Science.gov

Sample records for x-ray diffraction line

  1. EFFECT OF SATELLITE LINES FROM X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. PA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predict...

  2. Line x-ray source for diffraction enhanced imaging in clinical and industrial applications

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqin

    Mammography is one type of imaging modalities that uses a low-dose x-ray or other radiation sources for examination of breasts. It plays a central role in early detection of breast cancers. The material similarity of tumor-cell and health cell, breast implants surgery and other factors, make the breast cancers hard to visualize and detect. Diffraction enhanced imaging (DEI), first proposed and investigated by D. Chapman is a new x-ray radiographic imaging modality using monochromatic x-rays from a synchrotron source, which produced images of thick absorbing objects that are almost completely free of scatter. It shows dramatically improved contrast over standard imaging when applied to the same phantom. The contrast is based not only on attenuation but also on the refraction and diffraction properties of the sample. This imaging method may improve image quality of mammography, other medical applications, industrial radiography for non-destructive testing and x-ray computed tomography. However, the size, and cost, of a synchrotron source limits the application of the new modality to be applicable at clinical levels. This research investigates the feasibility of a designed line x-ray source to produce intensity compatible to synchrotron sources. It is composed of a 2-cm in length tungsten filament, installed on a carbon steel filament cup (backing plate), as the cathode and a stationary oxygen-free copper anode with molybdenum coating on the front surface serves as the target. Characteristic properties of the line x-ray source were computationally studied and the prototype was experimentally investigated. SIMIION code was used to computationally study the electron trajectories emanating from the filament towards the molybdenum target. A Faraday cup on the prototype device, proof-of-principle, was used to measure the distribution of electrons on the target, which compares favorably to computational results. The intensities of characteristic x-ray for molybdenum, tungsten and rhodium targets were investigated with different window materials for -30kV to -100kV applied potential. Heat loading and thermal management of the target has been investigated computationally using COMSOL code package, and experimental measurements of target temperature rise was taken via thermocouples attached to the target. Temperature measurements for low voltage, low current regime without active cooling were compared to computational results for code-experiment benchmarking. Two different phantoms were used in the simulation of DEI images, which showed that the designed x-ray source with DEI setup could produce images with significant improved contrast. The computational results, along with experimental measurements on the prototype setup, indicate the possibility of scale up to larger area x-ray source adequate for DEI applications.

  3. THE EFFECT OF SATELLITE LINES FROM THE X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. EPA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predic...

  4. In-line holography and coherent diffractive imaging with x-ray waveguides

    SciTech Connect

    De Caro, L.; Giannini, C.; Guagliardi, A.; Mocuta, C.; Metzger, T. H.; Cedola, A.; Burkeeva, I.; Lagomarsino, S.

    2008-02-15

    A Fresnel coherent diffraction imaging experiment with hard x rays is here presented, using two planar crossed waveguides as optical elements, leading to a virtual pointlike source. The coherent wave field obtained with this setup is used to illuminate a micrometric single object having the shape of a butterfly. A digital two-dimensional in-line holographic reconstruction of the unknown object at low resolution (200 nm) has been obtained directly via fast Fourier transform (FFT) of the raw data. The object and its twin image are well separated because suitable geometrical conditions are satisfied. A good estimate of the incident wave field phase has been extracted directly from the FFT of the raw data. A partial object reconstruction with 50 nm spatial resolution was achieved by fast iterative phase retrieval, the major limitation for a full reconstruction being the nonideal structure of the guided beam. The method offers a route for fast and reliable phase retrieval in x-ray coherent diffraction.

  5. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  6. THE CHARACTERIZATION OF A SOLID SORBENT WITH CRYSTALLITE SIZE AND STRAIN DATA FROM X-RAY DIFFRACTION LINE BROADENING

    EPA Science Inventory

    The paper gives results of the characterization of a solid sorbent with crystallite size and strain data from x-ray diffraction line broadening, as part of an EPA investigation of the injection of dry Ca(OH)2 into coal-fired electric power plant burners for the control of SO2 emi...

  7. The features of identifying lines in a diffraction image formed by a widely divergent X-ray beam

    SciTech Connect

    Avetyan, K. T. Levonyan, L. V.; Arakelyan, M. M. Semerjian, H. S.; Grigoryan, P. A.; Hovhannisyan, G. M.

    2009-05-15

    A method for identifying lines in a diffraction image formed by a widely divergent X-ray beam and a technique for measuring the crystal structure parameters in the case of asymmetric crystal position have been developed. It is established that, once the distances between a crystal and a photographic plate and between the points of intersection of the hyperbola branches in a diffraction image are known, one can determine the angle between the crystal's zone axis and the wave vector, which leads to multiwave diffraction. Relations linking this angle with the parameters of two atomic planes are obtained. It is found that, to measure the parameters of atomic planes belonging to a given zone, one can use different sets of crossed hyperbolas formed by radiations K{sub {alpha}} and K{sub {beta}}. The measurements and calculations performed for the same sample (Si crystal), mounted symmetrically and asymmetrically, confirm the reliability of the proposed method.

  8. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  9. X-ray diffraction computed tomography.

    PubMed

    Harding, G; Kosanetzky, J; Neitzel, U

    1987-01-01

    Coherent scattering of x-ray photons leads to the phenomenon of x-ray diffraction, which is widely used for determining atomic structure in materials science. A technique [x-ray diffraction computed tomography (CT)] is described, analogous to conventional CT, in which the x-ray diffraction properties of a stack of two-dimensional object sections may be imaged. The technique has been investigated using a first generation (single pencil beam) CT scanner to measure small angle coherent scatter, in addition to the customary transmitted radiation. Diffraction data from a standard CT performance phantom obtained with this new technique and with an x-ray diffractometer are compared. The agreement is satisfactory bearing in mind the poor momentum resolution of our apparatus. The dose and sensitivity of x-ray diffraction CT are compared with those of conventional transmission CT. Diffraction patterns of some biological tissues and plastics presented in a companion paper indicate the potential of x-ray diffraction CT for tissue discrimination and material characterization. Finally, possibilities for refinement of the technique by improving the momentum resolution are discussed. PMID:3626990

  10. A comparison between different X-ray diffraction line broadening analysis methods for nanocrystalline ball-milled FCC powders

    NASA Astrophysics Data System (ADS)

    Soleimanian, V.; Mojtahedi, M.

    2015-06-01

    The microstructural characteristics of aluminum, copper and nickel powders are investigated using different X-ray diffraction line broadening analysis approaches. Prior to analysis, the powders were ball-milled to produce a nanocrystalline structure with high density of probable types of lattice defects. A variety of methods, including Scherrer, Williamson-Smallman, Williamson-Hall, Warren-Averbach, modified Williamson-Hall, modified Warren-Averbach, Rietveld refinement and whole powder pattern modeling (WPPM) approaches are applied. In this way, microstructural characteristics such as crystallite size, microstrain, dislocation density, effective outer cut-off radius of dislocations and the probability of twining and stacking faults are calculated. On the other hand, the results of conventional and advanced line broadening analysis methods are compared. It is revealed that the density of linear and planar defects in the mechanically deformed aluminum powder is significantly smaller than that of copper and nickel, as well as the level of anisotropic strain broadening. Moreover, the WPPM procedure provided a better profile fitting with more accurate results.

  11. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  12. Beyond hard x-ray photoelectron spectroscopy: Simultaneous combination with x-ray diffraction

    SciTech Connect

    Rubio-Zuazo, Juan; Castro, German R.

    2013-05-15

    Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO{sub 2}/SiO{sub 2} interfaces on Ge-based CMOS devices, and (ii) strain study on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} ultrathin films grown on SrTiO{sub 3}(001) substrate.

  13. Single Particle X-ray Diffractive Imaging

    SciTech Connect

    Bogan, M J; Benner, W H; Boutet, S; Rohner, U; Frank, M; Seibert, M; Maia, F; Barty, A; Bajt, S; Riot, V; Woods, B; Marchesini, S; Hau-Riege, S P; Svenda, M; Marklund, E; Spiller, E; Hajdu, J; Chapman, H N

    2007-10-01

    In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at sub-optical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

  14. The Dynamical Theory of X Ray Diffraction

    ERIC Educational Resources Information Center

    Balchin, A. A.; Whitehouse, C. R.

    1974-01-01

    Summarizes the Darwin theory of x-ray diffraction in thin crystals or crystals with a mosaic texture and its modified application to crystals with three-dimensional electrostatic dipoles. Indicates that the dynamical theory is brought into its present relevance by the improvement of single crystal growth techniques. (CC)

  15. In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries

    E-print Network

    Cui, Yi

    In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries Johanna Information ABSTRACT: Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high-ray diffraction and transmission X-ray microscopy. We show recrystal- lization of sulfur by the end of the charge

  16. Tomographic femtosecond X-ray diffractive imaging

    E-print Network

    K. E. Schmidt; J. C. H. Spence; U. Weierstall; R. Kirian; X. Wang; D. Starodub; H. N. Chapman; M. R. Howells; R. B. Doak

    2009-05-27

    A method is proposed for obtaining three simultaneous projections of a target from a single radiation pulse, which also allows the relative orientation of successive targets to be determined. The method has application to femtosecond X-ray diffraction, and does not require solution of the phase problem. We show that the principle axes of a compact charge-density distribution can be obtained from projections of its autocorrelation function, which is directly accessible in diffraction experiments. The results may have more general application to time resolved tomographic pump-probe experiments and time-series imaging.

  17. X-Ray Diffraction on NIF

    SciTech Connect

    Eggert, J H; Wark, J

    2012-02-15

    The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics and techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.

  18. Ultrafast X-ray Diffraction of Transient Molecular

    E-print Network

    Ihee, Hyotcherl

    Ultrafast X-ray Diffraction of Transient Molecular Structures in Solution H. Ihee,1 * M. Lorenc,2 T evidence of the bridged radical (CH2ICH2I) in a polar solution, obtained using time-resolved liquid-phase x-ray, and the diffraction of picosecond x-ray pulses from a synchrotron supports the following structural dynamics, with È0

  19. X-ray Diffraction: A Quantum Mechanical View Frank Rioux

    E-print Network

    Rioux, Frank

    X-ray Diffraction: A Quantum Mechanical View Frank Rioux Department of Chemistry College of St. Benedict | St. John's University This tutorial on X-ray diffraction was stimulated by an appendix density distribution interacts with an X-ray source the individual photons are temporarily localized

  20. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  1. Phase retrieval in x-ray coherent Fresnel projection-geometry diffraction

    SciTech Connect

    De Caro, Liberato; Giannini, Cinzia; Cedola, Alessia; Pelliccia, Daniele; Lagomarsino, Stefano; Jark, Werner

    2007-01-22

    Coherent x-ray diffraction experiments were performed in Fresnel regime, within a line-projection geometry. A planar x-ray waveguide was used to focus coherent cylindrical waves onto a 7.2 {mu}m Kevlar fiber, which acts as a phase object for hard x rays. The phase was retrieved, by using a Fourier-based iterative phasing algorithm, consistent with measured diffraction data and known constraints in real space, with a submicrometer spatial resolution.

  2. Studies on X-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Miao, Huijie

    This dissertation includes three main parts: studies on coherence requirements for the diffraction microscopy experiments, ice formation on frozen-hydrated sample during data collection, and centering of the diffraction data sets. These three subjects are all in support of our groups overall goal of high resolution 3D imaging of frozen hydrated eukaryotic cells via x-ray diffraction microscopy. X-ray diffraction microscopy requires coherent illumination. However, the actual degree of coherence at some beamlines has never been tested. In research on coherence, our first aim is to determine the transverse coherence width at the sample plane at BL 9.0.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory. An analytical calculation of the coherence at the sample plane is presented. Experimental diffraction patterns of pinhole-pair samples were also taken at the beamline to determine the coherence. Due to the irregular shape of the pinholes and other optics complexity, it was very difficult to fit the data with known theoretical equations as it was traditionally done with 1D data. However, we found out that the auto-correlation function shows clearly three spots. Theoretical calculation have been carried out to show that the degree of coherence can be obtained from the intensities of the three spots. These results are compared with the results from the analytical calculation. We then perform a simulation, showing the required transverse coherence width for reconstructing samples with a given size. Ice accumulation has been a major problem in X-ray diffraction microscopy with frozen hydrated samples. Since the ice structure is different from point to point, we cannot subtract the scattering from ice, nor assume a completely "empty" region outside the finite support constraint area as required for reconstruction. Ice forms during the sample preparation and transfer. However, from the tests we did in September 2007, we found that the ice layer thickens significantly during the data collecting process. One of the tests we did was putting a dry room-temperature grid into the beam, cooling it down to liquid nitrogen temperature, and then collecting the diffraction pattern of it over time. This test showed that, after the cold grid remained in the chamber for a while, a ring could be observed in the diffraction pattern. The time necessary for this ring to be visible is highly dependent on the pressure and vacuum history of the chamber. We will discuss how the chamber pressure influences the ice accumulation rate, how an anti-contamination device can help to reduce the rate, and how this ring forms. The last part of the research is based on simulations and a real data set collected on beamline 9.0.1 at the ALS in Berkeley. In X-ray diffraction microscopy, one of the major challenges when processing the data is to accurately determine the true center of the recorded data; that is, the zero spatial frequency position. Simulations of reconstructing shifted data show that if the center of a 2D diffraction pattern is shifted by more than 3 pixels from its true center, the positivity constraint to the phase, which otherwise might be applied to improve the convergence of the reconstruction algorithm, cannot be imposed. Moreover, the phase unwrapping problem may appear during the reconstruction. These issues undermine the quality of the reconstruction of 2D data. Furthermore, the individual shift in each 2D pattern will lead to errors when assembling a 3D diffraction data cube, making the 3D reconstruction very difficult. We developed a method which uses power spectra of the partial diffraction pattern to pre-align the data. A reconstruction without severe phase unwrapping can then be obtained from the pre-aligned data. Next, the precise zero spatial frequency position can be found by examining the linear ramp present in the reconstructed phase. This method was applied to a freeze-dried yeast data set to show that this approach is effective with experimental data.

  3. Preliminary experiment of X-ray diffraction imaging

    NASA Astrophysics Data System (ADS)

    Yamanashi, Masaki; Kometani, Noritsugu; Tsuji, Kouichi

    2015-07-01

    X-ray diffraction (XRD) techniques have been used in various fields, such as, material science, medical science, etc. XRD gives the structure information of materials. An XRD imaging spectrometer equipped with a 2D X-ray detector for obtaining the information of a large observation area was developed in this study. A polycapillary half lens was applied as a 2D collimator to have an X-rays with a large collimated area of 8 mm. The 2D diffracted X-rays were detected by a 2D X-ray detector.

  4. Diffraction peaks in x-ray spectroscopy: Friend or foe?

    SciTech Connect

    Tissot, R.G.; Goehner, R.P.

    1992-11-01

    Diffraction peaks can occur as unidentifiable peaks in the energy spectrum of an x-ray spectrometric analysis. Recently, there has been increased interest in oriented polycrystalline films and epitaxial films on single crystal substrates for electronic applications. Since these materials diffract x-rays more efficiently than randomly oriented polycrystalline materials, diffraction peaks are being observed more frequently in x-ray fluorescent spectra. In addition, micro x-ray spectrometric analysis utilizes a small, intense, collimated x-ray beam that can yield well defined diffraction peaks. In some cases these diffraction peaks can occur at the same position as elemental peaks. These diffraction peaks, although a possible problem in qualitative and quantitative elemental analysis, can give very useful information about the crystallographic structure and orientation of the material being analyzed. The observed diffraction peaks are dependent on the geometry of the x-ray spectrometer, the degree of collimation and the distribution of wavelengths (energies) originating from the x-ray tube and striking the sample.

  5. Diffraction peaks in x-ray spectroscopy: Friend or foe

    SciTech Connect

    Tissot, R.G.; Goehner, R.P.

    1992-01-01

    Diffraction peaks can occur as unidentifiable peaks in the energy spectrum of an x-ray spectrometric analysis. Recently, there has been increased interest in oriented polycrystalline films and epitaxial films on single crystal substrates for electronic applications. Since these materials diffract x-rays more efficiently than randomly oriented polycrystalline materials, diffraction peaks are being observed more frequently in x-ray fluorescent spectra. In addition, micro x-ray spectrometric analysis utilizes a small, intense, collimated x-ray beam that can yield well defined diffraction peaks. In some cases these diffraction peaks can occur at the same position as elemental peaks. These diffraction peaks, although a possible problem in qualitative and quantitative elemental analysis, can give very useful information about the crystallographic structure and orientation of the material being analyzed. The observed diffraction peaks are dependent on the geometry of the x-ray spectrometer, the degree of collimation and the distribution of wavelengths (energies) originating from the x-ray tube and striking the sample.

  6. High-Energy X-Ray Diffraction Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2011-11-29

    The functionality of heRXD includes the following: distance and angular calibration and viewing flat-panel detector images used for X-ray diffraction; image (polar) rebinning or "caking"; line position fitting in powder diffraction images; image segmentation or "blob finding"; crystal orentation indesing; and lattice vector refinement. These functionalities encompass a critical set analyzing teh data for high-energy diffraction measurements that are currently performed at synchrotron sources such as the Advanced Photon Source (APS). The software design modularmore »and open source under LGPL. The intent is to provide a common framework and graphical user interface that has the ability to utillize internal as well as external subroutines to provide various optins for performing the fuctionalities listed above. The software will initially be deployed at several national user facilities--including APS, ALS, and CHESS--and then made available for download using a hosting service such as sourceforge.« less

  7. An X-ray diffraction study of titanium oxidation

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Unnam, J.

    1984-01-01

    Titanium specimens of commercial purity were exposed at 1100 to 1400 F to laboratory air for times up to 100 hours. The extent of substrate contamination by interstitial oxygen was was determined by a new X-ray diffraction analysis involving transformation of X-ray diffraction intensity bands. The oxygen solid-solubility at the oxide-metal interfaces and its variation with time at temperature were also determined. Diffusion coefficients are deduced from the oxygen depth profiles.

  8. Transient x-ray diffraction to measure the dynamic response of shocked lithium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Wang, Hai-rong; Ye, Yan; Yang, Qing-guo; Li, Mu; Xiao, Sha-li; Li, Ze-ren

    2013-08-01

    Transient x-ray diffraction, also called time-resolved x-ray diffraction and dynamic x-ray diffraction, is one novel diagnostic technique for probing shocked solids. It can provide direct information about microscopic mechanisms governing shock-induced deformation and structural changes at atomistic scales with nanosecond and picoseconds resolution, and lately, it has become possible to measure the structure of transients with sub-picoseconds and sub-Angstrom resolution with the development of ultrafast lasers which can produce femtosecond electron and x-ray pulses in the form of characteristics emission lines as well as x-ray continua in the keV range. In this paper, we detect and measure directly the dynamic response of lithium fluoride single crystal shocked compressed by laser irradiation in SHENGUANG II. In our experiments, high-intensity lasers irradiated a thin Cu foil to generate helium-like rays as x-ray source. Film (IP--image plate) recorded x rays diffracted from multiple lattice planes both perpendicular and oblique angles to the shock loading direction [100]. We gained the diffraction signals of the lattice planes (200) shocked and unshocked, what's more, other lattices (113), (1-13). The positions of the diffraction lines associated with the (200) lattice plane indicated compression of the lattice along [100] direction by 13%. In the experiment, a large-angle detector consists of two films-one rectangular in shape,one triangular in shape that are positioned to record x rays diffracted from a shocked single crystal nearly within a full ? steradian. The experiment shows that transient x-ray diffraction can diagnose the dynamical response of solid with higher resolution.

  9. In-situ mechanical testing during X-ray diffraction

    SciTech Connect

    Van Swygenhoven, Helena Van Petegem, Steven

    2013-04-15

    Deforming metals during recording X-ray diffraction patterns is a useful tool to get a deeper understanding of the coupling between microstructure and mechanical behaviour. With the advances in flux, detector speed and focussing techniques at synchrotron facilities, in-situ mechanical testing is now possible during powder diffraction and Laue diffraction. The basic principle is explained together with illustrative examples.

  10. Variable-metric diffraction crystals for x-ray optics

    SciTech Connect

    Smither, R.K.; Fernandez, P.B. )

    1992-02-01

    A variable-metric (VM) crystal is one in which the spacing between the crystalline planes changes with position in the crystal. This variation can be either parallel to the crystalline planes or perpendicular to the crystalline planes of interest and can be produced by either introducing a thermal gradient in the crystal or by growing a crystal made of two or more elements and changing the relative percentages of the two elements as the crystal is grown. A series of experiments were performed in the laboratory to demonstrate the principle of the variable-metric crystal and its potential use in synchrotron beam lines. One of the most useful applications of the VM crystal is to increase the number of photons per unit bandwidth in a diffracted beam without losing any of the overall intensity. In a normal synchrotron beam line that uses a two-crystal monochromator, the bandwidth of the diffracted photon beam is determined by the vertical opening angle of the beam which is typically 0.10--0.30 mrad or 20--60 arcsec. When the VM crystal approach is applied, the bandwidth of the beam can be made as narrow as the rocking curve of the diffracting crystal, which is typically 0.005--0.050 mrad or 1--10 arcsec. Thus a very large increase of photons per unit bandwidth (or per unit energy) can be achieved through the use of VM crystals. When the VM principle is used with bent crystals, new kinds of x-ray optical elements can be generated that can focus and defocus x-ray beams much like simple lenses where the focal length of the lens can be changed to match its application. Thus both large magnifications and large demagnifications can be achieved as well as parallel beams with narrow bandwidths.

  11. X-Ray Diffraction Microscopy of Magnetic Structures

    SciTech Connect

    Turner, J.; Lima, E.; Huang, X.; Krupin, O.; Seu, K.; Parks, D.; Kevan, S.; Kisslinger, K.; McNulty, I.; Gambino, R.; Mangin, S.; Roy, S. and Fischer, P.

    2011-07-14

    We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L{sub 3} edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.

  12. X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy

    NASA Technical Reports Server (NTRS)

    Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.

    2010-01-01

    A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.

  13. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    SciTech Connect

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.

  14. Flash X-Ray Diffraction System for Ultrafast Temperature and Phase Transition Measurements

    SciTech Connect

    Dane Morgan, Don Macy, Michael Madlener, Jaiming Morgan

    2007-06-01

    A novel ultrafast diagnostic for determining bulk temperature and phase transitions for polycrystalline metal objects has been developed. The diagnostic consists of a 38-stage Marx bank with a cable-coupled X-ray diode that produces a 35-ns pulse of mostly 0.71 Å monochromatic X rays, and a P-43 fluor coupled to a cooled charge-coupled device camera by a coherent fiber-optic bundle for detection of scattered X rays. The X-ray beam is collimated to a 1° divergence in the scattering plane with the combination of a 1.5-mm tungsten pinhole and a 1.5-mm diameter molybdenum anode. The X-ray diode, in a needle-and-washer configuration, is heavily shielded in all directions other than the collimated beam. The X-ray diode has a sealed reentrant system, which allows the X rays to be produced inside a vacuum containment vessel, close to the sample under study. The direct correlation between the solid-state structure and the coherent X-ray diffraction pattern from a metal surface allows an unequivocal determination of a phase transition. This correlation has been tested in the laboratory with samples of indium and tin. For both metals, diffraction lines were observed at temperatures just below the melt temperature, along with background consisting of Compton scattering and sample fluorescence. Upon melt, the diffraction lines were observed to disappear; however, the background from Compton scattering and sample fluorescence remained. Flash X-ray diffraction also enables direct ultrafast measurements of the bulk temperature of the sample under study. According to the Debye-Waller theory, the diffracted line intensity reduces as the temperature of the sample increases. The amplitude of the reduced diffracted signal also depends on the Debye temperature of the sample, the scattering angle of the diffracted X rays, and the X-ray wavelength. The feasibility of using the Debye-Waller theory for flash X-ray diffraction measurements of the bulk temperature is currently being studied.

  15. Cryogenic X-ray Diffraction Microscopy for Biological Samples

    SciTech Connect

    E Lima; L Wiegart; P Pernot; M Howells; J Timmins; F Zontone; A Madsen

    2011-12-31

    X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

  16. Biological Imaging by Soft X-ray Diffraction Microscopy

    SciTech Connect

    Shapiro,D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; et al.

    2005-01-01

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  17. Biological imaging by soft x-ray diffraction microscopy

    SciTech Connect

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; Sayre, D.

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  18. Diffraction and Imaging Study of Imperfections of Protein Crystals with Coherent X-rays

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.; Chu, Y. S.; Lai, B.

    2004-01-01

    High angular-resolution x-ray diffraction and phase contrast x-ray imaging were combined to study defects and perfection of protein crystals. Imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of a uniformly grown lysozyme crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in diffraction images. X-ray imaging and diffraction characterization of the quality of apoferritin crystals will also be discussed in the presentation.

  19. Towards high-resolution ptychographic x-ray diffraction microscopy

    SciTech Connect

    Takahashi, Yukio; Suzuki, Akihiro; Yamauchi, Kazuto; Zettsu, Nobuyuki; Kohmura, Yoshiki; Ishikawa, Tetsuya; Senba, Yasunori; Ohashi, Haruhiko

    2011-06-01

    Ptychographic x-ray diffraction microscopy is a lensless imaging technique with a large field of view and high spatial resolution, which is also useful for characterizing the wavefront of an x-ray probe. The performance of this technique is degraded by positioning errors due to the drift between the sample and illumination optics. We propose an experimental approach for correcting the positioning errors and demonstrate success by two-dimensionally reconstructing both the wavefront of the focused x-ray beam and the complex transmissivity of the weakly scattering objects at the pixel resolution of better than 10 nm in the field of view larger than 5 {mu}m. This method is applicable to not only the observation of organelles inside cells or nano-mesoscale structures buried within bulk materials but also the characterization of probe for single-shot imaging with x-ray free electron lasers.

  20. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  1. X-Ray Diffraction Project Final Report, Fiscal Year 2006

    SciTech Connect

    Dane V. Morgan

    2006-10-01

    An x-ray diffraction diagnostic system was developed for determining real-time shock-driven lattice parameter shifts in single crystals at the gas gun at TA-IV at Sandia National Laboratories (SNL). The signal-to-noise ratio and resolution of the system were measured using imaging plates as the detector and by varying the slit width. This report includes tests of the x-ray diffraction system using a phosphor coupled to a charge-coupled device (CCD) camera by a coherent fiber-optic bundle. The system timing delay was measured with a newly installed transistor-transistor logic (TTL) bypass designed to reduce the x-ray delay time. The axial misalignment of the Bragg planes was determined with respect to the optical axis for a set of eight LiF [lithium fluoride] crystals provided by SNL to determine their suitability for gas gun experiments.

  2. High-Energy Diffraction-Enhanced X-ray Imaging

    SciTech Connect

    Yoneyama, Akio; Ueda, Kazuhiro; Takeda, Tohoru; Yamazaki, Takanori; Hyodo, Kazuyuki

    2010-06-23

    In order to apply the diffraction-enhanced X-ray imaging (DEI) method for much wider variety of samples, we have developed the high-energy DEI system. The energy of X-ray was increased up to 70 keV to achieve high permeability for heavy elements. The diffraction of Si(440) was used to keep large field of view. Demonstrative observation of an electrical cable was performed using the X-ray emitted from the vertical wiggler. The obtained images visualized not only the core and ground wire made of copper but also the isolator and outer jacket made of polymer clearly. The comparison of images obtained by the DEI and the absorption-contrast imaging showed that the sensitivity of DEI is about 10 times higher than that of the absorption method for light elements, and 3 times for heavy elements.

  3. Biological imaging by soft x-ray diffraction microscopy

    DOE PAGESBeta

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; et al

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore »microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  4. Applied possibilities for x-ray diffraction interferometry

    NASA Astrophysics Data System (ADS)

    Raransky, M. D.; Struk, J. M.; Fodchuk, Igor M.; Shafraniuk, V. P.; Raransky, A. M.

    1995-11-01

    Among existing x ray diffraction diagnostics nonperfections of crystals the specific location take methods are based on use of x-ray dynamic diffraction effects. From them the most sensitive are based on interferention. The Pendellosung and Moire fringes methods arise in consequence of coherent dynamic interaction of wave fields in single crystals. One of the main advantages of the Moire method is the extraordinary high sensitivity to insignificant deformations of crystal lattice ((Delta) d/d approximately 10-8) and atomic planes turns ((delta) approximately 0.01'). Created by a method of x-ray diffraction Moire the unique phase magnification permits us to directly observe the nuclear rows of crystal lattice. Until recently the attention of researchers attracted, basically, precise measurements of refraction parameters and dispersion amendments to nuclear scattering amplitudes, measurement of movy with large accuracy and refinement of Avogadro number, and the creation of new multi crystal interferometers. At the same time, little opportunities of x-ray interferometry at research of crystal structure defects were used. For the first time the opportunity of definition by method x-ray diffraction Moire of Burgers vectors of individual dislocation was demonstrated by M. Hart, Christiansen has studied the series of 60 degree(s) dislocation in Si on Moire images. Tensions in Si, caused by Ar ions implantation, were defined in the work. The purpose, which the authors of given reviews pursue consists in demonstration of new opportunities of x-ray three crystal interferometry in the investigation of single and complex defects.

  5. Bioimaging by X-Ray Laser Diffraction at SACLA

    NASA Astrophysics Data System (ADS)

    Bessho, Y.

    2013-11-01

    The XFEL facility, SACLA is soon expected to be useful for new bioimaging method with an accuracy on the order of ten femto-seconds. We recorded coherent X-ray diffraction patterns from intact Microbacterium cells in solution at SACLA.

  6. Coherent X-ray diffraction from collagenous soft tissues

    SciTech Connect

    Berenguer de la Cuesta, Felisa; Wenger, Marco P.E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-09-11

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  7. X-Ray Diffraction Simulation Using Laser Pointers and Printers.

    ERIC Educational Resources Information Center

    Johnson, Neil E.

    2001-01-01

    Uses a laser pointer to demonstrate the analogy between optical and X-ray diffraction and a laser printer with 600 or 1200 dot resolution to create and modify arrays, print them on transparencies, and illuminate them with laser pointers. Includes 14 references. (Author/YDS)

  8. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  9. X-ray diffraction from intact tau aggregates in human brain tissue

    SciTech Connect

    Landahl, Eric C.; Antipova, Olga; Bongaarts, Angela; Barrea, Raul; Berry, Robert; Binder, Lester I.; Irving, Thomas; Orgel, Joseph; Vana, Laurel; Rice, Sarah E.

    2011-09-15

    We describe an instrument to record X-ray diffraction patterns from diseased regions of human brain tissue by combining an in-line visible light fluorescence microscope with an X-ray diffraction microprobe. We use thiazine red fluorescence to specifically label and detect the filamentous tau protein pathology associated with Pick's disease, as several laboratories have done previously. We demonstrate that thiazine red-enhanced regions within the tissue show periodic structure in X-ray diffraction, which is not observed in healthy tissue. One observed periodicity (4.2 {angstrom}) is characteristic of cross-beta sheet structure, consistent with previous results from powder diffraction studies performed on purified, dried tau protein.

  10. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    SciTech Connect

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; Grant, Thomas D.; Liu, Haiguang; James, Daniel; Nelson, Garrett; Subramanian, Ganesh; Aquila, Andrew; Hunter, Mark S.; Liang, Mengning; Boutet, Sébastien; Coe, Jesse; Spence, John C. H.; Weierstall, Uwe; Liu, Wei; Fromme, Petra; Cherezov, Vadim; Hogue, Brenda G.

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  11. X-ray diffraction line profile analysis for defect study in Cu-1 wt.% Cr-0.1 wt.% Zr alloy

    SciTech Connect

    Kapoor, K. . E-mail: kapoork@nfc.ernet.in; Lahiri, D.; Batra, I.S.; Rao, S.V.R.; Sanyal, T.

    2005-02-15

    X-ray line profile analysis (LPA) has been used for microstructural analysis of a Cu-1 wt.% Cr-0.1 wt.% Zr alloy. Using this technique, the stacking fault probability (SFP) and stacking fault energy (SFE) has been determined for the pure Cu and the Cu-1 wt.% Cr-0.1 wt.% Zr alloy. It is observed that there is an increase in the stacking fault probability (and corresponding decrease in stacking fault energy) in case of the alloy. The increased formation of faulted regions in the Cu-1 wt.% Cr-0.1 wt.% Zr alloy is supported by the observation of extended dislocation nodes and fringe contrast due to staking faults under TEM, and higher work hardening rate in the tension test. The high thermal fatigue resistance of this alloy is attributed to decrease in the stacking fault energy by addition of Cr and Zr to Cu.

  12. X-ray Diffraction / MSE 603 Spring 2002 Qun Shen / CHESS qs11@cornell.edu

    E-print Network

    Shen, Qun

    X-ray Diffraction / MSE 603 Spring 2002 Qun Shen / CHESS qs11@cornell.edu 1. X-ray production & basic properties ­ common sources for diffraction experiments ­ synchrotron radiation ­ response to x-rays by an electron ­ refraction index ­ total external reflection & evanescent wave, TXRF 2. X-ray scattering basics

  13. Discovery and development of x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Jeong, Yeuncheol; Yin, Ming; Datta, Timir

    2013-03-01

    In 1912 Max Laue at University of Munich reasoned x-rays to be short wavelength electromagnetic waves and figured interference would occur when scattered off crystals. Arnold Sommerfeld, W. Wien, Ewald and others, raised objections to Laue's idea, but soon Walter Friedrich succeeded in recording x-ray interference patterns off copper sulfate crystals. But the Laue-Ewald's 3-dimensional formula predicted excess spots. Fewer spots were observed. William Lawrence Bragg then 22 year old studying at Cambridge University heard the Munich results from father William Henry Brag, physics professor at Univ of Leeds. Lawrence figured the spots are 2-d interference of x-ray wavelets reflecting off successive atomic planes and derived a simple eponymous equation, the Bragg equation d*sin(theta) = n*lamda. 1913 onward the Braggs dominated the crystallography. Max Laue was awarded the physics Nobel in 1914 and the Braggs shared the same in 1915. Starting with Rontgen's first ever prize in 1901, the importance of x-ray techniques is evident from the four out of a total 16 physics Nobels between 1901-1917. We will outline the historical back ground and importance of x-ray diffraction giving rise to techniques that even in 2013, remain work horses in laboratories all over the globe.

  14. Quantum-dot-array diffraction grating with single order diffraction property for soft x-ray region

    SciTech Connect

    Kuang Longyu; Wang Chuanke; Wang Zhebin; Cao Leifeng; Liu Shenye; Ding Yongkun; Zhu Xiaoli; Xie Changqing

    2010-07-15

    A gold transmission grating is used routinely to disperse the x-ray spectrum at the Z soft x-ray facility to measure the spectrum and temporal history of the absolute soft x-ray power emitted from z-pinch and hohlraum radiation sources. A quantum-dot-array diffraction grating (QDADG) of 250 lines/mm for soft x-ray is designed and fabricated for the first time according to the principle of binary sinusoidal transmission grating. The diffraction efficiencies of the grating are measured in the 150-300 eV photon energy range on the Beamline 3W1B of Beijing Synchrotron Radiation Facility. This article describes the basic concept and calibration techniques and presents calibration results. It is shown that the 250 lines/mm QDADG can be used to disperse light without higher-order diffractions in soft x-ray range, and the diffraction efficiencies of this grating are nearly constant (about 25%), which is beneficial in the spectrum analysis.

  15. Quantum-dot-array diffraction grating with single order diffraction property for soft x-ray region.

    PubMed

    Kuang, Longyu; Wang, Chuanke; Wang, Zhebin; Cao, Leifeng; Zhu, Xiaoli; Xie, Changqing; Liu, Shenye; Ding, Yongkun

    2010-07-01

    A gold transmission grating is used routinely to disperse the x-ray spectrum at the Z soft x-ray facility to measure the spectrum and temporal history of the absolute soft x-ray power emitted from z-pinch and hohlraum radiation sources. A quantum-dot-array diffraction grating (QDADG) of 250 lines/mm for soft x-ray is designed and fabricated for the first time according to the principle of binary sinusoidal transmission grating. The diffraction efficiencies of the grating are measured in the 150-300 eV photon energy range on the Beamline 3W1B of Beijing Synchrotron Radiation Facility. This article describes the basic concept and calibration techniques and presents calibration results. It is shown that the 250 lines/mm QDADG can be used to disperse light without higher-order diffractions in soft x-ray range, and the diffraction efficiencies of this grating are nearly constant (about 25%), which is beneficial in the spectrum analysis. PMID:20687723

  16. Liquid detection trial with x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Harding, G.; Fleckenstein, H.; Olesinski, S.; Zienert, G.

    2010-08-01

    SALOME (an acronym for Small Angle Lab Operation Measuring Equipment) is a versatile, energy-dispersive x-ray diffraction imaging (XDi) test-bed facility commissioned and supported by the Transportation Security Laboratory, Atlantic City, USA. In work presented here, the Inverse Fan-beam (IFB) topology has been realized on SALOME and used to investigate the liquids identification capability of x-ray diffraction (XRD). Liquids were investigated from four classes of materials of relevance to security screening of aircraft passenger luggage; namely: dilute aqueous liquids; concentrated aqueous liquids; hydrocarbon fuels; and oxidizers. A set of features associated with the Molecular Interference Function (MIF) were used to classify the liquids. Within the limited scope of this investigation, XRD proved to have excellent capability for discriminating liquids from one another; in particular, for isolating the threat materials without raising false alarms from either household or innocuous substances. Consequences for XRD-based screening of air passenger luggage are summarized.

  17. A Computational Algorithm to Produce Virtual X-ray and Electron Diffraction Patterns from Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Coleman, Shawn P.; Sichani, Mehrdad M.; Spearot, Douglas E.

    2014-03-01

    Electron and x-ray diffraction are well-established experimental methods used to explore the atomic scale structure of materials. In this work, a computational algorithm is developed to produce virtual electron and x-ray diffraction patterns directly from atomistic simulations. This algorithm advances beyond previous virtual diffraction methods by using a high-resolution mesh of reciprocal space that eliminates the need for a priori knowledge of the crystal structure being modeled or other assumptions concerning the diffraction conditions. At each point on the reciprocal space mesh, the diffraction intensity is computed via explicit computation of the structure factor equation. To construct virtual selected-area electron diffraction patterns, a hemispherical slice of the reciprocal lattice mesh lying on the surface of the Ewald sphere is isolated and viewed along a specified zone axis. X-ray diffraction line profiles are created by binning the intensity of each reciprocal lattice point by its associated scattering angle, effectively mimicking powder diffraction conditions. The virtual diffraction algorithm is sufficiently generic to be applied to atomistic simulations of any atomic species. In this article, the capability and versatility of the virtual diffraction algorithm is exhibited by presenting findings from atomistic simulations of <100> symmetric tilt Ni grain boundaries, nanocrystalline Cu models, and a heterogeneous interface formed between ?-Al2O3 (0001) and ?-Al2O3 (111).

  18. X-ray diffraction microscopy on frozen hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nelson, Johanna

    X-rays are excellent for imaging thick samples at high resolution because of their large penetration depth compared to electrons and their short wavelength relative to visible light. To image biological material, the absorption contrast of soft X-rays, especially between the carbon and oxygen K-shell absorption edges, can be utilized to give high contrast, high resolution images without the need for stains or labels. Because of radiation damage and the desire for high resolution tomography, live cell imaging is not feasible. However, cells can be frozen in vitrified ice, which reduces the effect of radiation damage while maintaining their natural hydrated state. X-ray diffraction microscopy (XDM) is an imaging technique which eliminates the limitations imposed by current focusing optics simply by removing them entirely. Far-field coherent diffraction intensity patterns are collected on a pixelated detector allowing every scattered photon to be collected within the limits of the detector's efficiency and physical size. An iterative computer algorithm is then used to invert the diffraction intensity into a real space image with both absorption and phase information. This technique transfers the emphasis away from fabrication and alignment of optics, and towards data processing. We have used this method to image a pair of freeze-dried, immuno-labeled yeast cells to the highest resolution (13 nm) yet obtained for a whole eukaryotic cell. We discuss successes and challenges in working with frozen hydrated specimens and efforts aimed at high resolution imaging of vitrified eukaryotic cells in 3D.

  19. Coherent x-ray diffraction from quantum dots

    SciTech Connect

    Vartanyants, I.A.; Robinson, I. K.; Onken, J.D.; Pfeifer, M.A.; Williams, G.J.; Pfeiffer, F.; Metzger, H.; Zhong, Z.; Bauer, G.

    2005-06-15

    Coherent x-ray diffraction is a new experimental method for studying perfect and imperfect crystals. Instead of incoherent averaging, a coherent sum of amplitudes produces a coherent diffraction pattern originating from the real space arrangement of the sample. We applied this method for studying quantum dot samples that were specially fabricated GeSi islands of nanometer size and in a regular array embedded into a Si substrate. A coherent beam was focused by special Kirkpatric-Baez optics to a micrometer size. In the experiment it was observed that such a microfocused coherent beam produced coherent diffraction pattern with Bragg spots and broad diffuse maxima. The diffuse peak breaks up into a fine speckle pattern. The grazing incidence diffraction pattern has a typical shape resulting from the periodic array of identical islands. We used this diffraction pattern to reconstruct the average shape of the islands using a model independent approach.

  20. Fabricating Blazed Diffraction Gratings by X-Ray Lithography

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Hartley, Frank; Wilson, Daniel

    2004-01-01

    Gray-scale x-ray lithography is undergoing development as a technique for fabricating blazed diffraction gratings. As such, gray-scale x-ray lithography now complements such other grating-fabrication techniques as mechanical ruling, holography, ion etching, laser ablation, laser writing, and electron-beam lithography. Each of these techniques offers advantages and disadvantages for implementing specific grating designs; no single one of these techniques can satisfy the design requirements for all applications. Gray-scale x-ray lithography is expected to be advantageous for making gratings on steeper substrates than those that can be made by electron-beam lithography. This technique is not limited to sawtooth groove profiles and flat substrates: various groove profiles can be generated on arbitrarily shaped (including highly curved) substrates with the same ease as sawtooth profiles can be generated on flat substrates. Moreover, the gratings fabricated by this technique can be made free of ghosts (spurious diffraction components attributable to small spurious periodicities in the locations of grooves). The first step in gray-scale x-ray lithography is to conformally coat a substrate with a suitable photoresist. An x-ray mask (see Figure 1) is generated, placed between the substrate and a source of collimated x-rays, and scanned over the substrate so as to create a spatial modulation in the exposure of the photoresist. Development of the exposed photoresist results in a surface corrugation that corresponds to the spatial modulation and that defines the grating surface. The grating pattern is generated by scanning an appropriately shaped x-ray area mask along the substrate. The mask example of Figure 1 would generate a blazed grating profile when scanned in the perpendicular direction at constant speed, assuming the photoresist responds linearly to incident radiation. If the resist response is nonlinear, then the mask shape can be modified to account for the nonlinearity and produce a desired groove profile. An example of grating grooves generated by this technique is shown in Figure 2. A maximum relative efficiency of 88 percent has been demonstrated.

  1. Ultrafast X-ray Diffraction Theory Jianshu Cao* and Kent R. Wilson

    E-print Network

    Cao, Jianshu

    Ultrafast X-ray Diffraction Theory Jianshu Cao* and Kent R. Wilson Department of Chemistry; In Final Form: July 10, 1998 Time-resolved X-ray diffraction patterns can be inverted to obtain surfaces), as required in optical probe experiments. In order to interpret ultrafast X-ray diffraction

  2. Borman effect in resonant diffraction of X-rays

    SciTech Connect

    Oreshko, A. P.

    2013-08-15

    A dynamic theory of resonant diffraction (occurring when the energy of incident radiation is close to the energy of the absorption edge of an element in the composition of a given substance) of synchronous X-rays is developed in the two-wave approximation in the coplanar Laue geometry for large grazing angles in perfect crystals. A sharp decrease in the absorption coefficient in the substance with simultaneously satisfied diffraction conditions (Borman effect) is demonstrated, and the theoretical and first experimental results are compared. The calculations reveal the possibility of applying this approach in analyzing the quadrupole-quadrupole contribution to the absorption coefficient.

  3. Diffraction imaging of crystals with focused x-ray beams

    SciTech Connect

    Kazimirov, A.; Kohn, V. G.; Cai, Z.-H.

    2010-06-01

    We describe an imaging technique based on diffraction of a focused x-ray beam in crystals. A focused beam is formed by a zone plate and Bragg diffracted from a crystalline sample positioned between the zone plate and the focus. The intensity pattern is recorded by a high-resolution charge-coupled-device detector placed in the focus. Diffraction images recorded from perfect Si and GaAs crystals for various reflections demonstrate the broadening of the focused beam due to a finite scattering length. The images from semiconductor epitaxial films and heterostructures show additional peaks originating from the interfaces with their spatial position corresponding to the depth from the surface. Diffraction images from isolated defects in Si crystal demonstrate capabilities to study bulk defects. Theoretical simulations for perfect crystals show excellent agreement with experiments. We demonstrate that the new imaging technique is depth sensitive and combines structural sensitivity of traditional x-ray topography methods with spatial in-plane resolution provided by focusing.

  4. ISOCAM Photometry of Narrow-Line X-ray Galaxies

    E-print Network

    J. D. Law-Green; A. Zezas; M. J. Ward; C. Boisson

    1998-12-23

    Mid-infrared photometry of the hosts of Narrow-Line X-ray Galaxies at 6 microns and 12 microns has been attempted with ISOCAM. No conclusive detections have been made. This implies that these are quiescent objects with little or no active star-formation. Neither X-ray binaries nor starburst-driven superwinds are consistent explanations for the X-ray emission in these objects. We conclude that these NLXGs are predominantly AGN-powered.

  5. X-ray diffraction study of acid-degradable glasses.

    PubMed

    De Maeyer, E A; Verbeeck, R M

    2001-08-01

    The composition of the degradable glasses used in commercial dental glass-ionomer cements determines their leaching behavior and hence the properties of the cement. The objective of the present study was to assess if the composition and leaching in acetic acid solutions are reflected in the x-ray diffraction characteristics of these glasses. The position (2theta) of the maximum of the first sharp diffraction peak shifts to higher diffraction angles with increasing number and ionic radius of mono- and bivalent cations in the glass. Upon acid-leaching, these ions are preferentially leached out, so that (2theta) decreases. These results can be related to the decreasing Si-Si distance in the glass network with increasing modifier radius. PMID:11669490

  6. Identifications studies of Lauha Bhasma by X-ray diffraction and X-ray fluorescence.

    PubMed

    Bhargava, S C; Reddy, K R C; Sastry, G V S

    2012-01-01

    Procedures for preparation of Lauha Bhasma are described in ancient texts of Ayurveda. These procedures also begin with different source material for iron such as Teekshna Lauha and Kanta Lauha etc. In the present study, we have selected different source materials viz. magnetite iron ore for Kanta Lauha and pure (Armco grade) iron turnings for Teekshna Lauha. The standard procedures of preparation of Lauha Bhasma are carried out in identical conditions for these two raw materials. The final product from the Puta are characterized by using X-ray diffraction and X-ray fluorescence spectroscopy to understanding the crystallographic form or forms of iron oxides and their composition at the end of each Puta. The iron content at the end of repeated Putas (18 for Kanta Lauha and 20 for Teekshna Lauha) have shown a decrease in case of Teekshna Lauha since the starting material is pure iron while it showed only marginal decreases in the case of Kanta Lauha because the Fe(3)O(4) of magnetite is undergoing oxidation to Fe(2)O(3). The trace elements remain within the Bhasma in the form of various oxides of Si, Al, Ca, etc. PMID:23049200

  7. Identifications studies of Lauha Bhasma by X-ray diffraction and X-ray fluorescence

    PubMed Central

    Bhargava, S. C.; Reddy, K. R. C; Sastry, G. V. S

    2012-01-01

    Procedures for preparation of Lauha Bhasma are described in ancient texts of Ayurveda. These procedures also begin with different source material for iron such as Teekshna Lauha and Kanta Lauha etc. In the present study, we have selected different source materials viz. magnetite iron ore for Kanta Lauha and pure (Armco grade) iron turnings for Teekshna Lauha. The standard procedures of preparation of Lauha Bhasma are carried out in identical conditions for these two raw materials. The final product from the Puta are characterized by using X-ray diffraction and X-ray fluorescence spectroscopy to understanding the crystallographic form or forms of iron oxides and their composition at the end of each Puta. The iron content at the end of repeated Putas (18 for Kanta Lauha and 20 for Teekshna Lauha) have shown a decrease in case of Teekshna Lauha since the starting material is pure iron while it showed only marginal decreases in the case of Kanta Lauha because the Fe3O4 of magnetite is undergoing oxidation to Fe2O3. The trace elements remain within the Bhasma in the form of various oxides of Si, Al, Ca, etc. PMID:23049200

  8. X-ray Mirage Diffraction and Its Interference Fringes

    NASA Astrophysics Data System (ADS)

    Fukamachi, Tomoe; Kawamura, Takaaki

    When the dispersion angle of X-rays in a perfect crystal is large, interference fringes are observed between the beams in the Bragg-Laue mode and Bragg-Bragg-Laue mode in the emitted beams from the lateral surface. If the crystal is weakly bent, X-rays propagate along a path of hyperbolic form and are diffracted from the incident surface, which is called mirage diffraction. Under the condition, mirage interference fringes between two mirage diffraction beams are observed not only from the incident surface but also from the lateral surface. Two approaches are proposed to determine strain parameters in the bent crystal by using the mirage interference fringes from the incident surface or the lateral surface. In one approach, the third peak of the mirage interference fringes is used. In the other, the region is used where no direct beam reaches to the lateral surface. The resultant strain parameters determined by the two approaches show excellent agreement. Some characteristics and advantages of using mirage interference fringes are discussed.

  9. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  10. Ultrafast X-ray Diffraction of Photodissociation of Iodoform in Solution

    E-print Network

    Ihee, Hyotcherl

    Ultrafast X-ray Diffraction of Photodissociation of Iodoform in Solution Jae Hyuk Lee , Tae Kyu Kim) dissolved in methanol by time- resolved x-ray diffraction. A femtosecond laser pulse induces the bond-breaking of an iodine atom from iodoform and an x-ray pulse generated from a synchrotron gives time

  11. An image focusing means by using an opaque object to diffract x-rays

    DOEpatents

    Sommargren, Gary E. (Santa Cruz, CA); Weaver, H. Joseph (Livermore, CA)

    1991-01-01

    The invention provides a method and apparatus for focusing and imaging x-rays. An opaque sphere is used as a diffractive imaging element to diffract x-rays from an object so that the divergent x-ray wavefronts are transformed into convergent wavefronts and are brought to focus to form an image of the object with a large depth of field.

  12. High Pressure X-ray Diffraction Study of Potassium Azide

    SciTech Connect

    C Ji; F Zhang; D Hong; H Zhu; J Wu; M Chyu; V Levitas; Y Ma

    2011-12-31

    Crystal structure and compressibility of potassium azide was investigated by in-situ synchrotron powder X-ray diffraction in a diamond anvil cell at room temperature up to 37.7 GPa. In the body-centered tetragonal (bct) phase, an anisotropic compressibility was observed with greater compressibility in the direction perpendicular to the plane containing N{sub 3}{sup -} ions than directions within that plane. The bulk modulus of the bct phase was determined to be 18.6(7) GPa. A pressure-induced phase transition may occur at 15.5 GPa.

  13. X -Ray Diffraction and Microhardness Studies of Tin Monoselenide

    NASA Astrophysics Data System (ADS)

    Sreedevi, K. R.; Chandrasekharan, K. A.; Kunjomana, A. G.

    2011-07-01

    Tin Monoselenide (SnSe) crystals have been grown by the Physical Vapour Deposition (PVD) method. X-ray diffraction studies were carried out on the as grown crystals and the lattice parameters were found to be a = 11.506 Å, b = 4.149 Å and c = 4.447 Å. The values were found to be comparable with that reported in the PDF card for SnSe. The microhardness of the crystals has been determined by using Vickers microhardness indenter.

  14. The three dimensional X-ray diffraction technique

    SciTech Connect

    Jensen, D. Juul; Poulsen, H.F.

    2012-10-24

    This introductory tutorial describes the so called 3 dimensional X-ray diffraction (3DXRD) technique, which allows bulk non-destructive structural characterizations of crystalline materials. The motivations and history behind the development of this technique are described and its potentials are sketched. Examples of the use of the technique are given and future trends and developments are suggested. The primary aim of the paper is to give 3DXRD novices an easy introduction to the technique and to describe a way from a dream to reality and new results.

  15. The three dimensional X-ray diffraction technique

    SciTech Connect

    Jensen, D. Juul; Poulsen, H.F.

    2012-10-15

    This introductory tutorial describes the so called 3 dimensional X-ray diffraction (3DXRD) technique, which allows bulk non-destructive structural characterizations of crystalline materials. The motivations and history behind the development of this technique are described and its potentials are sketched. Examples of the use of the technique are given and future trends and developments are suggested. The primary aim of the paper is to give 3DXRD novices an easy introduction to the technique and to describe a way from a dream to reality and new results.

  16. X-ray diffraction studies of shocked lunar analogs

    NASA Technical Reports Server (NTRS)

    Hanss, R. E.

    1979-01-01

    The X-ray diffraction experiments on shocked rock and mineral analogs of particular significance to lunar geology are described. Materials naturally shocked by meteorite impact, nuclear-shocked, or artificially shocked in a flat plate accelerator were utilized. Four areas were outlined for investigation: powder diffractometer studies of shocked single crystal silicate minerals (quartz, orthoclase, oligoclase, pyroxene), powder diffractometer studies of shocked polycrystalline monomineralic samples (dunite), Debye-Scherrer studies of single grains of shocked granodiorite, and powder diffractometer studies of shocked whole rock samples. Quantitative interpretation of peak shock pressures experienced by materials found in lunar or terrestrial impact structures is presented.

  17. Ultrafast X-Ray Diffraction of Heterogeneous Solid Hydrogen

    SciTech Connect

    Levitan, Abraham

    2015-08-19

    Angularly resolved x-ray diffraction at 5.5 keV establishes the structure of a 5 µm diameter solid hydrogen jet, providing a foundation for analysis of hydrogen in a warm dense matter state. The jet was composed of approximately 65 % ± 5% HCP and 35 % ± 5% FCC by volume with an average crystallite size on the order of hundreds of nanometers. Broadening in the angularly resolved spectrum provided strong evidence for anisotropic strain up to approximately 3 % in the HCP lattice. Finally, we found no evidence for orientational ordering of the crystal domains.

  18. X-Ray Diffraction of Heterogeneous Solid Hydrogen - Oral Presentation

    SciTech Connect

    Levitan, Abraham

    2015-08-24

    Angularly resolved x-ray diffraction at 5.5 keV establishes the structure of a 5 ?m diameter solid hydrogen jet, providing a foundation for analysis of hydrogen in a warm dense matter state. The jet was composed of approximately 65% ± 5% HCP and 35% ± 5% FCC by volume with an average crystallite size on the order of hundreds of nanometers. Broadening in the angularly resolved spectrum provided strong evidence for anisotropic strain up to approximately 3 % in the HCP lattice. Finally, we found no evidence for orientational ordering of the crystal domains.

  19. Anomalous X-ray Diffraction Studies for Photovoltaic Applications

    SciTech Connect

    Not Available

    2011-06-22

    Anomalous X-ray Diffraction (AXRD) has become a useful technique in characterizing bulk and nanomaterials as it provides specific information about the crystal structure of materials. In this project we present the results of AXRD applied to materials for photovoltaic applications: ZnO loaded with Ga and ZnCo{sub 2}O{sub 4} spinel. The X-ray diffraction data collected for various energies were plotted in Origin software. The peaks were fitted using different functions including Pseudo Voigt, Gaussian, and Lorentzian. This fitting provided the integrated intensity data (peaks area values), which when plotted as a function of X-ray energies determined the material structure. For the first analyzed sample, Ga was not incorporated into the ZnO crystal structure. For the ZnCo{sub 2}O{sub 4} spinel Co was found in one or both tetrahedral and octahedral sites. The use of anomalous X-ray diffraction (AXRD) provides element and site specific information for the crystal structure of a material. This technique lets us correlate the structure to the electronic properties of the materials as it allows us to probe precise locations of cations in the spinel structure. What makes it possible is that in AXRD the diffraction pattern is measured at a number of energies near an X-ray absorption edge of an element of interest. The atomic scattering strength of an element varies near its absorption edge and hence the total intensity of the diffraction peak changes by changing the X-ray energy. Thus AXRD provides element specific structural information. This method can be applied to both crystalline and liquid materials. One of the advantages of AXRD in crystallography experiments is its sensitivity to neighboring elements in the periodic tables. This method is also sensitive to specific crystallographic phases and to a specific site in a phase. The main use of AXRD in this study is for transparent conductors (TCs) analysis. TCs are considered to be important materials because of their efficiency and low risk of environmental pollution. These materials are important to solar cells as a result of their remarkable combination of optical and electrical properties, including high electrical conductivity and high optical transparency in the spectrum of visible light. TCs provide a transparent window, which allows sunlight to pass through while also allowing electricity to conduct out of the cell. Spinel materials have the chemical form AB{sub 2}O{sub 4}, and are made of a face-centered cubic (FCC) lattice of oxygen anions and cations in specific interstitial sites. A normal spinel has all A cations on tetrahedral sites and B cations on octahedral sites. In contrast; an inverse spinel has the A and half of the B cations on octahedral sites and the other half of the B cations on tetrahedral sites; a mixed spinel lies between. In the spinel structure, 8 of 64 possible tetrahedral sites and 16 of 32 possible octahedral sites are filled. Normal spinels have particularly high conduction as the linear octahedral chains of B cations likely serve as conduction paths. In this paper we present how the data obtained with AXRD is used to analyze TCs properties as they apply to photovoltaic applications. One of the materials used for this analysis is zinc oxide. It has been loaded with 5% and 10% of Ga, which has an absorption edge of 10367 eV. The peak (100) was measured for the zinc oxide loaded with 10% Ga. In the case of 5% Ga, we measured peaks (100) and (101). With the information provided by the AXRD we can identify if Ga is being incorporated in the ZnO crystal structure. The analysis of 311 plane in the ZnCo{sub 2}O{sub 4} spinel shows if Co is in tetrahedral or octahedral site.

  20. Beam line for experiments with coherent soft x-rays

    SciTech Connect

    Howells, M.R.; Kirz, J.; Krinsky, S.

    1982-12-01

    The advantages of coherent soft x-rays for three-dimensional imaging of biological specimens are discussed, the x-ray source requirements are described, and the general design of the beam line and its optical system are given. (WHK)

  1. Virtual X-Ray and Electron Diffraction Patterns from Atomistic Simulations on Heterogeneous Computing Platforms

    NASA Astrophysics Data System (ADS)

    Coleman, Shawn; Wang, Yang; Cueva-Parra, Luis; Spearot, Douglas

    2014-03-01

    Electron and X-ray diffraction are well-established experimental methods used to explore the atomic scale structure of materials. In this work, a computational algorithm is developed to produce virtual electron and X-ray diffraction patterns directly from atomistic simulations. In this algorithm, the diffraction intensity is computed via the structure factor equation over a 3-dimensional mesh of {hkl} points in reciprocal space. To construct virtual selected area electron diffraction (SAED) patterns, a thin hemispherical slice of the reciprocal lattice map lying near the surface of the Ewald sphere is isolated and viewed parallel to a specified zone axis. X-ray diffraction 2 ? line profiles are created by virtually rotating the Ewald sphere around the origin of reciprocal space, binning intensities by their associated scattering angle. The diffraction code is parallelized using a heterogeneous mix of MPI and OpenMP. The atom positions are distributed via MPI while the reciprocal space mesh is parallelized using either OpenMP threads launched on regular CPU cores or offloaded to MIC hardware. The complexity of heterogeneous MPI/OpenMP parallelization on mixed hardware will be discussed. This work was supported in part by the NSF under grant 0954505. Simulations were performed on resources supported in part by NSF.

  2. X-ray Diffraction Studies of Striated Muscles

    SciTech Connect

    Squire, J.M.; Knupp, C.; Roessle, M.; Al-Khayat, H.A.; Irving, T.C.; Eakins, F.; Mok, N.-S.; Harford, J.J.; Reedy, M.K.

    2006-04-24

    In this short review a number of recent X-ray diffraction results on the highly ordered striated muscles in insects and in bony fish have been briefly described. What is clear is that this technique applied to muscles which are amenable to rigorous analysis, taken together with related data from other sources (e.g. protein crystallography, biochemistry, mechanics, computer modelling) can provide not only the best descriptions yet available on the myosin head organisations on different myosin filaments in the relaxed state, but can also show the sequence of molecular events that occurs in the contractile cycle, and may also help to explain such phenomena as stretch-activation. X-ray diffraction is clearly an enormously powerful tool in studies of muscle. It has already provided a wealth of detail on muscle ultrastructure; it is providing ever more fascinating insights into molecular events in the 50-year old sliding filament mechanism, and there remains a great deal more potential that is as yet untapped.

  3. X-ray diffraction of III-nitrides

    NASA Astrophysics Data System (ADS)

    Moram, M A; Vickers, M E

    2009-03-01

    The III-nitrides include the semiconductors AlN, GaN and InN, which have band gaps spanning the entire UV and visible ranges. Thin films of III-nitrides are used to make UV, violet, blue and green light-emitting diodes and lasers, as well as solar cells, high-electron mobility transistors (HEMTs) and other devices. However, the film growth process gives rise to unusually high strain and high defect densities, which can affect the device performance. X-ray diffraction is a popular, non-destructive technique used to characterize films and device structures, allowing improvements in device efficiencies to be made. It provides information on crystalline lattice parameters (from which strain and composition are determined), misorientation (from which defect types and densities may be deduced), crystallite size and microstrain, wafer bowing, residual stress, alloy ordering, phase separation (if present) along with film thicknesses and superlattice (quantum well) thicknesses, compositions and non-uniformities. These topics are reviewed, along with the basic principles of x-ray diffraction of thin films and areas of special current interest, such as analysis of non-polar, semipolar and cubic III-nitrides. A summary of useful values needed in calculations, including elastic constants and lattice parameters, is also given. Such topics are also likely to be relevant to other highly lattice-mismatched wurtzite-structure materials such as heteroepitaxial ZnO and ZnSe.

  4. Diffraction and holography of photoelectrons and fluorescent x-rays

    SciTech Connect

    Fadley, C.S. |

    1993-04-01

    Photoelectron diffraction is by now a powerful technique for studying surface structures, with special capabilities for resolving chemical and magnetic states of atoms and deriving direct structural information from both forward scattering and backscattering. Fitting experiment to theory can lead to structural accuracies in the 0.03 {Angstrom} range. Holographic inversions of such diffraction data also show considerable promise for deriving local three-dimensional structures around a given emitter with accuracies of 0.2--0.3 {Angstrom}. Resolving the photoelectron spin in some way and using circularly polarized radiation for excitation provide added dimensions for the study of magnetic systems and chiral experimental geometries. Synchrotron radiation with the highest brightness and energy resolution, as well as variable polarization, is crucial to the full exploitation of these techniques. X-ray fluorescence holography also has promise for structural studies, but will require intense excitation sources and multichannel detection to be feasible.

  5. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  6. Observations of Shocked Metallic Surfaces with Single-Pulse X-Ray Diffraction

    SciTech Connect

    Dane V. Morgan, Mike Grover, Don Macy, Mike Madlener, Gerald Stevens, William D. Turley

    2009-07-31

    A single-pulse x-ray diffraction (XRD) diagnostic has been developed for the investigation of shocked material properties on a very short time scale. The diagnostic, which consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, produces line and bremsstrahlung x-ray emission in a 40-ns pulse. A selected anode of either silver or molybdenum produces characteristic K? lines used for diffraction. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 2-mm by 5-mm spot and 1° full-width-half-maximum angular divergence. Coherent scattering from the sample produces a Debye-Scherrer diffraction pattern on an image plate 75 mm from the polycrystalline sample surface. An experimental study of the polycrystalline structures of zirconium and tin under high-pressure shock loading has been conducted with single-pulse XRD. The experimental targets were 0.1-mm-thick foils of zirconium and tin using 0.4-mm-thick vitreous carbon back windows for shock-loading, and the shocks were produced by either Detasheet or PBX-9501 high explosives buffered by 1-mm-thick 6061-T6 aluminum. The diffraction patterns from both shocked zirconium and tin indicated a phase transition into a polymorphic mix of amorphous and new solid phases.

  7. The first X-ray diffraction measurements on Mars.

    PubMed

    Bish, David; Blake, David; Vaniman, David; Sarrazin, Philippe; Bristow, Thomas; Achilles, Cherie; Dera, Przemyslaw; Chipera, Steve; Crisp, Joy; Downs, R T; Farmer, Jack; Gailhanou, Marc; Ming, Doug; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Rampe, Elizabeth; Treiman, Allan; Yen, Albert

    2014-11-01

    The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component. PMID:25485131

  8. (Diffraction gratings used in x-ray spectroscopy): Final report

    SciTech Connect

    Smith, H.I.

    1988-11-01

    This subcontract was initiated in order to facilitate the development at MIT of technologies for fabricating the very fine diffraction grating required in x-ray spectroscopy at Lawrence Livermore Laboratory (LLL). These gratings are generally gold transmission gratings with spatial periods of 200 nm or less. The major focus of our efforts was to develop a means of fabricating gratings of 100 nm period. We explored two approaches: e-beam fabrication of x-ray lithography masks, and achromatic holographic lithography. This work was pursued by Erik Anderson as a major component of his Ph.D. thesis. Erik was successful in both the e-beam and holographic approaches. However, the e-beam method proved to be highly impractical: exposure times of about 115 days would be required to cover an area of 1 cm/sup 2/. The achromatic holography, on the other hand, should be capable of exposing areas well in excess of 1 cm/sup 2/ in times under 1 hour. Moreover, 100 nm-period gratings produced by achromatic holography are coherent over their entire area whereas gratings produced by e-beam lithography are coherent only over areas /approximately/100 ..mu..m. The remainder of this report consists of portions excerpted from Erik Anderson's thesis. These contain all the details of our work on 100 nm period gratings. 26 refs., 17 figs.

  9. The first X-ray diffraction measurements on Mars

    PubMed Central

    Bish, David; Blake, David; Vaniman, David; Sarrazin, Philippe; Bristow, Thomas; Achilles, Cherie; Dera, Przemyslaw; Chipera, Steve; Crisp, Joy; Downs, R. T.; Farmer, Jack; Gailhanou, Marc; Ming, Doug; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Rampe, Elizabeth; Treiman, Allan; Yen, Albert

    2014-01-01

    The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component. PMID:25485131

  10. X-ray diffraction characterization of thin superconductive films

    SciTech Connect

    Kozaczek, K.J.; Watkins, T.R.; Book, G.W.; Carter, W.B.

    1995-12-31

    The physical and mechanical properties of thin films are often different from the properties of bulk material and are dictated by the film/substrate orientation relationship, crystal anisotropy and crystalgraphic texture of the film. X-ray diffraction texture analysis provides information about preferential film growth and can be used for optimization of deposition parameters and prediction of properties of thin films. An x-ray back reflection technique using the Braga-Brentano geometry with experimental corrections for absorption and defocusing was used to study thin ceramic films deposited by combustion chemical vapor deposition (CCVD). The film/substrate orientation relationships of YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) superconducting thin films deposited via CCVD on single crystal MgO and polycrystalline silver substrates were studied. The as-deposited films on single crystal (100) MgO substrates showed strong preferential growth with the basal plane parallel to the substrate surface (c-axis up growth). Texture analysis showed two in-plane alignment orientations of the film with respect to the substrate, with YBCO [100] and [110] aligned with the [100] MgO substrate. YBCO films deposited on cold-rolled polycrystalline silver displayed c-axis up growth indicating that the orientation of the polycrystalline substrate (brass type texture) did not induce detectable in-plane preferential growth of the YBCO.

  11. Fabrication of large area X-ray diffraction grating for X-ray phase imaging

    NASA Astrophysics Data System (ADS)

    Noda, Daiji; Tokuoka, Atsushi; Katori, Megumi; Minamiyama, Yasuto; Yamashita, Kenji; Nishida, Satoshi; Hattori, Tadashi

    2012-07-01

    X-ray lithography, which uses highly directional synchrotron radiation, is one of the technologies that can be used for fabricating micrometer-sized structures. In X-ray lithography, the accuracy of the fabricated structure depends largely on the accuracy of the X-ray mask. Since X-ray radiation is highly directional, a micro-fabrication technology that produces un-tapered and high aspect ratio highly absorbent structures on a low absorbent membrane is required. Conventionally, a resin material is used as the support membrane for large area X-ray masks. However, resin membranes have the disadvantage that they can sag after several cycles of X-ray exposure due to the heat generated by the X-rays. Therefore, we proposed and used thin carbon wafers for the membrane material because carbon has an extremely small thermal expansion coefficient. We fabricated new carbon membrane X-ray masks, and these results of X-ray lithography demonstrate the superior performance.

  12. A new theory for X-ray diffraction

    SciTech Connect

    Fewster, Paul F.

    2014-05-01

    By considering the scattering distributed throughout space, there is an intensity enhancement at the Bragg angle even when the Bragg condition is not satisfied. This leads to an alternative explanation for the diffraction from powders and small crystals. This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the ‘Bragg position’ even if the ‘Bragg condition’ is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many ‘Bragg positions’. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on ‘Bragg-type’ scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the ‘background’. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models.

  13. Special properties of X-ray diffraction on carbon onions

    SciTech Connect

    Yastrebov, S. G. Ivanov-Omskii, V. I.

    2007-12-15

    The kinematic theory of X-ray diffraction was applied to the study of the most intense Bragg's reflection observed for carbon onions. It was shown that the agreement with experimental data was attained using a convolution of a Lorentzian contour with regard to the distribution of onion sizes and of an asymmetric contour taking into account the fluctuations of intershell distances inside the particle. It can be assumed that the observed scatter in intershell distances indicates a nonequilibrium state of the internal configuration of onion shells. It appeared to be possible to estimate not only the average onion size, which exceeds the average size of pristine nanodiamonds that are used for onion preparation by annealing, but their size distribution function as well.

  14. Powder X-ray diffraction laboratory, Reston, Virginia

    USGS Publications Warehouse

    Piatak, Nadine M.; Dulong, Frank T.; Jackson, John C.; Folger, Helen W.

    2014-01-01

    The powder x-ray diffraction (XRD) laboratory is managed jointly by the Eastern Mineral and Environmental Resources and Eastern Energy Resources Science Centers. Laboratory scientists collaborate on a wide variety of research problems involving other U.S. Geological Survey (USGS) science centers and government agencies, universities, and industry. Capabilities include identification and quantification of crystalline and amorphous phases, and crystallographic and atomic structure analysis for a wide variety of sample media. Customized laboratory procedures and analyses commonly are used to characterize non-routine samples including, but not limited to, organic and inorganic components in petroleum source rocks, ore and mine waste, clay minerals, and glassy phases. Procedures can be adapted to meet a variety of research objectives.

  15. In situ observation of x-ray irradiation effect by using a multiwave x-ray diffraction phenomenon

    SciTech Connect

    Yashiro, Wataru; Yoda, Yoshitaka; Miki, Kazushi; Takahashi, Toshio

    2011-11-15

    In situ observation of the complex scattering amplitude of x-ray specular reflection (amplitude reflectivity) was performed by using a method with a multiwave x-ray diffraction phenomenon. The method can be applied to the noncrystalline layers on a single crystal and allows us to determine its amplitude reflectivity with only a 0.01 degree of crystal rotation, that is, the area irradiated by the incident x rays is almost unchanged during the measurement. We used this method to observe an irradiation effect induced by monochromatic synchrotron x-rays that occurred on a Si(001) single crystal covered with a native oxide layer. The obtained time evolution of the amplitude reflectivities exhibited counterclockwise behavior in the complex plane, indicating that the thickness of the noncrystalline layer on the crystalline substrate was increased by the irradiation.

  16. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystalsa)

    NASA Astrophysics Data System (ADS)

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  17. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals.

    PubMed

    Haugh, M J; Wu, M; Jacoby, K D; Loisel, G P

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed. PMID:25430195

  18. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    SciTech Connect

    Haugh, M. J. Jacoby, K. D.; Wu, M.; Loisel, G. P.

    2014-11-15

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  19. Measuring the X-ray Resolving Power of Bent Potassium Acid Phthalate Diffraction Crystals

    SciTech Connect

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories (SNL) in Albuquerque, NM. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a dual goniometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  20. Coherent X-ray diffraction investigation of twinned microcrystals.

    PubMed

    Aranda, Miguel A G; Berenguer, Felisa; Bean, Richard J; Shi, Xiaowen; Xiong, Gang; Collins, Stephen P; Nave, Colin; Robinson, Ian K

    2010-11-01

    Coherent X-ray diffraction has been used to study pseudo-merohedrally twinned manganite microcrystals. The analyzed compositions were Pr(5/8)Ca(3/8)MnO(3) and La(0.275)Pr(0.35)Ca(3/8)MnO(3). The prepared loose powder was thermally attached to glass (and quartz) capillary walls by gentle heating to ensure positional stability during data collection. Many diffraction data sets were recorded and some of them were split as expected from the main observed twin law: 180° rotation around [101]. The peak splitting was measured with very high precision owing to the high-resolution nature of the diffraction data, with a resolution (?d/d) better than 2.0 × 10(-4). Furthermore, when these microcrystals are illuminated coherently, the different crystallographic phases of the structure factors induce interference in the form of a speckle pattern. The three-dimensional speckled Bragg peak intensity distribution has been measured providing information about the twin domains within the microcrystals. Research is ongoing to invert the measured patterns. Successful phase retrieval will allow mapping out the twin domains and twin boundaries which play a key role in the physical properties. PMID:20975220

  1. Flash X-Ray Diffraction System for Fast, Single-PulseTemperature and Phase Transition Measurements (Pre-print)

    SciTech Connect

    Michael J. Madlener; Dane V. Morgan

    2007-06-12

    A new, fast, single-pulse diagnostic for determining phase transitions and measuring the bulk temperature of polycrystalline metal objects has been developed. The diagnostic consists of a 37-stage Marx bank with a cable-coupled X-ray diode that produces a 35-ns pulse of mostly 0.71-{angstrom} monochromatic X rays and a P-43 fluor coupled to a cooled, charge-coupled device camera by a coherent fiber-optic bundle for detection of scattered X rays. The X-ray beam is collimated to a 1{sup o} divergence in the scattering plane with the combination of a 1.5-mm tungsten pinhole and a 1.5-mm-diameter molybdenum anode. X rays are produced by a high-energy electron beam transiting inward from the cathode to the anode in a needle-and-washer configuration. The anode's characteristic K-{alpha} X-ray emission lines are utilized for this diffraction system. The X-ray anode is heavily shielded in all directions other than the collimated beam. The X-ray diode has a sealed reentrant system, allowing X rays to be produced inside a vacuum containment vessel, close to the sample under study.

  2. Very High Resolution Solar X-ray Imaging Using Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Skinner, G. K.; Li, M. J.; Shih, A. Y.

    2012-01-01

    This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the greater than or equal to 10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of approximately equal to 10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics.We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of approximately equal to 100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane approximately equal to 100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.

  3. Eta Carinae: X-ray Line Variations during the 2003 X-ray Minimum, and the Orbit Orientation

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Henley, D.; Hamaguchi, K.; Khibashi, K.; Pittard, J. M.; Stevens, I. R.; Gull, T. R.

    2007-01-01

    The future evolution of Eta Carinae will be as a supernova (or hypernova) and black hole. The evolution is highly contingent on mass and angular momentum changes and instabilities. The presence of a companion can serve to trigger instabilities and provide pathways for mass and angular momentum exchange loss. X-rays can be used a a key diagnostic tool: x-ray temperatures trace pre-shock wind velocities, periodic x-ray variability traces the orbit, and x-ray line variations traces the flow and orientation of shocked gas. This brief presentation highlights x-ray line variations from the HETG and presents a model of the colliding wind flow.

  4. Request for X-ray Powder Diffraction Experiment (XRD) Lab. Book # ________ Peter Y. Zavalij X-ray Crystallographi Center 091 Chemistry Bldg. / College Park, MD 20742

    E-print Network

    Thirumalai, Devarajan

    Request for X-ray Powder Diffraction Experiment (XRD) Lab. Book # ________ Peter Y. Zavalij X-ray-Match C2 Discover 2max [90°] #2 Unit Cell Refinement * X'Pert MRD 2step[0.015°] #3 Rietveld Refinement

  5. X-Ray Diffraction of Shock Compressed H2O

    NASA Astrophysics Data System (ADS)

    Gleason, A. E.

    2014-12-01

    H2O, critical for life and ubiquitous in biology, is one of the most abundant molecules in the solar system and is relevant to many fields, including fundamental physics and chemistry. Phase transformation information of H2O is also important to applied areas like planetary science where it is a constituent of giant planets Neptune and Uranus, icy satellites (e.g., Europa, Ganymede), and extrasolar planets (icy "super-Earths"). Using the MEC (Matter in Extreme Conditions) hutch at LCLS, we reach simultaneous high pressure (P) and temperature (T) with laser-driven shock waves and the capability of taking snapshots during a dynamic process with the X-ray Free Electron Laser (xFEL). We report the only shock-driven diffraction data on H2O ever collected to date, and examine time-resolved diffraction from ice Ih to high pressure ice VII. At 2 Mbar we find evidence of ice X - this has significant implications for planetary interiors and providing a bound for the onset of the superionic phase.

  6. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    SciTech Connect

    Huang Xiaojing; Nelson, Johanna; Lima, Enju; Miao, Huijie; Steinbrener, Jan; Stewart, Andrew; Turner, Joshua J.; Jacobsen, Chris; Kirz, Janos; Marchesini, Stefano; Shapiro, David; Neiman, Aaron M.

    2009-11-06

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 deg. C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  7. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    DOE PAGESBeta

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; Lima, Enju; Marchesini, Stefano; Miao, Huijie; Neiman, Aaron M.; Shapiro, David; Steinbrener, Jan; Stewart, Andrew; et al

    2009-11-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  8. X-Ray Absorbed, Broad-Lined, Red AGN and the Cosmic X-Ray Background

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Wilkes, Belinda

    2005-01-01

    We have obtained XMM spectra for five red, 2MASS AGN, selected from a sample observed by Chandra to be X-ray bright and to cover a range of hardness ratios. Our results confirm the presence of substantial absorbing material in three sources which have optical classifications ranging from Type 1 to Type 2, with an intrinsically flat (hard) power law continuum indicated in the other two. The presence of both X-ray absorption and broad optical emission lines with the usual strength suggests either a small (nuclear) absorber or a favored viewing angle so as to cover the X-ray source but not the broad emission line region (BELR). A soft excess is detected in all three Type 1 sources. We speculate that this soft X-ray emission may arise in an extended region of ionized gas, perhaps linked with the polarized (scattered) light which is a feature of these sources. The spectral complexity revealed by XMM emphasizes the limitations of the low S/N Chandra data. Overall, the new XMM results strengthen our conclusions (Wilkes et al. 2002) that the observed X-ray continua of red AGN are unusually hard at energies greater than 2 keV. Whether due to substantial line-of-sight absorption or to an intrinsically hard or reflection-dominated spectrum, these 'red' AGN have an observed spectral form consistent with contributing significantly to the missing had absorbed population of the Cosmic X-ray Background (CXRB). When absorption and or reflection is taken into account, all these AGN have power law slopes typical of broad-line (Type 1) AGN (Gamma approximately 1.9). This appears to resolve the spectral paradox which for so long has existed between the CXRB and the AGN thought to be the dominant contributors. It also suggests two scenarios whereby Type 1 AGN/QSOs may be responsible for a significant fraction of the CXRB at energies above 2 keV: 1) X-ray absorbed AGN/QSOs with visible broad emission lines; 2) AGN/QSOs with complex spectra whose hardness greater than 2 keV is not detectable in the typically low S/N data of X-ray surveys. Even if absorption is present in only half of the population, the large number of 'red' AGN suggests a development of unification models, where the continuum source is surrounded, over a substantial solid angle, by the wind or atmosphere of an accretion disk/torus. X-ray observations of such AGN not only provide a check on the presence of absorption, but also a unique probe of the absorbing material. Improved information on their space density, in particular as a function of redshift, will soon be provided by Spitzer-Chandra wide area surveys, allowing better estimates of both the importance of red AGN to the full AGN population and their contribution to the CXRB.

  9. Quantitative description of microstructure defects in hexagonal boron nitrides using X-ray diffraction analysis

    SciTech Connect

    Schimpf, C. Motylenko, M.; Rafaja, D.

    2013-12-15

    A routine for simultaneous quantification of turbostratic disorder, amount of puckering and the dislocation and stacking fault density in hexagonal materials was proposed and tested on boron nitride powder samples that were synthesised using different methods. The routine allows the individual microstructure defects to be recognised according to their effect on the anisotropy of the X-ray diffraction line broadening. For quantification of the microstructure defects, the total line broadening is regarded as a linear combination of the contributions from the particular defects. The total line broadening is obtained from the line profile fitting. As testing material, graphitic boron nitride (h-BN) was employed in the form of hot-isostatically pressed h-BN, pyrolytic h-BN or a h-BN, which was chemically vapour deposited at a low temperature. The kind of the dominant microstructure defects determined from the broadening of the X-ray diffraction lines was verified by high resolution transmission electron microscopy. Their amount was attempted to be verified by alternative methods. - Highlights: • Reliable method for quantification of microstructure defects in BN was suggested. • The method is based on the analysis of anisotropic XRD line broadening. • This XRD line broadening is unique and characteristic of the respective defect. • Thus, the quantification of coexistent microstructure defects is possible. • The method was tested on hexagonal BN, which was produced by different techniques.

  10. X-ray Diffraction Study of Molybdenum to 900 GPa

    NASA Astrophysics Data System (ADS)

    Wang, J.; Coppari, F.; Smith, R.; Eggert, J.; Boehly, T.; Collins, G. W.; Duffy, T. S.

    2013-12-01

    Molybdenum (Mo) is a transition metal that is important as a high-pressure standard. Its equation of state, structure, and melting behavior have been explored extensively in both experimental and theoretical studies. Melting data up to the Mbar pressure region from static compression experiments in the diamond anvil cell [Errandonea et al. 2004] are inconsistent with shock wave sound velocity measurements [Hixson et al., 1989]. There are also conflicting reports as to whether body-centered cubic (BCC) Mo transforms to a face-centered cubic (FCC), hexagonal close packed (HCP) or double hexagonal close packed (DHCP) structure at either high pressure or high pressure and temperature conditions [Belonoshko et al. 2008, Mikhaylushkin et al., 2008 and Cazorla et al., 2008]. Recently, a phase transition from BCC to the DHCP phase at 660 GPa and 0 K was predicted using the particle swam optimization (PSO) method (Wang et al, 2013). Here we report an x-ray diffraction study of dynamically compressed molybdenum. Experiments were conducted using the Omega laser at the Laboratory for Laser Energetics at the University of Rochester. Mo targets were either ramp or shock compressed using a laser drive. In ramp loading, the sample is compressed sufficiently slowly that a shock wave does not form. This results in lower temperatures, keeping the sample in the solid state to higher pressures. X-ray diffraction measurements were performed using quasi-monochromatic x-rays from a highly ionized He-? Cu source and image plate detectors. Upon ramp compression, we found no evidence of phase transition in solid Mo up to 900 GPa. The observed peaks can be assigned to the (110) and (200) or (220) reflections of BCC Mo up to the highest pressure, indicating that Mo does not melt under ramp loading to maximum pressure reached. Under shock loading, we did not observe any evidence for the solid-solid phase transformation around 210 GPa as reported in previous work (Hixson et al, 1989). The BCC phase of Mo remained stable along the Hugoniot up to at least 350 GPa. Our observation of diffraction peaks from shocked Mo shows that Hugoniot does not cross the melting curve until at least this pressure. This indicates that previous diamond cell experiments (Errandonea et al., 2004) have underestimated the Mo melting curve. We acknowledge the Omega staff at LLE for their assistance, and the Target Engineering Team at LLNL for fabrication of the targets used in these experiments. The research was supported by NNSA/DOE through the National Laser Users' Facility Program under contracts DE-NA0000856 and DE-FG52-09NA29037. References: [1] R.S. Hixson, D.A. Boness, and J.W. Shaner, Phys. Rev. Lett., 62, 637 (1989). [2] D. Errandonea, B. Schwager, R. Ditz, C. Gessmann, R. Boehler, and M. Ross, Phys. Rev. B, 63, 132104 (2004). [3] A.B. Belonoshko, L. Burakovsky, S.P. Chen, B. Johansson, A.S. Mikhaylushkin, D.L. Preston, S.I. Simak, and D.C. Swift, Phys. Rev. Lett., 100, 135701 (2008). [4] C. Cazorla, D. Alfè, and M.J. Gillan, Phys. Rev. Lett. 101, 049601 (2008). [5] A.S. Mikhaylushkin, S.I. Simak ,L. Burakovsky, S.P. Chen, B. Johansson, D.L. Preston, D.C. Swift, and A.B. Belonoshko Phys. Rev. Lett., 101, 049602 (2008). [6] B. Wang, G. Zhang, and Y. Wang, J. Alloys Compd., 556, 116-120, (2013).

  11. Triple?crystal x?ray diffraction analysis of reactive ion etched gallium arsenide

    E-print Network

    Wang, V. S.; Matyi, R. J.; Nordheden, Karen J.

    1994-01-01

    The effect of BCl3 reactive ion etching on the structural perfection of GaAs has been studied with diffuse x?ray scattering measurementsconducted by high?resolution triple?crystal x?ray diffraction. While using a symmetric 004 diffraction geometry...

  12. Carbon 40 (2002) 929937 Microstructure of carbon blacks determined by X-ray diffraction

    E-print Network

    Gubicza, Jenõ

    2002-01-01

    Carbon 40 (2002) 929­937 Microstructure of carbon blacks determined by X-ray diffraction profile The microstructure of carbon blacks is investigated by X-ray diffraction peak profile analysis. Strain anisotropy. Different grades of carbon blacks, N990, N774 and N134, untreated, heat-treated and compressed at 2.5 GPa

  13. X-Ray Diffraction and the Discovery of the Structure of DNA

    ERIC Educational Resources Information Center

    Crouse, David T.

    2007-01-01

    A method is described for teaching the analysis of X-ray diffraction of DNA through a series of steps utilizing the original methods used by James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. The X-ray diffraction pattern led to the conclusion of the basic helical structure of DNA and its dimensions while basic chemical principles…

  14. Strain measurement of pure titanium covered with soft tissue using X-ray diffraction.

    PubMed

    Fujisaki, Kazuhiro; Tadano, Shigeru

    2010-03-01

    Measurement of the stress and strain applied to implants and bone tissue in the human body are important for fracture prediction and evaluations of implant adaptation. The strain of titanium (Ti) materials can be measuring by X-ray diffraction techniques. This study applied X-ray diffraction to the skin tissue-covered Ti. Characteristic X-rays of Mo Kalpha were used and the X-rays diffracted from the Ti were detected through the covering skin tissue. The X-ray absorption by skin tissue is large under the diffracted X-rays detected in low angles because the length of penetration depends on the angle of inclination, equal to the Bragg angle. The effects of skin tissue to detect the diffracted X-rays were investigated in the experiments. And the strain measurements were conducted under bending loads applied to the Ti specimen. The effect of skin tissue was absorption of X-rays as well as the X-rays scattered from the physiological saline contained in the tissue. The X-rays scattered by the physiological saline creates a specific background pattern near the peaks from the (002) and (011) lattice planes of Ti in the X-ray diffraction profile. Diffracted X-rays from the Ti were detected after being transmitted through 1 mm thick skin tissue by Mo Kalpha. Individual peaks such as (010), (002), (011), and (110) were clearly established by using a parallel beam arrangement. The strains of (110) lattice planes were measured with or without the tissue cover were very similar. The strain of the (110) lattice planes of Ti could be measured by Mo Kalpha when the Ti specimen was located under the skin tissue. PMID:20459192

  15. X-ray Line Profile Analysis of Nanoparticles in Proton Exchange Membrane Fuel Cell Matthias Loster,*, Davor Balzar, K. Andreas Friedrich, and Ju1rgen Garche

    E-print Network

    Balzar, Davor

    X-ray Line Profile Analysis of Nanoparticles in Proton Exchange Membrane Fuel Cell Electrodes to extract X-ray diffraction patterns from a multiphase system and analyze the particle size distribution to the durability of the cell. Since the membrane electrode assembly (MEA) contains multiple and partially X-ray

  16. Federated repositories of X-ray diffraction images.

    PubMed

    Androulakis, Steve; Schmidberger, Jason; Bate, Mark A; DeGori, Ross; Beitz, Anthony; Keong, Cyrus; Cameron, Bob; McGowan, Sheena; Porter, Corrine J; Harrison, Andrew; Hunter, Jane; Martin, Jennifer L; Kobe, Bostjan; Dobson, Renwick C J; Parker, Michael W; Whisstock, James C; Gray, Joan; Treloar, Andrew; Groenewegen, David; Dickson, Neil; Buckle, Ashley M

    2008-07-01

    There is a pressing need for the archiving and curation of raw X-ray diffraction data. This information is critical for validation, methods development and improvement of archived structures. However, the relatively large size of these data sets has presented challenges for storage in a single worldwide repository such as the Protein Data Bank archive. This problem can be avoided by using a federated approach, where each institution utilizes its institutional repository for storage, with a discovery service overlaid. Institutional repositories are relatively stable and adequately funded, ensuring persistence. Here, a simple repository solution is described, utilizing Fedora open-source database software and data-annotation and deposition tools that can be deployed at any site cheaply and easily. Data sets and associated metadata from federated repositories are given a unique and persistent handle, providing a simple mechanism for search and retrieval via web interfaces. In addition to ensuring that valuable data is not lost, the provision of raw data has several uses for the crystallographic community. Most importantly, structure determination can only be truly repeated or verified when the raw data are available. Moreover, the availability of raw data is extremely useful for the development of improved methods of image analysis and data processing. PMID:18566516

  17. X-ray diffraction study of crystalline barium titanate ceramics

    SciTech Connect

    Zali, Nurazila Mat; Mahmood, Che Seman; Mohamad, Siti Mariam; Foo, Choo Thye; Murshidi, Julie Adrianny

    2014-02-12

    In this study, BaTiO{sub 3} ceramics have been prepared via solid-state reaction method. The powders were calcined for 2 hours at different temperatures ranging from 600°C to 1200°C. Using X-ray diffraction with a Rietveld analysis, the phase formation and crystal structure of the BaTiO{sub 3} powders were studied. Change in crystallite size and tetragonality as a function of calcination temperature were also discussed. It has been found that the formation of pure perovskite phase of BaTiO{sub 3} began at calcination condition of 1000 °C for 2 hours. The crystal structure of BaTiO{sub 3} formed is in the tetragonal structure. The second phases of BaCO{sub 3} and TiO{sub 2} existed with calcination temperature below 1000 °C. Purity, crystallite size and tetragonality of BaTiO{sub 3} powders were found to increase with increasing calcination temperature.

  18. Cinnamomin: separation, crystallization and preliminary X-ray diffraction study.

    PubMed

    Wang, T; Zou, Y-S; Zhu, D-W; Azzi, A; Liu, W-Y; Lin, S-X

    2008-02-01

    Cinnamomin from Cinnamonum camphora seeds, a type II ribosome-inactivating protein that interferes with protein biosynthesis in mammalian cells, can induce the apoptosis of carcinoma cells and be used as an insecticide. A rapid and improved method has been developed for the extraction and purification of cinnamomin from camphora seed. Purification of cinnamomin is achieved with two successive steps of hydrophobic interaction chromatography carried out on a fast protein liquid chromatography (FPLC) system. Crystals suitable for X-ray diffraction analysis were obtained by vapor diffusion method. A complete data set at 2.8 A resolution has been collected. Data indexation and refinement indicate that the crystal is orthorhombic with space group P2(1)2(1)2(1) and unit cell dimensions a = 52.39 A, b = 126.33 A, c = 161.45 A. There are two molecules per asymmetric unit. Initial phasing by molecular replacement method yielded a solution, which will contribute to the structure determination. A molecular model will further the understanding of the mechanism of cinnamomin function. The latter will be combined with bio-informatics to facilitate the medical and other applications of cinnamomin. PMID:17404804

  19. Diffraction grating transmission efficiencies for XUV and soft X rays. [for HEAO-B extrasolar astronomy

    NASA Technical Reports Server (NTRS)

    Schnopper, H. W.; Van Speybroeck, L. P.; Delvaille, J. P.; Epstein, A.; Kaellne, E.; Bachrach, R. Z.; Dijkstra, J.; Lantward, L.

    1977-01-01

    The manufacture and properties of a grating intended for extrasolar X-ray studies are described. The manufacturing process uses a split laser beam exposing an interference pattern on the photoresist-coated glass plated with a nickel parting layer. The grating, supporting structure, and mounting frame are electrodeposited on the nickel parting layer, and the final product is lifted from the glass substrate by selective etching of the nickel. A model was derived which relates the number of counts received in a given order m as a function of photon wavenumber. A 4-deg beam line was used to measure the efficiencies of gold transmission gratings for diffraction of X-rays in the range of 45 to 275 eV. The experimental results are in good agreement with model calculations.

  20. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    NASA Astrophysics Data System (ADS)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles. Measurements were performed on the development of coherent scatter imaging to provide tissue type information in mammography. Atomic coordinates from x-ray diffraction data were used to study the nuclear quadrupole interactions and nature of molecular binding in DNA/RNA nucleobases and molecular solid BF3 systems.

  1. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil

    SciTech Connect

    Kappen, P.; Arhatari, B. D.; Luu, M. B.; Balaur, E.; Caradoc-Davies, T.

    2013-06-15

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography/diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  2. Magnetic resonant x-ray diffraction study of europium telluride

    NASA Astrophysics Data System (ADS)

    Díaz, B.; Granado, E.; Abramof, E.; Rappl, P. H. O.; Chitta, V. A.; Henriques, A. B.

    2008-10-01

    Here we use magnetic resonant x-ray diffraction to study the magnetic order in a 1.5?m EuTe film grown on (111) BaF2 by molecular-beam epitaxy. At EuLII and LIII absorption edges, a resonant enhancement of more than two orders was observed for the ???' diffracted intensity at half-order reciprocal-lattice points, consistent with the magnetic character of the scattering. We studied the evolution of the ((1)/(2)(1)/(2)(1)/(2)) magnetic reflection with temperature. When heating toward the Neel temperature (TN) , the integrated intensity decreased monotonously and showed no hysteresis upon cooling again, indicating a second-order phase transition. A power-law fit to the magnetization versus temperature curve yielded TN=9.99(1)K and a critical exponent ?=0.36(1) , which agrees with the renormalization theory results for three-dimensional Heisenberg magnets. The fits to the sublattice magnetization dependence with temperature, disregarding and considering fourth-order exchange interactions, evidenced the importance of the latter for a correct description of magnetism in EuTe. A value of 0.009 was found for the (2j1+j2)/J2 ratio between the Heisenberg J2 and fourth-order j1,2 exchange constants. The magnetization curve exhibited a round-shaped region just near TN accompanied by an increase in the magnetic peak width, which was attributed to critical scattering above TN . The comparison of the intensity ratio between the ((1)/(2)(1)/(2)(1)/(2)) and the (1(1)/(2)1(1)/(2)1(1)/(2)) magnetic reflections proved that the Eu2+ spins align within the (111) planes, and the azimuthal dependence of the ((1)/(2)(1)/(2)(1)/(2)) magnetic peak is consistent with the model of equally populated S domains.

  3. High intensity line source for x-ray spectrometer calibration

    SciTech Connect

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 ..mu.. x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10/sup 4/) time-resolved cyrstal spectrometer, will be discussed in detail.

  4. Capability of X-ray diffraction for the study of microstructure of metastable thin films.

    PubMed

    Rafaja, David; Wüstefeld, Christina; Dopita, Milan; Motylenko, Mykhaylo; Baehtz, Carsten

    2014-11-01

    Metastable phases are often used to design materials with outstanding properties, which cannot be achieved with thermodynamically stable compounds. In many cases, the metastable phases are employed as precursors for controlled formation of nanocomposites. This contribution shows how the microstructure of crystalline metastable phases and the formation of nanocomposites can be concluded from X-ray diffraction experiments by taking advantage of the high sensitivity of X-ray diffraction to macroscopic and microscopic lattice deformations and to the dependence of the lattice deformations on the crystallographic direction. The lattice deformations were determined from the positions and from the widths of the diffraction lines, the dependence of the lattice deformations on the crystallographic direction from the anisotropy of the line shift and the line broadening. As an example of the metastable system, the supersaturated solid solution of titanium nitride and aluminium nitride was investigated, which was prepared in the form of thin films by using cathodic arc evaporation of titanium and aluminium in a nitrogen atmosphere. The microstructure of the (Ti,Al)N samples under study was tailored by modifying the [Al]/[Ti] ratio in the thin films and the surface mobility of the deposited species. PMID:25485125

  5. Capability of X-ray diffraction for the study of microstructure of metastable thin films

    PubMed Central

    Rafaja, David; Wüstefeld, Christina; Dopita, Milan; Motylenko, Mykhaylo; Baehtz, Carsten

    2014-01-01

    Metastable phases are often used to design materials with outstanding properties, which cannot be achieved with thermodynamically stable compounds. In many cases, the metastable phases are employed as precursors for controlled formation of nanocomposites. This contribution shows how the microstructure of crystalline metastable phases and the formation of nanocomposites can be concluded from X-ray diffraction experiments by taking advantage of the high sensitivity of X-ray diffraction to macroscopic and microscopic lattice deformations and to the dependence of the lattice deformations on the crystallographic direction. The lattice deformations were determined from the positions and from the widths of the diffraction lines, the dependence of the lattice deformations on the crystallographic direction from the anisotropy of the line shift and the line broadening. As an example of the metastable system, the supersaturated solid solution of titanium nitride and aluminium nitride was investigated, which was prepared in the form of thin films by using cathodic arc evaporation of titanium and aluminium in a nitrogen atmosphere. The microstructure of the (Ti,Al)N samples under study was tailored by modifying the [Al]/[Ti] ratio in the thin films and the surface mobility of the deposited species. PMID:25485125

  6. Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.

    2004-01-01

    X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.

  7. A method for implementing the diffraction of a widely divergent X-ray beam

    SciTech Connect

    Avetyan, K. T.; Arakelyan, M. M.

    2008-11-15

    A method for implementing the diffraction of a widely divergent characteristic X-ray beam from a standard X-ray tube with a linear focal spot was improved. X rays, passing through a diaphragm 30 {mu}m in diameter, diffract from a crystal adjacent to the diaphragm. The crystal, together with a photographic plate, rotates around the axis perpendicular to the plate. It is shown that the diffraction image is a set of hyperbolas in this case. The equations of the hyperbolas are obtained and investigated. A method for interpreting the diffraction images in the case of small crystal asymmetry is proposed.

  8. Chromium Environment within Cr-Doped BaAl2O4: Correlation of X-ray Diffraction and X-ray Absorption Spectroscopy Investigations.

    PubMed

    Vranki?, Martina; Gržeta, Biserka; Lützenkirchen-Hecht, Dirk; Bosnar, Sanja; Šari?, Ankica

    2015-12-01

    Powder BaAl2O4 samples doped with 0 and 1.76 atom % Cr in relation to Al were hydrothermally prepared. Both samples were characterized by X-ray diffraction and synchrotron based X-ray absorption spectroscopy at the Cr K- and the Ba L3-edge. Diffraction patterns indicated that samples were nanocrystalline with a hexagonal crystal structure, space group P63. Chromium doping of barium aluminate caused an increase of the unit-cell volume and diffraction line broadening. The doped sample contained a small amount of an impurity phase, namely, BaCrO4. Analyzed Cr K-edge X-ray absorption near edge structure for the doped sample showed the presence of chromium in 6+ and 3+ oxidation states: Cr(6+) was characteristic for chromium in the impurity phase BaCrO4, while Cr(3+) participated in the formation of the doped phase BaAl2O4:Cr. Extended X-ray absorption fine structure suggested an unusual tetrahedral coordination of Cr(3+) ions within the BaAl2O4 host phase. The structure of samples was refined by the Rietveld method, simultaneously with the analysis of diffraction line broadening. Rietveld structure refinement showed that in doping the Cr(3+) ions likely substituted for Al(3+) ions on Al1 tetrahedral sites of barium aluminate crystal lattice. Crystallite sizes in the samples decreased with chromium doping, from 32 nm for pure BaAl2O4 to 24 nm for Cr-doped BaAl2O4. The dopant Cr(3+) cations acted as defects in the barium aluminate structure that increased lattice strain from 0.02% for pure BaAl2O4 to 0.14% for doped BaAl2O4 and disturbed the crystallites to grow. PMID:26588707

  9. Real-time X-ray Diffraction Measurements of Shocked Polycrystalline Tin and Aluminum

    SciTech Connect

    Dane V. Morgan, Don Macy, Gerald Stevens

    2008-11-22

    A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35-ns pulse. The characteristic K? lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K? line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3-mm by 6-mm spot and 1° full-width-half-maximum (FWHM) angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5°. A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device (CCD) camera through a coherent fiberoptic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1-mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic (fcc) aluminum lattice with no phase transformation.

  10. X-Ray, a software for the analysis of X-ray diffraction patterns of polymers recorded with image plates

    NASA Astrophysics Data System (ADS)

    Dosiere, Marcel

    1998-03-01

    X-Ray , a software for the analysis of X-ray diffraction patterns of polymers recorded with image plates. O. Hernaut, D. Villers, M. Puaud, M. Dosiere Universite de Mons-Hainaut, Lab. de Physicochimie des Polymeres, place du Parc, 20, B- 7000 - Mons (Belgique) A software dedicated to the analysis of X-ray diffraction patterns of polymers recorded with an area detector has been developed. Its main purpose is to add specific functionalities which allow the analysis (or improve the speed and accuracy) of WAXD and SAXS data obtained on isotropic or oriented polymer samples : use of the scattering vector, Miller=92s indices, determination of lattice parameters, diffraction intensities, degree of crystallinity, orientation function, long period, crystal thickness,... A lmost all applied procedures need the knowledge of the center of the pattern (the primary beam). Indeed, a good accuracy is required to avoid deviations of the Bragg spacing or smearing at the time of intensity integration. Therefore an automatic and ac curate method to find centers has been implemented. The program currently performs numerous analysis operations as follows : a) Settings, corrections, calibration, normalization; b) Diffraction commands; c) Classical image processing functions; d) On e-dimensional profile analysis operations.

  11. X-ray Line Profile Variations During Quasar Microlensing

    NASA Astrophysics Data System (ADS)

    Heyrovsky, David; Ledvina, Lukas; Dovciak, Michal

    2016-01-01

    Observations of gravitationally lensed quasars have revealed X-ray line profile variations occurring during microlensing events. We simulate the effect using a simple model: a microlensing fold caustic crossing a spatially resolved model of Fe K? line emission from a thin accretion disk around a Kerr black hole. We demonstrate the appearance of additional peaks and edges in the line profile. We illustrate the underlying mechanism of their generation and derive analytical expressions for their shape.

  12. Note: Electrochemical cell for in operando X-ray diffraction measurements on a conventional X-ray diffractometer.

    PubMed

    Hartung, Steffen; Bucher, Nicolas; Bucher, Ramona; Srinivasan, Madhavi

    2015-08-01

    Electrochemical in operando X-ray diffraction (XRD) is a powerful method to analyze structural changes of energy storage materials while inserting/de-inserting charge carriers, such as Li- or Na-ions, into/from a host structure. The design of an XRD in operando cell is presented, which enables the use of thin (6 ?m) aluminum foil as X-ray window as a non-toxic alternative to conventional beryllium windows. Owing to the reduced thickness, diffraction patterns and their changes during cycling can be observed with excellent quality, which was demonstrated for two cathode materials for sodium-ion batteries in a half-cell set-up, P2-Na(0.7)MnO2 and Na(2.55)V6O16 ? 0.6H2O. PMID:26329242

  13. Note: Electrochemical cell for in operando X-ray diffraction measurements on a conventional X-ray diffractometer

    NASA Astrophysics Data System (ADS)

    Hartung, Steffen; Bucher, Nicolas; Bucher, Ramona; Srinivasan, Madhavi

    2015-08-01

    Electrochemical in operando X-ray diffraction (XRD) is a powerful method to analyze structural changes of energy storage materials while inserting/de-inserting charge carriers, such as Li- or Na-ions, into/from a host structure. The design of an XRD in operando cell is presented, which enables the use of thin (6 ?m) aluminum foil as X-ray window as a non-toxic alternative to conventional beryllium windows. Owing to the reduced thickness, diffraction patterns and their changes during cycling can be observed with excellent quality, which was demonstrated for two cathode materials for sodium-ion batteries in a half-cell set-up, P2-Na0.7MnO2 and Na2.55V6O16 ? 0.6H2O.

  14. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.

    PubMed

    Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi

    2015-07-01

    Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles. PMID:25745031

  15. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGESBeta

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  16. Reconstructing longitudinal strain pulses using time-resolved x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Chen, Z.; Bond, Z.; Loether, A.; Howard, L. E.; LeMar, S.; White, S.; Watts, A.; Walker, B. C.; DeCamp, M. F.

    2013-07-01

    Time-resolved x-ray diffraction is a very powerful tool for visualizing transient one-dimensional crystalline strains, ranging from crystal growth to shockwave production. In this work, we use picosecond x-ray diffraction to visualize transient strain formation from nanometer-scaled laser-excited gold films into crystalline substrates. We show that there is a direct correspondence between the measured time-resolved x-ray diffraction pattern and the transient acoustic wave, providing a straightforward method to make a reconstruction of the transient strain. In addition, we discuss real-world experimental constraints that place limits on the validity of the reconstructed transient acoustic wave.

  17. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    PubMed Central

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

    2011-01-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens. PMID:21547016

  18. X-Ray Diffraction Studies on Material Corrosions in Renewable Energy Storage Electrolyzers

    NASA Astrophysics Data System (ADS)

    Mo, J.; Steen, S. M., Iii; Zhang, F.-Y.

    2014-11-01

    As a core component of the proton exchange water electrolyzer system, membrane electrode assemblies degrade due to the corrosion of the material. This creates a loss of interfacial contact necessary for the electron transports and electrochemical reactions, thus decreasing the performance. X-ray diffraction has been demonstrated to be an effective method that readily provides quantitative information about the phase-composition of solid materials. In this study, a group of materials have been selected and tested in the standard conditions for investigating the corrosion mechanisms with X-ray diffraction. The material lattice parameter and the crystal size were examined by X-ray diffraction spectrum.

  19. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  20. Beam-induced damage on diffractive hard X-ray optics.

    PubMed

    Nygård, K; Gorelick, S; Vila-Comamala, J; Färm, E; Bergamaschi, A; Cervellino, A; Gozzo, F; Patterson, B D; Ritala, M; David, C

    2010-11-01

    The issue of beam-induced damage on diffractive hard X-ray optics is addressed. For this purpose a systematic study on the radiation damage induced by a high-power X-ray beam is carried out in both ambient and inert atmospheres. Diffraction gratings fabricated by three different techniques are considered: electroplated Au gratings both with and without the polymer mold, and Ir-coated Si gratings. The beam-induced damage is monitored by X-ray diffraction and evaluated using scanning electron microscopy. PMID:20975225

  1. X-ray Emission Line Spectroscopy of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various high-energy feedback processes of the galaxies.

  2. X ray emission line profile modeling of hot stars

    E-print Network

    Roban H. Kramer; Stephanie K. Tonnesen; David H. Cohen; Stanley P. Owocki; Asif ud-Doula; Joseph J. MacFarlane

    2002-12-13

    The launch of high-spectral-resolution x-ray telescopes (Chandra, XMM) has provided a host of new spectral line diagnostics for the astrophysics community. In this paper we discuss Doppler-broadened emission line profiles from highly supersonic outflows of massive stars. These outflows, or winds, are driven by radiation pressure and carry a tremendous amount of kinetic energy, which can be converted to x rays by shock-heating even a small fraction of the wind plasma. The unshocked, cold wind is a source of continuum opacity to the x rays generated in the shock-heated portion of the wind. Thus the emergent line profiles are affected by transport through a two-component, moving, optically thick medium. While complicated, the interactions among these physical effects can provide quantitative information about the spatial distribution and velocity of the x-ray-emitting and absorbing plasma in stellar winds. We present quantitative models of both a spherically-symmetric wind and a wind with hot plasma confined in an equatorial disk by a dipole magnetic field.

  3. X-ray diffraction and EXAFS analysis of materials for lithium-based rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Sharkov, M. D.; Boiko, M. E.; Bobyl, A. V.; Ershenko, E. M.; Terukov, E. I.; Zubavichus, Y. V.

    2013-12-01

    Lithium iron phosphate LiFePO4 (triphylite) and lithium titanate Li4Ti5O12 are used as components of a number of active materials in modern rechargeable batteries. Samples of these materials are studied by X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. Hypotheses about the phase composition of the analyzed samples are formulated.

  4. Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction

    E-print Network

    Miao, Jianwei "John"

    Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction Jianwei Miao Escherichia coli bacteria using coherent x-rays with a wavelength of 2 Å. By using the oversam- pling phasing successful experiment, to our knowledge, of imaging Escherichia coli bacteria at 30-nm resolution by using

  5. X-RAY DIFFRACTION PHASE ANALYSIS OF PROCESS AND POLLUTION CONTROL DEVICE SAMPLES

    EPA Science Inventory

    The paper describes the application of x-ray diffraction (XRD) analysis to several samples which show the information available from the technique. X-ray fluorescence (XRF) spectrometry was used for the elemental analysis because it provides very complete information with minimal...

  6. MSE 603 / Diffraction April 19, 2002 p.5 X-ray Scattering by an electron

    E-print Network

    Shen, Qun

    scattered x-ray wave by an electron, so-called Thomson Scattering. One of the characteristics of ThomsonMSE 603 / Diffraction April 19, 2002 p.5 X-ray Scattering by an electron: So far we talked about refraction and reflection only. For scattering, we go back to the classical model that we introduced

  7. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction

    SciTech Connect

    Buergi, J.; Molleja, J. Garcia; Feugeas, J.; Neuenschwander, R.; Kellermann, G.; Craievich, A. F.

    2013-01-15

    The purpose of the designed reactor is (i) to obtain polycrystalline and/or amorphous thin films by controlled deposition induced by a reactive sputtering magnetron and (ii) to perform a parallel in situ structural study of the deposited thin films by X-ray diffraction, in real time, during the whole growth process. The designed reactor allows for the control and precise variation of the relevant processing parameters, namely, magnetron target-to-sample distance, dc magnetron voltage, and nature of the gas mixture, gas pressure and temperature of the substrate. On the other hand, the chamber can be used in different X-ray diffraction scanning modes, namely, {theta}-2{theta} scanning, fixed {alpha}-2{theta} scanning, and also low angle techniques such as grazing incidence small angle X-ray scattering and X-ray reflectivity. The chamber was mounted on a standard four-circle diffractometer located in a synchrotron beam line and first used for a preliminary X-ray diffraction analysis of AlN thin films during their growth on the surface of a (100) silicon wafer.

  8. Absolute x-ray energy calibration over a wide energy range using a diffraction-based iterative method

    E-print Network

    Duffy, Thomas S.

    Absolute x-ray energy calibration over a wide energy range using a diffraction-based iterative) Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis transmission grating in soft x-ray region Appl. Phys. Lett. 100, 111904 (2012) X-ray spatial frequency

  9. Electrochemical in situ reaction cell for X-ray scattering, diffraction and spectroscopy.

    PubMed

    Braun, A; Shrout, S; Fowlks, A C; Osaisai, B A; Seifert, S; Granlund, E; Cairns, E J

    2003-07-01

    A versatile electrochemical in situ reaction cell for long-term hard X-ray experiments on battery electrodes is described. Applications include the small-angle scattering, diffraction and absorption spectroscopy of lithium manganese oxide electrodes. PMID:12824932

  10. State-of-the-art and problems of X-ray diffraction analysis of biomacromolecules

    SciTech Connect

    Andreeva, N. S.

    2006-12-15

    The state-of-the-art of X-ray diffraction studies of biomacromolecules is briefly characterized, and the challenge imposed by science is discussed. These studies are characterized by a wide scope and extensive use. This field of science is of great interest and is developed in many countries. The main purpose is to solve practical problems in medicine consisting in the design of drugs against various diseases. X-ray diffraction analysis of enzymes brought the pharmaceutical industry to a new level, thus allowing the rational design of drugs against formerly untreatable diseases. Modern X-ray diffraction studies of biomacromolecules laid the basis for a new science called structural biology. This method allows one to solve fundamental problems of physical chemistry for a new state of matter existing in living systems. Here, science poses numerous problems in analysis of X-ray diffraction data on biological macromolecules. Many of theses problems are in their infancy.

  11. Electrochemical in-situ reaction cell for X-ray scattering, diffraction and spectroscopy

    SciTech Connect

    Braun, Artur; Granlund, Eric; Cairns, Elton J.

    2003-01-27

    An electrochemical in-situ reaction cell for hard X-ray experiments with battery electrodes is described. Applications include the small angle scattering, diffraction, and near-edge spectroscopy of lithium manganese oxide electrodes.

  12. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M. (Pittsburgh, PA); Cohen, Isadore (Pittsburgh, PA)

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  13. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  14. Determination of structural chirality of berlinite and quartz using resonant x-ray diffraction with circularly polarized x-rays

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshikazu; Kojima, Taro; Takata, Yasutaka; Chainani, Ashish; Lovesey, Stephen W.; Knight, Kevin S.; Takeuchi, Tomoyuki; Oura, Masaki; Senba, Yasunori; Ohashi, Haruhiko; Shin, Shik

    2010-04-01

    Many proteins, sugars, and pharmaceuticals crystallize into two forms that are mirror images of each other (enantiomers) such as our right and left hands (chiral). Berlinite (AlPO4) and low quartz (SiO2) have enantiomers belonging to a space-group pair, P3121 (right-handed screw) and P3221 (left-handed screw). We use circularly polarized resonant x-ray diffraction to study structural chirality. Our results demonstrate that positive and negative circularly polarized x-rays at the resonant energy of berlinite ( Al1s edge) and low quartz ( Si1s edge) can distinguish the absolute structure (right or left-handed screw) of an enantiomer. The advantage of our method is that the measurement of only one space-group forbidden reflection is enough to determine the chirality. This method is applicable to chiral motifs that occur in biomolecules, liquid crystals, ferroelectrics and antiferroelectrics, multiferroics, etc.

  15. X-ray diffraction characterization of suspended structures forMEMS applications

    SciTech Connect

    Goudeau, P.; Tamura, N.; Lavelle, B.; Rigo, S.; Masri, T.; Bosseboeuf, A.; Sarnet, T.; Petit, J.-A.; Desmarres, J.-M.

    2005-09-15

    Mechanical stress control is becoming one of the major challenges for the future of micro and nanotechnologies. Micro scanning X-ray diffraction is one of the promising techniques that allows stress characterization in such complex structures at sub micron scales. Two types of MEMS structure have been studied: a bilayer cantilever composed of a gold film deposited on poly-silicon and a boron doped silicon bridge. X-ray diffraction results are discussed in view of numerical simulation experiments.

  16. (X-ray diffraction experiments with condenser matter)

    SciTech Connect

    Coppens, P.

    1990-01-01

    This report discusses research on the following topics: high-{Tc} superconductors; The response of crystal to an applied electric field; quasicrystals; surface structure and kinetics of surface layer formation; EXAFS studies of superconductors and heterostructures; effect of iron on the crystal structure of perovskite; x-ray detector development; and SAXS experiments. (LSP)

  17. K alpha line emission during solar X-ray bursts

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.; Neupert, W. M.

    1973-01-01

    The expected flux of K alpha line emission from sulfur, argon, calcium, and iron is calculated during both thermal and nonthermal solar X-ray events. Such emission is shown to be weak during the course of most of the nonthermal hard X-ray bursts that Kane and Anderson (1970) have observed. If Compton backscattering is significant at high energies, the flux is reduced still further for disk flares, but it is noted that the strong, near-limb burst of June 26 would have produced about 100 photons /sq cm/sec of sulfur and iron K alpha emission. The impulsive hard X-ray bursts may in general be too short-lived for much K alpha emission. It may be noted that sulfur K alpha emission in particular depends sensitively on the lower-energy limit of the nonthermal electron spectrum, assuming such a sharply defined boundary exists. During soft X-ray bursts, when temperatures of a few 10 to the 7th power K are obtained, K alpha emission from certain iron ions, specifically Fe XVIII-XXIII, may be important.

  18. A portable X-ray diffraction apparatus for in situ analyses of masters' paintings

    NASA Astrophysics Data System (ADS)

    Eveno, Myriam; Duran, Adrian; Castaing, Jacques

    2010-09-01

    It is rare that the analyses of materials in paintings can be carried out by taking micro-samples. Valuable works of art are best studied in situ by non-invasive techniques. For that purpose, a portable X-ray diffraction and fluorescence apparatus has been designed and constructed at the C2RMF. This apparatus has been used for paintings of Rembrandt, Leonardo da Vinci, Van Gogh, Mantegna, etc. Results are given to illustrate the performance of X-ray diffraction, especially when X-ray fluorescence does not bring sufficient information to conclude.

  19. An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis

    SciTech Connect

    Geyer, Scott M.; Methaapanon, Rungthiwa; Kim, Woo-Hee; Bent, Stacey F.; Johnson, Richard W.; Van Campen, Douglas G.; Metha, Apurva

    2014-05-15

    The crystal structure of thin films grown by atomic layer deposition (ALD) will determine important performance properties such as conductivity, breakdown voltage, and catalytic activity. We report the design of an atomic layer deposition chamber for in situ x-ray analysis that can be used to monitor changes to the crystal structural during ALD. The application of the chamber is demonstrated for Pt ALD on amorphous SiO{sub 2} and SrTiO{sub 3} (001) using synchrotron-based high resolution x-ray diffraction, grazing incidence x-ray diffraction, and grazing incidence small angle scattering.

  20. An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis.

    PubMed

    Geyer, Scott M; Methaapanon, Rungthiwa; Johnson, Richard W; Kim, Woo-Hee; Van Campen, Douglas G; Metha, Apurva; Bent, Stacey F

    2014-05-01

    The crystal structure of thin films grown by atomic layer deposition (ALD) will determine important performance properties such as conductivity, breakdown voltage, and catalytic activity. We report the design of an atomic layer deposition chamber for in situ x-ray analysis that can be used to monitor changes to the crystal structural during ALD. The application of the chamber is demonstrated for Pt ALD on amorphous SiO2 and SrTiO3 (001) using synchrotron-based high resolution x-ray diffraction, grazing incidence x-ray diffraction, and grazing incidence small angle scattering. PMID:24880424

  1. An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis

    NASA Astrophysics Data System (ADS)

    Geyer, Scott M.; Methaapanon, Rungthiwa; Johnson, Richard W.; Kim, Woo-Hee; Van Campen, Douglas G.; Metha, Apurva; Bent, Stacey F.

    2014-05-01

    The crystal structure of thin films grown by atomic layer deposition (ALD) will determine important performance properties such as conductivity, breakdown voltage, and catalytic activity. We report the design of an atomic layer deposition chamber for in situ x-ray analysis that can be used to monitor changes to the crystal structural during ALD. The application of the chamber is demonstrated for Pt ALD on amorphous SiO2 and SrTiO3 (001) using synchrotron-based high resolution x-ray diffraction, grazing incidence x-ray diffraction, and grazing incidence small angle scattering.

  2. Three-Dimensional Visualization of a Human Chromosome Using Coherent X-Ray Diffraction

    SciTech Connect

    Nishino, Yoshinori; Ishikawa, Tetsuya; Takahashi, Yukio; Imamoto, Naoko; Maeshima, Kazuhiro

    2009-01-09

    Coherent x-ray diffraction microscopy is a lensless phase-contrast imaging technique with high image contrast. Although electron tomography allows intensive study of the three-dimensional structure of cellular organelles, it has inherent difficulty with thick objects. X rays have the unique benefit of allowing noninvasive analysis of thicker objects and high spatial resolution. We observed an unstained human chromosome using coherent x-ray diffraction. The reconstructed images in two or three dimensions show an axial structure, which has not been observed under unstained conditions.

  3. X-ray Diffraction Crystal Calibration and Characterization

    SciTech Connect

    Michael J. Haugh; Richard Stewart; Nathan Kugland

    2009-06-05

    National Security Technologies’ X-ray Laboratory is comprised of a multi-anode Manson type source and a Henke type source that incorporates a dual goniometer and XYZ translation stage. The first goniometer is used to isolate a particular spectral band. The Manson operates up to 10 kV and the Henke up to 20 kV. The Henke rotation stages and translation stages are automated. Procedures have been developed to characterize and calibrate various NIF diagnostics and their components. The diagnostics include X-ray cameras, gated imagers, streak cameras, and other X-ray imaging systems. Components that have been analyzed include filters, filter arrays, grazing incidence mirrors, and various crystals, both flat and curved. Recent efforts on the Henke system are aimed at characterizing and calibrating imaging crystals and curved crystals used as the major component of an X-ray spectrometer. The presentation will concentrate on these results. The work has been done at energies ranging from 3 keV to 16 keV. The major goal was to evaluate the performance quality of the crystal for its intended application. For the imaging crystals we measured the laser beam reflection offset from the X-ray beam and the reflectivity curves. For the curved spectrometer crystal, which was a natural crystal, resolving power was critical. It was first necessary to find sources of crystals that had sufficiently narrow reflectivity curves. It was then necessary to determine which crystals retained their resolving power after being thinned and glued to a curved substrate.

  4. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M. (Voorheesville, NY); Gibson, Walter M. (Voorheesville, NY); Huang, Huapeng (Latham, NY)

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  5. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    SciTech Connect

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

  6. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGESBeta

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; et al

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore »resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  7. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    SciTech Connect

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

  8. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGESBeta

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore »freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  9. Direct measurement of the x-ray refractive index by Fresnel diffraction at a transparent edge.

    PubMed

    Gayer, C W; Hemmers, D; Stelzmann, C; Pretzler, G

    2013-05-01

    We demonstrate the feasibility of measuring x-ray refractive indices by transparent edge diffraction without recourse to the Kramers-Kronig relations. The method requires a coherent x-ray source, a transparent sample with a straight edge, and a high resolution x-ray detector. Here, we use the aluminum K? radiation originating from a laser-produced plasma to coherently illuminate the edge of thin aluminum and beryllium foils. The resulting diffraction patterns are recorded with an x-ray CCD camera. From least-squares fits of Fresnel diffraction modeling to the measured data we determine the refractive index of Al and Be at the wavelength of the Al K? radiation (0.834 nm, 1.49 keV). PMID:23632552

  10. Dynamical x-ray diffraction from an icosahedral Al-Pd-Mn quasicrystal

    SciTech Connect

    Kycia, S.

    1996-04-23

    Primary extinction effects in diffraction from single grains of Al-Pd- Mn, and presumably many other FCI alloys, may be significant and should be corrected for prior to use of diffraction data in structural determinations. Probes based on dynamical diffraction effects, such as x-ray standing wave fluorescence, multiple beam interference, and x-ray transmission topographs, may now be used to study the bulk and surface structure of some quasicrystals. The observation of dynamical diffraction from icosahedral Al-Pd-Mn is a striking confirmation of the fact that quasicrystals can present a degree of structural perfection comparable to that found in the best periodic intermetallic crystals.

  11. Ultrafast X-ray and Electron Diffraction: Theoretical Considerations M. Ben-Nun, Jianshu Cao, and Kent R. Wilson*

    E-print Network

    Cao, Jianshu

    ARTICLES Ultrafast X-ray and Electron Diffraction: Theoretical Considerations M. Ben-Nun, Jianshu surfaces) for their inversion. We consider here how to derive time-dependent diffraction (the X-ray or X-ray probe pulse, are presented. The quantum mechanical basis of the breaking of symmetry due

  12. Phase Sensitive X-Ray Diffraction Imaging Study of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.

    2003-01-01

    The study of defects and growth of protein crystals is of importance in providing a fundamental understanding of this important category of systems and the rationale for crystallization of better ordered crystals for structural determination and drug design. Yet, as a result of the extremely weak scattering power of x-rays in protein and other biological macromolecular crystals, the extinction lengths for those crystals are extremely large and, roughly speaking, of the order of millimeters on average compared to the scale of micrometers for most small molecular crystals. This has significant implication for x-ray diffraction and imaging study of protein crystals, and presents an interesting challenge to currently available x-ray analytical techniques. We proposed that coherence-based phase sensitive x-ray diffraction imaging could provide a way to augment defect contrast in x-ray diffraction images of weakly diffracting biological macromolecular crystals. I shall examine the principles and ideas behind this approach and compare it to other available x-ray topography and diffraction methods. I shall then present some recent experimental results in two model protein systems-cubic apofemtin and tetragonal lysozyme crystals to demonstrate the capability of the coherence-based imaging method in mapping point defects, dislocations, and the degree of perfection of biological macromolecular crystals with extreme sensitivity. While further work is under way, it is intended to show that the observed new features have yielded important information on protein crystal perfection and nucleation and growth mechanism otherwise unobtainable.

  13. Compressive single-pixel snapshot x-ray diffraction imaging.

    PubMed

    Greenberg, Joel; Krishnamurthy, Kalyani; Brady, David

    2014-01-01

    We present a method for realizing snapshot, depth-resolved material identification using only a single, energy-sensitive pixel. To achieve this result, we employ a coded aperture with subpixel features to modulate the energy spectrum of coherently scattered photons and recover the object properties using an iterative inversion algorithm based on compressed sensing theory. We demonstrate high-fidelity object estimation at x-ray wavelengths for a variety of compression ratios exceeding unity. PMID:24365835

  14. Closing the gap to the diffraction limit: Near wavelength limited tabletop soft x-ray coherent diffractive imaging

    NASA Astrophysics Data System (ADS)

    Sandberg, Richard Lunt

    Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to around 200 nm. Using novel imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens using techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy and structured illumination microscopy [1--3]. This dissertation presents a versatile soft x-ray diffraction microscope with 50 nm resolution using tabletop coherent soft x-ray sources. This work represents the first high resolution demonstrations of coherent diffractive or lensless imaging using tabletop extreme ultraviolet and soft x-ray sources [4, 5]. This dissertation also presents the first use of field curvature correction in x-ray coherent imaging which allows high numerical aperture imaging and near-diffraction-limited resolution of 1.5lambda. The relevant theory behind high harmonic generation, the primary tabletop source used in this work, will be discussed as well as the theory behind coherent diffractive imaging. Additionally, the first demonstration of tabletop soft x-ray Fourier Transform holography is shown with important applications to shorter wavelength imaging with high harmonic generation with limited flux. A tabletop soft x-ray diffraction microscope should find broad applications in biology, nanoscience, and materials science due to its simple optical design, high resolution, large depth of field, 3D imaging capability, scalability to shorter wavelengths, and ultrafast temporal resolution.

  15. Real-time observation of coherent acoustic phonons generated by an acoustically mismatched optoacoustic transducer using x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Persson, A. I. H.; Enquist, H.; Jurgilaitis, A.; Andreasson, B. P.; Larsson, J.

    2015-11-01

    The spectrum of laser-generated acoustic phonons in indium antimonide coated with a thin nickel film has been studied using time-resolved x-ray diffraction. Strain pulses that can be considered to be built up from coherent phonons were generated in the nickel film by absorption of short laser pulses. Acoustic reflections at the Ni-InSb interface leads to interference that strongly modifies the resulting phonon spectrum. The study was performed with high momentum transfer resolution together with high time resolution. This was achieved by using a third-generation synchrotron radiation source that provided a high-brightness beam and an ultrafast x-ray streak camera to obtain a temporal resolution of 10 ps. We also carried out simulations, using commercial finite element software packages and on-line dynamic diffraction tools. Using these tools, it is possible to calculate the time-resolved x-ray reflectivity from these complicated strain shapes. The acoustic pulses have a peak strain amplitude close to 1%, and we investigated the possibility to use this device as an x-ray switch. At a bright source optimized for hard x-ray generation, the low reflectivity may be an acceptable trade-off to obtain a pulse duration that is more than an order of magnitude shorter.

  16. Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals

    SciTech Connect

    Frank, Matthias; Carlson, David B.; Hunter, Mark; Williams, Garth J.; Messerschmidt, Marc; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Chu, Kaiqin; Graf, Alexander; Hau-Riege, Stefan; Kirian, Rick; Padeste, Celestino; Pardini, Tommaso; Pedrini, Bill; Segelke, Brent; Seibert, M. M.; Spence , John C.; Tsai, Ching-Ju; Lane, Steve M.; Li, Xiao-Dan; Schertler, Gebhard; Boutet, Sebastien; Coleman, Matthew A.; Evans, James E.

    2014-02-28

    Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.

  17. K alpha line emission during solar X-ray bursts

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.; Neupert, W. M.

    1973-01-01

    Calculations of K alpha line emission from S, Ar, Ca and Fe are presented. It is reported that on the basis of data for hard X-ray bursts, the flux during most impulsive, non-thermal events is likely to be weak, though for a few strong bursts, a flux of approximately 100 photons/cm/s may be expected. The amount of S K alpha emission particularly is sensitively dependent on the value of the lower energy bound of the non-thermal electron distribution, offering a possible means of determining this. Thermal K alpha emission is only significant for Fe ions. The calculated thermal K alpha radiation is much less than that observed during an intense soft X-ray burst. It is concluded that a detailed temperature structure for the emission source is required in order to explain the discrepancy.

  18. Phase sensitive x-ray diffraction imaging of defects in biological macromolecular crystals

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Lai, B.; Chu, Y. S.; Cai, Z.; Mancini, D. C.; Thomas, B. R.; Chernov, A. A.

    2001-01-01

    Conventional x-ray diffraction topography is currently used to map defects in the bulk of protein crystals, but the lack of sufficient contrast is frequently a limiting factor. We experimentally demonstrate that this barrier can be circumvented using a method that combines phase sensitive and diffraction imaging principles. Details of defects revealed in tetragonal lysozyme and cubic ferritin crystals are presented and discussed. The approach enabling the detection of the phase changes of diffracted x rays should prove to be useful in the study of defect structures in a broad range of biological macromolecular crystals.

  19. Apparatus for use in examining the lattice of a semiconductor wafer by X-ray diffraction

    NASA Technical Reports Server (NTRS)

    Parker, D. L.; Porter, W. A. (inventor)

    1978-01-01

    An improved apparatus for examining the crystal lattice of a semiconductor wafer utilizing X-ray diffraction techniques was presented. The apparatus is employed in a method which includes the step of recording the image of a wafer supported in a bent configuration conforming to a compound curve, produced through the use of a vacuum chuck provided for an X-ray camera. The entire surface thereof is illuminated simultaneously by a beam of incident X-rays which are projected from a distant point-source and satisfy conditions of the Bragg Law for all points on the surface of the water.

  20. Single-pulse coherent diffraction imaging using soft x-ray laser.

    PubMed

    Kang, Hyon Chol; Kim, Hyung Taek; Kim, Sang Soo; Kim, Chan; Yu, Tae Jun; Lee, Seong Ku; Kim, Chul Min; Kim, I Jong; Sung, Jae Hee; Janulewicz, Karol A; Lee, Jongmin; Noh, Do Young

    2012-05-15

    We report a coherent diffraction imaging (CDI) using a single 8 ps soft x-ray laser pulse at a wavelength of 13.9 nm. The soft x-ray pulse was generated by a laboratory-scale intense pumping laser providing coherent x-ray pulses up to the level of 10(11) photons/pulse. A spatial resolution below 194 nm was achieved with a single pulse, and it was shown that a resolution below 55 nm is feasible with improved detector capability. The single-pulse CDI might provide a way to investigate dynamics of nanoscale molecules or particles. PMID:22627538

  1. Metal layer Bragg-Fresnel lenses for diffraction focusing of hard x-rays

    NASA Astrophysics Data System (ADS)

    Li, Youli; Yasa, Mario; Pelletier, Olivier; Safinya, Cyrus R.; Caine, Ernie; Hu, Evelyn E.; Fernandez, Patricia

    2003-04-01

    A thin-film Bragg-Fresnel lens (BFL) was developed for diffractive focusing of hard x-rays into submicron to nanometer spots for scanning x-ray spectromicroscopy. The lens is made of metal-layer Fresnel zones deposited on an x-ray reflective substrate. The use of a high-density lens structure reduces the thickness of the lens and simplifies the fabrication process. Linear and elliptical lenses made of a 200-nm-thick Au film were fabricated using e-beam lithography and a metal deposition process. The focusing capabilities of the Au layer BFLs were demonstrated at the Advanced Photon Source.

  2. X-ray diffraction and EXAFS analysis of materials for lithium-based rechargeable batteries

    SciTech Connect

    Sharkov, M. D. Boiko, M. E.; Bobyl, A. V.; Ershenko, E. M.; Terukov, E. I.; Zubavichus, Y. V.

    2013-12-15

    Lithium iron phosphate LiFePO{sub 4} (triphylite) and lithium titanate Li{sub 4}Ti{sub 5}O{sub 12} are used as components of a number of active materials in modern rechargeable batteries. Samples of these materials are studied by X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. Hypotheses about the phase composition of the analyzed samples are formulated.

  3. Quantitative determination of mineral composition by powder x-ray diffraction

    DOEpatents

    Pawloski, G.A.

    1984-08-10

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  4. X-ray Coherent diffraction interpreted through the fractional Fourier transform

    E-print Network

    Bolloc'h, david Le

    2011-01-01

    Diffraction of coherent x-ray beams is treated through the Fractionnal Fourier transform. The transformation allow us to deal with coherent diffraction experiments from the Fresnel to the Fraunhofer regime. The analogy with the Huygens-Fresnel theory is first discussed and a generalized uncertainty principle is introduced.

  5. Study of titanate nanotubes by X-ray and electron diffraction and electron microscopy

    SciTech Connect

    Brunatova, Tereza; Popelkova, Daniela; Wan, Wei; Oleynikov, Peter; Danis, Stanislav; Zou, Xiaodong; Kuzel, Radomir

    2014-01-15

    The structure of titanate nanotubes (Ti-NTs) was studied by a combination of powder X-ray diffraction (PXRD), electron diffraction and high resolution transmission electron microscopy (HRTEM). Ti-NTs are prepared by hydrothermal treatment of TiO{sub 2} powder. The structure is identified by powder X-ray diffraction as the one based on the structure of H{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O phase. The same structure is obtained by projected potential from HRTEM through-focus image series. The structure is verified by simulated PXRD pattern with the aid of the Debye formula. The validity of the model is tested by computing Fourier transformation of a single nanotube which is proportional to measured electron diffraction intensities. A good agreement of this calculation with measured precession electron diffraction data is achieved. - Highlights: • Titanate nanotubes were prepared by hydrothermal method. • X-ray powder diffraction indicated their structure based on that of H{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O. • Structural model was created with the aid of high-resolution electron microscopy. • The model was verified with electron diffraction data. • X-ray powder diffraction pattern was calculated with the aid of the Debye formula.

  6. Titration of a Solid Acid Monitored by X-Ray Diffraction

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  7. Electron crystallography as a complement to X-ray powder diffraction techniques

    E-print Network

    Giger, Christine

    Electron crystallography as a complement to X-ray powder diffraction techniques Lynne B. Mc. Electron microscopy techniques yield informa- tion for crystal structure analysis that is remarkably com, while those obtained from a typical selected area electron diffraction (SAED) or preces- sion electron

  8. Recombination of photodissociated iodine: A time-resolved x-ray-diffraction study

    E-print Network

    Ihee, Hyotcherl

    Recombination of photodissociated iodine: A time-resolved x-ray-diffraction study M. Wulff European-ray-diffraction experiment is presented that aims to study the recombination of laser-dissociated iodine molecules dissolved. INTRODUCTION The iodine photodissociation and recombination in solu- tions has been studied for 70 years

  9. Line X-ray emission from Al targets irradiated by high-intensity, variable-length laser pulses

    E-print Network

    Limpouch, Jiri

    Line X-ray emission from Al targets irradiated by high-intensity, variable-length laser pulses J; the scaling rules for the conversion efficiency of the laser radiation into the line X-ray emission are discussed. Keywords: Laser-produced plasma; Line X-ray emission; X-ray sources; X-ray spectroscopy 1

  10. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    SciTech Connect

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.; and others

    2014-10-10

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ?2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ? 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (?{sub eff} ? 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (? 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  11. Elastic constants of fibre-textured thin films determined by X-ray diffraction

    PubMed Central

    Martinschitz, K. J.; Daniel, R.; Mitterer, C.; Keckes, J.

    2009-01-01

    A new methodology is presented that allows the rapid determination of elastic constants of cubic fibre-textured thin films by X-ray diffraction. The theoretical concept is developed and tested on calculated examples of Cu and CrN films. The mechanical elastic constants are extrapolated from X-ray elastic constants by taking into consideration crystal and macroscopic elastic anisotropy. The derived algorithm enables the determination of a reflection and the corresponding value of the X-ray anisotropic factor ? for which the X-ray elastic constants are equal to their mechanical counterparts in the case of fibre-textured cubic polycrystalline aggregates. The approach is independent of the crystal elastic anisotropy and depends on the fibre-texture type, the texture sharpness, the number of randomly oriented crystallites and the supposed grain-interaction model. In the experimental part, out-of-plane Young’s moduli of 111 and 311 fibre-textured Cu and CrN thin films deposited on monocrystalline Si(100) substrates are determined. The moduli are extrapolated from thin-film experimental X-ray elastic constants that are determined by a combination of X-ray diffraction substrate curvature and sin2? methods. For the calculation, the film macroscopic elastic anisotropy (texture) is considered. The advantage of the new technique lies in the fact that experimental moduli are determined nondestructively, using a static diffraction experiment, and represent volume-averaged quantities. PMID:22477770

  12. Radiation damage free two-color X-ray ghost diffraction with atomic resolution

    E-print Network

    Zheng Li; Nikita Medvedev; Henry Chapman; Yanhua Shih

    2015-11-16

    The X-ray free electron lasers (XFEL) can enable diffractive structural determination of protein crystals or single molecules that are too small and radiation-sensitive for conventional X-ray analysis. However the electronic form factor could have been modified during the ultrashort X-ray pulse due to photoionization and electron cascade caused by the intense X-ray pulse. For general X-ray imaging techniques, to minimize radiation damage effect is of major concern to ensure faithful reconstruction of the structure. Here we show that a radiation damage free diffraction can be achieved with an atomic spatial resolution, by using X-ray parametric down-conversion (PDC), and two-color biphoton ghost imaging. We illustrate that formation of the diffractive patterns satisfies a condition analogous to the Bragg equation, with a resolution that could be as fine as the lattice length scale of several Angstrom. Because the samples are illuminated by the optical photons of low energy, they can be free of radiation damage.

  13. Radiation damage free two-color X-ray ghost diffraction with atomic resolution

    E-print Network

    Li, Zheng; Chapman, Henry; Shih, Yanhua

    2015-01-01

    The X-ray free electron lasers (XFEL) can enable diffractive structural determination of protein crystals or single molecules that are too small and radiation-sensitive for conventional X-ray analysis. However the electronic form factor could have been modified during the ultrashort X-ray pulse due to photoionization and electron cascade caused by the intense X-ray pulse. For general X-ray imaging techniques, to minimize radiation damage effect is of major concern to ensure faithful reconstruction of the structure. Here we show that a radiation damage free diffraction can be achieved with an atomic spatial resolution, by using X-ray parametric down-conversion (PDC), and two-color biphoton ghost imaging. We illustrate that formation of the diffractive patterns satisfies a condition analogous to the Bragg equation, with a resolution that could be as fine as the lattice length scale of several Angstrom. Because the samples are illuminated by the optical photons of low energy, they can be free of radiation damage...

  14. Observations of Shock-Loaded Tin and Zirconium Surfaces with Single-Pulse X-ray Diffraction

    SciTech Connect

    Dane V. Morgan, Mike Grover, Don Macy, Mike Madlener, Gerald Stevens, and William D. Turley

    2010-06-01

    A single-pulse X-ray diffraction (XRD) diagnostic has been developed for the investigation of shocked material properties on a very short time scale. The diagnostic, which consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, produces line-and-bremsstrahlung X-ray emission in a 40 ns pulse. The molybdenum anode produces 0.71 Å characteristic K lines used for diffraction. The X-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 2 mm×5 mm spot and 1° full width at half maximum angular divergence. Coherent scattering from the sample produces a Debye-Scherrer diffraction pattern on an image plate located at 75 mm from the polycrystalline sample surface. An experimental study of the polycrystalline structures of zirconium and tin under high-pressure shock loading has been conducted with single-pulse XRD. The experimental targets were 0.1-mm-thick foils of zirconium and tin using 0.4-mm-thick vitreous carbon back windows for shock loading, and the shocks were produced by either Detasheet or PBX-9501 high explosives buffered by 1-mm-thick 6061-T6 aluminum. The diffraction patterns from both shocked zirconium and tin indicated a phase transition into a polymorphic mix of amorphous and new solid phases.

  15. Optomechanical design of a high-precision detector robot arm system for x-ray nano-diffraction with x-ray nanoprobe

    NASA Astrophysics Data System (ADS)

    Shu, D.; Kalbfleisch, S.; Kearney, S.; Anton, J.; Chu, Y. S.

    2014-03-01

    Collaboration between Argonne National Laboratory and Brookhaven National Laboratory has created a design for the high-precision detector robot arm system that will be used in the x-ray nano-diffraction experimental station at the Hard X-ray Nanoprobe (HXN) beamline for the NSLS-II project. The robot arm system is designed for positioning and manipulating an x-ray detector in three-dimensional space for nano-diffraction data acquisition with the HXN x-ray microscope. It consists of the following major component groups: a granite base with air-bearing support, a 2-D horizontal base stage, a vertical axis goniometer, a 2-D vertical plane robot arm, a 3-D fast scanning stages group, and a 2-D x-ray pixel detector. The design specifications and unique optomechanical structure of this novel high-precision detector robot arm system will be presented in this paper.

  16. X-ray line formation in radiation dominated astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Loisel, G.; Bailey, J. E.; Hansen, S. B.; Nagayama, T.; Rochau, G. A.; Liedahl, D.; Mancini, R.; Koepke, M.

    2014-10-01

    A remarkable opportunity to observe matter in a regime where the effects of General Relativity are significant has arisen through measurements of strongly red-shifted iron x-ray lines emitted from black hole accretion disks. A major uncertainty in the spectral formation models is the efficiency of Resonant Auger Destruction (RAD), in which fluorescent Ka photons are resonantly absorbed by neighbor ions. The absorbing ion preferentially decays by Auger ionization, thus reducing the emerging Ka intensity. If Ka lines from L-shell ions are not observed in iron spectral emission, why are such lines observed from silicon plasma surrounding other accretion powered objects? To help answer this question, we are investigating photoionized silicon plasmas produced using intense x-rays from the Z facility. For the first time in a terrestrial lab, we measured simultaneous absorption and emission spectra from these plasmas at high resolution. The charge state distribution, electron temperature, and electron density are determined through space-resolved absorption spectra. The emission spectra have been recorded at different column densities thus testing different radiative transport regime. These should allow us to answer quantitatively the original RAD hypothesis. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  17. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    SciTech Connect

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.

  18. Direct Observation of Melting in Shock-Compressed Bismuth With Femtosecond X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Gorman, M. G.; Briggs, R.; McBride, E. E.; Higginbotham, A.; Arnold, B.; Eggert, J. H.; Fratanduono, D. E.; Galtier, E.; Lazicki, A. E.; Lee, H. J.; Liermann, H. P.; Nagler, B.; Rothkirch, A.; Smith, R. F.; Swift, D. C.; Collins, G. W.; Wark, J. S.; McMahon, M. I.

    2015-08-01

    The melting of bismuth in response to shock compression has been studied using in situ femtosecond x-ray diffraction at an x-ray free electron laser. Both solid-solid and solid-liquid phase transitions are documented using changes in discrete diffraction peaks and the emergence of broad, liquid scattering upon release from shock pressures up to 14 GPa. The transformation from the solid state to the liquid is found to occur in less than 3 ns, very much faster than previously believed. These results are the first quantitative measurements of a liquid material obtained on shock release using x-ray diffraction, and provide an upper limit for the time scale of melting of bismuth under shock loading.

  19. Study of double barrier superlattice by synchrotron radiation and double-crystal x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zhuang, Y.; Wang, Y. T.; Jiang, D. S.; Yang, X. P.; Jiang, X. M.; Wu, J. Y.; Xiu, L. S.; Zheng, W. L.

    1996-02-01

    An (AlAs/GaAs/AlAs/AlGaAs)/GaAs(001) double-barrier superlattice grown by molecular beam epitaxy (MBE) is studied by combining synchrotron radiation and double-crystal x-ray diffraction (DCD). The intensity of satellite peaks is modulated by the wave function of each sublayer in one superlattice period. Simulated by the x-ray dynamical diffraction theory, it is discovered that the intensity of the satellite peaks situated near the modulating wave node point of each sublayer is very sensitive to the variation of the layer structural parameters. The accurate layer thickness of each sublayer is obtained with an error less than 1 Å. Furthermore, x-ray kinematical diffraction theory is used to explain the modulation phenomenon.

  20. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE PAGESBeta

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore »using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  1. Direct Observation of Melting in Shock-Compressed Bismuth With Femtosecond X-ray Diffraction.

    PubMed

    Gorman, M G; Briggs, R; McBride, E E; Higginbotham, A; Arnold, B; Eggert, J H; Fratanduono, D E; Galtier, E; Lazicki, A E; Lee, H J; Liermann, H P; Nagler, B; Rothkirch, A; Smith, R F; Swift, D C; Collins, G W; Wark, J S; McMahon, M I

    2015-08-28

    The melting of bismuth in response to shock compression has been studied using in situ femtosecond x-ray diffraction at an x-ray free electron laser. Both solid-solid and solid-liquid phase transitions are documented using changes in discrete diffraction peaks and the emergence of broad, liquid scattering upon release from shock pressures up to 14 GPa. The transformation from the solid state to the liquid is found to occur in less than 3 ns, very much faster than previously believed. These results are the first quantitative measurements of a liquid material obtained on shock release using x-ray diffraction, and provide an upper limit for the time scale of melting of bismuth under shock loading. PMID:26371663

  2. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers.

    SciTech Connect

    Parrot, I. M.; Urban, Volker S; Gardner, K. H.; Forsyth, V. T.

    2005-04-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar{reg_sign} or Twaron{reg_sign}.

  3. High-pressure behaviour of germanate olivines studied by X-ray diffraction and X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Petit, P. E.; Guyot, F.; Fiquet, G.; Itié, J. P.

    1996-04-01

    Germanate olivines Mg2GeO4, Ca2GeO4 and CaMgGeO4 have been studied by high-pressure X-ray Diffraction and high-pressure X-ray Absorption Spectroscopy. The three compounds were compressed, in the 0 30 GPa pressure range, at room temperature in a diamond-anvil cell, silicon oil being used as the pressure transmitting medium. Values of K0 are 166 ± 15, 117 ± 15 and 152 ± 14 GPa for Mg2GeO4, Ca2GeO4 and CaMgGeO4 respectively. These olivines all exhibit compression anisotropy, the a axis being the least compressible. Crystal to crystal phase transitions have been observed in Mg2GeO4 and Ca2GeO4 above 12 GPa and 6 Gpa respectively. The nature of these structural changes remains unclear yet. The onset of amorphization has been observed in Mg2GeO4 and Ca2GeO4 at pressures above about 22 and 11 GPa respectively. These phase transitions and amorphization processes do not involve any detectable increase in the coordination number of germanium atoms. At higher pressure (P >23 GPa), we report the onset of a transition from a phase with fourfold coordinated germanium to a phase with higher germanium coordination number in CaMgGeO4.

  4. X-ray diffraction experiments on the Materials in Extreme Conditions (MEC) LCLS x-ray FEL beamline

    NASA Astrophysics Data System (ADS)

    Smith, Raymond; Fratanduono, Dayne; Wicks, June; Duffy, Tom; Lee, Hae Ja; Granados, Eduardo; Heimann, Philip; Gleason, Arianna; Bolme, Cynthia; Swift, Damian; Coppari, Federica; Eggert, Jon; Collins, Rip

    2015-06-01

    The experiments described here were conducted on the MEC beamline hutch at the SLAC Linac Coherent Light Source. A 10 ns 527 nm laser pulse was used to shock compress 60-100 ?m thick NaCl and Graphite samples. LCLS x-rays (40 fs, 8 keV), scattered off the shocked sample, were recorded on several pixel array detectors positioned downstream. The diffracted x-ray pattern allows us to determine changes in crystal structure at Mbar pressures and over nanosecond timescales. In this talk we detail the experimental setup, the current capabilities of the MEC laser and the considerations for optimizing the target design. We will describe the wave interactions within the shock-compressed target and the use of a 1D hydrocode to describe the pressure, temperature and density conditions within the target assembly as a function of time and Lagrangian position. We present observations of the B1-B2 phase transition in NaCl and subsequent back transformation during release to ambient pressure, and compare these findings to gas gun and static data. We also present results from a preliminary study of the shock-induced graphite to diamond transformation.

  5. Line Searches in Swift X-ray Spectra

    E-print Network

    C. P. Hurkett; S. Vaughan; J. P. Osborne; P. T. O'Brien; K. L. Page; A. Beardmore; O. Godet; D. N. Burrows; M. Capalbi; P. Evans; N. Gehrels; M. R. Goad; J. E. Hill; J. Kennea; T. Mineo; M. Perri; R. Starling

    2008-02-04

    Prior to the launch of the Swift mission several X-ray line detections were reported in Gamma Ray Burst afterglow spectra. To date, these pre-Swift era results have not been conclusively confirmed. The most contentious issue in this area is the choice of statistical method used to evaluate the significance of these features. In this paper we compare three different methods already extant in the literature for assessing the significance of possible line features and discuss their relative advantages and disadvantages. The methods are demonstrated by application to observations of 40 bursts from the archive of Swift XRT at early times (Swift-era sample. We also discuss the effects of the current calibration status on emission line detection.

  6. Quality experimental and calculated powder x-ray diffraction

    SciTech Connect

    Sullenger, D.B.; Cantrell, J.S.; Beiter, T.A.; Tomlin, D.W.

    1996-08-01

    For several years, we have submitted quality powder XRD patterns to the International Centre for Diffraction Data for inclusion as reference standards in their Powder Diffraction File. The procedure followed is described; examples used are {beta}-UH{sub 3}, {alpha}- BaT{sub 2}, alpha-lithium disilicate ({alpha}-Li{sub 2}Si{sub 2}O{sub 5}), and 2,2`,4,4`,6,6`hexanitroazobenzene-III (HNAB-III).

  7. Normalization schemes for ultrafast x-ray diffraction using a table-top laser-driven plasma source

    SciTech Connect

    Schick, D.; Bojahr, A.; Herzog, M.; Korff Schmising, C. von; Shayduk, R.; Leitenberger, W.; Gaal, P.; Bargheer, M.

    2012-02-15

    We present an experimental setup of a laser-driven x-ray plasma source for femtosecond x-ray diffraction. Different normalization schemes accounting for x-ray source intensity fluctuations are discussed in detail. We apply these schemes to measure the temporal evolution of Bragg peak intensities of perovskite superlattices after ultrafast laser excitation.

  8. X-ray diffraction experiments with femtosecond time D. VON DER LINDE and K. SOKOLOWSKI-TINTEN

    E-print Network

    von der Linde, D.

    X-ray diffraction experiments with femtosecond time resolution D. VON DER LINDE and K. SOKOLOWSKI-essen.de (Received 4 March 2002) Abstract. Intense ultrashort laser pulses enable the generation of subpico- second X-ray pulses in the multi-kilovolt range of photon energies. These X- ray pulses have opened the door

  9. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    SciTech Connect

    Sun, Cheng-Jun Brewe, Dale L.; Heald, Steve M.; Zhang, Bangmin; Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore; NUSNNI-Nanocore, National University of Singapore, 117411 Singapore ; Chen, Jing-Sheng; Chow, G. M.; Venkatesan, T.; Department of Physics, National University of Singapore, 117542 Singapore; Department of Electrical and Computer Engineering, National University of Singapore, 117575 Singapore

    2014-04-15

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  10. Simulating Picosecond X-ray Diffraction from shocked crystals by Post-processing Molecular Dynamics Calculations

    SciTech Connect

    Kimminau, G; Nagler, B; Higginbotham, A; Murphy, W; Park, N; Hawreliak, J; Kadau, K; Germann, T C; Bringa, E M; Kalantar, D; Lorenzana, H; Remington, B; Wark, J

    2008-06-19

    Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.

  11. X-Ray diffraction study of carriers and deposited metallic catalysts

    NASA Astrophysics Data System (ADS)

    Moroz, Ella M.

    1992-02-01

    The possibilities of applying some X-ray diffraction methods in the study of multicomponent highly disperse systems are examined. Such methods include the method based on the radial distribution of atoms (RDA), full-profile X-ray diffraction analysis (FPA), and the method involving the determination of substructural characteristics (MDSC). Examples of the determination of the structural and substructural characteristics of the most important catalyst carriers as well as deposited and non-deposited metallic catalysts are presented. The bibliography includes 129 references.

  12. Nanoscale Imaging of Mineral Crystals inside Biological Composite Materials Using X-Ray Diffraction Microscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Huaidong; Ramunno-Johnson, Damien; Song, Changyong; Amirbekian, Bagrat; Kohmura, Yoshiki; Nishino, Yoshinori; Takahashi, Yukio; Ishikawa, Tetsuya; Miao, Jianwei

    2008-01-01

    We for the first time applied x-ray diffraction microscopy to the imaging of mineral crystals inside biological composite materials—intramuscular fish bone—at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization. Based on the experimental results and biomineralization analyses, we suggested a dynamic model to account for the nucleation and growth of mineral crystals in the collagen matrix. The results obtained from this study not only further our understanding of the complex structure of bone, but also demonstrate that x-ray diffraction microscopy will become an important tool to study biological materials.

  13. X-ray diffraction and nanoindentation studies of nanocrystalline graphite at high pressures

    NASA Astrophysics Data System (ADS)

    Patterson, J. Reed; Kudryavtsev, Anatoliy; Vohra, Yogesh K.

    2002-09-01

    We report energy dispersive x-ray diffraction studies on nanocrystalline hexagonal graphite samples (average grain size=12 nm) in a diamond-anvil cell to 65 GPa at room temperature. A structural phase transition to a hexagonal diamond phase beginning at 15 GPa is completed at 55 GPa, and is reversible on decompression. The x-ray diffraction studies were followed by nanoindentation hardness measurements on the pressure treated samples. The obtained hardness values are in the range of 1-2 GPa. Unlike fullerenes, the room-temperature compression of nanocrystalline graphite to 65 GPa did not produce a superhard carbon material.

  14. Crystallization and preliminary X-ray diffraction study of porcine carboxypeptidase B

    NASA Astrophysics Data System (ADS)

    Akparov, V. Kh.; Timofeev, V. I.; Kuranova, I. P.

    2015-05-01

    Crystals of porcine pancreatic carboxypeptidase B have been grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction study showed that the crystals belong to sp. gr. P41212 and have the following unit-cell parameters: a = b = 79.58 Å, c = 100.51 Å; ? = ? = ? = 90.00°. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one of the grown crystals at the SPring 8 synchrotron facility to 0.98 Å resolution.

  15. Probing the Local Order of Single Phospholipid Membranes Using Grazing Incidence X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Miller, C. E.; Majewski, J.; Watkins, E. B.; Mulder, D. J.; Gog, T.; Kuhl, T. L.

    2008-02-01

    We report the first grazing incidence x-ray diffraction measurements of a single phospholipid bilayer at the solid-liquid interface. Our grazing incidence x-ray diffraction and reflectivity measurements reveal that the lateral ordering in a supported DPPE (1, 2-Dipalmitoyl-sn-Glycero-3-Phosphoethanolamine) bilayer is significantly less than that of an equivalent monolayer at the air-liquid interface. Our findings also indicate that the leaflets of the bilayer are uncoupled in contrast to the scattering from free standing phosphatidylcholine bilayers. The methodology presented can be readily implemented to study more complicated biomembranes and their interaction with proteins.

  16. Mapping of residual strains of a ceramic-to-metal joint using X-ray diffraction

    SciTech Connect

    Watkins, T.R.; Wang, X.L.; Spooner, S.; Hubbard, C.R.; Vance, S.J.; Rabin, B.H.; Williamson, R.L.

    1994-03-01

    In this study, the residual strains in the iron layer of a zirconia-iron joint, brazed with a metal alloy, were measured with X-ray diffraction as a function of distance from the joint. The residual strains were measured at various key locations indicated by a finite element model (FEM). The X-ray residual strain mapping results were compared to neutron diffraction mapping results. These data were combined to provide a complete residual strain profile of these samples and were compared with results of FEM.

  17. Coherent x-ray diffraction imaging of paint pigmentparticles by scanning a phase plate modulator

    SciTech Connect

    Chu Y. S.; Chen B.; Zhang F.; Berenguer F.; Bean R.; Kewish C.; Vila-Comamala J.; Rodenburg J.; Robinson I.

    2011-10-19

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  18. Pressure-Induced Crystallization and Phase Transformation of Amorphous Selenium: Raman Spectroscopy and X-ray Diffraction Studies

    SciTech Connect

    Yang,K.; Cui, Q.; Hou, Y.; Liu, B.; Zhou, Q.; Hu, J.; Mao, H.; Zou, G.

    2007-01-01

    High-pressure Raman spectroscopy studies have been carried out on amorphous Se (a-Se) at room temperature in a diamond anvil cell with an 830 nm exciting line. Raman evidence for the pressure-induced crystallization of a-Se and the coexistence of the unknown high-pressure phase with the hexagonal phase is presented for the first time. Further experimental proof of high-pressure angle-dispersive x-ray diffraction studies for a-Se indicates that the unknown high-pressure phase is also a mixture phase of the tetragonal I41/acd and Se IV structure. Our Raman and x-ray diffraction results suggest that hexagonal Se I undergoes a direct transition to triclinic Se III at about 19 GPa, which is in good agreement with the theoretical prediction.

  19. X-ray diffraction in temporally and spatially resolved biomolecular science.

    PubMed

    Helliwell, John R; Brink, Alice; Kaenket, Surasak; Starkey, Victoria Laurina; Tanley, Simon W M

    2015-01-01

    Time-resolved Laue protein crystallography at the European Synchrotron Radiation Facility (ESRF) opened up the field of sub-nanosecond protein crystal structure analyses. There are a limited number of such time-resolved studies in the literature. Why is this? The X-ray laser now gives us femtosecond (fs) duration pulses, typically 10 fs up to ?50 fs. Their use is attractive for the fastest time-resolved protein crystallography studies. It has been proposed that single molecules could even be studied with the advantage of being able to measure X-ray diffraction from a 'crystal lattice free' single molecule, with or without temporal resolved structural changes. This is altogether very challenging R&D. So as to assist this effort we have undertaken studies of metal clusters that bind to proteins, both 'fresh' and after repeated X-ray irradiation to assess their X-ray-photo-dynamics, namely Ta6Br12, K2PtI6 and K2PtBr6 bound to a test protein, hen egg white lysozyme. These metal complexes have the major advantage of being very recognisable shapes (pseudo spherical or octahedral) and thereby offer a start to (probably very difficult) single molecule electron density map interpretations, both static and dynamic. A further approach is to investigate the X-ray laser beam diffraction strength of a well scattering nano-cluster; an example from nature being the iron containing ferritin. Electron crystallography and single particle electron microscopy imaging offers alternatives to X-ray structural studies; our structural studies of crustacyanin, a 320 kDa protein carotenoid complex, can be extended either by electron based techniques or with the X-ray laser representing a fascinating range of options. General outlook remarks concerning X-ray, electron and neutron macromolecular crystallography as well as 'NMR crystallography' conclude the article. PMID:25605312

  20. PREFACE: XTOP 2004 -- 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging

    NASA Astrophysics Data System (ADS)

    Holý, Vaclav

    2005-05-01

    The 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging (XTOP 2004) was held in the Prague suburb of Pruhonice, Czech Republic, during 7-10 September 2004. It was organized by the Czech and Slovak Crystallographic Association in cooperation with the Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Masaryk University, Brno, and Charles University, Prague. XTOP 2004 took place just after EPDIC IX (European Powder Diffraction Conference) organised in Prague by the same Association during 2-5 September 2004. The Organizing Committee was supported by an International Programme Committee including about 20 prominent scientists from several European and overseas countries, whose helpful suggestions for speakers are acknowledged. The conference was sponsored by the International Union of Crystallography and by several industrial sponsors; this sponsorship allowed us to support about 20 students and young scientists. In total, 147 official delegates and 8 accompanying persons from 16 countries of three continents attended our conference. The scientific programme of the conference was divided into 11 half-day sessions and 2 poster sessions. The participants presented 147 accepted contributions; of these 9 were 45-minute long invited talks, 34 were 20-minute oral presentations and 104 were posters. All posters were displayed for the whole meeting to ensure maximum exposure and interaction between delegates. We followed the very good experience from the previous conference, XTOP 2002, and also organized pre-conference tutorial lectures presented by experts in the field: `Imaging with hard synchrotron radiation' (J Härtwig, Grenoble), `High-resolution x-ray diffractometry: determination of strain and composition' (J Stangl, Linz), `X-ray grazing-incidence scattering from surfaces and nanostructures' (U Pietsch, Potsdam) and `Hard x-ray optics' (J Hrdý, Prague). According to the recommendation of the International Program Committee, the invited lectures covered a broader field than the original conference subject, namely coherent speckle diffraction (I Robinson, Urbana), scattering from soft-matter films (W de Jeu, Amsterdam), femtosecond diffraction (J Wark, Oxford), magnetic soft x-ray microscopy (P Fischer, Stuttgart), x-ray standing-wave imaging (J Zegenhagen, Grenoble), new trends in hard x-ray imaging (J Baruchel, Grenoble), anomalous x-ray scattering from nanostructures, (T Schülli, Grenoble), in-situ x-ray scattering (G Renaud, Grenoble) and x-ray waveguides (W Jark, Trieste). The topics of the oral presentations and posters can be divided into two large groups, namely x-ray imaging and x-ray diffraction. In the first group, the contributions concentrated on new developments in methods and instrumentation, including in-situ imaging, phase-contrast imaging and three-dimensional imaging. In the second group, attention was paid to anomalous scattering methods and scattering from thin films and nanostructures. The full list of all contributions together with their abstracts are available at the website http://www.xray.cz/xtop. During one session, Professor Andrew Lang, one of the pioneers of x-ray topography who gave his name to the popular topographic technique, and honorary guest of XTOP 2004, celebrated his 80th birthday. In a celebration address Professor A Authier reviewed Professor Lang's career and his invaluable contribution to the development of our field. We continue the tradition of previous XTOPs and publish a selection of original contributions from the conference in this special issue of Journal of Physics D: Applied Physics. The papers have been subject to peer review according to the normal practice of the journal. Generally, we observed that a new generation of young and very talented scientists has appeared, who are publishing very interesting and important papers. Therefore, the future prospects of x-ray imaging and high-resolution diffraction are bright and we all look forward to the next XTOP conference, organized by Tilo Baumbach and his group, which will take p

  1. High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.

    2004-01-01

    Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results of our studies show, that Sic nanocrystals have the features of two phases, each with its distinct elastic properties. and under pressures up to 8 GPa.

  2. Single-Shot Femtosecond X-ray Diffraction from Randomly Oriented Ellipsoidal Nanoparticles

    SciTech Connect

    Bogan, M.J.; Boutet, S.; Barty, A.; Benner, W.H.; Frank, M.; Lomb, L.; Shoeman, R.; Starodub, D.; Seibert, M.M.; Hau-Riege, S.P.; Woods, B.; Decorwin-Martin, P.; Bajt, S.; Schulz, J.; Rohner, U.; Iwan, B.; Timneanu, N.; Marchesini, S.; Schlichting, I.; Hajdu, J.; Chapman, H.N.; /DESY /Hamburg U., Inst. Theor. Phys. II

    2012-04-18

    Coherent diffractive imaging of single particles using the single-shot 'diffract and destroy' approach with an x-ray free electron laser (FEL) was recently demonstrated. A high-resolution low-noise coherent diffraction pattern, representative of the object before it turns into a plasma and explodes, results from the interaction of the FEL with the particle. Iterative phase retrieval algorithms are used to reconstruct two-dimensional projection images of the object from the recorded intensities alone. Here we describe the first single-shot diffraction data set that mimics the data proposed for obtaining 3D structure from identical particles. Ellipsoidal iron oxide nanoparticles (250 nm x 50 nm) were aerosolized and injected through an aerodynamic lens stack into a soft x-ray FEL. Particle orientation was not controlled with this injection method. We observed that, at the instant the x-ray pulse interacts with the particle, a snapshot of the particle's orientation is encoded in the diffraction pattern. The results give credence to one of the technical concepts of imaging individual nanometer and subnanometer-sized objects such as single molecules or larger clusters of molecules using hard x-ray FELs and will be used to help develop robust algorithms for determining particle orientations and 3D structure.

  3. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    NASA Astrophysics Data System (ADS)

    McGonegle, David; Milathianaki, Despina; Remington, Bruce A.; Wark, Justin S.; Higginbotham, Andrew

    2015-08-01

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as may occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced ?-? phase transition in iron, the ?-? transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.

  4. X-ray emission line profile modeling of hot stars Roban H. Kramer

    E-print Network

    Cohen, David

    X-ray emission line profile modeling of hot stars Roban H. Kramer Swarthmore College, Swarthmore Sciences, Madison, Wisconsin 53711 Presented on 10 July 2002 The launch of high-spectral-resolution x-ray of kinetic energy, which can be converted to x rays by shock-heating even a small fraction of the wind plasma

  5. X-ray diffraction of indirect flight muscle from Drosohila in vivo

    SciTech Connect

    Irving, T.

    2007-02-09

    The indirect flight muscle (IFM) of the fruit fly, Drosophila, represents a powerful model system for integrated structure and function studies because of the ease of genetically manipulating this organism. Recent advances in synchrotron technology have allowed collection of high quality two dimensional x-ray fiber diffraction patterns from the IFM of living fruit flies both at rest and during tethered flight. Based on many decades of x-ray and electron microscopic studies of vertebrate muscle and IFM from the waterbug, Lethocerus, there now exists a framework for interpreting changes in the x-ray diffraction patterns in terms of structural changes at the myofilament level. These developments allow testing of hypotheses concerning muscle function in a truly in vivo system.

  6. X-ray diffraction study of structural stability of giant proteoglycan molecules of mucus

    NASA Astrophysics Data System (ADS)

    Vazina, A. A.; Lanina, N. F.; Vasilieva, A. A.; Korneev, V. N.; Zabelin, A. V.; Polyakova, E. P.

    2009-05-01

    X-ray diffraction study of various native and modified gastrointestinal mucins was carried out using synchrotron radiation. The mucus X-ray patterns of mammals and invertebrates are very similar and display a large number of sharp diffraction rings at the spacing of about 4.65 nm, which are due to the helical packing of polysaccharide chains covalently connected to the protein core. A comparative analysis of the X-ray patterns obtained earlier by us from various samples of mucus and biological tissues showed that the 4.65(±0.15) nm spacing is a nanoscale structural invariant of giant proteoglycan molecules of both the mucus and the extracellular matrix of tissues. A role of structural dynamics of proteoglycan scaffolding of biological systems in mechanism of modifying adaptation of organisms to significant changes of temperature is discussed.

  7. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-?m-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  8. Optimized performance of graded multilayer optics for x-ray single-crystal diffraction

    NASA Astrophysics Data System (ADS)

    Michaelsen, Carsten; Wiesmann, Joerg; Hoffmann, Christian; Oehr, A.; Storm, A. B.; Seijbel, L. J.

    2004-01-01

    We present recent developments in the production of X-ray multilayer optics for Cu K? laboratory single crystal diffraction equipment for protein crystallography and structural proteomics. The paper shows design, simulations and properties of Montel optics comprised of two elliptically bent focusing multilayers, optimized for the use with modern rotating anode X-ray generators. The multilayers are sputter deposited with a graded d-spacing along the length of the substrate. The various beam properties such as flux density and divergence are investigated in detail. After optimization of the optic for a state-of-the-art rotating anode x-ray generator, we obtain a flux density of 1 x 1010 photons/s/mm2. Results for a typical protein structure will be shown, illustrating the advantage of Montel optics in the field of single-crystal diffraction and protein crystallography for life sciences.

  9. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation.

    PubMed

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ?10-?m-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering. PMID:25375529

  10. Hydrogen atoms in protein structures: high-resolution X-ray diffraction structure of the DFPase

    PubMed Central

    2013-01-01

    Background Hydrogen atoms represent about half of the total number of atoms in proteins and are often involved in substrate recognition and catalysis. Unfortunately, X-ray protein crystallography at usual resolution fails to access directly their positioning, mainly because light atoms display weak contributions to diffraction. However, sub-Ångstrom diffraction data, careful modeling and a proper refinement strategy can allow the positioning of a significant part of hydrogen atoms. Results A comprehensive study on the X-ray structure of the diisopropyl-fluorophosphatase (DFPase) was performed, and the hydrogen atoms were modeled, including those of solvent molecules. This model was compared to the available neutron structure of DFPase, and differences in the protein and the active site solvation were noticed. Conclusions A further examination of the DFPase X-ray structure provides substantial evidence about the presence of an activated water molecule that may constitute an interesting piece of information as regard to the enzymatic hydrolysis mechanism. PMID:23915572

  11. Perspective: Structural dynamics in condensed matter mapped by femtosecond x-ray diffraction

    SciTech Connect

    Elsaesser, T.; Woerner, M.

    2014-01-14

    Ultrashort soft and hard x-ray pulses are sensitive probes of structural dynamics on the picometer length and femtosecond time scales of electronic and atomic motions. Recent progress in generating such pulses has initiated new directions of condensed matter research, exploiting a variety of x-ray absorption, scattering, and diffraction methods to probe photoinduced structural dynamics. Atomic motion, changes of local structure and long-range order, as well as correlated electron motion and charge transfer have been resolved in space and time, providing a most direct access to the physical mechanisms and interactions driving reversible and irreversible changes of structure. This perspective combines an overview of recent advances in femtosecond x-ray diffraction with a discussion on ongoing and future developments.

  12. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    SciTech Connect

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  13. Spectrometer for hard X-ray free-electron laser based on diffraction focusing.

    PubMed

    Kohn, V G; Gorobtsov, O Y; Vartanyants, I A

    2013-03-01

    X-ray free-electron lasers (XFELs) generate sequences of ultra-short spatially coherent pulses of X-ray radiation. A diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ?E/E 2 × 10(-6), is proposed. This is much better than for most modern X-ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single-crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from a metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. It is shown that the DFS can be used in a wide energy range from 5 keV to 20 keV. PMID:23412482

  14. High Pressure X-Ray Diffraction Studies on Nanocrystalline Materials

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Pielaszek, R.; Bismayer, U.; Werner, S.; Palosz, W.

    2003-01-01

    Application of in situ high pressure powder diffraction technique for examination of specific structural properties of nanocrystals based on the experimental data of SiC nanocrystalline powders of 2 to 30 nrn diameter in diameter is presented. Limitations and capabilities of the experimental techniques themselves and methods of diffraction data elaboration applied to nanocrystals with very small dimensions (< 30 nm) are discussed. It is shown that due to the complex structure, constituting a two-phase, core/surface shell system, no unique lattice parameter value and, consequently, no unique compressibility coefficient can satisfactorily describe the behavior of nanocrystalline powders under pressure. We offer a tentative interpretation of the distribution of macro- and micro-strains in nanoparticles of different grain size.

  15. Ultrafast Structural Dynamics by X-Ray Diffraction and Structural Spectroscopy

    NASA Astrophysics Data System (ADS)

    Weber, Peter M.

    2015-05-01

    The ability to observe molecular reactions in real time is expected to aid the exploration of new reaction mechanisms, the development of catalysts, the understanding of biomolecular processes and the control of chemical reactions and material properties on a molecular level. To reach this goal, we have developed a gas-phase x-ray diffraction experiment that uses the ultrashort x-ray pulses from the Linac Coherent Light Source (LCLS) to capture atomic motions within molecules in a dilute gas (< 5 Torr). The delay time dependence of the gas x-ray diffraction pattern is measured in a pump-probe scheme with 267 nm excitation laser and 8.3 keV X-ray probe pulses. Optical excitation prepares 1,3-cyclohexadiene on the excited 1B surface, from where it accelerates past a conical intersection down the 2A potential energy surfaces before opening the ring structure on a 140 fs time scale. A ``molecular movie'' of the observed dynamics is constructed by comparing ab initio quantum molecular dynamics simulations with the experimental diffraction signal to derive weighted trajectories that provide a good representation of the structural dynamics, with the weighted ensemble of trajectories corresponding to the nuclear flux during the chemical reaction. The x-ray structural data thus provide reaction pathways for which ionization energies can be calculated at each step. We use ultrafast time-resolved multiphoton - ionization photoelectron spectroscopy to measure the travel time required for the molecule to reach certain resonance windows to Rydberg states. By so combining the results from the ultrafast x-ray diffraction with observations from ultrafast (structural) spectroscopy, it appears that we can make significant progress towards the ultimate goal: a comprehensive understanding of the spatially resolved photochemical reaction dynamics.

  16. Ultrafast structural dynamics studied by kilohertz time-resolved x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Jiang, Zhou-Ya; Chen, Long; Chen, Li-Ming; Xin, Jian-Guo; Peter, M. Rentzepis; Chen, Jie

    2015-10-01

    Ultrashort multi-keV x-ray pulses are generated by electron plasma produced by the irradiation of femtosecond pulses on metals. These sub-picosecond x-ray pulses have extended the field of x-ray spectroscopy into the femtosecond time domain. However, pulse-to-pulse instability and long data acquisition time restrict the application of ultrashort x-ray systems operating at low repetition rates. Here we report on the performance of a femtosecond laser plasma-induced hard x-ray source that operates at 1-kHz repetition rate, and provides a flux of 2.0 × 1010 photons/s of Cu K? radiation. Using this system for time-resolved x-ray diffraction experiments, we record in real time, the transient processes and structural changes induced by the interaction of 400-nm femtosecond pulse with the surface of a 200-nm thick Au (111) single crystal. Project supported by the National Natural Science Foundation of China (Grant Nos. 61222509 and 11421064) and the W. M. Keck Foundation.

  17. Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling

    SciTech Connect

    Veluraja, K.; Vennila, K.N.; Umamakeshvari, K.; Jasmine, A.; Velmurugan, D.

    2011-03-25

    Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of the homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.

  18. Silicon carbide surface structure investigated by synchrotron radiation-based x-ray diffraction

    E-print Network

    Chiang, Shirley

    Silicon carbide surface structure investigated by synchrotron radiation-based x-ray diffraction H silicon or germanium surfaces. © 2003 American Vacuum Society. DOI: 10.1116/1.1588650 Silicon carbide Si, with alternating silicon and carbon atomic planes in the 100 direction, so that one can expect some similarity

  19. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOEpatents

    Smither, Robert K. (Hinsdale, IL)

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  20. X-RAY POWDER DIFFRACTION SYSTEM FOR CHEMICAL SPECIATION OF PARTICULATE AEROSOL SAMPLES

    EPA Science Inventory

    An x-ray powder diffraction system has been developed for the automated measurement and analysis of particulate aerosol samples. The system is optimized to process samples with particle loadings of about 100 micrograms/sq cm which are acquired with dichotomous air samplers. A pos...

  1. X-RAY DIFFRACTION STUDY OF CRYSTALLITE SIZE-DISTRIBUTION AND STRAIN IN CARBON BLACKS

    E-print Network

    Gubicza, Jenõ

    X-RAY DIFFRACTION STUDY OF CRYSTALLITE SIZE-DISTRIBUTION AND STRAIN IN CARBON BLACKS T. Ungár, J.S.A. ABSTRACT The crystallite size and size-distribution in carbon blacks in the presence of strain transform of the size profile is given as an analitical function. The method is applied to carbon blacks

  2. Structural Order-Disorder Transformations Monitored by X-Ray Diffraction and Photoluminescence

    ERIC Educational Resources Information Center

    Lima, R. C.; Paris, E. C.; Leite, E. R.; Espinosa, J. W. M.; Souza, A. G.; Longo, E.

    2007-01-01

    A study was conducted to examine the structural order-disorder transformation promoted by controlled heat treatment using X-ray diffraction technique (XRD) and photoluminescence (PL) techniques as tools to monitor the degree of structural order. The experiment was observed to be versatile and easily achieved with low cost which allowed producing…

  3. Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.; Achilles, C. N.; Downs, R. T.; Farmer, J. D.; Crisp, J. A.; Morookian, J. M.; Des Marais, D. J.; Grotzinger, J. P.; Sarrazin, P.; Yen, A. S.

    2014-01-01

    To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.

  4. Residual stress evaluation and fatigue life prediction in the welded joint by x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Yoo, Keun Bong; Hwang, Kwon Tae; Chang, Jung Chel; Kim, Jae Hoon

    2009-07-01

    In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture. The residual stress of the welded part in the recently constructed power plants has been the cause of a variety of accidents. The objective of this study is measurement of the residual stress and the full width at half maximum intensity (FWHM) by X-ray diffraction method and to estimate the feasibility of this application for fatigue life assessment of the high-temperature pipeline. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The test results were analyzed by the distributed characteristics of residual stresses and FWHM in x-ray diffraction intensity curve. Also, X-ray diffraction tests using specimens simulated low cycle fatigue damage were performed in order to analyze fatigue properties when fatigue damage conditions become various stages. As a result of X-ray diffraction tests for specimens simulated fatigue damages, we conformed that the ratio of the FWHM due to fatigue damage has linear relationship with fatigue life ratio algebraically. From this relationship, it was suggested that direct expectation of the life consumption rate was feasible.

  5. High-temperature powder x-ray diffraction of yttria to melting point

    E-print Network

    Chen, Haydn H.

    High-temperature powder x-ray diffraction of yttria to melting point V. Swamya) Max from room temperature to melting point with the thin wire resistance heating technique. A solid-temperature data of yttria arises from the potential use of its melting point as a secondary temperature standard,3

  6. Transmission X-ray diffraction of single-crystal nickel-base superalloys

    SciTech Connect

    Biermann, H.; Von Grossmann, B.

    1999-07-01

    Because of their superior high-temperature properties, monocrystalline nickel-base superalloys are used advantageously for turbine blades of modern gas turbines. During creep these alloys show changes in lattice parameters. These changes are dependent on temperature and stress. Transmission X-ray diffraction and regular Bragg reflection have been used to demonstrate these changes.

  7. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  8. QUANTITATIVE X-RAY POWDER DIFFRACTION ANALYSIS OF AIR PARTICULATE SAMPLES

    EPA Science Inventory

    The design, operation and calibration of an x-ray powder diffraction system for the analysis of air particulate samples are described. The instrument analyzes a sample non-destructively for its major crystalline components. The system has been optimized for the non-destructive an...

  9. Growth of Strained Epitaxial Cu Films on Ru(0001) Monitored by Surface X-Ray Diffraction

    SciTech Connect

    Baddord, A.P.; Gibbs, D.; Zajonz, H.; Zehner, D.M.

    1998-10-19

    The growth of Cu Layers deposited on Ru(0001) substrates at temperatures between 500 K and 850 K was studied using surface x-ray diffraction. Results are consistent with a Stransky-Krastanov growth mode with a two layer critical thickness.

  10. A-DNA and B-DNA: Comparing Their Historical X-Ray Fiber Diffraction Images

    ERIC Educational Resources Information Center

    Lucas, Amand A.

    2008-01-01

    A-DNA and B-DNA are two secondary molecular conformations (among other allomorphs) that double-stranded DNA drawn into a fiber can assume, depending on the relative water content and other chemical parameters of the fiber. They were the first two forms to be observed by X-ray fiber diffraction in the early 1950s, respectively by Wilkins and…

  11. Impulsive solvent heating probed by picosecond x-ray diffraction M. Cammarata

    E-print Network

    Ihee, Hyotcherl

    hydrodynamics, induced by the transfer of heat from a subset of excited CH3OH* to the bulk and the subsequentImpulsive solvent heating probed by picosecond x-ray diffraction M. Cammarata European Synchrotron and J. H. Lee Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST

  12. X-ray diffraction studies of polyaniline doped with Zn(NO3)2

    NASA Astrophysics Data System (ADS)

    Goyal, Sneh Lata; Sharma, Smriti; Kumar, Devinder; Kishore, Nawal

    2013-06-01

    Polyaniline (PANI) and PANI/zinc nitrate composites were synthesized by in situ chemical oxidative polymerization of aniline with Zn(NO3)2 using ammonium peroxidisulphate (APS) as an oxidant. These composites were characterized by X-ray diffraction (XRD) and the results were compared with pure Polyaniline and zinc nitrate.

  13. An X-ray diffractometer using mirage diffraction.

    PubMed

    Fukamachi, Tomoe; Jongsukswat, Sukswat; Ju, Dongying; Negishi, Riichirou; Hirano, Keiichi; Kawamura, Takaaki

    2014-08-01

    Some characteristics are reported of a triple-crystal diffractometer with a (+,?-,?+) setting of Si(220) using mirage diffraction. The first crystal is flat, while the second and third crystals are bent. Basically, the first crystal is used as a collimator, the second as a monochromator and the third as the sample. The third crystal also works as an analyzer. The advantages of this diffractometer are that its setup is easy, its structure is simple, the divergence angle from the second crystal is small and the energy resolution of the third crystal is high, of the order of sub-meV. PMID:25242911

  14. Diffraction crystal for sagittally focusing x-rays

    DOEpatents

    Ice, Gene E. (Oak Ridge, TN); Sparks, Jr., Cullie J. (Oak Ridge, TN)

    1984-01-01

    The invention is a new type of diffraction crystal designed for sagittally focusing photons of various energies. The invention is based on the discovery that such focusing is not obtainable with conventional crystals because of distortion resulting from anticlastic curvature. The new crystal comprises a monocrystalline base having a front face contoured for sagittally focusing photons and a back face provided with rigid, upstanding, stiffening ribs restricting anticlastic curvature. When mounted in a suitable bending device, the reflecting face of the crystal can be adjusted to focus photons having any one of a range of energies.

  15. Diffraction crystals for sagittally focusing x-rays

    DOEpatents

    Ice, G.E.; Sparks, C.J. Jr.

    1982-06-07

    The invention is a new type of diffraction crystal designed for sagittally focusing photons of various energies. The invention is based on the discovery that such focusing is not obtainable with conventional crystals because of distortion resulting from anticlastic curvature. The new crystal comprises a monocrystalline base having a front face contoured for sagittally focusing photons and a back face provided with rigid, upstanding, stiffening ribs restricting anticlastic curvature. When mounted in a suitable bending device, the reflecting face of the crystal can be adjusted to focus photons having any one of a range of energies.

  16. X-ray diffraction techniques for in-situ measurements of the dynamic flow stress of shock compressed Ta

    NASA Astrophysics Data System (ADS)

    Wehrenberg, Christopher; Barton, Nathan; Comley, Andrew; McGonegle, David; Maddox, Brian; McNaney, James; Park, Hye-Sook; Plechaty, Chris; Prisbrey, Shon; Remington, Bruce; Rudd, Rob

    2015-06-01

    A range of experimental techniques using in-situ x-ray diffraction have been developed to study the dynamic flow stress and underlying deformation of shock compressed samples. Experiments performed at the Omega and Omega EP facilities can generate both a high pressure drive, ranging from 0.3 Mbar up to and beyond the Hugoniot melt line, while simultaneous providing a short, bright x-ray source. Single crystal samples were studied either by Laue diffraction, using a broadband x-ray source created by an imploding CH capsule, or by Bragg diffraction, using a short pulse driven metal foil backlighter. The strength of polycrystalline samples can be determined using a pinhole camera setup and a quasi-monochromatic source. For highly-textured polycrystalline samples, additional strength information can be inferred from the azimuthal position of the texture spots on the Debye ring. Through measurements of the 1D-to-3D relaxation time or changes in the observed texture, information about the deformation mechanics of shock loading can be inferred. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  17. X-Ray Weak Broad-Line Quasars: Absorption or Intrinsic X-Ray Weakness

    NASA Technical Reports Server (NTRS)

    Risaliti, Guido; Mushotzky, Richard F. (Technical Monitor)

    2004-01-01

    XMM observations of X-ray weak quasars have been performed during 2003. The data for all but the last observation are now available (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed these data, and obtained interesting preliminary scientific results. Out of the eight sources, 4 are confirmed to be extrimely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confirmed to be highly variable both in flux (by factors 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects, an article is in preparation. Preliminary results have been presented at an international workshop on AGN surveys in December 2003, in Cozumel (Mexico). In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations, and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations will be performed in early 2004, and will complement the XMM data, in order to understand whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circumnuclear material.

  18. Specific features of two diffraction schemes for a widely divergent X-ray beam

    NASA Astrophysics Data System (ADS)

    Avetyan, K. T.; Levonyan, L. V.; Semerjian, H. S.; Arakelyan, M. M.; Badalyan, O. M.

    2015-03-01

    We investigated the specific features of two diffraction schemes for a widely divergent X-ray beam that use a circular diaphragm 30-50 ?m in diameter as a point source of characteristic radiation. In one of the schemes, the diaphragm was set in front of the crystal (the diaphragm-crystal ( d-c) scheme); in the other, it was installed behind the crystal (the crystal-diaphragm ( c-d) scheme). It was established that the diffraction image in the c-d scheme is a topographic map of the investigated crystal area. In the d-c scheme at L = 2 l ( l and L are the distances between the crystal and the diaphragm and between the photographic plate and the diaphragm, respectively), the branches of hyperbolas formed in this family of planes ( hkl) by the characteristic K ? and K ? radiations, including higher order reflections, converge into one straight line. It is experimentally demonstrated that this convergence is very sensitive to structural inhomogeneities in the crystal under study.

  19. The energy calibration of x-ray absorption spectra using multiple-beam diffraction

    SciTech Connect

    Hagelstein, M.; Cunis, S. ); Frahm, R. ); Rabe, P. )

    1992-01-01

    A new method for calibrating the energy scale of x-ray absorption spectra from an energy dispersive spectrometer has been developed. Distinct features in the diffracted intensity of the curved silicon crystal monochromator have been assigned to multiple-beam diffraction. The photon energies of these structures can be calculated if the precise spacing of the diffracting planes and the orientation of the crystal relative to the incident synchrotron radiation are known. The evaluation of Miller indices of operative reflections and the calculation of the corresponding photon energy is presented. The assignment of operative reflexes is simplified if the monochromator crystal can be rotated around the main diffracting vector {bold H}.

  20. Neutron and X-ray diffraction and empirical potential structure refinement modelling of magnesium stabilised amorphous calcium

    E-print Network

    Benning, Liane G.

    Neutron and X-ray diffraction and empirical potential structure refinement modelling of magnesium and X-ray diffraction have been performed for a sample of magnesium-stabilised ACC, which was prepared refinement method has been used to make a model of magnesium-stabilised ACC and the results revealed a fair

  1. X-ray diffraction studies of model compounds of thermoplastic polyimides

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.; Pratt, J. R.

    1989-01-01

    Several model compounds which represent aspects of the chemical structure of the Langley Research Center thermoplastic (LARC-TPI) have been synthesized for comparison studies using wide angle X-ray scattering (WAXS) as the discriminatory tool. The model compounds included N-phenylphthalimide, 3,3',4,4'-benzophenonetetracarboxylic diphthalimide, and N,N'-diphenyl-3,3',4,4'-benzophenonetetracarboxylic diphthalimide. X-ray diffraction studies of appropriate model compounds can yield information to aid in the understanding of polymeric crystallographic structure. Crystallinity and physical property changes can thus be induced into materials having complicated structures by chemical and thermal processes.

  2. MBE apparatus for in situ grazing incidence x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Akimoto, K.; Mizuki, J.; Hirosawa, I.; Matsui, J.

    1989-07-01

    A molecular beam epitaxy (MBE) apparatus furnished with two E-gun evaporators, two Knudsen cells and RHEED, was built for in situ grazing incidence x-ray diffraction studies. By adopting horizontal sample setting geometry, the entire ultrahigh vacuum chamber was rotated simply with the aid of a spring, and a large sample area was irradiated by the x-rays. Using this apparatus, we observed the 7×7 superstructure on a Si(111) surface and at a SiO2/Si(111) interface.

  3. Photoelectron diffraction from laser-aligned molecules with X-ray free-electron laser pulses

    PubMed Central

    Nakajima, Kyo; Teramoto, Takahiro; Akagi, Hiroshi; Fujikawa, Takashi; Majima, Takuya; Minemoto, Shinichirou; Ogawa, Kanade; Sakai, Hirofumi; Togashi, Tadashi; Tono, Kensuke; Tsuru, Shota; Wada, Ken; Yabashi, Makina; Yagishita, Akira

    2015-01-01

    We report on the measurement of deep inner-shell 2p X-ray photoelectron diffraction (XPD) patterns from laser-aligned I2 molecules using X-ray free-electron laser (XFEL) pulses. The XPD patterns of the I2 molecules, aligned parallel to the polarization vector of the XFEL, were well matched with our theoretical calculations. Further, we propose a criterion for applying our molecular-structure-determination methodology to the experimental XPD data. In turn, we have demonstrated that this approach is a significant step toward the time-resolved imaging of molecular structures. PMID:26369428

  4. Polarity determination of wurtzite-type crystals using hard x-ray photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    Williams, Jesse R.; Kobata, Masaaki; Pis, Igor; Ikenaga, Eiji; Sugiyama, Takeharu; Kobayashi, Keisuke; Ohashi, Naoki

    2011-07-01

    The surface structure of a single-crystal ZnO wafer was studied by angle-resolved x-ray photoelectron spectroscopy (ARXPS) using synchrotron radiation. As a result, well-defined x-ray photoelectron diffraction (XPD) patterns were obtained for the (0001) and (0001bar) polar surfaces using the photoemission from the Zn 2p3/2 and O 1s core levels. The XPD patterns were indexed assuming forward scattering of photoelectrons by neighboring ions. Further, the XPD patterns for the (0001) and (0001bar) surfaces were different from each other, indicating the possibility for using the XPD technique for polarity determination.

  5. High-resolution X-ray diffraction in crystalline structures with quantum dots

    NASA Astrophysics Data System (ADS)

    Punegov, V. I.

    2015-05-01

    We review the current status of nondestructive high-resolution X-ray diffractometry research on semiconductor structures with quantum dots (QDs). The formalism of the statistical theory of diffraction is used to consider the coherent and diffuse X-ray scattering in crystalline systems with nanoinclusions. Effects of the shape, elastic strain, and lateral and vertical QD correlation on the diffuse scattering angular distribution near the reciprocal lattice nodes are considered. Using short-period and multicomponent superlattices as an example, we demonstrate the efficiency of data-assisted simulations in the quantitative analysis of nanostructured materials.

  6. Interaction between Lipid Monolayers and Poloxamer 188: An X-Ray Reflectivity and Diffraction Study

    PubMed Central

    Wu, Guohui; Majewski, Jaroslaw; Ege, Canay; Kjaer, Kristian; Weygand, Markus Jan; Lee, Ka Yee C.

    2005-01-01

    The mechanism by which poloxamer 188 (P188) seals a damaged cell membrane is examined using the lipid monolayer as a model system. X-ray reflectivity and grazing-incidence x-ray diffraction results show that at low nominal lipid density, P188, by physically occupying the available area and phase separating from the lipids, forces the lipid molecules to pack tightly and restore the barrier function of the membrane. Upon compression to bilayer equivalent pressure, P188 is squeezed out from the lipid monolayer, allowing a graceful exit of P188 when the membrane integrity is restored. PMID:16100276

  7. High-pressure structural studies of dysprosium using angle-dispersive x-ray diffraction

    SciTech Connect

    Shen Yongrong; Kumar, Ravhi S.; Cornelius, Andrew L.; Nicol, Malcolm F.

    2007-02-01

    We present structural results under pressure for elemental dysprosium (Dy) up to 87 GPa using in situ angle-dispersive x-ray diffraction measurements with synchrotron x rays and a diamond-anvil cell. Dy exhibits the structural transition sequence, hP2{yields}hR9{yields}hP4{yields}distorted cF4, from Rietveld full-profile refinements. Clear evidence is documented for the high-pressure distorted cF4 phase observed above 45 GPa to be an orthorhombic oS8 (Cmmm) structure for Dy in the lanthanide phase diagram.

  8. The K X-ray line structures for a warm dense copper plasma

    NASA Astrophysics Data System (ADS)

    S?abkowska, K.; Szyma?ska, E.; Syrocki, ?.; Rzadkiewicz, J.; Polasik, M.

    2015-06-01

    Ionization affects the energy and shape of the characteristic X-ray lines that may be excited by energetic electrons in a partially ionized plasma. We present the first theoretical predictions for copper K-line spectra in different ionization states, one of a systematic series of computations on how ionization affects inner-shell X-ray lines. Detailed computations such as these may make it possible to use individual hard X-rays lines as diagnostics for warm, dense plasmas when high-resolution X-ray spectra are available.

  9. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole

    NASA Astrophysics Data System (ADS)

    Kürkçüo?lu, Güne? Süheyla; Kiraz, Fulya Çetinkaya; Say?n, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  10. Protein crystallography: From X-ray diffraction spots to a three dimensional image

    SciTech Connect

    Terwilliger, T.C.; Berendzen, J.

    1998-02-25

    Proteins are remarkable molecular machines that are essential for life. They can do many things ranging from the precise control of blood clotting to synthesizing complex organic compounds. Pictures of protein molecules are in high demand in biotechnology because they are important for applications such as drug discovery and for engineering enzymes for commercial use. X-ray crystallography is the most common method for determining the three-dimensional structures of protein molecules. When a crystal of a protein is placed in an X-ray beam, scattering of X-rays off the ordered molecules produces a diffraction pattern that can be measured on a position-sensitive CCD or image-plate detector. Protein crystals typically contain thousands of atoms and the diffraction data are generally measured to relatively low resolution. Consequently the direct methods approaches generally cannot be applied. Instead, if the crystal is modified by adding metal atoms at specific sites or by tuning the wavelength of the X-rays to cross an absorption edge of a metal atom in the crystal, then the information from these additional measurements is sufficient to first identify the /locations of the metal atoms. This information is then used along with the diffraction data to make a three-dimensional picture of electron densities. This picture can be used to determine the position of most or all of the atoms in the protein.

  11. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole.

    PubMed

    Kürkçüo?lu, Güne? Süheyla; Kiraz, Fulya Çetinkaya; Say?n, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M=Mn(II), Fe(II) or Co(II); etim=1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes. PMID:25919408

  12. The catalytic mechanism of an aspartic proteinase explored with neutron and X-ray diffraction

    SciTech Connect

    Kovalevsky, Andrey; Erskine, Peter T.; Cooper, Jon

    2008-01-01

    Hydrogen atoms play key roles in enzyme mechanism, but as this study shows, even high-quality X-ray data to a resolution of 1 {angstrom} cannot directly visualize them. Neutron diffraction, however, can locate deuterium atoms even at resolutions around 2 {angstrom}. Both neutron and X-ray diffraction data have been used to investigate the transition state of the aspartic proteinase endothiapepsin. The different techniques reveal a different part of the story, revealing the clearest picture yet of the catalytic mechanism by which the enzyme operates. Room temperature neutron and X-ray diffraction data were used in a newly developed joint refinement software package to visualize deuterium atoms within the active site of the enzyme when a gem-diol transition state analogue inhibitor is bound at the active site. These data were also used to estimate their individual occupancy, while analysis of the differences between the bond lengths of the catalytic aspartates was performed using atomic resolution X-ray data. The two methods are in agreement on the protonation state of the active site with a transition state analogue inhibitor bound confirming the catalytic mechanism at which the enzyme operates.

  13. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    PubMed

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis. PMID:26698082

  14. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    SciTech Connect

    Emamzadah, Soheila; Petty, Tom J.; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean-Luc; Halazonetis, Thanos D.

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  15. A regularized iterative reconstruction algorithm for x-ray diffraction tomography

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Castañón, David A.

    2012-06-01

    Material discrimination based on conventional or dual energy X-ray computed tomography (CT) imaging can be ambiguous. X-ray diraction imaging (XDI) can be used to construct diraction proles of objects, providing molecular signature information that can be used to characterize the presence of specic materials. Combining X-ray CT and diraction imaging can lead to enhanced detection and identication of explosives in luggage screening. Current XDI scan systems are based on direct imaging rather than tomographic imaging, which require the use of line collimators to localize scattering location and thus result in slow scan performance. In an eort to gain faster scan times and better signal-to-noise ratio, we focus on tomographic inversion techniques for X-ray Diraction Tomography (XDT) and look for joint reconstruction of CT absorption and X-ray diraction prole images of object. We present a fast reconstruction algorithm with geometric feature preserving regularization (IREP) using image-wise based iterative coordinate descent (ICD).We validate the initial results via Monte Carlo simulation of X-ray absorption and coherent scattering in 2 dimensions (2D), and compare the performance of the IREP algorithm with existing inversion techniques such as the ltered backprojection method and the algebraic reconstruction technique. The experimental results show that the IREP method oers improved image quality for enhanced material identication.

  16. HRTEM and X-ray diffraction analysis of Au wire bonding interface in microelectronics packaging

    NASA Astrophysics Data System (ADS)

    Junhui, Li; Ruishan, Wang; Lei, Han; Fuliang, Wang; Zhili, Long

    2011-01-01

    Interfacial microstructures of thermosonic Au wire bonding to an Al pad of die were investigated firstly by high-resolution transmission electron microscopy (HRTEM) and X-ray micro-diffractometer. The equal-thickness interference structures were observed by HRTEM due to diffusion and reaction activated by ultrasonic and thermal at the Au/Al bond interface. And X-ray diffraction results showed that three different interplanar crystal spacings ('d' value) of the interfacial microstructures were 2.2257 Å, 2.2645 Å, and 2.1806 Å respectively from the high intensity of diffraction to the low intensity of diffraction. These indicated that the intermetallic phase AlAu 2 formed within a very short time. It would be helpful to further research wire bonding technology.

  17. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto

    PubMed Central

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-01-01

    Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27?724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a = 74.3, b = 49.9, c = 56.3?Å, ? = 95.2°. Diffraction images were processed to a resolution of 1.74?Å with an R merge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase. PMID:21139221

  18. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto.

    PubMed

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-12-01

    Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27,724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a=74.3, b=49.9, c=56.3?Å, ?=95.2°. Diffraction images were processed to a resolution of 1.74?Å with an Rmerge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase. PMID:21139221

  19. Transient x-ray diffraction with simultaneous imaging under high strain-rate loading

    PubMed Central

    Fan, D.; Lu, L.; Li, B.; Qi, M. L.; E, J. C.; Zhao, F.; Sun, T.; Fezzaa, K.; Chen, W.; Luo, S. N.

    2014-01-01

    Real time, in situ, multiframe, diffraction, and imaging measurements on bulk samples under high and ultrahigh strain-rate loading are highly desirable for micro- and mesoscale sciences. We present an experimental demonstration of multiframe transient x-ray diffraction (TXD) along with simultaneous imaging under high strain-rate loading at the Advanced Photon Source beamline 32ID. The feasibility study utilizes high strain-rate Hopkinson bar loading on a Mg alloy. The exposure time in TXD is 2–3 ?s, and the frame interval is 26.7–62.5 ?s. Various dynamic deformation mechanisms are revealed by TXD, including lattice expansion or compression, crystal plasticity, grain or lattice rotation, and likely grain refinement, as well as considerable anisotropy in deformation. Dynamic strain fields are mapped via x-ray digital image correlation, and are consistent with the diffraction measurements and loading histories. PMID:25430119

  20. A geometry for sub-nanosecond X-ray diffraction from laser-shocked polycrystalline foils

    SciTech Connect

    Wark, Justin; Higginbotham, Andrew; Kimminau, Giles; Murphy, William; Nagler, Bob; Whitcher, Thomas; Hawreliak, James; Kalantar, Dan; Butterfield, Martin; El-Dasher, Bassem; McNaney, James; Milathianaki, Despina; Lorenzana, Hector; Remington, Bruce; Davies, Huw; Thornton, Lee; Park, Nigel; Lukezic, Stan

    2007-12-12

    In situ picosecond X-ray diffraction has proved to be a useful tool in furthering our understanding of the response of shocked crystals at the lattice level. To date the vast majority of this work has used single crystals as the shocked samples, owing to their diffraction efficiency, although the study of the response of polycrystalline samples is clearly of interest for many applications. We present here the results of experiments to develop sub-nanosecond powder/polycrystalline diffraction using a cylindrical pinhole camera. By allowing the incident X-ray beam to impinge on the sample at non-normal angles, the response of grains making a variety of angles to the shock propagation direction can potentially be interrogated.

  1. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE PAGESBeta

    Beetz, T.; Howells, M. R.; Jacobsen, C.; Kao, C. -C.; Kirz, J.; Lima, E.; Mentes, T. O.; Miao, H.; Sanchez-Hanke, C.; Sayre, D.; et al

    2005-03-14

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore »computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less

  2. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  3. Transient x-ray diffraction with simultaneous imaging under high strain-rate loading

    SciTech Connect

    Fan, D.; E, J. C.; Zhao, F.; Luo, S. N.; Lu, L.; Li, B.; Qi, M. L.; Sun, T.; Fezzaa, K.; Chen, W.

    2014-11-15

    Real time, in situ, multiframe, diffraction, and imaging measurements on bulk samples under high and ultrahigh strain-rate loading are highly desirable for micro- and mesoscale sciences. We present an experimental demonstration of multiframe transient x-ray diffraction (TXD) along with simultaneous imaging under high strain-rate loading at the Advanced Photon Source beamline 32ID. The feasibility study utilizes high strain-rate Hopkinson bar loading on a Mg alloy. The exposure time in TXD is 2–3 ?s, and the frame interval is 26.7–62.5 ?s. Various dynamic deformation mechanisms are revealed by TXD, including lattice expansion or compression, crystal plasticity, grain or lattice rotation, and likely grain refinement, as well as considerable anisotropy in deformation. Dynamic strain fields are mapped via x-ray digital image correlation, and are consistent with the diffraction measurements and loading histories.

  4. Quantitative comparison of imaging performance of x-ray interferometric imaging and diffraction enhanced imaging

    SciTech Connect

    Akio, Yoneyama; Jin, Wu; Kazuyuki, Hyodo; Tohoru, Takeda

    2008-10-15

    For detailed biomedical observations using the optimum phase-contrast x-ray imaging, quantitative comparisons of imaging performances of two major imaging methods--x-ray interferometric imaging (XII) and diffraction enhanced imaging (DEI)--were performed. Density sensitivity and spatial resolution of each imaging method were evaluated using phantom tomograms obtained by each method with the same x-ray dosage. For practical comparison of the methods, biological samples were also observed under the same conditions. The results show that XII has a higher sensitivity than that of DEI and is thus suitable for observation of soft biological tissues. On the other hand, DEI has a wider dynamic range of density and is thus suitable for observation of samples with large differences in density of different regions.

  5. Texture analysis of zirconium samples deformed by uniaxial tension using neutron and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Kucerakova, M.; Vratislav, S.; Kalvoda, L.; Trojanova, Z.

    2015-04-01

    Seven zirconium samples were studied by neutron and X-ray diffraction after deformation on uniaxial tensile machine INSTRON 5882 from strain 5% to strain 30% (strain step was 5%). Preferred orientation parameters were determined by using pole figures and inverse pole figures. The X-ray measurements were performed at theta/theta X'Pert PRO diffractometer with Cr X-ray tube. Observed data were processed by software packages GSAS and X'Pert Texture. Our results can be summarized as follows: (i) Samples prefer orientation of planes (100) and (110) perpendicular to rolling direction. (ii) The position of the basal poles is tilted by 30° from the normal direction toward the transverse direction. (iii) Samples prefer orientation of planes (102) and (103) perpendicular to normal direction. (iv) Level of resulting texture increases with deformation. The obtained results are characteristic for zirconium.

  6. Study of carbon steel corrosion layer by X-ray diffraction and absorption methods

    NASA Astrophysics Data System (ADS)

    Malinovschi, V.; Ducu, C.; Aldea, N.; Fulger, M.

    2006-06-01

    To predict the behavior of structural metallic materials into the CANDU nuclear reactor, the oxide films on the surface were growth in a controlled manner using an autoclave simulating the environment specific to the nuclear reactor. In order to establish the structural changes of the oxide films, the X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and extended X-ray absorption fine structure spectroscopy (EXAFS) analysis were used. Analysis performed showed differences in morphology of the oxide films from carbon steel samples exposed under different conditions corresponding to primary and secondary circuits in CANDU nuclear reactor. The oxide phases were identified and the thicknesses of the films were calculated. The agreement between results obtained by these methods was discussed according to the microstructure of the samples.

  7. Coherent hard x-ray diffractive imaging of nonisolated objects confined by an aperture

    SciTech Connect

    Kim, Sunam; Kim, Chan; Lee, Suyong; Marathe, Shashidhara; Noh, D. Y.; Kang, H. C.; Kim, S. S.; Sandy, A.; Narayanan, S.

    2010-04-15

    Coherent hard x-ray imaging of nonisolated weak phase objects is demonstrated by confining x-ray beam in a region of a few micrometers in cross section using a micrometer-sized aperture. Two major obstacles in the hard x-ray coherent diffraction imaging, isolating samples and obtaining central speckles, are addressed by using the aperture. The usefulness of the proposed method is illustrated by reconstructing the exit wave field of a nanoscale trench structure fabricated on silicon which serves as a weak phase object. The quantitative phase information of the exit wave field was used to reconstruct the depth profile of the trench structure. The scanning capability of this method was also briefly discussed.

  8. Investigations into rapid uniaxial compression of polycrystalline targets using femtosecond X-ray diffraction

    NASA Astrophysics Data System (ADS)

    McGonegle, David; Higginbotham, Andrew; Galtier, Eric; McBride, Emma E.; McMahon, Malcolm I.; Milathianaki, Despina; Lee, Hae Ja; Nagler, Bob; Vinko, Sam M.; Wark, Justin S.

    2014-05-01

    Although the pressures achievable in laser experiments continue to increase, the mechanisms underlying how solids deform at high strain rates are still not well understood. In particular, at higher pressures, the assumption that the difference between the longitudinal and transverse strains in a sample remains small becomes increasingly invalid. In recent years, there has been an increasing interest in simulating compression experiments on a granular level. In situ X-ray diffraction, where a target is probed with X-rays while a shock is propagating through it, is an excellent tool to test these simulations. We present data from the first long-pulse laser experiment at the MEC instrument of LCLS, the world's first hard X-ray Free Electron Laser, demonstrating large strain anisotropies. From this we infer shear stresses in polycrystalline copper of up to 1.75 GPa at a shock pressure of 32 GPa.

  9. Limit of Detection in X-ray Diffraction Measurements of Tissue Equivalent Samples

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Vassiljev, N.; Konstantinidis, A.; Griffiths, J.; Speller, R.

    2015-09-01

    There is a suggestion of a new approach to mammography whereby following a conventional mammogram, the radiologist could interrogate suspicious regions using X-ray diffraction whilst the patient is still present and to establish the true extent of disease. A starting point for this work is to quantify the minimum detectable amount of breast cancer within a realistic thickness phantom. Perspex has a similar diffraction pattern to healthy breast tissue whilst water is similar to breast tumour, hence these two materials are used as tissue equivalent test objects for X-ray diffraction measurements. The preliminary results show linear agreement between the ratio of Perspex to water and the ratio of the diffraction peak intensities at 0.7 nm-1 and 1.5 nm-1. The minimum detectable limit for a component of the two ‘tissue’ mix was found to be 4.1%. This suggests that X-ray diffraction can be used to quantify tissue like mixtures down to the 4.1% / 95.9% mix level and hence has a strong potential for delineating the extent of infiltration disease.

  10. Imaging outside the box: Resolution enhancement in X-ray coherent diffraction imaging by extrapolation of diffraction patterns

    NASA Astrophysics Data System (ADS)

    Latychevskaia, Tatiana; Chushkin, Yuriy; Zontone, Federico; Fink, Hans-Werner

    2015-11-01

    Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.

  11. High-pressure X-ray diffraction studies of potassium chlorate

    SciTech Connect

    Pravica, Michael; Bai, Ligang; Bhattacharya, Neelanjan

    2012-03-15

    Two static high-pressure X-ray diffraction (XRD) studies of potassium chlorate have been performed at pressures of up to {approx}14.3 GPa in a diamond anvil cell at ambient temperature using the 16 ID-B undulator beamline at the Advanced Photon Source for the X-ray source. The first experiment was conducted to ascertain decomposition rates of potassium chlorate as a function of pressure. Below 2 GPa, the sample was observed to decompose rapidly in the presence of the X-ray beam and release oxygen. Above 2 GPa (near the phase I phase II transition), the decomposition rate dramatically slowed so that good quality XRD patterns could be acquired. This suggests a phase-dependent decomposition rate. In the second study, X-ray diffraction spectra were collected at pressures from 2 to 14.3 GPa by aligning virgin portions of the sample into the focused X-ray beam at each pressure. The results suggest the co-existence of mixed monoclinic (I) and rhombohedral (II) phases of potassium chlorate near 2 GPa. At pressures beyond 4 GPa, the XRD patterns show a very good fit to KClO{sub 3} in the rhombohedral phase with space group R3m, in agreement with earlier studies. No further phase transitions were observed with pressure. Decompression of the sample to ambient pressure indicated mixed phases I and II coupled with a small amount of synchrotron X-ray-induced decomposition product. The equation of state within this pressure regime has been determined.

  12. Modeling X-ray Emission Line Profiles from Massive Star Winds - A Review

    E-print Network

    Ignace, Richard

    2016-01-01

    The Chandra and XMM-Newton X-ray telescopes have led to numerous advances in the study and understanding of astrophysical X-ray sources. Particularly important has been the much increased spectral resolution of modern X-ray instrumentation. Wind-broadened emission lines have been spectroscopically resolved for many massive stars. This contribution reviews approaches to the modeling of X-ray emission line profile shapes from single stars, including smooth winds, winds with clumping, optically thin versus thick lines, and the effect of a radius-dependent photoabsorption coefficient.

  13. Determination of line profiles on nano-structured surfaces using EUV and x-ray scattering

    NASA Astrophysics Data System (ADS)

    Soltwisch, Victor; Wernecke, Jan; Haase, Anton; Probst, Jürgen; Schoengen, Max; Krumrey, Michael; Scholze, Frank; Pomplun, Jan; Burger, Sven

    2014-09-01

    Non-imaging techniques like X-ray scattering are supposed to play an important role in the further development of CD metrology for the semiconductor industry. Grazing Incidence Small Angle X-ray Scattering (GISAXS) provides directly assessable information on structure roughness and long-range periodic perturbations. The disadvantage of the method is the large footprint of the X-ray beam on the sample due to the extremely shallow angle of incidence. This can be overcome by using wavelengths in the extreme ultraviolet (EUV) spectral range, EUV small angle scattering (EUVSAS), which allows for much steeper angles of incidence but preserves the range of momentum transfer that can be observed. Generally, the potentially higher momentum transfer at shorter wavelengths is counterbalanced by decreasing diffraction efficiency. This results in a practical limit of about 10 nm pitch for which it is possible to observe at least the +/- 1st diffraction orders with reasonable efficiency. At the Physikalisch-Technische Bundesanstalt (PTB), the available photon energy range extends from 50 eV up to 10 keV at two adjacent beamlines. PTB commissioned a new versatile Ellipso-Scatterometer which is capable of measuring 6" square substrates in a clean, hydrocarbon-free environment with full flexibility regarding the direction of the incident light polarization. The reconstruction of line profiles using a geometrical model with six free parameters, based on a finite element method (FEM) Maxwell solver and a particle swarm based least-squares optimization yielded consistent results for EUV-SAS and GISAXS. In this contribution we present scatterometry data for line gratings and consistent reconstruction results of the line geometry for EUV-SAS and GISAXS.

  14. Spectral x-ray diffraction using a 6 megapixel photon counting array detector

    NASA Astrophysics Data System (ADS)

    Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2015-03-01

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  15. X-Ray Diffraction Study of the Internal Structure of Supercooled Water

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Boyd, Bemrose

    1951-01-01

    A Bragg X-ray spectrometer equipped with a volume-sensitive Geiger counter and Soller slits and employing filtered molybdenum Ka radiation was used to obtain a set of diffracted intensity curves as a Punction of angle for supercooled water. Diffracted intensity curves in the temperature region of 21 to -16 C were obtained. The minimum between the two main diffraction peaks deepened continuously with lowering temperature, indicating a gradual change in the internal structure of the water. No discontinuity in this trend was noted at the melting point. The internal structure of supercooled water was concluded to become progressively more ice-like as the temperature is lowered.

  16. A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction

    SciTech Connect

    Sarin, P.; Haggerty, R; Yoon, W; Knapp, M; Berghaeuser, A; Zschack, P; Karapetrova, E; Yang, N; Kriven, W

    2009-01-01

    The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.

  17. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements

    PubMed Central

    Barty, Anton; Caleman, Carl; Aquila, Andrew; Timneanu, Nicusor; Lomb, Lukas; White, Thomas A.; Andreasson, Jakob; Arnlund, David; Bajt, Saša; Barends, Thomas R. M.; Barthelmess, Miriam; Bogan, Michael J.; Bostedt, Christoph; Bozek, John D.; Coffee, Ryan; Coppola, Nicola; Davidsson, Jan; DePonte, Daniel P.; Doak, R. Bruce; Ekeberg, Tomas; Elser, Veit; Epp, Sascha W.; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Fromme, Petra; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y.; Hartmann, Robert; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S.; Johansson, Linda; Kassemeyer, Stephan; Kimmel, Nils; Kirian, Richard A.; Liang, Mengning; Maia, Filipe R. N. C.; Malmerberg, Erik; Marchesini, Stefano; Martin, Andrew V.; Nass, Karol; Neutze, Richard; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Scott, Howard; Schlichting, Ilme; Schulz, Joachim; Seibert, M. Marvin; Shoeman, Robert L.; Sierra, Raymond G.; Soltau, Heike; Spence, John C. H.; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Ullrich, Joachim; Wang, X.; Weidenspointner, Georg; Weierstall, Uwe; Wunderer, Cornelia B.; Chapman, Henry N.

    2013-01-01

    X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1–4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution. PMID:24078834

  18. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    SciTech Connect

    Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; Lemke, Henrik T.; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L.; Cohen, Aina E.; Soltis, S. Michael; DeMirci, Hasan

    2015-04-30

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecond X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.

  19. Identification of inversion domains in KTiOPO{sub 4}via resonant X-ray diffraction

    SciTech Connect

    Fabrizi, Federica; Thomas, Pamela A.; Nisbet, Gareth; Collins, Stephen P.

    2015-05-14

    The identification and high-resolution mapping of the absolute crystallographic structure in multi-domain ferroelectric KTiOPO{sub 4} is achieved through a novel synchrotron X-ray diffraction method. On a single Bragg reflection, the intensity ratio in resonant diffraction below and above the Ti absorption K edge demonstrates a domain contrast up to a factor of ?270, thus implementing a non-contact, non-destructive imaging technique with micrometre spatial resolution, applicable to samples of arbitrarily large dimensions. A novel method is presented for the identification of the absolute crystallographic structure in multi-domain polar materials such as ferroelectric KTiOPO{sub 4}. Resonant (or ‘anomalous’) X-ray diffraction spectra collected across the absorption K edge of Ti (4.966 keV) on a single Bragg reflection demonstrate a huge intensity ratio above and below the edge, providing a polar domain contrast of ?270. This allows one to map the spatial domain distribution in a periodically inverted sample, with a resolution of ?1 µm achieved with a microfocused beam. This non-contact, non-destructive technique is well suited for samples of large dimensions (in contrast with traditional resonant X-ray methods based on diffraction from Friedel pairs), and its potential is particularly relevant in the context of physical phenomena connected with an absence of inversion symmetry, which require characterization of the underlying absolute atomic structure (such as in the case of magnetoelectric coupling and multiferroics)

  20. Quantitative Imaging of Single Unstained Magnetotactic Bacteria by Coherent X-ray Diffraction Microscopy.

    PubMed

    Fan, Jiadong; Sun, Zhibin; Zhang, Jian; Huang, Qingjie; Yao, Shengkun; Zong, Yunbing; Kohmura, Yoshiki; Ishikawa, Tetsuya; Liu, Hong; Jiang, Huaidong

    2015-06-16

    Novel coherent diffraction microscopy provides a powerful lensless imaging method to obtain a better understanding of the microorganism at the nanoscale. Here we demonstrated quantitative imaging of intact unstained magnetotactic bacteria using coherent X-ray diffraction microscopy combined with an iterative phase retrieval algorithm. Although the signal-to-noise ratio of the X-ray diffraction pattern from single magnetotactic bacterium is weak due to low-scattering ability of biomaterials, an 18.6 nm half-period resolution of reconstructed image was achieved by using a hybrid input-output phase retrieval algorithm. On the basis of the quantitative reconstructed images, the morphology and some intracellular structures, such as nucleoid, poly?-hydroxybutyrate granules, and magnetosomes, were identified, which were also confirmed by scanning electron microscopy and energy dispersive spectroscopy. With the benefit from the quantifiability of coherent diffraction imaging, for the first time to our knowledge, an average density of magnetotactic bacteria was calculated to be ?1.19 g/cm(3). This technique has a wide range of applications, especially in quantitative imaging of low-scattering biomaterials and multicomponent materials at nanoscale resolution. Combined with the cryogenic technique or X-ray free electron lasers, the method could image cells in a hydrated condition, which helps to maintain their natural structure. PMID:26006162

  1. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    DOE PAGESBeta

    Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; Lemke, Henrik T.; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L.; Cohen, Aina E.; Soltis, S. Michael; et al

    2015-04-30

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecondmore »X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.« less

  2. Realizing in-plane surface diffraction by x-ray multiple-beam diffraction with large incidence angle

    SciTech Connect

    Huang, Xian-Rong Gog, Thomas; Assoufid, Lahsen; Peng, Ru-Wen; Siddons, D. P.

    2014-11-03

    Based on rigorous dynamical-theory calculations, we demonstrate the principle of an x-ray multiple-beam diffraction (MBD) scheme that overcomes the long-lasting difficulties of high-resolution in-plane diffraction from crystal surfaces. This scheme only utilizes symmetric reflection geometry with large incident angles but activates the out-of-plane and in-plane diffraction processes simultaneously and separately in the continuous MBD planes. The in-plane diffraction is realized by detoured MBD, where the intermediate diffracted waves propagate parallel to the surface, which corresponds to an absolute Bragg surface diffraction configuration that is extremely sensitive to surface structures. A series of MBD diffraction and imaging techniques may be developed from this principle to study surface/interface (misfit) strains, lateral nanostructures, and phase transitions of a wide range of (pseudo)cubic crystal structures, including ultrathin epitaxial films and multilayers, quantum dots, strain-engineered semiconductor or (multi)ferroic materials, etc.

  3. X-ray Diffraction Studies of the Thick Filament in Permeabilized Myocardium from Rabbit

    SciTech Connect

    Xu,S.; Martyn, D.; Zaman, J.; Yu, L.

    2006-01-01

    Low angle x-ray diffraction patterns from relaxed permeabilized rabbit cardiac trabeculae and psoas muscle fibers were compared. Temperature was varied from 25{sup o}C to 5{sup o}C at 200 mM and 50 mM ionic strengths ({mu}), respectively. Effects of temperature and {mu} on the intensities of the myosin layer lines (MLL), the equatorial intensity ratio I{sub 1,1}/I{sub 1,0}, and the spacing of the filament lattice are similar in both muscles. At 25{sup o}C, particularly at {mu} = 50 mM, the x-ray patterns exhibited up to six orders of MLL and sharp meridional reflections, signifying that myosin heads (cross-bridges) are distributed in a well-ordered helical array. Decreasing temperature reduced MLL intensities but increased I{sub 1,1}/I{sub 1,0}. Decreases in the MLL intensities indicate increasing disorder in the distribution of cross-bridges on the thick filaments surface. In the skeletal muscle, order/disorder is directly correlated with the hydrolysis equilibrium of ATP by myosin, [M.ADP.P{sub i}]/[M.ATP]. Similar effects of temperature on MLL and similar biochemical ATP hydrolysis pathway found in both types of muscles suggest that the order/disorder states of cardiac cross-bridges may well be correlated with the same biochemical and structural states. This implies that in relaxed cardiac muscle under physiological conditions, the unattached cross-bridges are largely in the M.ADP.P{sub i} state and with the lowering of the temperature, the equilibrium is increasingly in favor of [M.ATP] and [A.M.ATP]. There appear to be some differences in the diffraction patterns from the two muscles, however. Mainly, in the cardiac muscle, the MLL are weaker, the I{sub 1,1}/I{sub 1,0} ratio tends to be higher, and the lattice spacing D{sub 10}, larger. These differences are consistent with the idea that under a wide range of conditions, a greater fraction of cross-bridges is weakly bound to actin in the myocardium.

  4. X-ray Diffraction Studies of the Thick Filament in Permeabilized Myocardium from Rabbit

    SciTech Connect

    Xu,S.; Martyn, D.; Zaman, J.; Yu, L.

    2007-01-01

    Low angle x-ray diffraction patterns from relaxed permeabilized rabbit cardiac trabeculae and psoas muscle fibers were compared. Temperature was varied from 25{sup o}C to 5{sup o}C at 200 mM and 50 mM ionic strengths ({mu}), respectively. Effects of temperature and {mu} on the intensities of the myosin layer lines (MLL), the equatorial intensity ratio I{sub 1,1}/I{sub 1,0}, and the spacing of the filament lattice are similar in both muscles. At 25{sup o}C, particularly at {mu} = 50 mM, the x-ray patterns exhibited up to six orders of MLL and sharp meridional reflections, signifying that myosin heads (cross-bridges) are distributed in a well-ordered helical array. Decreasing temperature reduced MLL intensities but increased I{sub 1,1}/I{sub 1,0}. Decreases in the MLL intensities indicate increasing disorder in the distribution of cross-bridges on the thick filaments surface. In the skeletal muscle, order/disorder is directly correlated with the hydrolysis equilibrium of ATP by myosin, [M.ADP.P{sub i}]/[M.ATP]. Similar effects of temperature on MLL and similar biochemical ATP hydrolysis pathway found in both types of muscles suggest that the order/disorder states of cardiac cross-bridges may well be correlated with the same biochemical and structural states. This implies that in relaxed cardiac muscle under physiological conditions, the unattached cross-bridges are largely in the M.ADP.P{sub i} state and with the lowering of the temperature, the equilibrium is increasingly in favor of [M.ATP] and [A.M.ATP]. There appear to be some differences in the diffraction patterns from the two muscles, however. Mainly, in the cardiac muscle, the MLL are weaker, the I{sub 1,1}/I{sub 1,0} ratio tends to be higher, and the lattice spacing D{sub 10}, larger. These differences are consistent with the idea that under a wide range of conditions, a greater fraction of cross-bridges is weakly bound to actin in the myocardium.

  5. Theoretical study of the properties of X-ray diffraction moiré fringes. I

    SciTech Connect

    Yoshimura, Jun-ichi

    2015-05-14

    A detailed and comprehensive theoretical description of X-ray diffraction moiré fringes for a bicrystal specimen is given on the basis of a calculation by plane-wave dynamical diffraction theory, where the effect of the Pendellösung intensity oscillation on the moiré pattern is explained in detail. A detailed and comprehensive theoretical description of X-ray diffraction moiré fringes for a bicrystal specimen is given on the basis of a calculation by plane-wave dynamical diffraction theory. Firstly, prior to discussing the main subject of the paper, a previous article [Yoshimura (1997 ?). Acta Cryst. A53, 810–812] on the two-dimensionality of diffraction moiré patterns is restated on a thorough calculation of the moiré interference phase. Then, the properties of moiré fringes derived from the above theory are explained for the case of a plane-wave diffraction image, where the significant effect of Pendellösung intensity oscillation on the moiré pattern when the crystal is strained is described in detail with theoretically simulated moiré images. Although such plane-wave moiré images are not widely observed in a nearly pure form, knowledge of their properties is essential for the understanding of diffraction moiré fringes in general.

  6. X-ray and neutron diffraction measurements of dislocation density and subgrain size in a friction stir welded aluminum alloy

    SciTech Connect

    Claussen, Bjorn; Woo, Wanchuck; Zhili, Feng; Edward, Kenik; Ungar, Tamas

    2009-01-01

    The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 x 10{sup 14} m{sup 02} and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson-Hall method shows the dislocation density of about 3.2 x 10{sup 15} m{sup -2} and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation.

  7. X-ray diffraction imaging of metal–oxide epitaxial tunnel junctions made by optical lithography: use of focused and unfocused X-ray beams

    PubMed Central

    Mocuta, Cristian; Barbier, Antoine; Stanescu, Stefan; Matzen, Sylvia; Moussy, Jean-Baptiste; Ziegler, Eric

    2013-01-01

    X-ray diffraction techniques are used in imaging mode in order to characterize micrometre-sized objects. The samples used as models are metal–oxide tunnel junctions made by optical lithography, with lateral sizes ranging from 150?µm down to 10?µm and various shapes: discs, squares and rectangles. Two approaches are described and compared, both using diffraction contrast: full-field imaging (topography) and raster imaging (scanning probe) using a micrometre-sized focused X-ray beam. It is shown that the full-field image gives access to macroscopic distortions (e.g. sample bending), while the local distortions, at the micrometre scale (e.g. tilts of the crystalline planes in the vicinity of the junction edges), can be accurately characterized only using focused X-ray beams. These local defects are dependent on the junction shape and larger by one order of magnitude than the macroscopic curvature of the sample. PMID:23412494

  8. Spectroscopic and X-ray Diffraction Study of Structural Disorder in Cryomilled and Amorphous Griseofulvin

    SciTech Connect

    A Zarow; B Zhou; X Wang; R Pinal; Z Iqbal

    2011-12-31

    Structural disorder induced by cryogenic milling and by heating to the amorphous phase in the active pharmaceutical ingredient Griseofulvin has been studied using Raman spectroscopy, X-ray powder diffraction (XRPD), and fluorescence spectroscopy. A broad, exciting-frequency-independent scattering background in the Raman spectra and changes in intensities and splitting of some of the Raman lines due to lattice and molecular modes have been observed. In the cryomilled samples this strong background is deconvoluted into two components: one due to lattice disorder induced by cryomilling and the other due to Mie scattering from nanosized crystallites. A single-component background scattering attributed to lattice disorder is seen in the Raman spectrum of the amorphous sample. Fluorescence measurements showed an intrinsic fluorescence signal in as-received Griseofulvin that does not correspond to the inelastic background in the Raman spectra and, moreover, decreases in intensity upon cryomilling, thus excluding an assignment of the Raman background intensity to impurity- or molecular-defect-induced fluorescence. Wide-angle XRPD measurements on cryomilled Griseofulvin shows a broad two-component background consistent with the background-scattering component in the Raman data associated with lattice disorder, but at longer correlation lengths. Persistence of this disorder to even longer lengths is evident in small-angle synchrotron XRPD data on micronized Griseofulvin taken as a function of temperature from the crystalline to the amorphous phase.

  9. Crystallization of medium length 1-alcohols in mesoporous silicon: An X-ray diffraction study

    E-print Network

    Anke Henschel; Patrick Huber; Klaus Knorr

    2008-03-27

    The linear 1-alcohols n-C16H33OH, n-C17H35OH, n-C19H37OH have been imbibed and solidified in lined up, tubular mesopores of silicon with 10 nm and 15 nm mean diameters, respectively. X-ray diffraction measurements reveal a set of six discrete orientation states (''domains'') characterized by a perpendicular alignment of the molecules with respect to the long axis of the pores and by a four-fold symmetry about this direction, which coincides with the crystalline symmetry of the Si host. A Bragg peak series characteristic of the formation of bilayers indicates a lamellar structure of the spatially confined alcohol crystals in 15 nm pores. By contrast, no layering reflections could be detected for 10 nm pores. The growth mechanism responsible for the peculiar orientation states is attributed to a nano-scale version of the Bridgman technique of single-crystal growth, where the dominant growth direction is aligned parallelly to the long pore axes. Our observations are analogous to the growth phenomenology encountered for medium length n-alkanes confined in mesoporous silicon (Phys. Rev. E 75, 021607 (2007)) and may further elucidate why porous silicon matrices act as an effective nucleation-inducing material for protein solution crystallization.

  10. Calcinosis Circumscripta. A Case Report with X-ray Diffraction Studies

    PubMed Central

    Grice, H. C.; Hutchison, J. A.; Cloutier, J. A. R.

    1962-01-01

    A small subcutaneous mass located on the right foreleg of a 3 months old Brittany spaniel was observed to progressively enlarge over a 2 month period. The lesion which had not affected locomotion was removed at 5 months of age and was diagnosed as calcinosis circumscripta. The chalk-like material contained in the lesion was studied by x-ray diffraction and from the crystallographic view point, the structure of this growth was not different from that of normal or abnormal calcification. As there is no agreement on the exact chemical arrangement of bone salts (13), the observed x-ray powder diffraction pattern may be taken as that corresponding to a calcium phosphate hydrated (14), a calcium phosphate of apatite structure (15), a pseudo-apatite (16), or a hydroxy apatite (17). ImagesFigure 1.Figure 2.Figure 3.Figure 4. PMID:17649393

  11. Cloning, expression, purification and preliminary X-­ray diffraction studies of a putative Mycobacterium smegmatis thiolase

    PubMed Central

    Janardan, Neelanjana; Paul, Anju; Harijan, Rajesh K.; Wierenga, Rikkert K.; Murthy, M. R. N.

    2011-01-01

    Thiolases are important in fatty-acid degradation and biosynthetic pathways. Analysis of the genomic sequence of Mycobacterium smegmatis suggests the presence of several putative thiolase genes. One of these genes appears to code for an SCP-x protein. Human SCP-x consists of an N-terminal domain (referred to as SCP2 thiolase) and a C-terminal domain (referred as sterol carrier protein 2). Here, the cloning, expression, purification and crystallization of this putative SCP-x protein from M. smegmatis are reported. The crystals diffracted X-rays to 2.5?Å resolution and belonged to the triclinic space group P1. Calculation of rotation functions using X-ray diffraction data suggests that the protein is likely to possess a hexameric oligomerization with 32 symmetry which has not been observed in the other six known classes of this enzyme. PMID:21795802

  12. Structural investigation of GaInP nanowires using X-ray diffraction

    PubMed Central

    Kriegner, D.; Persson, J.M.; Etzelstorfer, T.; Jacobsson, D.; Wallentin, J.; Wagner, J.B.; Deppert, K.; Borgström, M.T.; Stangl, J.

    2013-01-01

    In this work the structure of ternary GaxIn1 ? xP nanowires is investigated with respect to the chemical composition and homogeneity. The nanowires were grown by metal–organic vapor-phase epitaxy. For the investigation of ensemble fluctuations on several lateral length scales, X-ray diffraction reciprocal space maps have been analyzed. The data reveal a complicated varying materials composition across the sample and in the nanowires on the order of 20%. The use of modern synchrotron sources, where beam-sizes in the order of several 10 ?m are available, enables us to investigate compositional gradients along the sample by recording diffraction patterns at different positions. In addition, compositional variations were found also within single nanowires in X-ray energy dispersive spectroscopy measurements. PMID:24089580

  13. TOPICAL REVIEW Quantitative strain analysis of surfaces and interfaces using extremely asymmetric x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Akimoto, Koichi; Emoto, Takashi

    2010-12-01

    Strain can reduce carrier mobility and the reliability of electronic devices and affect the growth mode of thin films and the stability of nanometer-scale crystals. To control lattice strain, a technique for measuring the minute lattice strain at surfaces and interfaces is needed. Recently, an extremely asymmetric x-ray diffraction method has been developed for this purpose. By employing Darwin's dynamical x-ray diffraction theory, quantitative evaluation of strain at surfaces and interfaces becomes possible. In this paper, we review our quantitative strain analysis studies on native SiO2/Si interfaces, reconstructed Si surfaces, Ni/Si(111)-H interfaces, sputtered III-V compound semiconductor surfaces, high-k/Si interfaces, and Au ion-implanted Si.

  14. X-ray and neutron diffraction study of nanocrystalline Ti-Ru-Fe-O compounds

    SciTech Connect

    Blouin, M.; Guay, D.; Huot, J.; Schulz, R.; Swainson, I.P.

    1998-11-01

    The effect of adding oxygen on the structure of nanocrystalline Ti-Ru-Fe compounds obtained by high-energy ball-milling has been studied by X-ray and neutron diffraction using a Rietveld refinement analysis. It is shown that oxygen atoms readily oxidize Ti to form various types of titanium oxides depending on the oxygen content. In each case, a simple cubic structure (cP2-CsCl) is also formed during milling but with a concentration higher than expected on the basis of various reaction schemes. Through a detailed analysis of the neutron and X-ray diffraction peaks, it is shown that the 1a site of the CsCl-type unit cell is depleted from Ti atoms by preferential substitution with Fe. At high oxygen concentration, the alloy is a multiphase material containing Ti{sub 2{minus}x}Ru{sub 1+y}Fe{sub 1+z}, Ti oxides, Ru, and Fe.

  15. Method for characterizing mask defects using image reconstruction from X-ray diffraction patterns

    DOEpatents

    Hau-Riege, Stefan Peter (Fremont, CA)

    2007-05-01

    The invention applies techniques for image reconstruction from X-ray diffraction patterns on the three-dimensional imaging of defects in EUVL multilayer films. The reconstructed image gives information about the out-of-plane position and the diffraction strength of the defect. The positional information can be used to select the correct defect repair technique. This invention enables the fabrication of defect-free (since repaired) X-ray Mo--Si multilayer mirrors. Repairing Mo--Si multilayer-film defects on mask blanks is a key for the commercial success of EUVL. It is known that particles are added to the Mo--Si multilayer film during the fabrication process. There is a large effort to reduce this contamination, but results are not sufficient, and defects continue to be a major mask yield limiter. All suggested repair strategies need to know the out-of-plane position of the defects in the multilayer.

  16. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    SciTech Connect

    Kiyota, Eduardo; Sousa, Sylvia Morais de; Santos, Marcelo Leite dos; Costa Lima, Aline da; Menossi, Marcelo; Yunes, José Andrés; Aparicio, Ricardo

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  17. Evolution of dislocation density and character in hot rolled titanium determined by X-ray diffraction

    E-print Network

    Garmestani, Hamid

    Evolution of dislocation density and character in hot rolled titanium determined by X pure titanium specimens. It was found that hai dislocation type is dominating the deformation mechanism rights reserved. Keywords: a-Titanium; X-ray line broadening; Dislocations; Burgers Vector Population

  18. Grain orientation measurement of passivated aluminum interconnectsby x-ray micro diffraction

    SciTech Connect

    Chang, Chang-Hwan; Valek, B.C.; Padmore,H.A.; MacDowell, A.A.; Celestre, R.; Marieb, T.; Bravman, J.C.; Koo, Y.M.; Patel, J.R.

    1999-07-01

    The crystallographic orientations of individual grains in apassivated aluminum interconnect line of 0.7-mu m width were investigatedby using an incidentwhite x-ray microbeam at the Advanced Light Source,Berkeley National Laboratory. Intergrain orientation mapping was obtainedwith about 0.05o sensitivity by the micro Laue diffractiontechnique.

  19. X-Ray Continua of Broad Absorption Line Quasars

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    The targets for this program, PG1416-129 and LBQS 2212-1759 were known to be Broad Absorption Line Quasars (BALQSOs). BALQSOs are highly absorbed in soft X-rays. Good high energy response of Rossi-XTE made them ideal targets for observation. We observed LBQS 2212-1759 with PCA. We have now analyzed the data and found that the source was not detected. Since our target was expected to be faint, reliable estimate of background was very important. With the release of new FTOOLS (version 4.1) we were able to do so. We also analyzed a well known bright object and verified our results with the published data. This gave us confidence in the non-detection of our target LBQS 2212-1759. We are currently investigating the implications of this non-detection. Due to some scheduling problems, our second target PG1416-129 was not observed in A01. It was observed on 06/26/98. This target was detected with RXTE. We are now working on the spectral analysis with XSPEC.

  20. Multilayer graphene stacks grown by different methods-thickness measurements by X-ray diffraction, Raman spectroscopy and optical transmission

    SciTech Connect

    Tokarczyk, M. Kowalski, G.; K?pa, H.; Grodecki, K.; Drabi?ska, A.; Strupi?ski, W.

    2013-12-15

    X-ray diffraction, Raman spectroscopy and Optical absorption estimates of the thickness of graphene multi layer stacks (number of graphene layers) are presented for three different growth techniques. The objective of this work was focused on comparison and reconciliation of the two already widely used methods for thickness estimates (Raman and Absorption) with the calibration of the X-ray method as far as Scherer constant K is concerned and X-ray based Wagner-Aqua extrapolation method.

  1. X-ray diffraction studies of inhomogeneity of Langmuir-Blodgett films

    SciTech Connect

    Lider, V.V.; Soroka, I.L.

    1994-12-31

    The inhomogeneity of a Langmuir-Blodgett film was evaluated from the halfwidth and the maximum intensity of the Bragg reflection peak measured in double-crystal X-ray diffraction studies. The mean square values of the internal stresses and the angle between mosaic blocks were determined, as well as the film roughness. The effect of internal elastic stress relaxation due to the change in the mosaic-block misorientation is established. 11 refs., 4 figs.

  2. X-ray diffraction studies of phase transformations in heavy-metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.; Doremus, R. H.

    1985-01-01

    Powder X-ray diffraction and differential scanning calorimetry studies of the crystallization properties of five ZrF4-based glass compositions have indicated that the crystalline phase in Zr-Ba-La-Pb fluoride glass is beta-BaZrF6; no such identification of crystal phases was obtainable, however, for the other glasses. Reversible polymorphic phase transformations occur in Zr-Ba-La-Li and Zr-Ba-La-Na fluoride glasses, upon heating to higher temperatures.

  3. Quantitative characterization of epitaxial superlattices by x-ray diffraction and high resolution electron microscopy

    SciTech Connect

    Fullerton, E.E. ); Cao, W.; Thomas, G. ); Schuller, I.K. ); Carey, M.J.; Berkowitz, A.E. )

    1993-07-26

    Quantitative x-ray diffraction (XRD) and high resolution electron microscopy (HREM) have been applied to the analysis of an epitaxial CoO/NiO superlattice. This example shows that the qualitative information determined directly from a XRD spectrum or HREM image is limited and can even be misleading. However, by a combination of quantitative intensity measurements and structural modeling, a detailed quantitative characterization of the superlattice structure is possible.

  4. Rietveld Refinement on X-Ray Diffraction Patterns of Bioapatite in Human Fetal Bones

    PubMed Central

    Meneghini, Carlo; Dalconi, Maria Chiara; Nuzzo, Stefania; Mobilio, Settimio; Wenk, Rudy H.

    2003-01-01

    Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction (?-XRD) techniques. Rietveld refinement analyses of XRD and ?-XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age. PMID:12609904

  5. Surface x-ray speckles : coherent surface diffraction from Au(0 01).

    SciTech Connect

    Pierce, M. S.; Chang, K. C.; Hennessy, D.; Komanicky, V.; Sprung, M.; Sandy, A.; You, H.; Safarik Univ.; HASYLAB

    2009-10-16

    We present coherent speckled x-ray diffraction patterns obtained from a monolayer of surface atoms. We measured both the specular anti-Bragg reflection and the off-specular hexagonal reconstruction peak for the Au(001) surface reconstruction. We observed fluctuations of the speckle patterns even when the integrated intensity appears static. By autocorrelating the speckle patterns, we were able to identify two qualitatively different surface dynamic behaviors of the hex reconstruction depending on the sample temperature.

  6. Discrimination of liquids by a focal construct X-ray diffraction geometry.

    PubMed

    Prokopiou, Danae; Rogers, Keith; Evans, Paul; Godber, Simon; Dicken, Anthony

    2013-07-01

    A novel technique for the discrimination of liquids based upon X-ray diffraction and focal construct technology (FCT) is presented. FCT is a new, high efficiency coherent scatter harvesting technique. In this work, the competence of FCT to discriminate liquids was explored. A variety of liquids relevant to security inspection was analysed by FCT for application to liquid security inspection. Discrimination of potential threat liquids was successfully and reliably achieved even for limited data sets. PMID:23602583

  7. Real-time Studies of Shocked Polycrystalline Materials with Single-Pulse X-ray Diffraction

    SciTech Connect

    Dane V. Morgan

    2011-05-25

    Characteristic K-? x-rays used for single-pulse XRD are conventionally produced by a 37-stage high-voltage Marx pulse generator coupled to a vacuum needle-and-washer x-ray diode via coaxial transmission line. A large field-of-view x-ray image plate detection system typically enables observation of several Debye-Scherrer rings. Recently, we have developed a fiber-optic reducer, coupled to a CCD camera, to obtain low-noise, large field-of-view images. The direct beam spot is produced by bremsstrahlung radiation attenuated by a twomillimeter tungsten beam stop. Determination of the direct beam position is necessary to perform the ring integration.

  8. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    SciTech Connect

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C.; Vecchio, K. S.; Huskins, E. L.; Casem, D. T.; Gruner, S. M.; Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T.; Woll, A. R.; Kannan, V.; Ramesh, K. T.; Kenesei, P.; Okasinski, J. S.; Almer, J.

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ?10{sup 3}–10{sup 4} s{sup ?1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (?40??s) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  9. Femtosecond Diffractive Imaging with a Soft-X-Ray Free-Electron Laser

    SciTech Connect

    Chapman, Henry N.; Barty, Anton: AUTHOR = Bogan, Michael J.; Boutet, Sebastian; Frank, Matthias; Hau-Riege, Stefan P.; Marchesini, Stefano; Woods, Bruce W.; Bajt, Sasa; Benner, W.Henry; London, Richard A.; Plonjes, Elke; Kuhlmann, Marion; Treusch, Rolf; Dusterer, Stefan; Tschentscher, Thomas; Schneider, Jochen R.; Spiller, Eberhard; Moller, Thomas; Bostedt, Christoph; Hoener, Matthias; Shapiro, David A.; /UC, Davis /SLAC /Uppsala U. /LLNL, Livermore /Uppsala U. /Uppsala U. /SLAC /Uppsala U.

    2010-10-07

    Theory predicts that with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus, or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft X-ray free-electron laser. An intense 25 fs, 4 x 10{sup 13} W/cm{sup 2} pulse, containing 10{sup 12} photons at 32 nm wavelength, produced a coherent diffraction pattern from a nano-structured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling, shows no measurable damage, and extends to diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one.

  10. Quantitative energy-dispersive x-ray diffraction for identification of counterfeit medicines: a preliminary study

    NASA Astrophysics Data System (ADS)

    Crews, Chiaki C. E.; O'Flynn, Daniel; Sidebottom, Aiden; Speller, Robert D.

    2015-06-01

    The prevalence of counterfeit and substandard medicines has been growing rapidly over the past decade, and fast, nondestructive techniques for their detection are urgently needed to counter this trend. In this study, energy-dispersive X-ray diffraction (EDXRD) combined with chemometrics was assessed for its effectiveness in quantitative analysis of compressed powder mixtures. Although EDXRD produces lower-resolution diffraction patterns than angular-dispersive X-ray diffraction (ADXRD), it is of interest for this application as it carries the advantage of allowing the analysis of tablets within their packaging, due to the higher energy X-rays used. A series of caffeine, paracetamol and microcrystalline cellulose mixtures were prepared with compositions between 0 - 100 weight% in 20 weight% steps (22 samples in total, including a centroid mixture), and were pressed into tablets. EDXRD spectra were collected in triplicate, and a principal component analysis (PCA) separated these into their correct positions in the ternary mixture design. A partial least-squares (PLS) regression model calibrated using this training set was validated using both segmented cross-validation, and with a test set of six samples (mixtures in 8:1:1 and 5?:2?:2? ratios) - the latter giving a root-mean square error of prediction (RMSEP) of 1.30, 2.25 and 2.03 weight% for caffeine, paracetamol and cellulose respectively. These initial results are promising, with RMSEP values on a par with those reported in the ADXRD literature.

  11. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility

    SciTech Connect

    Gupta, Y. M.; Turneaure, Stefan J.; Perkins, K.; Zimmerman, K.; Arganbright, N.; Shen, G.; Chow, P.

    2012-12-15

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization/x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  12. X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase): perdeuteration of proteins for neutron diffraction.

    PubMed

    Blum, Marc Michael; Tomanicek, Stephen J; John, Harald; Hanson, B Leif; Rüterjans, Heinz; Schoenborn, Benno P; Langan, Paul; Chen, Julian C H

    2010-04-01

    The signal-to-noise ratio is one of the limiting factors in neutron macromolecular crystallography. Protein perdeuteration, which replaces all H atoms with deuterium, is a method of improving the signal-to-noise ratio of neutron crystallography experiments by reducing the incoherent scattering of the hydrogen isotope. Detailed analyses of perdeuterated and hydrogenated structures are necessary in order to evaluate the utility of perdeuterated crystals for neutron diffraction studies. The room-temperature X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase) is reported at 2.1 A resolution. Comparison with an independently refined hydrogenated room-temperature structure of DFPase revealed no major systematic differences, although the crystals of perdeuterated DFPase did not diffract neutrons. The lack of diffraction is examined with respect to data-collection and crystallographic parameters. The diffraction characteristics of successful neutron structure determinations are presented as a guideline for future neutron diffraction studies of macromolecules. X-ray diffraction to beyond 2.0 A resolution appears to be a strong predictor of successful neutron structures. PMID:20383004

  13. Cloning, expression, purification and crystallization as well as X-ray fluorescence and preliminary X-ray diffraction analyses of human ADP-ribosylhydrolase 1

    PubMed Central

    Kernstock, Stefan; Koch-Nolte, Friedrich; Mueller-Dieckmann, Jochen; Weiss, Manfred S.; Mueller-Dieckmann, Christoph

    2009-01-01

    Human ADP-ribosylhydrolase 1 (hARH1, ADPRH) cleaves the glycosidic bond of ADP-ribose attached to an Arg residue of a protein. hARH1 has been cloned, expressed heterologously in Escherichia coli, purified and crystallized in complex with K+ and ADP. The orthorhombic crystals contained one monomer per asymmetric unit, exhibited a solvent content of 43% and diffracted X-rays to a resolution of 1.9?Å. A prerequisite for obtaining well diffracting crystals was the performance of X-­ray fluorescence analysis on poorly diffracting apo hARH1 crystals, which revealed the presence of trace amounts of K+ in the crystal. Adding K-ADP to the crystallization cocktail then resulted in a crystal of different morphology and with dramatically improved diffraction properties. PMID:19407395

  14. Grazing-incidence X-ray diffraction from a crystal with subsurface defects

    NASA Astrophysics Data System (ADS)

    Gaevskii, A. Yu.; Golentus, I. E.

    2015-03-01

    The diffraction of X rays incident on a crystal surface under grazing angles under conditions of total external reflection has been investigated. An approach is proposed in which exact solutions to the dynamic problem of grazing-incidence diffraction in an ideal crystal are used as initial functions to calculate the diffuse component of diffraction in a crystal with defects. The diffuse component of diffraction is calculated for a crystal with surface defects of a dilatation-center type. Exact formulas of the continuum theory which take into account the mirror-image forces are used for defect-induced atomic displacements. Scattering intensity maps near Bragg peaks are constructed for different scan modes, and the conditions for detecting primarily the diffuse component are determined. The results of dynamic calculations of grazing-incidence diffraction in defect-containing crystals are compared with calculations in the kinematic approximation.

  15. Photochemical reaction pathways of carbon tetrabromide in solution probed by picosecond X-ray diffraction.

    PubMed

    Kong, Qingyu; Wulff, Michael; Lee, Jae Hyuk; Bratos, Savo; Ihee, Hyotcherl

    2007-11-01

    We report a liquid-phase time-resolved X-ray diffraction study that resolves the molecular structures of the short-lived intermediates formed in the photodissociation of tetrabromomethane in methanol. Time-resolved X-ray diffraction can detect all chemical species simultaneously, and the diffraction signal from each chemical species can be quantitatively calculated from molecular structures and compared with experimental data with high accuracy and precision. The photochemistry of carbon tetrahalides has long been explored to describe their reactions in the natural environment due to its relevance to ozone depletion. Excited with an ultraviolet optical pulse, the complicated photodissociation dynamics of CBr4 was followed in a wide temporal range from picoseconds up to microseconds and associated rate coefficients were determined by analyzing time-resolved diffraction patterns accumulated from 100 ps X-ray pulses. The homolytic cleavage of one C-Br bond in the parent CBr4 molecule yields the CBr3 and Br radicals, which escape from the solvent cage and combine nongeminately to form C2Br6 and Br2, respectively. C2Br6 eventually decays to give C2Br4 and Br2 as final stable products. Our diffraction data at the current signal-to-noise ratio could not provide any evidence for the geminate recombination of the CBr3 and Br radicals to form the Br2CBr-Br isomer or the solvated ion pair, implying that their formation is a minor channel compared with those observed clearly by time-resolved diffraction in this work. PMID:17939658

  16. Portable apparatus for in situ x-ray diffraction and fluorescence analyses of artworks.

    PubMed

    Eveno, Myriam; Moignard, Brice; Castaing, Jacques

    2011-10-01

    A portable X-ray fluorescence/X-ray diffraction (XRF/XRD) system for artwork studies has been designed constructed and tested. It is based on Debye Scherrer XRD in reflection that takes advantage of many recent improvements in the handling of X-rays (polycapillary optics; advanced two-dimensional detection). The apparatus is based on a copper anode air cooled X-ray source, and the XRD analysis is performed on a 5-20 ?m thick layer from the object surface. Energy dispersive XRF elemental analysis can be performed at the same point as XRD, giving elemental compositions that support the interpretation of XRD diagrams. XRF and XRD analyses were tested to explore the quality and the limits of the analytical technique. The XRD diagrams are comparable in quality with diagrams obtained with conventional laboratory equipment. The mineral identification of materials in artwork is routinely performed with the portable XRF-XRD system. Examples are given for ceramic glazes containing crystals and for paintings where the determination of pigments is still a challenge for nondestructive analysis. For instance, lead compounds that provide a variety of color pigments can be easily identified as well as a pigment such as lapis lazuli that is difficult to identify by XRF alone. More than 70 works of art have been studied in situ in museums, monuments, etc. In addition to ceramics and paintings, these works include bronzes, manuscripts, etc., which permit improvement in the comprehension of ancient artistic techniques. PMID:21615981

  17. CHANDRA X-RAY GRATING SPECTROMETRY OF CARINAE NEAR X-RAY MINIMUM. I. VARIABILITY OF THE SULFUR AND SILICON EMISSION LINES

    E-print Network

    Pittard, Julian

    CHANDRA X-RAY GRATING SPECTROMETRY OF CARINAE NEAR X-RAY MINIMUM. I. VARIABILITY OF THE SULFUR of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines

  18. X-ray diffraction study of phase stability in SiO2 at deep mantle conditions

    E-print Network

    Duffy, Thomas S.

    X-ray diffraction study of phase stability in SiO2 at deep mantle conditions Sean R. Shieha, corresponding to Earth's deep lower mantle conditions. Three materials, stishovite, cristobalite, and silica with the sample for five out of six sets of laser-heated diamond cell experiments. X-ray fluorescent crystals were

  19. Microelemental and mineral compositions of pathogenic biomineral concrements: SRXFA, X-ray powder diffraction and vibrational spectroscopy data

    NASA Astrophysics Data System (ADS)

    Moroz, T. N.; Palchik, N. A.; Dar'in, A. V.

    2009-05-01

    X-ray fluorescence analysis using synchrotron radiation (SRXRF), X-ray powder diffraction, infrared and Raman spectroscopy had been applied for determination of microelemental and mineral composition of the kidney stones, gallstones and salivalities from natives of Novosibirsk and Novosibirsk region, Russia. The relationship between mineral, organic and microelemental composition of pathogenic calcilus was shown.

  20. Time-resolved X-ray diffraction study of ultra-fast structural dynamics in laser-excited solids

    E-print Network

    von der Linde, D.

    , Germany Abstract. Time-resolved X-ray diffraction using sub-300 fs, multi-keV x-ray pulses from a laser permits direct measurements of structural transients on a femtosecond time scale. Using femtosecond, multi-ray pulse width of about (300 ± 50) fs. 3. Transient Thermo-Acoustic Effects Additional insight

  1. Simulating Picosecond X-Ray Diffraction from Crystals Using FFT Methods on MD Output

    NASA Astrophysics Data System (ADS)

    Kimminau, Giles; Nagler, Bob; Higginbotham, Andrew; Murphy, William; Wark, Justin; Park, Nigel; Hawreliak, James; Kalantar, Dan; Lorenzana, Hector; Remington, Bruce

    2007-12-01

    Multi-million atom non-equilibrium molecular dynamics (MD) simulations give significant insight into the transient processes that occur under shock compression. Picosecond X-ray diffraction enables the probing of materials on a timescale fast enough to test such effects. In order to simulate diffraction patterns, Fourier methods are required to gain a picture of reciprocal lattice space. We present here results of fast Fourier transforms of atomic coordinates of shocked crystals simulated by MD, and comment on the computing power required as a function of problem size. The relationship between reciprocal space and particular experimental geometries is discussed.

  2. Simulating Picosecond X-ray Diffraction from Shocked Crystals using FFT Methods on MD Output

    NASA Astrophysics Data System (ADS)

    Kimminau, Giles; Higginbotham, Andrew; Murphy, William; Wark, Justin; Hawreliak, James; Kalantar, Dan; Lorenzana, Hector; Remington, Bruce; Park, Nigel

    2007-06-01

    Multi-million atom non-equilibrium molecular dynamics (MD) simulations give significant insight into the transient processes that occur under shock compression. Pico-second X-ray diffraction enables the probing of materials on a timescale fast enough to test such effects. In order to simulate diffraction patterns, Fourier methods are required to gain a picture of reciprocal lattice space. We present here results of fast Fourier transforms of atomic coordinates of shocked crystals simulated by MD, and comment on the computing power required as a function of problem size. The relationship between reciprocal space and particular experimental geometries is discussed.

  3. On the microstructure of nanoporous gold: an x-ray diffraction study

    SciTech Connect

    Van Petegem, S; Brandstetter, S; Maa?, R; Schmitt, B; Borca, C; Van Swygenhoven, H; Hodge, A M; El-Dasher, B S; Biener, J

    2008-08-26

    The evolution of the grain structure, internal stresses, and the lattice misorientations of nanoporous gold (npAu) during dealloying of bulk (3D) Ag-Au alloy samples was studied by various in-situ and ex-situ X-ray diffraction techniques including powder and Laue diffraction. The experiments reveal that the dealloying process preserves the original crystallographic structure, but leads to a small spread in orientations within individual grains. Furthermore, most grains develop in-plane tensile stress. The feature size of the developing nanoporous structure increases with increasing dealloying time.

  4. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50?ps (pulse length). PMID:25294979

  5. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    SciTech Connect

    Nascimento, Alessandro S.; Ferrarezi, Thiago; Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A.; Polikarpov, Igor

    2006-07-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP{sup +} reductase. Ferredoxin-NADP{sup +} reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source.

  6. Commissioning of Angle Dispersive X-ray Diffraction Beamline on Indus-2

    SciTech Connect

    Sinha, A. K.; Sagdeo, Archna; Gupta, Pooja; Kumar, Ashok; Singh, M. N.; Gupta, R. K.; Kane, S. R.; Deb, S. K.

    2011-07-15

    An Angle dispersive x-ray diffraction (ADXRD) beamline on bending magnet source of Indus-2 synchrotron (2.5 GeV, 300 mA) has been commissioned, for the study of single and polycrystalline samples. The beamline optics is based on vertically focusing Pt-coated pre and post mirrors and sagittal focusing Si (311) based double crystal monochromator. Experimental station consists of a six circle diffractometer equipped with scintillation detector and an image plate area detector for powder diffraction. XRD experiments have been performed to study single crystal and polycrystalline samples.

  7. Time-Domain X-ray Diffraction in the Pulsed Laser Heated Diamond Anvil Cell

    NASA Astrophysics Data System (ADS)

    Prakapenka, V.; Goncharov, A. F.; Struzhkin, V.; Kantor, I.; Rivers, M. L.; Dalton, D. A.

    2011-12-01

    We have developed in situ x-ray synchrotron diffraction measurements of samples heated by a pulsed laser in the diamond anvil cell (DAC) at pressure up to 100 GPa and 3500 K. We used an electronically modulated 2-10 kHz repetition rate, 1064-1075 nm fiber laser with 1-100 microseconds pulse width synchronized with a gated x-ray detector (Pilatus) and time resolved radiometric temperature measurements. For the special APS hybrid mode, the measurements were also synchronized with a 500 ns long bunch carrying 88% of the ring current. This setup enables time domain measurements as a function of temperature in a micrometers time scale (averaged over many events, typically more than 10,000). X-ray diffraction data, temperature measurements, and finite element calculations with realistic geometric and thermochemical parameters show that in the present experimental configuration samples 4 micrometers thick can be continuously temperature monitored (up to 3000 K in our experiments) with the same level of axial and radial temperature uniformity as with continuous heating. We find that this novel technique offers a new and convenient way of fine tuning the maximum sample temperature by changing the pulse width of the laser. We will show examples of studies of the melting, thermal equation of state, and chemical reactivity. We acknowledge support from NSF EAR-0842057, DOE/ NNSA (CDAC), and EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DESC0001057. X-ray diffraction measurements were performed at GSECARS (APS) supported by DOE Contract No.W-31-109- Eng-38.

  8. Strength and structural phase transitions of gadolinium at high pressure from radial X-ray diffraction

    SciTech Connect

    Xiong, Lun Liu, Jing; Bai, Ligang; Li, Xiaodong; Lin, Chuanlong; Lin, Jung-Fu

    2014-12-28

    Lattice strength and structural phase transitions of gadolinium (Gd) were determined under nonhydrostatic compression up to 55?GPa using an angle-dispersive radial x-ray diffraction technique in a diamond-anvil cell at room temperature. Three new phases of fcc structure, dfcc structure, and new monoclinic structure were observed at 25?GPa, 34?GPa, and 53?GPa, respectively. The radial x-ray diffraction data yield a bulk modulus K{sub 0}?=?36(1) GPa with its pressure derivate K{sub 0}??=?3.8(1) at the azimuthal angle between the diamond cell loading axis and the diffraction plane normal and diffraction plane ??=?54.7°. With K{sub 0}? fixed at 4, the derived K{sub 0} is 34(1) GPa. In addition, analysis of diffraction data with lattice strain theory indicates that the ratio of differential stress to shear modulus (t/G) ranges from 0.011 to 0.014 at pressures of 12–55?GPa. Together with estimated high-pressure shear moduli, our results show that Gd can support a maximum differential stress of 0.41?GPa, while it starts to yield to plastic deformation at 16?GPa under uniaxial compression. The yield strength of Gd remains approximately a constant with increasing pressure, and reaches 0.46?GPa at 55?GPa.

  9. Some fundamental studies on X-ray optical systems using dynamic diffraction for synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Kohra, Kazutake; Ando, Masami

    1980-11-01

    Some X-ray optical systems employing dynamic diffraction and their applications, which have recently been made in Japan, are described. The performance of the optical elements: (i) curved Si crystal - variations of diffraction profile, fwhm, peak reflectivity and integrated intensity with radius of curvature were measured by Kaminga, Matsushita and Kohra. (ii) Si crystal doped with B atoms for making a lattice spacing gradient normal to the surface - the enhancement of the integrated intensity and sharp cut-off diffraction profile were shown by calculation and experiment by Fukuhara and Takano. (iii) Rotator of the E-vector- the use of successive diffractions at a 45° Bragg angle has been proposed by Kohra, Annaka and Ando. Applications: (i) high resolution angular analysis of X-ray beams in experiments with double-crystal parallel setting arrangement - transmitted beams by Suzuki and Kohra, - totally reflected beam by Ishikawa, Matsushita and Kohra and - diffracted beam by Iida and Kohra and (ii) absorption microscopy with a multiple crystal arrangement proposed by Kohra and Ando.

  10. Vibrational Spectroscopy and X-ray Diffraction of Cd(OH)2 to 28GPa at 300 K

    SciTech Connect

    Shim, Sang-Heon; Rekhi, Sandeep; Martin, Michael C.; Jeanloz,Raymond

    2006-03-20

    We report Raman and infrared absorption spectroscopy alongwith X-ray diffraction for brucite-type beta-Cd(OH)2 to 28 GPa at 300 K.The OH-stretching modes soften with pressure and disappear at 21 GPa withtheir widths increasing rapidly above 5 GPa, consistent with a gradualdisordering of the H sublattice at 5 20 GPa similar to that previouslyobserved for Co(OH)2.Asymmetry in the peak shapes of the OH-stretchingmodes suggests the existence of diverse disordered sitesfor H atoms inCd(OH)2 under pressure. Above 15 GPa, the A1g(T) lattice mode showsnon-linear behavior and softens to 21 GPa, at which pressure significantchanges are observed: new Raman modes appear, two Raman-active latticemodes and the OH-stretching modes of the low-pressure phase disappears,and the positions of some X-ray diffraction lines change abruptly withthe appearance of weak new diffraction features. These observationssuggest that amorphization of the H sublattice is accompanied by acrystalline-to-crystalline transition at 21 GPa in Cd(OH)2, which has notbeen previously observed in the brucite-type hydroxides. The Ramanspectra of the high-pressure phase of Cd(OH)2 is similar to those of thehigh-pressure phase of single-crystal Ca(OH)2 of which structure has beententatively assigned to the Sr(OH)2 type.

  11. In situ high-pressure single-crystal X-ray diffraction study of chromite

    NASA Astrophysics Data System (ADS)

    Kyono, A.; Dera, P. K.; Yamanaka, T.; Ikuta, D.; Shu, J.; Mao, H.; Hemley, R. J.

    2009-12-01

    The present study deals with crystal structure investigations of chromite FeCr2O4 using in-situ single crystal monochromatic X-ray diffraction technique. Spinel, which is common accessory mineral in the Earth’s crust and mantle over a wide range of pressure and temperature, forms a variety of polymorphs. The spinel to post-spinel structural transitions are highly important for understanding the Earth's deep interior (Yamanaka et al. Am. Min. 93, 1874. 2008). We have already reported the transformations of cubic chromite-spinel structure to orthorhombic CaFe2O4-type structure at 12.5 GPa and then to orthorhombic CaTi2O4-type structures using laser-heated diamond anvil cell experiments (Chen et al. PNAS, 100, 14651, 2003). Furthermore, we reported that the cubic chromite-spinel transforms to orthorhombic CaAl2O4-type structure at 29 GPa under ambient temperature (Shu et al. Mat. Res. Soc. Symp. Proc. 987, 179, 2007). In this study, we performed the high-pressure X-ray diffraction analysis in more detail using the two-dimensional imaging plate detector systems by which we can measure large volumes of reciprocal space in a quantitative and rapid way. A total of 28 X-ray diffraction measurements from 2.7 to 54.4 GPa were conducted using diamond anvil cell at BL13-IDD in the Advanced Photon Source at Argonne National Laboratory. The X-ray diffraction patterns recorded on the imaging plate can be indexed only as a cubic cell with face-centered lattice up to 23.9 GPa. The a unit cell parameter of chromite decreases linearly from 8.228(2) to 8.074(5) Å with increasing pressure, but it increases seemingly between 23.9 and 29.6 GPa. At higher pressure, many diffraction spots which are not considered to belong to cubic symmetry were observed. The diffraction spots can be indexed to a mixture of the cubic spinel and a phase whose reciprocal lattice is described by orthorhombic system. Moreover, the diffraction spots corresponding to the cubic cell completely disappear at 34.2 GPa. These results are entirely in agreement with previous high-pressure experiments on the chromite-spinel. We conclude that the pressure-induced phase transition in chromite starts from about 24 GPa and persists up to 34 GPa at 300 K.

  12. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    SciTech Connect

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-09-26

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  13. Structural Study of Trehalose Dihydrate by Neutron and X-ray Diffraction Experiments

    NASA Astrophysics Data System (ADS)

    Miwako Takahashi,; Takuro Kawasaki,; Kunimitsu Kataoka,; Masashi Watanabe,; Yukio Noda,; Ken-ichi Ohshima,

    2010-07-01

    The structure of ?,?-trehalose dihydrate was studied by neutron and X-ray diffraction experiments to understand the relation between its superior biological protective function and the role of the hydrogen bond connecting the trehalose molecules. By direct observation of hydrogen using the neutron diffraction method, the nuclear positions and anisotropic thermal parameters of hydrogen atoms are determined accurately. The nuclear positions show clear discrepancies from the centers of the electron cloud of hydrogen determined from the X-ray data. The result is interpreted in terms of a local electric dipole moment in the hydrogen atoms. The magnitude of the dipole moment is markedly large for the hydrogen atoms participating in the hydrogen bond. The detailed electron density distribution has been determined by using X-ray data obtained at 150 K. It clearly shows the electron cloud of hydrogen spreading over the chain of hydrogen bonds. It was found that there is a part where the electron density is very low on the hydrogen bond between water and trehalose molecules, implying a loose connection between them. The mechanism of the biological protective function is discussed from the viewpoint of crystal deformation process through the loose connection.

  14. A novel setup for time-resolved X-ray diffraction for gas gun experiments

    NASA Astrophysics Data System (ADS)

    Chauvin, Camille; Zucchini, Frédéric; D'Almeida, Thierry; Petit, Jacques

    2015-06-01

    Polymorphic phase transitions in metals have been investigated for a long time under dynamic loadings through usual dynamic compression diagnostics such as velocity and temperature measurements. Such measurements were valuable for revealing the key role of kinetic effects in most phase transition mechanisms. However, the information extracted was mostly macroscopic. Obtaining direct insight about the crystallographic structure under dynamic loadings is critical for understanding mechanisms governing shock-induced structural changes. For example, in order to evidence a mixture phase or to determine the time scale of a transition, structural information may be extremely valuable. Over the last 20 years a significant number of X-ray diffraction experiments were carried under dynamic loading, either using laboratory X-ray sources or synchrotron radiation. We are developing a novel experimental setup based on a compact High Pulsed Power generator capable of producing intense X radiation through X-pinch. This source is specifically designed for time-resolved X-ray diffraction in Bragg geometry on gas gun experiments. Promising preliminary data obtained under static conditions are presented.

  15. X-ray diffraction in the pulsed laser heated diamond anvil cell

    SciTech Connect

    Goncharov, Alexander F.; Prakapenka, Vitali B.; Struzhkin, Viktor V.; Kantor, Innokenty; Rivers, Mark L.; Dalton, D. Allen

    2010-11-19

    We have developed in situ x-ray synchrotron diffraction measurements of samples heated by a pulsed laser in the diamond anvil cell at pressure up to 60 GPa. We used an electronically modulated 2-10 kHz repetition rate, 1064-1075 nm fiber laser with 1-100 {micro}s pulse width synchronized with a gated x-ray detector (Pilatus) and time-resolved radiometric temperature measurements. This enables the time domain measurements as a function of temperature in a microsecond time scale (averaged over many events, typically more than 10,000). X-ray diffraction data, temperature measurements, and finite element calculations with realistic geometric and thermochemical parameters show that in the present experimental configuration, samples 4 {micro}m thick can be continuously temperature monitored (up to 3000 K in our experiments) with the same level of axial and radial temperature uniformities as with continuous heating. We find that this novel technique offers a new and convenient way of fine tuning the maximum sample temperature by changing the pulse width of the laser. This delicate control, which may also prevent chemical reactivity and diffusion, enables accurate measurement of melting curves, phase changes, and thermal equations of state.

  16. X-ray diffraction in the pulsed laser heated diamond anvil cell

    SciTech Connect

    Goncharov, Alexander F.; Struzhkin, Viktor V.; Dalton, D. Allen; Prakapenka, Vitali B.; Kantor, Innokenty; Rivers, Mark L.

    2010-11-15

    We have developed in situ x-ray synchrotron diffraction measurements of samples heated by a pulsed laser in the diamond anvil cell at pressure up to 60 GPa. We used an electronically modulated 2-10 kHz repetition rate, 1064-1075 nm fiber laser with 1-100 {mu}s pulse width synchronized with a gated x-ray detector (Pilatus) and time-resolved radiometric temperature measurements. This enables the time domain measurements as a function of temperature in a microsecond time scale (averaged over many events, typically more than 10 000). X-ray diffraction data, temperature measurements, and finite element calculations with realistic geometric and thermochemical parameters show that in the present experimental configuration, samples 4 {mu}m thick can be continuously temperature monitored (up to 3000 K in our experiments) with the same level of axial and radial temperature uniformities as with continuous heating. We find that this novel technique offers a new and convenient way of fine tuning the maximum sample temperature by changing the pulse width of the laser. This delicate control, which may also prevent chemical reactivity and diffusion, enables accurate measurement of melting curves, phase changes, and thermal equations of state.

  17. X-ray diffraction in the pulsed laser heated diamond anvil cell

    SciTech Connect

    Goncharov, Alexander F.; Prakapenka, Vitali B.; Struzhkin, Viktor V.; Kantor, Innokenty; Rivers, Mark L.; Dalton, D. Allen

    2010-11-03

    We have developed in situ x-ray synchrotron diffraction measurements of samples heated by a pulsed laser in the diamond anvil cell at pressure up to 60 GPa. We used an electronically modulated 2–10 kHz repetition rate, 1064–1075 nm fiber laser with 1–100 ?s pulse width synchronized with a gated x-ray detector (Pilatus) and time-resolved radiometric temperature measurements. This enables the time domain measurements as a function of temperature in a microsecond time scale (averaged over many events, typically more than 10,000). X-ray diffraction data, temperature measurements, and finite element calculations with realistic geometric and thermochemical parameters show that in the present experimental configuration, samples 4 ?m thick can be continuously temperature monitored (up to 3000 K in our experiments) with the same level of axial and radial temperature uniformities as with continuous heating. We find that this novel technique offers a new and convenient way of fine tuning the maximum sample temperature by changing the pulse width of the laser. This delicate control, which may also prevent chemical reactivity and diffusion, enables accurate measurement of melting curves, phase changes, and thermal equations of state.

  18. Imaging live cell in micro-liquid enclosure by X-ray laser diffraction

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Joti, Yasumasa; Shibuya, Akemi; Song, Changyong; Kim, Sangsoo; Tono, Kensuke; Yabashi, Makina; Tamakoshi, Masatada; Moriya, Toshiyuki; Oshima, Tairo; Ishikawa, Tetsuya; Bessho, Yoshitaka; Nishino, Yoshinori

    2014-01-01

    Emerging X-ray free-electron lasers with femtosecond pulse duration enable single-shot snapshot imaging almost free from sample damage by outrunning major radiation damage processes. In bioimaging, it is essential to keep the sample close to its natural state. Conventional high-resolution imaging, however, suffers from severe radiation damage that hinders live cell imaging. Here we present a method for capturing snapshots of live cells kept in a micro-liquid enclosure array by X-ray laser diffraction. We place living Microbacterium lacticum cells in an enclosure array and successively expose each enclosure to a single X-ray laser pulse from the SPring-8 Angstrom Compact Free-Electron Laser. The enclosure itself works as a guard slit and allows us to record a coherent diffraction pattern from a weakly-scattering submicrometre-sized cell with a clear fringe extending up to a 28-nm full-period resolution. The reconstructed image reveals living whole-cell structures without any staining, which helps advance understanding of intracellular phenomena.

  19. Data preparation and evaluation techniques for x-ray diffraction microscopy

    SciTech Connect

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. In addition, we show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffraction patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.

  20. Nondestructive evaluation of residual stress in short-fiber reinforced plastics by x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tanaka, Keisuke; Tokoro, Syouhei; Akiniwa, Yoshiaki; Egami, Noboru

    2014-06-01

    The X-ray diffraction method is used to measure the residual stress in injection-molded plates of short-fiber reinforced plastics (SFRP) made of crystalline thermoplastics, polyphenylene sulphide (PPS), reinforced by carbon fibers with 30 mass%. Based on the orientation of carbon fibers, injection molded plates can be modeled as three-layered lamella where the core layer is sandwiched by skin layers. The stress in the matrix in the skin layer was measured using Cr-K? radiation with the sin2? method. Since the X-ray penetration depth is shallow, the state of stresses measured by X-rays in FRP can be assumed to be plane stress. The X-ray measurement of stress in carbon fibers was not possible because of high texture. A new method was proposed to evaluate the macrostress in SFRP from the measurement of the matrix stress. According to micromechanics analysis of SFRP, the matrix stresses in the fiber direction, ?1m, and perpendicular to the fiber direction, ?2m, and shear stress ?12m can be expressed as the functions of the applied (macro-) stresses, ?1A, ?2A , ?12A as follows: ?1m = ?11?1A +?12?2A, ?2m = ?21?1A + ?22?2A, ?12m = ?66?12A, where ?11 ,?12, ?21, ?22, ?66 are stress-partitioning coefficients. Using skin-layer strips cut parallel, perpendicular and 45° to the molding direction, the stress in the matrix was measured under the uniaxial applied stress and the stress-partitioning coefficients of the above equations were determined. Once these relations are established, the macrostress in SFRP can be determined from the measurements of the matrix stresses by X-rays.

  1. Tomography of a Cryo-immobilized Yeast Cell Using Ptychographic Coherent X-Ray Diffractive Imaging.

    PubMed

    Giewekemeyer, K; Hackenberg, C; Aquila, A; Wilke, R N; Groves, M R; Jordanova, R; Lamzin, V S; Borchers, G; Saksl, K; Zozulya, A V; Sprung, M; Mancuso, A P

    2015-11-01

    The structural investigation of noncrystalline, soft biological matter using x-rays is of rapidly increasing interest. Large-scale x-ray sources, such as synchrotrons and x-ray free electron lasers, are becoming ever brighter and make the study of such weakly scattering materials more feasible. Variants of coherent diffractive imaging (CDI) are particularly attractive, as the absence of an objective lens between sample and detector ensures that no x-ray photons scattered by a sample are lost in a limited-efficiency imaging system. Furthermore, the reconstructed complex image contains quantitative density information, most directly accessible through its phase, which is proportional to the projected electron density of the sample. If applied in three dimensions, CDI can thus recover the sample's electron density distribution. As the extension to three dimensions is accompanied by a considerable dose applied to the sample, cryogenic cooling is necessary to optimize the structural preservation of a unique sample in the beam. This, however, imposes considerable technical challenges on the experimental realization. Here, we show a route toward the solution of these challenges using ptychographic CDI (PCDI), a scanning variant of coherent imaging. We present an experimental demonstration of the combination of three-dimensional structure determination through PCDI with a cryogenically cooled biological sample-a budding yeast cell (Saccharomyces cerevisiae)-using hard (7.9 keV) synchrotron x-rays. This proof-of-principle demonstration in particular illustrates the potential of PCDI for highly sensitive, quantitative three-dimensional density determination of cryogenically cooled, hydrated, and unstained biological matter and paves the way to future studies of unique, nonreproducible biological cells at higher resolution. PMID:26536275

  2. Determination of the absolute chirality of tellurium using resonant diffraction with circularly polarized x-rays

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Collins, S. P.; Lovesey, S. W.; Matsumami, M.; Moriwaki, T.; Shin, S.

    2010-03-01

    Many proteins, sugars and pharmaceuticals crystallize into two forms that are mirror images of each other (enantiomers) like our right and left hands. Tellurium is one enantiomer having a space group pair, P3121 (right-handed screw) and P3221 (left-handed screw). X-ray diffraction with dispersion correction terms has been playing an important role in determining the handedness of enantiomers for a long time. However, this approach is not applicable for an elemental crystal such as tellurium or selenium. We have demonstrated that positive and negative circularly polarized x-rays at the resonant energy of tellurium can be used to absolutely distinguish right from left tellurium. This method is applicable to chiral motifs that occur in biomolecules, liquid crystals, ferroelectrics and antiferroelectrics, multiferroics, etc.

  3. Time-, frequency-, and wavevector-resolved x-ray diffraction from single molecules

    SciTech Connect

    Bennett, Kochise Biggs, Jason D.; Zhang, Yu; Dorfman, Konstantin E.; Mukamel, Shaul

    2014-05-28

    Using a quantum electrodynamic framework, we calculate the off-resonant scattering of a broadband X-ray pulse from a sample initially prepared in an arbitrary superposition of electronic states. The signal consists of single-particle (incoherent) and two-particle (coherent) contributions that carry different particle form factors that involve different material transitions. Single-molecule experiments involving incoherent scattering are more influenced by inelastic processes compared to bulk measurements. The conditions under which the technique directly measures charge densities (and can be considered as diffraction) as opposed to correlation functions of the charge-density are specified. The results are illustrated with time- and wavevector-resolved signals from a single amino acid molecule (cysteine) following an impulsive excitation by a stimulated X-ray Raman process resonant with the sulfur K-edge. Our theory and simulations can guide future experimental studies on the structures of nano-particles and proteins.

  4. Time-, frequency-, and wavevector-resolved x-ray diffraction from single molecules

    PubMed Central

    Bennett, Kochise; Biggs, Jason D.; Zhang, Yu; Dorfman, Konstantin E.; Mukamel, Shaul

    2014-01-01

    Using a quantum electrodynamic framework, we calculate the off-resonant scattering of a broadband X-ray pulse from a sample initially prepared in an arbitrary superposition of electronic states. The signal consists of single-particle (incoherent) and two-particle (coherent) contributions that carry different particle form factors that involve different material transitions. Single-molecule experiments involving incoherent scattering are more influenced by inelastic processes compared to bulk measurements. The conditions under which the technique directly measures charge densities (and can be considered as diffraction) as opposed to correlation functions of the charge-density are specified. The results are illustrated with time- and wavevector-resolved signals from a single amino acid molecule (cysteine) following an impulsive excitation by a stimulated X-ray Raman process resonant with the sulfur K-edge. Our theory and simulations can guide future experimental studies on the structures of nano-particles and proteins. PMID:24880284

  5. Automated high pressure cell for pressure jump x-ray diffraction

    SciTech Connect

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  6. Pseudomonoenergetic x-ray diffraction measurements using balanced filters for coherent-scatter computed tomography

    SciTech Connect

    Beath, S. R.; Cunningham, I. A.

    2009-05-15

    Coherent-scatter computed tomography (CSCT) is a method of ''composition'' imaging based on measurements of diffraction patterns from tissues. Use of an x-ray tube degrades scatter pattern angular resolution due to the x-ray spectral width, making it difficult to uniquely identify some materials. The use of two transmission filters with similar atomic numbers (balanced ''Ross filters'') to generate pseudomonoenergetic scatter patterns is described as it applies to CSCT. An analysis of angular-blur mechanisms reveals that focal spot size and beam width are the most important factors determining Bragg-peak width when Er-Tm filters are used. A relative RMS spectral width of 1% can be achieved in the difference spectrum and a Bragg-peak RMS angular width of approximately 0.14 deg. (relative width of 3% at 5 deg. scatter angle) can be achieved with an effective energy of 58 keV.

  7. X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater

    NASA Astrophysics Data System (ADS)

    Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Morris, R. V.; Ming, D. W.; Treiman, A. H.; Sarrazin, P.; Morrison, S. M.; Downs, R. T.; Achilles, C. N.; Yen, A. S.; Bristow, T. F.; Crisp, J. A.; Morookian, J. M.; Farmer, J. D.; Rampe, E. B.; Stolper, E. M.; Spanovich, N.; Achilles, Cherie; Agard, Christophe; Verdasca, José Alexandre Alves; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Atreya, Sushil; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F.; Avalos, Juan J. Blanco; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John "Iain"; Cantor, Bruce; Caplinger, Michael; Rodríguez, Javier Caride; Carmosino, Marco; Blázquez, Isaías Carrasco; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie "Kenzie"; Juarez, Manuel de la Torre; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M. Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Flesch, Greg; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Franz, Heather; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Jones, John; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Malvitte, Alain Lepinette; Leshin, Laurie; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Mahaffy, Paul; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Jiménez, Mercedes Marín; García, César Martín; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Mauchien, Patrick

    2013-09-01

    The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe3+- and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii.

  8. Imaging of complex density in silver nanocubes by coherent x-ray diffraction.

    SciTech Connect

    Harder, R.; Liang, M.; Sun, Y.; Xia, Y.; Robinson, I. K.; DESY; Washington Univ.; Univ. of London; Diamond Light Source

    2010-01-01

    When using coherent x-rays to perform lensless imaging, it is the complex wave field exiting the sample or, in the case of the Bragg geometry, the deformed electron density distribution of a crystal, that is being sought. For most samples, to some extent, the image will be complex, containing both an amplitude and phase variation across the sample. We have developed versions of the hybrid input-output (HIO) and error reduction (ER) algorithms that are very robust for the inversion to complex objects from three-dimensional (3D) coherent x-ray diffraction (CXD) data measured around a Bragg spot of a small crystal. The development and behavior of these algorithms will be discussed in the context of inverting a 3D CXD pattern measured around a (111) Bragg spot of a silver nanocube.

  9. Pseudomonoenergetic x-ray diffraction measurements using balanced filters for coherent-scatter computed tomography.

    PubMed

    Beath, S R; Cunningham, I A

    2009-05-01

    Coherent-scatter computed tomography (CSCT) is a method of "composition" imaging based on measurements of diffraction patterns from tissues. Use of an x-ray tube degrades scatter pattern angular resolution due to the x-ray spectral width, making it difficult to uniquely identify some materials. The use of two transmission filters with similar atomic numbers (balanced "Ross filters") to generate pseudomonoenergetic scatter patterns is described as it applies to CSCT. An analysis of angular-blur mechanisms reveals that focal spot size and beam width are the most important factors determining Bragg-peak width when Er-Tm filters are used. A relative RMS spectral width of 1% can be achieved in the difference spectrum and a Bragg-peak RMS angular width of approximately 0.14 degree (relative width of 3% at 5 degrees scatter angle) can be achieved with an effective energy of 58 keV. PMID:19544803

  10. X-ray diffraction results from Mars Science Laboratory: mineralogy of Rocknest at Gale crater.

    PubMed

    Bish, D L; Blake, D F; Vaniman, D T; Chipera, S J; Morris, R V; Ming, D W; Treiman, A H; Sarrazin, P; Morrison, S M; Downs, R T; Achilles, C N; Yen, A S; Bristow, T F; Crisp, J A; Morookian, J M; Farmer, J D; Rampe, E B; Stolper, E M; Spanovich, N

    2013-09-27

    The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe(3+)- and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii. PMID:24072925

  11. Pathway of a damaging mechanism - Analyzing chloride attack by synchrotron based X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Schlegel, M. C.; Stroh, J.; Malaga, K.; Meng, B.; Panne, U.; Emmerling, F.

    2015-06-01

    Typically, the changes of the phase compositions due to the chemical attack are studied in-situ only by chemical analysis or microscopy. In this study, the chloride transport and binding in the cement matrix in different cementitious materials was analyzed by synchrotron based X-ray diffraction (SyXRD) and energy dispersive X-ray spectroscopy (EDX). Sample materials consisting of cement paste were embedded in high concentrated sodium chloride solution over different time spans. Afterwards, the phase and chemical compositions were determined. The high spatial resolution and the information about the chloride distribution offer a detailed view of chloride binding in the cement matrix and allow the conclusions about the degradation mechanisms. The results are discussed related to the influence of different supplementary cementitious materials on the damaging mechanism.

  12. Diffraction-Based Techniques For High Contrast X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Peerzada, Lubna Naseem

    Two X-ray diffraction based techniques for high contrast were explored to improve contrast in radiology: diffraction enhanced imaging (DEI) and coherent scatter imaging. DEI produces contrast in images based upon the difference in the X-ray refractive indices of materials or tissues. Two DEI systems were devised. Both were comprised of a conventional polychromatic copper X-ray source, polycapillary collimating optics and two silicon crystals.Lucite step phantoms and nylon tubing were imaged. No fringe effects were observed. The lack of observable edge enhancement may have been due to the optic structure which obscured refraction effects. Better results might have been achieved if a higher resolution detector or phantom of larger step size or larger diameter thin walled tubing had been used. The second technique was coherent scatter X-ray imaging. The purpose of this work was to differentiate between healthy and diseased human breast tissues. For instance, breast carcinoma is known to have a peak coherent scattering angle at 12.2° for Mo Ka radiation at 17.5 keV, whereas fatty tissue peaks around 9°. A system which would be compatible with screening mammography was developed. The system was expanded to include sample scanning to allow for a larger image area. The modulation transfer function was computed for static and scanned images of a resolution phantom. These showed good agreement, indicating that the scanning was properly aligned and timed. Static and scanned images of phantoms were taken and the contrast was calculated for a series of experimental parameters including, grid tilt angle. A complex phantom was also then imaged. It was possible to distinguish tissue-equivalent phantom types. Good contrast resolution scanned images were obtained which is promising for a diagnostic system.

  13. Theory of radial X-ray Diffraction from a Polycrystalline Sample Undergoing Plastic Deformation

    SciTech Connect

    S Karato

    2011-12-31

    Theory of lattice strain in a polycrystalline aggregate under deviatoric stress is extended to include the influence of ongoing plastic deformation. When deviatoric stress is applied to a polycrystalline material at high temperatures (or above the yield stress), applied macroscopic stress is redistributed to individual grains by plastic deformation according to their orientations with respect to the macroscopic stress and plastic anisotropy of a given crystal. This microstress causes elastic deformation of individual grains that can be measured by x-ray diffraction. Consequently, the observed lattice strain depends on two material properties, viscosity (plasticity) and elastic compliance as well as the applied macroscopic stress and the stress-strain distribution among various grains. The influence of plastic deformation on lattice strain is analyzed using an anisotropic and nonlinear power-law constitutive relationship. In this model, the dependence of inferred macroscopic stress on the crystallographic orientation of diffraction plane (hkl) comes from elastic and plastic anisotropy of a crystal. In many materials, plastic anisotropy dominates over elastic anisotropy. This explains the observed large dependence of inferred stress on the diffraction plane and means that the determination of elastic anisotropy is difficult when plastic deformation occurs with anisotropic plasticity. When elastic anisotropy is known, plastic anisotropy of single crystal and/or stress-strain distribution in a deformed polycrystal can be determined from radial x-ray diffraction using the present model. Some examples are presented using the data on MgO.

  14. X-ray diffraction study of short-period AlN/GaN superlattices

    NASA Astrophysics Data System (ADS)

    Kyutt, R. N.; Shcheglov, M. P.; Ratnikov, V. V.; Yagovkina, M. A.; Davydov, V. Yu.; Smirnov, A. N.; Rozhavskaya, M. M.; Zavarin, E. E.; Lundin, V. V.

    2013-12-01

    The structure of short-period hexagonal GaN/AlN superlattices (SLs) has been investigated by X-ray diffraction. The samples have been grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal reactor at a temperature of 1050°C on (0001)Al2O3 substrates using GaN and AlN buffer layers. The SL period changes from 2 to 6 nm, and the thickness of the structure varies in a range from 0.3 to 1 ?m. The complex of X-ray diffraction techniques includes a measurement of ?-2? rocking curves of symmetric Bragg reflection, the construction of intensity maps for asymmetric reflections, a measurement and analysis of peak broadenings in different diffraction geometries, a precise measurement of lattice parameters, and the determination of radii of curvature. The thickness and strain of separate SL layers are determined by measuring the ?-2? rocking curves subsequent simulation. It is shown that most SL samples are completely relaxed as a whole. At the same time, relaxation is absent between sublayers, which is why strains in the AlN and GaN sublayers (on the order of 1.2 × 10-2) have different signs. An analysis of diffraction peak half-widths allows us to determine the densities of individual sets of dislocations and observe their change from buffer layers to SLs.

  15. X-ray diffraction study of short-period AlN/GaN superlattices

    SciTech Connect

    Kyutt, R. N. Shcheglov, M. P.; Ratnikov, V. V.; Yagovkina, M. A.; Davydov, V. Yu.; Smirnov, A. N.; Rozhavskaya, M. M.; Zavarin, E. E.; Lundin, V. V.

    2013-12-15

    The structure of short-period hexagonal GaN/AlN superlattices (SLs) has been investigated by X-ray diffraction. The samples have been grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal reactor at a temperature of 1050°C on (0001)Al{sub 2}O{sub 3} substrates using GaN and AlN buffer layers. The SL period changes from 2 to 6 nm, and the thickness of the structure varies in a range from 0.3 to 1 ?m. The complex of X-ray diffraction techniques includes a measurement of ?-2? rocking curves of symmetric Bragg reflection, the construction of intensity maps for asymmetric reflections, a measurement and analysis of peak broadenings in different diffraction geometries, a precise measurement of lattice parameters, and the determination of radii of curvature. The thickness and strain of separate SL layers are determined by measuring the ?-2? rocking curves subsequent simulation. It is shown that most SL samples are completely relaxed as a whole. At the same time, relaxation is absent between sublayers, which is why strains in the AlN and GaN sublayers (on the order of 1.2 × 10{sup ?2}) have different signs. An analysis of diffraction peak half-widths allows us to determine the densities of individual sets of dislocations and observe their change from buffer layers to SLs.

  16. KOTOBUKI-1 apparatus for cryogenic coherent X-ray diffraction imaging

    SciTech Connect

    Nakasako, Masayoshi; Takayama, Yuki; Oroguchi, Tomotaka; Sekiguchi, Yuki; Kobayashi, Amane; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 ; Shirahama, Keiya; Yamamoto, Masaki; Hikima, Takaaki; Yonekura, Koji; Maki-Yonekura, Saori; Kohmura, Yoshiki; Inubushi, Yuichi; Takahashi, Yukio; Suzuki, Akihiro; Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 ; Matsunaga, Sachihiro; Inui, Yayoi; Tono, Kensuke; Kameshima, Takashi; Joti, Yasumasa; Hoshi, Takahiko

    2013-09-15

    We have developed an experimental apparatus named KOTOBUKI-1 for use in coherent X-ray diffraction imaging experiments of frozen-hydrated non-crystalline particles at cryogenic temperature. For cryogenic specimen stage with small positional fluctuation for a long exposure time of more than several minutes, we here use a cryogenic pot cooled by the evaporation cooling effect for liquid nitrogen. In addition, a loading device is developed to bring specimens stored in liquid nitrogen to the specimen stage in vacuum. The apparatus allows diffraction data collection for frozen-hydrated specimens at 66 K with a positional fluctuation of less than 0.4 ?m and provides an experimental environment to easily exchange specimens from liquid nitrogen storage to the specimen stage. The apparatus was developed and utilized in diffraction data collection of non-crystalline particles with dimensions of ?m from material and biological sciences, such as metal colloid particles and chloroplast, at BL29XU of SPring-8. Recently, it has been applied for single-shot diffraction data collection of non-crystalline particles with dimensions of sub-?m using X-ray free electron laser at BL3 of SACLA.

  17. Hard X-ray Diffractive Focusing Properties of GaAs Linear Bragg-Fresnel Lenses

    NASA Astrophysics Data System (ADS)

    Li, Youli; Wong, Gerard C. L.; Case, Ryan; Caine, Ernie; Hu, Evelyn; Safinya, Cyrus R.; Fernandez, Patricia; Haeffner, Dean

    2000-03-01

    We investigated the diffractive focusing properties of linear Bragg-Fresnel Lenses (BFLs), which are being developed for hard x-ray microscopy and spectromicroscopy. The lenses were fabricated on GaAs substrates using e-beam lithography and reactive ion etching methods. We demonstrated that the use of GaAs resulted in much reduced (compared to Si) zone depth and significant gains in processing control.(Li, Y., G.C.L. Wong, C.R. Safinya, et al, Rev. of Sci. Instrum.),69(8), p. 2844-8 (1998) Linear BFLs with 0.3 ? m diffraction-limited resolution and zone length up to 10 mm were characterized at the Advanced Photon Source using an undulator source in the energy range of 8 keV - 40 keV. Focal plane diffraction patterns were measured using a x-ray fluorescence probe. The data were in good agreement with a model based on Kirchhoff-Fresnel diffraction theory by considering the undulator emission as a partially coherent and spatially extended source.

  18. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of Rv2827c from Mycobacterium tuberculosis

    SciTech Connect

    Janowski, Robert

    2006-08-01

    M. tuberculosis hypothetical protein Rv2827c was cloned, expressed, purified and crystallized. Preliminary X-ray diffraction data were collected to a resolution of 1.93 Å. The hypothetical protein Rv2827c from Mycobacterium tuberculosis was cloned and heterologously expressed in Escherichia coli. It was purified using affinity and size-exclusion chromatographic techniques and then crystallized. Preliminary X-ray diffraction data analysis suggests the presence of two translationally related molecules in the asymmetric unit of the orthorhombic crystals.

  19. Analysis of energy dispersive x-ray diffraction profiles for material identification, imaging and system control

    NASA Astrophysics Data System (ADS)

    Cook, Emily Jane

    2008-12-01

    This thesis presents the analysis of low angle X-ray scatter measurements taken with an energy dispersive system for substance identification, imaging and system control. Diffraction measurements were made on illicit drugs, which have pseudo- crystalline structures and thus produce diffraction patterns comprising a se ries of sharp peaks. Though the diffraction profiles of each drug are visually characteristic, automated detection systems require a substance identification algorithm, and multivariate analysis was selected as suitable. The software was trained with measured diffraction data from 60 samples covering 7 illicit drugs and 5 common cutting agents, collected with a range of statistical qual ities and used to predict the content of 7 unknown samples. In all cases the constituents were identified correctly and the contents predicted to within 15%. Soft tissues exhibit broad peaks in their diffraction patterns. Diffraction data were collected from formalin fixed breast tissue samples and used to gen erate images. Maximum contrast between healthy and suspicious regions was achieved using momentum transfer windows 1.04-1.10 and 1.84-1.90 nm_1. The resulting images had an average contrast of 24.6% and 38.9% compared to the corresponding transmission X-ray images (18.3%). The data was used to simulate the feedback for an adaptive imaging system and the ratio of the aforementioned momentum transfer regions found to be an excellent pa rameter. Investigation into the effects of formalin fixation on human breast tissue and animal tissue equivalents indicated that fixation in standard 10% buffered formalin does not alter the diffraction profiles of tissue in the mo mentum transfer regions examined, though 100% unbuffered formalin affects the profile of porcine muscle tissue (a substitute for glandular and tumourous tissue), though fat is unaffected.

  20. Single-crystal X-ray diffraction studies of photo-induced molecular species.

    PubMed

    Cole, Jacqueline M

    2004-10-20

    This tutorial review gathers together the recent developments in single-crystal X-ray diffraction that are starting to enable one to quantify directly the nature of light-induced electronic perturbations in chemical structures. Such structural information is key to understanding many photo-activated chemical processes and physical properties, and a description of the scientific impetus behind this incipient area of structural science, from academic and industrial perspectives, is given. Photoisomerism processes, solid-state photochemical reactions and spin-cross-over magnetic transitions, that have long-lived or irreversible light-induced states, are best understood by unravelling their three-dimensional structures measured in situ in their photo-converted state. A review of steady-state laser-induced single-crystal X-ray diffraction studies conducted, to date, and the experimental methodologies used in order to realise such structures, is presented. The structural characterisation of more transient photo-induced species (down to picosecond lifetimes) is paramount to a better understanding of the materials that undergo high-speed electronic switching, which make operative much of the electronics and optics industry, since there exists an inherent relationship between the excited-state structure and the physical properties exhibited. Prime examples include excited-state structures of molecular conductors and luminescent materials with potential applications as molecular wires, light-emitting diodes, non-linear optics, triboluminescence and electroluminescence. Previously, only indirect and qualitative interpretations of the nature of these excited-states could be formulated via spectroscopic techniques, but the developments in ms-ps time-resolved laser pump, X-ray probe single-crystal diffraction techniques, described herein, are overcoming this barrier, affording results that are entirely quantitative via a three-dimensional structural representation. In this regard, a review of structures of transient species studied to date is presented along with a discussion of the key experimental parameters that are required for a successful experiment, in terms of the X-ray, laser and sample characteristics. The importance of auxiliary spectroscopic work and complementary theoretical calculations is also briefly discussed. The paper concludes with a future outlook on new possible X-ray sources that will facilitate such work and extend it to structural studies on even more ephemeral species in the future. PMID:15480474

  1. Discovery of an X-ray Violently Variable Broad Absorption Line Quasar

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Gutierrez, Carlos M.; Punsly, Brian; Chevallier, Loic; Goncalves, Anabela C.

    2006-01-01

    In this letter, we report on a quasar that is violently variable in the X-rays, XVV. It is also a broad absorption line quasar (BALQSO) that exhibits both high ionization and low ionization UV absorption lines (LoBALQSO). It is very luminous in the X-rays (approximately 10(exp 46) ergs s(sup -l) over the entire X-ray band). Surprisingly, this does not over ionize the LoBAL outflow. The X-rays vary by a factor of two within minutes in the quasar rest frame, which is shorter than 1/30 of the light travel time across a scale length equal to the black hole radius. We concluded that the X-rays are produced in a relativistic jet beamed toward earth in which variations in the Doppler enhancement produce the XVV behavior.

  2. Advanced combined application of micro-X-ray diffraction/micro-X-ray fluorescence with conventional techniques for the identification of pictorial materials from Baroque Andalusia paintings.

    PubMed

    Herrera, L K; Montalbani, S; Chiavari, G; Cotte, M; Solé, V A; Bueno, J; Duran, A; Justo, A; Perez-Rodriguez, J L

    2009-11-15

    The process of investigating paintings includes the identification of materials to solve technical and historical art questions, to aid in the deduction of the original appearance, and in the establishment of the chemical and physical conditions for adequate restoration and conservation. In particular, we have focused on the identification of several samples taken from six famous canvases painted by Pedro Atanasio Bocanegra, who created a very special collection depicting the life of San Ignacio, which is located in the church of San Justo y Pastor of Granada, Spain. The characterization of the inorganic and organic compounds of the textiles, preparation layers, and pictorial layers have been carried out using an XRD diffractometer, SEM observations, EDX spectrometry, FT-IR spectrometry (both in reflection and transmission mode), pyrolysis/gas chromatography/mass spectrometry and synchrotron-based micro-X-ray techniques. In this work, the advantages over conventional X-ray diffraction of using combined synchrotron-based micro-X-ray diffraction and micro-X-ray fluorescence in the identification of multi-layer paintings is demonstrated. PMID:19782194

  3. Structure-function Investigation of Operando Nanostructured Materials Using Coherent X-ray Diffractive Imaging

    NASA Astrophysics Data System (ADS)

    Ulvestad, Andrew

    Nanostructured devices promise to help solve grand challenges of our time, including renewable energy generation, storage, and mitigating climate change. Their power lies in the particular influence of the surface on the total free energy when dimensions approach the nanoscale and it is well known that different sizes, shapes, and defects can drastically alter material properties. However, this strength represents a considerable challenge for imaging techniques that can be limited in terms of sample environments, average over large ensembles of particles, and/or lack adequate spatiotemporal resolution for studying the relevant physical processes. The focus of this thesis is the development of in situ coherent X-ray diffractive imaging (CXDI) and its application in imaging strain evolution in battery cathode nanoparticles. Using in situ CXDI, the compressive/tensile strain field in the pristine state is revealed, and found to be linked to a particular concentration of strain inducing Jahn-Teller ions. The evolution of strain during the first charge/discharge cycle shows that the cathode nanoparticle exhibits phase separation. Using the 3D strain field, the strain field energy is calculated and shows interesting hysteresis between charge and discharge. Strain evolution during a disconnection event, in which the cathode nanoparticle is no longer able to exchange electrons and ions with its environment, reveals the formation of a poorly conducting interphase layer. Finally, strain fields were used to study dislocation dynamics in battery nanoparticles. Using the full 3D information, the dislocation line structure is mapped and shown to move in response to charge transfer. The dislocation is used as a way to probe the local material properties and it is discovered that the material enters an ``auxetic", or negative Poisson's ratio, regime.

  4. X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.

    2011-12-01

    The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2? = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I., Baliva, A., Stevoli, A., Ambrosi, R., Critani, F., Delhez, R., Scandelli, L., Holland, A., Nelms, N. & the Mars-XRD Team, Proceedings of the 38th Lunar and Planetary Science Conference, 12 - 16 March 2007, League City, Texas, USA. [2] L. Marinangeli, I. B. Hutchinson, A. Stevoli, G. Adami, R. Ambrosi, R. Amils, V. Assis Fernandes, A. Baliva, A. T. Basilevsky, G. Benedix, P. Bland, A. J. Böttger, J. Bridges, G. Caprarelli, G. Cressey, F. Critani, N. d'Alessandro, R. Delhez, C. Domeneghetti, D. Fernandez-Remolar, R. Filippone, A. M. Fioretti, J. M. Garcia Ruiz, M. Gilmore, G. M. Hansford, G. Iezzi, R. Ingley, M. Ivanov, G. Marseguerra, L. Moroz, C. Pelliciari, P. Petrinca, E. Piluso, L. Pompilio, J. Sykes, F. Westall and the MARS-XRD Team, EPSC-DPS Joint Meeting 2011, 3 - 7 October 2011, La Cité Internationale des Congrès Nantes Métropole, Nantes, France.

  5. High resolution x-ray diffraction analysis of InGaAs/InP superlattices

    SciTech Connect

    Cornet, D. M.; LaPierre, R. R.; Comedi, D.; Pusep, Y. A.

    2006-08-15

    The interfacial properties of lattice-matched InGaAs/InP superlattice (SL) structures grown by gas source molecular beam epitaxy were investigated by high resolution x-ray diffraction (HRXRD). SLs with various periods were grown to determine the contributions of the interface layers to the structural properties of the SLs. The HRXRD curves exhibited a number of features indicative of interfacial layers, including weak even-order satellite peaks, and a zero-order diffraction peak that shifted toward lower diffraction angles with decreasing SL period. A detailed structural model is proposed to explain these observations, consisting of strained InAsP and InGaAsP monolayers due to the group-V gas switching and atomic exchange at the SL interfaces.

  6. Data preparation and evaluation techniques for x-ray diffraction microscopy

    DOE PAGESBeta

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. In addition, we show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffractionmore »patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.« less

  7. Determination of line profiles on photomasks using DUV, EUV, and x-ray scattering

    NASA Astrophysics Data System (ADS)

    Scholze, F.; Bodermann, B.; Burger, S.; Endres, J.; Haase, A.; Krumrey, M.; Laubis, C.; Soltwisch, V.; Ullrich, A.; Wernecke, J.

    2014-10-01

    Non-imaging techniques like X-ray scattering are supposed to play an important role in the further development of CD metrology for the semiconductor industry. GISAXS provides directly assessable information on structure roughness and long-range periodic perturbations. The disadvantage of the method is the large footprint of the X-ray beam on the sample due to the extremely shallow angle of incidence. This can be overcome by using wavelengths in the extreme ultraviolet (EUV) spectral range which allow for much steeper angles of incidence but preserve the large range of momentum transfer that can be observed. At the Physikalisch-Technische Bundesanstalt (PTB), the available photon energy range extends from 50 eV up to 10 keV at two adjacent beamlines. PTB commissioned a new versatile Ellipso-Scatterometer which is capable of measuring 6" square substrates in a clean, hydrocarbon-free environment with full flexibility regarding the direction of the incident light polarization. The reconstruction of line profiles using a geometrical model with six free parameters, a finite element method (FEM) Maxwell solver and least-squares optimization yielded consistent results for EUV and deep ultraviolet (DUV) scatterometry. For EUV photomasks, the actinic wavelength EUV scatterometry yields particular advantages. A significant polarization dependence of the diffraction intensities for 0th and +1st orders in the geometry with the grating lines perpendicular to the plane of reflection is observed and the 0th order intensity shows sufficient sensitivity to the line width such that a CD-resolution below 0.1 nm is within reach. In this contribution we present scatterometry data for line gratings using GISAXS, and EUV and DUV scatterometry and consistent reconstruction results of the line geometry for EUV and DUV scatterometry.

  8. X-ray diffraction analysis of residual stress in zirconia dental composites

    NASA Astrophysics Data System (ADS)

    Allahkarami, Masoud

    Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.

  9. Laboratory manual: mineral X-ray diffraction data retrieval/plot computer program

    USGS Publications Warehouse

    Hauff, Phoebe L.; VanTrump, George

    1976-01-01

    The Mineral X-Ray Diffraction Data Retrieval/Plot Computer Program--XRDPLT (VanTrump and Hauff, 1976a) is used to retrieve and plot mineral X-ray diffraction data. The program operates on a file of mineral powder diffraction data (VanTrump and Hauff, 1976b) which contains two-theta or 'd' values, and intensities, chemical formula, mineral name, identification number, and mineral group code. XRDPLT is a machine-independent Fortran program which operates in time-sharing mode on a DEC System i0 computer and the Gerber plotter (Evenden, 1974). The program prompts the user to respond from a time-sharing terminal in a conversational format with the required input information. The program offers two major options: retrieval only; retrieval and plot. The first option retrieves mineral names, formulas, and groups from the file by identification number, by the mineral group code (a classification by chemistry or structure), or by searches based on the formula components. For example, it enables the user to search for minerals by major groups (i.e., feldspars, micas, amphiboles, oxides, phosphates, carbonates) by elemental composition (i.e., Fe, Cu, AI, Zn), or by a combination of these (i.e., all copper-bearing arsenates). The second option retrieves as the first, but also plots the retrieved 2-theta and intensity values as diagrammatic X-ray powder patterns on mylar sheets or overlays. These plots can be made using scale combinations compatible with chart recorder diffractograms and 114.59 mm powder camera films. The overlays are then used to separate or sieve out unrelated minerals until unknowns are matched and identified.

  10. X-ray diffraction from flight muscle with a headless myosin mutation: implications for interpreting reflection patterns

    PubMed Central

    Iwamoto, Hiroyuki; Trombitás, Károly; Yagi, Naoto; Suggs, Jennifer A.; Bernstein, Sanford I.

    2014-01-01

    Fruit fly (Drosophila melanogaster) is one of the most useful animal models to study the causes and effects of hereditary diseases because of its rich genetic resources. It is especially suitable for studying myopathies caused by myosin mutations, because specific mutations can be induced to the flight muscle-specific myosin isoform, while leaving other isoforms intact. Here we describe an X-ray-diffraction-based method to evaluate the structural effects of mutations in contractile proteins in Drosophila indirect flight muscle. Specifically, we describe the effect of the headless myosin mutation, Mhc10-Y97, in which the motor domain of the myosin head is deleted, on the X-ray diffraction pattern. The loss of general integrity of the filament lattice is evident from the pattern. A striking observation, however, is the prominent meridional reflection at d = 14.5 nm, a hallmark for the regularity of the myosin-containing thick filament. This reflection has long been considered to arise mainly from the myosin head, but taking the 6th actin layer line reflection as an internal control, the 14.5-nm reflection is even stronger than that of wild-type muscle. We confirmed these results via electron microscopy, wherein image analysis revealed structures with a similar periodicity. These observations have major implications on the interpretation of myosin-based reflections. PMID:25400584

  11. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    SciTech Connect

    Nam, Daewoong; Department of Physics, Pohang University of Science and Technology, Pohang 790-784 ; Park, Jaehyun; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong; Gallagher-Jones, Marcus; Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB

    2013-11-15

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10{sup ?2} Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  12. Purification, crystallization, small-angle X-ray scattering and preliminary X-ray diffraction analysis of the SH2 domain of the Csk-homologous kinase.

    PubMed

    Gunn, Natalie J; Gorman, Michael A; Dobson, Renwick C J; Parker, Michael W; Mulhern, Terrence D

    2011-03-01

    The C-terminal Src kinase (Csk) and Csk-homologous kinase (CHK) are endogenous inhibitors of the proto-oncogenic Src family of protein tyrosine kinases (SFKs). Phosphotyrosyl peptide binding to their Src-homology 2 (SH2) domains activates Csk and CHK, enhancing their ability to suppress SFK signalling; however, the detailed mechanistic basis of this activation event is unclear. The CHK SH2 was expressed in Escherichia coli and the purified protein was characterized as monomeric by synchrotron small-angle X-ray scattering in-line with size-exclusion chromatography. The CHK SH2 crystallized in 0.2?M sodium bromide, 0.1?M bis-Tris propane pH 6.5 and 20% polyethylene glycol 3350 and the best crystals diffracted to ?1.6?Å resolution. The crystals belonged to space group P2, with unit-cell parameters a=25.8, b=34.6, c=63.2?Å, ?=99.4°. PMID:21393838

  13. X-ray diffraction analysis of a crystal of HscA from Escherichia coli

    SciTech Connect

    Aoto, Phillip C.; Ta, Dennis T.; Cupp-Vickery, Jill R. Vickery, Larry E.

    2005-07-01

    A truncated form of HscA (52 kDa) containing both nucleotide- and substrate-binding domains has been crystallized and analyzed by X-ray diffraction. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1} and diffracts to 2.9 Å. HscA is a constitutively expressed Hsp70 that interacts with the iron–sulfur cluster assembly protein IscU. Crystals of a truncated form of HscA (52 kDa; residues 17–505) grown in the presence of an IscU-recognition peptide, WELPPVKI, have been obtained by hanging-drop vapor diffusion using ammonium sulfate as the precipitant. A complete native X-ray diffraction data set was collected from a single crystal at 100 K to a resolution of 2.9 Å. The crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 158.35, b = 166.15, c = 168.26 Å, and contains six molecules per asymmetric unit. Phases were determined by molecular replacement using the nucleotide-binding domain from DnaK and the substrate-binding domain from HscA as models. This is the first reported crystallization of an Hsp70 containing both nucleotide- and substrate-binding domains.

  14. X-ray diffraction efficiency of bent GaAs mosaic crystals for the Laue project

    NASA Astrophysics Data System (ADS)

    Ferrari, Claudio; Buffagni, Elisa; Bonnini, Elisa; Zappettini, Andrea

    2014-04-01

    In a Laue lens made of single crystals oriented to diffract parallel x-rays at the lens focus, the energy and angular resolution are limited by the crystal size and by the crystal mosaicity. The use of extended crystals bent according to the lens curvature provides better focusing, with the resolution given essentially by the crystal mosaicity. With this approach, a crystal mosaicity as low as 15-25 arcsec, well below the mosaicity value of copper crystals, was found suitable for the new design of the Laue lens. The reflectivity and transmission profiles and the integrated intensity have been measured in flat and bent GaAs and Si crystals prepared by the method of surface damaging by using sandpaper of different grain size. The surface grinding induces a local lattice strain which produces a self-standing bent crystal. Bent crystals with radius of curvature lower than a critical value given by the extinction length behave as ideal mosaic crystals, maximizing the diffraction efficiency at high x-ray energies. It is found that the surface grinding does not affect the crystal diffraction efficiency, the damage thickness being limited to a few tens microns near the crystal surface.

  15. X-ray diffraction efficiency of bent GaAs mosaic crystals for the LAUE project

    NASA Astrophysics Data System (ADS)

    Ferrari, C.; Buffagni, E.; Bonnini, E.; Zappettini, A.

    2013-09-01

    In a Laue lens made by single crystals oriented to diffract parallel x-rays at the lens focus, the energy and angular resolution are limited by the crystal size and by the crystal mosaicity. The use of extended crystals bent according to the lens curvature provides a better focusing, with the resolution given essentially by the crystal mosaicity. With this approach a crystal mosaicity as low as 15-25 arcseconds, well below the mosaicity value of copper crystals, was found suitable for the new design of the Laue lens. The reflectivity and transmission profiles and the integrated intensity have been measured in flat and bent GaAs and Si crystals prepared by the method of surface damaging by using sandpaper of different grain size. The surface grinding induces a local lattice strain which produces a self standing bent crystal. Bent crystals with radius of curvature lower than a critical value given by the extinction length behave as perfect mosaic crystals or strongly bent perfect crystals, maximizing the diffraction efficiency at high x-ray energies. It is found that the surface grinding does not affect the crystal diffraction efficiency, the damage thickness being limited to a few tens microns near the crystal surface.

  16. Effect of grain size on stability of X-ray diffraction patterns used for threat detection

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Rebuffel, V.; Tabary, J.; Paulus, C.; Verger, L.; Duvauchelle, Ph.

    2012-08-01

    Energy Dispersive X-ray Diffraction (EDXRD) is well-suited to detecting narcotics and a wide range of explosives. The integrated intensity of an X-ray diffraction peak is proportional to the number of grains in the inspected object which are oriented such that they satisfy Bragg's condition. Several parameters have a significant influence on this number. Among them, we can list grain size and the fill rate for polycrystalline materials that both may significantly vary for a same material according to its way of production. Consequently, peak intensity may change significantly from one measurement to another one, thus increasing the risk of losing peaks. This instability is one of the many causes of false alarms. To help avoid these, we have developed a model to quantify the stability of the diffraction patterns measured. Two methods (extension of the detector in a direction perpendicular to the diffractometer plane and slow rotation of both source and detector) can be used to decrease the coefficient of variation, leading to a more stable spectral measurement.

  17. Commissioning of a Soft X-ray Beamline PF-BL-16A with a Variable-Included-Angle Varied-Line-Spacing Grating Monochromator

    SciTech Connect

    Amemiya, Kenta; Toyoshima, Akio; Kikuchi, Takashi; Kosuge, Takashi; Nigorikawa, Kazuyuki; Sumii, Ryohei; Ito, Kenji

    2010-06-23

    The design and commissioning of a new soft X-ray beamline, BL-16A, at the Photon Factory is presented. The beamline consists of a pre-focusing mirror, an entrance slit, a variable-included-angle varied-line-spacing plane grating monochromator, and a post-focusing system as usual, and provides circularly and linearly polarized soft X rays in the energy range 200-1500 eV with an APPLE-II type undulator. The commissioning procedure for the beamline optics is described in detail, especially the check of the focal position for the zero-th order and diffracted X rays.

  18. Quantitative mineralogical analysis of hydraulic limes by X-ray diffraction

    SciTech Connect

    Mertens, G. Madau, P.; Durinck, D.; Blanpain, B.; Elsen, J.

    2007-11-15

    A combined selective dissolution/quantitative X-ray diffraction (QXRD) approach is proposed for the quantitative mineralogical phase analysis of hydraulic limes. The proposed methodology is validated by the analysis of two model mixtures. Afterwards two commercial hydraulic binders and one self-burned hydraulic quicklime were analysed. Chemical, thermal and microprobe analyses were performed to check the results. It is shown that the proposed selective dissolution/QXRD approach yields reliable quantitative mineralogical information for hydraulic limes in spite of their complex phase composition and the presence of amorphous material.

  19. Quantum oscillations and beats in X-ray diffraction during film growth.

    PubMed

    Lee, Y-R; Gray, A; Tischler, J; Czoschke, P; Hong, H; Chang, S-L; Chiang, T-C

    2007-10-12

    X-ray diffraction from a growing film at an anti-Bragg point should exhibit bilayer oscillations caused by interference. In an experiment of TiN film growth by laser ablation onto sapphire, an unexpected beating envelope function is found to modulate the oscillations. The successive nodes and antinodes are identified with the development of new growth domains separated by one atomic layer in thickness. This effect allows atomic layer counting of the film thickness distribution. The results imply that the growth is not characterized by a continuum stochastic process, as usually assumed. PMID:17995191

  20. Load transfer in bovine plexiform bone determined by synchrotron x-ray diffraction.

    SciTech Connect

    Akhtar, R.; Daymond, M.; Almer, J.; Mummery, P.; The Univ. of Manchester; Queen's Univ.

    2008-02-01

    High-energy synchrotron x-ray diffraction (XRD) has been used to quantify load transfer in bovine plexiform bone. By using both wide-angle and small-angle XRD, strains in the mineral as well as the collagen phase of bone were measured as a function of applied compressive stress. We suggest that a greater proportion of the load is borne by the more mineralized woven bone than the lamellar bone as the applied stress increases. With a further increase in stress, load is shed back to the lamellar regions until macroscopic failure occurs. The reported data fit well with reported mechanisms of microdamage accumulation in bovine plexiform bone.

  1. Sample cell for powder x-ray diffraction at up to 500 bars and 200 °C

    NASA Astrophysics Data System (ADS)

    Jupe, Andrew C.; Wilkinson, Angus P.

    2006-11-01

    A low cost sample cell for powder diffraction at high pressure and temperature that employs either sapphire or steel pressure tubes is described. The cell can be assembled rapidly, facilitating the study of chemically reacting systems, and it provides good control of both pressure and temperature in a regimen where diamond anvil cells and multianvil apparatus cannot be used. The design provides a relatively large sample volume making it suitable for the study of quite large grain size materials, such as hydrating cement slurries. However, relatively high energy x rays are needed to penetrate the pressure tube.

  2. X-ray Diffraction Measurements in a Rotational Diamond Anvil Cell

    SciTech Connect

    Ma,Y.; Levitas, V.; Hashemi, J.

    2006-01-01

    We have established an experimental method to perform synchrotron X-ray diffraction in a rotational diamond anvil cell to study the properties of a material under pressure and shear by achieving a quasi-homogeneous pressure distribution. The uniform distribution of pressure eliminates the peak widening caused by pressure deviation in the sample chamber. This enables us to explore the effects of shear on the physical and chemical properties such as the structural disorder, phase transformation, and chemical bonding. The method has been applied in studying the shear-induced stacking fault, phase transition-induced plasticity, and the shear-induced formation of bonding between diamond and hexagonal boron nitride.

  3. High Pressure X-ray Diffraction Study on Icosahedral Boron Arsenide (B12As2)

    SciTech Connect

    J Wu; H Zhu; D Hou; C Ji; C Whiteley; J Edgar; Y Ma

    2011-12-31

    The high pressure properties of icosahedral boron arsenide (B12As2) were studied by in situ X-ray diffraction measurements at pressures up to 25.5 GPa at room temperature. B12As2 retains its rhombohedral structure; no phase transition was observed in the pressure range. The bulk modulus was determined to be 216 GPa with the pressure derivative 2.2. Anisotropy was observed in the compressibility of B12As2-c-axis was 16.2% more compressible than a-axis. The boron icosahedron plays a dominant role in the compressibility of boron-rich compounds.

  4. X-ray diffraction of molybdenum under shock compression to 450 GPa

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Coppari, Federica; Smith, Raymond F.; Eggert, Jon H.; Lazicki, Amy E.; Fratanduono, Dayne E.; Rygg, J. Ryan; Boehly, Thomas R.; Collins, Gilbert W.; Duffy, Thomas S.

    2015-11-01

    Molybdenum (Mo) is a body-centered-cubic (bcc) transition metal that has widespread technological applications. Although the bcc transition elements are used as test cases for understanding the behavior of metals under extreme conditions, the melting curves and phase transitions of these elements have been the subject of stark disagreements in recent years. Here we use x-ray diffraction to examine the phase stability and melting behavior of Mo under shock loading to 450 GPa. The bcc phase of Mo remains stable along the Hugoniot until 380 GPa. Our results do not support previous claims of a shallow melting curve for molybdenum.

  5. X-ray diffraction study of elemental thulium at pressures up to 86 GPa

    SciTech Connect

    Pravica, Michael; Quine, Zachary; Romano, Edward

    2006-09-01

    We have performed a high-pressure synchrotron x-ray diffraction experiment on elemental thulium in a diamond anvil cell to 86 GPa. A series of phase transitions was observed as a function of pressure that follow the expected hexagonal-close-packed{yields}Samarium-type{yields}double hexagonal-close-packed{yields}distorted distorted face-centered cubic sequence. In particular, we present evidence for the predicted double hexagonal close packed{yields}distorted face-centered cubic phase transition near 68 GPa. Equation of state data for thulium are also reported up to 86 GPa.

  6. High-resolution x-ray diffraction study of single crystals of lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Gorfman, S.; Keeble, D. S.; Glazer, A. M.; Long, X.; Xie, Y.; Ye, Z.-G.; Collins, S.; Thomas, P. A.

    2011-07-01

    The symmetry of single-crystal piezoelectric PbZr1-xTixO3, with x?0.31 and x?0.46, has been investigated by high-resolution x-ray diffraction, both at room temperature and up to and above the Curie temperature. Reciprocal space maps around a selection of Bragg reflections were collected and self-consistent patterns showing Bragg splittings were observed. The analysis of the separation of peaks from different twin domains provides precise information on PbZr1-xTixO3 symmetry when approaching the morphotropic phase boundary at x=0.48 from the zirconium-rich side.

  7. A scheme for lensless X-ray microscopy combining coherent diffraction imaging and differential corner holography.

    PubMed

    Capotondi, F; Pedersoli, E; Kiskinova, M; Martin, A V; Barthelmess, M; Chapman, H N

    2012-10-22

    We successfully use the corners of a common silicon nitride supporting window in lensless X-ray microscopy as extended references in differential holography to obtain a real space hologram of the illuminated object. Moreover, we combine this method with the iterative phasing techniques of coherent diffraction imaging to enhance the spatial resolution on the reconstructed object, and overcome the problem of missing areas in the collected data due to the presence of a beam stop, achieving a resolution close to 85 nm. PMID:23187281

  8. Crystallization and preliminary X-ray diffraction analysis of red clover necrotic mosaic virus

    SciTech Connect

    Martin, Stanton L.; Guenther, Richard H.; Sit, Tim L.; Swartz, Paul D.; Meilleur, Flora; Lommel, Steven A.; Rose, Robert B.

    2010-11-12

    Red clover necrotic mosaic virus (RCNMV) is a species that belongs to the Tombusviridae family of plant viruses with a T = 3 icosahedral capsid. RCNMV virions were purified and were crystallized for X-ray analysis using the hanging-drop vapor-diffusion method. Self-rotation functions and systematic absences identified the space group as I23, with two virions in the unit cell. The crystals diffracted to better than 4 {angstrom} resolution but were very radiation-sensitive, causing rapid decay of the high-resolution reflections. The data were processed to 6 {angstrom} in the analysis presented here.

  9. X-ray diffraction investigation of 1-phenyl-3-isopropyl-5-(benzothiazol-2-yl)formazan

    SciTech Connect

    Slepukhin, P. A. Pervova, I. G.; Rezinskikh, Z. G.; Lipunova, G. N.; Gorbatenko, Yu. A.; Lipunov, I. N.

    2008-01-15

    The crystal structure of 1-phenyl-3-isopropyl-5-(benzothiazol-2-yl)formazan is investigated using X-ray diffraction. The compound crystallizes in the form of two crystallographically independent molecules (A and B) in identical conformations that are stabilized by intermolecular hydrogen bonds. The intermolecular hydrogen bonds N-H-N (N-N, 2.892 and 2.939 A) link molecules into AB dimers. Both molecules have a flattened structure, except for the isopropyl fragment. The bonds in the formazan chains are delocalized. Molecules A and B have close geometric characteristics.

  10. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOEpatents

    Smither, Robert K. (Hinsdale, IL)

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  11. Quantitative X-ray diffraction analysis of oxides formed on superalloys

    NASA Technical Reports Server (NTRS)

    Garlick, R. G.

    1972-01-01

    Methods were developed for quantitative analysis by X-ray diffraction of the oxides Al2O3, NiO, Cr2O3, CoO, and CoCr2O4 within a standard deviation of about 10 percent of the weight fraction reported or within 1 percent absolute. These error limits assume that the sample oxides are well characterized and that the physiochemical structure of the oxides in the samples are identical with those in the synthesized standards. Results are given for the use of one of the techniques in the analysis of spalls from a series of oxidation tests of the cobalt base alloy WI-52.

  12. X-ray diffraction identification of minerals in lunar regolith returned by Luna 16 automatic station

    NASA Technical Reports Server (NTRS)

    Makarov, Y. S.; Ivanov, V. I.; Mokeyeva, V. I.; Tobelko, K. I.; Bukin, V. I.; Volkova, A. Y.; Kuznetsova, G. A.; Kuznetsov, L. M.

    1974-01-01

    The methods of powder and monocrystal X-ray diffraction served in identifying the mineral composition of gross samples of regolith from different levels of the drill core and about 80 individual regolith particles returned by the Luna 16 station. It was established that the Sea of Fertility regolith includes pyroxenes of the augite-pigeonite series, anorthites, ilmenite, olivines, spinels, alpha cristobalite, iron particles, glass, and several as yet unidentified particles. Crystallographic and roentgenometric data are given for all the lunar minerals found.

  13. Investigation of hepatic fibrosis in rats with x-ray diffraction enhanced imaging

    SciTech Connect

    Li Hui; Zhang Lu; Wang Xueyan; Luo Shuqian; Wang Tailing; Wang Baoen; Zhao Xinyan

    2009-03-23

    X-ray diffraction enhanced imaging (DEI) is a phase contrast technique that generates excellent contrast of biological soft tissues compared to conventional absorption radiography. We explore the application of DEI in the diagnosis of hepatic fibrosis. The produced refraction contrast images of fibrous rat liver samples show clearly abnormal liver architectures. Moreover, by comparing to histological pictures, different stages of fibrosis are discriminated, and the corresponding morphological features are analyzed. Besides, quantitative analyses of texture features are presented. The results reported herein show that DEI can be a potential noninvasive technique to diagnose and stage hepatic fibrosis.

  14. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Fujiwara, Akihiko; Takeda, Shoichi; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-11-01

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut ?-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ˜104 times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si-O-Si angles bridging rigid SiO4 tetrahedra, which efficiently transduce electric energy into elastic energy.

  15. Absolute x-ray energy calibration over a wide energy range using a diffraction-based iterative method

    SciTech Connect

    Hong Xinguo; Chen Zhiqiang; Duffy, Thomas S.

    2012-06-15

    In this paper, we report a method of precise and fast absolute x-ray energy calibration over a wide energy range using an iterative x-ray diffraction based method. Although accurate x-ray energy calibration is indispensable for x-ray energy-sensitive scattering and diffraction experiments, there is still a lack of effective methods to precisely calibrate energy over a wide range, especially when normal transmission monitoring is not an option and complicated micro-focusing optics are fixed in place. It is found that by using an iterative algorithm the x-ray energy is only tied to the relative offset of sample-to-detector distance, which can be readily varied with high precision of the order of 10{sup -5}-10{sup -6} spatial resolution using gauge blocks. Even starting with arbitrary initial values of 0.1 A, 0.3 A, and 0.4 A, the iteration process converges to a value within 3.5 eV for 31.122 keV x-rays after three iterations. Different common diffraction standards CeO{sub 2}, Au, and Si show an energy deviation of 14 eV. As an application, the proposed method has been applied to determine the energy-sensitive first sharp diffraction peak of network forming GeO{sub 2} glass at high pressure, exhibiting a distinct behavior in the pressure range of 2-4 GPa. Another application presented is pair distribution function measurement using calibrated high-energy x-rays at 82.273 keV. Unlike the traditional x-ray absorption-based calibration method, the proposed approach does not rely on any edges of specific elements, and is applicable to the hard x-ray region where no appropriate absorption edge is available.

  16. Micro-X-ray diffraction assessment of shock stage in enstatite chondrites

    NASA Astrophysics Data System (ADS)

    Izawa, Matthew R. M.; Flemming, Roberta L.; Banerjee, Neil R.; McCausland, Philip J. A.

    2011-05-01

    A new method for assessing the shock stage of enstatite chondrites has been developed, using in situ micro-X-ray diffraction (?XRD) to measure the full width at half maximum (FWHM?) of peak intensity distributed along the direction of the Debye rings, or chi angle (?), corresponding to individual lattice reflections in two-dimensional XRD patterns. This ?XRD technique differs from previous XRD shock characterization methods: it does not require single crystals or powders. In situ ?XRD has been applied to polished thin sections and whole-rock meteorite samples. Three frequently observed orthoenstatite reflections were measured: (020), (610), and (131); these were selected as they did not overlap with diffraction lines from other phases. Enstatite chondrites are commonly fine grained, stained or darkened by weathering, shock-induced oxidation, and metal/sulfide inclusions; furthermore, most E chondrites have little olivine or plagioclase. These characteristics inhibit transmitted-light petrography, nevertheless, shock stages have been assigned MacAlpine Hills (MAC) 02837 (EL3) S3, Pecora Escarpment (PCA) 91020 (EL3) S5, MAC 02747 (EL4) S4, Thiel Mountains (TIL) 91714 (EL5) S2, Allan Hills (ALHA) 81021 (EL6) S2, Elephant Moraine (EET) 87746 (EH3) S3, Meteorite Hills (MET) 00783 (EH4) S4, EET 96135 (EH4-5) S2, Lewis Cliff (LEW) 88180 (EH5) S2, Queen Alexandra Range (QUE) 94204 (EH7) S2, LaPaz Icefield (LAP) 02225 (EH impact melt) S1; for the six with published shock stages, there is agreement with the published classification. FWHM? plotted against petrographic shock stage demonstrates positive linear correlation. FWHM? ranges corresponding to shock stages were assigned as follows: S1 < 0.7°, S2 = 0.7-1.2°, S3 = 1.2-2.3°, S4 = 2.3-3.5°, S5 > 3.5°, S6—not measured. Slabs of Abee (EH impact-melt breccia), and Northwest Africa (NWA) 2212 (EL6) were examined using ?XRD alone; FWHM? values place both in the S2 range, consistent with literature values. Micro-XRD analysis may be applicable to other shocked orthopyroxene-bearing rocks.

  17. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies

    SciTech Connect

    Szlachetko, J.; Nachtegaal, M.; Boni, E. de; Willimann, M.; Safonova, O.; Sa, J.; Smolentsev, G.; Szlachetko, M.; Bergamaschi, A.; Schmitt, B.; David, C.; Luecke, A.; Bokhoven, J. A. van; Dousse, J.-Cl.; Hoszowska, J.; Kayser, Y.; Jagodzinski, P.

    2012-10-15

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  18. Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies.

    PubMed

    Zucchini, F; Bland, S N; Chauvin, C; Combes, P; Sol, D; Loyen, A; Roques, B; Grunenwald, J

    2015-03-01

    X-ray emission from a molybdenum X-pinch has been investigated as a potential probe for the high pressure states made in dynamic compression experiments. Studies were performed on a novel 300 kA, 400 ns generator which coupled the load directly to a low inductance capacitor and switch combination. The X-pinch load consisted of 4 crossed molybdenum wires of 13 ?m diameter, crossed at an angle of 62°. The load height was 10 mm. An initial x-ray burst generated at the wire crossing point, radiated in the soft x-ray range (h? < 10 keV). This was followed, 2-5 ns later, by at least one harder x-ray burst (h? > 10 keV) whose power ranged from 1 to 7 MW. Time integrated spectral measurements showed that the harder bursts were dominated by K-alpha emission; though, a lower level, wide band continuum up to at least 30 keV was also present. Initial tests demonstrated that the source was capable of driving Laue diffraction experiments, probing uncompressed samples of LiF and aluminium. PMID:25832229

  19. High resolution three-dimensional visualization and characterization of coronary atherosclerosis in vitro by synchrotron radiation x-ray microtomography and highly localized x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Jin, Hua; Ham, Kyungmin; Chan, Julia Y.; Butler, Leslie G.; Kurtz, Richard L.; Thiam, Serigne; Robinson, James W.; Agbaria, Rezik A.; Warner, Isiah M.; Tracy, Richard E.

    2002-12-01

    Human atherosclerotic plaques in both native and bypass arteries have been visualized using microtomography to provide additional information on the nature of coronary artery disease. Plaques contained within arteries removed from three white males aged 51, 55 and 70 are imaged in three-dimensions with monochromatic synchrotron x-ray radiation. Fields of view are 658 × 658 × 517 voxels, with cubic voxels ranging from 12 to 13 µm on a side. X-ray energies range from 11 to 15 keV (bandpass approximately 10 eV). At lower energies, high local absorption tends to generate reconstruction artefacts, while at higher energies the arterial wall is scarcely visible. At all energies, calcifications are clearly visible and differences are observed between plaques in native arteries (lifetime accumulations) versus bypass arteries (plaques developing in the interval between the heart bypass operation and the autopsy). In order to characterize coronary calcification, a micro-focused, 50 µm2, 25 keV x-ray beam was used to acquire powder diffraction data from selected calcifications. Also, large calcifications were removed from the native arteries and imaged with 25 keV x-ray energy. Calcifications are composed of hydroxyapatite crystallites and an amorphous phase. In summary, native calcifications are larger and have a higher fraction of hydroxyapatite than calcifications from the bypass arteries.

  20. Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses

    E-print Network

    Limpouch, Jiri

    Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double laser-produced plasmas are bright ultrafast line x-ray sources potentially suitable for different onto a solid target into the x-ray emission is significantly enhanced when a laser prepulse precedes

  1. The Coronal X-ray Spectrum of the Multiple Weak-Lined T Tauri Star System HD 98800

    E-print Network

    Kastner, Joel H.

    We present high-resolution X-ray spectra of the multiple (hierarchical quadruple) weak-lined T Tauri star system HD 98800, obtained with the High Energy Transmission Grating Spectrograph (HETGS) on board the Chandra X-Ray ...

  2. The PG X-ray QSO sample: Links between the UV-X-ray Continuum and Emission Lines

    E-print Network

    Beverley J. Wills; M. S. Brotherton; A. Laor; D. Wills; B. J. Wilkes; G. J. Ferland; Zhaohui Shang

    1999-05-07

    The UV to soft X-rays of luminous AGNs dominate their bolometric luminosity, driven by an accretion-powered dynamo at the center. These photons ionize the surrounding gas, thereby providing clues to fueling and exhaust. Two sets of important relationships - neither of them understood - link the continuum and gas properties. (i) Boroson & Green's `eigenvector 1' relationships: Steeper soft X-ray spectra are clearly related to narrower Hbeta emission and stronger optical Fe II emission from the BLR, and weaker [O III] 5007 from the NLR. We show that these relationships extend to UV spectra: narrower C III] 1909, stronger low ionization lines, larger Si III] 1892/C III] 1909 (a density indicator), weaker C IV 1549 but stronger higher-ionization N V 1240. We speculate that high accretion rates are linked to high columns of dense (1e10 - 1e11 cm-3), nitrogen-enhanced, low-ionization gas from nuclear starbursts. Linewidth, inverse Fe II-[O III] and inverse Fe II-C IV relationships hint at the geometrical arrangement of this gas. (ii) The Baldwin effect (inverse equivalent width - luminosity relationships): Our correlation analyses suggest that these are independent of the above eigenvector 1 relationships. The eigenvector 1 relationships can therefore be used in future work, to reduce scatter in the Baldwin relationships, perhaps fulfilling the dream of using the Baldwin effect for cosmological studies.

  3. Application of grazing incidence x-ray diffraction to polymer blends

    SciTech Connect

    Goehner, R.P.; Garbauskas, M.F.; LeGrand, D.G. . Research and Development Center)

    1992-01-01

    The physical properties of polymer blends consisting of one or more crystallizable components are affected by the microstructure of these materials. In particular, the degree of crystallinity can be influenced by processing parameters, and the crystallinity, as well as the phase distribution, may vary as a function of depth through an injection molded part Conventional x-ray diffraction techniques can provide information regarding both phase composition and degree of crystallinity, but, because of the relative transparency of these materials to wavelengths generally available in the laboratory, these techniques provide information representative of only the bulk. By employing parallel beam optics at varying grazing incidence angles, the x-ray sampling depth can be varied without loss of resolution. This technique can be used to vary the effective analysis depth from the top several hundred angstroms for low razing incidence to centimeters for transmission diffraction patterns. Grazing incidence techniques have found initial application in the characterization of thin metallic and ceramic films. This paper demonstrates the feasibility of using parallel beam to depth profile low atomic number materials. The specific application of this optics technique to the characterization of injection molded polymers, including a blend of bisphenol-A polycarbonate (PC) and polybutylene terephthalate (PBT), will be presented.

  4. Application of grazing incidence x-ray diffraction to polymer blends

    SciTech Connect

    Goehner, R.P.; Garbauskas, M.F.; LeGrand, D.G.

    1992-10-01

    The physical properties of polymer blends consisting of one or more crystallizable components are affected by the microstructure of these materials. In particular, the degree of crystallinity can be influenced by processing parameters, and the crystallinity, as well as the phase distribution, may vary as a function of depth through an injection molded part Conventional x-ray diffraction techniques can provide information regarding both phase composition and degree of crystallinity, but, because of the relative transparency of these materials to wavelengths generally available in the laboratory, these techniques provide information representative of only the bulk. By employing parallel beam optics at varying grazing incidence angles, the x-ray sampling depth can be varied without loss of resolution. This technique can be used to vary the effective analysis depth from the top several hundred angstroms for low razing incidence to centimeters for transmission diffraction patterns. Grazing incidence techniques have found initial application in the characterization of thin metallic and ceramic films. This paper demonstrates the feasibility of using parallel beam to depth profile low atomic number materials. The specific application of this optics technique to the characterization of injection molded polymers, including a blend of bisphenol-A polycarbonate (PC) and polybutylene terephthalate (PBT), will be presented.

  5. Radiation-induced melting in coherent X-ray diffractive imaging at the nanoscale

    PubMed Central

    Ponomarenko, O.; Nikulin, A. Y.; Moser, H. O.; Yang, P.; Sakata, O.

    2011-01-01

    Coherent X-ray diffraction techniques play an increasingly significant role in the imaging of nanoscale structures, ranging from metallic and semiconductor to biological objects. In material science, X-rays are usually considered to be of a low-destructive nature, but under certain conditions they can cause significant radiation damage and heat loading on the samples. The qualitative literature data concerning the tolerance of nanostructured samples to synchrotron radiation in coherent diffraction imaging experiments are scarce. In this work the experimental evidence of a complete destruction of polymer and gold nanosamples by the synchrotron beam is reported in the case of imaging at 1–10?nm spatial resolution. Numerical simulations based on a heat-transfer model demonstrate the high sensitivity of temperature distribution in samples to macroscopic experimental parameters such as the conduction properties of materials, radiation heat transfer and convection. However, for realistic experimental conditions the calculated rates of temperature rise alone cannot explain the melting transitions observed in the nanosamples. Comparison of these results with the literature data allows a specific scenario of the sample destruction in each particular case to be presented, and a strategy for damage reduction to be proposed. PMID:21685675

  6. Novel in-situ x-ray diffraction measurement of ferrroelectric superlattice properties during growth

    NASA Astrophysics Data System (ADS)

    Bein, Benjamin; Hsing, Hsiang-Chun; Callori, Sara J.; Sinsheimer, John; Dawber, Matthew

    2015-03-01

    Ferroelectric domains, surface termination, average lattice parameter and bilayer thickness were monitored by in-situ x-ray diffraction during the growth of BaTiO3/SrTiO3 (BTO/STO) superlattices by off-axis RF magnetron sputtering. A new x-ray diffraction technique was employed which makes effective use of the custom growth chamber, pilatus detector and synchrotron radiation available at beamline X21, NSLS, BNL. The technique allows for scan times substantially faster than the growth of a single layer of material, allowing continuous monitoring of multiple structural parameters as the film grows. The effect of electric boundary conditions was investigated by growing the same superlattice alternatively on STO substrates and 20nm SrRuO3 (SRO) thin films grown on STO substrates. Besides the fundamental knowledge gained from these studies, being able to monitor the structural parameters of a growing ferroelectric superlattice at this level of detail provides numerous insights which can guide the growth of higher quality ferroelectric superlattices in general. Supported by NSF: DMR-1055413.

  7. Taking Snapshots of Photosynthetic Water Oxidation Using Femtosecond X-ray Diffraction and Spectroscopy

    PubMed Central

    Kern, Jan; Tran, Rosalie; Alonso-Mori, Roberto; Koroidov, Sergey; Echols, Nathaniel; Hattne, Johan; Ibrahim, Mohamed; Gul, Sheraz; Laksmono, Hartawan; Sierra, Raymond G.; Gildea, Richard J.; Han, Guangye; Hellmich, Julia; Lassalle-Kaiser, Benedikt; Chatterjee, Ruchira; Brewster, Aaron S.; Stan, Claudiu A.; Glöckner, Carina; Lampe, Alyssa; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Seibert, M. Marvin; Koglin, Jason E.; Gallo, Erik; Uhlig, Jens; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Skinner, David E.; Bogan, Michael J.; Messerschmidt, Marc; Glatzel, Pieter; Williams, Garth J.; Boutet, Sébastien; Adams, Paul D.; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.

    2014-01-01

    The dioxygen we breathe is formed from water by its light-induced oxidation in photosystem II. O2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction center is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2 flash (2F) and 3 flash (3F) photosystem II samples, and of a transient 3F? state (250 ?s after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn-reduction, does not yet occur within 250 ?s after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5 Å. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II. PMID:25006873

  8. Phase quantification in nanobainite via magnetic measurements and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Solano-Alvarez, W.; Abreu, H. F. G.; da Silva, M. R.; Peet, M. J.

    2015-03-01

    Accurate phase quantification of nanostructured bainitic steel is of importance because of the nature of its percolating structure that controls many of its mechanical properties. X-ray diffraction is the technique of choice for such analysis, but magnetic methods can be more rapid and less sensitive to defect structures. In this study, the phase volume fractions measured using both of these techniques for the specific mixtures associated with nanostructured bainite have been compared and contrasted. An expression which relates the volume fraction and the saturation magnetization is obtained and its form is found to be consistent with previous work done on duplex stainless steels and TRIP steels. The fitting constants used in many of such analyses vary significantly so an attempt is made to rationalize the differences by considering the factors that determine the intrinsic saturation magnetization of ferrite. Magnetic phase quantification of nanobainite is presented for the first time. Results are compared with x-ray diffraction. Expression obtained that relates ferrite fraction and saturation magnetization. Equation derived to calculate intrinsic saturation magnetization of ferrites. These values agree with experimental data of the literature.

  9. X-ray diffraction of solid tin to 1.2 TPa

    NASA Astrophysics Data System (ADS)

    Lazicki, Amy; Rygg, Ryan; Coppari, Federica; Smith, Ray; Fratanduono, Dayne; Braun, Dave; Kraus, Richard; Swift, Damian; Collins, Gilbert; Eggert, Jon

    2015-06-01

    We present x-ray diffraction studies of solid crystal structure at the highest stress state where such measurements have ever been performed. Using laser-driven ramp compression methods coupled with angle-resolved powder x-ray diffraction at the Omega laser facility, we explore the phase diagram of tin below the melting curve between 0.1 and 1.2 terapascals (TPa). We demonstrate that, at dynamic-compression rates on the order of 107 s-1, tin transforms from the ambient tetragonal beta-Sn phase to the stable high pressure body-centered cubic (bcc) phase with densities consistent with static-compression measurements. Above 0.16 TPa our experiments identify a new feature in the phase diagram: a crystal structure clearly inconsistent with the hexagonal-close-packed (hcp) phase identified at these conditions by ambient-temperature static-compression measurements and by zero-kelvin density functional theory structure predictions. Our results suggest that the bcc phase is stabilized relative to hcp at high temperature, analogous to the heavier group IV metal Pb and numerous other elemental metals, and retains this phase during ramp compression to 1.2 TPa. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy

    NASA Astrophysics Data System (ADS)

    Kern, Jan; Tran, Rosalie; Alonso-Mori, Roberto; Koroidov, Sergey; Echols, Nathaniel; Hattne, Johan; Ibrahim, Mohamed; Gul, Sheraz; Laksmono, Hartawan; Sierra, Raymond G.; Gildea, Richard J.; Han, Guangye; Hellmich, Julia; Lassalle-Kaiser, Benedikt; Chatterjee, Ruchira; Brewster, Aaron S.; Stan, Claudiu A.; Glöckner, Carina; Lampe, Alyssa; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Seibert, M. Marvin; Koglin, Jason E.; Gallo, Erik; Uhlig, Jens; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Skinner, David E.; Bogan, Michael J.; Messerschmidt, Marc; Glatzel, Pieter; Williams, Garth J.; Boutet, Sébastien; Adams, Paul D.; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.

    2014-07-01

    The dioxygen we breathe is formed by light-induced oxidation of water in photosystem II. O2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction centre is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2-flash (2F) and 3-flash (3F) photosystem II samples, and of a transient 3F’ state (250??s after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn reduction, does not yet occur within 250??s after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5?Å. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II.

  11. Mossbauer spectroscopy and X-ray diffraction of samples from the Santa Catharina iron meteorite

    NASA Technical Reports Server (NTRS)

    Roy-Poulsen, H.; Clarke, R. S., Jr.; Jensen, G. B.; Knudsen, J. M.; Larsen, L.; Roy-Poulsen, N. O.; Vistisen, L.

    1984-01-01

    Conversion electron Mossbauer spectroscopy (CEMS) of samples from the Santa Catharina iron meteorite shows the presence of the ordered iron-nickel phase with 50% Ni, tetrataenite, and of the paramagnetic iron-nickel phase with 25% Ni. The FeNi phase with 50% Ni amounts to 70% of the iron-nickel alloys. Futhermore, the CEM spectra show the presence of small peaks from one or more spinel compounds. These small peaks are more pronounced when regions near the rim of the samples are analyzed. The X-ray diffraction of different areas of the samples, both optically dark and optically light areas, shows the presence of a diffraction pattern from a single f.c.c. lattice with a lattice parameter of a=3.58A This means that the two different Fe-Ni phases seen in the CEMS analysis occupy the same lattice. The X-ray photographs also show the presence of super-structure reflections from the ordered FeNi phase, and that the orientation of the f.c.c. lattice is the same within the whole sample.

  12. Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from E. Coli

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Abramchik, Yu. A.; Zhukhlistova, N. E.; Kuranova, I. P.

    2015-09-01

    Enzymes of the phosphoribosyl pyrophosphate synthetase family (PRPPS, EC 2.7.6.1) catalyze the formation of 5-phosphoribosyl pyrophosphate (5-PRPP) from adenosine triphosphate and ribose 5-phosphate. 5-Phosphoribosyl pyrophosphate is an important intermediate in the synthesis of purine, pyrimidine, and pyridine nucleotides, as well as of the amino acids histidine and tryptophan. The crystallization conditions for E. coli PRPPS were found by the vapor-diffusion technique and were optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals grown by the counter-diffusion technique using a synchrotron radiation source to 3.1-Å resolution. The crystals of PRPPS belong to sp. gr. P6322 and have the following unit-cell parameters: a = b = 104.44 Å, c = 124.98 Å, ? = ? = 90°, ? = 120°. The collected X-ray diffraction data set is suitable for the solution of the three-dimensional structure of PRPPS at 3.1-Å resolution.

  13. Identification of inversion domains in KTiOPO4 via resonant X-ray diffraction

    PubMed Central

    Fabrizi, Federica; Thomas, Pamela A.; Nisbet, Gareth; Collins, Stephen P.

    2015-01-01

    A novel method is presented for the identification of the absolute crystallographic structure in multi-domain polar materials such as ferroelectric KTiOPO4. Resonant (or ‘anomalous’) X-ray diffraction spectra collected across the absorption K edge of Ti (4.966?keV) on a single Bragg reflection demonstrate a huge intensity ratio above and below the edge, providing a polar domain contrast of ?270. This allows one to map the spatial domain distribution in a periodically inverted sample, with a resolution of ?1?µm achieved with a microfocused beam. This non-contact, non-destructive technique is well suited for samples of large dimensions (in contrast with traditional resonant X-ray methods based on diffraction from Friedel pairs), and its potential is particularly relevant in the context of physical phenomena connected with an absence of inversion symmetry, which require characterization of the underlying absolute atomic structure (such as in the case of magnetoelectric coupling and multiferroics). PMID:25970297

  14. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    PubMed Central

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L.; Raines, Kevin S.; Pryor Jr, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J.; Miao, Jianwei

    2015-01-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8?keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres. PMID:26306199

  15. Crystallization and preliminary X-ray diffraction analysis of recombinant hepatitis E virus-like particle

    SciTech Connect

    Wang, Che-Yen; Miyazaki, Naoyuki; Yamashita, Tetsuo; Higashiura, Akifumi; Nakagawa, Atsushi; Li, Tian-Cheng; Takeda, Naokazu; Xing, Li; Hjalmarsson, Erik; Friberg, Claes; Liou, Der-Ming; Sung, Yen-Jen; Tsukihara, Tomitake; Matsuura, Yoshiharu; Miyamura, Tatsuo; Cheng, R. Holland

    2008-04-01

    A recombinant virus-like particle that is a potential oral hepatitis E vaccine was crystallized. Diffraction data were collected to 8.3 Å resolution and the X-ray structure was phased with the aid of a low-resolution density map determined using cryo-electron microscopy data. Hepatitis E virus (HEV) accounts for the majority of enterically transmitted hepatitis infections worldwide. Currently, there is no specific treatment for or vaccine against HEV. The major structural protein is derived from open reading frame (ORF) 2 of the viral genome. A potential oral vaccine is provided by the virus-like particles formed by a protein construct of partial ORF3 protein (residue 70–123) fused to the N-terminus of the ORF2 protein (residues 112–608). Single crystals obtained by the hanging-drop vapour-diffusion method at 293 K diffract X-rays to 8.3 Å resolution. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 337, b = 343, c = 346 Å, ? = ? = ? = 90°, and contain one particle per asymmetric unit.

  16. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    SciTech Connect

    Lyubimov, Artem Y.; Murray, Thomas D.; Koehl, Antoine; Araci, Ismail Emre; Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Cohen, Aina E.; Soltis, S. Michael; Baxter, Elizabeth L.; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Berger, James M.

    2015-04-01

    A microfluidic platform has been developed for the capture and X-ray analysis of protein microcrystals, affording a means to improve the efficiency of XFEL and synchrotron experiments. X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.

  17. Structure of phospholipid-cholesterol membranes: An x-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Karmakar, Sanat; Raghunathan, V. A.

    2005-06-01

    We have studied the phase behavior of mixtures of cholesterol with dipalmitoyl phosphatidylcholine (DPPC), dimyristoyl phosphatidylcholine (DMPC), and dilauroyl phosphatidylethanolamine (DLPE), using x-ray diffraction techniques. Phosphatidylcholine (PC)-cholesterol mixtures are found to exhibit a modulated phase for cholesterol concentrations around 15mol% at temperatures below the chain melting transition. Lowering the relative humidity from 98% to 75% increases the temperature range over which it exists. An electron density map of this phase in DPPC-cholesterol mixtures, calculated from the x-ray diffraction data, shows bilayers with a periodic height modulation, as in the ripple phase observed in many PCs in between the main- and pretransitions. However, these two phases differ in many aspects, such as the dependence of the modulation wavelength on the cholesterol content and thermodynamic stability at reduced humidities. This modulated phase is found to be absent in DLPE-cholesterol mixtures. At higher cholesterol contents the gel phase does not occur in any of these three systems, and the fluid lamellar phase is observed down to the lowest temperature studied (5°C) .

  18. X-ray diffraction study of defects in zinc-diffusion-doped silicon

    SciTech Connect

    Privezentsev, V. V.

    2013-12-15

    Samples of CZ n-Si?Zn?(111) are prepared by high-temperature zinc-diffusion annealing followed by quenching and are studied by X-ray diffraction. The silicon contains an initial phosphorus impurity and zinc-compensating admixture at concentrations N{sub P} = 1.5 × 10{sup 14} cm{sup ?3} and N{sub Zn} = 1 × 10{sup 14} cm{sup ?3}; i.e., the relation N{sub P}/2 < N{sub Zn} < N{sub P} is fulfilled. Microdefects are studied by double- and triple-crystal X-ray diffraction in the dispersion free modes (n, ?n) and (n, ?n, +n). The samples are found to contain microdefects with two characteristic sizes (average sizes of about 1 ?m and 70 nm). The interplanar distance in the near-surface layer with a thickness of 0.1 ?m is smaller than this parameter in the remaining matrix, the difference being equal to d{sub 0} ?d/d{sub 0} ? 2 × 10{sup ?5}. This layer contains mainly vacancy-type microdefects. The angle between the reflecting planes and the local surface relief is ?? = (7 ± 1) arcmin.

  19. Development of an ultra-high resolution diffraction grating forsoft x-rays

    SciTech Connect

    Voronov, Dmitriy L.; Cambie, Rossana; Feshchenko, Ruslan M.; Gullikson, Eric M.; Padmore, Howard A.; Vinogradov, Alexander V.; Yashchuk, Valeriy V.

    2007-08-21

    Resonant Inelastic X-ray Scattering (RIXS) is the one of themost powerful methods for investigation of the electronic structure ofmaterials, specifically of excitations in correlated electron systems.However the potential of the RIXS technique has not been fully exploitedbecause conventional grating spectrometers have not been capable ofachieving the extreme resolving powers that RIXS can utilize. State ofthe art spectrometers in the soft x-ray energy range achieve ~;0.25 eVresolution, compared to the energy scales of soft excitations andsuperconducting gap openings down to a few meV. Development ofdiffraction gratings with super high resolving power is necessary tosolve this problem. In this paper we study the possibilities offabrication of gratings of resolving power of up to 106 for the 0.5 1.5KeV energy range. This energy range corresponds to all or most of theuseful dipole transitions for elements of interest in most correlatedelectronic systems, i.e., oxygen K-edge of relevance to all oxides, thetransition metal L2,3 edges, and the M4,5 edges of the rare earths.Various approaches based on different kinds of diffraction gratings suchas deep-etched multilayer gratings, and multilayer coated echelettes arediscussed. We also present simulations of diffraction efficiency for suchgratings, and investigate the necessary fabricationtolerances.

  20. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells.

    PubMed

    Rodriguez, Jose A; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L; Raines, Kevin S; Pryor, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J; Miao, Jianwei

    2015-09-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8?keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres. PMID:26306199

  1. Single-crystal X-ray diffraction at megabar pressures and temperatures of thousands of degrees

    SciTech Connect

    Dubrovinsky, L.; Boffa-Ballaran, T.; Glazyrin, K.; Kurnosov, A.; Frost, D.; Merlini, M.; Hanfland, M.; Prakapenka, V.B.; Schouwink, P.; Pippinger, T.; Dubrovinskaia, N.

    2011-08-09

    The most reliable information about crystal structures and their response to changes in pressure and temperature is obtained from single-crystal diffraction experiments. We have developed a methodology to perform single-crystal X-ray diffraction experiments in laser-heated diamond anvil cells and demonstrate that structural refinements and accurate measurements of the thermal equation of state of metals, oxides and silicates from single-crystal intensity data are possible in pressures ranging up to megabars and temperatures of thousands of degrees. A new methodology was applied to solve the in situ high pressure, high temperature structure of iron oxide and study structural variations of iron and aluminum bearing silicate perovskite at conditions of the Earth's lower mantle.

  2. Semiconductor surface and interface dynamics studied in real time by synchrotron x-ray diffraction

    SciTech Connect

    Braun, Wolfgang; Ploog, Klaus H.

    2007-06-14

    We present an overview of in-situ experiments to study molecular beam epitaxial growth by x-ray diffraction and high-energy electron diffraction. The applicability of kinematic theory allows a quantitative evaluation of the surface kinetics on compound semiconductor surfaces; GaAs(001), InAs(001) and GaSb(001) are presented as examples. Both the growth in the layer-by-layer mode and the recovery can be analyzed in considerable detail. As an example of heteroepitaxy, the nucleation and relaxation of hexagonal MnAs on GaAs(001) is presented. We find an extremely anisotropic interface structure with a periodic array of misfit dislocations that can be quantitatively analyzed.

  3. Coherent X-Ray Diffraction Imaging and Characterization of Strain in Silicon-on-Insulator Nanostructures

    PubMed Central

    Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred; Harder, Ross; Robinson, Ian

    2014-01-01

    Coherent X-ray diffraction imaging (CDI) has emerged in the last decade as a promising high resolution lens-less imaging approach for the characterization of various samples. It has made significant technical progress through developments in source, algorithm and imaging methodologies thus enabling important scientific breakthroughs in a broad range of disciplines. In this report, we will introduce the principles of forward scattering CDI and Bragg geometry CDI (BCDI), with an emphasis on the latter. BCDI exploits the ultra-high sensitivity of the diffraction pattern to the distortions of crystalline lattice. Its ability of imaging strain on the nanometer scale in three dimensions is highly novel. We will present the latest progress on the application of BCDI in investigating the strain relaxation behavior in nanoscale patterned strained silicon-on-insulator (sSOI) materials, aiming to understand and engineer strain for the design and implementation of new generation semiconductor devices. PMID:24955950

  4. X-ray diffraction studies of binary plutonium. Uranium alloys: an interim report

    SciTech Connect

    Wallace, P.L.; Harvey, M.R.

    1980-12-15

    This report describes x-ray diffraction studies of Pu-U alloys carried on at LLNL in 1972. These studies were part of a larger project to understand the 2-phase, banded microstructures observed in Pu-15 wt% U alloys by Riefenberg and Ellinger. This work has produced relatively high-quality diffraction patterns for both components of the banded structures, but computer indexing of these patterns did not produce acceptable solutions for either the zeta-phase or the second component of the banded structures. The effect of uranium on ..cap alpha..-Pu's lattice parameters is determined, and the data for the effect of uranium on ..beta..-Pu's lattice parameters are extended.

  5. Coherent X-ray diffraction imaging and characterization of strain in silicon-on-insulator nanostructures

    DOE PAGESBeta

    Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred; Harder, Ross; Robinson, Ian

    2014-12-06

    Coherent X-ray diffraction imaging (CDI) has emerged in the last decade as a promising high resolution lens-less imaging approach for the characterization of various samples. It has made significant technical progress through developments in source, algorithm and imaging methodologies thus enabling important scientific breakthroughs in a broad range of disciplines. In this report, we will introduce the principles of forward scattering CDI and Bragg geometry CDI (BCDI), with an emphasis on the latter. BCDI exploits the ultra-high sensitivity of the diffraction pattern to the distortions of crystalline lattice. Its ability of imaging strain on the nanometer scale in three dimensionsmore »is highly novel. We will present the latest progress on the application of BCDI in investigating the strain relaxation behavior in nanoscale patterned strained silicon-on-insulator (sSOI) materials, aiming to understand and engineer strain for the design and implementation of new generation semiconductor devices.« less

  6. Coherent X-ray diffraction imaging and characterization of strain in silicon-on-insulator nanostructures

    SciTech Connect

    Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred; Harder, Ross; Robinson, Ian

    2014-12-06

    Coherent X-ray diffraction imaging (CDI) has emerged in the last decade as a promising high resolution lens-less imaging approach for the characterization of various samples. It has made significant technical progress through developments in source, algorithm and imaging methodologies thus enabling important scientific breakthroughs in a broad range of disciplines. In this report, we will introduce the principles of forward scattering CDI and Bragg geometry CDI (BCDI), with an emphasis on the latter. BCDI exploits the ultra-high sensitivity of the diffraction pattern to the distortions of crystalline lattice. Its ability of imaging strain on the nanometer scale in three dimensions is highly novel. We will present the latest progress on the application of BCDI in investigating the strain relaxation behavior in nanoscale patterned strained silicon-on-insulator (sSOI) materials, aiming to understand and engineer strain for the design and implementation of new generation semiconductor devices.

  7. An x-ray diffraction method for semiquantitative mineralogical analysis of chilean nitrate ore

    USGS Publications Warehouse

    John, C.; George, J.; Ericksen, E.

    1997-01-01

    Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.

  8. An X-ray diffraction method for semiquantitative mineralogical analysis of Chilean nitrate ore

    USGS Publications Warehouse

    Jackson, J.C.; Ericksent, G.E.

    1997-01-01

    Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.

  9. Defining X-Ray Diffraction Parameters for the Design and Operation of a Planetary-Surface Rock Analyzer

    NASA Technical Reports Server (NTRS)

    Metzger, Ellen P.; Keaten, Rendy; Marshall, John R.; Kojiro, Dan

    1996-01-01

    Our joint research effort was aimed at developing techniques for X-ray diffractometry that was being investigated by NASA as possible flight instrumentation for the exploration of Mars. SJSU would provide the use of in-house X-ray facilities for calibration of the instrumentation , and would provide technical expertise regarding interpretation of data acquired during both laboratory testing, and during field testing of instruments on the Marsokhod rover at Ames. Accomplishments are: (1) quantification of X-ray signals from rock surfaces using San Jose State University (SJSU) diffractometer; (2) development of criteria for fingerprinting rock samples using pattern recognition of diffraction spectra, and augmentation of diffraction data with X-ray fluorescence information; (3) calibration of NASA instrumentation using SJSU-generator data; and (4) assistance in the development, lab testing, and field deployment of the NASA instrument on the Russian Marsokhod roving vehicle designed for martian exploration.

  10. Development of a hard X-ray delay line for X-ray photon correlation spectroscopy and jitter-free pump–probe experiments at X-ray free-electron laser sources

    PubMed Central

    Roseker, Wojciech; Franz, Hermann; Schulte-Schrepping, Horst; Ehnes, Anita; Leupold, Olaf; Zontone, Federico; Lee, Sooheyong; Robert, Aymeric; Grübel, Gerhard

    2011-01-01

    A hard X-ray delay line capable of splitting and delaying single X-ray pulses has been developed with the aim of performing X-ray photon correlation spectroscopy (XPCS) and X-ray pump–probe experiments at hard X-ray free-electron laser sources. The performance of the device was tested with 8.39?keV synchrotron radiation. Time delays up to 2.95?ns have been demonstrated. The feasibility of the device for performing XPCS studies was tested by recording static speckle patterns. The achieved speckle contrast of 56% indicates the possibility of performing ultra-fast XPCS studies with the delay line. PMID:21525658

  11. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging

    NASA Astrophysics Data System (ADS)

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S. Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-01

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  12. Characterizing the hard x-ray diffraction properties of a GaAs linear Bragg-Fresnel lens

    NASA Astrophysics Data System (ADS)

    Li, Youli; Wong, Gerard C. L.; Case, Ryan; Safinya, Cyrus R.; Caine, Ernie; Hu, Evelyn; Fernandez, Partricia

    2000-07-01

    We investigated the diffractive focusing properties of (111) GaAs linear Bragg-Fresnel lenses (BFLs) developed for hard x-ray microscopy and microdiffraction of complex materials in confined geometries. We demonstrated that the use of GaAs yields significant processing advantages due to the reduced zone depth. Focal plane diffraction patterns of linear BFLs measured at the advanced photon source using 8-40 keV x rays were compared to a simple model based on Kirchhoff-Fresnel diffraction theory. Good agreement was obtained between experimental data and model calculations using only zones within an effective aperture defined by the transverse coherence of the source.

  13. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    SciTech Connect

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  14. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions.

    PubMed

    Murray, Thomas D; Lyubimov, Artem Y; Ogata, Craig M; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T; Berger, James M

    2015-10-01

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2?µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10-15?µm) loaded into the chips yielded a complete, high-resolution (<1.6?Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423

  15. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    PubMed Central

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-01-01

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2?µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15?µm) loaded into the chips yielded a complete, high-resolution (<1.6?Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423

  16. Measuring H0 and q0 with X-ray lines from galaxy clusters

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Raymond, John C.

    1988-01-01

    A new method of measuring angular diameter distances, and hence H0 and q0, by means of X-ray observations of galaxy clusters is proposed. It resembles the method which combines maps of X-ray continuum emission with maps of the Suniaev-Zel'dovich effect, but substitutes measurements of X-ray absorption lines in the spectra of background quasars for the Suniaev-Zel'dovich effect. When the high resolution permitted by the AXAF microcalorimeter becomes available, this method should yield results with significantly smaller uncertainty.

  17. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis:Advantages and Limitations

    SciTech Connect

    A Frenkel; Q Wang; N Marinkovic; J Chen; L Barrio; R Si; A Lopez Camara; A Estella; J Rodriquez; J Hanson

    2011-12-31

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe{sub 2}O{sub 4} under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO{sub 2} that underwent isothermal reduction (with CO) and oxidation (with O{sub 2}), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.

  18. High-pressure X-ray diffraction and X-ray emission studies on iron-bearing silicate perovskite under high pressures

    SciTech Connect

    Lin, Jung-Fu; Speciale, Sergio; Prakapenka, Vitali B.; Dera, Przemek; Lavina, Babara; Watson, Heather C.

    2010-06-22

    Iron-bearing silicate perovskite is believed to be the most abundant mineral of the Earth's lower mantle. Recent studies have shown that Fe{sup 2+} exists predominantly in the intermediate-spin state with a total spin number of 1 in silicate perovskite in the lower part of the lower mantle. Here we have measured the spin states of iron and the pressure-volume relation in silicate perovskite [(Mg{sub 0.6},Fe{sub 0.4})SiO{sub 3}] at pressure conditions relevant to the lowermost mantle using in situ X-ray emission and X-ray diffraction in a diamond cell. Our results showed that the intermediate-spin Fe{sup 2+} is stable in the silicate perovskite up to {approx} 125 GPa but starts to transition to the low-spin state at approximately 135 GPa. Concurrent X-ray diffraction measurements showed a decrease of approximately 1% in the unit cell volume in the silicate perovskite [(Mg{sub 0.6},Fe{sub 0.4})SiO{sub 3}], which is attributed to the intermediate-spin to the low-spin transition. The transition pressure coincides with the pressure conditions of the lowermost mantle, raising the possibility of the existence of the silicate perovskite phase with the low-spin Fe{sup 2+} across the transition from the post-perovskite to the perovskite phases in the bottom of the D{double_prime} layer.

  19. Influence of diffraction in crystals on the coherence properties of X-ray free-electron laser pulses

    SciTech Connect

    Bushuev, V. A.; Samoylova, L.

    2011-09-15

    The spatial and temporal evolution of the field of random X-ray femtosecond pulses and their coherent properties upon pulse propagation in free space and under dynamical diffraction in perfect crystals in the Bragg and Laue geometries has been analyzed on the basis of the formalism developed in statistical optics. Particular attention is paid to the influence of large pulse propagation distances, which are characteristic of lengthy channels of X-ray free-electron lasers.

  20. Study of liquid gallium as a function of pressure and temperature using synchrotron x-ray microtomography and x-ray diffraction

    SciTech Connect

    Li, Renfeng; Li, Liangliang; Chen, Jiaxuan; Yu, Tony; Wang, Yanbin; Rivers, Mark L.; Wang, Luhong E-mail: haozhe@hit.edu.cn; Cai, Zhonghou; Chen, Jiuhua; Liu, Haozhe E-mail: haozhe@hit.edu.cn

    2014-07-28

    The volume change of liquid and solid gallium has been studied as a function of pressure and temperature up to 3.02?GPa at 300?K and up to 3.63?GPa at 330?K using synchrotron x-ray microtomography combined with energy dispersive x-ray diffraction techniques. Two sets of directly measured P-V data at 300?K and 330?K were obtained from 3D tomography reconstruction data, and the corresponding isothermal bulk moduli were determined as 23.6 (0.5) GPa and 24.6 (0.4) GPa, respectively. The existence of a liquid-liquid phase transition region is proposed based on the abnormal compressibility of Ga melt at about 2.44?GPa and 330?K conditions.

  1. Characterization of Japanese color sticks by energy dispersive X-ray fluorescence, X-ray diffraction and Fourier transform infrared analysis

    NASA Astrophysics Data System (ADS)

    Manso, M.; Valadas, S.; Pessanha, S.; Guilherme, A.; Queralt, I.; Candeias, A. E.; Carvalho, M. L.

    2010-04-01

    This work comprises the use of energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) techniques for the study of the composition of twentieth century traditional Japanese color sticks. By using the combination of analytical techniques it was possible to obtain information on inorganic and organic pigments, binders and fillers present in the sticks. The colorant materials identified in the sticks were zinc and titanium white, chrome yellow, yellow and red ochre, vermillion, alizarin, indigo, Prussian and synthetic ultramarine blue. The results also showed that calcite and barite were used as inorganic mineral fillers while Arabic gum was the medium used. EDXRF offered great potential for such investigations since it allowed the identification of the elements present in the sample preserving its integrity. However, this information alone was not enough to clearly identify some of the materials in study and therefore it was necessary to use XRD and FTIR techniques.

  2. Investigation by laser induced breakdown spectroscopy, X-ray fluorescence and X-ray powder diffraction of the chemical composition of white clay ceramic tiles from Veliki Preslav

    NASA Astrophysics Data System (ADS)

    Blagoev, K.; Grozeva, M.; Malcheva, G.; Neykova, S.

    2013-01-01

    The paper presents the results of the application of laser induced breakdown spectroscopy, X-ray fluorescence spectrometry, and X-ray powder diffraction in assessing the chemical and phase composition of white clay decorative ceramic tiles from the medieval archaeological site of Veliki Preslav, a Bulgarian capital in the period 893-972 AC, well-known for its original ceramic production. Numerous white clay ceramic tiles with highly varied decoration, produced for wall decoration of city's churches and palaces, were found during the archaeological excavations in the old capital. The examination of fourteen ceramic tiles discovered in one of the city's monasteries is aimed at characterization of the chemical profile of the white-clay decorative ceramics produced in Veliki Preslav. Combining different methods and comparing the obtained results provides complementary information regarding the white-clay ceramic production in Veliki Preslav and complete chemical characterization of the examined artefacts.

  3. X-ray Diffraction Studies of Forward and Reverse Plastic Flow in Nanoscale Layers during Thermal Cycling

    SciTech Connect

    Gram, Michael D; Carpenter, John S; Payzant, E Andrew; Misra, Amit; Anderson, Peter M

    2013-01-01

    The biaxial stress-strain response of layers within Cu/Ni nanolaminates is determined from in-plane x-ray diffraction spectra during heating/cooling. Thinner (11 nm) Cu and Ni layers with coherent, cube-on-cube interfaces reach ~1.8 GPa (Cu) and ~2.9 GPa (Ni) without yielding. Thicker (21 nm) layers with semi-coherent interfaces exhibit unusual plastic phenomena, including extraordinary plastic work hardening rates, and forward vs. reverse plastic flow with small (~10%) changes in stress, and evidence that threshold plastic stress in Ni layers is altered by preceding plastic flow in Cu layers. Line energy, pinning strength, net interfacial dislocation density and hardness are provided.

  4. Unmixing 40Ar/39Ar Muscovite Ages Using Powder X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    McAleer, R. J.; Kunk, M. J.; Valley, P. M.; Walsh, G. J.; Bish, D. L.; Wintsch, R. P.

    2014-12-01

    Whole rock powder X-ray diffraction (XRD) experiments from eight samples collected across a retrograde ductile shear zone in the Devonian Littleton Formation near Claremont, NH, exhibit broad and asymmetric to bimodal muscovite 00l reflections. These composite 00l reflections exhibit a systematic change in shape with increasing retrograde strain. Microtextural relationships, electron microprobe quantitative analyses, and element mapping indicate that the change in peak shape reflects progressive dissolution of metastable Na-rich muscovite and the precipitation of stable Na-poor muscovite. 40Ar/39Ar step heating experiments on muscovite concentrates from these samples show a decrease in total gas age from 274 to 258 Ma as the highest strain zone is approached, and steps within individual spectra range in age by ~20 m.y. The correlation between age and 00l peak shape suggests that the argon isotopic system also tracks the dissolution-precipitation process. Furthermore, the variation in age during step heating indicates that these populations exhibit different in-vacuo degassing behavior. Comparison of whole rock and muscovite concentrate XRD patterns from the same samples shows that the mineral separation process can fractionate these muscovite populations. With this knowledge, four muscovite concentrates were prepared from a single hand sample, analyzed by XRD, and dated. Combining modal estimates from XRD experiments with total gas ages, the four splits narrowly define a mixing line that resolves end-member ages of 250 and 300 Ma for the neocrystallized and earlier high grade populations of muscovite, respectively. These ages are consistent with age data from all other samples. The results show that, in some settings, powder XRD provides a powerful and time effective method to both identify the existence of and establish the proportions of multiple compositional populations of muscovite prior to 40Ar/39Ar analysis. This approach will be especially useful in settings where fine grain-size, intragrain zoning, and micron-scale intergrowth complicate in-situ analysis, and where impure mineral concentrates, low Cl concentrations and/or low variance in muscovite Cl/K ratios preclude chemical discrimination using isotopic compositions obtained during 40Ar/39Ar step heating experiments.

  5. X-ray scattering by one-dimensional chains: Powder diffraction

    NASA Astrophysics Data System (ADS)

    Chen, C.-E.; Schlesinger, Y.; Heeger, A. J.

    1982-02-01

    A theory of the powder-pattern x-ray scattering line shape is developed for independent one-dimensional (1D) chains, appropriate, for example, for analysis of powder data from Hg3-?AsF6. The theory is found to be in excellent agreement with data for the first sheet of Hg3-?AsF6. The steplike leading edge and very slow falloff at higher q are clear characteristics that should allow unambiguous identification of 1D scattering from powder scans, when single crystals are not available.

  6. A CMOS active pixel sensor system for laboratory- based x-ray diffraction studies of biological tissue

    NASA Astrophysics Data System (ADS)

    Bohndiek, Sarah E.; Cook, Emily J.; Arvanitis, Costas D.; Olivo, Alessandro; Royle, Gary J.; Clark, Andy T.; Prydderch, Mark L.; Turchetta, Renato; Speller, Robert D.

    2008-02-01

    X-ray diffraction studies give material-specific information about biological tissue. Ideally, a large area, low noise, wide dynamic range digital x-ray detector is required for laboratory-based x-ray diffraction studies. The goal of this work is to introduce a novel imaging technology, the CMOS active pixel sensor (APS) that has the potential to fulfil all these requirements, and demonstrate its feasibility for coherent scatter imaging. A prototype CMOS APS has been included in an x-ray diffraction demonstration system. An industrial x-ray source with appropriate beam filtration is used to perform angle dispersive x-ray diffraction (ADXRD). Optimization of the experimental set-up is detailed including collimator options and detector operating parameters. Scatter signatures are measured for 11 different materials, covering three medical applications: breast cancer diagnosis, kidney stone identification and bone mineral density calculations. Scatter signatures are also recorded for three mixed samples of known composition. Results are verified using two independent models for predicting the APS scatter signature: (1) a linear systems model of the APS and (2) a linear superposition integral combining known monochromatic scatter signatures with the input polychromatic spectrum used in this case. Cross validation of experimental, modelled and literature results proves that APS are able to record biologically relevant scatter signatures. Coherent scatter signatures are sensitive to multiple materials present in a sample and provide a means to quantify composition. In the future, production of a bespoke APS imager for x-ray diffraction studies could enable simultaneous collection of the transmitted beam and scattered radiation in a laboratory-based coherent scatter system, making clinical transfer of the technique attainable.

  7. A CMOS active pixel sensor system for laboratory- based x-ray diffraction studies of biological tissue.

    PubMed

    Bohndiek, Sarah E; Cook, Emily J; Arvanitis, Costas D; Olivo, Alessandro; Royle, Gary J; Clark, Andy T; Prydderch, Mark L; Turchetta, Renato; Speller, Robert D

    2008-02-01

    X-ray diffraction studies give material-specific information about biological tissue. Ideally, a large area, low noise, wide dynamic range digital x-ray detector is required for laboratory-based x-ray diffraction studies. The goal of this work is to introduce a novel imaging technology, the CMOS active pixel sensor (APS) that has the potential to fulfil all these requirements, and demonstrate its feasibility for coherent scatter imaging. A prototype CMOS APS has been included in an x-ray diffraction demonstration system. An industrial x-ray source with appropriate beam filtration is used to perform angle dispersive x-ray diffraction (ADXRD). Optimization of the experimental set-up is detailed including collimator options and detector operating parameters. Scatter signatures are measured for 11 different materials, covering three medical applications: breast cancer diagnosis, kidney stone identification and bone mineral density calculations. Scatter signatures are also recorded for three mixed samples of known composition. Results are verified using two independent models for predicting the APS scatter signature: (1) a linear systems model of the APS and (2) a linear superposition integral combining known monochromatic scatter signatures with the input polychromatic spectrum used in this case. Cross validation of experimental, modelled and literature results proves that APS are able to record biologically relevant scatter signatures. Coherent scatter signatures are sensitive to multiple materials present in a sample and provide a means to quantify composition. In the future, production of a bespoke APS imager for x-ray diffraction studies could enable simultaneous collection of the transmitted beam and scattered radiation in a laboratory-based coherent scatter system, making clinical transfer of the technique attainable. PMID:18199908

  8. Mesoscale Science with High Energy X-ray Diffraction Microscopy at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Suter, Robert

    2014-03-01

    Spatially resolved diffraction of monochromatic high energy (> 50 keV) x-rays is used to map microstructural quantities inside of bulk polycrystalline materials. The non-destructive nature of High Energy Diffraction Microscopy (HEDM) measurements allows tracking of responses as samples undergo thermo-mechanical or other treatments. Volumes of the order of a cubic millimeter are probed with micron scale spatial resolution. Data sets allow direct comparisons to computational models of responses that frequently involve long-ranged, multi-grain interactions; such direct comparisons have only become possible with the development of HEDM and other high energy x-ray methods. Near-field measurements map the crystallographic orientation field within and between grains using a computational reconstruction method that simulates the experimental geometry and matches orientations in micron sized volume elements to experimental data containing projected grain images in large numbers of Bragg peaks. Far-field measurements yield elastic strain tensors through indexing schemes that sort observed diffraction peaks into sets associated with individual crystals and detect small radial motions in large numbers of such peaks. Combined measurements, facilitated by a new end station hutch at Advanced Photon Source beamline 1-ID, are mutually beneficial and result in accelerated data reduction. Further, absorption tomography yields density contrast that locates secondary phases, void clusters, and cracks, and tracks sample shape during deformation. A collaboration led by the Air Force Research Laboratory and including the Advanced Photon Source, Lawrence Livermore National Laboratory, Carnegie Mellon University, Petra-III, and Cornell University and CHESS is developing software and hardware for combined measurements. Examples of these capabilities include tracking of grain boundary migrations during thermal annealing, tensile deformation of zirconium, and combined measurements of nickel superalloys and a titanium alloy under tensile forces. Work supported by NSF grant DMR-1105173

  9. Elasticity and Anelasticity of Materials from Time-Resolved X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Sinogeikin, S. V.; Smith, J.; Lin, C.; Bai, L.; Rod, E.; Shen, G.

    2014-12-01

    Recent advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have enabled many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to develop and assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. In this talk we will outline recently developed capabilities at HPCAT for studying elasticity and anelasticity of minerals using fast compression and cyclic compression-decompression. A few recent studies will be highlighted. For example, with fast x-ray area detectors having millisecond time resolution, accurate thermal equations of state of materials at temperatures up to 1000K and megabar pressures can be collected in a matter of seconds using membrane-driven diamond anvil cells (DAC), yielding unprecedented time and pressure resolution of true isotherms. Short duration of the experiments eliminates temperature variation during the experiments and in general allows volume measurements at higher pressures and temperatures. Alternatively, high-frequency (kilohertz range) radial diffraction measurements in a panoramic DAC combined with fast, precise cyclic loading/unloading by piezo drive could provide the short time scale necessary for studying rheology of minerals from the elastic response and lattice relaxation as a function of pressure, temperature and strain rate. Finally, we consider some possible future applications for time-resolved high-pressure, high-temperature research of mantle minerals.

  10. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steel

    NASA Astrophysics Data System (ADS)

    Fourspring, Patrick Michael

    X-ray double crystal diffractometry (XRDCD) and X-ray scanning diffractometry (XRSD) were used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if X-ray diffraction could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0-10 mum), subsurface (10-300 mum), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. The results from the XRSD data show similar but less coherent trends than the results from the XRDCD data. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.

  11. Bright Points and Subflares in UV Lines and in X-Rays

    NASA Technical Reports Server (NTRS)

    Rovira, M.; Schmieder, B.; Demoulin, P.; Simnett, G. M.; Hagyard, M. J.; Reichmann, E.; Tandberg-Hanssen, E.

    1998-01-01

    We have analysed an active region which was observed in Halpha (MSDP), UV lines (SMM/UVSP), and in X rays (SMM/HXIS). In this active region there were only a few subflares and many small bright points visible in UV and in X rays. Using an extrapolation based on the Fourier transform we have computed magnetic field lines connecting different photospheric magnetic polarities from ground-based magnetograms. Along the magnetic inversion lines we find 2 different zones: 1. a high shear region (less than 70 degrees) where subflares occur 2. a low shear region along the magnetic inversion line where UV bright points are observed.

  12. Infrared Line Emission from Molecular Gas Heated by X-Rays and Energetic Electrons

    NASA Technical Reports Server (NTRS)

    Maloney, Philip R.

    1997-01-01

    "I propose to carry out a detailed study using infrared observations (and in some cases, optical and ultraviolet observations) of dense interstellar gas exposed to intense fluxes of X-rays and/or energetic electrons. This is undoubtedly the dominant source of line emission for clouds exposed to X-rays from active galactic nuclei, supernova shocks, or embedded X-ray sources (e.g., X-ray binaries), or to high-temperature or relativistic electrons in galaxy clusters, near powerful radio sources, or supernova remnants. Detailed physical and chemical models of such clouds will be used to analyze infrared observations of the Great Annihilator X-ray source in the Galactic Center, cD galaxies in massive cooling flows, and the nuclei of Seyfert galaxies which will be obtained with the Infrared Space Observatory (ISO), UV and optical observations of the Crab Nebula obtained with the Hubble Space Telescope, and ground-based near-infrared observations of Seyfert nuclei. Results from this work will also be of great relevance to observations obtained with the Submillimeter Wave Astronomical Satellite (SWAS). In the first year of funding of this proposal, my chief collaborators (D.J. Hollenbach and A.G.G.M. Tielens, both of NASA Ames Research Center) and I concentrated on completing our models of the physical conditions in, and the resulting line emission from, dense gas irradiated by X-rays. As noted in the original proposal, some important physical processes were not yet thoroughly incorporated into our models at the time of submission. We completed our modeling of the physical conditions and line emission for essentially the entire range of parameter space (five orders of magnitude in X-ray flux to gas density ratio) occupied by typical dense interstellar clouds in which the gas is mostly neutral and X-rays are important for the ionization, chemistry, and thermal balance.

  13. Impurity precipitation in atomized particles evidenced by nano x-ray diffraction computed tomography

    SciTech Connect

    Bonnin, Anne; Wright, Jonathan P.; Tucoulou, Rémi; Palancher, Hervé

    2014-08-25

    Performances and physical properties of high technology materials are influenced or even determined by their initial microstructure and by the behavior of impurity phases. Characterizing these impurities and their relations with the surrounding matrix is therefore of primary importance but it unfortunately often requires a destructive approach, with the risk of misinterpreting the observations. The improvement we have done in high resolution X-ray diffraction computed tomography combined with the use of an X-ray nanoprobe allows non-destructive crystallographic description of materials with microscopic heterogeneous microstructure (with a grain size between 10?nm and 10??m). In this study, the grain localization in a 2D slice of a 20??m solidified atomized ?U-Mo particle is shown and a minority U(C,O) phase (1 wt. %) with sub-micrometer sized grains was characterized inside. Evidence is presented showing that the onset of U(C,O) grain crystallization can be described by a precipitation mechanism since one single U-Mo grain has direct orientation relationship with more than one surrounding U(C,O) grains.

  14. Doubly curved crystal optics for monochromatic and diffraction enhanced x-ray imaging

    NASA Astrophysics Data System (ADS)

    Sahoo, Santosh Kumar

    In radiographic imaging the contrast can be enhanced with the use of monochromatic radiation compared to conventional broadband source. Monochromatic beam radiation can be produced with conventional sources by diffraction off of flat monochromator crystals, but this produces a low monochromatic intensity for imaging. With the use of x-ray optics, monochromatic intensities from conventional sources could be increased. In this study, focused monochromatic beam radiation was obtained using doubly curved crystal (DCC) x-ray optics. While focused beams increase the beam intensity, the convergence is expected to create geometrical blur and worsen resolution. For this reason, the resolution of the focused beam was measured using a resolution phantom for a variety of optic-to-phantom distances. The resolution was essentially independent of optic-to-phantom distances using a 50 mum detector. The measurement was in good agreement with a geometrical calculation based on the expected angular divergence of the optic. The calculation showed that the resolution would improve with increasing optic-to-phantom distances for a higher resolution detector. For horizontal resolution measurements, the contrast was maximum at the center of the output optic image and decreased gradually at distances away from the center. The vertical and horizontal MTFs (Modulation Transfer Functions) were similar at low spatial frequencies while the horizontal MTF is somewhat better at high frequencies. The measured resolution was adequate for mammography.

  15. Development of a prototype pipework scanning system based upon energy dispersive X-ray diffraction (EDXRD)

    NASA Astrophysics Data System (ADS)

    Garrity, D. J.; De Rosa, A. J.; Bradley, D. A.; Jarman, S. E.; Jenneson, P. M.; Vincent, S. M.

    2010-07-01

    A prototype pipework scanning system based upon energy dispersive X-ray diffraction (EDXRD) has been produced, for which system development and preliminary results are presented here. This apparatus has been developed from experience with 2D and 3D bench-top EDXRD systems and comprises a conventional industrial X-ray tube coupled to a bespoke design of tungsten collimators and compact CdTe detector. It is designed as a robust system, rather than delicate lab-based system, to investigate sections of stainless steel pipework for structural changes induced through quenching the steel in liquid nitrogen, and damaging effects such as chloride-induced stress corrosion cracking (SCC). Given the properties of tungsten, namely its brittle nature, a complex programme of electro-discharge machining (EDM) has been devised to precisely manufacture the collimators from a series of sintered tungsten blocks. Preliminary measurements have focused on calibrating the system using the extreme ferrite and austenite phases, meeting a pre-requisite benchmark for attempting more challenging measurements such as the austenite to martensite transformation and investigations of SCC in these sections of pipework.

  16. Development of low temperature and high magnetic field X-ray diffraction facility

    NASA Astrophysics Data System (ADS)

    Shahee, Aga; Sharma, Shivani; Singh, K.; Lalla, N. P.; Chaddah, P.

    2015-06-01

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17 kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to -8 T). The available scattering angle ranges from 5° to 115° 2? with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr0.5Sr0.5MnO3 sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.

  17. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    SciTech Connect

    Oswald, Benjamin B.; Pagan, Darren C.; Miller, Matthew P.; Schuren, Jay C.

    2013-03-15

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 Degree-Sign C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models.

  18. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading.

    PubMed

    Oswald, Benjamin B; Schuren, Jay C; Pagan, Darren C; Miller, Matthew P

    2013-03-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models. PMID:23556825

  19. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    NASA Astrophysics Data System (ADS)

    Oswald, Benjamin B.; Schuren, Jay C.; Pagan, Darren C.; Miller, Matthew P.

    2013-03-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models.

  20. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    PubMed Central

    Oswald, Benjamin B.; Schuren, Jay C.; Pagan, Darren C.; Miller, Matthew P.

    2013-01-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models. PMID:23556825

  1. X-ray diffraction from bone employing annular and semi-annular beams.

    PubMed

    Dicken, A J; Evans, J P O; Rogers, K D; Stone, N; Greenwood, C; Godber, S X; Prokopiou, D; Clement, J G; Lyburn, I D; Martin, R M; Zioupos, P

    2015-08-01

    There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as 'bone quality' need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of 'bone quality'. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo K? and W K? energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined. PMID:26159892

  2. X-ray diffraction from bone employing annular and semi-annular beams

    NASA Astrophysics Data System (ADS)

    Dicken, A. J.; Evans, J. P. O.; Rogers, K. D.; Stone, N.; Greenwood, C.; Godber, S. X.; Prokopiou, D.; Clement, J. G.; Lyburn, I. D.; Martin, R. M.; Zioupos, P.

    2015-08-01

    There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as ‘bone quality’ need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction. In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of ‘bone quality’. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo K? and W K? energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined.

  3. Solution Synchrotron X-ray Diffraction Reveals Structural Details of Lipid Domains in Ternary Mixtures

    SciTech Connect

    Yuan, J.; Kiss, A; Pramudya, Y; Nguyen, L; Hirst, L

    2009-01-01

    The influence of cholesterol on lipid bilayer structure is significant and the effect of cholesterol on lipid sorting and phase separation in lipid-raft-forming model membrane systems has been well investigated by microscopy methods on giant vesicles. An important consideration however is the influence of fluorescence illumination on the phase state of these lipids and this effect must be carefully minimized. In this paper, we show that synchrotron x-ray scattering on solution lipid mixtures is an effective alternative technique for the identification and characterization of the l o (liquid ordered) and l d (liquid disordered) phases. The high intensity of synchrotron x rays allows the observation of up to 5 orders of diffraction from the l o phase, whereas only two are clearly visible when the l d phase alone is present. This data can be collected in approximately 1 min/sample, allowing rapid generation of phase data. In this paper, we measure the lamellar spacing in both the liquid-ordered and liquid-disordered phases simultaneously, as a function of cholesterol concentration in two different ternary mixtures. We also observe evidence of a third gel-phaselike population at 10-12 mol % cholesterol and determine the thickness of the bilayer for this phase. Importantly we are able to look at phase coexistence in the membrane independent of photoeffects.

  4. Upgrade of X-ray Magnetic Diffraction Experimental System and Its Application to Ferromagnetic Material

    SciTech Connect

    Suzuki, Kosuke; Tsuji, Naruki; Akiyama, Hiromitu; Ito, Masahisa; Kitani, Kensuke; Adachi, Hiromichi; Kawata, Hiroshi

    2007-01-19

    We have performed X-ray magnetic diffraction (XMD) experiment of ferromagnets at the Photon Factory (PF) of the High Energy Accelerator Research Organization (KEK) in Tsukuba. In this study, we have upgraded the XMD experimental system in order to apply this method to as many samples as possible. Upgrade was made for (1) the X-ray counting system and related measurement program, (2) the electromagnet, and (3) the refrigerator. The performance of the system was enhanced so that (1) the counting rate capability was improved from 104cps to 105cps, (2) the maximum magnetic field was increased from 0.85T to 2.15T, and (3) the lowest sample temperature was reduced from 15K to 5K. The new system was applied to an orbital ordering compound of YTiO3, and we obtained spin magnetic form factor for the reflection plane (010) perpendicular to the b axis. The magnetic field of 2T was needed to saturate the magnetization of YTiO3 along the b axis. These are the first data with the magnetization of YTiO3 saturated along the b axis by the XMD.

  5. Surface x-ray diffraction of complex metal oxide surfaces and interfaces--a new era

    SciTech Connect

    Schlepuetz, C. M.; Willmott, P. R.; Pauli, S. A.; Herger, R.; Martoccia, D.; Bjoerck, M.; Kumah, D.; Clarke, R.; Yacoby, Y.

    2009-01-29

    The availability of high-brilliance hard x-ray synchrotron radiation and the advent of novel photon counting area detectors have brought surface x-ray diffraction (SXRD) into a new era. It is now possible to record large numbers of structure factors with much improved reliability within reasonable beamtime durations. As a result, structural determination of the surfaces and interfaces of complex crystallographic systems and heterostructures has now become feasible, especially in conjunction with phase-retrieval methods. It is thereby hoped that detailed structural information will shed light on the unusual physical properties of these systems. Complex metal oxide systems investigated at the Materials Science beamline of the Swiss Light Source, including the surface of SrTiO{sub 3}, the interface between LaAlO{sub 3} and SrTiO{sub 3}, and the structure of YBa{sub 2}Cu{sub 3}O{sub 7} grown on NdGaO{sub 3}, SrTiO{sub 3}, and (LaSr)(AlTa)O{sub 3} will be presented as examples of what is now possible using SXRD.

  6. Cryogenic coherent x-ray diffraction imaging for biological non-crystalline particles using the KOTOBUKI-1 diffraction apparatus at SACLA

    NASA Astrophysics Data System (ADS)

    Oroguchi, Tomotaka; Sekiguchi, Yuki; Kobayashi, Amane; Masaki, Yu; Fukuda, Asahi; Hashimoto, Saki; Nakasako, Masayoshi; Ichikawa, Yuichi; Kurumizaka, Hitoshi; Shimizu, Mitsuhiro; Inui, Yayoi; Matsunaga, Sachihiro; Kato, Takayuki; Namba, Keiichi; Yamaguchi, Keiichi; Kuwata, Kazuo; Kameda, Hiroshi; Fukui, Naoya; Kawata, Yasushi; Kameshima, Takashi; Takayama, Yuki; Yonekura, Koji; Yamamoto, Masaki

    2015-09-01

    We have developed an experimental apparatus named KOTOBUKI-1 for use in the coherent x-ray diffraction imaging experiments of frozen-hydrated non-crystalline particles at cryogenic temperature. The apparatus allows us to collect diffraction data for frozen-hydrated specimens at 66 K and provides an experimental environment to easily transfer frozen-hydrated specimens from liquid nitrogen storage to the specimen stage for x-ray exposure. Since 2012, the apparatus has been used in the single-shot diffraction data collection of non-crystalline biological cells and cellular components with dimensions from micrometer to submicrometer using x-ray free electron lasers at SACLA. Here we report on the performance of the KOTOBUKI-1 diffraction apparatus and some structure analyses of biological cells and cellular components. Based on the present results, we also discuss the future developments of diffraction apparatus for more efficient data collection.

  7. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE PAGESBeta

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (more »to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (« less

  8. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    NASA Astrophysics Data System (ADS)

    Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.

    2010-10-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will directly translate to use at hard x-ray free electron lasers.

  9. Inorg. Chem. 1993, 32, 48294833 4829 X-ray Powder Diffraction as a Tool for Facing Twins: The Case of the Monoclinic NbCoTez and

    E-print Network

    Li, Jing

    metal carbonyl polymer, [Ru(CO)&, from X-ray powder diffraction (XRPD) data only. Some samples mayInorg. Chem. 1993, 32, 48294833 4829 X-ray Powder Diffraction as a Tool for Facing Twins: The Case. Therefore,powder diffraction data and Rietveld refinement were used to assess the correct stereochemistryof

  10. New reactor dedicated to in operando studies of model catalysts by means of surface x-ray diffraction and grazing incidence small angle x-ray scattering

    SciTech Connect

    Saint-Lager, M.-C.; Bailly, A.; Dolle, P.; Baudoing-Savois, R.; Taunier, P.; Garaudee, S.; Cuccaro, S.; Douillet, S.; Geaymond, O.; Perroux, G.; Tissot, O.; Micha, J.-S.; Ulrich, O.; Rieutord, F.

    2007-08-15

    A new experimental setup has been developed to enable in situ studies of catalyst surfaces during chemical reactions by means of surface x-ray diffraction (SXRD) and grazing incidence small angle x-ray scattering. The x-ray reactor chamber was designed for both ultrahigh-vacuum (UHV) and reactive gas environments. A laser beam heating of the sample was implemented; the sample temperature reaches 1100 K in UHV and 600 K in the presence of reactive gases. The reactor equipment allows dynamical observations of the surface with various, perfectly mixed gases at controlled partial pressures. It can run in two modes: as a bath reactor in the pressure range of 1-1000 mbars and as a continuous flow cell for pressure lower than 10{sup -3} mbar. The reactor is connected to an UHV preparation chamber also equipped with low energy electron diffraction and Auger spectroscopy. This setup is thus perfectly well suited to extend in situ studies to more complex surfaces, such as epitaxial films or supported nanoparticles. It offers the possibility to follow the chemically induced changes of the morphology, the structure, the composition, and growth processes of the model catalyst surface during exposure to reactive gases. As an example the Pd{sub 8}Ni{sub 92}(110) surface structure was followed by SXRD under a few millibars of hydrogen and during butadiene hydrogenation while the reaction was monitored by quadrupole mass spectrometry. This experiment evidenced the great sensitivity of the diffracted intensity to the subtle interaction between the surface atoms and the gas molecules.

  11. UV/X-Ray Diffraction Radiation for non-intercepting Micron-Scale Beam Size Measurement

    E-print Network

    -; Lefevre, T; Karataev, P; Billing, M

    2012-01-01

    Diffraction radiation (DR) is produced when a relativistic charged particle moves in the vicinity of a medium. The electric field of the charged particle polarizes the target atoms which then oscillate, emitting radiation with a very broad spectrum. The spatial-spectral properties of DR are sensitive to a range of electron beam parameters. Furthermore, the energy loss due to DR is so small that the electron beam parameters are unchanged. Therefore DR can be used to develop non-invasive diagnostic tools. The aim of this project is to measure the transverse (vertical) beam size using incoherent DR. To achieve the micron-scale resolution required by CLIC, DR in UV and X-ray spectral-range must be investigated. During the next few years, experimental validation of such a scheme will be conducted on the CesrTA at Cornell University, USA. Here we present the current status of the experiment preparation.

  12. Uranium Hydridoborates: Synthesis, Magnetism, and X-ray/Neutron Diffraction Structures.

    PubMed

    Braunschweig, H; Gackstatter, A; Kupfer, T; Radacki, K; Franke, S; Meyer, K; Fucke, K; Lemée-Cailleau, M-H

    2015-08-17

    While uranium hydridoborate complexes containing the [BH4](-) moiety have been well-known in the literature for many years, species with functionalized borate centers remained considerably rare. We were now able to prepare several uranium hydridoborates (1-4) with amino-substituted borate moieties with high selectivity by smooth reaction of [Cp*2UMe2] (Cp* = C5Me5) and [Cp'2UMe2] (Cp' = 1,2,4-tBu3C5H2) with the aminoborane H2BN(SiMe3)2. A combination of nuclear magnetic resonance spectroscopy, deuteration experiments, magnetic SQUID measurements, and X-ray/neutron diffraction studies was used to verify the anticipated molecular structures and oxidation states of 1-4 and helped to establish a linear tridentate coordination mode of the borate anions. PMID:26247295

  13. X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Dwivedi, Jagrati; Shukla, Kritika

    2015-06-01

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H2N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm-1. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.

  14. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of recombinant human fumarase

    PubMed Central

    Pereira de Pádua, Ricardo Augusto; Nonato, Maria Cristina

    2014-01-01

    Human fumarase (HsFH) is a well-known citric acid cycle enzyme and is therefore a key component in energy metabolism. Genetic studies on human patients have shown that polymorphisms in the fumarase gene are responsible for diseases such as hereditary leiomyomatosis and renal cell cancer. As a first step in unravelling the molecular basis of the mechanism of fumarase deficiency in genetic disorders, the HsFH gene was cloned in pET-28a, heterologously expressed in Escherichia coli, purified by nickel-affinity chromatography and crystallized using the vapour-diffusion technique. X-ray diffraction experiments were performed at a synchrotron source and the structure was solved at 2.1?Å resolution by molecular replacement. PMID:24419633

  15. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector

    SciTech Connect

    Baker, Jessica L; Jimison, Leslie H; Mannsfeld, Stefan; Volkman, Steven; Yin, Shong; Subramanian, Vivek; Salleo, Alberto; Alivisatos, A Paul; Toney, Michael F

    2010-02-19

    As thin films become increasingly popular (for solar cells, LEDs, microelectronics, batteries), quantitative morphological information is needed to predict and optimize the film's electronic, optical and mechanical properties. This quantification can be obtained quickly and easily with X-ray diffraction using an area detector and synchrotron radiation in two simple geometries. In this paper, we describe a methodology for constructing complete pole figures for thin films with fiber texture (isotropic in-plane orientation). We demonstrate this technique on semicrystalline polymer films, self-assembled nanoparticle semiconductor films, and randomly-packed metallic nanoparticle films. This method can be immediately implemented to help understand the relationship between film processing and microstructure, enabling the development of better and less expensive electronic and optoelectronic devices.

  16. Kinetics of Methane Hydrate Decomposition Studied via in Situ Low Temperature X-ray Powder Diffraction

    SciTech Connect

    Everett, Susan M; Rawn, Claudia J; Keffer, David J.; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy Joe

    2013-01-01

    Gas hydrates are known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice termed self-preservation or anomalous preservation. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Two regions of slowed decomposition for methane hydrate, 180 200 K and 230 260 K, were observed, and the kinetics were studied by in situ low temperature x-ray powder diffraction. The kinetic constants for ice formation from methane hydrate were determined by the Avrami model within each region and activation energies, Ea, were determined by the Arrhenius plot. Ea determined from the data for 180 200 K was 42 kJ/mol and for 230 260 K was 22 kJ/mol. The higher Ea in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

  17. Crystallization and Preliminary X-ray Diffraction Analysis of motif N from Saccharomyces cerevisiae Dbf4

    SciTech Connect

    Matthews, L.; Duong, A; Prasad, A; Duncker, B; Guarne, A

    2009-01-01

    The Cdc7-Dbf4 complex plays an instrumental role in the initiation of DNA replication and is a target of replication-checkpoint responses in Saccharomyces cerevisiae. Cdc7 is a conserved serine/threonine kinase whose activity depends on association with its regulatory subunit, Dbf4. A conserved sequence near the N-terminus of Dbf4 (motif N) is necessary for the interaction of Cdc7-Dbf4 with the checkpoint kinase Rad53. To understand the role of the Cdc7-Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. A complete native data set was collected at 100 K from crystals that diffracted X-rays to 2.75 {angstrom} resolution and structure determination is currently under way.

  18. Multiwalled carbon nanotubes grown in hydrogen atmosphere: An x-ray diffraction study

    SciTech Connect

    Maniwa, Yutaka; Fujiwara, Ryuji; Kira, Hiroshi; Tou, Hideki; Nishibori, Eiji; Takata, Masaki; Sakata, Makoto; Fujiwara, Akihiko; Zhao, Xinluo; Iijima, Sumio

    2001-08-15

    X-ray diffraction study of multiwalled carbon nanotube (MWNT) grown by arc discharge in hydrogen atmosphere is presented. It is found that the thermal-expansion coefficient along the radial direction of MWNT is widely distributed in a range from 1.6 x 10{sup -5} K{sup -1} to 2.6 x 10{sup -5} K{sup -1}, indicating the existence of both of Russian doll MWNT and highly defective MWNT. Russian doll MWNT is suggested to have the outer diameter less than {approx}100 Aa. Thicker MWNT's are typically highly defective, and may have the jelly roll (scroll) or defective polygonal structure consisting of flat graphite domains.

  19. Crystallization and preliminary X-ray diffraction analysis of the invertase from Saccharomyces cerevisiae

    PubMed Central

    Sainz-Polo, M. Angela; Lafraya, Alvaro; Polo, Aitana; Marín-Navarro, Julia; Polaina, Julio; Sanz-Aparicio, Julia

    2012-01-01

    Saccharomyces cerevisiae invertase (ScInv) is an enzyme encoded by the SUC2 gene that releases ?-fructose from the nonreducing termini of various ?-­d-fructofuranoside substrates. Its ability to produce 6-kestose by transglycosylation makes this enzyme an interesting research target for applications in industrial biotechnology. The native enzyme, which presents a high degree of oligomerization, was crystallized by vapour-diffusion methods. The crystals belonged to space group P3121, with unit-cell parameters a = 268.6, b = 268.6, c = 224.4?Å. The crystals diffracted to 3.3?Å resolution and gave complete data sets using a synchrotron X-ray source. PMID:23192042

  20. Anomalous high-pressure behavior of amorphous selenium from synchrotron x-ray diffraction and microtomography

    PubMed Central

    Liu, Haozhe; Wang, Luhong; Xiao, Xianghui; De Carlo, Francesco; Feng, Ji; Mao, Ho-kwang; Hemley, Russell J.

    2008-01-01

    The high-pressure behavior of amorphous selenium has been investigated with time-resolved diamond anvil cell synchrotron x-ray diffraction and computed microtomography techniques. A two-step dynamic crystallization process is observed in which the monoclinic phase crystallized from the amorphous selenium and gradually converted to the trigonal phase, thereby explaining previously observed anomalous changes in electrical conductivity of the material under pressure. The crystallization of this elemental system involves local topological fluctuations and results in an unusual pressure-induced volume expansion. The metastability of the phases involved in the transition accounts for this phenomenon. The results demonstrate the use of pressure to control and directly monitor the relative densities and energetics of phases to create new phases from highly metastable states. The microtomographic technique developed here represents a method for determination of the equations of state of amorphous materials at extreme pressures and temperatures. PMID:18768800