the amplifying medium).

  14. Development of a hard x-ray beam position monitor for insertion device beams at the APS.

    SciTech Connect

    Decker, G.; Rosenbaum, G.; Singh, O.; Accelerator Systems Division (APS)

    2006-01-01

    Long-term pointing stability requirements at the Advanced Photon Source (APS) are very stringent, at the level of 500 nanoradians peak-to-peak or better over a one-week time frame. Conventional rf beam position monitors (BPMs) close to the insertion device source points are incapable of assuring this level of stability, owing to mechanical, thermal, and electronic stability limitations. Insertion device gap-dependent systematic errors associated with the present ultraviolet photon beam position monitors similarly limit their ability to control long-term pointing stability. We report on the development of a new BPM design sensitive only to hard x-rays. Early experimental results will be presented.

  15. Quasitransient regimes of backward Raman amplification of intense x-ray pulses V. M. Malkin and N. J. Fisch

    E-print Network

    to access intensities needed for backward Raman amplification BRA of x-ray pulses in plasmas. However, high could reduce the coupling, thus making efficient BRA impossible. This work shows that efficient BRA can survive despite the Langmuir wave damping significantly exceeding the linear BRA growth rate. Moreover

  16. Multiple ionization of atom clusters by intense soft X-rays from a free-electron laser

    Microsoft Academic Search

    H. Wabnitz; L. Bittner; A. R. B. de Castro; R. Döhrmann; P. Gürtler; T. Laarmann; W. Laasch; J. Schulz; A. Swiderski; K. von Haeften; T. Möller; B. Faatz; A. Fateev; J. Feldhaus; C. Gerth; U. Hahn; E. Schneidmiller; K. Sytchev; K. Tiedtke; R. Treusch; M. Yurkov

    2002-01-01

    Intense radiation from lasers has opened up many new areas of research in physics and chemistry, and has revolutionized optical technology. So far, most work in the field of nonlinear processes has been restricted to infrared, visible and ultraviolet light, although progress in the development of X-ray lasers has been made recently. With the advent of a free-electron laser in

  17. Diffraction with a coherent X-ray beam: dynamics and imaging

    PubMed Central

    Livet, Frédéric

    2007-01-01

    Methods for carrying out coherent X-ray scattering experiments are reviewed. The brilliance of the available synchrotron sources, the characteristics of the existing optics, the various ways of obtaining a beam of controlled coherence properties and the detectors used are summarized. Applications in the study of the dynamics of speckle patterns are described. In the case of soft condensed matter, the movement of inclusions like fillers in polymers or colloidal particles can be observed and these can reflect polymer or liquid-crystal fluctuations. In hard condensed-matter problems, like phase transitions, charge-density waves or phasons in quasicrystals, the study of speckle fluctuations provides new time-resolved methods. In the domain of lensless imaging, the coherent beam gives the modulus of the sample Fourier transform. If oversampling conditions are fulfilled, the phase can be obtained and the image in the direct space can be reconstructed. The forthcoming improvements of all these techniques are discussed. PMID:17301470

  18. Energy-dispersive X-ray diffraction using an annular beam.

    PubMed

    Dicken, A J; Evans, J P O; Rogers, K D; Greenwood, C; Godber, S X; Prokopiou, D; Stone, N; Clement, J G; Lyburn, I; Martin, R M; Zioupos, P

    2015-05-18

    We demonstrate material phase identification by measuring polychromatic diffraction spots from samples at least 20 mm in diameter and up to 10 mm thick with an energy resolving point detector. Within our method an annular X-ray beam in the form of a conical shell is incident with its symmetry axis normal to an extended polycrystalline sample. The detector is configured to receive diffracted flux transmitted through the sample and is positioned on the symmetry axis of the annular beam. We present the experiment data from a range of different materials and demonstrate the acquisition of useful data with sub-second collection times of 0.5 s; equating to 0.15 mAs. Our technique should be highly relevant in fields that demand rapid analytical methods such as medicine, security screening and non-destructive testing. PMID:26074592

  19. Dosimetric application of a special pencil ionization chamber in radiotherapy X-ray beams

    NASA Astrophysics Data System (ADS)

    Neves, Lucio P.; Perini, Ana P.; Fernández-Varea, José M.; Cassola, Vagner F.; Kramer, Richard; Khoury, Helen J.; Caldas, Linda V. E.

    2014-02-01

    The aim of this work was to study the performance of a pencil ionization chamber with a sensitive volume of only 1.06 cm3 and a length of 3.0 cm, developed at the Calibration Laboratory of the IPEN, in very low-energy radiotherapy X-ray beams. These beams are still used for certain skin cancer treatments due to their rapid attenuation in tissue. The dosimeter performance was evaluated in some tests proposed by the IEC 60731 standard: short- and long-term stability and linearity of response. For a complete analysis of the dosimeter response, the EGSnrc Monte Carlo simulation was utilized to investigate the influence of its different parts on the ionization chamber response. All results of the tests were in accordance with the recommended limits, and this work shows that it is possible to extend the application of this pencil-type ionization chamber developed at the LCI.

  20. Ptychographical imaging of the phase vortices in the x-ray beam formed by nanofocusing lenses

    NASA Astrophysics Data System (ADS)

    Dzhigaev, D.; Lorenz, U.; Kurta, R. P.; Seiboth, F.; Stankevic, T.; Mickevicius, S.; Singer, A.; Shabalin, A.; Yefanov, O. M.; Strikhanov, M. N.; Falkenberg, G.; Schroer, C. G.; Feidenhans'l, R.; Vartanyants, I. A.

    2014-04-01

    We present the ptychographical reconstruction of the x-ray beam formed by nanofocusing lenses (NFLs) containing a number of phase singularities (vortices) in the vicinity of the focal plane. As a test object Siemens star pattern was used with the finest features of 50 nm for ptychographical measurements. The extended ptychographical iterative engine (ePIE) algorithm was applied to retrieve both complex illumination and object functions from the set of diffraction patterns. The reconstruction revealed the focus size of 91.4±1.1 nm in horizontal and 70±0.3 nm in vertical direction at full width at half maximum (FWHM). The complex probe function was propagated along the optical axis of the beam revealing the evolution of the phase singularities.

  1. Behaviour of large-area avalanche photodiodes under intense magnetic fields for VUV- visible- and X-ray photon detection

    NASA Astrophysics Data System (ADS)

    Fernandes, L. M. P.; Antognini, A.; Boucher, M.; Conde, C. A. N.; Huot, O.; Knowles, P.; Kottmann, F.; Ludhova, L.; Mulhauser, F.; Pohl, R.; Schaller, L. A.; dos Santos, J. M. F.; Taqqu, D.; Veloso, J. F. C. A.

    2003-02-01

    The behaviour of large-area avalanche photodiodes for X-rays, visible and vacuum-ultra-violet (VUV) light detection in magnetic fields up to 5 T is described. For X-rays and visible light detection, the photodiode pulse amplitude and energy resolution were unaffected from 0 to 5 T, demonstrating the insensitivity of this type of detector to strong magnetic fields. For VUV light detection, however, the photodiode relative pulse amplitude decreases with increasing magnetic field intensity reaching a reduction of about 24% at 5 T, and the energy resolution degrades noticeably with increasing magnetic field.

  2. Analysis of a Novel Diffractive Scanning Wire Beam Position Monitor (BPM) for Discriminative Profiling of Electron Vs. X Ray Beams

    SciTech Connect

    Tatchyn, Roman; /SLAC

    2011-09-01

    Recent numerical studies of Free Electron Lasers (FELs) operating in the Self Amplified Spontaneous Emission (SASE) regime indicate a large sensitivity of the gain to the degree of transverse overlap (and associated phase coherence) between the electron and photon beams traveling down the insertion device. Simulations of actual systems imply that accurate detection and correction for this relative loss of overlap, rather than correction for the absolute departure of the electron beam from a fixed axis, is the preferred function of an FEL amplifier's Beam Position Monitor (BPM) and corrector systems. In this note we propose a novel diffractive BPM with the capability of simultaneously detecting and resolving the absolute (and relative) transverse positions and profiles of electron and x-ray beams co-propagating through an undulator. We derive the equations governing the performance of the BPM and examine its predicted performance for the SLAC Linac Coherent Light Source (LCLS), viz., for profiling multi-GeV electron bunches co-propagating with one-to-several-hundred keV x-ray beams. Selected research and development (r&d) tasks for fabricating and testing the proposed BPM are discussed.

  3. Scattering Theory When an x-ray beam (or neutron or light) passes through a material with

    E-print Network

    Beaucage, Gregory

    Scattering Theory When an x-ray beam (or neutron or light) passes through a material radiation is scattered in directions that differ from that of the incident beam. Scattering arises since x with the material releasing radiation of the same wavelength but isotropically (at all angles, like a light bulb

  4. SIMULATIONS AND STUDIES OF ELECTRON BEAM DYNAMICS UNDER COMPTON BACK-SCATTERING FOR THE COMPACT X-RAY

    E-print Network

    Boyer, Edmond

    SIMULATIONS AND STUDIES OF ELECTRON BEAM DYNAMICS UNDER COMPTON BACK-SCATTERING FOR THE COMPACT X. Loulergue, SOLEIL, Gif-sur-Yvette, France Abstract In this article are presented beam dynamics investiga] is a project of a compact high flux X-ray source based on the Compton scattering of laser photons

  5. Malignant induction probability maps for radiotherapy using X-ray and proton beams.

    PubMed

    Timlin, C; Houston, M; Jones, B

    2011-12-01

    The aim of this study was to display malignant induction probability (MIP) maps alongside dose distribution maps for radiotherapy using X-ray and charged particles such as protons. Dose distributions for X-rays and protons are used in an interactive MATLAB® program (MathWorks, Natick, MA). The MIP is calculated using a published linear quadratic model, which incorporates fractionation effects, cell killing and cancer induction as a function of dose, as well as relative biological effect. Two virtual situations are modelled: (a) a tumour placed centrally in a cubic volume of normal tissue and (b) the same tumour placed closer to the skin surface. The MIP is calculated for a variety of treatment field options. The results show that, for protons, the MIP increases with field numbers. In such cases, proton MIP can be higher than that for X-rays. Protons produce the lowest MIPs for superficial targets because of the lack of exit dose. The addition of a dose bath to all normal tissues increases the MIP by up to an order of magnitude. This exploratory study shows that it is possible to achieve three-dimensional displays of carcinogenesis risk. The importance of treatment geometry, including the length and volume of tissue traversed by each beam, can all influence MIP. Reducing the volume of tissue irradiated is advantageous, as reducing the number of cells at risk reduces the total MIP. This finding lends further support to the use of treatment gantries as well as the use of simpler field arrangements for particle therapy provided normal tissue tolerances are respected. PMID:22374550

  6. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter

    SciTech Connect

    Harty, P. D., E-mail: Peter.Harty@arpansa.gov.au; Ramanathan, G.; Butler, D. J.; Johnston, P. N. [Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085 (Australia)] [Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085 (Australia); Lye, J. E. [Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085, Australia and Australian Clinical Dosimetry Service, Yallambie, Victoria 3085 (Australia)] [Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085, Australia and Australian Clinical Dosimetry Service, Yallambie, Victoria 3085 (Australia); Hall, C. J. [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168 (Australia)] [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168 (Australia); Stevenson, A. W. [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and CSIRO, Materials Science and Engineering, Clayton Sth Victoria 3169 (Australia)] [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and CSIRO, Materials Science and Engineering, Clayton Sth Victoria 3169 (Australia)

    2014-05-15

    Purpose: The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. Methods: The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50?Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Results: Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3.9%. Conclusions: The good agreement of the graphite calorimeter and free-air chamber results indicates that both devices are performing as expected. Further investigations at higher dose rates than 50?Gy/s are planned. At higher dose rates, recombination effects for the free-air chamber are much higher and expected to lead to much larger uncertainties. Since the graphite calorimeter does not have problems associated with dose rate, it is an appropriate primary standard detector for the synchrotron IMBL x rays and is the more accurate dosimeter for the higher dose rates expected in radiotherapy applications.

  7. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy

    SciTech Connect

    Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

    2011-01-01

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB?SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non?destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three?dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  8. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ioni Beam-scanning Electron Microscopy

    SciTech Connect

    G Nelson; W Harris; J Lombardo; J Izzo Jr.; W Chiu; P Tanasini; M Cantoni; J Van herle; C Comninellis; et al.

    2011-12-31

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB-SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB-SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  9. A Soft X-ray Beam-splitting Multilayer Optic for the NASA GEMS Bragg Reflection Polarimeter

    E-print Network

    Allured, Ryan; Soufli, Regina; Alameda, Jennifer B; Pivovaroff, Michael J; Gullikson, Eric M; Kaaret, Philip

    2013-01-01

    A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90 degree angle to the BRP detector, and transmit 2-10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 micron thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developed and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.

  10. Multiresolution image registration in digital x-ray angiography with intensity variation modeling.

    PubMed

    Nejati, Mansour; Pourghassem, Hossein

    2014-02-01

    Digital subtraction angiography (DSA) is a widely used technique for visualization of vessel anatomy in diagnosis and treatment. However, due to unavoidable patient motions, both externally and internally, the subtracted angiography images often suffer from motion artifacts that adversely affect the quality of the medical diagnosis. To cope with this problem and improve the quality of DSA images, registration algorithms are often employed before subtraction. In this paper, a novel elastic registration algorithm for registration of digital X-ray angiography images, particularly for the coronary location, is proposed. This algorithm includes a multiresolution search strategy in which a global transformation is calculated iteratively based on local search in coarse and fine sub-image blocks. The local searches are accomplished in a differential multiscale framework which allows us to capture both large and small scale transformations. The local registration transformation also explicitly accounts for local variations in the image intensities which incorporated into our model as a change of local contrast and brightness. These local transformations are then smoothly interpolated using thin-plate spline interpolation function to obtain the global model. Experimental results with several clinical datasets demonstrate the effectiveness of our algorithm in motion artifact reduction. PMID:24469684

  11. Automated marker tracking using noisy X-ray images degraded by the treatment beam.

    PubMed

    Wisotzky, E; Fast, M F; Oelfke, U; Nill, S

    2015-06-01

    This study demonstrates the feasibility of automated marker tracking for the real-time detection of intrafractional target motion using noisy kilovoltage (kV) X-ray images degraded by the megavoltage (MV) treatment beam. The authors previously introduced the in-line imaging geometry, in which the flat-panel detector (FPD) is mounted directly underneath the treatment head of the linear accelerator. They found that the 121 kVp image quality was severely compromised by the 6 MV beam passing through the FPD at the same time. Specific MV-induced artefacts present a considerable challenge for automated marker detection algorithms. For this study, the authors developed a new imaging geometry by re-positioning the FPD and the X-ray tube. This improved the contrast-to-noise-ratio between 40% and 72% at the 1.2 mAs/image exposure setting. The increase in image quality clearly facilitates the quick and stable detection of motion with the aid of a template matching algorithm. The setup was tested with an anthropomorphic lung phantom (including an artificial lung tumour). In the tumour one or three Calypso(®) beacons were embedded to achieve better contrast during MV radiation. For a single beacon, image acquisition and automated marker detection typically took around 76±6 ms. The success rate was found to be highly dependent on imaging dose and gantry angle. To eliminate possible false detections, the authors implemented a training phase prior to treatment beam irradiation and also introduced speed limits for motion between subsequent images. PMID:25280891

  12. Synchrotron X-ray micro-beam studies of ancient Egyptian make-up

    NASA Astrophysics Data System (ADS)

    Martinetto, P.; Anne, M.; Dooryhée, E.; Drakopoulos, M.; Dubus, M.; Salomon, J.; Simionovici, A.; Walter, Ph.

    2001-07-01

    Vases full of make-up are most often present in the burial furniture of Egyptian tombs dated from the pharaonic period. The powdered cosmetics made of isolated grains are analysed to identify their trace element signature. From this signature we identify the provenance of the mineral ingredients in the make-up and we observe different impurities in products, which have been demonstrated as synthetic substances by previous works. Focused X-ray micro-beam ( 2×5 ?m2) is successively tuned at 11 keV, below the L III absorption edge of Pb, and 31.8 keV for global characterisation of the metal impurities. The fluorescence signal integrated over each single grain is detected against the X-ray micro-diffraction pattern collected in transmission with a bi-dimensional detector. Furthermore, for galena grains rich in Zn, the XANES signal at the K-absorption edge of Zn shows its immediate nearest-neighbour environment.

  13. Study of 1–8 keV K-? x-ray emission from high intensity femtosecond laser produced plasma

    SciTech Connect

    Arora, V., E-mail: arora@rrcat.gov.in; Naik, P. A.; Chakera, J. A.; Bagchi, S.; Tayyab, M.; Gupta, P. D. [Laser Plasma Division, Raja Rammana Centre for Advanced Technology, Indore 452 013 (India)] [Laser Plasma Division, Raja Rammana Centre for Advanced Technology, Indore 452 013 (India)

    2014-04-15

    We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-? line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-? x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ?740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Ti (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-? yield (I{sub x} ? I{sub L}{sup ?}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 10{sup 14} – 8 × 10{sup 17}. The x-ray yield shows a much faster scaling exponent ? = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are ?{sub Mg} = 1.2 × 10{sup ?5}, ?{sub Ti} = 3.1 × 10{sup ?5}, ?{sub Fe} = 2.7 × 10{sup ?5}, ?{sub Cu} = 1.9 × 10{sup ?5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.

  14. Laboratory x-ray lasers

    SciTech Connect

    Matthews, D.L.

    1989-08-01

    One of the most innovative spinoffs of ICF technology and physics has been the development of the x-ray wavelength laser. The first incontrovertible demonstration of this type of laser came from LLNL in 1984 using the Novette laser to pump a selenium foil target. The power and energy of Novette were then needed to produce a column of plasma of sufficient length to achieve a sufficient gainlength product ({approximately}5.5, this corresponds to an amplification of {approximately}250X) that could unquestionably illustrate the lasing effect. LLNL ICF expertise was also required to develop time-resolved spectrometers used to view the lasing transitions at {approximately}20 nm, a region of the XUV spectrum normally dominated by high backgrounds. The design of the x-ray laser amplifier, which required maintaining nonequilibrium level populations in a tailored plasma having the proper conditions for gain and x-ray laser beam propagation, was accomplished with modified versions of ICF kinetics and hydrodynamics codes. Since the first demonstration, our progress in the development of the x-ray laser has been rapid. New achievements include production of megawatt power levels at 20 nm, amplified spontaneous emission levels approaching saturation intensity (GL {approximately}17 {at} 20 nm, efficiency (x-ray laser energy/pump energy) {approximately}10{sup {minus}6}), the demonstration of double and triple pass amplification (hinting at the possibility of producing x-ray wavelength resonators), the focusing of x-ray lasers to pump other types of lasers and the first demonstration of an x-ray hologram produced by an x-ray laser. The generation of amplification at ever shorter wavelength is possible using various types of inversion schemes. We depict below this progress benchmarked against production of gain in the water window (2.2 to 4.4 nm,), where applications to biological imaging may be facilitated.

  15. Characteristic x-ray emission from undermines plasmas irradiated by ultra-intense lasers

    SciTech Connect

    Niemann, Christoph

    2012-05-05

    Between FY09 and FY11 we have conducted more than a dozen three-week experimental campaigns at high-power laser facilities around the world to investigate laser-channeling through x-ray and optical imaging and the conversion from laser-energy to xrays. We have performed simultaneous two-wavelength x-ray imaging (K-alpha and He-alpha) to distinguish the hot-plasma region (hot-spot) from the laser-produced electrons (K-alpha). In addition, we have initiated a new collaboration with SNL and have performed first shots on the 100 TW beamlet chamber to commission a fast x-ray streak camera to be used to investigate the temporal evolution of our K-alpha sources. We also collaborated on campaigns at the Rutherford Appleton Laboratory (UK) and the LANL Trident laser to employ laser produced x-ray sources for Thomson scattering off dense matter.

  16. Correlated Intense X-Ray and TEV Activity of Markarian 501 in 1998 June

    Microsoft Academic Search

    R. M. Sambruna; F. A. Aharonian; H. Krawczynski; A. G. Akhperjanian; J. A. Barrio; K. Bernlöhr; H. Bojahr; I. Calle; J. L. Contreras; J. Cortina; S. Denninghoff; V. Fonseca; J. C. Gonzalez; N. Götting; G. Heinzelmann; M. Hemberger; G. Hermann; A. Heusler; W. Hofmann; D. Horns; A. Ibarra; R. Kankanyan; M. Kestel; J. Kettler; C. Köhler; A. Kohnle; A. Konopelko; H. Kornmeyer; D. Kranich; H. Lampeitl; A. Lindner; E. Lorenz; N. Magnussen; O. Mang; H. Meyer; R. Mirzoyan; A. Moralejo; L. Padilla; M. Panter; R. Plaga; A. Plyasheshnikov; J. Prahl; G. Pühlhofer; G. Rauterberg; A. Röhring; V. Sahakian; M. Samorski; M. Schilling; D. Schmele; F. Schröder; W. Stamm; M. Tluczykont; H. J. Völk; B. Wiebel-Sooth; C. Wiedner; M. Willmer; W. Wittek; L. Chou; P. S. Coppi; R. Rothschild; C. M. Urry

    2000-01-01

    We present exactly simultaneous X-ray and TeV monitoring with RXTE and HEGRA of the TeV blazar Mrk 501 during 15 days in 1998 June. After an initial period of very low flux at both wavelengths, the source underwent a remarkable flare in the TeV and X-ray energy bands, lasting for about 6 days and with a larger amplitude at TeV

  17. Charge integrating type position-sensitive proportional chamber for time-resolved measurements using intense X-ray sources

    NASA Astrophysics Data System (ADS)

    Mochiki, Koh-ichi; Hasegawa, Ken-ichi

    1985-02-01

    A position-sensitive detecting system for time-resolved diffraction measurements with very intensive X-ray sources has been developed. It consists of a charge integrating type gas-filled detector, multichannel analog multiplexers, a signal processor and a memory (120 ch.×128 phases×24 bits). The detector is 120 mm long in effective length by 10 mm×10 mm in cross section with a single anode of 20 ?m diameter. One of the cathode planes consists of 120 cathode strips with a pitch of 1 mm. The spatial resolution is equal to the pitch under a certain detector current limit. The gas gain is adjustable to an appropriate value according to the X-ray intensity range of interest. For experiments with 8 keV X-ray sources, maximum absorption rates of 9×10 7 photons/s·mm with low applied voltage and minimum absorption rates of about 3 photons/s·mm with high applied voltage can be achieved. This system was applied to a time-resolved X-ray diffraction study on frog muscle using a synchrotron radiation source at the Photon Factory and we could collect diffraction patterns with a time resolution of 10 ms and only 10 stimulations.

  18. Evaluation of X-Ray Beam Quality Based on Measurements and Estimations Using SpekCalc and Ipem78 Models

    PubMed Central

    Chen, Suk Chiang; Jong, Wei Loong; Harun, Ahmad Zaky

    2012-01-01

    Background: Different computational methods have been used for the prediction of X-ray spectra and beam quality in diagnostic radiology. The purpose of this study was to compare X-ray beam qualities based on half-value layers (HVLs) determined through measurements and computational model estimations. Methods: The HVL estimations calculated by IPEM78 (Spectrum Processor of the Institute of Physics and Engineering in Medicine’s Report 78) and SpekCalc software were compared with those determined through measurements. In this study, the HVLs of both Philips (Phil) (Philips Healthcare, Best, NL) and General Electric Company (GE) (GE Global Research, Niskayuna, US) diagnostic range X-ray machines (50 kVp to 125 kVp) were evaluated. Results: In the HVL estimations, SpekCalc and IPEM78 showed maximum differences of 10% and 9%, respectively, compared with direct measurements. Both models provided means and SDs of HVLs that were within 5% of the HVL measurements of GE and Phil machines. Conclusion: Both computational models provide an alternative method for estimating the HVL of diagnostic range X-ray. These models are user-friendly in predicting HVLs, which are used to characterise the quality of the X-ray beam, and these models provide predictions almost instantly compared with experimental measurements. PMID:23610546

  19. A Vlasov Solver for Longitudinal Dynamics in Beam Delivery Systems for X-Ray FELs

    SciTech Connect

    Venturini, Marco; Warnock, Robert; Zholents, Alexander

    2007-05-09

    Direct numerical methods for solving the Vlasov equationoffer some advantages over macroparticle simulations, as they do notsuffer from the consequences of the statistical fluctuations inherent inusing a number of macroparticles smaller than thebunch population.Unfortunately these methods are more time-consuming and generallyconsidered impractical in a full 6D phase space. However, in alower-dimension phase space they may become attractive if the beamdynamics is sensitive to the presence of small charge-densityfluctuations and a high resolution is needed. In this paper we present a2D Vlasov solverfor studying the longitudinal beam dynamics insingle-pass systems of interest for X-Ray FELs, where characterization ofthe microbunching instability stemming from self-field amplified noise isof particular relevance.

  20. Very high resolution soft x-ray spectrometer for an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.; Crespo Lopez-Urrutia, J.R. [Department of Physics and Space Technology, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Department of Physics and Space Technology, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Foerster, E. [Max-Planck-Arbeitsgruppe Roentgenoptik, Friedrich-Schiller-Universitaet, D-07743 Jena (Germany)] [Max-Planck-Arbeitsgruppe Roentgenoptik, Friedrich-Schiller-Universitaet, D-07743 Jena (Germany); Mahiri, J. [Department of Physics and Space Technology, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Department of Physics and Space Technology, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); [Department of Physics, Morehouse College, Atlanta, Georgia 30314 (United States); Widmann, K. [Department of Physics and Space Technology, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Department of Physics and Space Technology, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    1997-01-01

    A very high resolution vacuum flat-crystal spectrometer was constructed for analyzing soft x rays emitted by an electron beam ion trap. The spectrometer was designed to operate at large Bragg angles ({theta}{le}85{degree}) in order to maximize the spectral dispersion and thus the resolving power. Using a quartz (100) crystal at a Bragg angle of 82{degree}, a measurement of the 2p{sub 1/2}, 2p{sub 3/2}{r_arrow}1s{sub 1/2} transitions in hydrogenic Mg{sup 11+} situated near 8.42 {Angstrom} was made. The nominal resolving power of the instrument was better than 30000 allowing us to infer the ion temperature (246{plus_minus}20 eV) from the observed line widths. A comparison with an existing flat-crystal spectrometer demonstrates the great improvement in resolving power achieved. {copyright} {ital 1997 American Institute of Physics.}

  1. Probing transverse coherence of x-ray beam with 2-D phase grating interferometer

    PubMed Central

    Marathe, Shashidhara; Shi, Xianbo; Wojcik, Michael J.; Kujala, Naresh G.; Divan, Ralu; Mancini, Derrick C.; Macrander, Albert T.; Assoufid, Lahsen

    2014-01-01

    Transverse coherence of the x-ray beam from a bending magnet source was studied along multiple directions using a 2-D ?/2 phase grating by measuring interferogram visibilities at different distances behind the grating. These measurements suggest that the preferred measuring orientation of a 2-D checkerboard grating is along the diagonal directions of the square blocks, where the interferograms have higher visibility and are not sensitive to the deviation of the duty cycle of the grating period. These observations are verified by thorough wavefront propagation simulations. The accuracy of the measured coherence values was also validated by the simulation and analytical results obtained from the source parameters. In addition, capability of the technique in probing spatially resolved local transverse coherence is demonstrated. PMID:24977503

  2. Development of X-ray Beam Position Monitors for Superconducting Wiggler

    SciTech Connect

    Kuan, C.-K.; Sheng, I. C.; Lai, W.-Y.; Cheng, Y.-T.; Chen, C.-L.; Hsiung, G.-Y. [National Synchrotron Radiation Research Center, 101 Hsin-ann Road, Hsinchu Science Park, Hsinchu, 30076 Taiwan (China); Chen, J.-R. [National Synchrotron Radiation Research Center, 101 Hsin-ann Road, Hsinchu Science Park, Hsinchu, 30076 Taiwan (China); Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013 Taiwan (China)

    2010-06-23

    For the development of an X-ray beam position monitor (XBPM) for the superconducting wiggler (SW) at the NSRRC, two XBPM are installed in the SW front end. The blades of the XBPM were manufactured with material of three types; tungsten, Glidcop and aluminium, to test the effect of the material on the performance of the XBPM. These three materials are compared with blades of molybdenum that were previously installed. The vibration and thermal expansion of the pillar of a XBPM affects the position reading of the XBPM. For pillars of XBPM of various designs, each type has a distinct thermal isolating material and is filled with a separate damping material for comparison. The design requirements of these XBPM include high spatial resolution of the monitor and mechanical stability of the structure with a large thermal load. The design, fabrication and measurement results are presented here.

  3. Real-time scanning beam digital x-ray image guidance system for transbronchial needle biopsy

    NASA Astrophysics Data System (ADS)

    Yoon, Sungwon; Wilfley, Brian P.; Jasperson, Keith; Krishna, Ganesh; Fahrig, Rebecca

    2011-03-01

    We investigate a real-time digital tomosynthesis (DTS) imaging modality, based on the scanning beam digital x-ray (SBDX) hardware, used in conjunction with an electromagnetic navigation bronchoscopy (ENB) system to provide improved image guidance for minimally invasive transbronchial needle biopsy (TBNbx). Because the SBDX system source uses electron beams, steered by electromagnets, to generate x-rays, and the ENB system generates an electromagnetic field to localize and track steerable navigation catheters, the two systems will affect each other when operated in proximity. We first investigate the compatibility of the systems by measuring the ENB system localization error as a function of distance between the two systems. The SBDX system reconstructs DTS images, which provide depth information, and so we investigate the improvement in lung nodule visualization using SBDX system DTS images and compare them to fluoroscopic images currently used for biopsy verification. Target localization error remains below 2mm (or virtually error free) if the volume-of-interest (VOI) is at least 50cm away from the SBDX system source and detector. Inside this region, tomographic angle ranges from 3° to 10° depending on the VOI location. Improved lung nodule (<= 20mm diameter) contrast is achieved by imaging the VOI near the SBDX system detector, where the tomographic angle is maximized. The combination of the SBDX image guidance with an ENB system would provide real-time visualization during biopsy with improved localization of the target and needle/biopsy instruments, thereby increasing the average and lowering the variance of the yield for TBNbx.

  4. Rod Pinch Electron Beam Diodes as High-Brightness X-ray Sources

    NASA Astrophysics Data System (ADS)

    Cooperstein, G.

    1999-11-01

    Rod-pinch diodes, first reported in 1978( R.A. Mahaffey, J. Golden, Shyke A. Goldstein, and G. Cooperstein, Appl. Phys. Lett. 33), 795 (1978)., utilize a thin annular cathode surrounding a small-diameter anode rod which can extend through and beyond the plane of the cathode. Extensive experimental data has recently been obtained between 1 and 2 MV at 20-80 kA. Electron-beam propagation has been demonstrated on solid rods tapered from 6-mm to 1-mm diameter. Propagation velocities of up to 1 cm/ns over lengths up to 20 cm are observed. Efficient convergence of the electron current occurs on the anode tip with mm-diameter spot size. Also, a new high-velocity, high-efficiency propagation mode was observed utilizing electron reflexing through a thin hollow anode rod without the need for anode ion production. Theoretical analysis demonstrates that electrode plasma evolution can dominate the time-dependent diode-impedance behavior. When the anode extends well beyond the cathode plane, the geometry-dependent diode impedance is decoupled from the final x-ray spot size. Particle-in-cell numerical simulations are providing a complete picture of the physical processes involved, including space-charge-limited flow, self-magnetic-field limited flow, and ion-induced electron beam propagation( A.E. Blaugrund and G. Cooperstein, Phys. Rev. Lett. 34), 461 (1975); A.E. Blaugrund, G. Cooperstein, and S.A. Goldstein, Phys. Fluids, 20, 1185 (1977).. A combination of the last two processes results in tight focusing on the tip of the rod. Use of the rod pinch for high-power x-ray radiography can provide substantial improvement over presently available sources.

  5. Kinetic effects of electron beam precipitation in solar flares on resulting X-ray emission and polarization

    Microsoft Academic Search

    V. V. Zharkova; D. V. Syniavskii

    1997-01-01

    Time-dependent kinetic effects of electron beam precipitation on electron distribution functions in different depths, pitch-angles and magnetic field convergence are investigated. Electron beam distribution functions, found from a joint solution of kinetic and electric current conservation equations for an electron beam in converging magnetic field with anisotropic scattering, are used for the calculations of resulting hard X-ray brems-strahlung fluxes and

  6. Lateral shift of X-ray beams and determination of phase in reflectometry of multilayer periodic structures

    Microsoft Academic Search

    M. M. Barysheva; A. M. Satanin

    2008-01-01

    Lateral shift of X-ray beams during Bragg’s reflection from a multilayer periodic structure (MS) is studied analytically and\\u000a numerically. The field distribution in the MS, as well as the displacement of reflected and transmitted beams are determined.\\u000a Analytic expressions for the shifts are derived in the approximation of spectrally narrow beams. Since the shift is controlled\\u000a by the phase of

  7. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, Glenn D. (124 Turquoise Way, Livermore, Alameda County, CA 94550); Richardson, Martin C. (CREOL

    1996-01-01

    Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

  8. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, G.D.; Richardson, M.C.

    1996-11-19

    Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

  9. Glass capillary optics for making x-ray beams of 0.1 to 50 microns diameter

    SciTech Connect

    Bilderback, Donald H.; Fontes, Ernest [Cornell High Energy Synchrotron Source (CHESS) and School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States)

    1997-07-01

    We have fabricated a unique computerized glass puller that can make parabolic or elliptically tapered glass capillaries for microbeam x-ray experiments from hollow glass tubing. We have produced optics that work in a single-bounce imaging mode or in a multi-bounce condensing mode. The imaging-mode capillaries have been used to create 20 to 50 micron diameter x-ray beams at 12 keV that are quite useful for imaging diffraction patterns from tiny bundles of carbon and Kevlar fibers. The condensing-mode capillaries are useful for creating submicron diameter beams and show great promise in x-ray fluorescence applications with femtogram sensitivity for patterned Er and Ti dopants diffused into an optically-active lithium niobate wafer.

  10. Collimator for an x-ray mammography apparatus

    Microsoft Academic Search

    1989-01-01

    A device for generating collimated X-ray beams is described, the device comprising: an X-ray source for emitting an input X-ray beam; a cone arranged in the input X-ray beam to receive the entire input X-ray beam, the cone blocking a portion of the input X-ray beam such that a limited output X-ray beam emerges from the cone, the output X-ray

  11. Magnitude and effects of X-ray scatter of a cone-beam micro-CT for small animal imaging

    NASA Astrophysics Data System (ADS)

    Ni, Y. C.; Jan, M. L.; Chen, K. W.; Cheng, Y. D.; Chuang, K. S.; Fu, Y. K.

    2006-12-01

    We have developed a micro-CT system to provide high-resolution and anatomic information to combine with a microPET ® R4 system. This study was to evaluate the magnitude and effects of scatter for low kVp X-ray in this cone-beam micro-CT system. Slit collimators were used to simulate fan-beam micro-CT for comparison. The magnitudes of X-ray scatter were measured using the beam-stop method and were estimated by polynomial-fitting extrapolation to 0 mm size of stoppers. The scatter-to-primary ratio at center of the cone-beam system were 45% and 20% for rat and mouse phantoms, respectively, and were reduced to 5.86% and 4.2% in fan-beam geometric setup. The effects of X-ray scatter on image uniformity and contrast ratio were evaluated also. The uniformity response was examined by the profile of the reconstructed image. The degrees of "cupping" in the fan-beam and cone-beam conditions were 1.75% and 3.81%, respectively, in rat phantom. A contrast phantom consisting of four inserts with physical densities similar to that of acrylic was used for measuring the effect of X-ray scatter on image contrast. Contrast ratios of the inserts and acrylic in cone-beam setup degraded 36.9% in average compared with fan-beam setup. A tumor-bearing mouse was scanned by the micro-CT system. The tumor-to-background contrast ratios were measured to be 0.331 and 0.249, respectively, with fan-beam and cone-beam setups.

  12. Detector, collimator and real-time reconstructor for a new scanning-beam digital x-ray (SBDX) prototype

    NASA Astrophysics Data System (ADS)

    Speidel, Michael A.; Tomkowiak, Michael T.; Raval, Amish N.; Dunkerley, David A. P.; Slagowski, Jordan M.; Kahn, Paul; Ku, Jamie; Funk, Tobias

    2015-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system for low dose cardiac imaging. The use of a narrow scanned x-ray beam in SBDX reduces detected x-ray scatter and improves dose efficiency, however the tight beam collimation also limits the maximum achievable x-ray fluence. To increase the fluence available for imaging, we have constructed a new SBDX prototype with a wider x-ray beam, larger-area detector, and new real-time image reconstructor. Imaging is performed with a scanning source that generates 40,328 narrow overlapping projections from 71 x 71 focal spot positions for every 1/15 s scan period. A high speed 2-mm thick CdTe photon counting detector was constructed with 320x160 elements and 10.6 cm x 5.3 cm area (full readout every 1.28 ?s), providing an 86% increase in area over the previous SBDX prototype. A matching multihole collimator was fabricated from layers of tungsten, brass, and lead, and a multi-GPU reconstructor was assembled to reconstruct the stream of captured detector images into full field-of-view images in real time. Thirty-two tomosynthetic planes spaced by 5 mm plus a multiplane composite image are produced for each scan frame. Noise equivalent quanta on the new SBDX prototype measured 63%-71% higher than the previous prototype. X-ray scatter fraction was 3.9-7.8% when imaging 23.3-32.6 cm acrylic phantoms, versus 2.3- 4.2% with the previous prototype. Coronary angiographic imaging at 15 frame/s was successfully performed on the new SBDX prototype, with live display of either a multiplane composite or single plane image.

  13. Wide-angle monochromatic x-ray beam shutter: a design study

    SciTech Connect

    Brajuskovic, Bran; Chang, Joseph; Carrera, Frank; Lurio, Laurence; Pelletier, Jean-Francois; Shu, Deming

    2003-10-15

    A novel design of a wide-angle monochromatic x-ray beam shutter is discussed. The shutter is designed as a compact unit capable of providing users with the means of shutting off the beam in secondary beamlines that are at an angle to the primary beamline and to each other. The single-unit design used the fact that all the secondary beamlines will be closed at the same time. The main challenge was to fit the shutter in the limited space of the existing Advanced Photon Source IMMW-CAT hutch. Space limitations led to the change in position of the actuator subassembly as compared to the standard shutter design. Although the actuator subassembly is placed underneath the shutter, fail-safe shutting is achieved by placing tungsten blocks above the beam while the shutter is open and using gravity to close the shutter in case of pneumatic failure. Redundancy required by safety concerns was achieved by duplicating the tungsten block/actuator subunits. Tungsten blocks of uneven length were used to counteract the increase in the center-to-center distance among secondary beamlines due to their angular offset. A special support table was designed to facilitate assembly and adjustability of the shutter position in the available space. To provide a radiation-tight hutch, a non-standard guillotine system was designed. In this paper, the design, specifications and optical ray tracing of the shutter assembly are presented.

  14. Operation of beam line facilities for real-time x-ray studies at Sector 7 of the advanced photon source. Final Report

    SciTech Connect

    Clarke, Roy

    2003-09-10

    This Final Report documents the research accomplishments achieved in the first phase of operations of a new Advanced Photon Source beam line (7-ID MHATT-CAT) dedicated to real-time x-ray studies. The period covered by this report covers the establishment of a world-class facility for time-dependent x-ray studies of materials. During this period many new and innovative research programs were initiated at Sector 7 with support of this grant, most notably using a combination of ultrafast lasers and pulsed synchrotron radiation. This work initiated a new frontier of materials research: namely, the study of the dynamics of materials under extreme conditions of high intensity impulsive laser irradiation.

  15. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    SciTech Connect

    Lar'kin, A., E-mail: alexeylarkin@yandex.ru; Uryupina, D.; Ivanov, K.; Savel'ev, A., E-mail: abst@physics.msu.ru [International Laser Center and Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M. [Centre d'Études Nucléaires de Bordeaux-Gradignan, University of Bordeaux-CNRS-IN2P3, 33170 Gradignan (France); Spohr, K. [School of Engineering, University of the West of Scotland, Paisley, Scotland PA1 2BE (United Kingdom); Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T. [Centre Lasers Intenses et Applications, University of Bordeaux-CNRS-CEA, Talence 33405 (France)

    2014-09-15

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  16. Numerical modeling of radiation physics in kinetic plasmas [IV] - Isochoric heating by intense X-ray laser-produced photoelectrons

    NASA Astrophysics Data System (ADS)

    Royle, Ryan; Sentoku, Yasuhiko

    2014-10-01

    An intense, hard X-ray laser such as an XFEL is an attractive light source since it can directly heat solid matter isochorically to a temperature of millions of degrees on a time scale of a few tens of femtoseconds, which is much shorter than the plasma expansion time scale. The X-ray laser interaction with carbon, aluminum, silicon, and copper is studied with a particle-in-cell code that solves the photoionization and X-ray transport self-consistently. Photoionization is the dominant absorption mechanism and non-thermal photoelectrons are produced with energy near the X-ray photon energy. The photoelectrons' stopping range is a few microns and they are quickly thermalized in tens of femtoseconds. As a result, a hot plasma column is formed behind the laser pulse with a temperature of more than 100,000 kelvin (>10 eV) and energy density greater than 1011 J/m3. The heating depth and temperature depend on the material and are also controllable by changing the photon energy of the incident laser light.

  17. Carbon-Ion Beam Irradiation Kills X-Ray-Resistant p53-Null Cancer Cells by Inducing Mitotic Catastrophe

    PubMed Central

    Amornwichet, Napapat; Oike, Takahiro; Shibata, Atsushi; Ogiwara, Hideaki; Tsuchiya, Naoto; Yamauchi, Motohiro; Saitoh, Yuka; Sekine, Ryota; Isono, Mayu; Yoshida, Yukari; Ohno, Tatsuya; Kohno, Takashi; Nakano, Takashi

    2014-01-01

    Background and Purpose To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. Materials and Methods DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively) were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs) by immunostaining of phosphorylated H2AX (?H2AX), and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. Results The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. Conclusions Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment. PMID:25531293

  18. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  19. Tissue-Sparing Effect of X-ray Microplanar Beams Particulary in the CNS: Is a Bystander Effect Involved?

    SciTech Connect

    Dilmanian,A.; Qu, Y.; Feinendegen, L.; Pena, L.; Bacarian, T.; Henn, F.; Kalef-Ezra, J.; Liu, S.; Zhong, Z.; McDonald, J.

    2007-01-01

    Normal tissues, including the central nervous system, tolerate single exposures to narrow planes of synchrotron-generated x-rays (microplanar beams; microbeams) up to several hundred Gy. The repairs apparently involve the microvasculature and the glial system. We evaluate a hypothesis on the involvement of bystander effects in these repairs.

  20. Determination of Gd and Sm contents in metallofullerenes on a total reflection X-ray fluorescence spectrometer with parallel beam

    NASA Astrophysics Data System (ADS)

    Tikhonova, A. E.; Kozlov, V. S.

    2014-01-01

    The contents of Gd and Sm have been determined quantitatively using the X-ray fluorescence analysis on a total reflection spectrometer with a parallel beam. It has been shown that the results can be used in developments of the technique for measuring the content of Gd metallofullerenes in powder samples several milligrams in weight and in liquid samples several microliters in volume.

  1. Model for the dynamics of a water cluster in an x-ray free electron laser beam

    Microsoft Academic Search

    Magnus Bergh; Nicusor Timneanu; David van der Spoel

    2004-01-01

    A microscopic sample placed into a focused x-ray free electron laser beam will explode due to strong ionization on a femtosecond time scale. The dynamics of this Coulomb explosion has been modeled by Neutze et al. [Nature (London) 406, 752 (2000)] for a protein, using computer simulations. The results suggest that by using ultrashort exposures, structural information may be collected

  2. TOLERANCE OF ARTERIES TO MICROPLANAR X-RAY BEAMS Boudewijn van der Sanden*, PhD, INSERM U836, Institute of Neuroscience Grenoble, France.

    E-print Network

    Paris-Sud XI, Université de

    TOLERANCE OF ARTERIES TO MICROPLANAR X-RAY BEAMS Boudewijn van der Sanden*, PhD, INSERM U836.vandersanden@ujf-grenoble.fr Running title: Microplanar X-ray beam irradiation of arteries inserm-00589287,version1-28Apr2011 Author radiation therapy, on the artery wall. In previous studies on animal models, it was shown that capillaries

  3. Generating Ultrashort Coherent Soft X-ray Radiation in Storage Rings Using Angular-modulated Electron Beams

    SciTech Connect

    Xiang, D.; /SLAC; Wan, W.; /LBL, Berkeley

    2010-08-23

    A technique is proposed to generate ultrashort coherent soft x-ray radiation in storage rings using angular-modulated electron beams. In the scheme a laser operating in the TEM01 mode is first used to modulate the angular distribution of the electron beam in an undulator. After passing through a special beam line with non-zero transfer matrix element R{sub 54}, the angular modulation is converted to density modulation which contains considerable higher harmonic contents of the laser. It is found that the harmonic number can be one or two orders of magnitude higher than the standard coherent harmonic generation method which relies on beam energy modulation. The technique has the potential of generating femtosecond coherent soft x-ray radiation directly from an infrared seed laser and may open new research opportunities for ultrafast sciences in storage rings.

  4. Applications of simulated x-ray spectra to x-ray imaging

    NASA Astrophysics Data System (ADS)

    Elhila, H.; Mouze, D.

    1996-06-01

    When using microfocus x-ray sources for x-ray imaging (x-ray projection microscopy or microradiography), the measured intensities are influenced by the non-monochromaticity of the incident x-ray beam. This affects the transmitted signal in the image pixels and consequently brings about errors in quantitative measurements by x-ray absorption analysis or in tomographic reconstruction. A model developed to predict the spectral distribution of x-rays generated by electron bombardment on a metallic target has been modified to be adapted to transmission targets. It is used here, in combination with a semi-empirical analytical expression for mass attenuation coefficients, to calculate the overall energy transmitted to an x-ray imaging system and thus to simulate any x-ray projection experiment. In particular, spectral purity, which is a measure of the degree of monochromaticity, can be easily evaluated. In this paper simulations are used to evaluate the effect of each part of an imaging system on the spectral purity. Here we are concerned with the effect of target and/or filter thicknesses and the influence on the purity of the selective absorption efficiency of phosphor screens with x-ray energy. As an example, three targets and two kinds of phosphor screen widely in use in x-ray CCD cameras have been considered.

  5. Parameterized algorithms for quantitative differentials in spectrally equivalent medical diagnostic x-ray beams.

    PubMed

    Okunade, Akintunde Akangbe

    2005-06-01

    Qualitative and quantitative equivalence of spectra transmitted by two different elemental filters require a good match in terms of shape and size over the entire energy range of 0-150 keV used in medical diagnostic radiology. However, the photoelectric absorptions and Compton scattering involved in the interaction of x rays with matter at these relatively low photon energies differ in a nonuniform manner with energy and atomic number. By careful choice of thicknesses for filter materials with an atomic number between 12 and 39, when compared with aluminum, it is possible to obtain transmitted beams of the same shape (quality) but not of the same size (quantity). In this paper, calculations have been carried out for the matching of the shapes and sizes of beams transmitted through specified thicknesses of aluminium filter and spectrally equivalent thicknesses of other filter materials (different from aluminium) using FORTRAN source codes traceable to the American Association of Physics in Medicine (AAPM), College Park, MD, USA. Parametrized algorithms for the evaluation of quantitative differentials (deficit or surplus) in radiation output (namely, photon fluence, exposure, kerma, energy imparted, absorbed dose, and effective dose) from these transmitted spectrally equivalent beams were developed. These differentials range between 1%, and 4% at 1 mm Al filtration and between 8%, and 25% for filtration of 6 mm Al for different filter materials in comparison with aluminum. Also developed were models for factors for converting measures of photon fluence, exposure-area product, (EAP), and kerma-area product (KAP) to risk related quantities such as energy imparted, absorbed dose, and effective dose from the spectrally equivalent beams. The thicknesses of other filter materials that are spectrally equivalent to given thicknesses of aluminum filter were characterized using polynomial functions. The fact that the use of equivalent spectra in radiological practice can provide means of ranking the differentials in radiographic image quality and stochastic risk is discussed. PMID:16013736

  6. A Constant Spectral Index for Sagittarius A* During Infrared/X-ray Intensity Variations

    E-print Network

    S. D. Hornstein; K. Matthews; A. M. Ghez; J. R. Lu; M. Morris; E. E. Becklin; M. Rafelski; F. K. Baganoff

    2007-06-12

    We report the first time-series of broadband infrared (IR) color measurements of Sgr A*, the variable emission source associated with the supermassive black hole at the Galactic Center. Using the laser and natural guide star AO systems on the Keck II telescope, we imaged Sgr A* in multiple near-infrared broadband filters with a typical cycle time of ~3 min during 4 observing runs (2005-2006), two of which were simultaneous with Chandra X-ray measurements. In spite of the large range of dereddened flux densities for Sgr A* (2-30 mJy), all of our near-IR measurements are consistent with a constant spectral index of alpha = -0.6+-0.2. Furthermore, this value is consistent with the spectral indices observed at X-ray wavelengths during nearly all outbursts; which is consistent with the synchrotron self-Compton model for the production of the X-ray emission. During the coordinated observations, one IR outburst occurs 1 GeV is generated, and it is this high-energy tail that gives rise to the X-ray outbursts. One possible explanation for this type of variation is from the turbulence induced by a magnetorotational instability, in which the outer scale length of the turbulence varies and changes the high-energy cutoff.

  7. Directionality effects in the transfer of x-rays from an accreting magnetized neutron star: Beam and pulse shapes

    SciTech Connect

    Meszaros, P.; Bonazzola, S.

    1981-12-15

    We discuss the direction-dependent transfer of X-rays in a plane-parallel atmosphere with a strong magnetic field perpendicular to the surface. We present a transfer formalism incorporating the full angular and polarization dependence of the cross sections, including vacuum polarization, for frequencies not too close to the cylcotron resonance. We treat the problem of a slab illuminated from below and of a semi-infinite medium at constant temperature and density and present numerical results for parameters typical of the hot polar caps of accreting magnetized neutron stars. Theoretical beam and X-ray pulse shapes are obtained for various models of X-ray pulsars, and the frequency and phase dependence of the pulse structure is briefly compared with observations.

  8. Beam spreading and emittance oscillation of an intense magnetized beam in free space.

    SciTech Connect

    Wang, C.-x.; Kim, K.-J.; Zhang, J. G.; Accelerator Systems Division (APS); IIT

    2006-01-01

    Intense beams with large angular momentum have important applications in electron cooling and in producing flat beams suitable for ultrafast x-ray generation, Smith-Purcell radiators, and possibly for a future linear collider. To gain a basic understanding of the influence of beam angular momentum in an otherwise space-charge-dominated beam, the behavior of such a beam in free space will be examined here, in particular, beam spreading due to space-charge force, as well as emittance oscillation. Drift space is an important part of a split photoinjector and plays a significant role in emitance compensation of a high-brightness photoinjector.

  9. All-diamond optical assemblies for a beam-multiplexing X-ray monochromator at the Linac Coherent Light Source.

    PubMed

    Stoupin, S; Terentyev, S A; Blank, V D; Shvyd'ko, Yu V; Goetze, K; Assoufid, L; Polyakov, S N; Kuznetsov, M S; Kornilov, N V; Katsoudas, J; Alonso-Mori, R; Chollet, M; Feng, Y; Glownia, J M; Lemke, H; Robert, A; Sikorski, M; Song, S; Zhu, D

    2014-08-01

    A double-crystal diamond (111) monochromator recently implemented at the Linac Coherent Light Source (LCLS) enables splitting of the primary X-ray beam into a pink (transmitted) and a monochromatic (reflected) branch. The first monochromator crystal, with a thickness of ?100?µm, provides sufficient X-ray transmittance to enable simultaneous operation of two beamlines. This article reports the design, fabrication and X-ray characterization of the first and second (300?µm-thick) crystals utilized in the monochromator and the optical assemblies holding these crystals. Each crystal plate has a region of about 5 × 2?mm with low defect concentration, sufficient for use in X-ray optics at the LCLS. The optical assemblies holding the crystals were designed to provide mounting on a rigid substrate and to minimize mounting-induced crystal strain. The induced strain was evaluated using double-crystal X-ray topography and was found to be small over the 5 × 2?mm working regions of the crystals. PMID:25242912

  10. Physiologically gated micro-beam radiation therapy using electronically controlled field emission x-ray source array

    NASA Astrophysics Data System (ADS)

    Chtcheprov, Pavel; Hadsell, Michael; Burk, Laurel; Ger, Rachel; Zhang, Lei; Yuan, Hong; Lee, Yueh Z.; Chang, Sha; Lu, Jianping; Zhou, Otto

    2013-03-01

    Micro-beam radiation therapy (MRT) uses parallel planes of high dose narrow (10-100 um in width) radiation beams separated by a fraction of a millimeter to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000Gy of entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during the treatment can result in significant movement of micro beam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), and thus can reduce the effectiveness of the MRT. Recently we have developed the first bench-top image guided MRT system for small animal treatment using a high powered carbon nanotube (CNT) x-ray source array. The CNT field emission x-ray source can be electronically synchronized to an external triggering signal to enable physiologically gated firing of x-ray radiation to minimize motion blurring. Here we report the results of phantom study of respiratory gated MRT. A simulation of mouse breathing was performed using a servo motor. Preliminary results show that without gating the micro beam full width at tenth maximum (FWTM) can increase by 70% and PVDR can decrease up to 50%. But with proper gating, both the beam width and PVDR changes can be negligible. Future experiments will involve irradiation of mouse models and comparing histology stains between the controls and the gated irradiation.

  11. Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Kam, Soohwa; Yun, Seungman; Kim, Ho Kyung

    2014-10-01

    Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128×128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16,384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ~5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative to conventional approaches using radioisotopes, a synchrotron, or specialized x-ray sources (e.g., characteristic or fluorescent x-rays) by reducing concerns over the beam flux, the irradiation field of view, accessibility, and cost.

  12. Electron acceleration by laser wakefield and x-ray emission at moderate intensity and density in long plasmas

    SciTech Connect

    Ferrari, H. E. [Consejo Nacional de investigaciones cientificas y tecnicas (CONICET), Bariloche (Argentina); Laboratoire de Physique des Gaz et des Plasmas, CNRS-Universite Paris Sud 11, Orsay (France); Lifschitz, A. F.; Maynard, G.; Cros, B. [Laboratoire de Physique des Gaz et des Plasmas, CNRS-Universite Paris Sud 11, Orsay (France)

    2011-08-15

    The dynamics of electron acceleration by laser wakefield and the associated x-rays emission in long plasmas are numerically investigated for parameters close to the threshold of laser self-focusing. The plasma length is set by the use of dielectric capillary tubes that confine the gas and the laser energy. Electrons self-injection and acceleration to the 170 MeVs are obtained for densities as low as 5 x 10{sup 18} cm{sup -3} and a moderate input intensity (0.77 x 10{sup 18} W/cm{sup 2}). The associated x-ray emission at the exit of the capillary tube is shown to be an accurate diagnostic of the electrons self-injection and acceleration process.

  13. MAXI-GSC detection of a sudden drop in X-ray intensity from GX 13+1

    NASA Astrophysics Data System (ADS)

    Negoro, H.; Nakahira, S.; Matsuoka, M.; Ueda, Y.; Kawai, N.; Ueno, S.; Tomida, H.; Kimura, M.; Ishikawa, M.; Nakagawa, Y. E.; Sugizaki, M.; Mihara, T.; Morii, M.; Serino, M.; Sugimoto, J.; Takagi, T.; Yoshikawa, A.; Yoshii, T.; Tachibana, Y.; Yoshida, A.; Sakamoto, T.; Kawakubo, Y.; Ohtsuki, H.; Tsunemi, H.; Uchida, D.; Nakajima, M.; Fukushima, K.; Onodera, T.; Suzuki, K.; Namba, T.; Fujita, M.; Honda, F.; Shidatsu, M.; Kawamuro, T.; Hori, T.; Tsuboi, Y.; Kawagoe, A.; Yamauchi, M.; Itoh, Y. Morooka D.; Yamaoka, K.

    2014-09-01

    MAXI-GSC detected a sudden drop in X-ray intensity from the low-mass X-ray binary GX 13+1 on August 30, 2014. Base on the on-demand analysis, the 2-10 keV flux once decreased from 0.97+-0.04 photons/s/cm2, which was the average one at 7 scan transits from 01:20 to 10:37 UT on August 30, to 0.31+-0.07 photons/s/cm2 at the scan transit at 12:10, and recovered to 0.87+-0.10 photons/s/cm2 at 13:43.

  14. Beamed and Unbeamed X-ray Emission in FR1 Radio Galaxies

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    1997-01-01

    There is good evidence for X-ray emission associated with AGN jets which are relativistically boosted towards the observer. But to what jet radius does such X-ray emission persist? To attempt to answer this question one can look at radio galaxies; their cores are sufficiently X-ray faint that any unbeamed X-ray emission in the vicinity of the central engine must be obscured. The jets of such sources are at unfavourable angles for relativistic boosting, and so their relatively weak X-ray emission must be carefully separated from the plateau of resolved X-ray emission from a hot interstellar, intragroup, or intracluster medium on which they are expected to sit. This paper presents results arguing that jet X-ray emission is generally detected in radio galaxies, even those of low intrinsic power without hot spots. The levels of emission suggest an extrapolated radio to soft X-ray spectral index, alpha(sub tao x) of about 0.85 at parsec to perhaps kiloparsec distances from the cores.

  15. Measurement of coherent x-ray focused beams by phase retrieval with transverse

    E-print Network

    Fienup, James R.

    . Anderson, M. R. Howells and D. P. Kern, "High-Resolution Imaging by Fourier Transform X-ray Holography. St¨ohr, "Lensless imaging of magnetic nanostructures by x-ray spectro-holography," Nature 432, 885. 180, 233­238 (2000). 3. J. W. Goodman, Introduction to Fourier Optics, 3rd Ed. (Roberts & Company

  16. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube

    SciTech Connect

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip; Schulze, Derek; Liang, Yongguang; Zhang, Tiezhi [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073 (United States); Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073and Department of Physics, Oakland University, Rochester, Michigan 48309 (United States); Xinray Systems LLC, Research Triangle Park, North Carolina 27709 (United States); Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073 and Department of Medical Physics, Wayne State University, Detroit, Michigan 48201 (United States); Department of Radiology, William Beaumont Hospital, Royal Oak, Michigan 48073 (United States); Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073 (United States)

    2011-10-15

    Purpose: To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. Methods: A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. In this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO{sub 4} scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. Results: The focal spots were measured at about 1 x 2 mm{sup 2} using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. Conclusions: A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.

  17. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube

    PubMed Central

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip; Schulze, Derek; Liang, Yongguang; Zhang, Tiezhi

    2011-01-01

    Purpose: To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. Methods: A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. In this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO4 scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. Results: The focal spots were measured at about 1?×?2 mm2 using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. Conclusions: A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems. PMID:21992368

  18. High-flux hard X-ray microbeam using a single-bounce capillary with doubly focused undulator beam

    SciTech Connect

    Barrea, Raul A.; Huang, Rong; Cornaby, Sterling; Bilderback, Donald H.; Irving, Thomas C.; (IIT); (Cornell); (UC)

    2009-01-15

    A pre-focused X-ray beam at 12 keV and 9 keV has been used to illuminate a single-bounce capillary in order to generate a high-flux X-ray microbeam. The BioCAT undulator X-ray beamline 18ID at the Advanced Photon Source was used to generate the pre-focused beam containing 1.2 x 10{sup 13} photons s{sup -1} using a sagittal-focusing double-crystal monochromator and a bimorph mirror. The capillary entrance was aligned with the focal point of the pre-focused beam in order to accept the full flux of the undulator beam. Two alignment configurations were tested: (i) where the center of the capillary was aligned with the pre-focused beam ('in-line') and (ii) where one side of the capillary was aligned with the beam ('off-line'). The latter arrangement delivered more flux (3.3 x 10{sup 12} photons s{sup -1}) and smaller spot sizes ({le}10 {micro}m FWHM in both directions) for a photon flux density of 4.2 x 10{sup 10} photons s{sup -1} {micro}m{sup -2}. The combination of the beamline main optics with a large-working-distance (approximately 24 mm) capillary used in this experiment makes it suitable for many microprobe fluorescence applications that require a micrometer-size X-ray beam and high flux density. These features are advantageous for biological samples, where typical metal concentrations are in the range of a few ng cm{sup -2}. Micro-XANES experiments are also feasible using this combined optical arrangement.

  19. X-ray photoelectron spectroscopy study of water removal from beryllium at 160 K: Evidence for ion beam induced oxidation

    SciTech Connect

    Lindquist, J.M.; George, P.M.

    1989-05-01

    We present data for the ion beam removal of H/sub 2/O from beryllium at 160 K. The removal rate of H/sub 2/O from beryllium is qualitatively slower than that from copper. Evidence from x-ray photoelectron spectroscopic measurements indicates the ion beam causes surface oxidation up to a point where the oxide thickness prohibits further reaction. The mechanism for this ion beam induced surface oxidation is discussed and points toward H/sub 2/O bond breakage by the ion beam as a significant contributing factor.

  20. Nano-modulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    E-print Network

    Nanni, Emilio A; Moncton, David E

    2015-01-01

    A new method for generation of relativistic electron beams with current modulations at nanometer scale and below is presented. The current modulation is produced by diffracting relativistic electrons in perfect crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a device based on inverse Compton scattering with total length of a few meters. Electron beam simulations from cathode emission through diffraction, acceleration and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.

  1. Narrowband inverse Compton scattering x-ray sources at high laser intensities

    E-print Network

    D. Seipt; S. G. Rykovanov; A. Surzhykov; S. Fritzsche

    2015-03-02

    Narrowband x- and gamma-ray sources based on the inverse Compton scattering of laser pulses suffer from a limitation of the allowed laser intensity due to the onset of nonlinear effects that increase their bandwidth. It has been suggested that laser pulses with a suitable frequency modulation could compensate this ponderomotive broadening and reduce the bandwidth of the spectral lines, which would allow to operate narrowband Compton sources in the high-intensity regime. In this paper we, therefore, present the theory of nonlinear Compton scattering in a frequency modulated intense laser pulse. We systematically derive the optimal frequency modulation of the laser pulse from the scattering matrix element of nonlinear Compton scattering, taking into account the electron spin and recoil. We show that, for some particular scattering angle, an optimized frequency modulation completely cancels the ponderomotive broadening for all harmonics of the backscattered light. We also explore how sensitive this compensation depends on the electron beam energy spread and emittance, as well as the laser focusing.

  2. Specific features of two diffraction schemes for a widely divergent X-ray beam

    NASA Astrophysics Data System (ADS)

    Avetyan, K. T.; Levonyan, L. V.; Semerjian, H. S.; Arakelyan, M. M.; Badalyan, O. M.

    2015-03-01

    We investigated the specific features of two diffraction schemes for a widely divergent X-ray beam that use a circular diaphragm 30-50 ?m in diameter as a point source of characteristic radiation. In one of the schemes, the diaphragm was set in front of the crystal (the diaphragm-crystal ( d-c) scheme); in the other, it was installed behind the crystal (the crystal-diaphragm ( c-d) scheme). It was established that the diffraction image in the c-d scheme is a topographic map of the investigated crystal area. In the d-c scheme at L = 2 l ( l and L are the distances between the crystal and the diaphragm and between the photographic plate and the diaphragm, respectively), the branches of hyperbolas formed in this family of planes ( hkl) by the characteristic K ? and K ? radiations, including higher order reflections, converge into one straight line. It is experimentally demonstrated that this convergence is very sensitive to structural inhomogeneities in the crystal under study.

  3. K-Series X-Ray Energies and Intensities for Curium, Berkelium, Californium, and Einsteinium

    Microsoft Academic Search

    P. F. Dittner; C. E. Bemis

    1972-01-01

    The energies of the Kalpha1, Kalpha2, Kbeta1, and Kbeta3 x rays of Cm, Bk, Cf, and Es, arising in the decay of suitable parent radioactivities, have been measured with a high-resolution Ge(Li) photon detector. The K-shell binding energies of Cm, Bk, and Cf have been determined using previously published values for the LII-, LIII-, MII-, and MIII-shell binding energies. The

  4. Measurements of x-ray spectral flux and intensity distribution of APS/CHESS undulator radiation

    SciTech Connect

    Ilinski, P.; Yun, W.; Lai, B.; Gluskin, E.; Cai, Z.

    1994-09-01

    Absolute radiation flux and polarization measurements of the APS undulators may have to be made under high thermal loading conditions. A method that may circumvent the high-heat-load problem was tested during a recent APS/CHESS undulator run. The technique makes use of a Si(Li) energy-dispersive detector to measure 5--35 keV x-rays scattered from a well-defined He gas volume at controlled pressure.

  5. Flat field anomalies in an x-ray charge coupled device camera measured using a Manson x-ray source

    Microsoft Academic Search

    M. J. Haugh; M. B. Schneider

    2008-01-01

    The static x-ray imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the x rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF

  6. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source

    Microsoft Academic Search

    M. B. Schneider M. J. Haugh

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation.

  7. Application of the rigorous method to x-ray and neutron beam scattering on rough surfaces

    SciTech Connect

    Goray, Leonid I. [Saint Petersburg Academic University, Khlopina 8/3, St. Petersburg 194021 (Russian Federation); Institute for Analytical Instrumentation, RAS, Rizhsky Prospect 26, St. Petersburg 190103 (Russian Federation) and I.I.G., Inc., P.O. Box 131611, Staten Island, New York 10313 (United States)

    2010-08-15

    The paper presents a comprehensive numerical analysis of x-ray and neutron scattering from finite-conducting rough surfaces which is performed in the frame of the boundary integral equation method in a rigorous formulation for high ratios of characteristic dimension to wavelength. The single integral equation obtained involves boundary integrals of the single and double layer potentials. A more general treatment of the energy conservation law applicable to absorption gratings and rough mirrors is considered. In order to compute the scattering intensity of rough surfaces using the forward electromagnetic solver, Monte Carlo simulation is employed to average the deterministic diffraction grating efficiency due to individual surfaces over an ensemble of realizations. Some rules appropriate for numerical implementation of the theory at small wavelength-to-period ratios are presented. The difference between the rigorous approach and approximations can be clearly seen in specular reflectances of Au mirrors with different roughness parameters at wavelengths where grazing incidence occurs at close to or larger than the critical angle. This difference may give rise to wrong estimates of rms roughness and correlation length if they are obtained by comparing experimental data with calculations. Besides, the rigorous approach permits taking into account any known roughness statistics and allows exact computation of diffuse scattering.

  8. X-ray diffraction applications in thin films and (100) silicon substrate stress analysis

    Microsoft Academic Search

    James D Rachwal

    2010-01-01

    Silicon is used as a substrate for X-ray mirrors for correct imaging. The substrate needs to be mechanically bent to produce a certain curvature in order to condition and focus the X-ray beam. The X-rays impinge a mirror at very shallow angles, in order to reduce the amount of intensity loss in the diffraction process. The X-ray mirrors need to

  9. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble.

    PubMed

    Yan, Wenchao; Chen, Liming; Li, Dazhang; Zhang, Lu; Hafz, Nasr A M; Dunn, James; Ma, Yong; Huang, Kai; Su, Luning; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-04-22

    Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 10(18) cm(-3)). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron-photon source can be ideal for pump-probe applications with femtosecond time resolution. PMID:24711405

  10. Quality indexes based on water measurements for low and medium energy x-ray beams: A theoretical study with PENELOPE

    SciTech Connect

    Chica, U. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain and FISRAD S.A.S Carrera 64 a No 22-41, Bogotá D.C. (Colombia)] [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain and FISRAD S.A.S Carrera 64 a No 22-41, Bogotá D.C. (Colombia); Anguiano, M.; Lallena, A. M., E-mail: lallena@ugr.es [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Vilches, M. [Servicio de Radiofísica, Hospital Universitario “San Cecilio”, Avda. Dr. Olóriz, 16, E-18012 Granada (Spain)] [Servicio de Radiofísica, Hospital Universitario “San Cecilio”, Avda. Dr. Olóriz, 16, E-18012 Granada (Spain)

    2014-01-15

    Purpose : To study the use of quality indexes based on ratios of absorbed doses in water at two different depths to characterize x-ray beams of low and medium energies. Methods : A total of 55 x-ray beam spectra were generated with the codes XCOMP5R and SPEKCALC and used as input of a series of Monte Carlo simulations performed with PENELOPE, in which the percentage depth doses in water and thek{sub Q,Q{sub 0}} factors, defined in the TRS-398 protocol, were determined for each beam. Some of these calculations were performed by simulating the ionization chamber PTW 30010. Results : The authors found that the relation betweenk{sub Q,Q{sub 0}} and the ratios of absorbed doses at two depths is almost linear. A set of ratios statistically compatible with that showing the best fit has been determined. Conclusions : The results of this study point out which of these ratios of absorbed doses in water could be used to better characterize x-ray beams of low and medium energies.

  11. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams

    NASA Astrophysics Data System (ADS)

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.

  12. Three-dimensional manipulation of electron beam phase space for seeding soft x-ray free-electron lasers

    E-print Network

    Feng, Chao; Deng, Haixiao; Zhao, Zhentang

    2014-01-01

    In this letter, a simple technique is proposed to induce strong density modulation into the electron beam with small energy modulation. By using the combination of a transversely dispersed electron beam and a wave-front tilted seed laser, three-dimensional manipulation of the electron beam phase space can be utilized to significantly enhance the micro-bunching of seeded free-electron laser schemes, which will improve the performance and extend the short-wavelength range of a single-stage seeded free-electron laser. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in a soft x-ray free-electron laser.

  13. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    PubMed

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications. PMID:25775480

  14. 3D Algebraic Iterative Reconstruction for Cone-Beam X-Ray Differential Phase-Contrast Computed Tomography

    PubMed Central

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications. PMID:25775480

  15. Ultra-bright, ultra-broadband hard x-ray driven by laser-produced energetic electron beams

    SciTech Connect

    Shi, Yin; Shen, Baifei; Zhang, Xiaomei; Wang, Wenpeng; Ji, Liangliang; Zhang, Lingang; Xu, Jiancai; Yu, Yahong; Zhao, Xueyan; Wang, Xiaofeng; Yi, Longqing; Xu, Tongjun; Xu, Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)] [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2013-09-15

    We propose a new method of obtaining a compact ultra-bright, ultra-broadband hard X-ray source. This X-ray source has a high peak brightness in the order of 10{sup 22} photons/(s mm{sup 2} mrad{sup 2} 0.1\\%BW), an ultrashort duration (10 fs), and a broadband spectrum (flat distribution from 0.1 MeV to 4 MeV), and thus has wide-ranging potential applications, such as in ultrafast Laue diffraction experiments. In our scheme, laser-plasma accelerators (LPAs) provide driven electron beams. A foil target is placed oblique to the beam direction so that the target normal sheath field (TNSF) is used to provide a bending force. Using this TNSF-kick scheme, we can fully utilize the advantages of current LPAs, including their high charge, high energy, and low emittance.

  16. High aspect ratio x-ray waveguide channels fabricated by e-beam lithography and wafer bonding

    SciTech Connect

    Neubauer, H.; Hoffmann, S.; Kanbach, M.; Haber, J.; Kalbfleisch, S.; Krüger, S. P.; Salditt, T., E-mail: tsaldit@gwdg.de [Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2014-06-07

    We report on the fabrication and characterization of hard x-ray waveguide channels manufactured by e-beam lithography, reactive ion etching and wafer bonding. The guiding layer consists of air or vacuum and the cladding material of silicon, which is favorable in view of minimizing absorption losses. The specifications for waveguide channels which have to be met in the hard x-ray range to achieve a suitable beam confinement in two orthogonal directions are extremely demanding. First, high aspect ratios up to 10{sup 6} have to be achieved between lateral structure size and length of the guides. Second, the channels have to be deeply embedded in material to warrant the guiding of the desired modes while absorbing all other (radiative) modes in the cladding material. We give a detailed report on device fabrication with the respective protocols and parameter optimization, the inspection and the optical characterization.

  17. MOSFET dosimetry with high spatial resolution in intense synchrotron-generated x-ray microbeams.

    PubMed

    Siegbahn, E A; Bräuer-Krisch, E; Bravin, A; Nettelbeck, H; Lerch, M L F; Rosenfeld, A B

    2009-04-01

    Various dosimeters have been tested for assessing absorbed doses with microscopic spatial resolution in targets irradiated by high-flux, synchrotron-generated, low-energy (approximately 30-300 keV) x-ray microbeams. A MOSFET detector has been used for this study since its radio sensitive element, which is extraordinarily narrow (approximately 1 microm), suits the main applications of interest, microbeam radiation biology and microbeam radiation therapy (MRT). In MRT, micrometer-wide, centimeter-high, and vertically oriented swaths of tissue are irradiated by arrays of rectangular x-ray microbeams produced by a multislit collimator (MSC). We used MOSFETs to measure the dose distribution, produced by arrays of x-ray microbeams shaped by two different MSCs, in a tissue-equivalent phantom. Doses were measured near the center of the arrays and maximum/minimum (peak/valley) dose ratios (PVDRs) were calculated to determine how variations in heights and in widths of the microbeams influenced this for the therapy, potentially important parameter. Monte Carlo (MC) simulations of the absorbed dose distribution in the phantom were also performed. The results show that when the heights of the irradiated swaths were below those applicable to clinical therapy (< 1 mm) the MC simulations produce estimates of PVDRs that are up to a factor of 3 higher than the measured values. For arrays of higher microbeams (i.e., 25 microm x 1 cm instead of 25 x 500 microm2), this difference between measured and simulated PVDRs becomes less than 50%. Closer agreement was observed between the measured and simulated PVDRs for the Tecomet MSC (current collimator design) than for the Archer MSC. Sources of discrepancies between measured and simulated doses are discussed, of which the energy dependent response of the MOSFET was shown to be among the most important. PMID:19472618

  18. MOSFET dosimetry with high spatial resolution in intense synchrotron-generated x-ray microbeams

    SciTech Connect

    Siegbahn, E. A.; Braeuer-Krisch, E.; Bravin, A.; Nettelbeck, H.; Lerch, M. L. F.; Rosenfeld, A. B. [European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, 38043 Grenoble (France); Center for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2522 (Australia)

    2009-04-15

    Various dosimeters have been tested for assessing absorbed doses with microscopic spatial resolution in targets irradiated by high-flux, synchrotron-generated, low-energy ({approx}30-300 keV) x-ray microbeams. A MOSFET detector has been used for this study since its radio sensitive element, which is extraordinarily narrow ({approx}1 {mu}m), suits the main applications of interest, microbeam radiation biology and microbeam radiation therapy (MRT). In MRT, micrometer-wide, centimeter-high, and vertically oriented swaths of tissue are irradiated by arrays of rectangular x-ray microbeams produced by a multislit collimator (MSC). We used MOSFETs to measure the dose distribution, produced by arrays of x-ray microbeams shaped by two different MSCs, in a tissue-equivalent phantom. Doses were measured near the center of the arrays and maximum/minimum (peak/valley) dose ratios (PVDRs) were calculated to determine how variations in heights and in widths of the microbeams influenced this for the therapy, potentially important parameter. Monte Carlo (MC) simulations of the absorbed dose distribution in the phantom were also performed. The results show that when the heights of the irradiated swaths were below those applicable to clinical therapy (<1 mm) the MC simulations produce estimates of PVDRs that are up to a factor of 3 higher than the measured values. For arrays of higher microbeams (i.e., 25 {mu}mx1 cm instead of 25x500 {mu}m{sup 2}), this difference between measured and simulated PVDRs becomes less than 50%. Closer agreement was observed between the measured and simulated PVDRs for the Tecomet MSC (current collimator design) than for the Archer MSC. Sources of discrepancies between measured and simulated doses are discussed, of which the energy dependent response of the MOSFET was shown to be among the most important.

  19. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  20. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  1. X-ray study of a test quadrant of the SODART telescopes using the expanded beam x-ray optics facility at the Daresbury synchrotron

    NASA Astrophysics Data System (ADS)

    Christensen, Finn E.; Hornstrup, Allan; Frederiksen, P. K.; Budtz-Joergensen, Carl C.; Abdali, Salim; Jonasson, P.; Grundsoe, P.; Polny, Josef; Westergaard, N. J.; Norgaard-Nielsen, H. U.; Schnopper, Herbert W.; Borozdin, K. N.; Hall, C. H.; Lewis, R. A.

    1994-11-01

    The imaging properties of a test model of the SODART telescopes have been studied using an expanded beam X-ray facility at the Daresbury synchrotron. The encircled power and the point spread function at three energies 6.627 keV, 8.837 keV and 11.046 keV have been measured using 1D and 2D position sensitive detectors. The data have been used to calculate the Half Power Diameter (HPD) for three different SODART focal plane detectors. The High Energy Proportional Counter (HEPC), the Low Energy Proportional Counter (LEPC) and the 19 element solid state array detector (SIXA). At 6.627 keV and 8.837 keV the HPD is 2.5 - 3.0 arcmin for all detectors whereas it is somewhat larger at 11.046 keV for HEPC and LEPC but essentially unchanged for SIXA. Finally, the data are used to point to improvements that can be introduced during the manufacture of the flight telescopes.

  2. The MIT/OSO 7 catalog of X-ray sources - Intensities, spectra, and long-term variability

    NASA Technical Reports Server (NTRS)

    Markert, T. H.; Laird, F. N.; Clark, G. W.; Hearn, D. R.; Sprott, G. F.; Li, F. K.; Bradt, H. V.; Lewin, W. H. G.; Schnopper, H. W.; Winkler, P. F.

    1979-01-01

    This paper is a summary of the observations of the cosmic X-ray sky performed by the MIT 1-40-keV X-ray detectors on OSO 7 between October 1971 and May 1973. Specifically, mean intensities or upper limits of all third Uhuru or OSO 7 cataloged sources (185 sources) in the 3-10-keV range are computed. For those sources for which a statistically significant (greater than 20) intensity was found in the 3-10-keV band (138 sources), further intensity determinations were made in the 1-15-keV, 1-6-keV, and 15-40-keV energy bands. Graphs and other simple techniques are provided to aid the user in converting the observed counting rates to convenient units and in determining spectral parameters. Long-term light curves (counting rates in one or more energy bands as a function of time) are plotted for 86 of the brighter sources.

  3. Optimisation of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector

    SciTech Connect

    ILINSKI P.

    2012-07-10

    Optimisation of blade type x-ray beam position monitors (XBPM) was performed for NSLS-II undulator IVU20. Blade material, con and #64257;guration and operation principle was analysed in order to improve XBPM performance. Optimisation is based on calculation of the XBPM signal spatial distribution. Along with standard photoemission type XBPM a Diamond Detector Blades (DDB) were analysed as blades for XBPMs. DDB XBPMs can help to overcome drawbacks of the photoemission blade XBPMs.

  4. Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue

    Microsoft Academic Search

    E. Bräuer-Krisch; R. Serduc; E. A. Siegbahn; G. Le Duc; Y. Prezado; A. Bravin; H. Blattmann; J. A. Laissue

    2010-01-01

    Microbeam radiation therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50–600keV, produced by third generation synchrotron sources, such as the European Synchrotron Radiation Facility (ESRF), in France. The main advantages of highly brilliant synchrotron sources are an extremely high dose rate and very small beam divergence. High dose rates are necessary to deliver therapeutic doses in microscopic

  5. Neutral particle beam intensity controller

    DOEpatents

    Dagenhart, William K. (Oak Ridge, TN)

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  6. EBT2 Dosimetry of X-rays produced by the electron beam from PFMA-3, a Plasma Focus for medical applications

    E-print Network

    Elisa Ceccolini; Federico Rocchi; Domiziano Mostacci; Marco Sumini; Agostino Tartari

    2011-12-09

    The electron beam emitted from the back of Plasma Focus devices is being studied as a radiation source for IORT (IntraOperative Radiation Therapy) applications. A Plasma Focus device is being developed to this aim, to be utilized as an X-ray source. The electron beam is driven to impinge on 50 {\\mu}m brass foil, where conversion X-rays are generated. Measurements with gafchromic film are performed to analyse the attenuation of the X-rays beam and to predict the dose given to the culture cell in radiobiological experiments to follow.

  7. X-ray beam filtration, dosimetry phantom size and CT patient dose conversion factors

    NASA Astrophysics Data System (ADS)

    Huda, Walter; Sterzik, Alexander; Tipnis, Sameer

    2010-01-01

    We examine how the choice of CT x-ray beam filtration and phantom size influences patient dose (D) to computed tomography dose index (CTDI) conversion factors (i.e. D/CTDI). The ratio of head to body phantom CTDIw for a defined scan technique is ?, and the ratio of organ dose when the body filter is changed to the head filter is ?. CTDI and organ doses were obtained using the ImPACT CT patient dosimetry calculator, and values of ? and ? were determined for 39 CT scanners. The average value of ? for the 39 CT scanners covering a 20 year period was 1.99 ± 0.23, but 30% of scanners had ? values that differed by more than 10% from the average. For GE, the value of ? has been approximately constant at ~2.0. Both Philips and Siemens show a definite upward trend from values well below 2.0 in the early 1990s to well over 2.0 for their latest models. The data for Toshiba show no overall trend with time with half the data points below 2.0 and the remainder above this value. The average value of ? was 1.09 ± 0.25. All vendors showed a downward trend in the ? parameter, and where the most recent scanners from each vendor had a ? value close to unity. Our results show that average D/CTDI conversion factors for a body phantom/filter combination are typically double those appropriate for a head phantom/filter combination.

  8. X-ray beam filtration, dosimetry phantom size and CT patient dose conversion factors.

    PubMed

    Huda, Walter; Sterzik, Alexander; Tipnis, Sameer

    2010-01-21

    We examine how the choice of CT x-ray beam filtration and phantom size influences patient dose (D) to computed tomography dose index (CTDI) conversion factors (i.e. D/CTDI). The ratio of head to body phantom CTDI(w) for a defined scan technique is alpha, and the ratio of organ dose when the body filter is changed to the head filter is beta. CTDI and organ doses were obtained using the ImPACT CT patient dosimetry calculator, and values of alpha and beta were determined for 39 CT scanners. The average value of alpha for the 39 CT scanners covering a 20 year period was 1.99 +/- 0.23, but 30% of scanners had alpha values that differed by more than 10% from the average. For GE, the value of alpha has been approximately constant at approximately 2.0. Both Philips and Siemens show a definite upward trend from values well below 2.0 in the early 1990s to well over 2.0 for their latest models. The data for Toshiba show no overall trend with time with half the data points below 2.0 and the remainder above this value. The average value of beta was 1.09 +/- 0.25. All vendors showed a downward trend in the beta parameter, and where the most recent scanners from each vendor had a beta value close to unity. Our results show that average D/CTDI conversion factors for a body phantom/filter combination are typically double those appropriate for a head phantom/filter combination. PMID:20023330

  9. Spatiotemporal focusing dynamics in plasmas at X-ray wavelength

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tibai, Z.; Hebling, J.; Mishra, S. K.

    2014-03-01

    Using a finite curvature beam, we investigate here the spatiotemporal focusing dynamics of a laser pulse in plasmas at X-ray wavelength. We trace the dependence of curvature parameter on the focusing of laser pulse and recognize that the self-focusing in plasma is more intense for the X-ray laser pulse with curved wavefront than with flat wavefront. The simulation results demonstrate that spatiotemporal focusing dynamics in plasmas can be controlled with the appropriate choice of beam-plasma parameters to explore the high intensity effects in X-ray regime.

  10. Spatiotemporal focusing dynamics in plasmas at X-ray wavelength

    SciTech Connect

    Sharma, A., E-mail: a-physics2001@yahoo.com; Tibai, Z. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary)] [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Hebling, J. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary) [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Szentagothai Research Centre, University of Pecs, Pecs-7624 (Hungary); Mishra, S. K. [Institute for Plasma Research, Gandhinagar (India)] [Institute for Plasma Research, Gandhinagar (India)

    2014-03-15

    Using a finite curvature beam, we investigate here the spatiotemporal focusing dynamics of a laser pulse in plasmas at X-ray wavelength. We trace the dependence of curvature parameter on the focusing of laser pulse and recognize that the self-focusing in plasma is more intense for the X-ray laser pulse with curved wavefront than with flat wavefront. The simulation results demonstrate that spatiotemporal focusing dynamics in plasmas can be controlled with the appropriate choice of beam-plasma parameters to explore the high intensity effects in X-ray regime.

  11. Beamed and Unbeamed X-Ray Emission in FR1 Radio Galaxies

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    2000-01-01

    The research exploited ROSAT's sensitivity, together with its spatial and spectral resolution, to separate X-ray emission components in the sources. Prior to ROSAT, the dominant X-ray emission mechanism in radio galaxies as a class was unclear, with correlations between the X-ray and radio emission used on one hand to argue for a nuclear origin for the X-rays, and on the other hand for a thermal origin. Our observations (normally between 10 and 25 ks in length) routinely detected the target sources, and demonstrated that both resolved (thermal) and unresolved X-ray emission are typically present. Highlights of our work included two of the first detections of high-power radio galaxies at high redshift, 3C 280 and 3C 220.1. When combined with the work of two other groups, we find that of the 38 radio galaxies at z > 0.6 in the 3CRR sample, 12 were observed in ROSAT pointed observations and 9 were detected with the four most significant detections exhibiting source extent, including 3C 280 and 3C 220.1. Moreover, we discovered extended emission around five 3CRR quasars at redshift greater than about 0.4, one of which is at z > 0.6. Unification predicts that the X-ray environments of powerful radio galaxies and quasars should be similar, and our results show that powerful radio sources are finding some of the highest-redshift X-ray clusters known to date, pointing to deep gravitational potential wells early in the Universe.

  12. Using X-ray free-electron lasers for probing of complex interaction dynamics of ultra-intense lasers with solid matter

    SciTech Connect

    Kluge, T., E-mail: t.kluge@hzdr.de; Huang, L. G.; Metzkes, J.; Bussmann, M. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany)] [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Gutt, C. [Universität Siegen, D-57068 Siegen (Germany)] [Universität Siegen, D-57068 Siegen (Germany); Schramm, U.; Cowan, T. E. [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany) [Helmholtz-Zentrum Dresden-Rossendorf e.V., D-01328 Dresden (Germany); Technische Universität Dresden, D-01062 Dresden (Germany)

    2014-03-15

    We demonstrate the potential of X-ray free-electron lasers (XFEL) to advance the understanding of complex plasma dynamics by allowing for the first time nanometer and femtosecond resolution at the same time in plasma diagnostics. Plasma phenomena on such short timescales are of high relevance for many fields of physics, in particular in the ultra-intense ultra-short laser interaction with matter. Highly relevant yet only partially understood phenomena become directly accessible in experiment. These include relativistic laser absorption at solid targets, creation of energetic electrons and electron transport in warm dense matter, including the seeding and development of surface and beam instabilities, ambipolar expansion, shock formation, and dynamics at the surfaces or at buried layers. In this paper, we focus on XFEL plasma probing for high power laser matter interactions based on quantitative calculations using synthesized data and evaluate the feasibility of various imaging and scattering techniques with special focus on the small angle X-ray scattering technique.

  13. X-ray line polarization of He-like Si satellite spectra in plasmas driven by high-intensity ultrashort pulsed lasers.

    PubMed

    Hakel, Peter; Mancini, Roberto C; Gauthier, Jean-Claude; Mínguez, Emilio; Dubau, Jacques; Cornille, Marguerite

    2004-05-01

    We present a modeling study of x-ray line polarization in plasmas driven by high-intensity, ultrashort duration pulsed lasers. Electron kinetics simulations of these transient and nonequilibrium plasmas predict non-Maxwellian and anisotropic electron distribution functions. Under these conditions, the magnetic sublevels within fine structure levels can be unequally populated which leads to the emission of polarized lines. We have developed a time-dependent, collisional-radiative atomic kinetics model of magnetic sublevels to understand the underlying processes and mechanisms leading to the formation of polarized x-ray line emission in plasmas with anisotropic electron distribution functions. The electron distribution function consists of a thermal component extracted from hydrodynamic calculations and a beam component determined by PIC simulations of the laser-plasma interaction. We focus on the polarization properties of the He-like Si satellites of the L y(alpha) line, discuss the time evolution of polarized satellite spectra, and identify suitable polarization markers that are sensitive to the anisotropy of the electron distribution function and can be used for diagnostic applications. PMID:15244949

  14. Characteristics of focused soft X-ray free-electron laser beam determined by ablation of organic molecular solids

    Microsoft Academic Search

    J. Chalupský; L. Juha; J. Kuba; J. Cihelka; V. Hájková; S. Koptyaev; J. Krása; A. Velyhan; M. Bergh; C. Caleman; J. Hajdu; R. M. Bionta; H. Chapman; S. P. Hau-Riege; R. A. London; M. Jurek; J. Krzywinski; R. Nietubyc; J. B. Pelka; R. Sobierajski; J. Meyer-Ter-Vehn; A. Tronnier; K. Sokolowski-Tinten; N. Stojanovic; K. Tiedtke; S. Toleikis; T. Tschentscher; H. Wabnitz; U. Zastrau

    2007-01-01

    A linear accelerator based source of coherent radiation, FLASH (Free-electron LASer in Hamburg) provides ultra-intense femtosecond radiation pulses at wavelengths from the extreme ultraviolet (XUV; lambda<100nm) to the soft X-ray (SXR; lambda<30nm) spectral regions. 25-fs pulses of 32-nm FLASH radiation were used to determine the ablation parameters of PMMA - poly (methyl methacrylate). Under these irradiation conditions the attenuation length

  15. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    SciTech Connect

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.; Bourgade, J. L.; Gazave, J.; Lagrange, J. M.; Landoas, O.; Dain, L. Le; Pichoff, N. [CEA, DAM, DIF, F-91297 Arpajon (France)] [CEA, DAM, DIF, F-91297 Arpajon (France); Edwards, R.; Aedy, C. [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom)] [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom); Mastrosimone, D.; Pien, G.; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2013-08-15

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can be resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 ?m (full width half maximum of the x-ray source Point Spread Function)

  16. Non-Markov statistical effects of X-ray emission intensity of the microquasar GRS 1915+105

    E-print Network

    Yulmetyev, R M; Khusnutdinov, R M; Panischev, O Y; Hänggi, P

    2006-01-01

    In this paper we develop the new approach in time series analysis with a variable time step and present the results of quantitative and qualitative estimation of randomness and regularity, and the study of non-Markovian effects of the X-ray emission intensity of the microquasar GRS 1915+105. Our estimation is based on the application of the theory of discrete non-Markovian stochastic processes and gives a wide set of quantitative characteristics and parameters of the studied system with a variable time step. This set reflects the change of the effects of randomness and regularity, the alternation of Markovian and non-Markovian processes in the initial time signals. Initially these characteristics were determined for the simple model systems constructed by means of a molecular dynamics method. Further the calculation of these parameters was executed for the X-ray emission intensity of the microquasar GRS 1915+105. We have developed a theoretical scheme for the detailed analysis of the time series with a variab...

  17. X-ray Microprobe for Fluorescence and Diffraction Analysis

    SciTech Connect

    Ice, G.E. (ORNL)

    2005-03-28

    X-ray diffraction (see unit 1.1) and x-ray excited fluorescence analysis are powerful techniques for the nondestructive measurement of crystal structure and chemical composition. X-ray fluorescence analysis is inherently nondestructive with orders of magnitude lower power deposited for the same detectable limit as with fluorescence excited by charged particle probes (Sparks, 1980). X-ray diffraction analysis is sensitive to crystal structure with orders-of-magnitude greater sensitivity to crystallographic strain than electron probes (Rebonato, et al. 1989). When a small-area x-ray microbeam is used as the probe, chemical composition (Z>14), crystal structure, crystalline texture, and crystalline strain distributions can be determined. These distributions can be studied both at the surface of the sample and deep within the sample (Fig. 1). Current state-of-the-art can achieve an {approx}1 mm-D x-ray microprobe and an {approx}0.1 mm-D x-ray microprobe has been demonstrated (Bilderback, et al., 1994). Despite their great chemical and crystallographic sensitivities, x-ray microprobe techniques have until recently been restricted by inefficient x-ray focusing optics and weak x-ray sources; x-ray microbeam analysis was largely superseded by electron techniques in the 50's. However, interest in x-ray microprobe techniques has now been revived (Howells, et al., 1983; Ice & Sparks, 1984; Chevallier, et al., 1997; Riekel 1992; Thompson, el al., 1992; and Making and Using... 1997) by the development of efficient x-ray focusing optics and ultra-high intensity synchrotron x-ray sources (Buras & Tazzari, 1984; Shenoy, et al., 1988). These advances have increased the achievable microbeam flux by more than 11 orders of magnitude (Fig. 2) (Ice, 1997); the flux in a tunable 1 mm-D beam on a 'so called' 3rd-generation synchrotron source such as the APS can exceed the flux in a fixed-energy mm2 beam on a conventional source. These advances make x-ray microfluorescence and x-ray microdiffraction analysis techniques some of the most powerful techniques available for the nondestructive measurement of chemical and crystallographic distributions in materials. This unit reviews the physics, advantages, and scientific applications of hard x-ray (E > 3 keV) microfluorescence and x-ray microdiffraction analysis. Because practical x-ray microbeam instruments are extremely rare, a special emphasis will be placed on instrumentation, accessibility, and experimental needs which justify the use of x-ray microbeam analysis.

  18. Effects of a Relativistic Electron Beam Interaction with the Upper Atmosphere: Ionization, X-Rays, and Optical Emissions

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Nicolls, M. J.; Sanchez, E. R.; Lehtinen, N. G.; Neilson, J.

    2014-12-01

    An artificial beam of relativistic (0.5--10 MeV) electrons has been proposed as an active experiment in the ionosphere and magnetosphere, with applications to magnetic field-line tracing, studies of wave-particle interactions, and beam-atmosphere interactions. The beam-atmosphere interaction, while a scientific endeavor of its own, also provides key diagnostics for other experiments. We present results of Monte Carlo simulations of the interaction of a beam of relativistic electrons with the upper atmosphere as they are injected downwards from a notional high altitude (thermospheric / ionospheric) injection platform. The beam parameters, defined by realistic parameters of a compact linear accelerator, are used to create a distribution of thousands of electrons. Each electron is injected downwards from 300 km altitude towards the dense atmosphere, where it undergoes elastic and inelastic collisions, leading to secondary ionization, optical emissions, and X-rays via bremsstrahlung. Here we describe the Monte Carlo model and present calculations of diagnostic outputs, including optical emissions, X-ray fluxes, secondary ionization, and backscattered energetic electron fluxes. Optical emissions are propagated to the ground through the lower atmosphere, including the effects of atmospheric absorption and scattering, to estimate the brightness of the emission column for a given beam current and energy. Similarly, X-ray fluxes are propagated to hypothetical detectors on balloons and satellites, taking into account Compton scattering and photoabsorption. Secondary ionization is used to estimate the radar signal returns from various ground-based radar facilities. Finally, simulated backscattered electron fluxes are measured at the injection location. The simulation results show that for realizable accelerator parameters, each of these diagnostics should be readily detectable by appropriate instruments.

  19. Spectral analysis of x-ray emission created by intense laser irradiation of copper materials

    SciTech Connect

    Huntington, C. M.; Kuranz, C. C.; Drake, R. P. [Atmospheric, Oceanic, Space Science, University of Michigan, Ann Arbor, Michigan 48103 (United States); Malamud, G. [Atmospheric, Oceanic, Space Science, University of Michigan, Ann Arbor, Michigan 48103 (United States); Department of Physics, Nuclear Research Center - Negev, 84190 Beer-Sheva (Israel); Park, H.-S.; Maddox, B. R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2012-10-15

    We have measured the x-ray emission, primarily from K{sub {alpha}},K{sub {beta}}, and He{sub {alpha}} lines, of elemental copper foil and 'foam' targets irradiated with a mid-10{sup 16} W/cm{sup 2} laser pulse. The copper foam at 0.1 times solid density is observed to produce 50% greater He{sub {alpha}} line emission than copper foil, and the measured signal is well-fit by a sum of three synthetic spectra generated by the atomic physics code FLYCHK. Additionally, spectra from both targets reveal characteristic inner shell K{sub {alpha}} transitions from hot electron interaction with the bulk copper. However, only the larger-volume foam target produced significant K{sub {beta}} radiation, confirming a lower bulk temperature in the higher volume sample.

  20. Spectral analysis of x-ray emission created by intense laser irradiation of copper materialsa)

    NASA Astrophysics Data System (ADS)

    Huntington, C. M.; Kuranz, C. C.; Malamud, G.; Drake, R. P.; Park, H.-S.; Maddox, B. R.

    2012-10-01

    We have measured the x-ray emission, primarily from K?,K?, and He? lines, of elemental copper foil and "foam" targets irradiated with a mid-1016 W/cm2 laser pulse. The copper foam at 0.1 times solid density is observed to produce 50% greater He? line emission than copper foil, and the measured signal is well-fit by a sum of three synthetic spectra generated by the atomic physics code FLYCHK. Additionally, spectra from both targets reveal characteristic inner shell K? transitions from hot electron interaction with the bulk copper. However, only the larger-volume foam target produced significant K? radiation, confirming a lower bulk temperature in the higher volume sample.

  1. Spectral analysis of x-ray emission created by intense laser irradiation of copper materials.

    PubMed

    Huntington, C M; Kuranz, C C; Malamud, G; Drake, R P; Park, H-S; Maddox, B R

    2012-10-01

    We have measured the x-ray emission, primarily from K(?),K(?), and He(?) lines, of elemental copper foil and "foam" targets irradiated with a mid-10(16) W/cm(2) laser pulse. The copper foam at 0.1 times solid density is observed to produce 50% greater He(?) line emission than copper foil, and the measured signal is well-fit by a sum of three synthetic spectra generated by the atomic physics code FLYCHK. Additionally, spectra from both targets reveal characteristic inner shell K(?) transitions from hot electron interaction with the bulk copper. However, only the larger-volume foam target produced significant K(?) radiation, confirming a lower bulk temperature in the higher volume sample. PMID:23126936

  2. On diamond windows for high power synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Kuzay, T.M.

    1991-01-01

    Recent advances in chemical vapor deposition (CVD) technology has made available thin, free-standing polycrystalline diamond foils that can be used as the window material on high heat load synchrotron x-ray beamlines. Diamond windows have many advantages that stem from the exceptionally attractive thermal, structural, and physical properties of diamond. Numerical simulations indicate that diamond windows can offer an attractive and at times the only alternative to beryllium windows for use on the third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, and analytical and numerical results are presented to provide a basis for the design and testing of such windows.

  3. On diamond windows for high power synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Kuzay, T.M.

    1991-12-31

    Recent advances in chemical vapor deposition (CVD) technology has made available thin, free-standing polycrystalline diamond foils that can be used as the window material on high heat load synchrotron x-ray beamlines. Diamond windows have many advantages that stem from the exceptionally attractive thermal, structural, and physical properties of diamond. Numerical simulations indicate that diamond windows can offer an attractive and at times the only alternative to beryllium windows for use on the third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, and analytical and numerical results are presented to provide a basis for the design and testing of such windows.

  4. Hard X-ray and Particle Beams Research on 1.7 MA Z-pinch and Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor; Kantsyrev, Victor; Safronova, Alla; Esaulov, Andrey; Nishio, Mineyuki; Shlyaptseva, Veronica; Keim, Steven; Weller, Michael; Stafford, Austin; Petkov, Emil; Schultz, Kimberly; Cooper, Matthew; PPDL Team

    2013-10-01

    Studies of hard x-ray (HXR) emission, electron and ion beam generation in z-pinch and laser plasmas are important for Inertial Confinement Fusion (ICF) and development of HXR sources from K-shell and L-shell radiation. The characteristics of HXR and particle beams produced by implosions of planar wire arrays, nested and single cylindrical wire arrays, and X-pinches were analyzed on 100 ns UNR Zebra generator with current up to 1.7 MA. In addition, the comparison of characteristics of HXR and electron beams on Zebra and 350 fs UNR Leopard laser experiments with foils has been performed. The diagnostics include Faraday cups, HXR diodes, different x-ray spectrometers and imaging systems, and ion mass spectrometer using the technique of Thomson parabola. Future work on HXRs and particle beams in HED plasmas is discussed. Studies of hard x-ray (HXR) emission, electron and ion beam generation in z-pinch and laser plasmas are important for Inertial Confinement Fusion (ICF) and development of HXR sources from K-shell and L-shell radiation. The characteristics of HXR and particle beams produced by implosions of planar wire arrays, nested and single cylindrical wire arrays, and X-pinches were analyzed on 100 ns UNR Zebra generator with current up to 1.7 MA. In addition, the comparison of characteristics of HXR and electron beams on Zebra and 350 fs UNR Leopard laser experiments with foils has been performed. The diagnostics include Faraday cups, HXR diodes, different x-ray spectrometers and imaging systems, and ion mass spectrometer using the technique of Thomson parabola. Future work on HXRs and particle beams in HED plasmas is discussed. This work was supported by the DOE/NNSA Cooperative agreement DE-NA0001984 and in part by DE-FC52-06NA27616. This work was also supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno.

  5. Intense low energy positron beams

    SciTech Connect

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  6. Effect of atomic magnetic moments on the relative intensity of the L ? and L ? components in x-ray emission spectra of 3 d transition metal oxides

    Microsoft Academic Search

    V. I. Grebennikov; V. R. Galakhov; L. D. Finkel’shtein; N. A. Ovechkina; É. Z. Kurmaev

    2003-01-01

    The integrated-intensity ratio R of the L\\u000a ? and L\\u000a ? lines in x-ray emission spectra of 3d transition metal oxides was measured. The magnitude of the ratio was found to depend nonmonotonically on the atomic number\\u000a of the 3d elements, with a sharp rise in the middle of the series. In terms of the theory of one-electron resonant x-ray

  7. LauePt, a graphical-user-interface program for simulating and analyzing white-beam x-ray diffraction Laue patterns.

    SciTech Connect

    Huang, X.

    2010-08-01

    LauePt is a robust and extremely easy-to-use Windows application for accurately simulating, indexing and analyzing white-beam X-ray diffraction Laue patterns of any crystals under arbitrary diffraction geometry. This program has a user-friendly graphic interface and can be conveniently used by nonspecialists with little X-ray diffraction or crystallography knowledge. Its wide range of applications include (1) determination of single-crystal orientation with the Laue method, (2) white-beam topography, (3) white-beam microdiffraction, (4) X-ray studies of twinning, domains and heterostructures, (5) verification or determination of crystal structures from white-beam diffraction, and (6) teaching of X-ray crystallography.

  8. Synchrotron white beam X-ray topography analysis of MBE grown CdTe/CdTe (111)B

    SciTech Connect

    Fanning, T.; Dudley, M. (SUNY, Stony Brook, NY (United States)); Lee, M.B.; Casagrande, L.G.; Di Marzio, D. (Grumman Corporate Research Center, Bethpage, NY (United States))

    1993-08-01

    The structural quality of CdTe(111)B substrates and MBE grown CdTe epilayers is examined with synchrotron white beam x-ray topography (SWBXT). Reflection SWBXT indicates that CdTe substrates with comparable x-ray double crystal rocking curve full width at half maximum values can have radically different defect microstructures, i.e. dislocation densities and the presence of inclusions. Dislocation mosaic structures delineated by SWBXT are consistent with the distribution of etch pits revealed by destructive chemical etch pit analysis. Direct one-to-one correspondence between distinct features of the topographic image and individual etch pits is demonstrated. Clearly resolved images of individual dislocations are obtained by carrying out transmission SWBXT. Our investigation demonstrates how the extent of twinning in a CdTe epilayer is strongly influenced by the quality of the defect microstructure, and how dislocations propagate from an inclusion. 11 refs., 8 figs., 1 tab.

  9. Probing inhomogeneities in nanoscale organic semiconductor films: Depth profiling using slow positron beam and X-ray reflectivity techniques

    NASA Astrophysics Data System (ADS)

    Maheshwari, Priya; Bhattacharya, D.; Sharma, S. K.; Mukherjee, S.; Samanta, S.; Basu, S.; Aswal, D. K.; Pujari, P. K.

    2014-12-01

    Depth profiling studies in 200 nm organic semiconductor (OSC) films on quartz substrate have been carried out using slow positron beam and X-ray reflectivity (XRR) techniques with the objective of examining structural inhomogeneities in as-deposited film and those annealed at high temperature. Grazing incidence X-ray diffraction and atomic force microscopy measurements are carried out to examine the crystallinity and surface morphology, respectively. In general, annealing is seen to modify the morphology and nanostructure. However, a significant inhomogeneity in nanostructure, marked by a disordered layer with low density region is observed in the film annealed at 200 °C from positron as well as XRR measurements. This study highlights the sensitivity of these techniques to defects and inhomogeneities in nanoscale that may have profound influence on device performance.

  10. Precision white-beam slit design for high power density x-ray undulator beamlines at the Advanced Photon Source

    SciTech Connect

    Shu, D.; Brite, C.; Nian, T. [and others

    1994-12-01

    A set of precision horizontal and vertical white-beam slits has been designed for the Advanced Photon Source (APS) X-ray undulator beamlines at Argonne National Laboratory. There are several new design concepts applied in this slit set, including: grazing-incidence knife-edge configuration to minimize the scattering of X-rays downstream, enhanced heat transfer tubing to provide water cooling, and a second slit to eliminate the thermal distortion on the slit knife edge. The novel aspect of this design is the use of two L-shaped knife-edge assemblies, which are manipulated by two precision X-Z stepping linear actuators. The principal and structural details of the design for this slit set are presented in this paper.

  11. Thin film beam splitter multiple short pulse generation for enhanced Ni-like Ag x-ray laser emission.

    PubMed

    Cojocaru, Gabriel V; Ungureanu, Razvan G; Banici, Romeo A; Ursescu, Daniel; Delmas, Olivier; Pittman, Moana; Guilbaud, Olivier; Kazamias, Sophie; Cassou, Kevin; Demailly, Julien; Neveu, Olivier; Baynard, Elsa; Ros, David

    2014-04-15

    An alternative, novel multiple pulse generation scheme was implemented directly after the optical compressor output of an x-ray pump laser. The new method uses a polarization sensitive thin film beam splitter and a half-wavelength wave plate for tuning the energy ratio in the multiple short pulses. Based on this method, an extensive study was made of the running parameters for a grazing incidence pumped silver x-ray laser (XRL) pumped with a long pulse of 145 mJ in 6 ns at 532 nm and up to 1.45 J in few picoseconds at 810 nm. Fivefold enhancement in the emission of the silver XRL was demonstrated using the new pump method. PMID:24978964

  12. A wavelet-based single-view reconstruction approach for cone beam x-ray luminescence tomography imaging

    PubMed Central

    Liu, Xin; Wang, Hongkai; Xu, Mantao; Nie, Shengdong; Lu, Hongbing

    2014-01-01

    Single-view x-ray luminescence computed tomography (XLCT) imaging has short data collection time that allows non-invasively and fast resolving the three-dimensional (3-D) distribution of x-ray-excitable nanophosphors within small animal in vivo. However, the single-view reconstruction suffers from a severe ill-posed problem because only one angle data is used in the reconstruction. To alleviate the ill-posedness, in this paper, we propose a wavelet-based reconstruction approach, which is achieved by applying a wavelet transformation to the acquired singe-view measurements. To evaluate the performance of the proposed method, in vivo experiment was performed based on a cone beam XLCT imaging system. The experimental results demonstrate that the proposed method cannot only use the full set of measurements produced by CCD, but also accelerate image reconstruction while preserving the spatial resolution of the reconstruction. Hence, it is suitable for dynamic XLCT imaging study. PMID:25426315

  13. A wavelet-based single-view reconstruction approach for cone beam x-ray luminescence tomography imaging.

    PubMed

    Liu, Xin; Wang, Hongkai; Xu, Mantao; Nie, Shengdong; Lu, Hongbing

    2014-11-01

    Single-view x-ray luminescence computed tomography (XLCT) imaging has short data collection time that allows non-invasively and fast resolving the three-dimensional (3-D) distribution of x-ray-excitable nanophosphors within small animal in vivo. However, the single-view reconstruction suffers from a severe ill-posed problem because only one angle data is used in the reconstruction. To alleviate the ill-posedness, in this paper, we propose a wavelet-based reconstruction approach, which is achieved by applying a wavelet transformation to the acquired singe-view measurements. To evaluate the performance of the proposed method, in vivo experiment was performed based on a cone beam XLCT imaging system. The experimental results demonstrate that the proposed method cannot only use the full set of measurements produced by CCD, but also accelerate image reconstruction while preserving the spatial resolution of the reconstruction. Hence, it is suitable for dynamic XLCT imaging study. PMID:25426315

  14. Optimization of X-ray microplanar beam radiation therapy for deep-seated tumors by a simulation study.

    PubMed

    Shinohara, Kunio; Kondoh, Takeshi; Nariyama, Nobuteru; Fujita, Hajime; Washio, Masakazu; Aoki, Yukimasa

    2014-01-01

    A Monte Carlo simulation was applied to study the energy dependence on the transverse dose distribution of microplanar beam radiation therapy (MRT) for deep-seated tumors. The distribution was found to be the peak (in-beam) dose and the decay from the edge of the beam down to the valley. The area below the same valley dose level (valley region) was decreased with the increase in the energy of X-rays at the same beam separation. To optimize the MRT, we made the following two assumptions: the therapeutic gain may be attributed to the efficient recovery of normal tissue caused by the beam separation; and a key factor for the efficient recovery of normal tissue depends on the area size of the valley region. Based on these assumptions and the results of the simulated dose distribution, we concluded that the optimum X-ray energy was in the range of 100-300 keV depending on the effective peak dose to the target tumors and/or tolerable surface dose. In addition, we proposed parameters to be studied for the optimization of MRT to deep-seated tumors. PMID:24865214

  15. A comparative study of high resolution cone beam X-ray tomography and synchrotron tomography applied to Fe and Al-alloys

    Microsoft Academic Search

    Johann Kastner; Bernhard Harrer; Guillermo Requena; Oliver Brunke

    2010-01-01

    X-ray computed tomography (XCT) has become a very important method for non-destructive 3D-characterization and evaluation of materials. Due to measurement speed and quality, XCT systems with cone beam geometry and matrix detectors have gained general acceptance. Continuous improvements in the quality and performance of X-ray tubes and XCT devices have led to cone beam CT systems that can now achieve

  16. CMOS APS detector characterization for quantitative X-ray imaging

    NASA Astrophysics Data System (ADS)

    Endrizzi, Marco; Oliva, Piernicola; Golosio, Bruno; Delogu, Pasquale

    2013-03-01

    An X-ray Imaging detector based on CMOS Active Pixel Sensor and structured scintillator is characterized for quantitative X-ray imaging in the energy range 11-30 keV. Linearity, dark noise, spatial resolution and flat-field correction are the characteristics of the detector subject of investigation. The detector response, in terms of mean Analog-to-Digital Unit and noise, is modeled as a function of the energy and intensity of the X-rays. The model is directly tested using monochromatic X-ray beams and it is also indirectly validated by means of polychromatic X-ray-tube spectra. Such a characterization is suitable for quantitative X-ray imaging and the model can be used in simulation studies that take into account the actual performance of the detector.

  17. The Application of High Energy X Rays and Electron Beams in Radiotherapy

    Microsoft Academic Search

    J. A. Purdy

    1979-01-01

    It has been more than 25 years since very high energy x rays generated by a betatron were first used in the treatment of cancer. The development of these machines along with linear accelerators quickly led to the use of high energy electrons as an additional modality in cancer management. In the intervening years, the physical and biological aspects of

  18. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.

    PubMed

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications. PMID:25789488

  19. A Novel High-Resolution Alignment Technique for XFEL Using Undulator X-ray Beams

    E-print Network

    Kemner, Ken

    , and beamline in an x-ray free-electron laser. Two retractable pinholes at each end of the undulator define on the size of the object. In long stretched objects such as linear accelerators or free-electron lasers (FEL

  20. Interchangeability of pencil-beam and fan-beam dual-energy X-ray absorptiometry measurements in piglets and infants1-3

    Microsoft Academic Search

    Winston WK Koo; Mouhanad Hammami; Elaine M Hockman

    Background: Compared with the older pencil-beam (PB) dual- energy X-ray absorptiometry (DXA), the newer fan-beam (FB) DXA has the advantage of faster scan acquisition and greater accuracy of body-composition measurement in small subjects. However, no data exist on the relation between the measurements obtained with these techniques. Objective: The objective of the study was to investigate whether PB and FB

  1. High-intensity x-ray holography: an approach to high-resolution snapshot imaging of biological specimens

    SciTech Connect

    Solem, J.C.

    1982-08-01

    The crucial physical and technological issues pertaining to the holographic imaging of biological structures with a short-pulse, high-intensity, high-quantum-energy laser were examined. The limitations of x-ray optics are discussed. Alternative holographic techniques were considered, and it was concluded that far-field Fresnel transform holography (Fraunhofer holography) using a photoresist recording surface is most tractable with near term technology. The hydrodynamic expansion of inhomogeneities within the specimen is discussed. It is shown that expansion is the major source of image blurring. Analytic expressions were derived for the explosion of protein concentrations in an x-ray transparent cytoplasm, compared with numerical calculations, and corrections derived to account for the competitive transport processes by which these inhomogeneities lose energy. It is concluded that for the near term Fresnel transform holography, particularly, far-field or Fraunhofer holography, is more practical than Fourier transform holography. Of the alternative fine grain recording media for use with Fresnel transform holography, a photo-resist is most attractive. For best resolution, exposure times must be limited to a few picoseconds, and this calls for investigation of mechanisms to shutter the laser or gate the recording surface. The best contrast ratio between the nitrogen-bearing polymers (protein and the nucleic acids) and water is between the K-edges of oxygen and nitrogen.

  2. XPAD X-ray hybrid pixel detector for charge density quality diffracted intensities on laboratory equipment.

    PubMed

    Wenger, Emmanuel; Dahaoui, Slimane; Alle, Paul; Parois, Pascal; Palin, Cyril; Lecomte, Claude; Schaniel, Dominik

    2014-10-01

    The new generation of X-ray detectors, the hybrid pixel area detectors or `pixel detectors', is based on direct detection and single-photon counting processes. A large linearity range, high dynamic and extremely low noise leading to an unprecedented high signal-to-noise ratio, fast readout time (high frame rates) and an electronic shutter are among their intrinsic characteristics which render them very attractive. First used on synchrotron beamlines, these detectors are also promising in the laboratory, in particular for pump-probe or quasi-static experiments and accurate electron density measurements, as explained in this paper. An original laboratory diffractometer made from a Nonius Mach3 goniometer equipped with an Incoatec Mo microsource and an XPAD pixel area detector has been developed at the CRM2 laboratory. Mo K? accurate charge density quality data up to 1.21?Å(-1) resolution have been collected on a sodium nitroprusside crystal using this home-made diffractometer. Data quality for charge density analysis based on multipolar modelling are discussed in this paper. Deformation electron densities are compared to those already published (based on data collected with CCD APEXII and CAD4 diffractometers). PMID:25274511

  3. Dosimetry of a low-kV intra-operative X-ray source using basic analytical beam models.

    PubMed

    Ebert, M A; Carruthers, B; Lanzon, P J; Haworth, A; Clarke, J; Caswell, N M; Siddiqui, S A

    2002-09-01

    The low energy (30-50 kVp) beams from an intra-operative X-ray source are modelled using a basic analytical model considering just primary beam attenuation and absorption. Spatial dosimetry at such low energies is difficult due to the rapid changes in dose-rate from the radiation source. The purpose of the model was to determine the variation with distance in water of coefficients required for beam dosimetry and to validate beam measurements performed in water of high-gradient dose distributions. The model predicts a change in mean mass-energy absorption coefficient of up to 3 % over the range of clinically-relevant distances in water. Distance-dose distributions (variation in dose with distance in water) for the X-ray source were calculated with the model and found to be in agreement with measurement (at clinically-relevant distances), to within a spatial distance comparable to the dimensions and positional accuracy of the ionization chamber used, and comparable to the expected dosimetric anisotropy of the radiation source. Measured and calculated distance-doses begin to diverge at relatively large distances from the radiation source, which is where dose-rates are so low that detector signal levels are comparable with noise. PMID:12416588

  4. Improvement of image quality by tilted fan beam data acquisition in a helical scan x-ray CT

    SciTech Connect

    Ogawa, K.; Yamada, Y.; Uno, T. [Hosei Univ., Tokyo (Japan)

    1996-12-31

    The helical scan x-ray CT is useful for high speed acquisition of three dimensional image data. In image reconstruction from helical scan data, a set of sequential data is used and the data are interpolated to produce projection data which reconstruct an image of a given cross section. This interpolation sometimes causes artifacts in the reconstructed image. We propose a new data acquisition method which minimizes the effect of scanning slice position in the axial direction. The proposed method inclines an x-ray detector array in the direction of rotation. The tilted angle is defined as arctan ({theta}L/2R{pi} tan {theta}), where L is the moving distance of a table per rotation and R is the radius of rotation of the x-ray source. The angle {theta} is the orthogonal projection of the half of a fan angle onto the parallel beam projection plane. Simulation results showed that our method eliminated the low frequency distortion and slightly improved the spatial resolution in the axial direction.

  5. Comparison between beam-stop and beam-hole array scatter correction techniques for industrial X-ray cone-beam CT

    NASA Astrophysics Data System (ADS)

    Schörner, K.; Goldammer, M.; Stephan, J.

    2011-02-01

    In industrial X-ray cone-beam computed tomography, the inspection of large-scale samples is important because of increasing demands on their quality and long-term mechanical resilience. Large-scale samples, for example made of aluminum or iron, are strongly scattering X-rays. Scattered radiation leads to artifacts such as cupping, streaks, and a reduction in contrast in the reconstructed CT-volume. We propose a scatter correction method based on sampling primary signals by employing a beam-hole array (BHA). In this indirect method, a scatter estimate is calculated by subtraction of the sampled primary signal from the total signal, the latter taken from an image where the BHA is absent. This technique is considered complementary to the better known beam-stop array (BSA) method. The two scatter estimation methods are compared here with respect to geometric effects, scatter-to-total ratio and practicability. Scatter estimation with the BHA method yields more accurate scatter estimates in off-centered regions, and a lower scatter-to-total ratio in critical image regions where the primary signal is very low. Scatter correction with the proposed BHA method is then applied to a ceramic specimen from power generation technologies. In the reconstructed CT volume, cupping almost completely vanishes and contrast is enhanced significantly.

  6. GRPANL: a program for fitting complex peak groupings for gamma and x-ray energies and intensities

    SciTech Connect

    Gunnink, R.; Ruhter, W.D.

    1980-01-01

    GRPANL is a general-purpose peak-fitting program that calculates gamma-ray and x-ray energies and intensities from a given spectral region. The program requires that the user supply input information such as the first and last channels of the region, the channels to be used as pre- and post-region background, the system gain and zero-intercept, and a list of approximate energy values at which peaks occur in the region. Because the peak position and peak-shape parameters enter nonlinearly into the peak-fitting algorithm, an iterative least-square procedure is used in the fitting process. The program iterates until either all convergence criteria are met or ten iterations have elapsed. The code described here allows for twenty free parameters and a region as large as 240 data channels. This code runs on an LSI-11 computer with 32K memory and disk-storage capability.

  7. Complex aberrations in lymphocytes exposed to mixed beams of (241)Am alpha particles and X-rays.

    PubMed

    Staaf, Elina; Deperas-Kaminska, Marta; Brehwens, Karl; Haghdoost, Siamak; Czub, Joanna; Wojcik, Andrzej

    2013-08-30

    Modern radiotherapy treatment modalities are associated with undesired out-of-field exposure to complex mixed beams of high and low energy transfer (LET) radiation that can give rise to secondary cancers. The biological effectiveness of mixed beams is not known. The aim of the investigation was the analysis of chromosomal damage in human peripheral blood lymphocytes (PBL) exposed to a mixed beam of X-rays and alpha particles. Using a dedicated exposure facility PBL were exposed to increasing doses of alpha particles (from (241)Am), X-rays and a mixture of both. Chromosomal aberrations were analysed in chromosomes 2, 8 and 14 using fluorescence in situ hybridisation. The found and expected frequencies of simple and complex aberrations were compared. Simple aberrations showed linear dose-response relationships with doses. A higher than expected frequency of simple aberrations was only observed after the highest mixed beam dose. A linear-quadratic dose response curve for complex aberrations was observed after mixed-beam exposure. Higher than expected frequencies of complex aberrations were observed for the two highest doses. Both the linear-quadratic dose-response relationship and the calculation of expected frequencies show that exposure of PBL to mixed beams of high and low LET radiation leads to a higher than expected frequency of complex-type aberrations. Because chromosomal changes are associated with cancer induction this result may imply that the cancer risk of exposure to mixed beams in radiation oncology may be higher than expected based on the additive action of the individual dose components. PMID:23669292

  8. Breast tomosynthesis reconstruction with a multi-beam x-ray source

    Microsoft Academic Search

    Ying Chen; Weihua Zhou; Guang Yang; Xin Qian; Jianping Lu; Otto Zhou

    2009-01-01

    As a new three-dimensional breast imaging technique, breast tomosynthesis allows the reconstruction of an arbitrary set of planes in the breast from a limited-angle series of x-ray projection images. The breast tomosynthesis technique has been demonstrated as promising to improve early breast cancer detection. This paper represents a preliminary phantom study and computer simulation results of different breast tomosynthesis reconstruction

  9. Non-equilibrium Modeling of the Fe XVII 3C/3D Line Ratio in an Intense X-Ray Free-Electron Laser Excited Plasma

    NASA Astrophysics Data System (ADS)

    Loch, S. D.; Ballance, C. P.; Li, Y.; Fogle, M.; Fontes, C. J.

    2015-03-01

    Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe xvii 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe xvii spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas.

  10. Studying the (?,p) process in X-ray bursts using rare isotope ion beams

    NASA Astrophysics Data System (ADS)

    Votaw, Daniel; Banu, Adriana; Roeder, B. T.; Rapisarda, G. G.; McCleskey, M.; Saastamoinen, A.; Simmons, E.; Spiridon, A.; Trache, L.; Tribble, R. E.; Gagliardi, C. A.

    2013-10-01

    Type I X-Ray bursts are the most frequent thermonuclear explosions observed in the galaxy with about 100 sources known so far. It is thought that XRBs occur in binary star systems where a neutron star accretes matter from its companion, a main sequence star. As the accreted hydrogen-and helium-rich matter builds up on the surface of the neutron star the temperature and the pressure increase and a thermonuclear runaway occurs reaching peak temperatures of T = 1-2 GK, which is observed as an X-ray burst. The fact that the bursts do not destroy the binary star system makes X-ray binaries useful to study matter under extreme temperature and density conditions. Current sensitivity studies on XRB nucleosynthesis have identified the nuclear reaction, 22Mg(?,p)25Al, among the influential reactions affecting the XRB total energy output. This reaction implies the interaction of the radioactive 22Mg isotope with a 4He nucleus (aka ? particle) to produce the radioactive 25Al isotope and a proton. In fall last year, a feasibility test for the experimental investigation of the probability of this nuclear reaction to occur was performed at Texas A&M University (TAMU) Cyclotron Institute. Measurements were performed in reversed time and inverse-kinematics for the reaction, 25Al + p --> 22Mg + ? . Data analysis results will be reported. Jeffress Memorial Trust

  11. Defect characterization and stress analysis by white beam synchrotron X-ray topography in single crystal semiconducting materials

    NASA Astrophysics Data System (ADS)

    Sarkar, Vishwanath

    Semiconductor devices are becoming increasingly more complex as the number of transistors increases in the same Integrated Circuit (IC) area. Due to the complexity in design; processing and packaging of the device plays a crucial role in the IC fabrication. Package induced residual stress are not only detrimental to device performance but can also lead to device failure. We propose a non-destructive method to determine the complete stress state at each point on a packaged Silicon device. Surface and edge defect created as a result of various manufacturing steps were characterized using different techniques, primarily X-ray diffraction topography, optical microscopy, SEM and TEM. Residual stress plays an important role in the performance and lifetime of single crystal device material. Here we present a novel technique using white beam synchrotron X-ray diffraction reticulography, Stress Mapping and Analysis via Ray Tracing (SMART) in order to determine residual stress level at an array of points over the entire crystal area. This method has a unique advantage compared with other stress measurement technique in that it can evaluate all six components of the stress tensor. The underlying experimental technique is based on white beam synchrotron X-ray diffraction topography and ray tracing. An array of X-ray micro-beam is illuminated on the single crystal sample and multiple reflections (reticulographs) are recorded simultaneously on a photographic film. Crystallographic plane normal vector at the location of each micro-beam in the crystal is calculated. The variation of the plane normal vector direction is due to residual strain (both sheer and dilatational) present in the crystal. By considering three different diffracting planes and corresponding reticulograph a complete state of stress is calculated. Principle, applications and limitations are discussed. White beam synchrotron reticulography is used in reflection geometry to evaluate complete residual stress tensor as a function of depth in a single crystal material. This novel technique, an extension of SMART technique is developed to determine stress tensor components at various depths within the crystal. In reflection geometry penetration depth is controlled by manipulating the geometrical parameters such as incident angle. Data is obtained from various penetration depth, which represents exponentially decaying weighted average of actual stress value or in other words this stress profile is Laplace transform of real stress profile. Mathematical procedure is described to determine real stress profile from Laplace profile. To demonstrate this method, a packaged semiconducting Silicon die is used and its complete stress tensor profile is generated. This method has demonstrated the capability of determining all six components of stress as a function of depth in the crystal. Experimental procedure, theoretical basis and mathematical methods along with its application, capability and limitations are discussed. Wafer dicing process results in edge and surface damage. Various characterization tools were used to detect these defects. Surface reflection topographs were taken to probe surface and subsurface defects, primarily scratches and micro cracks. Optical microscopy and SEM were used as a complementary tool for surface characterization. TEM is used for detecting sub-surface nano-cracks and dislocations. X-ray transmission topography is used to detect half loop dislocations resulting from dicing process. In order to study dynamic behavior of defects (dislocations) during thermal processing and operation an environmental chamber (furnace) is designed and built to record in-situ X-ray diffraction topographs during thermal cycling and at high temperature.

  12. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    PubMed Central

    Korecki, P.; Tolkiehn, M.; D?browski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10?Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  13. Intense Superradiant X Rays from a Compact Source Using a Nanocathode Array and Emittance Exchange

    E-print Network

    Graves, William S.

    A novel method of producing intense short wavelength radiation from relativistic electrons is described. The electrons are periodically bunched at the wavelength of interest enabling in-phase superradiant emission that is ...

  14. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    SciTech Connect

    Nelson, Geoff; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States)] [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Yoon, Sungwon [Varian Medical Systems, Palo Alto, California 94304 (United States)] [Varian Medical Systems, Palo Alto, California 94304 (United States); Krishna, Ganesh [Palo Alto Medical Foundation, Mountain View, California 94040 (United States)] [Palo Alto Medical Foundation, Mountain View, California 94040 (United States); Wilfley, Brian [Triple Ring Technologies, Inc., Newark, California 94560 (United States)] [Triple Ring Technologies, Inc., Newark, California 94560 (United States)

    2013-11-15

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle.Methods: Tomosynthetic angle as a function of tumor-to-detector distance was calculated. Monte Carlo Software (PCXMC) was used to calculate organ doses and effective dose for source-to-detector distances (SDDs) from 90 to 150 cm, patient locations with the tumor at 20 cm from the source to 20 cm from the detector, and FOVs centered on left lung and right lung as well as medial and distal peripheries of the lungs. These calculations were done for two systems, a SBDX system and a GE OEC-9800 C-arm fluoroscopic unit. To evaluate the dose effect of the system geometry, results from PCXMC were calculated using a scan of 300 mAs for both SBDX and fluoroscopy. The Rose Criterion was used to find the fluence required for a tumor SNR of 5, factoring in scatter, air-gap, system geometry, and patient position for all models generated with PCXMC. Using the calculated fluence for constant tumor SNR, the results from PCXMC were used to compare the patient dose for a given SNR between SBDX and fluoroscopy.Results: Tomographic angle changes with SDD only in the region near the detector. Due to their geometry, the source array and detector have a peak tomographic angle for any given SDD at a source to tumor distance that is 69.7% of the SDD assuming constant source and detector size. Changing the patient location in order to increase tomographic angle has a significant effect on organ dose distribution due to geometrical considerations. With SBDX and fluoroscopy geometries, the dose to organs typically changes in an opposing manner with changing patient location. When tumor SNR is held constant (i.e., x-ray fluence is scaled appropriately), SBDX gives 2–10 times less dose than fluoroscopy for the same conditions within the typical range of patient locations. The relative position of the patient (as a percent of SDD) has a much more significant impact on dose than either SDD or patient position. The patient position providing the minimum dose for a given tumor SNR and SDD is approximately the same as the position of maximum tomographic angle.Conclusions: SBDX offers a significant dose advantage over currently used C-arm fluoroscopy. The patient location with lowest dose coincides with the location of maximum tomographic angle. In order to provide adequate space for the patient and for the pulmonologists’ equipment, a SDD of 100 cm is recommended.

  15. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    PubMed Central

    Nelson, Geoff; Yoon, Sungwon; Krishna, Ganesh; Wilfley, Brian; Fahrig, Rebecca

    2013-01-01

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle. Methods: Tomosynthetic angle as a function of tumor-to-detector distance was calculated. Monte Carlo Software (PCXMC) was used to calculate organ doses and effective dose for source-to-detector distances (SDDs) from 90 to 150 cm, patient locations with the tumor at 20 cm from the source to 20 cm from the detector, and FOVs centered on left lung and right lung as well as medial and distal peripheries of the lungs. These calculations were done for two systems, a SBDX system and a GE OEC-9800 C-arm fluoroscopic unit. To evaluate the dose effect of the system geometry, results from PCXMC were calculated using a scan of 300 mAs for both SBDX and fluoroscopy. The Rose Criterion was used to find the fluence required for a tumor SNR of 5, factoring in scatter, air-gap, system geometry, and patient position for all models generated with PCXMC. Using the calculated fluence for constant tumor SNR, the results from PCXMC were used to compare the patient dose for a given SNR between SBDX and fluoroscopy. Results: Tomographic angle changes with SDD only in the region near the detector. Due to their geometry, the source array and detector have a peak tomographic angle for any given SDD at a source to tumor distance that is 69.7% of the SDD assuming constant source and detector size. Changing the patient location in order to increase tomographic angle has a significant effect on organ dose distribution due to geometrical considerations. With SBDX and fluoroscopy geometries, the dose to organs typically changes in an opposing manner with changing patient location. When tumor SNR is held constant (i.e., x-ray fluence is scaled appropriately), SBDX gives 2–10 times less dose than fluoroscopy for the same conditions within the typical range of patient locations. The relative position of the patient (as a percent of SDD) has a much more significant impact on dose than either SDD or patient position. The patient position providing the minimum dose for a given tumor SNR and SDD is approximately the same as the position of maximum tomographic angle. Conclusions: SBDX offers a significant dose advantage over currently used C-arm fluoroscopy. The patient location with lowest dose coincides with the location of maximum tomographic angle. In order to provide adequate space for the patient and for the pulmonologists’ equipment, a SDD of 100 cm is recommended. PMID:24320450

  16. A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam

    PubMed Central

    Terada, K.; Ninomiya, K.; Osawa, T.; Tachibana, S.; Miyake, Y.; Kubo, M. K.; Kawamura, N.; Higemoto, W.; Tsuchiyama, A.; Ebihara, M.; Uesugi, M.

    2014-01-01

    The recent development of the intense pulsed muon source at J-PARC MUSE, Japan Proton Accelerator Research Complex/MUon Science Establishment (106?s?1 for a momentum of 60?MeV/c), enabled us to pioneer a new frontier in analytical sciences. Here, we report a non-destructive elemental analysis using µ? capture. Controlling muon momentum from 32.5 to 57.5?MeV/c, we successfully demonstrate a depth-profile analysis of light elements (B, C, N, and O) from several mm-thick layered materials and non-destructive bulk analyses of meteorites containing organic materials. Muon beam analysis, enabling a bulk analysis of light to heavy elements without severe radioactivation, is a unique analytical method complementary to other non-destructive analyses. Furthermore, this technology can be used as a powerful tool to identify the content and distribution of organic components in future asteroidal return samples. PMID:24861282

  17. A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam.

    PubMed

    Terada, K; Ninomiya, K; Osawa, T; Tachibana, S; Miyake, Y; Kubo, M K; Kawamura, N; Higemoto, W; Tsuchiyama, A; Ebihara, M; Uesugi, M

    2014-01-01

    The recent development of the intense pulsed muon source at J-PARC MUSE, Japan Proton Accelerator Research Complex/MUon Science Establishment (10(6)?s(-1) for a momentum of 60?MeV/c), enabled us to pioneer a new frontier in analytical sciences. Here, we report a non-destructive elemental analysis using µ(-) capture. Controlling muon momentum from 32.5 to 57.5?MeV/c, we successfully demonstrate a depth-profile analysis of light elements (B, C, N, and O) from several mm-thick layered materials and non-destructive bulk analyses of meteorites containing organic materials. Muon beam analysis, enabling a bulk analysis of light to heavy elements without severe radioactivation, is a unique analytical method complementary to other non-destructive analyses. Furthermore, this technology can be used as a powerful tool to identify the content and distribution of organic components in future asteroidal return samples. PMID:24861282

  18. Investigation of the Distribution of Elements in Snail Shell With the use of Synchrotron-Based, Micro-Beam X-ray Fluorescence Spectrometry

    SciTech Connect

    Rao, D.; Swapna, M; Cesareo, R; Brunetti, A; Akatsuka, T; Yuasa, T; Takeda, T; Tromba, G; Gigante, G

    2009-01-01

    In this study, synchrotron-based micro-beam was utilized for elemental mapping of a small animal shell. A thin X-ray spot of the order of {approx}10 em was focused on the sample. With this spatial resolution and high flux throughput, the X-ray fluorescent intensities for Ca, Mn, Fe, Ni, Zn, Cr and Cu were measured using a liquid-nitrogen-cooled 13-element energy-dispersive HpGe detector. The sample is scanned in a estep-and-repeat' mode for fast elemental mapping and generated elemental maps at 8, 10 and 12 keV. All images are of 10 em resolution and the measurement time was 1 s per point. The accumulation of trace elements was investigated from the soft-tissue in small areas. Analysis of the small areas will be better suited to establish the physiology of metals in specific structures like small animal shell and the distribution of other trace elements.

  19. Physical dose distribution due to multi-sliced kV X-ray beam in labeled tissue-like media: An experimental approach

    Microsoft Academic Search

    M. Ghasemi; O. R. Kakuee; V. Fathollahi; A. Shahvar; M. Mohati; M. Ghafoori

    2011-01-01

    Radiotherapy remains a major modality of cancer therapy. Thanks to high flux and high brilliance of synchrotron-generated X-ray, laboratory research with planar microscopically thin X-ray beam promise exciting new opportunities for treatment of cancer. High tolerance of normal tissues at doses up to several hundred Gy in a single dose fraction and preferential damage of tumors at very high doses

  20. EFFECTS OF GEOMETRIC DISTORTIONS ON THE BACKGROUND INTENSITY DISTRIBUTION IN X-RAY OR NEUTRON CRYSTALLOGRAMS

    Microsoft Academic Search

    Krivoglaz

    1959-01-01

    The background distribution near the lines or spots in Debye or Laue ; crystallograms was investigated. The scattering is induced by variability of ; atomic scattering factors and atomic radii. Formulas are derived for determining ; correlation parameters (considering the geometric deformations) according to ; experimentally distributed background intensities on Debye crystallograms. ; (R.V.J.);

  1. Diamond X-ray Photodiode for White and Monochromatic SR beams.

    PubMed

    Keister, Jeffrey W; Smedley, John; Muller, Erik M; Bohon, Jen; Héroux, Annie

    2011-09-01

    High purity, single crystal CVD diamond plates are screened for quality and instrumented into a sensor assembly for quantitative characterization of flux and position sensitivity. Initial investigations have yielded encouraging results and have led to further development. Several limiting complications are observed and discussed, as well as mitigations thereof. For example, diamond quality requirements for x-ray diodes include low nitrogen impurity and crystallographic defectivity. Thin electrode windows and electronic readout performance are ultimately also critical to device performance. Promising features observed so far from prototype devices include calculable responsivity, flux linearity, position sensitivity and timing performance. Recent results from testing in high flux and high speed applications are described. PMID:21822344

  2. Diamond X-ray Photodiode for White and Monochromatic SR beams

    PubMed Central

    Keister, Jeffrey W.; Smedley, John; Muller, Erik M.; Bohon, Jen; Héroux, Annie

    2011-01-01

    High purity, single crystal CVD diamond plates are screened for quality and instrumented into a sensor assembly for quantitative characterization of flux and position sensitivity. Initial investigations have yielded encouraging results and have led to further development. Several limiting complications are observed and discussed, as well as mitigations thereof. For example, diamond quality requirements for x-ray diodes include low nitrogen impurity and crystallographic defectivity. Thin electrode windows and electronic readout performance are ultimately also critical to device performance. Promising features observed so far from prototype devices include calculable responsivity, flux linearity, position sensitivity and timing performance. Recent results from testing in high flux and high speed applications are described. PMID:21822344

  3. X-ray phase contrast imaging using a broadband X-ray beam and a single phase grating used in its achromatic and propagation-invariant regime

    NASA Astrophysics Data System (ADS)

    Rizzi, J.; Mercère, P.; Idir, M.; Guérineau, N.; Sakat, E.; Haïdar, R.; Vincent, G.; Da Silva, P.; Primot, J.

    2013-03-01

    Recently, Onera developed a new interferometer for X-ray phase contrast imaging. This device uses a single phase grating and takes advantage of the incident light spectral bandwidth to create an achromatic and propagation-invariant pattern. This very simple setup produces highly contrasted interferograms after a certain distance of propagation. Our first quantitative images are presented in this paper and the performances of the device are discussed.

  4. Evaluation of optimization methods for intensity-based 2D-3D registration in x-ray guided interventions

    NASA Astrophysics Data System (ADS)

    van der Bom, I. M. J.; Klein, S.; Staring, M.; Homan, R.; Bartels, L. W.; Pluim, J. P. W.

    2011-03-01

    The advantage of 2D-3D image registration methods versus direct image-to-patient registration, is that these methods generally do not require user interaction (such as manual annotations), additional machinery or additional acquisition of 3D data. A variety of intensity-based similarity measures has been proposed and evaluated for different applications. These studies showed that the registration accuracy and capture range are influenced by the choice of similarity measure. However, the influence of the optimization method on intensity-based 2D-3D image registration has not been investigated. We have compared the registration performance of seven optimization methods in combination with three similarity measures: gradient difference, gradient correlation, and pattern intensity. Optimization methods included in this study were: regular step gradient descent, Nelder-Mead, Powell-Brent, Quasi-Newton, nonlinear conjugate gradient, simultaneous perturbation stochastic approximation, and evolution strategy. Registration experiments were performed on multiple patient data sets that were obtained during cerebral interventions. Various component combinations were evaluated on registration accuracy, capture range, and registration time. The results showed that for the same similarity measure, different registration accuracies and capture ranges were obtained when different optimization methods were used. For gradient difference, largest capture ranges were obtained with Powell-Brent and simultaneous perturbation stochastic approximation. Gradient correlation and pattern intensity had the largest capture ranges in combination with Powell-Brent, Nelder-Mead, nonlinear conjugate gradient, and Quasi-Newton. Average registration time, expressed in the number of DRRs required for convergence, was the lowest for Powell-Brent. Based on these results, we conclude that Powell-Brent is a reliable optimization method for intensity-based 2D-3D registration of x-ray images to CBCT, regardless of the similarity measure used.

  5. Determining X-Ray Source Intensity and Confidence Bounds in Crowded Fields

    E-print Network

    Primini, F A

    2014-01-01

    We present a rigorous description of the general problem of aperture photometry in high energy astrophysics photon-count images, in which the statistical noise model is Poisson, not Gaussian. We compute the full posterior probability density function for the expected source intensity for various cases of interest, including the important cases in which both source and background apertures contain contributions from the source, and when multiple source apertures partially overlap. A Bayesian approach offers the advantages that it allows one to (a) include explicit prior information on source intensities, (b) propagate posterior distributions as priors for future observations, and (c) use Poisson likelihoods, making the treatment valid in the low counts regime. Elements of this approach have been implemented in the Chandra Source Catalog.

  6. Determining X-Ray Source Intensity and Confidence Bounds in Crowded Fields

    NASA Astrophysics Data System (ADS)

    Primini, F. A.; Kashyap, V. L.

    2014-11-01

    We present a rigorous description of the general problem of aperture photometry in high-energy astrophysics photon-count images, in which the statistical noise model is Poisson, not Gaussian. We compute the full posterior probability density function for the expected source intensity for various cases of interest, including the important cases in which both source and background apertures contain contributions from the source, and when multiple source apertures partially overlap. A Bayesian approach offers the advantages of allowing one to (1) include explicit prior information on source intensities, (2) propagate posterior distributions as priors for future observations, and (3) use Poisson likelihoods, making the treatment valid in the low-counts regime. Elements of this approach have been implemented in the Chandra Source Catalog.

  7. Detection of 1 - 100 keV x-rays from high intensity, 500 fs laser- produced plasmas using charge-coupled devices

    SciTech Connect

    Dunn, J.; Young, B.K.F.; Conder, A.D.; Stewart, R.E.

    1996-01-01

    We describe a compact, vacuum compatible, large format, charge- coupled device (CCD) camera for scientific imaging and detection of 1- 100 keV x rays in experiments at LLNL JANUS-1ps laser. A standard, front-illuminated, multi-pin phase device with 250 k electron full well capacity, low dark current (10 pA/cm{sup 2} at 20 C) and low read noise (5 electron rms) is cooled to -35 C to give the camera excellent 15-bit dynamic range and signal-to-noise response. Intensity and x-ray energy linear response were determined for optical and x-ray (<65 keV) photons and are in excellent agreement. Departure from linearity was less than 0.7%. Inherent linearity and energy dispersive characteristics of CCD cameras are well suited for hard x-ray photon counting. X-rays absorbed within the depletion and field-free regions can be distinguished by studying the pulse height spectrum. Results are presented for the detection of 1-100 keV Bremsstrahlung continuum, K-shell and L-shell fluorescence spectra emitted from high intensity (10{sup 18}W cm{sup -2}), 500 fs laser- produced plasmas.

  8. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source (HTPD 08 paper)

    Microsoft Academic Search

    M Haugh; M B Schneider

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation.

  9. High energy white beam x-ray diffraction studies of residual strains in engineering components

    NASA Astrophysics Data System (ADS)

    Zhang, S. Y.; Vorster, W.; Jun, T. S.; Song, X.; Golshan, M.; Laundy, D.; Walsh, M. J.; Korsunsky, A. M.

    2008-09-01

    In order to predict the durability of engineering components and improve performance, it is mandatory to understand residual stresses. The last decade has witnessed a significant increase of residual stress evaluation using diffraction of penetrating radiation, such as neutrons or high energy X-rays. They provide a powerful non-destructive method for determining the level of residual stresses in engineering components through precise characterisation of interplanar crystal lattice spacing. The unique non-destructive nature of these measurement techniques is particularly beneficial in the context of engineering design, since it allows the evaluation of a variety of structural and deformational parameters inside real components without material removal, or at worst with minimal interference. However, while most real engineering components have complex shape and are often large in size, leading to measurement and interpretation difficulties, since experimental facilities usually have limited space for mounting the sample, limited sample travel range, limited loading capacity of the sample positioning system, etc. Consequently, samples often have to be sectioned, requiring appropriate corrections on measured data; or facilities must be improved. Our research group has contributed to the development of engineering applications of high-energy X-ray diffraction methods for residual stress evaluation, both at synchrotron sources and in the lab setting, including multiple detector setup, large engineering component manipulation and measurement at the UK Synchrotron Radiation Source (SRS Daresbury), and in our lab at Oxford. A nickel base superalloy combustion casing and a large MIG welded Al alloy plate were successfully studied.

  10. Cone beam x-ray luminescence computed tomography reconstruction with a priori anatomical information

    NASA Astrophysics Data System (ADS)

    Lo, Pei-An; Lin, Meng-Lung; Jin, Shih-Chun; Chen, Jyh-Cheng; Lin, Syue-Liang; Chang, C. Allen; Chiang, Huihua Kenny

    2014-09-01

    X-ray luminescence computed tomography (XLCT) is a novel molecular imaging modality that reconstructs the optical distribution of x-ray-excited phosphor particles with prior informational of anatomical CT image. The prior information improves the accuracy of image reconstruction. The system can also present anatomical CT image. The optical system based on a high sensitive charge coupled device (CCD) is perpendicular with a CT system. In the XLCT system, the xray was adopted to excite the phosphor of the sample and CCD camera was utilized to acquire luminescence emitted from the sample in 360 degrees projection free-space. In this study, the fluorescence diffuse optical tomography (FDOT)-like algorithm was used for image reconstruction, the structural prior information was incorporated in the reconstruction by adding a penalty term to the minimization function. The phosphor used in this study is Gd2O2S:Tb. For the simulation and experiments, the data was collected from 16 projections. The cylinder phantom was 40 mm in diameter and contains 8 mm diameter inclusion; the phosphor in the in vivo study was 5 mm in diameter at a depth of 3 mm. Both the errors were no more than 5%. Based on the results from these simulation and experimental studies, the novel XLCT method has demonstrated the feasibility for in vivo animal model studies.

  11. X-ray second harmonic generation.

    PubMed

    Shwartz, S; Fuchs, M; Hastings, J B; Inubushi, Y; Ishikawa, T; Katayama, T; Reis, D A; Sato, T; Tono, K; Yabashi, M; Yudovich, S; Harris, S E

    2014-04-25

    We report clear experimental evidence for second harmonic generation at hard x-ray wavelengths. Using a 1.7 Å pumping beam generated by a free electron laser, we observe second harmonic generation in diamond. The generated second harmonic is of order 10 times the background radiation, scales quadratically with pump pulse energy, and is generated over a narrow phase-matching condition. Of importance for future experiments, our results indicate that it is possible to observe nonlinear x-ray processes in crystals at pump intensities exceeding 1016??W/cm2. PMID:24815649

  12. In-Beam and Off-Beam PET Measurements of Target Activation by Megavolt X-Ray Beams

    Microsoft Academic Search

    Daniela Kunath; Thomas Kluge; Jörg Pawelke; Marlen Priegnitz; Wolfgang Enghardt

    2009-01-01

    In-beam positron emission tomography (in-beam PET) is a valuable in situ method for quality assurance in radiation therapy. It is well investigated for therapy with carbon ions and has been successfully implemented clinically at the Gesellschaft for Schwerionenforschung (GSI), Darmstadt, Germany. The extension of this efficient technique to other radiation treatment modalities may be worthwhile. For protons, 3He, 7Li, and

  13. Electron beam dynamics and hard X-ray bremsstrahlung polarization in a flaring loop with return current and converging magnetic field

    Microsoft Academic Search

    V. V. Zharkova; J. C. Brown; D. V. Syniavskii

    1995-01-01

    In a kinetic approach the electron beam dynamics and its effect on the hard X-ray bremsstrahlung emission are investigated in flaring loops with the atmospheres taken from previously calculated hydrodynamical models. The electron beam is assumed to have a power law distribution in energy and to precipitate from the top of the loop in the corona into the chromosphere. The

  14. X-Ray Spacing

    NSDL National Science Digital Library

    David Barthelmy

    This site features a collection of single-phase X-ray powder diffraction patterns for the three most intense D values of an extensive list of minerals. The information is presented in the form of tables of interplanar spacings (D), relative intensities, hkl plane. There are also links to more information about each mineral, such as chemical formula, composition, environment, and name origin.

  15. Dynamics of hollow atom formation in intense x-ray pulses probed by partial covariance mapping.

    PubMed

    Frasinski, L J; Zhaunerchyk, V; Mucke, M; Squibb, R J; Siano, M; Eland, J H D; Linusson, P; v d Meulen, P; Salén, P; Thomas, R D; Larsson, M; Foucar, L; Ullrich, J; Motomura, K; Mondal, S; Ueda, K; Osipov, T; Fang, L; Murphy, B F; Berrah, N; Bostedt, C; Bozek, J D; Schorb, S; Messerschmidt, M; Glownia, J M; Cryan, J P; Coffee, R N; Takahashi, O; Wada, S; Piancastelli, M N; Richter, R; Prince, K C; Feifel, R

    2013-08-16

    When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called "partial covariance mapping" to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments. PMID:23992061

  16. Dynamics of Hollow Atom Formation in Intense X-Ray Pulses Probed by Partial Covariance Mapping

    NASA Astrophysics Data System (ADS)

    Frasinski, L. J.; Zhaunerchyk, V.; Mucke, M.; Squibb, R. J.; Siano, M.; Eland, J. H. D.; Linusson, P.; v. d. Meulen, P.; Salén, P.; Thomas, R. D.; Larsson, M.; Foucar, L.; Ullrich, J.; Motomura, K.; Mondal, S.; Ueda, K.; Osipov, T.; Fang, L.; Murphy, B. F.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Schorb, S.; Messerschmidt, M.; Glownia, J. M.; Cryan, J. P.; Coffee, R. N.; Takahashi, O.; Wada, S.; Piancastelli, M. N.; Richter, R.; Prince, K. C.; Feifel, R.

    2013-08-01

    When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called “partial covariance mapping” to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.

  17. Effect of pH treatment on K-shell x-ray intensity ratios and K-shell x-ray-production cross sections in ZnCo alloys

    SciTech Connect

    Kup Aylikci, N.; Aylikci, V.; Tirasoglu, E.; Cengiz, E. [Department of Physics, Faculty of Sciences, Karadeniz Technical University, TR-61080 Trabzon (Turkey); Kahoul, A. [Bordj-Bou-Arreridj University Center, Institute of Science and Technology, 34000 (Algeria); Physics Department, Laboratory LESIMS, Ferhat Abbas University, Faculty of Science, 19000 Setif (Algeria); Karahan, I. H. [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, TR-31040 Hatay (Turkey)

    2011-10-15

    In this study, empirical and semiempirical K-shell fluorescence yields ({omega}{sub K}) and K{beta}/K{alpha} intensity ratios from the available experimental data for elements with 23{<=}Z{<=}30 were calculated to compare them with elements in different alloys. The experimental data are fitted using the quantity [{omega}{sub K}/(1-{omega}{sub K})]{sup 1/4} vs Z to deduce the empirical K-shell fluorescence yields and K{beta}/K{alpha} intensity ratios. The empirical and semiempirical K-shell fluorescence yield values were used to calculate the K x-ray-production cross-section values for pure Co and Zn elements. Also, {sigma}{sub K{alpha}}, {sigma}{sub K{beta}} production cross sections and K{beta}/K{alpha} intensity ratios of Co and Zn have been measured in pure metals and in different alloy compositions which have different pH values. The samples were excited by 59.5-keV {gamma} rays from a {sup 241}Am annular radioactive source. K x rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The effect of pH values on alloy compositions and the effect of alloying on the fluorescence parameters of Co and Zn were investigated. The x-ray fluorescence parameters of Co and Zn in the alloying system indicate significant differences with respect to the pure metals. These differences are attributed to the reorganization of valence shell electrons and/or charge transfer phenomena.

  18. Physical dose distribution due to multi-sliced kV X-ray beam in labeled tissue-like media: an experimental approach.

    PubMed

    Ghasemi, M; Kakuee, O R; Fathollahi, V; Shahvar, A; Mohati, M; Ghafoori, M

    2011-02-01

    Radiotherapy remains a major modality of cancer therapy. Thanks to high flux and high brilliance of synchrotron-generated X-ray, laboratory research with planar microscopically thin X-ray beam promise exciting new opportunities for treatment of cancer. High tolerance of normal tissues at doses up to several hundred Gy in a single dose fraction and preferential damage of tumors at very high doses have been uniquely observed in animal models exposed to microbeams. The fact that beams as thick as 0.68 mm could retain a part of these effects, opens the possibility that the required beam can be produced by high power X-ray tubes besides a dedicated synchrotron. Fortunately, dose distribution due to kilovolt X-rays could be enhanced by the introduction of high-Z contrast agents to tissue-like media. In this work, dose deposition in a phantom--partially loaded with Au and I as contrast agents--irradiated by multi-sliced kV X-ray beam was experimentally investigated in the peak and valley regions both on the surface and in the depth of phantom. The results of experimental dosimetry using Gaf-chromic films were compared with corresponding Monte-Carlo simulation. Relative reduction in the deposited dose in the peak regions downstream the area containing contrast agents in comparison with the adjacent areas was experimentally observed. PMID:21067934

  19. AMO instrumentation for the LCLS X-ray FEL

    Microsoft Academic Search

    J. D. Bozek

    2009-01-01

    Instrumentation is being developed to conduct atomic, molecular and optical science experiments at the Linac Coherent Light\\u000a Source x-ray free electron laser at the Stanford Linear Accelerator Center. This suite of instruments will be used to study\\u000a the interaction of the very intense x-ray beam with the simplest forms of matter, namely atoms, molecules and clusters. The\\u000a instrumentation will be

  20. A model-based correction method for beam hardening artefacts in X-ray tomography

    Microsoft Academic Search

    D Van Dyck; J Sijbers; E Raman

    The absorption law of Lambert-Beer gives rise to the linear relationship between the attenuation and the thickness of the material. However, this law is only true for a monochromatic beam. For polychromatic sources used in medical computer tomography (CT) and microtomography, this linear relationship no longer holds, which leads to beam hardening. When the beam hardening effect is not accounted

  1. Soft x-ray lasers

    SciTech Connect

    Matthews, D.L.; Rosen, M.D.

    1988-12-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.

  2. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  3. MRI to X-ray mammography intensity-based registration with simultaneous optimisation of pose and biomechanical transformation parameters.

    PubMed

    Mertzanidou, Thomy; Hipwell, John; Johnsen, Stian; Han, Lianghao; Eiben, Bjoern; Taylor, Zeike; Ourselin, Sebastien; Huisman, Henkjan; Mann, Ritse; Bick, Ulrich; Karssemeijer, Nico; Hawkes, David

    2014-05-01

    Determining corresponding regions between an MRI and an X-ray mammogram is a clinically useful task that is challenging for radiologists due to the large deformation that the breast undergoes between the two image acquisitions. In this work we propose an intensity-based image registration framework, where the biomechanical transformation model parameters and the rigid-body transformation parameters are optimised simultaneously. Patient-specific biomechanical modelling of the breast derived from diagnostic, prone MRI has been previously used for this task. However, the high computational time associated with breast compression simulation using commercial packages, did not allow the optimisation of both pose and FEM parameters in the same framework. We use a fast explicit Finite Element (FE) solver that runs on a graphics card, enabling the FEM-based transformation model to be fully integrated into the optimisation scheme. The transformation model has seven degrees of freedom, which include parameters for both the initial rigid-body pose of the breast prior to mammographic compression, and those of the biomechanical model. The framework was tested on ten clinical cases and the results were compared against an affine transformation model, previously proposed for the same task. The mean registration error was 11.6±3.8mm for the CC and 11±5.4mm for the MLO view registrations, indicating that this could be a useful clinical tool. PMID:24727358

  4. X-ray crystal interferometers

    NASA Astrophysics Data System (ADS)

    Lider, V. V.

    2014-11-01

    Various configurations of the X-ray crystal interferometer are reviewed. The interferometer applications considered include metrology, the measurement of fundamental physical constants, the study of weakly absorbing phase objects, time-resolved diagnostics, the determination of hard X-ray beam parameters, and the characterization of structural defects in the context of developing an X-ray Michelson interferometer. The three-crystal Laue interferometer (LLL-interferometer), its design, and the experimental opportunities it offers are given particular attention.

  5. Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue.

    PubMed

    Bräuer-Krisch, E; Serduc, R; Siegbahn, E A; Le Duc, G; Prezado, Y; Bravin, A; Blattmann, H; Laissue, J A

    2010-01-01

    Microbeam radiation therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600keV, produced by third generation synchrotron sources, such as the European Synchrotron Radiation Facility (ESRF), in France. The main advantages of highly brilliant synchrotron sources are an extremely high dose rate and very small beam divergence. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. The minimal beam divergence results in the advantage of steeper dose gradients delivered to a tumor target, thus achieving a higher dose deposition in the target volume in fractions of seconds, with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has yielded many results from preclinical trials based on different animal models, including mice, rats, piglets and rabbits. Typically, MRT uses arrays of narrow ( approximately 25-100 microm wide) microplanar beams separated by wider (100-400 microm centre-to-centre) microplanar spaces. The height of these microbeams typically varies from 1 to 100 mm, depending on the target and the desired preselected field size to be irradiated. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues, up to approximately 2 yr after irradiation, and at the same time show a preferential damage of malignant tumor tissues; these effects of MRT have now been extensively studied over nearly two decades. More recently, some biological in vivo effects of synchrotron X-ray beams in the millimeter range (0.68-0.95 mm, centre-to-centre distances 1.2-4 mm), which may differ to some extent from those of microscopic beams, have been followed up to approximately 7 months after irradiation. Comparisons between broad-beam irradiation and MRT indicate a higher tumor control for the same sparing of normal tissue in the latter, even if a substantial fraction of tumor cells are not receiving a radiotoxic level of radiation. The hypothesis of a selective radiovulnerability of the tumor vasculature versus normal blood vessels by MRT, and of the cellular and molecular mechanisms involved remains under investigation. The paper highlights the history of MRT including salient biological findings after microbeam irradiation with emphasis on the vascular components and the tolerance of the central nervous system. Details on experimental and theoretical dosimetry of microbeams, core issues and possible therapeutic applications of MRT are presented. PMID:20034592

  6. Risk of Secondary Malignant Neoplasms From Proton Therapy and Intensity-Modulated X-Ray Therapy for Early-Stage Prostate Cancer

    SciTech Connect

    Fontenot, Jonas D. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Lee, Andrew K. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Newhauser, Wayne D. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)], E-mail: wnewhaus@mdanderson.org

    2009-06-01

    Purpose: To assess the risk of a secondary malignant neoplasm (SMN) from proton therapy relative to intensity-modulated radiation therapy (IMRT) using X-rays, taking into account contributions from both primary and secondary sources of radiation, for prostate cancer. Methods and Materials: A proton therapy plan and a 6-MV IMRT plan were constructed for 3 patients with early-stage adenocarcinoma of the prostate. Doses from the primary fields delivered to organs at risk of developing an SMN were determined from treatment plans. Secondary doses from the proton therapy and IMRT were determined from Monte Carlo simulations and available measured data, respectively. The risk of an SMN was estimated from primary and secondary doses on an organ-by-organ basis by use of risk models from the Committee on the Biological Effects of Ionizing Radiation. Results: Proton therapy reduced the risk of an SMN by 26% to 39% compared with IMRT. The risk of an SMN for both modalities was greatest in the in-field organs. However, the risks from the in-field organs were considerably lower with the proton therapy plan than with the IMRT plan. This reduction was attributed to the substantial sparing of the rectum and bladder from exposure to the therapeutic beam by the proton therapy plan. Conclusions: When considering exposure to primary and secondary radiation, proton therapy can reduce the risk of an SMN in prostate patients compared with contemporary IMRT.

  7. Development and operation of a prototype cone-beam computed tomography system for X-ray medical imaging

    NASA Astrophysics Data System (ADS)

    Seo, Chang-Woo; Cha, Bo Kyung; Kim, Ryun Kyung; Kim, Cho-Rong; Yang, Keedong; Huh, Young; Jeon, Sungchae; Park, Justin C.; Song, Bongyong; Song, William Y.

    2014-01-01

    This paper describes the development of a prototype cone-beam computed tomography (CBCT) system for clinical use. The overall system design in terms of physical characteristics, geometric calibration methods, and three-dimensional image reconstruction algorithms are described. Our system consists of an X-ray source and a large-area flat-panel detector with the axial dimension large enough for most clinical applications when acquired in a full gantry rotation mode. Various elaborate methods are applied to measure, analyze and calibrate the system for imaging. The electromechanical and the radiographic subsystems through the synchronized control include: gantry rotation and speed, tube rotor, the high-frequency generator (kVp, mA, exposure time and repetition rate), and the reconstruction server (imaging acquisition and reconstruction). The operator can select between analytic and iterative reconstruction methods. Our prototype system contains the latest hardware and reconstruction algorithms and, thus, represents a step forward in CBCT technology.

  8. Research and Design of a Sample Heater for Beam Line 6-2c Transmission X-ray Microscope

    SciTech Connect

    Policht, Veronica; /Loyola U., Chicago /SLAC

    2012-08-27

    There exists a need for environmental control of samples to be imaged by the Transmission X-Ray Microscope (TXM) at the SSRLs Beam Line 6-2c. In order to observe heat-driven chemical or morphological changes that normally occur in situ, microscopes require an additional component that effectively heats a given sample without heating any of the microscope elements. The confinement of the heat and other concerns about the heaters integrity limit which type of heater is appropriate for the TXM. The bulk of this research project entails researching different heating methods used previously in microscopes, but also in other industrial applications, with the goal of determining the best-fitting method, and finally in designing a preliminary sample heater.

  9. The features of identifying lines in a diffraction image formed by a widely divergent X-ray beam

    SciTech Connect

    Avetyan, K. T., E-mail: nazaryan.ernest@netsys.am; Levonyan, L. V.; Arakelyan, M. M., E-mail: marakelyan@ysu.am; Semerjian, H. S.; Grigoryan, P. A.; Hovhannisyan, G. M. [Yerevan State University (Armenia)

    2009-05-15

    A method for identifying lines in a diffraction image formed by a widely divergent X-ray beam and a technique for measuring the crystal structure parameters in the case of asymmetric crystal position have been developed. It is established that, once the distances between a crystal and a photographic plate and between the points of intersection of the hyperbola branches in a diffraction image are known, one can determine the angle between the crystal's zone axis and the wave vector, which leads to multiwave diffraction. Relations linking this angle with the parameters of two atomic planes are obtained. It is found that, to measure the parameters of atomic planes belonging to a given zone, one can use different sets of crossed hyperbolas formed by radiations K{sub {alpha}} and K{sub {beta}}. The measurements and calculations performed for the same sample (Si crystal), mounted symmetrically and asymmetrically, confirm the reliability of the proposed method.

  10. Realizing in-plane surface diffraction by x-ray multiple-beam diffraction with large incidence angle

    SciTech Connect

    Huang, Xian-Rong, E-mail: xiahuang@aps.anl.gov; Gog, Thomas; Assoufid, Lahsen [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Siddons, D. P. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-11-03

    Based on rigorous dynamical-theory calculations, we demonstrate the principle of an x-ray multiple-beam diffraction (MBD) scheme that overcomes the long-lasting difficulties of high-resolution in-plane diffraction from crystal surfaces. This scheme only utilizes symmetric reflection geometry with large incident angles but activates the out-of-plane and in-plane diffraction processes simultaneously and separately in the continuous MBD planes. The in-plane diffraction is realized by detoured MBD, where the intermediate diffracted waves propagate parallel to the surface, which corresponds to an absolute Bragg surface diffraction configuration that is extremely sensitive to surface structures. A series of MBD diffraction and imaging techniques may be developed from this principle to study surface/interface (misfit) strains, lateral nanostructures, and phase transitions of a wide range of (pseudo)cubic crystal structures, including ultrathin epitaxial films and multilayers, quantum dots, strain-engineered semiconductor or (multi)ferroic materials, etc.

  11. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K.; Kirkby, N.; Thopan, P.; Yu, L. D.

    2013-07-01

    As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  12. EXACTRAC x-ray and beam isocenters--What's the difference?

    SciTech Connect

    Tideman Arp, Dennis; Carl, Jesper [Department of Medical Physics, Oncology, Aalborg Hospital, Aarhus University Hospital, Hobrovej 18-22, DK-9100 Aalborg (Denmark)

    2012-03-15

    Purpose: To evaluate the geometric accuracy of the isocenter of an image-guidance system, as implemented in the exactrac system from brainlab, relative to the linear accelerator radiation isocenter. Subsequently to correct the x-ray isocenter of the exactrac system for any geometric discrepancies between the two isocenters. Methods: Five Varian linear accelerators all equipped with electronic imaging devices and exactrac with robotics from brainlab were evaluated. A commercially available Winston-Lutz phantom and an in-house made adjustable base were used in the setup. The electronic portal imaging device of the linear accelerators was used to acquire MV-images at various gantry angles. Stereoscopic pairs of x-ray images were acquired using the exactrac system. The deviation between the position of the external laser isocenter and the exactrac isocenter was evaluated using the commercial software of the exactrac system. In-house produced software was used to analyze the MV-images and evaluate the deviation between the external laser isocenter and the radiation isocenter of the linear accelerator. Subsequently, the deviation between the radiation isocenter and the isocenter of the exactrac system was calculated. A new method of calibrating the isocenter of the exactrac system was applied to reduce the deviations between the radiation isocenter and the exactrac isocenter. Results: To evaluate the geometric accuracy a 3D deviation vector was calculated for each relative isocenter position. The 3D deviation between the external laser isocenter and the isocenter of the exactrac system varied from 0.21 to 0.42 mm. The 3D deviation between the external laser isocenter and the linac radiation isocenter ranged from 0.37 to 0.83 mm. The 3D deviation between the radiation isocenter and the isocenter of the exactrac system ranged from 0.31 to 1.07 mm. Using the new method of calibrating the exactrac isocenter the 3D deviation of one linac was reduced from 0.90 to 0.23 mm. The results were complicated due to routine maintenance of the linac, including laser calibration. It was necessary to repeat the measurements in order to perform the calibration of the exactrac isocenter. Conclusions: The deviations between the linac radiation isocenter and the exactrac isocenter were of an order that may have clinical relevance. An alternative method of calibrating the isocenter of the exactrac system was applied and reduced the deviations between the two isocenters.

  13. Calibration of the Gamma-RAy Polarimeter Experiment (GRAPE) at a Polarized Hard X-Ray Beam

    E-print Network

    P. F. Bloser; J. S. Legere; M. L. McConnell; J. R. Macri; C. M. Bancroft; T. P. Connor; J. M. Ryan

    2008-12-03

    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50 - 500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module containing a single CsI(Na) calorimeter element, at the center of the MAPMT, surrounded by 60 plastic elements. The prototype has been combined with custom readout electronics and software to create a complete "engineering model" of the GRAPE instrument. This engineering model has been calibrated using a nearly 100% polarized hard X-ray beam at the Advanced Photon Source at Argonne National Laboratory. We find modulation factors of 0.46 +/- 0.06 and 0.48 +/- 0.03 at 69.5 keV and 129.5 keV, respectively, in good agreement with Monte Carlo simulations. In this paper we present details of the beam test, data analysis, and simulations, and discuss the implications of our results for the further development of the GRAPE concept.

  14. Three-dimensional numerical analysis of convection and conduction cooling of spherical biocrystals with localized heating from synchrotron X-ray beams.

    PubMed

    Mhaisekar, Ashutosh; Kazmierczak, Michael J; Banerjee, Rupak

    2005-05-01

    The differential momentum and thermal energy equations for fluid flow and convective heat-transfer around the sample biocrystal, with coupled internal heat conduction, are solved using advanced computational fluid dynamics techniques. Average \\bar{h} as well as local h(theta) values of the convective heat-transfer coefficients are obtained from the fundamental equations. The results of these numerical solutions show the three-dimensional fluid flow field around the sample in conjunction with the detailed internal temperature distribution inside the crystal. The external temperature rise and maximum internal temperature increase are reported for various cases. The effect of the important system parameters, such as gas velocity and properties, crystal size and thermal conductivity and incident beam conditions (intensity and beam size), are all illustrated with comparative examples. For the reference case, an external temperature rise of 7 K and internal temperature increase of 0.5 K are calculated for a 200 microm-diameter cryocooled spherical biocrystal subjected to a 13 keV X-ray beam of 4 x 10(14) photons s(-1) mm(-2) flux density striking half the sample. For all the cases investigated, numerical analysis shows that the controlling thermal resistance is the rate of convective heat-transfer and not internal conduction. Thermal diffusion results in efficient thermal spreading of the deposited energy and this results in almost uniform internal crystal temperatures (DeltaT(internal) approximately 0.5 K), in spite of the non-uniform h(theta) with no more than 1.3 K internal temperature difference for the worst case of localized and focused beam heating. Rather, the major temperature variation occurs between the outer surface of the crystal/loop system and the gas stream, T(s) - T(gas), which itself is only about DeltaT(external) approximately 5-10 K, and depends on the thermal loading imposed by the X-ray beam, the rate of convection and the size of the loop/crystal system. PMID:15840917

  15. X-ray fluorescence and ion beam analysis of iridescent Art Nouveau glass – authenticity and technology

    Microsoft Academic Search

    D. Jembrih-Simbürger; C. Neelmeijer; M. Mäder; M. Schreiner

    2004-01-01

    EDXRF analysis with subsequent multivariate data analysis proves useful for the determination of the authenticity of iridescent glass artifacts. Thus, clusters of the glass groups investigated were formed which can be associated with the glass manufacturers. By means of ion beam analysis with the external proton beam the producing technology of iridescent glass objects of the Art Nouveau glass manufacturer

  16. Dosimetric studies of micropencil X-ray beam interacting with labelled tissues by Au and Gd agents using Geant4.

    PubMed

    Ghasemi, M; Shamsaei, M; Ghannadi, M; Raisali, G

    2009-01-01

    The aim of microbeam radiation therapy is to deliver a high dose to tumours while sparing adjacent healthy tissues. Recovery of normal tissues injured by the beam irradiation and ablation of tumour are dependent on the dose distribution generated by the incident microbeams. Using microbeams has the advantage that the areas outside the beams' trajectories (valley region) are poorly irradiated by the radiation scattered inside the tissues. Thus, the normal tissues not directly irradiated are adequately preserved, resulting in a rapid regeneration of blood vessels in the directly irradiated areas (peak region). The goal of this work was to study the effects of using gold (Au) and gadolinium (Gd) as dose enhancement factors on the radial dose distribution when target tissue is irradiated by a micropencil X-ray beam. The Monte Carlo Geant4 simulation program was used to evaluate dose distribution in the phantom in two phases. In phase 1, validity of this model based on Geant4 was evaluated by comparing the obtained results with those of the published reports. In phase 2 of this simulation, Au and Gd were introduced to the assumed cancerous cylindrical shell-shaped region both on the surface (i.e. in the 0-1 cm depth of phantom) and in the depth (i.e. in the 4-5 cm depth of phantom). Then the phantom was exposed to a micropencil beam mimicking the typical conditions used at the European synchrotron radiation facility in the simulated model. The simulated dose profiles indicate that introducing high Z elements considerably enhances the absorbed dose both in the beam path and in the surrounding region. However, this enhancement is more effective for Au in the beam path and for Gd in the surrounding region. This approach of introducing high Z elements leading to their accumulation in cancerous tissue could hopefully prepare new treatment planning of preclinical trials. PMID:19223291

  17. Producing X-rays at the APS

    SciTech Connect

    None

    2011-01-01

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  18. Producing X-rays at the APS

    ScienceCinema

    None

    2013-04-19

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  19. X-Ray Exam: Ankle

    MedlinePLUS

    What It Is An ankle X-ray is a safe and painless test that uses a small amount of radiation to make an image of the ankle. ... back part of the foot (tarsal bones). An X-ray machine sends a beam of radiation through ...

  20. X-ray microtomography

    SciTech Connect

    Landis, Eric N., E-mail: landis@maine.edu [Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04469 (United States); Keane, Denis T., E-mail: dtkeane@northwestern.edu [Department of Materials Science and Engineering, Northwestern University (United States); DND-CAT, Advanced Photon Source, Argonne National Laboratory, Bldg. 432/A002, 9700 S. Cass Ave, Argonne, Illinois 60439 (United States)

    2010-12-15

    In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

  1. Flat field anomalies in an x-ray charge coupled device camera measured using a Manson x-ray source

    SciTech Connect

    Haugh, M. J. [National Security Technologies, P.O. Box 2710, Livermore, California 94550 (United States); Schneider, M. B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2008-10-15

    The static x-ray imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the x rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The charge coupled device (CCD) chip is an x-ray sensitive silicon sensor, with a large format array (2kx2k), 24 {mu}m square pixels, and 15 {mu}m thick. A multianode Manson x-ray source, operating up to 10 kV and 10 W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/{delta}E{approx_equal}10. The x-ray beam intensity was measured using an x-ray photodiode that has an accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The x-ray beam provides full CCD illumination and is flat, within {+-}1% maximum to minimum. The spectral efficiency was measured at ten energy bands ranging from 930 to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an x-ray CCD imager. These errors are quite different from those found in a visible CCD imager.

  2. Spectroscopic investigations of hard x-ray emission from 120 ps laser-produced plasmas at intensities near 10{sup 17} W cm{sup {minus}2}

    SciTech Connect

    Dunn, J.; Young, B.K.F.; Osterheld, A.L.; Foord, M.E.; Walling, R.S.; Stewart, R.E. [Lawrence Livermore National Lab., CA (United States); Faenov, A.Y. [VINIFTRI, Mendeleevo, Moscow Region (Russian Federation)

    1995-11-01

    Spectroscopic investigations of the x-ray emission of plasmas heated by 120 ps, frequency doubled pulses from the JANUS Nd: glass laser are presented. High Z K-shell spectra emitted from slab targets heated to near 10{sup 17} W cm{sup {minus}2} intensity are investigated. High resolution ({gamma}/{Delta}{gamma}>5000) x-ray spectra of multicharged ions of H-like Ti, Co, Ni, Cu, and also H-like Sc in the spectral range 1.5--3.0 {angstrom} are obtained in single laser shots using a spherically bent Mica crystal spectrograph with a 186 mm radius of curvature. The spectra- have one dimensional spatial resolution of about 25{mu}m and indicate that the size of the emission zone of the resonance, transitions is <25{mu}m. Simultaneous x-ray images of the plasma from a charge-coupled device pinhole camera confirmed that the plasma x-ray emission is from a similar sized source. Survey spectra {gamma}/{Delta}{gamma}=500--1000) taken with a flat LiF (200) crystal spectrometer with a charge-coupled device detector complement the high resolution data. Two dimensional LASNEX modeling of the laser target conditions indicate that the high K-shell charge states are produced in the hot dense region of the plasma with electron temperature >2 keV and density{approximately}10{sup 22} cm{sup {minus}3}. These experiments demonstrate that with modest laser energy, plasmas heated by high-intensity 120 ps lasers provide a very bright source of hard {approximately}8 keV x-ray emission.

  3. Intragranular Lattice Misorientation Mapping by Synchrotron X-Ray Micro-Beams Laue VS Energy-Resolved Laue VS Monochromatic Reciprocal Space Analysis

    Microsoft Academic Search

    Felix Hofmann; Brian Abbey; Xu Song; Igor Dolbnya; Alexander M. Korsunsky

    2010-01-01

    Laue diffraction, energy scanning and reciprocal space mapping are three micro-beam synchrotron X-ray diffraction techniques allowing the investigation of local misorientation induced by the dislocation substructure. In this paper a comparison between the three methods is presented, based on the mapping of a single 311 reflection from a grain within a Ni polycrystal specimen deformed to a tensile plastic strain

  4. Mapping of mechanical, thermomechanical and wire-bond strain fields in packaged Si integrated circuits using synchrotron white beam X-ray topography

    Microsoft Academic Search

    Patrick J. McNally; R. Rantamaki; T. Tuomi; A. N. Danilewsky; Donnacha Lowney; John W. Curley; P. A. F. Herbert

    2001-01-01

    Thermal processing steps used during the production of packaged integrated circuits can lead to severe thermomechanical stresses. In addition, the process of bonding wires to contact pads can also lead to strain field generation. A feasibility study using the application of white beam synchrotron x-ray topography to packaged erasable programmable read-only memory (EPROM) Si integrated circuits (ICs) has been undertaken

  5. The Effect of the Electric Field Induced by Precipitating Electron Beams on Hard X-Ray Photon and Mean Electron Spectra

    Microsoft Academic Search

    Valentina V. Zharkova; Mykola Gordovskyy

    2006-01-01

    The effect of a self-induced electric field is investigated analytically and numerically on differential and mean electron spectra produced by beam electrons during their precipitation into a flaring atmosphere as well as on the emitted hard X-ray (HXR) photon spectra. The induced electric field is found to be a constant in upper atmospheric layers and to fall sharply in the

  6. Synthesis and evaluation of improved electron-beam and x-ray lithographic resist polymers. Final report 1 July 1979-31 December 1981

    SciTech Connect

    Pittman, C.U. Jr.

    1984-05-01

    It was the goal of this research to investigate the relationship between the chemical structure of polymers and the properties which would result in a new generation of lithographic resists for electron-beam and X-ray lithography. Thus, the synthesis of a variety of vinyl homopolymers, copolymers and terpolymers was undertaken where quaternary centers were present along the polymer backbone.

  7. A simple, direct method for x-ray scatter estimation and correction in digital radiography and cone-beam CT

    SciTech Connect

    Siewerdsen, J.H.; Daly, M.J.; Bakhtiar, B. [Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9 (Canada)] (and others)

    2006-01-15

    X-ray scatter poses a significant limitation to image quality in cone-beam CT (CBCT), resulting in contrast reduction, image artifacts, and lack of CT number accuracy. We report the performance of a simple scatter correction method in which scatter fluence is estimated directly in each projection from pixel values near the edge of the detector behind the collimator leaves. The algorithm operates on the simple assumption that signal in the collimator shadow is attributable to x-ray scatter, and the 2D scatter fluence is estimated by interpolating between pixel values measured along the top and bottom edges of the detector behind the collimator leaves. The resulting scatter fluence estimate is subtracted from each projection to yield an estimate of the primary-only images for CBCT reconstruction. Performance was investigated in phantom experiments on an experimental CBCT benchtop, and the effect on image quality was demonstrated in patient images (head, abdomen, and pelvis sites) obtained on a preclinical system for CBCT-guided radiation therapy. The algorithm provides significant reduction in scatter artifacts without compromise in contrast-to-noise ratio (CNR). For example, in a head phantom, cupping artifact was essentially eliminated, CT number accuracy was restored to within 3%, and CNR (breast-to-water) was improved by up to 50%. Similarly in a body phantom, cupping artifact was reduced by at least a factor of 2 without loss in CNR. Patient images demonstrate significantly increased uniformity, accuracy, and contrast, with an overall improvement in image quality in all sites investigated. Qualitative evaluation illustrates that soft-tissue structures that are otherwise undetectable are clearly delineated in scatter-corrected reconstructions. Since scatter is estimated directly in each projection, the algorithm is robust with respect to system geometry, patient size and heterogeneity, patient motion, etc. Operating without prior information, analytical modeling, or Monte Carlo, the technique is easily incorporated as a preprocessing step in CBCT reconstruction to provide significant scatter reduction.

  8. Optical Spectroscopy of High Intensity Electron Beam Plasmas^1

    NASA Astrophysics Data System (ADS)

    Johnston, Mark; Oliver, Bryan; Bruner, Nichelle; Welch, Dale; Maron, Yitzhak

    2012-10-01

    This talk will be an overview of spectroscopic results obtained on the RITS-6 accelerator at Sandia National Laboratories on the Self-Magnetic Pinch (SMP) electron beam diode. The SMP diode produces a focused (<3mm diameter), e-beam at 7MeV and 150kA, which is used as an intense, flash x-ray source. During the ˜45ns electron beam pulse, plasmas are generated on the electrode surfaces which propagate into the A-K vacuum gap, affecting the diode impedance, x-ray spectrum, and pulse-width. These plasmas are measured using a series of optical diagnostics including: streak cameras, ICCD cameras, and avalanche photodetectors. Visible spectroscopy is used to gather time and space information on these plasmas. Density and temperature calculations are made using detailed, time-dependent, collisional-radiative (CR) and radiation transport modelings. The results are then used in conjunction with hybrid PIC/fluid simulations to model the overall plasma behavior. Details regarding the data collection, system calibration, analyses, and interpretation of results will be presented. [4pt] ^1Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Optics for coherent X-ray applications

    PubMed Central

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-01-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8?II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1?km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10?nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986

  10. Low energy x-ray spectrometer

    SciTech Connect

    Woodruff, W.R.

    1981-06-05

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni L..cap alpha../sub 1/ /sub 2/ lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures.

  11. Phase-preserving beam expander for biomedical X-ray imaging.

    PubMed

    Martinson, Mercedes; Samadi, Nazanin; Bassey, Bassey; Gomez, Ariel; Chapman, Dean

    2015-05-01

    The BioMedical Imaging and Therapy beamlines at the Canadian Light Source are used by many researchers to capture phase-based imaging data. These experiments have so far been limited by the small vertical beam size, requiring vertical scanning of biological samples in order to image their full vertical extent. Previous work has been carried out to develop a bent Laue beam-expanding monochromator for use at these beamlines. However, the first attempts exhibited significant distortion in the diffraction plane, increasing the beam divergence and eliminating the usefulness of the monochromator for phase-related imaging techniques. Recent work has been carried out to more carefully match the polychromatic and geometric focal lengths in a so-called `magic condition' that preserves the divergence of the beam and enables full-field phase-based imaging techniques. The new experimental parameters, namely asymmetry and Bragg angles, were evaluated by analysing knife-edge and in-line phase images to determine the effect on beam divergence in both vertical and horizontal directions, using the flat Bragg double-crystal monochromator at the beamline as a baseline. The results show that by using the magic condition, the difference between the two monochromator types is less than 10% in the diffraction plane. Phase fringes visible in test images of a biological sample demonstrate that this difference is small enough to enable in-line phase imaging, despite operating at a sub-optimal energy for the wafer and asymmetry angle that was used. PMID:25931100

  12. Experimental Scatter Correction Methods in Industrial X-Ray Cone-Beam CT

    NASA Astrophysics Data System (ADS)

    Schörner, K.; Goldammer, M.; Stephan, J.

    2011-06-01

    Scattered radiation presents a major source of image degradation in industrial cone-beam computed tomography systems. Scatter artifacts introduce streaks, cupping and a loss of contrast in the reconstructed CT-volumes. In order to overcome scatter artifacts, we present two complementary experimental correction methods: the beam-stop array (BSA) and an inverse technique we call beam-hole array (BHA). Both correction methods are examined in comparative measurements where it is shown that the aperture-based BHA technique has practical and scatter-reducing advantages over the BSA. The proposed BHA correction method is successfully applied to a large-scale industrial specimen whereby scatter artifacts are reduced and contrast is enhanced significantly.

  13. Hadron Cancer Therapy - relative merits of X-ray, proton and carbon beams

    NASA Astrophysics Data System (ADS)

    Jakel, Oliver

    2014-03-01

    -Heidelberg University has a long experience in radiotherapy with carbon ions, starting with a pilot project at GSI in 1997. This project was jointly run by the Dep. for Radiation Oncology of Heidelberg University, GSI and the German Cancer Research Center (DKFZ). A hospital based heavy ion center at Heidelberg University, the Heidelberg Ion Beam Therapy Center (HIT) was proposed by the same group in 1998 and started clinical operation in late 2009. Since then nearly 2000 patients were treated with beams of carbon ions and protons. Just recently the operation of the world's first and only gantry for heavy ions also started at HIT. Patient treatments are performed in three rooms. Besides that, a lot of research projects are run in the field of Medical Physics and Radiobiology using a dedicated experimental area and the possibility to use beams of protons, carbon, helium and oxygen ions being delivered with the raster scanning technique.

  14. The longest observation of a low intensity state from a Supergiant Fast X-ray Transient: Suzaku observes IGRJ08408-4503

    E-print Network

    Sidoli, L; Ducci, L

    2010-01-01

    We report here on the longest deep X-ray observation of a SFXT outside outburst, with an average luminosity level of 1E33 erg/s (assuming 3 kpc distance). This observation was performed with Suzaku in December 2009 and was targeted on IGRJ08408-4503, with a net exposure with the X-ray imaging spectrometer (XIS, 0.4-10 keV) and the hard X-ray detector (HXD, 15-100 keV) of 67.4 ks and 64.7 ks, respectively, spanning about three days. The source was caught in a low intensity state characterized by an initially average X-ray luminosity level of 4E32 erg/s (0.5-10 keV) during the first 120 ks, followed by two long flares (about 45 ks each) peaking at a flux a factor of about 3 higher than the initial pre-flare emission. Both XIS spectra (initial emission and the two subsequent long flares) can be fitted with a double component spectrum, with a soft thermal plasma model together with a power law, differently absorbed. The spectral characteristics suggest that the source is accreting matter even at this very low int...

  15. X-ray yields from Xe clusters heated by short pulse high intensity lasers T. Ditmire, R. A. Smith, R. S. Marjoribanks,a)

    E-print Network

    Ditmire, Todd

    V are produced from clustering Xe gas targets when heated by 250 mJ, 2 ps laser pulses at an intensity of 1017 W the production of debris from laser ablation.3 The x-ray emission properties of gas targets have also been light and were focused into the output of a xenon gas jet with an f/12 lens, yielding a maximum peak

  16. Beam Damage of HS (CH2)15 COOH Terminated Self Assembled Monolayer (SAM) as Observed by X-Ray Photoelectron Spectroscopy

    SciTech Connect

    Engelhard, Mark H.; Tarasevich, Barbara J.; Baer, Donald R.

    2011-10-25

    XPS spectra of HS(CH{sub 2}){sub 15} COOH terminated a self assembled monolayer (SAM)sample was collected over a period of 242 minutes to determine specimen damage during long exposures to monochromatic Al Ka x-rays. For this COOH terminated SAM we measured the loss of oxygen as a function of time by rastering a focused 100 W, 100 um diameter x-ray beam over a 1.4 mm x 0.2 mm area of the sample.

  17. X-ray spectroscopy application for magnetic field and electron beam measurements in laser produced plasma

    Microsoft Academic Search

    E. O. Baronova; G. Sholin

    1998-01-01

    Temperature and density gradients, parametric instabilities which are common to laser produced plasma, can lead to both spontaneous magnetic field and electron beam generation. Strong magnetic field splits lines, suprathermal electrons are of great importance in energy transition processes and in plasma emission spectra formation. The paper presents magnetic field strength and suprathermal electron energy measurement methods, based on investigation

  18. Depth profiling using total reflection X-ray fluorescence spectrometry alone and in combination with ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Schwenke, H.; Knoth, J.; Günther, R.; Wiener, G.; Bormann, R.

    1997-07-01

    The capability of total reflection X-ray fluorescence spectrometry (TXRF) for depth profiling is examined by means of selected examples including organometallic layers, an implantation profile of arsenic in silicon and a layered nickel/cobalt structure. For structures without density differences that are deeper than 20 nm or so, and also for buried layers and for the examination of sharp interfaces, which require the highest resolution, two different combinations of ion beam sputtering with TXRF have been employed. A microsectioning technique was investigated in which samples were etched to a bevel shape and subsequently scanned by TXRF. A depth resolution of 2.5 nm was obtained. Alternatively, the so called "transfer technique" was investigated. This involves surface atoms being sputtered by an ion beam and immediately deposited on a silicon wafer rotated behind a slit which is moved in step with the sputter progress. Subsequently, the wafer is scanned by TXRF. Using this technique, the width of a coherent Ti/Al interface within a layered structure was measured to be 1.4 nm. The depth resolutions of the "microsectioning" and the "transfer" techniques are compared with data from RBS, XPS, SIMS and SNMS.

  19. Iterative image reconstruction in helical cone-beam x-ray CT using a stored system matrix approach.

    PubMed

    Xu, Jingyan; Tsui, Benjamin M W

    2012-06-01

    We present a stored system matrix (SM) approach for iterative x-ray CT image reconstruction with helical cone-beam geometry. Because of the symmetry of a helical source trajectory, it is sufficient to calculate and store the SM entries for one transaxial slice only and for all source positions illuminating the slice. This is made possible by (1) selecting the reconstruction slice thickness to be an integer multiple of the source translation per projection view, and (2) discretizing the 3D reconstruction volume on a rotated stack of slices. Using the proposed method, the memory requirement for reconstructing a full field-of-view of clinical scanners is manageable on current computing platforms. The same storage principle can be generalized and applied to volume-of-interest (VOI) image reconstruction for helical cone-beam CT. In this case, the stored SM entries correspond to a partial- or full-ring region on one transaxial slice, and for all source positions illuminating the ring. The size and location of the ring depend on the size and the location of the VOI and the scan geometry. We demonstrate by both computer simulations and clinical patient data the speed and efficacy of iterative image reconstruction using the stored SM approach. PMID:22581218

  20. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    PubMed

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-01

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented. PMID:24921579

  1. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A. (Livermore, CA)

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  2. Stable High-Brightness Electron Beam System with a Photocathode RF Gun for Short Pulse X-Ray Generation by Thomson Scattering

    Microsoft Academic Search

    Fumio Sakai; Jinfeng Yang; Masafumi Yorozu; Yasuhiro Okada; Tatsuya Yanagida; Akira Endo

    2002-01-01

    A high-brightness electron accelerator system with a photocathode RF gun and an all-solid stable laser for the photocathode was installed, and a commissioning test was performed to generate short-pulse X-ray beams by the Thomson scattering method. Electron energy was boosted by a linear accelerator (linac) up to 14 MeV. Energy dispersion of the electron beams was measured to be 0.7%

  3. X-ray fluorescence and ion beam analysis of iridescent Art Nouveau glass - authenticity and technology

    NASA Astrophysics Data System (ADS)

    Jembrih-Simbürger, D.; Neelmeijer, C.; Mäder, M.; Schreiner, M.

    2004-11-01

    EDXRF analysis with subsequent multivariate data analysis proves useful for the determination of the authenticity of iridescent glass artifacts. Thus, clusters of the glass groups investigated were formed which can be associated with the glass manufacturers. By means of ion beam analysis with the external proton beam the producing technology of iridescent glass objects of the Art Nouveau glass manufacturer Loetz/Austria with so-called Papillon pattern was characterised in a non-destructive way. Due to the simultaneous application of PIXE and RBS the glass structure including a sequence of glass layers covered with a SnO 2-layer of approximately 50 nm thickness on the surface could be described.

  4. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source

    NASA Astrophysics Data System (ADS)

    Du, Yingchao; Yan, Lixin; Hua, Jianfei; Du, Qiang; Zhang, Zhen; Li, Renkai; Qian, Houjun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2013-05-01

    Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 106 per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

  5. A feasibility study of dynamic stress analysis inside a running internal combustion engine using synchrotron X-ray beams.

    PubMed

    Baimpas, Nikolaos; Drakopoulos, Michael; Connolley, Thomas; Song, Xu; Pandazaras, Costas; Korsunsky, Alexander M

    2013-03-01

    The present investigation establishes the feasibility of using synchrotron-generated X-ray beams for time-resolved in situ imaging and diffraction of the interior components of an internal combustion engine during its operation. The demonstration experiment was carried out on beamline I12 (JEEP) at Diamond Light Source, UK. The external hutch of the JEEP instrument is a large-scale engineering test bed for complex in situ processing and simulation experiments. The hutch incorporates a large capacity translation and rotation table and a selection of detectors for monochromatic and white-beam diffraction and imaging. These capabilities were used to record X-ray movies of a motorcycle internal combustion engine running at 1850 r.p.m. and to measure strain inside the connecting rod via stroboscopic X-ray diffraction measurement. The high penetrating ability and high flux of the X-ray beam at JEEP allowed the observation of inlet and outlet valve motion, as well as that of the piston, connecting rod and the timing chain within the engine. Finally, the dynamic internal strain within the moving connecting rod was evaluated with an accuracy of ~50 × 10(-6). PMID:23412489

  6. Real time x-ray studies during nanostructure formation on silicon via low energy ion beam irradiation using ultrathin iron films

    SciTech Connect

    El-Atwani, Osman [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Suslova, Anastassiya; Gonderman, Sean; Fowler, Justin; El-Atwani, Mohamad [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana, 47907 (United States); DeMasi, Alexander; Ludwig, Karl [Physics Department, Boston University, Boston, Massachusetts 02215 (United States); Paul Allain, Jean [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Nuclear Engineering, Purdue University, West Lafayette, Indiana, 47907 (United States)

    2012-12-24

    Real time grazing incidence small angle x-ray scattering and x-ray fluorescence (XRF) are used to elucidate nanodot formation on silicon surfaces during low energy ion beam irradiation of ultrathin iron-coated silicon substrates. Four surface modification stages were identified: (1) surface roughening due to film erosion, (2) surface smoothing and silicon-iron mixing, (3) structure formation, and (4) structure smoothing. The results conclude that 2.5 Multiplication-Sign 10{sup 15} iron atoms in a 50 nm depth triggers surface nanopatterning with a correlated nanodots distance of 25 nm. Moreover, there is a wide window in time where the surface can have correlated nanostructures even after the removal of all the iron atoms from the sample as confirmed by XRF and ex-situ x-ray photoelectron spectroscopy (XPS). In addition, in-situ XPS results indicated silicide formation, which plays a role in the structure formation mechanism.

  7. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera.

    PubMed

    Baumann, Thomas M; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-01

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r(80%) = (212 ± 19)?m in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm(2) is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments. PMID:25085129

  8. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    SciTech Connect

    Baumann, Thomas M., E-mail: baumannt@nscl.msu.edu; Lapierre, Alain, E-mail: lapierre@nscl.msu.edu; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan, 48824 (United States)

    2014-07-15

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r{sub 80%}=(212±19)?m in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm{sup 2} is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  9. Workshop report on new directions in x-ray scattering. [X-ray scattering

    SciTech Connect

    Brown, G.; Del Grande, N.K.; Fuoss, P.; Mallett, J.H.; Pratt, R.; Templeton, D.

    1987-02-01

    This report is a summary of the Workshop on New Directions in X-Ray Scattering held at the Asilomar Conference Center, Pacific Grove, California, April 2-5, 1985. The report primarily consists of the edited transcript of the final review session of the workshop, in which members of a panel summarized the proceedings. It is clear that we are close to achieving an accurate theory of scattering in independent particle approximation, but for edge regions, there is need to go beyond this approach. Much of what is experimentally interesting in scattering is occurring between the photoabsorption edge and the photoelectric threshold. Applications in condensed matter and biological and chemical material studies are expanding, exploiting higher intensity sources and faster time resolution as in magnetic scattering and surface studies. Storage rings are now conventional sources, and new high-intensity beam lines are under development; the free electron laser is one of the more speculative sources. Recent work in x-ray scattering has led to advances in x-ray optics, and conversely, advances in x-ray optics have benefitted our understanding of x-ray scattering.

  10. Spectral Brilliance of Parametric X-rays at the FAST facility

    E-print Network

    Sen, Tanaji

    2015-01-01

    We discuss the generation of parametric X-rays in the new photoinjector at the FAST (Fermilab Accelerator Science and Technology) facility in Fermilab. These experiments will be conducted in addition to channeling X-ray radiation experiments. The low emittance electron beam makes this facility a promising source for creating brilliant X-rays. We discuss the theoretical model and present detailed calculations of the intensity spectrum, energy and angular widths and spectral brilliance under different conditions. We also report on expected results with parametric X-rays generated while under channeling conditions.

  11. Effect of varying dose-per-pulse and average dose rate in X-ray beam irradiation on cultured cell survival.

    PubMed

    Lasio, G; Guerrero, M; Goetz, W; Lima, F; Baulch, J E

    2014-11-01

    Characterizing the biological effects of flattening filter-free (FFF) X-ray beams from linear accelerators is of importance, due to their increasing clinical availability. The purpose of this work is to determine whether in vitro cell survival is affected by the higher dose-per-pulse present in FFF beams in comparison with flattened X-ray beams. A Varian TrueBeam(®) linear accelerator was used to irradiate the T98G, V79-4 and U87-MG cell lines with a single fraction of 5 Gy or 10 Gy doses of X-rays. Beams with energies of 6 MegaVolt (MV), 6 MV FFF and 10 MV FFF were used, with doses-per-pulse as measured at the monitor chamber of 0.28, 0.78 and 1.31 mGy/pulse for 6 MV, 6 MV FFF and 10 MV FFF, respectively. The dose delivered to each Petri dish was verified by means of ionization chamber measurements. No statistically significant effects on survival fraction were observed for any of the cell lines considered, either as a function of dose-per-pulse, average dose rate or total dose delivered. Biological effects of higher instantaneous rates should not be excluded on the basis of in vitro experimental results such as the ones presented in this work. The next step toward an assessment of the biological impact of FFF beams will require in vivo studies. PMID:25169705

  12. Development and applications of grazing exit micro X-ray fluorescence instrument using a polycapillary X-ray lens

    Microsoft Academic Search

    T. Emoto; Y. Sato; Y. Konishi; X. Ding; K. Tsuji

    2004-01-01

    A polycapillary X-ray lens is an effective optics to obtain a ?m-size X-ray beam for micro-X-ray fluorescence spectrometry (?-XRF). We developed a ?-XRF instrument using a polycapillary X-ray lens, which also enabled us to perform Grazing Exit ?-XRF (GE-?-XRF). The evaluated diameter of the primary X-ray beam was 48 ?m at the focal distance of the X-ray lens. Use of

  13. High resolution cone beam X-ray computed tomography of 3D-microstructures of cast Al-alloys

    SciTech Connect

    Kastner, Johann, E-mail: Johann.kastner@fh-ooe.at [Upper Austria University of Applied Sciences, Stelzhamerstrasse 23, A-4600 Wels (Austria); Harrer, Bernhard [Upper Austria University of Applied Sciences, Stelzhamerstrasse 23, A-4600 Wels (Austria); Degischer, H. Peter [Vienna University of Technology, Inst. of Material Science and Technology, Karlsplatz 13/E308, A-1040 Vienna (Austria)

    2011-01-15

    X-ray computed tomography (XCT) has become a very important method for non-destructive 3D-characterisation of materials. XCT systems with cone beam geometry, micro- or nano-focus tubes and matrix detectors are increasingly used in research and non-destructive testing. Spatial resolutions down to 1 {mu}m can be reached with such XCT-systems for heterogeneities in metals with high absorption contrast. High resolution cone beam XCT is applied to five different Al-alloys: AlMg5Si7, AlCu4Mg1, AlZn6Mg2Cu2, AlZn8Mg2Cu2 and AlSi12Ni1. Up to four different types of inhomogeneities are segmented in one alloy using voxel sizes between (0.4 {mu}m){sup 3} and (2.3 {mu}m){sup 3}. Target metallography and elemental analysis by energy dispersive X-ray analysis are used to identify the inhomogeneities. The possibilities and restrictions of XCT applied to Al-alloys are discussed. AlMg5Si7 XCT-data with a voxel size of (0.4 {mu}m){sup 3} show inhomogeneities with brighter grey-values than the Al-matrix identified as elongated Fe-aluminides, and those with lower grey-values identified as pores and Mg{sub 2}Si-particles with a 'Chinese script-like' structure. Higher-absorbing interdendritic Al-Al{sub 2}Cu-eutectic regions appear brighter than the Al-dendrites in the CT-data of AlCu4Mg1 with (1.1 {mu}m){sup 3}/voxel, whereas pores > 4 {mu}m appear darker than the Al-matrix. The size and the 3D-structure of the {alpha}-Al dendrite arms with a diameter of 50-100 {mu}m are determined in samples from chill cast billets of AlCu4Mg1 and AlZn6Mg2Cu2 alloys. The irregular interdendritic regions containing eutectic segregations with Cu- and Zn-rich phases are > 5 {mu}m wide. Equally absorbing primary equi-axed Al{sub 3}(Sc, Zr) particles > 5 {mu}m are distinguished in the centres of the dendrites by the level of sphericity values. The distribution of Ni- and Fe-aluminides in a squeeze cast AlSi12Ni1-alloy is imaged with (0.4 {mu}m){sup 3}/voxel, but the Si-phase cannot be segmented.

  14. Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam

    E-print Network

    McDonald, Kirk

    11 Delivering High IntensityDelivering High Intensity Proton Beam:Proton Beam: Lessons for the NextFACT08NuFACT08 ­­ 4 July4 July S. ChildressS. Childress ­­ Proton BeamsProton Beams 22 Presentation OutlinePresentation Outline Key Proton Beam ConsiderationsKey Proton Beam Considerations The First

  15. Determination of iron in nuclear grade zirconium oxide by x-ray fluorescence spectrometry using an internal intensity reference

    Microsoft Academic Search

    G. Radha Krishna; H. R. Ravindra; B. Gopalan; S. Syamsunder

    1995-01-01

    Iron forms an important constituent of zirconium alloys that are specially chosen for the fabrication of nuclear reactor core components. The concentration of iron in intermediate products is closely monitored during the manufacture of these alloys starting from the chemical processing of the ore zircon. In order to accomplish this, an x-ray fluorescence spectrometric technique using an internal ratio method

  16. Intrafraction Verification of Gated RapidArc using Beam-Level Kilovoltage X-Ray Images

    PubMed Central

    Li, Ruijiang; Mok, Edward; Chang, Daniel T; Daly, Megan; Loo, Billy W.; Diehn, Maximilian; Le, Quynh-Thu; Koong, Albert; Xing, Lei

    2015-01-01

    Purpose To verify the geometric accuracy of gated RapidArc treatment using kV images acquired during dose delivery. Methods and Materials Twenty patients were treated using the gated RapidArc technique on a Varian TrueBeam STx Linac. One to seven metallic fiducial markers were implanted inside or near the tumor target before treatment simulation. For patient setup and treatment verification purposes, the internal target volume (ITV) was created corresponding to each implanted marker. The gating signal was generated from the RPM system. At the beginning of each fraction, individualized respiratory gating amplitude thresholds were set based on fluoroscopic image guidance. During the treatment, we acquired kV images immediately before MV beam-on at every breathing cycle, using the on-board imaging system. After the treatment, all the implanted markers were detected and their 3D positions in the patient were estimated using in-house developed software. The distance from the marker to the corresponding ITV was calculated for each patient by averaging over all markers and all fractions. Results The 3D distance between the markers and their ITV is 0.8 ± 0.5 mm on average (range: 0 to 1.7 mm), and is 2.1 ± 1.2 mm at 95th percentile (range: 0 to 3.8 mm). On average a margin of 0.6 mm (left-right), 0.8 mm (anterior-posterior), 1.5 mm (superior-inferior) is required to account for 95% of the intrafraction uncertainty in RPM-based RapidArc gating. Conclusion To our knowledge, this is the first clinical report on intrafraction verification of respiratory gated RapidArc treatment in SABR. For some patients, the markers deviated significantly from the ITV by more than 2 mm at the beginning of the MV beam on. This emphasizes the need for gating techniques with beam-on/off controlled directly by the actual position of the tumor target instead of external surrogates such as RPM. PMID:22554582

  17. A Computer Based File of X-Ray and Electron Beam Central Axis Depth Dose Data for Use in Radiation Therapy

    PubMed Central

    Purdy, James A.; Harms, William B.; Fivozinsky, Sherman

    1980-01-01

    The central axis absorbed dose data for x-ray and electron beams generated by linear accelerators in the energy range 4 thru 25 MV are being compiled. The compilation includes specific x-ray beam parameters (surface doses, output factors, percent depth doses, tissue-phantom ratios, and wedge factors) as well as electron beam parameters (percent depth doses and output factors). The compilation includes published data sets of these parameters and those obtained directly from over 100 institutions participating in the study. The data are grouped by accelerator model and input into computer files that provide a standard format suitable for intercomparisons. The software used to construct the computer files and to manipulate the data is discussed. Selected examples of the average values of parameters obtained to date with the standard deviations, the coefficients of variation, and the maximum and minimum values will be presented for several different linear accelerator models.

  18. X-Rays, Pregnancy and You

    MedlinePLUS

    ... Radiation-Emitting Products and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Pregnancy is a ... Publication No. (FDA) 94-8087 More in Medical X-ray Imaging Radiography Computed Tomography (CT) Dental Cone-beam Computed ...

  19. Characterization of X-Ray FEL Beam Properties at the LCLS AMO Station With FLASH GMD and Wavefront Sensor

    NASA Astrophysics Data System (ADS)

    Juranic, Pavle; Jastrow, Ulf; Kapitzki, Svea; Moeller, Stefan; Krzywinski, Jacek; Bozek, John; Kroth, Uwe; Schoeppe, Hendrik; Hau-Rige, Stefan; Floeter, Bernhard; Mann, Klaus; Richter, Matthias; Sorokin, Andrey; Tiedtke, Kai

    2010-03-01

    As a part of an international effort to measure beam properties of FELs, a protocol for a collaborative set of measurements was set up between groups from the LCLS [1], FLASH [2], Germany, and SCSS in Japan [3], meant to perform tests to evaluate their measurement devices against one another. This report showcases the measurements performed at the LCLS AMO end station using the FLASH Gas Monitor Detector (GMD) [4] and the wavefront sensor developed for the X-ray region by the Laser Laboratory in Goettingen, Germany. Both of these devices were originally designed to operate at photon energies between 10-100 eV, but were redesigned for operation at higher photon energies, and tested for the first time at energies between 800 and 1000 eV at LCLS. This results of these studies are presented here. [1] Linac Coherent Light Source (LCLS) SLAC Desigh Study Report No. SLAC-R-521, 1998. [2] W. Ackermann et al, Nat. Photonics 1 (2007) 336. [3] T. Shintake et al, Nat. Photonics 2 (2008) 555. [4] K. Tiedtke et al, J. Apl. Phys. 103 (2008) 094511.

  20. Characterisation of edgeless technologies for pixellated and strip silicon detectors with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Bates, R.; Blue, A.; Christophersen, M.; Eklund, L.; Ely, S.; Fadeyev, V.; Gimenez, E.; Kachkanov, V.; Kalliopuska, J.; Macchiolo, A.; Maneuski, D.; Phlips, B. F.; Sadrozinski, H. F.-W.; Stewart, G.; Tartoni, N.; Zain, R. M.

    2013-01-01

    Reduced edge or ``edgeless'' detector design offers seamless tileability of sensors for a wide range of applications from particle physics to synchrotron and free election laser (FEL) facilities and medical imaging. Combined with through-silicon-via (TSV) technology, this would allow reduced material trackers for particle physics and an increase in the active area for synchrotron and FEL pixel detector systems. In order to quantify the performance of different edgeless fabrication methods, 2 edgeless detectors were characterized at the Diamond Light Source using an 11 ?m FWHM 15 keV micro-focused X-ray beam. The devices under test were: a 150 ?m thick silicon active edge pixel sensor fabricated at VTT and bump-bonded to a Medipix2 ROIC; and a 300 ?m thick silicon strip sensor fabricated at CIS with edge reduction performed by SCIPP and the NRL and wire bonded to an ALiBaVa readout system. Sub-pixel resolution of the 55 ?m active edge pixels was achieved. Further scans showed no drop in charge collection recorded between the centre and edge pixels, with a maximum deviation of 5% in charge collection between scanned edge pixels. Scans across the cleaved and standard guard ring edges of the strip detector also show no reduction in charge collection. These results indicate techniques such as the scribe, cleave and passivate (SCP) and active edge processes offer real potential for reduced edge, tiled sensors for imaging detection applications.