Sample records for x-ray diffraction line

  1. EFFECT OF SATELLITE LINES FROM X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. PA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predict...

  2. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  3. X-Ray Diffraction

    NSDL National Science Digital Library

    Matter.org

    This site from the University of London presents a tutorial on several methods of X-ray diffraction, including the powder, rotating crystal, and Laue methods Each section includes interactive Java applets, exercises, and links to a glossary of terms.

  4. Grain orientation mapping of passivated aluminum interconnect lines with X-ray micro-diffraction

    SciTech Connect

    Chang, C.H.; Patel, J.R. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source Div.]|[Stanford Univ., CA (United States); MacDowell, A.A.; Padmore, H.A.; Thompson, A.C. [Lawrence Berkeley National Lab., CA (United States)

    1998-09-01

    A micro x-ray diffraction facility is under development at the Advanced Light Source. Spot sizes are typically about 1-{micro}m size generated by means of grazing incidence Kirkpatrick-Baez focusing mirrors. Photon energy is either white of energy range 6--14 keV or monochromatic generated from a pair of channel cut crystals. Laue diffraction pattern from a single grain in a passivated 2-{micro}m wide bamboo structured Aluminum interconnect line has been recorded. Acquisition times are of the order of seconds. The Laue pattern has allowed the determination of the crystallographic orientation of individual grains along the line length. The experimental and analysis procedure used is described, as is the latest grain orientation result. The impact of x-ray micro-diffraction and its possible future direction are discussed in the context of other developments in the area of electromigration, and other technological problems.

  5. Structural transformations induced in graphite by grinding: Analysis of 002 x-ray diffraction line profiles

    Microsoft Academic Search

    J. B. Aladekomo; R. H. Bragg

    1990-01-01

    The x-ray diffraction line profiles of the 002 reflections of graphite samples ground in a ball mill for periods up to 90 hours were studied using newly developed peak analysis methods that permitted separation of overlapping peaks having different peak positions, intensities, and line-breadths. For 3.354Aâ¤dââââ¤3.375A a continuous range of single phases characterized by symmetrical peaks of increasing breadths was

  6. THE EFFECT OF SATELLITE LINES FROM THE X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. EPA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predic...

  7. A Novel X-ray Diffraction and Reflectivity Tool for Front-End of Line Metrology

    NASA Astrophysics Data System (ADS)

    Wormington, M.; Yokhin, B.; Berman, D.; Krokhmal, A.; Mazor, I.; Ryan, P.; Wall, J.; Bytheway, R.

    2011-11-01

    High-resolution X-ray diffraction (HRXRD) is an established technique for the characterization and metrology of epitaxial thin-films. However, its use by the silicon semiconductor industry has been limited due to the stringent reliability, spot-size and throughput requirements for in-line measurement of product wafers. We have developed a new X-ray metrology tool (called the JVX 7200) that meets these demands. The tool features a novel HRXRD channel that provides composition, relaxation and thickness information for SiGe and Si:C epitaxial films. It also combines an enhanced X-ray reflectivity (XRR) channel to provide complementary thickness, density and roughness information on SiGe as well as other front-end of line (FEOL) films, such as those found in high-k gate/metal gate (HKMG) stacks. We describe the principles and capabilities of both the HRXRD and XRR channels and provide a comparison with conventional X-ray systems. Representative data are presented to highlight the capabilities of the new tool.

  8. Lattice imperfection studies in polycrystalline materials by x-ray diffraction line-profile analysis

    Microsoft Academic Search

    M. de; S. P. Sen Gupta

    1984-01-01

    This review concerns our recent investigations with a series of binary fcc Ag- and Cu-base alloys (viz Ag-Ga, Ag-Ge, Ag-Al and Cu-Ga, Cu-Ge) from detailed analyses of x-ray diffraction line profiles, the importance of which\\u000a has been briefly summarized. The theoretical formulations of the Warren-Averbach’s method of Fourier analysis of peak-shapes\\u000a along with the methods of peak-shift and peak-asymmetry have

  9. In-line holography and coherent diffractive imaging with x-ray waveguides

    SciTech Connect

    De Caro, L.; Giannini, C.; Guagliardi, A. [Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), via Amendola 122/O, I-70126 Bari (Italy); Pelliccia, D. [Dipartimento di Fisica, Universita di Roma 'La Sapienza' and INFN Sezione Roma 1, Roma (Italy); Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), via Cineto Romano 42, I-00156 Roma (Italy); Mocuta, C.; Metzger, T. H. [ESRF, Boite Postale 220, F-38043 Grenoble Cedex (France); Cedola, A.; Burkeeva, I.; Lagomarsino, S. [Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), via Cineto Romano 42, I-00156 Roma (Italy)

    2008-02-15

    A Fresnel coherent diffraction imaging experiment with hard x rays is here presented, using two planar crossed waveguides as optical elements, leading to a virtual pointlike source. The coherent wave field obtained with this setup is used to illuminate a micrometric single object having the shape of a butterfly. A digital two-dimensional in-line holographic reconstruction of the unknown object at low resolution (200 nm) has been obtained directly via fast Fourier transform (FFT) of the raw data. The object and its twin image are well separated because suitable geometrical conditions are satisfied. A good estimate of the incident wave field phase has been extracted directly from the FFT of the raw data. A partial object reconstruction with 50 nm spatial resolution was achieved by fast iterative phase retrieval, the major limitation for a full reconstruction being the nonideal structure of the guided beam. The method offers a route for fast and reliable phase retrieval in x-ray coherent diffraction.

  10. A line-broadening analysis model for the microstructural characterization of nanocrystalline materials from asymmetric x-ray diffraction peaks

    Microsoft Academic Search

    Juan Pantoja-Cortés; Florentino Sánchez-Bajo; Angel L Ortiz

    2012-01-01

    Nanograin sizes and crystal lattice microstrains in nanocrystalline materials are typically evaluated from the broadening of their x-ray diffraction (XRD) peaks under the assumption of symmetrical diffraction profiles. Since this assumption is not entirely satisfactory, we formulate a line-broadening analysis model of a single peak that considers explicitly the XRD peak asymmetry. The model is a generalization of the variance

  11. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  12. X-Ray Diffraction Microscopy

    NASA Astrophysics Data System (ADS)

    Thibault, Pierre; Elser, Veit

    2010-04-01

    X-ray diffraction phenomena have been used for decades to study matter at the nanometer and subnanometer scales. X-ray diffraction microscopy uses the far-field scattering of coherent X-rays to form the 2D or 3D image of a scattering object in a way that resembles crystallography. In this review, we describe the main principles, benefits, and limitations of diffraction microscopy. After sampling some of the milestones of this young technique and its close variants, we conclude with a short assessment of the current state of the field.

  13. In-Line Monitoring of Fab Processing Using X-Ray Diffraction

    Microsoft Academic Search

    Bruce Gittleman; Kris Kozaczek

    2005-01-01

    As the materials shift that started with Cu continues to advance in the semiconductor industry, new issues related to materials microstructure have arisen. While x-ray diffraction (XRD) has long been used in development applications, in this paper we show that results generated in real time by a unique, high throughput, fully automated XRD metrology tool can be used to develop

  14. THE CHARACTERIZATION OF A SOLID SORBENT WITH CRYSTALLITE SIZE AND STRAIN DATA FROM X-RAY DIFFRACTION LINE BROADENING

    EPA Science Inventory

    The paper gives results of the characterization of a solid sorbent with crystallite size and strain data from x-ray diffraction line broadening, as part of an EPA investigation of the injection of dry Ca(OH)2 into coal-fired electric power plant burners for the control of SO2 emi...

  15. A line-broadening analysis model for the microstructural characterization of nanocrystalline materials from asymmetric x-ray diffraction peaks.

    PubMed

    Pantoja-Cortés, Juan; Sánchez-Bajo, Florentino; Ortiz, Angel L

    2012-05-30

    Nanograin sizes and crystal lattice microstrains in nanocrystalline materials are typically evaluated from the broadening of their x-ray diffraction (XRD) peaks under the assumption of symmetrical diffraction profiles. Since this assumption is not entirely satisfactory, we formulate a line-broadening analysis model of a single peak that considers explicitly the XRD peak asymmetry. The model is a generalization of the variance method in which the shape of the XRD peaks is idealized through asymmetrical split pseudo-Voigt functions. The model is validated on two nanocrystalline powders. PMID:22535886

  16. A line-broadening analysis model for the microstructural characterization of nanocrystalline materials from asymmetric x-ray diffraction peaks

    NASA Astrophysics Data System (ADS)

    Pantoja-Cortés, Juan; Sánchez-Bajo, Florentino; Ortiz, Angel L.

    2012-05-01

    Nanograin sizes and crystal lattice microstrains in nanocrystalline materials are typically evaluated from the broadening of their x-ray diffraction (XRD) peaks under the assumption of symmetrical diffraction profiles. Since this assumption is not entirely satisfactory, we formulate a line-broadening analysis model of a single peak that considers explicitly the XRD peak asymmetry. The model is a generalization of the variance method in which the shape of the XRD peaks is idealized through asymmetrical split pseudo-Voigt functions. The model is validated on two nanocrystalline powders.

  17. The features of identifying lines in a diffraction image formed by a widely divergent X-ray beam

    SciTech Connect

    Avetyan, K. T., E-mail: nazaryan.ernest@netsys.am; Levonyan, L. V.; Arakelyan, M. M., E-mail: marakelyan@ysu.am; Semerjian, H. S.; Grigoryan, P. A.; Hovhannisyan, G. M. [Yerevan State University (Armenia)

    2009-05-15

    A method for identifying lines in a diffraction image formed by a widely divergent X-ray beam and a technique for measuring the crystal structure parameters in the case of asymmetric crystal position have been developed. It is established that, once the distances between a crystal and a photographic plate and between the points of intersection of the hyperbola branches in a diffraction image are known, one can determine the angle between the crystal's zone axis and the wave vector, which leads to multiwave diffraction. Relations linking this angle with the parameters of two atomic planes are obtained. It is found that, to measure the parameters of atomic planes belonging to a given zone, one can use different sets of crossed hyperbolas formed by radiations K{sub {alpha}} and K{sub {beta}}. The measurements and calculations performed for the same sample (Si crystal), mounted symmetrically and asymmetrically, confirm the reliability of the proposed method.

  18. X-ray diffraction line profile analysis of deformation microstructure in boron modified Ti-6Al-4V alloy

    SciTech Connect

    Sarkar, Apu; Roy, Shibayan; Suwas, Satyam, E-mail: satyamsuwas@materials.iisc.ernet.in

    2011-01-15

    X-ray diffraction line profile analysis (XRDLPA) techniques have been applied to investigate the deformed microstructure of a recently developed boron modified two-phase titanium alloy Ti-6Al-4V. The alloy was hot compressed at 750 deg. C up to 50% height reduction at two different strain rates (10{sup -3} S{sup -1} and 1 S{sup -1}). Microstructural parameters like average domain size, average microstrain within the domain and dislocation density of the two phases were determined using X-ray diffraction line profile analysis. The results indicate an increase in the microstrain and dislocation density for the {alpha}-phase and decrease for the {beta}-phase in the case of boron modified alloys as compared to the normal material. Microstructural modifications viz. the grain refinement and the presence of hard, brittle TiB particles in the case of boron modified alloy are held responsible for the observed difference in the dislocation density. - Research Highlights: {yields} Microstructural examination of hot compressed Ti64 with and without boron addition by XRDLPA. {yields} Smaller average domain size in alpha-phase compared to the corresponding alpha-phase in all cases. {yields} Higher microstrain and dislocation density for {alpha} phase and lower for {beta} phase in case of Ti64+B. {yields} Decrease in domain size while increase in micro-strain and dislocation density with strain rate. {yields} Strain accumulation around TiB particles responsible for high dislocation density in {alpha} phase.

  19. In-Line Monitoring of Fab Processing Using X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Gittleman, Bruce; Kozaczek, Kris

    2005-09-01

    As the materials shift that started with Cu continues to advance in the semiconductor industry, new issues related to materials microstructure have arisen. While x-ray diffraction (XRD) has long been used in development applications, in this paper we show that results generated in real time by a unique, high throughput, fully automated XRD metrology tool can be used to develop metrics for qualification and monitoring of critical processes in current and future manufacturing. It will be shown that these metrics provide a unique set of data that correlate to manufacturing issues. For example, ionized-sputtering is the current deposition method of choice for both the Cu seed and TaNx/Ta barrier layers. The alpha phase of Ta is widely used in production for the upper layer of the barrier stack, but complete elimination of the beta phase requires a TaNx layer with sufficient N content, but not so much as to start poisoning the target and generating particle issues. This is a well documented issue, but traditional monitoring by sheet resistance methods cannot guarantee the absence of the beta phase, whereas XRD can determine the presence of even small amounts of beta. Nickel silicide for gate metallization is another example where monitoring of phase is critical. As well being able to qualify an anneal process that gives only the desired NiSi phase everywhere across the wafer, XRD can be used to determine if full silicidation of the Ni has occurred and characterize the crystallographic microstructure of the Ni to determine any effect of that microstructure on the anneal process. The post-anneal nickel silicide phase and uniformity of the silicide microstructure can all be monitored in production. Other examples of the application of XRD to process qualification and production monitoring are derived from the dependence of certain processes, some types of defect generation, and device performance on crystallographic texture. The data presented will show that CMP dishing problems could be traced to texture of the barrier layer and mitigated by adjusting the barrier process. The density of pits developed during CMP of electrochemically deposited (ECD) Cu depends on the fraction of (111) oriented grains. It must be emphasized that the crystallographic texture is not only a key parameter for qualification of high yielding and reliable processes, but also serves as a critical parameter for monitoring tool health. The texture of Cu and W are sensitive not only to deviations in performance of the tool depositing or annealing a particular film, but also highly sensitive to the texture of the barrier underlayers and thus any performance deviations in those tools. The XRD metrology tool has been designed with production monitoring in mind and has been fully integrated into both 200 mm and 300 mm fabs. Rapid analysis is achieved by using a high intensity fixed x-ray source, coupled with a large area 2D detector. The output metrics from one point are generated while the tool is measuring a subsequent point, giving true on-the-fly analysis; no post-processing of data is necessary. Spatial resolution on the wafer surface ranging from 35 ?m to 1 mm is available, making the tool suitable for monitoring of product wafers. Typical analysis times range from 10 seconds to 2 minutes per point, depending on the film thickness and spot size. Current metrics used for process qualification and production monitoring are phase, FWHM of the primary phase peaks (for mean grain size tracking), and crystallographic texture.

  20. X-ray diffraction line-profile analysis of hexagonal ? -iron nitride compound layers: composition-and stress-depth profiles

    Microsoft Academic Search

    T. Gressmann; A. Leineweber; E. J. Mittemeijer

    2008-01-01

    Two hexagonal ?-Fe3N1+x layers grown on ?-Fe substrates by nitriding in NH3\\/H2 gas atmospheres were investigated by high-resolution X-ray powder diffraction using synchrotron radiation employing systematic tilting of the diffraction vector with respect to the specimen surface. Considering all recorded reflections simultaneously, the complicated diffraction profiles obtained were analyzed using a model incorporating hkl-dependent (anisotropic) and tilt angle (?)-dependent diffraction-line

  1. Diffractive Imaging Using Partially Coherent X Rays

    SciTech Connect

    Whitehead, L. W.; Williams, G. J.; Quiney, H. M.; Vine, D. J.; Dilanian, R. A.; Flewett, S.; Nugent, K. A.; Peele, A. G.; Balaur, E.; McNulty, I. [School of Physics, The University of Melbourne, Victoria 3010 (Australia); Department of Physics, La Trobe University, Bundoora, Victoria 3086 (Australia); Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois, 60439 (United States)

    2009-12-11

    The measured spatial coherence characteristics of the illumination used in a diffractive imaging experiment are incorporated in an algorithm that reconstructs the complex transmission function of an object from experimental x-ray diffraction data using 1.4 keV x rays. Conventional coherent diffractive imaging, which assumes full spatial coherence, is a limiting case of our approach. Even in cases in which the deviation from full spatial coherence is small, we demonstrate a significant improvement in the quality of wave field reconstructions. Our formulation is applicable to x-ray and electron diffraction imaging techniques provided that the spatial coherence properties of the illumination are known or can be measured.

  2. A comparison between different X-ray diffraction line broadening analysis methods for nanocrystalline ball-milled FCC powders

    NASA Astrophysics Data System (ADS)

    Soleimanian, V.; Mojtahedi, M.

    2015-06-01

    The microstructural characteristics of aluminum, copper and nickel powders are investigated using different X-ray diffraction line broadening analysis approaches. Prior to analysis, the powders were ball-milled to produce a nanocrystalline structure with high density of probable types of lattice defects. A variety of methods, including Scherrer, Williamson-Smallman, Williamson-Hall, Warren-Averbach, modified Williamson-Hall, modified Warren-Averbach, Rietveld refinement and whole powder pattern modeling (WPPM) approaches are applied. In this way, microstructural characteristics such as crystallite size, microstrain, dislocation density, effective outer cut-off radius of dislocations and the probability of twining and stacking faults are calculated. On the other hand, the results of conventional and advanced line broadening analysis methods are compared. It is revealed that the density of linear and planar defects in the mechanically deformed aluminum powder is significantly smaller than that of copper and nickel, as well as the level of anisotropic strain broadening. Moreover, the WPPM procedure provided a better profile fitting with more accurate results.

  3. Application of synchrotron radiation in X-ray diffraction studies of crystal structures

    NASA Astrophysics Data System (ADS)

    Dauter, Zbigniew

    1996-01-01

    The use of synchrotron radiation in studies of crystal structures by X-ray diffraction is reviewed. The beam lines and detectors used for diffraction experiments are described and the special characteristics of synchrotron X-ray radiation discussed

  4. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  5. X-Ray Diffraction Crystallography (of Large Molecular Aggregates)

    E-print Network

    Ritort, Felix

    X-Ray Diffraction Crystallography (of Large Molecular Aggregates) Barcelona 2011 Ignacio Fita IBMB Crystallography (xyz) #12;J.Roca; 2002 Complex systems with dynamics Complex Systems & Dynamics #12;X-Ray Diffraction Crystallography Why X-rays? Why Diffraction? Why Crystallography? #12;X-Ray Diffraction

  6. Single Particle X-ray Diffractive Imaging

    SciTech Connect

    Bogan, M J; Benner, W H; Boutet, S; Rohner, U; Frank, M; Seibert, M; Maia, F; Barty, A; Bajt, S; Riot, V; Woods, B; Marchesini, S; Hau-Riege, S P; Svenda, M; Marklund, E; Spiller, E; Hajdu, J; Chapman, H N

    2007-10-01

    In nanotechnology, strategies for the creation and manipulation of nanoparticles in the gas phase are critically important for surface modification and substrate-free characterization. Recent coherent diffractive imaging with intense femtosecond X-ray pulses has verified the capability of single-shot imaging of nanoscale objects at sub-optical resolutions beyond the radiation-induced damage threshold. By intercepting electrospray-generated particles with a single 15 femtosecond soft-X-ray pulse, we demonstrate diffractive imaging of a nanoscale specimen in free flight for the first time, an important step toward imaging uncrystallized biomolecules.

  7. The Dynamical Theory of X Ray Diffraction

    ERIC Educational Resources Information Center

    Balchin, A. A.; Whitehouse, C. R.

    1974-01-01

    Summarizes the Darwin theory of x-ray diffraction in thin crystals or crystals with a mosaic texture and its modified application to crystals with three-dimensional electrostatic dipoles. Indicates that the dynamical theory is brought into its present relevance by the improvement of single crystal growth techniques. (CC)

  8. X-Ray Diffraction Crystallography (of Large Molecular Aggregates)

    E-print Network

    Ritort, Felix

    X-Ray Diffraction Crystallography (of Large Molecular Aggregates) Barcelona 2012 Ignacio Fita IBMB Crystallography (xyz) Molecular models from Electron densities #12;J.Roca; 2002 Complex systems with dynamics Complex Systems & Dynamics #12;X-Ray Diffraction Crystallography Why X-rays? Why Diffraction? Why

  9. Tomographic femtosecond X-ray diffractive imaging

    E-print Network

    K. E. Schmidt; J. C. H. Spence; U. Weierstall; R. Kirian; X. Wang; D. Starodub; H. N. Chapman; M. R. Howells; R. B. Doak

    2009-05-27

    A method is proposed for obtaining three simultaneous projections of a target from a single radiation pulse, which also allows the relative orientation of successive targets to be determined. The method has application to femtosecond X-ray diffraction, and does not require solution of the phase problem. We show that the principle axes of a compact charge-density distribution can be obtained from projections of its autocorrelation function, which is directly accessible in diffraction experiments. The results may have more general application to time resolved tomographic pump-probe experiments and time-series imaging.

  10. X-Ray Diffraction on NIF

    SciTech Connect

    Eggert, J H; Wark, J

    2012-02-15

    The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics and techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.

  11. Synchrotron Radiation X-ray Diffraction and X-ray Photoelectron Spectroscopy Investigation on Si-based Structures for SubMicron Si-IC Applications

    Microsoft Academic Search

    Zhe Chuan Feng; Li-Chi Cheng; Chu-Wan Huang; Ying-Lang Wang; T. R. Yang

    2006-01-01

    Synchrotron radiation X-ray diffraction and X-ray photoelectron spectroscopy techniques have been employed for the investigation on Si-based layer structures for sub-micron Si-IC Applications. The high energy synchrotron radiation light sources have produced plenty of X-ray lines with high index diffraction and strong X-ray photoelectron emissions. The useful information will increase our understanding of these materials which are applied extensively to

  12. X-RAY POWDER DIFFRACTION 2 (XPD-2) SCIENTIFIC SCOPE

    E-print Network

    Ohta, Shigemi

    APPLICATIONS TECHNIQUES: · Atomic Pair Distribution Function · Small-Angle X-ray Scattering (SAXS) (Qmin= 0 systems, multiferroics, thermoelectrics, catalysts, nanomaterials, etc. The X-ray Powder Diffraction 2

  13. Structural Analysis of Amorphous Alloys by X-Ray Diffraction

    Microsoft Academic Search

    Osami Haruyama

    1995-01-01

    The structure of amorphous alloys has been studied by using various techniques, such as x-ray, neutron, and electron diffraction experiments. X-ray diffraction is the most conventional of all the techniques and is based on EXAFS (extended x-ray absorption fine structure) [1-3] and AXS (anomalous x-ray scattering) [4-5] experiments, which are used for the investigation of the local environment around a

  14. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R. [and others

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  15. Applications of x rays in art authentication: radiography, x-ray diffraction, and x-ray fluorescence

    Microsoft Academic Search

    Richard Newman

    1998-01-01

    Several techniques involving X-rays are routinely applied in the study of works of art. These include radiography, X-ray diffraction, and X-ray fluorescence (often coupled with an electron beam instrument such as a scanning electron microscope or microprobe). Radiography provides information on condition and previous restorations or repairs. In the case of sculptures, the technique also sheds light on the manufacturing

  16. X-ray Powder Diffraction (XPD) Scientific scope

    E-print Network

    X-ray Powder Diffraction (XPD) Scientific scope XPD is a tunable facility with the ability to collect diffraction data at high x-ray energies (40keV-80keV), offering rapid acquisition (milli of polycrystalline materials · Pair distribution function analysis · Diffraction tomography Schematic layout

  17. Synchrotron X-Ray Powder Diffraction

    NASA Astrophysics Data System (ADS)

    Gozzo, Fabia

    The large breadth of the Synchrotron Radiation X-ray Powder Diffraction (SR-XRPD) technique inevitably requires that we make a certain number of choices in its discussion. Assuming you already have some knowledge of SR and XRPD, we explore the peculiar features that arise from combining them. From the perspective of a beamline scientist, we discuss aspects influencing the beamline optics, diffractometer, detectors and sample environments with attention to details important to perform outstanding SR-XRPD experiments. We begin with a brief overview of SR characteristics and properties and finish with a few SR-XRPD highlights. An extensive literature citation is provided for those who want to delve deeper into those topics that are inevitably not completely covered here.

  18. Phase retrieval in x-ray coherent Fresnel projection-geometry diffraction

    SciTech Connect

    De Caro, Liberato; Giannini, Cinzia; Cedola, Alessia; Pelliccia, Daniele; Lagomarsino, Stefano; Jark, Werner [Istituto di Cristallografia-Consiglio Nazionale delle Ricerche (IC-CNR), via Amendola 122/O, I-70126 Bari (Italy); Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche (IFN-CNR), via Cineto Romano 42, I-00156 Roma (Italy); Sincrotrone Trieste, S.S. 14 km 163.5, I-34012 Basovizza (TS) (Italy)

    2007-01-22

    Coherent x-ray diffraction experiments were performed in Fresnel regime, within a line-projection geometry. A planar x-ray waveguide was used to focus coherent cylindrical waves onto a 7.2 {mu}m Kevlar fiber, which acts as a phase object for hard x rays. The phase was retrieved, by using a Fourier-based iterative phasing algorithm, consistent with measured diffraction data and known constraints in real space, with a submicrometer spatial resolution.

  19. Hard X-ray emission from high-intensity femtosecond laser plasma and its application to X-ray diffraction

    Microsoft Academic Search

    S. Grantham; C. Kim; C. DePriest; M. Richardson

    1998-01-01

    We present Laue diffraction experiments using a fs laser plasma X-ray ultrashort pulse source as preliminary experiments for time resolved X-ray Laue diffraction. The Laue method in X-ray diffraction experiments employs an X-ray beam consisting of a range of wavelengths to illuminate a stationary crystal

  20. Dynamical x-ray diffraction from an icosahedral quasicrystal

    SciTech Connect

    Kycia, S.W.; Goldman, A.I. (Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)); Lograsso, T.A.; Delaney, D.W. (Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States)); Black, D. (National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)); Sutton, M.; Dufresne, E.; Bruening, R. (Department of Physics, Centre for the Physics of Materials, McGill University, Montreal, Quebec, H3A 2T8 (Canada)); Rodricks, B. (Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States))

    1993-08-01

    We present direct evidence of dynamical diffraction of x rays from a quasicrystal. High-resolution x-ray-diffraction measurements of the Al-Pd-Mn face-centered icosahedral quasicrystal were performed, revealing a mosaic full width at half maximum of less than 0.001[degree]. In a second experiment, the anomalous transmission of x rays (the Borrmann effect) was observed. These measurements show that nearly perfect quasicrystals may be grown to centimeter-size dimensions allowing x-ray techniques based upon dynamical diffraction to be brought to bear on the analysis of icosahedral structures.

  1. Practicals X-ray Diffraction Series 1 Data Collection

    E-print Network

    Meagher, Mary

    ;Practicals X-ray Diffraction Series 3 Data Collection on the GADDS system with FRAMBO or GADDS softwarePracticals X-ray Diffraction Series 1 Data Collection FRAMO/GADDS Advanced Instructors : Joseph a short data set. Point to Collect/Scan/Multirun. For the Job name input matrix. Make sure that the Rotate

  2. The characterization of materials using x ray diffraction

    NASA Technical Reports Server (NTRS)

    Sprecher, A. F., Jr.; West, Harvey A.; Fahmy, A. A.

    1993-01-01

    The objectives of this educational exercise are the following: to familiarize the student with x-ray techniques for diffraction pattern generation; to show the student how to utilize x-ray diffraction data for crystal structure determination; and to illustrate systematic and random errors associated with experimental data.

  3. X-ray high-resolution diffraction using refractive lenses

    NASA Astrophysics Data System (ADS)

    Drakopoulos, Michael; Snigirev, Anatoly; Snigireva, Irina; Schilling, Jörg

    2005-01-01

    Refractive x-ray lenses have recently been applied for imaging and scanning microscopy with hard x rays. We report the application of refractive lenses in an optical scheme for high-resolution x-ray diffraction, performed at a high brilliance synchrotron radiation source. An experimental proof of principle and a theoretical discussion are presented. In particular, we observe the x-ray diffraction pattern from a two-dimensional photonic crystal with 4.2?m periodicity, which normally is employed to scatter light in the infrared.

  4. Neutron and X-Ray Diffraction Studies of Advanced Materials

    SciTech Connect

    Barabash, Rozaliya [ORNL; Tiley, Jaimie [Air Force Research Laboratory, Wright-Patterson AFB, OH; Wang, Yandong [Northeast University China; Liaw, Peter K [University of Tennessee, Knoxville (UTK)

    2010-01-01

    The selection of articles in the special topic 'Neutron and X-Ray Studies of Advanced Materials' is based on the materials presented during the TMS 2009 annual meeting in San Francisco, CA, February 15-19, 2009. The development of ultrabrilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultrasensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternative probes of crystalline structure, orientation, and strain. X-ray microdiffraction is nondestructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Moreover, the high-energy X-ray diffraction technique provides an effective tool for characterizing the mechanical and functional behavior in various environments (temperature, stress, and magnetic field). At the same time, some neutron diffraction instruments constructed mainly for the purpose of engineering applications can be found at nearly all neutron facilities. The first generation-dedicated instruments designed for studying in-situ mechanical behavior have been commissioned and used, and industrial standards for reliable and repeatable measurements have been developed. Furthermore, higher penetration of neutron beams into most engineering materials provides direct measurements on the distribution of various stresses (i.e., types I, II, and III) beneath the surface up to several millimeters, even tens of millimeters for important industrial components. With X-ray and neutron measurements, it is possible to characterize material behavior at different length scales. It is predicted that the application of these techniques, in combination with theoretical simulations and numerical modeling, will lead to major breakthroughs in materials science in the foreseeable future, which will contribute to the development of materials technology and industrial innovation. Specifically, the use of these techniques provides bulk material properties that further augment new characterization tools including the increased use of atom probe tomography and high-resolution transmission electron microscopy systems. The combination of these techniques greatly assists the material property models that address multi-length-scale mechanisms. Different applications of diffuse scattering for understanding the fundamental materials properties are illustrated in the articles of Welberry et al., Goossens and Welberry, Campbell, Abe et al., Gilles et al., and Zhang et al. Analysis of thin films and two-dimensional structures is described in the articles of Gramlich et al., Brock et al., Vigliante et al., Kuzel et al., and Davydok et al. Recent advances in the line profile analysis are represented by the the articles of Scardi et al., Ungar et al., and Woo et al. Characterization of modern alloys is presented by the articles of Wollmershauser et al., Eidenberger et al., Garlea et al., Jia et al., Soulami et al., Wilson et al., and Wang et al. The collected articles are written by different scientific X-ray and neutron research groups. They represent a general trend in the development and application of diffraction techniques all over the world.

  5. Biological imaging by soft x-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Shapiro, David; Thibault, Pierre; Beetz, Tobias; Elser, Veit; Howells, Malcolm; Jacobsen, Chris; Kirz, Janos; Lima, Enju; Miao, Huijie; Neiman, Aaron M.; Sayre, David

    2005-10-01

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions. coherent x-ray diffraction imaging | x-ray microscopy

  6. X-ray Microprobe for Fluorescence and Diffraction Analysis

    SciTech Connect

    Ice, G.E. (ORNL)

    2005-03-28

    X-ray diffraction (see unit 1.1) and x-ray excited fluorescence analysis are powerful techniques for the nondestructive measurement of crystal structure and chemical composition. X-ray fluorescence analysis is inherently nondestructive with orders of magnitude lower power deposited for the same detectable limit as with fluorescence excited by charged particle probes (Sparks, 1980). X-ray diffraction analysis is sensitive to crystal structure with orders-of-magnitude greater sensitivity to crystallographic strain than electron probes (Rebonato, et al. 1989). When a small-area x-ray microbeam is used as the probe, chemical composition (Z>14), crystal structure, crystalline texture, and crystalline strain distributions can be determined. These distributions can be studied both at the surface of the sample and deep within the sample (Fig. 1). Current state-of-the-art can achieve an {approx}1 mm-D x-ray microprobe and an {approx}0.1 mm-D x-ray microprobe has been demonstrated (Bilderback, et al., 1994). Despite their great chemical and crystallographic sensitivities, x-ray microprobe techniques have until recently been restricted by inefficient x-ray focusing optics and weak x-ray sources; x-ray microbeam analysis was largely superseded by electron techniques in the 50's. However, interest in x-ray microprobe techniques has now been revived (Howells, et al., 1983; Ice & Sparks, 1984; Chevallier, et al., 1997; Riekel 1992; Thompson, el al., 1992; and Making and Using... 1997) by the development of efficient x-ray focusing optics and ultra-high intensity synchrotron x-ray sources (Buras & Tazzari, 1984; Shenoy, et al., 1988). These advances have increased the achievable microbeam flux by more than 11 orders of magnitude (Fig. 2) (Ice, 1997); the flux in a tunable 1 mm-D beam on a 'so called' 3rd-generation synchrotron source such as the APS can exceed the flux in a fixed-energy mm2 beam on a conventional source. These advances make x-ray microfluorescence and x-ray microdiffraction analysis techniques some of the most powerful techniques available for the nondestructive measurement of chemical and crystallographic distributions in materials. This unit reviews the physics, advantages, and scientific applications of hard x-ray (E > 3 keV) microfluorescence and x-ray microdiffraction analysis. Because practical x-ray microbeam instruments are extremely rare, a special emphasis will be placed on instrumentation, accessibility, and experimental needs which justify the use of x-ray microbeam analysis.

  7. Solidification sensing using high-energy X-ray diffraction

    Microsoft Academic Search

    T. A. Siewert; W. P. Dube; D. W. Fitting

    1996-01-01

    A high-energy transmission X-ray diffraction technique that combines the capabilities of conventional high- and low-energy X-ray systems has been developed at the National Institute of Standards and Technology as a noncontact sensor for locating the liquid\\/solid boundary in metal castings. The high-energy (160 to 320 kV) X-rays can penetrate the thickness of most castings, as well as the mold and

  8. Diffraction Pattern Caused by X-Ray Thermal Diffuse Scattering in Absorbing Perfect Crystal

    NASA Astrophysics Data System (ADS)

    Kashiwase, Yasuji; Mori, Masahiro; Kogiso, Motokazu; Minoura, Masayuki; Sasaki, Satoshi

    1988-02-01

    Excess diffraction lines observed as black lines across the 220 thermal diffuse spot and near the incident beam spot on X-ray film photographs of absorbing perfect germanium crystals were studied experimentally in detail by using monochromatized synchrotron radiations. The cause of the line was attributed to the anomalous transmission of the thermally scattered X-rays in the crystal. The experimental result was compared successfully with the theoretical calculation based on the dynamical diffraction theory of X-rays in the absorbing ideally perfect crystal.

  9. Generation of picosecond CuK? X-ray pulses and application to time-resolved X-ray diffraction

    Microsoft Academic Search

    P. Chen; I. V. Tomov; H. E. Elsayed-Ali; M. P. Rentzepis

    1996-01-01

    Summary form only given. Generation of picosecond X-ray pulses has applications to time-resolved diffraction studies. For the generation of picosecond narrow linewidth hard X-ray pulses one can use the optical excitation of an X-ray diode. This technique allows for the generation of picosecond X-ray pulses with spatial and spectral characteristics similar to the X-ray radiation generated by conventional X-ray tubes.

  10. Surface-sensitive X-ray diffraction methods: physics, applications and related X-ray and SR instrumentation

    Microsoft Academic Search

    M. V. Kovalchuk; A. Yu Kazimirov; S. I. Zheludeva

    1995-01-01

    The review of the surface-sensitive X-ray diffraction methods including surface X-ray diffraction and X-ray standing wave method is presented. The discussion is illustrated by numerous examples of applications of these methods in different fields of science and technology. Instrumentation and X-ray optics for realization of these methods with laboratory X-ray sources and synchrotron radiation is discussed.

  11. Surface-sensitive X-ray diffraction methods: Physics, applications and related X-ray and SR instrumentation

    NASA Astrophysics Data System (ADS)

    Kovalchuk, M. V.; Kazimirov, A. Yu.; Zheludeva, S. I.

    1995-08-01

    The review of the surface-sensitive X-ray diffraction methods including surface X-ray diffraction and X-ray standing wave method is presented. The discussion is illustrated by numerous examples of applications of these methods in different fields of science and technology. Instrumentation and X-ray optics for realization of these methods with laboratory X-ray sources and synchrotron radiation is discussed.

  12. Deformation stacking fault probability and dislocation microstructure of cold worked Cu-Sn-5Zn alloys by x-ray diffraction line profile analysis

    Microsoft Academic Search

    S. N. Dey; P. Chatterjee; S. P. Sen Gupta

    2006-01-01

    Plastically deformed (hand-filed) Cu-Sn-5Zn ternary alloys with Sn concentrations 1, 2.5, and 5 wt % are investigated. Microstructural parameters are studied in terms of x-ray diffraction profile fitting analysis. It is observed by Dey et al. [Acta. Mater. 53, 4635 (2005)] that the change in stacking fault probability (alpha) with Sn concentration for ternary Cu-Sn-5Zn alloys is similar to Cu-based

  13. An X-ray diffraction and X-ray absorption spectroscopy joint study of neuroglobin

    Microsoft Academic Search

    Alessandro Arcovito; Tommaso Moschetti; Paola D’Angelo; Giordano Mancini; Beatrice Vallone; Maurizio Brunori; Stefano Della Longa

    2008-01-01

    Neuroglobin (Ngb) is a member of the globin family expressed in the vertebrate brain, involved in neuroprotection. A combined approach of X-ray diffraction (XRD) on single crystal and X-ray absorption spectroscopy (XAS) in solution, allows to determine the oxidation state and the structure of the Fe–heme both in the bis-histidine and the CO-bound (NgbCO) states. The overall data demonstrate that

  14. X-ray diffraction assisted spectroscopy of Rydberg states

    SciTech Connect

    Kirrander, Adam [ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States)

    2012-10-21

    X-ray diffraction combined with conventional spectroscopy could provide a powerful means to characterize electronically excited atoms and molecules. We demonstrate theoretically how x-ray diffraction from laser excited atoms can be used to determine electronic structure, including angular momentum composition, principal quantum numbers, and channel populations. A theoretical formalism appropriate for highly excited atoms, and easily extended to molecules, is presented together with numerical results for Xe and H atoms.

  15. X-Ray Diffraction Studies of Copper Nanopowder

    E-print Network

    T. Theivasanthi; M. Alagar

    2010-03-31

    Copper nanopowder preparation and its X-Ray diffraction studies are reported in this paper. Electrolytic cathode deposition method is simple and cheapest process for its preparation. Copper nanopowder has been prepared from aqueous copper sulphate solution. Wide range of experimental conditions has been adopted in this process and its X-Ray diffraction characterizations have been studied. The results confirming copper nanopowder with size below 30 nm. Uniformed size Copper nanopowder preparation, in normal room temperature is importance of this study.

  16. X-ray diffraction microscopy of magnetic structures.

    PubMed

    Turner, Joshua J; Huang, Xiaojing; Krupin, Oleg; Seu, Keoki A; Parks, Daniel; Kevan, Stephen; Lima, Enju; Kisslinger, Kim; McNulty, Ian; Gambino, Richard; Mangin, Stephane; Roy, Sujoy; Fischer, Peter

    2011-07-15

    We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L3 edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure. PMID:21838360

  17. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    SciTech Connect

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.

  18. Cryogenic X-ray Diffraction Microscopy for Biological Samples

    SciTech Connect

    E Lima; L Wiegart; P Pernot; M Howells; J Timmins; F Zontone; A Madsen

    2011-12-31

    X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

  19. X-ray diffraction investigation of ultrafine boron nitride powders

    SciTech Connect

    Gurov, S.V.; Chukalin, V.I.; Rezchikova, T.V.; Torbov, V.J.; Troitskii, V.N.

    1986-01-01

    This paper presents an x-ray diffraction analysis of ultrafine boron nitride powders of different mean particle sizes. Diffraction spectra of the ultrafine boron nitride powders were obtained using a DRON-1 apparatus. The experimental facts are indicative of a turbostratic character of deformation of the hexagonal lattice of ultrafinely divided boron nitride.

  20. Coherent Diffraction Imaging with Hard X-Ray Waveguides

    NASA Astrophysics Data System (ADS)

    Caro, Liberato De; Giannini, Cinzia; Pelliccia, Daniele; Cedola, Alessia; Lagomarsino, Stefano

    2013-01-01

    Coherent X-ray diffraction imaging (CXDI) has been widely applied in the nanoscopic world, offering nanometric-scale imaging of noncrystallographic samples, and permitting the next-generation structural studies on living cells, single virus particles and biomolecules. The use of curved wavefronts in CXDI has caused a tidal wave in the already promising application of this emergent technique. The non-planarity of the wavefront allows to accelerate any iterative phase-retrieval process and to guarantee a reliable and unique solution. Nowadays, successful experiments have been performed with Fresnel zone plates and planar waveguides as optical elements. Here we describe the use of a single planar waveguide as well as two crossed waveguides in the experiments which first showed this optical element a promising tool for producing a line- or point-like coherent source, respectively.

  1. Biological imaging by soft x-ray diffraction microscopy

    PubMed Central

    Shapiro, David; Thibault, Pierre; Beetz, Tobias; Elser, Veit; Howells, Malcolm; Jacobsen, Chris; Kirz, Janos; Lima, Enju; Miao, Huijie; Neiman, Aaron M.; Sayre, David

    2005-01-01

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions. PMID:16219701

  2. Ultrafast x-ray diffraction of laser-irradiated crystals

    SciTech Connect

    Heimann, P.A. [Lawrence Berkeley National Lab., CA (US). Advanced Light Source; Larsson, J. [Univ. of California, Berkeley, CA (US). Physics Dept.; Chang, Z. [Univ. of Michigan, Ann Arbor, MI (US). Center for Ultrafast Optical Science

    1997-09-01

    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si(111) crystal and then by a sample crystal, presently InSb(111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or camshaft operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps.

  3. High-Energy Diffraction-Enhanced X-ray Imaging

    SciTech Connect

    Yoneyama, Akio; Ueda, Kazuhiro [Advanced Research Laboratory, Hitachi Ltd., 2520, Akanuma, Hatoyama, Saitama, 350-0395 (Japan); Takeda, Tohoru [Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 228-8555 (Japan); Yamazaki, Takanori [Research and Development Laboratory, Hitachi Cable, Ltd., 5-1-1, Hidakacho, Hitachi, Ibaraki, 319-1414 (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2010-06-23

    In order to apply the diffraction-enhanced X-ray imaging (DEI) method for much wider variety of samples, we have developed the high-energy DEI system. The energy of X-ray was increased up to 70 keV to achieve high permeability for heavy elements. The diffraction of Si(440) was used to keep large field of view. Demonstrative observation of an electrical cable was performed using the X-ray emitted from the vertical wiggler. The obtained images visualized not only the core and ground wire made of copper but also the isolator and outer jacket made of polymer clearly. The comparison of images obtained by the DEI and the absorption-contrast imaging showed that the sensitivity of DEI is about 10 times higher than that of the absorption method for light elements, and 3 times for heavy elements.

  4. X-Ray Diffraction Project Final Report, Fiscal Year 2006

    SciTech Connect

    Dane V. Morgan

    2006-10-01

    An x-ray diffraction diagnostic system was developed for determining real-time shock-driven lattice parameter shifts in single crystals at the gas gun at TA-IV at Sandia National Laboratories (SNL). The signal-to-noise ratio and resolution of the system were measured using imaging plates as the detector and by varying the slit width. This report includes tests of the x-ray diffraction system using a phosphor coupled to a charge-coupled device (CCD) camera by a coherent fiber-optic bundle. The system timing delay was measured with a newly installed transistor-transistor logic (TTL) bypass designed to reduce the x-ray delay time. The axial misalignment of the Bragg planes was determined with respect to the optical axis for a set of eight LiF [lithium fluoride] crystals provided by SNL to determine their suitability for gas gun experiments.

  5. Biological imaging by soft x-ray diffraction microscopy

    DOE PAGESBeta

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; et al

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore »microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  6. Applied possibilities for x-ray diffraction interferometry

    NASA Astrophysics Data System (ADS)

    Raransky, M. D.; Struk, J. M.; Fodchuk, Igor M.; Shafraniuk, V. P.; Raransky, A. M.

    1995-11-01

    Among existing x ray diffraction diagnostics nonperfections of crystals the specific location take methods are based on use of x-ray dynamic diffraction effects. From them the most sensitive are based on interferention. The Pendellosung and Moire fringes methods arise in consequence of coherent dynamic interaction of wave fields in single crystals. One of the main advantages of the Moire method is the extraordinary high sensitivity to insignificant deformations of crystal lattice ((Delta) d/d approximately 10-8) and atomic planes turns ((delta) approximately 0.01'). Created by a method of x-ray diffraction Moire the unique phase magnification permits us to directly observe the nuclear rows of crystal lattice. Until recently the attention of researchers attracted, basically, precise measurements of refraction parameters and dispersion amendments to nuclear scattering amplitudes, measurement of movy with large accuracy and refinement of Avogadro number, and the creation of new multi crystal interferometers. At the same time, little opportunities of x-ray interferometry at research of crystal structure defects were used. For the first time the opportunity of definition by method x-ray diffraction Moire of Burgers vectors of individual dislocation was demonstrated by M. Hart, Christiansen has studied the series of 60 degree(s) dislocation in Si on Moire images. Tensions in Si, caused by Ar ions implantation, were defined in the work. The purpose, which the authors of given reviews pursue consists in demonstration of new opportunities of x-ray three crystal interferometry in the investigation of single and complex defects.

  7. X-ray diffraction and structure of crystallins

    Microsoft Academic Search

    C. Slingsby; B. Norledge; A. Simpson; O. A. Bateman; G. Wright; H. P. C. Driessen; P. F. Lindley; D. S. Moss; B. Bax

    1997-01-01

    The 3-dimensional organisation of crystallin polypeptides into globular proteins and their interactions into higher order structures are important factors governing optical functions related to refraction, accommodation and transparency. Single crystal X-ray diffraction studies have revealed the tertiary and quaternary structural organisation of ?-, ?- and ?-crystallins. Regions of the lens with high refractive index contain high levels of monomeric y-crystallins

  8. X-ray diffraction study of pure plutonium under pressure

    Microsoft Academic Search

    Ph. Faure; C. Genestier

    2009-01-01

    Atomic volume and bulk modulus represent basic cohesion properties of a material and are therefore linked to many other physical properties. However, large discrepancies are found in the literature regarding values for the bulk modulus of pure plutonium (?-phase). New X-ray diffraction measurements of plutonium in diamond anvil cell are presented and the isothermal bulk modulus is extracted.

  9. X-Ray Diffraction Simulation Using Laser Pointers and Printers.

    ERIC Educational Resources Information Center

    Johnson, Neil E.

    2001-01-01

    Uses a laser pointer to demonstrate the analogy between optical and X-ray diffraction and a laser printer with 600 or 1200 dot resolution to create and modify arrays, print them on transparencies, and illuminate them with laser pointers. Includes 14 references. (Author/YDS)

  10. A Practical Method of Simulating X-Ray Diffraction

    ERIC Educational Resources Information Center

    Brisse, F.; Sundararajan, P. R.

    1975-01-01

    Describes an experiment in which the beam of X-rays is simulated through the use of a laser as a monochromatic light source and the crystal is replaced by photographically prepared masks. A strong diffraction pattern as large as 20 cm. can be obtained. (GS)

  11. Ultrahigh-resolution soft-x-ray microscopy with zone plates in high orders of diffraction.

    PubMed

    Rehbein, S; Heim, S; Guttmann, P; Werner, S; Schneider, G

    2009-09-11

    We present an x-ray optical approach to overcome the current limitations in spatial resolution of x-ray microscopes. Our new BESSY full-field x-ray microscope operates with an energy resolution up to E/DeltaE=10(4). We demonstrate that under these conditions it is possible to employ high orders of diffraction for imaging. Using the third order of diffraction of a zone plate objective with 25 nm outermost zone width, 14 nm lines and spaces of a multilayer test structure were clearly resolved. We believe that high-order imaging paves the way towards sub-10-nm real space x-ray imaging. PMID:19792359

  12. Single photon energy dispersive x-ray diffraction

    SciTech Connect

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)] [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Tang, Henry [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720 (United States)] [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720 (United States)

    2014-03-15

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.

  13. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  14. X-ray diffraction from intact tau aggregates in human brain tissue

    SciTech Connect

    Landahl, Eric C.; Antipova, Olga; Bongaarts, Angela; Barrea, Raul; Berry, Robert; Binder, Lester I.; Irving, Thomas; Orgel, Joseph; Vana, Laurel; Rice, Sarah E. (DePaul); (IIT); (NWU)

    2011-09-15

    We describe an instrument to record X-ray diffraction patterns from diseased regions of human brain tissue by combining an in-line visible light fluorescence microscope with an X-ray diffraction microprobe. We use thiazine red fluorescence to specifically label and detect the filamentous tau protein pathology associated with Pick's disease, as several laboratories have done previously. We demonstrate that thiazine red-enhanced regions within the tissue show periodic structure in X-ray diffraction, which is not observed in healthy tissue. One observed periodicity (4.2 {angstrom}) is characteristic of cross-beta sheet structure, consistent with previous results from powder diffraction studies performed on purified, dried tau protein.

  15. Automated identification and classification of single particle serial femtosecond X-ray diffraction data.

    PubMed

    Andreasson, Jakob; Martin, Andrew V; Liang, Meng; Timneanu, Nicusor; Aquila, Andrew; Wang, Fenglin; Iwan, Bianca; Svenda, Martin; Ekeberg, Tomas; Hantke, Max; Bielecki, Johan; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Hartmann, Robert; Erk, Benjamin; Rudek, Benedikt; Chapman, Henry N; Hajdu, Janos; Barty, Anton

    2014-02-10

    The first hard X-ray laser, the Linac Coherent Light Source (LCLS), produces 120 shots per second. Particles injected into the X-ray beam are hit randomly and in unknown orientations by the extremely intense X-ray pulses, where the femtosecond-duration X-ray pulses diffract from the sample before the particle structure is significantly changed even though the sample is ultimately destroyed by the deposited X-ray energy. Single particle X-ray diffraction experiments generate data at the FEL repetition rate, resulting in more than 400,000 detector readouts in an hour, the data stream during an experiment contains blank frames mixed with hits on single particles, clusters and contaminants. The diffraction signal is generally weak and it is superimposed on a low but continually fluctuating background signal, originating from photon noise in the beam line and electronic noise from the detector. Meanwhile, explosion of the sample creates fragments with a characteristic signature. Here, we describe methods based on rapid image analysis combined with ion Time-of-Flight (ToF) spectroscopy of the fragments to achieve an efficient, automated and unsupervised sorting of diffraction data. The studies described here form a basis for the development of real-time frame rejection methods, e.g. for the European XFEL, which is expected to produce 100 million pulses per hour. PMID:24663542

  16. Simulations of a Johann/Johansson diffraction spectrometer for x-ray experiments at an electron beam ion source

    NASA Astrophysics Data System (ADS)

    Jab?o?ski, ?.; Jagodzi?ski, P.; Bana?, D.; Pajek, M.

    2013-09-01

    The ray tracing simulations of x-ray spectra for a compact six-crystal Johann/Johansson diffraction spectrometer covering a wide photon energy range (70 eV-15 keV), i.e. from the extended ultraviolet to the hard x-ray region, are discussed in the context of x-ray experiments at an electron beam ion source facility. In particular, the x-ray line profiles and energy resolution for different diffraction crystals and multilayers were studied, and the effects of extension of x-ray source size and misalignment were investigated. The simulations were also performed for x-ray emission from solid targets bombarded by electrons, which will be used for calibration of the x-ray spectrometer.

  17. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations. PMID:25322219

  18. Solidification sensing using high-energy X-ray diffraction

    SciTech Connect

    Siewert, T.A.; Dube, W.P.; Fitting, D.W. [National Inst. of Standards and Technology, Boulder, CO (United States)

    1996-07-01

    A high-energy transmission X-ray diffraction technique that combines the capabilities of conventional high- and low-energy X-ray systems has been developed at the National Institute of Standards and Technology as a noncontact sensor for locating the liquid/solid boundary in metal castings. The high-energy (160 to 320 kV) X-rays can penetrate the thickness of most castings, as well as the mold and furnace walls. One practical goal for this new method is to collect data on the position, velocity, and possibly the shape of the solidification front of directionally solidified castings. Such information is vital for development and verification of improved solidification models, but it has been difficult to gather because of high temperatures, strong magnetic fields, and vacuum casting furnaces.

  19. X-ray Diffraction from Membrane Protein Nanocrystals

    PubMed Central

    Hunter, M.S.; DePonte, D.P.; Shapiro, D.A.; Kirian, R.A.; Wang, X.; Starodub, D.; Marchesini, S.; Weierstall, U.; Doak, R.B.; Spence, J.C.H.; Fromme, P.

    2011-01-01

    Membrane proteins constitute >30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is <300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 ?m. The results demonstrate that there are membrane protein crystals that contain <100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain <200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells. PMID:21190672

  20. X-ray diffraction from membrane protein nanocrystals.

    PubMed

    Hunter, M S; DePonte, D P; Shapiro, D A; Kirian, R A; Wang, X; Starodub, D; Marchesini, S; Weierstall, U; Doak, R B; Spence, J C H; Fromme, P

    2011-01-01

    Membrane proteins constitute > 30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is < 300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 ?m. The results demonstrate that there are membrane protein crystals that contain < 100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain < 200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells. PMID:21190672

  1. X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction

    E-print Network

    Moeck, Peter

    in determining crystal structures beginning with NaCl, ZnS and diamond. #12;Deriving Bragg's Law: n = 2dsin X as arcs on the film. Debye - Scherrer Camera Film X-ray film sample 2 = 0° 2 = 180° Point where incident

  2. Quantum-dot-array diffraction grating with single order diffraction property for soft x-ray region.

    PubMed

    Kuang, Longyu; Wang, Chuanke; Wang, Zhebin; Cao, Leifeng; Zhu, Xiaoli; Xie, Changqing; Liu, Shenye; Ding, Yongkun

    2010-07-01

    A gold transmission grating is used routinely to disperse the x-ray spectrum at the Z soft x-ray facility to measure the spectrum and temporal history of the absolute soft x-ray power emitted from z-pinch and hohlraum radiation sources. A quantum-dot-array diffraction grating (QDADG) of 250 lines/mm for soft x-ray is designed and fabricated for the first time according to the principle of binary sinusoidal transmission grating. The diffraction efficiencies of the grating are measured in the 150-300 eV photon energy range on the Beamline 3W1B of Beijing Synchrotron Radiation Facility. This article describes the basic concept and calibration techniques and presents calibration results. It is shown that the 250 lines/mm QDADG can be used to disperse light without higher-order diffractions in soft x-ray range, and the diffraction efficiencies of this grating are nearly constant (about 25%), which is beneficial in the spectrum analysis. PMID:20687723

  3. X-ray diffraction study on ? <--> ? phase transition of Cu2Se

    NASA Astrophysics Data System (ADS)

    Tonejc, A.; Tonejc, A. M.

    1981-09-01

    The phase transition of a superionic Cu 2Se conductor was investigated by X-ray diffraction methods. In the experiment the Debye line intensity variation with temperature showed a behavior usually expected for the second-order transition. However, the transition was found to be of the first order. The anomalous behavior is explained.

  4. High energy transmission annular beam X-ray diffraction.

    PubMed

    Dicken, Anthony; Shevchuk, Alex; Rogers, Keith; Godber, Simon; Evans, Paul

    2015-03-01

    We demonstrate material phase retrieval by linearly translating extended polycrystalline samples along the symmetry axis of an annular beam of high-energy X-rays. A series of pseudo-monochromatic diffraction images are recorded from the dark region encompassed by the beam. We measure Bragg maxima from different annular gauge volumes in the form of bright spots in the X-ray diffraction intensity. We present the experiment data from three materials with different crystallographic structural properties i.e. near ideal, large grain size and preferred orientation. This technique shows great promise for analytical inspection tasks requiring highly penetrating radiation such as security screening, medicine and non-destructive testing. PMID:25836851

  5. High-Resolution Scanning X-ray Diffraction Microscopy

    NASA Astrophysics Data System (ADS)

    Thibault, Pierre; Dierolf, Martin; Menzel, Andreas; Bunk, Oliver; David, Christian; Pfeiffer, Franz

    2008-07-01

    Coherent diffractive imaging (CDI) and scanning transmission x-ray microscopy (STXM) are two popular microscopy techniques that have evolved quite independently. CDI promises to reach resolutions below 10 nanometers, but the reconstruction procedures put stringent requirements on data quality and sample preparation. In contrast, STXM features straightforward data analysis, but its resolution is limited by the spot size on the specimen. We demonstrate a ptychographic imaging method that bridges the gap between CDI and STXM by measuring complete diffraction patterns at each point of a STXM scan. The high penetration power of x-rays in combination with the high spatial resolution will allow investigation of a wide range of complex mesoscopic life and material science specimens, such as embedded semiconductor devices or cellular networks.

  6. Implementation of Polycrystalline X-Ray Diffraction for Semiconductor Metrology

    Microsoft Academic Search

    P. W. DeHaven; M. Jeanneret; B. Gittleman; K. Kozaczek

    2007-01-01

    This paper describes the implementation of a first generation inline X-ray diffractometer for the characterization of polycrystalline thin films. The tool is able to provide quantitative structural data on either blanket or patterned wafers, which allows it to serve as a routine line monitor, or as an analytical probe for process development, tool matching, or problem diagnostics.

  7. Coherent X-ray diffraction from collagenous soft tissues

    PubMed Central

    Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-01-01

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395

  8. High pressure X-ray diffraction study of URh3

    NASA Astrophysics Data System (ADS)

    Shukla, B.; Chandra Shekar, N. V.; Sanjay Kumar, N. R.; Sahu, P. Ch

    2012-06-01

    High pressure x-ray diffraction studies on URh3 have been carried out up to 31 GPa using a diamond anvil cell. URh3 which exists in AuCu3 type structure at ambient pressure remains stable up to the pressure studied. The Birch-Murnaghan equation of state fit for the P-V data yields the bulk modulus to be 193 GPa.

  9. Diffraction of Thermally Scattered X-Rays in Mosaic Crystal

    NASA Astrophysics Data System (ADS)

    Oya, Yasuhiro; Kashiwase, Yasuji

    1988-06-01

    A white line was observed across the 002 X-ray thermal diffuse spot of a pentaerythritol crystal. Cause of the line was attributed to the Bragg reflection of thermally scattered X-rays. The contrast and the width of the line obtained by means of photographic method in the Bragg case as well as in the Laue case were compared successfully with those calculated on the basis of the theory given by Bushuev et al.: Sov. Phys.-Solid State 25 (1983) 228. The application limit of the theory is discussed. In the analysis, a correction of the contrast and the width of the line for the source size and collimator system was introduced. This gives a new interpretation about the fact that the line becomes clear as the film stands at a long distance from the specimen.

  10. Coherent x-ray diffraction from quantum dots

    SciTech Connect

    Vartanyants, I.A. [HASYLAB, DESY, Notkestr. 85, Hamburg D-22607 (Germany); Department of Physics, University of Illinois, 1110 W. Green St., Urbana, Illinois 61801 (United States); Robinson, I. K.; Onken, J.D.; Pfeifer, M.A.; Williams, G.J. [Department of Physics, University of Illinois, 1110 W. Green St., Urbana, Illinois 61801 (United States); Pfeiffer, F. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Metzger, H. [ESRF, BP 220, 38043 Grenoble (France); Zhong, Z. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Insitut fuer Hableiter-und Festkoeperphysik, Johannes Kepler Universitaet Linz, A-4040 Linz (Austria); Bauer, G. [Insitut fuer Hableiter-und Festkoeperphysik, Johannes Kepler Universitaet Linz, A-4040 Linz (Austria)

    2005-06-15

    Coherent x-ray diffraction is a new experimental method for studying perfect and imperfect crystals. Instead of incoherent averaging, a coherent sum of amplitudes produces a coherent diffraction pattern originating from the real space arrangement of the sample. We applied this method for studying quantum dot samples that were specially fabricated GeSi islands of nanometer size and in a regular array embedded into a Si substrate. A coherent beam was focused by special Kirkpatric-Baez optics to a micrometer size. In the experiment it was observed that such a microfocused coherent beam produced coherent diffraction pattern with Bragg spots and broad diffuse maxima. The diffuse peak breaks up into a fine speckle pattern. The grazing incidence diffraction pattern has a typical shape resulting from the periodic array of identical islands. We used this diffraction pattern to reconstruct the average shape of the islands using a model independent approach.

  11. Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry

    NASA Astrophysics Data System (ADS)

    Mendoza Cuevas, Ariadna; Perez Gravie, Homero

    2011-03-01

    Starting on a laboratory developed portable X-ray fluorescence (PXRF) spectrometer; three different analytical results can be performed: analysis of chemical elements, analysis of major chemical crystalline phase and structural analysis, which represents a contribution to a new, low cost development of portable X-ray analyzer; since these results are respectively obtained with independent equipments for X-ray fluorescence, X-ray diffraction and radiography. Detection limits of PXRF were characterized using standard reference materials for ceramics, glass, bronze and bones, which are the main materials requiring quantitative analysis in art and archeological objects. A setup for simultaneous energy dispersive X-ray fluorescence and diffraction (ED (XRF-XRD)) in the reflection mode has been tested for in situ and non-destructive analysis according to the requirements of art objects inspection. The system uses a single low power X-ray tube and an X-ray energy dispersive detector to measure X-ray diffraction spectrum at a fixed angle. Application to the identification of jadeite-jade mineral in archeological objects by XRD is presented. A local high resolution radiography image obtained with the same low power X-ray tube allows for studies in painting and archeological bones.

  12. Borman effect in resonant diffraction of X-rays

    SciTech Connect

    Oreshko, A. P., E-mail: ap.oreshko@physics.msu.ru [Moscow State University (Russian Federation)

    2013-08-15

    A dynamic theory of resonant diffraction (occurring when the energy of incident radiation is close to the energy of the absorption edge of an element in the composition of a given substance) of synchronous X-rays is developed in the two-wave approximation in the coplanar Laue geometry for large grazing angles in perfect crystals. A sharp decrease in the absorption coefficient in the substance with simultaneously satisfied diffraction conditions (Borman effect) is demonstrated, and the theoretical and first experimental results are compared. The calculations reveal the possibility of applying this approach in analyzing the quadrupole-quadrupole contribution to the absorption coefficient.

  13. Lattice Misfit Measurement in Inconel 625 BY X-Ray Diffraction Technique

    Microsoft Academic Search

    A. Sarkar; P. Mukherjee; P. Barat; T. Jayakumar; S. Mahadevan; Sanjay K. Rai

    2008-01-01

    Determination of lattice misfit and microstructural parameters of the coherent precipitates in Ni based alloy Inconel-625 is a challenging problem as the diffraction peaks of the precipitate and the matrix are completely overlapping. X-ray Diffraction Line Profile Analysis (XRDLPA) has been used to characterize the bulk samples of Inconel 625 at different heat-treated conditions to determine the lattice parameters of

  14. The effect of silica on polymorphic precipitation of calcium carbonate: an on-line energy-dispersive X-ray diffraction (EDXRD) study

    NASA Astrophysics Data System (ADS)

    Kellermeier, Matthias; Glaab, Fabian; Klein, Regina; Melero-García, Emilio; Kunz, Werner; García-Ruiz, Juan Manuel

    2013-07-01

    Calcium carbonate is the most abundant biomineral and a compound of great industrial importance. Its precipitation from solution has been studied extensively and was often shown to proceed via distinct intermediate phases, which undergo sequential transformations before eventually yielding the stable crystalline polymorph, calcite. In the present work, we have investigated the crystallisation of calcium carbonate in a time-resolved and non-invasive manner by means of energy-dispersive X-ray diffraction (EDXRD) using synchrotron radiation. In particular, the role of silica as a soluble additive during the crystallisation process was examined. Measurements were carried out at different temperatures (20, 50 and 80 °C) and various silica concentrations. Experiments conducted in the absence of silica reflect the continuous conversion of kinetically formed metastable polymorphs (vaterite and aragonite) to calcite and allow for quantifying the progress of transformation. Addition of silica induced remarkable changes in the temporal evolution of polymorphic fractions existing in the system. Essentially, the formation of calcite was found to be accelerated at 20 °C, whereas marked retardation or complete inhibition of phase transitions was observed at higher temperatures. These findings are explained in terms of a competition between the promotional effect of silica on calcite growth rates and kinetic stabilisation of vaterite and aragonite due to adsorption (or precipitation) of silica on their surfaces, along with temperature-dependent variations of silica condensation rates. Data collected at high silica concentrations indicate the presence of an amorphous phase over extended frames of time, suggesting that initially generated ACC particles are progressively stabilised by silica. Our results may have important implications for CaCO3 precipitation scenarios in both geochemical and industrial settings, where solution silicate is omnipresent, as well as for CO2 sequestration technologies.Calcium carbonate is the most abundant biomineral and a compound of great industrial importance. Its precipitation from solution has been studied extensively and was often shown to proceed via distinct intermediate phases, which undergo sequential transformations before eventually yielding the stable crystalline polymorph, calcite. In the present work, we have investigated the crystallisation of calcium carbonate in a time-resolved and non-invasive manner by means of energy-dispersive X-ray diffraction (EDXRD) using synchrotron radiation. In particular, the role of silica as a soluble additive during the crystallisation process was examined. Measurements were carried out at different temperatures (20, 50 and 80 °C) and various silica concentrations. Experiments conducted in the absence of silica reflect the continuous conversion of kinetically formed metastable polymorphs (vaterite and aragonite) to calcite and allow for quantifying the progress of transformation. Addition of silica induced remarkable changes in the temporal evolution of polymorphic fractions existing in the system. Essentially, the formation of calcite was found to be accelerated at 20 °C, whereas marked retardation or complete inhibition of phase transitions was observed at higher temperatures. These findings are explained in terms of a competition between the promotional effect of silica on calcite growth rates and kinetic stabilisation of vaterite and aragonite due to adsorption (or precipitation) of silica on their surfaces, along with temperature-dependent variations of silica condensation rates. Data collected at high silica concentrations indicate the presence of an amorphous phase over extended frames of time, suggesting that initially generated ACC particles are progressively stabilised by silica. Our results may have important implications for CaCO3 precipitation scenarios in both geochemical and industrial settings, where solution silicate is omnipresent, as well as for CO2 sequestration technologies. Electronic supplementary information (ESI) available: Additiona

  15. Time and phase control of x-rays in stroboscopic diffraction experiments

    NASA Astrophysics Data System (ADS)

    Zolotoyabko, E.; Quintana, J. P.

    2002-03-01

    Time-resolved diffraction experiments with a LiNbO3-based surface acoustic wave (SAW) device were carried out at the 5BMD station of the APS. X-ray diffraction was measured using a 0.58 GHz standing SAW excitation. We observed well-defined diffraction satellites about the main diffraction maximum due to inelastic multiphonon scattering. The satellite intensity oscillated, as a function of the delay time, at 1.16 GHz (i.e., twice the SAW frequency). The maximum satellite contribution reached 40% of the main peak intensity, and proves that the SAW device acts as a fast and effective modulator for coming x-rays. In this study, the phase shift between the x-ray bursts and the acoustic deformation was changed both by electronic delay line (in steps of 18 ps) and by translating the diffractometer along the incident x-ray beam. We demonstrate that the later method can be used to produce very precise delay times in the fs- and ps-scale range. By using a motorized Thomson stage and a laser scan micrometer (Mitutoyo LSM-6000), the translations can be done in steps of 100 nm and monitored with the same precision. The measured positional fluctuations of the diffractometer at rest were within 200-400 nm, which yields the jitter of the corresponding time delay of about 1 fs.

  16. An image focusing means by using an opaque object to diffract x-rays

    DOEpatents

    Sommargren, Gary E. (Santa Cruz, CA); Weaver, H. Joseph (Livermore, CA)

    1991-01-01

    The invention provides a method and apparatus for focusing and imaging x-rays. An opaque sphere is used as a diffractive imaging element to diffract x-rays from an object so that the divergent x-ray wavefronts are transformed into convergent wavefronts and are brought to focus to form an image of the object with a large depth of field.

  17. Femtosecond diffractive imaging with a soft-X-ray free-electron laser

    E-print Network

    Loss, Daniel

    LETTERS Femtosecond diffractive imaging with a soft-X-ray free-electron laser HENRY N. CHAPMAN1 of this principle using the FLASH soft-X-ray free-electron laser. An intense 25 fs, 4 × 1013 W cm-2 pulse by one10 . X-ray free-electron lasers (FELs) are expected to permit diffractive imaging at high

  18. X-ray diffraction studies of shocked lunar analogs

    NASA Technical Reports Server (NTRS)

    Hanss, R. E.

    1979-01-01

    The X-ray diffraction experiments on shocked rock and mineral analogs of particular significance to lunar geology are described. Materials naturally shocked by meteorite impact, nuclear-shocked, or artificially shocked in a flat plate accelerator were utilized. Four areas were outlined for investigation: powder diffractometer studies of shocked single crystal silicate minerals (quartz, orthoclase, oligoclase, pyroxene), powder diffractometer studies of shocked polycrystalline monomineralic samples (dunite), Debye-Scherrer studies of single grains of shocked granodiorite, and powder diffractometer studies of shocked whole rock samples. Quantitative interpretation of peak shock pressures experienced by materials found in lunar or terrestrial impact structures is presented.

  19. X-ray Diffraction by Magnetic Charges (Monopoles)

    NASA Astrophysics Data System (ADS)

    Lovesey, Stephen William; Khalyavin, Dmitry Dmitrievich

    2013-10-01

    Magnetic charges, or magnetic monopoles, may form in the electronic structure of magnetic materials where ions are deprived of symmetry with respect to spatial inversion. Predicted in 2009, the strange magnetic, pseudo-scalars have recently been found different from zero in simulations of electronic structures of some magnetically ordered, orthorhombic, lithium orthophosphates (LiMPO4). We prove that magnetic charges in lithium orthophosphates diffract x-rays tuned in energy to an atomic resonance, by calculating exact unit-cell structure factors for monoclinic LiCoPO4 and orthorhombic LiNiPO4.

  20. Characterization of Microstructure of Severely Deformed Titanium by X-ray Diffraction Profile Analysis

    E-print Network

    Gubicza, Jenõ

    Characterization of Microstructure of Severely Deformed Titanium by X-ray Diffraction Profile,450000, Russia Keywords: crystallite size distribution, dislocation structure, titanium, plastic deformation, X-ray peak profile analysis. Abstract. Nanocrystalline titanium was produced by equal channel

  1. A CCD area detector for X-ray diffraction under high pressure for rotating anode source

    Microsoft Academic Search

    Amar Sinha; Alka B. Garg; V. Vijayakumar; B. K. Godwal; S. K. Sikka

    2000-01-01

    Details of a two-dimensional X-ray area detector developed using a charge coupled device, a image intensifier and a fibre\\u000a optic taper are given. The detector system is especially optimized for angle dispersive X-ray diffraction set up using rotating\\u000a anode generator as X-ray source. The performance of this detector was tested by successfully carrying out powder X-ray diffraction\\u000a measurements on various

  2. X-ray Diffraction Spectra in Cu-Implanted SiO{sub 2} Films on Si(100) Substrates

    SciTech Connect

    Shirokoff, J. [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5 (Canada); Lewis, J. Courtenay [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X7 (Canada)

    2010-10-29

    Cu-implanted SiO{sub 2} films on Si(100) have been studied using x-ray methods and x-ray diffraction pattern processing. The x-ray results indicate the presence of a preferred orientation for Cu {l_brace}111{r_brace} planes parallel to the substrate surface without directional orientation for Cu-implanted SiO{sub 2}/Si(100) and nano-crystalline-Cu/SiO{sub 2}/Si(100)(ie. after implanted and annealed Cu). The x-ray diffraction spectra of the Cu-implanted and nano-crystalline-Cu phases were analyzed (ie. in terms of peak search, profile fit, crystallite size) and compared to data from complimentary techniques (RBS, TEM). Results are discussed with respect to x-ray spectral lines shapes derived from XRD spectra processing and the nanostructure problem.

  3. CCMR: X-Ray Diffraction Studies of Pulsed Laser Deposition

    NSDL National Science Digital Library

    Ferguson, John

    2004-08-17

    Pulsed laser deposition is an extremely effective method of growing thin films of materials on substrates. In this particular experiment the deposition of various pervoskite molecules onto different substrates were monitored via x-ray diffraction from a synchrotron source. Molecular compounds that were chosen were CaTiO3, SrTiO3, and BaTiO3 due to there structural similarities and correspondingly different lattice constants. The lattice constants for CaTiO3, SrTiO3, and BaTiO3 are 3.80, 3.90, and 4.06 respectively. These materials all have the same valence structure. Based upon the intensities of the diffracted x-rays at the anti-Bragg peak position, the growth of the film was monitored on a monolayer by monolayer scale at 750°C. The film quality of CaTiO3 on SrTiO3 and BaTiO3 on SrTiO3 were compared to a homoepitaxial film of SrTiO3 to determine how the strain at the interface affected growth. It was determined that the tensilely strain film, CaTiO3, grew more smoothly than the ompressively strained material BaTiO3.

  4. Diffraction and holography of photoelectrons and fluorescent x-rays

    SciTech Connect

    Fadley, C.S. [Lawrence Berkeley Lab., CA (United States)]|[California Univ., Davis, CA (United States). Dept. of Physics

    1993-04-01

    Photoelectron diffraction is by now a powerful technique for studying surface structures, with special capabilities for resolving chemical and magnetic states of atoms and deriving direct structural information from both forward scattering and backscattering. Fitting experiment to theory can lead to structural accuracies in the 0.03 {Angstrom} range. Holographic inversions of such diffraction data also show considerable promise for deriving local three-dimensional structures around a given emitter with accuracies of 0.2--0.3 {Angstrom}. Resolving the photoelectron spin in some way and using circularly polarized radiation for excitation provide added dimensions for the study of magnetic systems and chiral experimental geometries. Synchrotron radiation with the highest brightness and energy resolution, as well as variable polarization, is crucial to the full exploitation of these techniques. X-ray fluorescence holography also has promise for structural studies, but will require intense excitation sources and multichannel detection to be feasible.

  5. A furnace to 1200 K for in situ heating x-ray diffraction, small angle x-ray scattering, and x-ray absorption fine structure experiments

    SciTech Connect

    Cai Quan; Wang Wei; Mo Guang; Zhang Kunhao; Cheng Weidong; Xing Xueqing [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Wang Qiang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Chen Zhongjun; Wu Zhonghua [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2008-12-15

    A furnace with a water-cooled outside shell has been assembled to do in situ x-ray diffraction (XRD), small angle x-ray scattering (SAXS), and x-ray absorption fine structure (XAFS) experiments. The details of the furnace are described in this paper. The in situ XRD, SAXS, and XAFS experiments during the heating process demonstrate that the available temperature range of this furnace is from room temperature to 1200 K with a temperature accuracy of {+-}0.1 K. By using this furnace, in situ XRD, SAXS, and XAFS experimental techniques with temperature change can be easily combined together.

  6. Thermal X-Ray Line Emission from Accreting Black Holes

    E-print Network

    Ramesh Narayan; John Raymond

    1998-11-25

    We present model X-ray spectra of accreting black holes with advection-dominated accretion flows, paying attention to thermal emission lines from the hot plasma. We show that the Advanced X-ray Astrophysical Facility (AXAF) might be able to observe lines from X-ray binaries such as V404 Cyg in quiescence, the Galactic Center black hole Sagittarius A*, and the nuclei of nearby galaxies such as M87. Line intensities can provide new diagnostics to study the accreting plasma in these and related systems.

  7. X-ray diffraction analysis of a severely plastically deformed aluminum alloy

    Microsoft Academic Search

    A. L. Ortiz; L. Shaw

    2004-01-01

    The crystallite size, lattice microstrain, lattice parameter, and formation of solid solutions of a nanocrystalline Al93Fe3Cr2Ti2 alloy prepared via mechanical alloying (MA) starting from elemental powders have been investigated using the Rietveld method of X-ray diffraction (XRD) in conjunction with line-broadening analyses through the variance, Warren–Averbach, and Stokes and Wilson methods. Detailed analyses using transmission electron microscopy (TEM), scanning electron

  8. X-ray powder diffraction analysis of a silicon carbide-based ceramic

    Microsoft Academic Search

    A. L Ortiz; F Sánchez-Bajo; F. L Cumbrera; F Guiberteau

    2001-01-01

    Accurate X-ray powder diffraction (XRD) analysis of SiC-based ceramics is a difficult task due to the significant overlap of the Bragg reflections from the different SiC polytypes. For this reason, results obtained by traditional XRD methods are, in general, unsatisfactory. Here, we have applied the Rietveld and two line-broadening (variance and integral breadth) methods to analyze a liquid phase-sintered SiC

  9. Elimination of higher-order diffraction using zigzag transmission grating in soft x-ray region

    SciTech Connect

    Zang, H. P.; Wang, C. K. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Gao, Y. L.; Zhou, W. M.; Kuang, L. Y.; Wei, L.; Fan, W.; Zhang, W. H.; Zhao, Z. Q.; Cao, L. F.; Gu, Y. Q.; Zhang, B. H. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Jiang, G. [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Zhu, X. L.; Xie, C. Q. [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Zhao, Y. D.; Cui, M. Q. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2012-03-12

    We present a realization of the sinusoidal transmission function using a series of zigzag-profiled strips where the transmission takes on the binary values 0 and 1 in a two-dimensional distribution. A zigzag transmission grating of 1000 line/mm has been fabricated and demonstrated on the soft x-ray beam of synchrotron radiation. The axial single-order diffraction indicates that the zigzag transmission grating is adequate for spectroscopic application.

  10. Nondestructive evaluation of fatigue damage in aluminum 2024 by x-ray diffraction

    SciTech Connect

    Ferguson, M.W.

    1994-12-01

    Aluminum alloys are widely used in the automobile and aerospace industries. This is due to their attractive low density-high modulus and low density-high strength characteristics. Unfortunately, cyclic stress-strain deformations alter the microstructure of aluminum alloys when they are placed into service. These structural changes can lead to fatigue damage and ultimately service failure. Since x-ray diffraction analysis is known to be a sensitive nondestructive indicator of structural changes due to deformations, this technique is being used to evaluate changes in the microstructure of cycled aluminum 2024 commercial alloys. Line shapes, widths, and positions in an x-ray diffraction pattern depend on microstructural properties such as grain size, grain orientation, residual stress, microstrain, etc. Changes in the microstructure due to fatigue will appear as changes in the diffraction pattern. One parameter used to characterize a reflection in a diffraction pattern is the full width at half maximum (FWHM). Preliminary x-ray diffraction results on cycled Al 2024 indicate that the (111) and (222) reflections of the matrix phase do not show any variations in the FWHM due to an increase in the fatigue cycles. However, the FWHM of the (200) and (400) reflections of the same phase unexpectedly showed a dramatic decrease. These results can be interpreted as due to the relaxation of some initial nonuniform residual stresses in the matrix phase lattice. Further work is in progress to evaluate the FWHM of the second phase of the cycled alloys.

  11. Study of the diffraction contrast of dislocations in X-ray topo-tomography: A computer simulation and image analysis

    NASA Astrophysics Data System (ADS)

    Besedin, I. S.; Chukhovskii, F. N.; Asadchikov, V. E.

    2014-05-01

    Oblique X-ray diffraction images of individual dislocations in the symmetric Laue geometry from a plane-parallel silicon plate have been calculated based on the Takagi-Taupin equations and analyzed. Computer simulation is used to develop a general mathematical model of the formation of oblique images which correspond to sample rotation around the diffraction vector h in X-ray topo-tomography. The results of numerical calculations and analysis of different oblique images of straight-line dislocations, where the dislocation line vector ? lies in a plane parallel to input surface of {111}Si plate with a diffraction vector h <220>, are presented.

  12. X-Ray Diffraction and Imaging Study of Imperfections of Crystallized Lysozyme with Coherent X-Rays

    NASA Technical Reports Server (NTRS)

    Hu, Zheng-Wei; Chu, Y. S.; Lai, B.; Cai, Z.; Thomas, B. R.; Chernov, A. A.

    2003-01-01

    Phase-sensitive x-ray diffraction imaging and high angular-resolution diffraction combined with phase contrast radiographic imaging are employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in symmetric Laue case. The fill width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal is approximately 16.7 arcseconds, and defects, which include point defects, line defects, and microscopic domains, have been clearly observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front, and they have been found to originate mostly at a central growth area and occasionally at outer growth regions. Individual point defects trapped at a crystal nucleus are resolved in the images of high sensitivity to defects. Slow dehydration has led to the broadening of the 4 4 0 rocking curve by a factor of approximately 2.4. A significant change of the defect structure and configuration with drying has been revealed, which suggests the dehydration induced migration and evolution of dislocations and lattice rearrangements to reduce overall strain energy. The sufficient details of the observed defects shed light upon perfection, nucleation and growth, and properties of protein crystals.

  13. The first X-ray diffraction measurements on Mars

    PubMed Central

    Bish, David; Blake, David; Vaniman, David; Sarrazin, Philippe; Bristow, Thomas; Achilles, Cherie; Dera, Przemyslaw; Chipera, Steve; Crisp, Joy; Downs, R. T.; Farmer, Jack; Gailhanou, Marc; Ming, Doug; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Rampe, Elizabeth; Treiman, Allan; Yen, Albert

    2014-01-01

    The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component. PMID:25485131

  14. The first X-ray diffraction measurements on Mars.

    PubMed

    Bish, David; Blake, David; Vaniman, David; Sarrazin, Philippe; Bristow, Thomas; Achilles, Cherie; Dera, Przemyslaw; Chipera, Steve; Crisp, Joy; Downs, R T; Farmer, Jack; Gailhanou, Marc; Ming, Doug; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Rampe, Elizabeth; Treiman, Allan; Yen, Albert

    2014-11-01

    The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component. PMID:25485131

  15. Rapid qualitative phase analysis in highly textured thin films by x-ray diffraction

    Microsoft Academic Search

    Cesare Borgia; Sven Olliges; Ralph Spolenak

    2008-01-01

    Phase analysis of highly out-of-plane textured specimens using x-ray diffraction is usually complicated due to the disappearance of most of the x-ray peaks in a common theta\\/2theta diffraction geometry. In this paper, we propose a technique, where powderlike spectra of textured samples are obtained by multiaxial x-ray diffraction scans. This technique is a simple, yet powerful method which allows for

  16. J. Mol. Biol. (1984) 177, 201-206 Some X-ray Diffraction Patterns from

    E-print Network

    Yonath, Ada E.

    1984-01-01

    J. Mol. Biol. (1984) 177, 201-206 Some X-ray Diffraction Patterns from Single Crystals of the Large Ribosomal Subunit from Bacillus stearothermophilus X-ray diffraction patterns of three-dimensional crystals beam. The patterns contain resolved diffraction spots and indicate packing in relatively small unit

  17. Understanding x-ray diffraction of nonpolar gallium nitride films

    NASA Astrophysics Data System (ADS)

    Moram, M. A.; Johnston, C. F.; Hollander, J. L.; Kappers, M. J.; Humphreys, C. J.

    2009-06-01

    X-ray diffraction (XRD) is widely used for the rapid evaluation of the structural quality of thin films. In order to determine how defect densities relate to XRD data, we investigated a series of heteroepitaxial nonpolar a-plane GaN films with different densities of dislocations and basal plane stacking faults (determined by transmission electron microscopy). Factors influencing XRD data include surface roughness effects, limited lateral coherence lengths, lateral microstrain, mosaic tilt, and wafer curvature, in addition to the defects present. No direct correlation between defect densities and any measured XRD parameter was found. However, the structural imperfections dominating XRD data can be identified by specific analysis of each individual broadening factor. This reductive approach permits full explanation of the in-plane rotational anisotropy of symmetric ?-scan widths for both a-plane and m-plane films: in these samples, mosaic tilt is the dominant factor.

  18. Powder X-ray diffraction laboratory, Reston, Virginia

    USGS Publications Warehouse

    Piatak, Nadine M.; Dulong, Frank T.; Jackson, John C.; Folger, Helen W.

    2014-01-01

    The powder x-ray diffraction (XRD) laboratory is managed jointly by the Eastern Mineral and Environmental Resources and Eastern Energy Resources Science Centers. Laboratory scientists collaborate on a wide variety of research problems involving other U.S. Geological Survey (USGS) science centers and government agencies, universities, and industry. Capabilities include identification and quantification of crystalline and amorphous phases, and crystallographic and atomic structure analysis for a wide variety of sample media. Customized laboratory procedures and analyses commonly are used to characterize non-routine samples including, but not limited to, organic and inorganic components in petroleum source rocks, ore and mine waste, clay minerals, and glassy phases. Procedures can be adapted to meet a variety of research objectives.

  19. Point diffraction interferometry at soft x-ray wavelengths

    SciTech Connect

    Sommargren, G.E. [Lawrence Livermore National Lab., CA (United States); Hostetler, R. [AlliedSignal Technical Services, Livermore, CA (United States)

    1993-07-01

    To achieve the image performance necessary for soft x-ray projection lithography, interferometric testing at the design wavelength is required to accurately characterize the wavefront of the imaging system. The wavefront depends not only on the surface figure of the individual optics and on their relative alignment, but also on aperture dependent phase shifts induced by the resonant multilayer coatings on the optical surfaces. This paper describes the design and lithographic fabrication of an array of point diffraction interferometers on a silicon nitride membrane that has been over-coated with a spatially graded partially transmitting film to provide fringe contrast control. Experimental results using a visible light analogue (larger pinholes and different transmission gradient) will be shown.

  20. Diffracted X-ray tracking for monitoring intramolecular motion in individual protein molecules using broad band X-ray

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Kouhei; Sekiguchi, Hiroshi; Hoshino, Masato; Kajiwara, Kentaro; Hoshisashi, Kentaro; Jae-won, Chang; Tokue, Maki; Matsushita, Yufuku; Nishijima, Masaki; Inoue, Yoshihisa; Senba, Yasunori; Ohashi, Haruhiko; Ohta, Noboru; Yagi, Naoto; Sasaki, Yuji C.

    2013-10-01

    Diffracted X-ray tracking (DXT) enables the tilting and twisting motions of single protein molecules to be monitored with micro- to milliradian resolution using a highly brilliant X-ray source with a wide energy bandwidth. We have developed a technique to monitor single molecules using gold nanocrystals attached to individual protein molecules using the BL28B2 beamline at SPring-8. In this paper we present the installation of a single toroidal X-ray mirror at BL28B2 to focus X-rays in an energy range of 10-20 keV (?E/E = 82% for an X-ray with a wide energy bandwidth). With this beamline we tracked diffraction spots from gold nanocrystals over a wide angle range than that using quasi-monochromatic X-rays. Application of the wide angle DXT technique to biological systems enabled us to observe the on-site motions of single protein molecules that have been functionalized in vivo. We further extend the capability of DXT by observing the fractional tilting and twisting motions of inner proteins under various conditions. As a proof of this methodology and to determine instrumental performance the intramolecular motions of a human serum albumin complex with 2-anthracenecarboxylic acid was investigated using the BL28B2 beamline. The random tilting and twisting intramolecular motions are shown to be directly linked to the movement of individual protein molecules in the buffer solution.

  1. An x-ray diffraction study of ribosome structure.

    PubMed

    Dolgov, A D; Ivanov, D A; Kapitonova, K A; Mokul'skii, M A

    1975-01-01

    Dense gels of E. coli 70 S ribosomes, their 50 S subunits, CM-like particles, RNP strands and their fragments, 38 S particles obtained from RNP strand folding upon addition of Mg2+ ions, and of unoriented salt-free and free rRNA sodium and magnesium salts were studied by X-ray diffraction. It was shown that under dense gel conditions RNA molecules contained in ribosomes unfolded by desalting, like all other particles considered here, have helical regions. Under these conditions free desalted RNA has no helical regions. Experimental data on X-ray scattering at medium angles were compared with the diffraction curves calculated for homogeneous prolate and oblate ellipsoids, for various ellipsoids containing a dense region or an internal cavity, and for ellipsoids containing internal periodic regions. The results indicate that the internal structure of the 50 S ribosome is periodic, i. e., its components form a periodic lattice. The lattice spacings are approximately 42 and 28 A with a 0.8g/g dry weight sample water content. When the 50 S particle water content drops below 0.2 g/g dry weight the periodic structure is disrupted. This disruption is reversible. It was shown that CM-like particles at high ionic strenght (2 M LiCl) have approximately the same internal periodicity as the 50 S particles, but in contrast they lose this periodicity at low ionic strength (10-2M tris-HCl and 5-10-3 M MgCl2). PMID:1092999

  2. Measuring the X-ray Resolving Power of Bent Potassium Acid Phthalate Diffraction Crystals

    SciTech Connect

    Haugh, M. J. [NSTec; Wu, M. [SNL; Jacoby, K. D. [NSTec; Loisel, G. P. [SNL

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories (SNL) in Albuquerque, NM. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a dual goniometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  3. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    SciTech Connect

    Haugh, M. J., E-mail: haughmj@nv.doe.gov; Jacoby, K. D. [National Security Technologies, LLC, Livermore, California 94550 (United States); Wu, M.; Loisel, G. P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)

    2014-11-15

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  4. The X-Ray Absorber in Broad Absorption Line Quasars

    E-print Network

    T. G. Wang; W. Brinkmann; W. Yuan; J. X. Wang; Y. Y. Zhou

    2000-08-19

    Recent observations of Broad Absorption Line (BAL) quasars demonstrated that the soft X-ray emission of these objects is extremely weak and convincing evidence for very strong absorption by a high column density (~ 10^23.5 cm^-2) was obtained for PG 1411+442, even though it is one of the few BAL QSOs strongly detected in soft X-rays. This paper examines the ionization status and geometry of the X-ray absorber by combining the properties of the UV lines with the X-ray continuum absorption. We show that the gas has to have large column densities in ions of major UV absorption lines, such as CIV, NV, OVI and Ne VIII, in order to have sufficient opacity around 0.2 to 0.35 keV. The UV absorption lines have to be saturated if the X-ray absorber intersects the line of sight to the UV continuum emission region. A uniformly covering UV and X-ray absorption model can be constructed for PG 1411+442 but in some other soft X-ray detected BAL QSOs, such as PG 1001+054, the observed line optical depth is much lower than expected from the X-ray absorbing material. We propose a scheme in which a substantial fraction of the line of sight to the continuum source may be covered by either an optically thick flow or clouds in a narrow velocity range, but in which the total covering factor of either the whole flow or all clouds is close to unity.

  5. Phosphor Scanner For Imaging X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  6. X-ray diffraction applications in thin films and (100) silicon substrate stress analysis

    Microsoft Academic Search

    James D Rachwal

    2010-01-01

    Silicon is used as a substrate for X-ray mirrors for correct imaging. The substrate needs to be mechanically bent to produce a certain curvature in order to condition and focus the X-ray beam. The X-rays impinge a mirror at very shallow angles, in order to reduce the amount of intensity loss in the diffraction process. The X-ray mirrors need to

  7. Lattice Misfit Measurement in Inconel 625 BY X-Ray Diffraction Technique

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Mukherjee, P.; Barat, P.; Jayakumar, T.; Mahadevan, S.; Rai, Sanjay K.

    Determination of lattice misfit and microstructural parameters of the coherent precipitates in Ni based alloy Inconel-625 is a challenging problem as the diffraction peaks of the precipitate and the matrix are completely overlapping. X-ray Diffraction Line Profile Analysis (XRDLPA) has been used to characterize the bulk samples of Inconel 625 at different heat-treated conditions to determine the lattice parameters of the parent phase and also the coherent precipitates by the separation of the overlapping peaks. The lattice misfits of the coherent precipitates with the matrix and their microstructural parameters like size and strain have also been determined.

  8. Eta Carinae: X-ray Line Variations during the 2003 X-ray Minimum, and the Orbit Orientation

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Henley, D.; Hamaguchi, K.; Khibashi, K.; Pittard, J. M.; Stevens, I. R.; Gull, T. R.

    2007-01-01

    The future evolution of Eta Carinae will be as a supernova (or hypernova) and black hole. The evolution is highly contingent on mass and angular momentum changes and instabilities. The presence of a companion can serve to trigger instabilities and provide pathways for mass and angular momentum exchange loss. X-rays can be used a a key diagnostic tool: x-ray temperatures trace pre-shock wind velocities, periodic x-ray variability traces the orbit, and x-ray line variations traces the flow and orientation of shocked gas. This brief presentation highlights x-ray line variations from the HETG and presents a model of the colliding wind flow.

  9. Quantitative biological imaging by ptychographic x-ray diffraction microscopy

    PubMed Central

    Giewekemeyer, Klaus; Thibault, Pierre; Kalbfleisch, Sebastian; Beerlink, André; Kewish, Cameron M.; Dierolf, Martin; Pfeiffer, Franz; Salditt, Tim

    2010-01-01

    Recent advances in coherent x-ray diffractive imaging have paved the way to reliable and quantitative imaging of noncompact specimens at the nanometer scale. Introduced a year ago, an advanced implementation of ptychographic coherent diffractive imaging has removed much of the previous limitations regarding sample preparation and illumination conditions. Here, we apply this recent approach toward structure determination at the nanoscale to biological microscopy. We show that the projected electron density of unstained and unsliced freeze-dried cells of the bacterium Deinococcus radiodurans can be derived from the reconstructed phase in a straightforward and reproducible way, with quantified and small errors. Thus, the approach may contribute in the future to the understanding of the highly disputed nucleoid structure of bacterial cells. In the present study, the estimated resolution for the cells was 85 nm (half-period length), whereas 50-nm resolution was demonstrated for lithographic test structures. With respect to the diameter of the pinhole used to illuminate the samples, a superresolution of about 15 was achieved for the cells and 30 for the test structures, respectively. These values should be assessed in view of the low dose applied on the order of ?1.3·105 Gy, and were shown to scale with photon fluence. PMID:20018650

  10. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    SciTech Connect

    Huang Xiaojing; Nelson, Johanna; Lima, Enju; Miao, Huijie; Steinbrener, Jan; Stewart, Andrew; Turner, Joshua J.; Jacobsen, Chris [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Kirz, Janos [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Marchesini, Stefano; Shapiro, David [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Neiman, Aaron M. [Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215 (United States)

    2009-11-06

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 deg. C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  11. Two digital X-ray imaging systems for applications in X-ray diffraction

    Microsoft Academic Search

    J. E. Bateman; J. F. Connolly; R. Stephenson; A. C. Flesher; C. J. Bryant; A. D. Lincoln; P. A. Tucker; S. W. Swanton

    1987-01-01

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described: the Mark I and the Mark II. Both use a bidimensionally sensitive multiwire proportional counter (MWPC) as the basic X-ray image transducer coupled, in the case of the Mark I to a Digital LSI 11-23 microcomputer system via CAMAC, and in the case of the Mark II

  12. Quantitative description of microstructure defects in hexagonal boron nitrides using X-ray diffraction analysis

    SciTech Connect

    Schimpf, C., E-mail: schimpf@iww.tu-freiberg.de; Motylenko, M.; Rafaja, D.

    2013-12-15

    A routine for simultaneous quantification of turbostratic disorder, amount of puckering and the dislocation and stacking fault density in hexagonal materials was proposed and tested on boron nitride powder samples that were synthesised using different methods. The routine allows the individual microstructure defects to be recognised according to their effect on the anisotropy of the X-ray diffraction line broadening. For quantification of the microstructure defects, the total line broadening is regarded as a linear combination of the contributions from the particular defects. The total line broadening is obtained from the line profile fitting. As testing material, graphitic boron nitride (h-BN) was employed in the form of hot-isostatically pressed h-BN, pyrolytic h-BN or a h-BN, which was chemically vapour deposited at a low temperature. The kind of the dominant microstructure defects determined from the broadening of the X-ray diffraction lines was verified by high resolution transmission electron microscopy. Their amount was attempted to be verified by alternative methods. - Highlights: • Reliable method for quantification of microstructure defects in BN was suggested. • The method is based on the analysis of anisotropic XRD line broadening. • This XRD line broadening is unique and characteristic of the respective defect. • Thus, the quantification of coexistent microstructure defects is possible. • The method was tested on hexagonal BN, which was produced by different techniques.

  13. X-Ray Diffraction and the Discovery of the Structure of DNA

    ERIC Educational Resources Information Center

    Crouse, David T.

    2007-01-01

    A method is described for teaching the analysis of X-ray diffraction of DNA through a series of steps utilizing the original methods used by James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. The X-ray diffraction pattern led to the conclusion of the basic helical structure of DNA and its dimensions while basic chemical principles…

  14. Characterization of Highly Ordered MCM-41 Silicas Using X-ray Diffraction and Nitrogen Adsorption

    E-print Network

    Kim, Ji Man

    opened new opportunities in gas adsorption. MCM-41 with hexagonally ordered arrays of long, approximatelyCharacterization of Highly Ordered MCM-41 Silicas Using X-ray Diffraction and Nitrogen Adsorption of alkyltrimethylammonium surfactants and characterized using powder X-ray diffraction and nitrogen adsorption at 77 K

  15. X-RAY DIFFRACTION CHARACTERIZATION OF RESIDUAL STRESSES PRODUCED BY SHOT PEENING

    Microsoft Academic Search

    Paul S. Prevéy

    1990-01-01

    A brief overview of the theory and practice of x-ray diffraction residual stress measurement as applied to shot peened materials is presented. The unique ability of x-ray diffraction methods to determine both the macroscopic residual stress and the depth and magnitude of the cold worked layer produced by shot peening is described. The need to obtain a complete description of

  16. X-ray powder diffraction study of the high pressure behaviour of uranium dioxide

    E-print Network

    Paris-Sud XI, Université de

    L-171 X-ray powder diffraction study of the high pressure behaviour of uranium dioxide U. Benedict du bioxyde d'uranium sous des pressions jusqu'à 40 GPa a été étudié par diffraction X sur poudre dans à une délocalisation d'électrons 5f. Abstract. 2014 Uranium dioxide was studied by X-ray powder

  17. X-Ray Absorbed, Broad-Lined, Red AGN and the Cosmic X-Ray Background

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Wilkes, Belinda

    2005-01-01

    We have obtained XMM spectra for five red, 2MASS AGN, selected from a sample observed by Chandra to be X-ray bright and to cover a range of hardness ratios. Our results confirm the presence of substantial absorbing material in three sources which have optical classifications ranging from Type 1 to Type 2, with an intrinsically flat (hard) power law continuum indicated in the other two. The presence of both X-ray absorption and broad optical emission lines with the usual strength suggests either a small (nuclear) absorber or a favored viewing angle so as to cover the X-ray source but not the broad emission line region (BELR). A soft excess is detected in all three Type 1 sources. We speculate that this soft X-ray emission may arise in an extended region of ionized gas, perhaps linked with the polarized (scattered) light which is a feature of these sources. The spectral complexity revealed by XMM emphasizes the limitations of the low S/N Chandra data. Overall, the new XMM results strengthen our conclusions (Wilkes et al. 2002) that the observed X-ray continua of red AGN are unusually hard at energies greater than 2 keV. Whether due to substantial line-of-sight absorption or to an intrinsically hard or reflection-dominated spectrum, these 'red' AGN have an observed spectral form consistent with contributing significantly to the missing had absorbed population of the Cosmic X-ray Background (CXRB). When absorption and or reflection is taken into account, all these AGN have power law slopes typical of broad-line (Type 1) AGN (Gamma approximately 1.9). This appears to resolve the spectral paradox which for so long has existed between the CXRB and the AGN thought to be the dominant contributors. It also suggests two scenarios whereby Type 1 AGN/QSOs may be responsible for a significant fraction of the CXRB at energies above 2 keV: 1) X-ray absorbed AGN/QSOs with visible broad emission lines; 2) AGN/QSOs with complex spectra whose hardness greater than 2 keV is not detectable in the typically low S/N data of X-ray surveys. Even if absorption is present in only half of the population, the large number of 'red' AGN suggests a development of unification models, where the continuum source is surrounded, over a substantial solid angle, by the wind or atmosphere of an accretion disk/torus. X-ray observations of such AGN not only provide a check on the presence of absorption, but also a unique probe of the absorbing material. Improved information on their space density, in particular as a function of redshift, will soon be provided by Spitzer-Chandra wide area surveys, allowing better estimates of both the importance of red AGN to the full AGN population and their contribution to the CXRB.

  18. Measurement of strain in Al-Cu interconnect lines with x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Solak, H. H.; Vladimirsky, Y.; Cerrina, F.; Lai, B.; Yun, W.; Cai, Z.; Ilinski, P.; Legnini, D.; Rodrigues, W.

    1999-07-01

    We report measurement of strain in patterned Al-Cu interconnect lines with x-ray microdiffraction technique with a ˜1 ?m spatial resolution. Monochromatized x rays from an undulator were focused on the sample using a phase fresnel zone plate and diffracted light was collected by an area detector in a symmetric, angle dispersive x-ray diffraction geometry. Measurements were made before and after the line sample was stressed for electromigration. Results show an increase in inter- and intra-grain strain variation after the testing. Differences in strain behavior of grains with (111) and (200) crystallographic planes parallel to the substrate surface were observed. A position dependent variation of strain after the testing was measured whereas no such dependence was found before the testing.

  19. Strain measurement of pure titanium covered with soft tissue using X-ray diffraction.

    PubMed

    Fujisaki, Kazuhiro; Tadano, Shigeru

    2010-03-01

    Measurement of the stress and strain applied to implants and bone tissue in the human body are important for fracture prediction and evaluations of implant adaptation. The strain of titanium (Ti) materials can be measuring by X-ray diffraction techniques. This study applied X-ray diffraction to the skin tissue-covered Ti. Characteristic X-rays of Mo Kalpha were used and the X-rays diffracted from the Ti were detected through the covering skin tissue. The X-ray absorption by skin tissue is large under the diffracted X-rays detected in low angles because the length of penetration depends on the angle of inclination, equal to the Bragg angle. The effects of skin tissue to detect the diffracted X-rays were investigated in the experiments. And the strain measurements were conducted under bending loads applied to the Ti specimen. The effect of skin tissue was absorption of X-rays as well as the X-rays scattered from the physiological saline contained in the tissue. The X-rays scattered by the physiological saline creates a specific background pattern near the peaks from the (002) and (011) lattice planes of Ti in the X-ray diffraction profile. Diffracted X-rays from the Ti were detected after being transmitted through 1 mm thick skin tissue by Mo Kalpha. Individual peaks such as (010), (002), (011), and (110) were clearly established by using a parallel beam arrangement. The strains of (110) lattice planes were measured with or without the tissue cover were very similar. The strain of the (110) lattice planes of Ti could be measured by Mo Kalpha when the Ti specimen was located under the skin tissue. PMID:20459192

  20. X-ray diffraction and extended X-ray absorption fine structure study using synchrotron radiation of cobalt (II) complexes

    NASA Astrophysics Data System (ADS)

    Mishra, Ashotosh; Shukla, Kritika; Dwivedi, Jagrati; Ninama, Samrath

    2014-09-01

    XRD and EXAFS investigation of cobalt (II) macro cyclic complexes were carried out. These complexes were synthesised by chemical rout method. On the analysis of the complexes with X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS), XRD analysis shows that complexes are crystalline in nature and having particle size and lattice parameter in the rang of few micro meter and EXAFS technique extract the local structure of complexes. The nearest neighbouring atom distance commonly known as 'bond length' were calculated using Fourier transform method. The bond lengths determined from these methods were also compared with the bond length obtained from several other known technique.

  1. X-ray diffraction patterns from samples in the laser-heated diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Panero, Wendy R.; Jeanloz, Raymond

    2002-03-01

    Thermal pressure and thermal expansion have competing effects on x-ray diffraction patterns obtained from polycrystalline samples at high pressures (10-100 GPa) and temperatures (300-4000 K) within the laser-heated diamond cell. Modeling shows that realistic temperature and pressure variations within the sample cause systematic shifts in diffraction-line positions and shapes, predicting that inferred values of pressure and thermal expansion coefficient can be off by 0.5%-20% and up to 50%-100%, respectively. Peak splitting due solely to temperature variations within the sample can be spuriously ascribed to the occurrence of a phase transition. The Debye-Waller factor has a systematic effect on diffraction-pattern intensities, but a negligible effect (<0.1%) on line positions except in extreme cases.

  2. Diffraction and imaging study of imperfections of crystallized lysozyme with coherent X-rays.

    PubMed

    Hu, Z W; Chu, Y S; Lai, B; Thomas, B R; Chernov, A A

    2004-04-01

    Phase-contrast X-ray diffraction imaging and high-angular-resolution diffraction combined with phase-contrast radiographic imaging were employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in the symmetric Laue case. The full-width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal was approximately 16.7 arcsec and imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <1 1 0> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Inclusions of impurities or formations of foreign particles in the central growth region are resolved in the images with high sensitivity to defects. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in X-ray diffraction images. The details of the observed defects and the significant change in the revealed microstructures with drying provide insight into the nature of imperfections, nucleation and growth, and the properties of protein crystals. PMID:15039549

  3. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil

    NASA Astrophysics Data System (ADS)

    Kappen, P.; Arhatari, B. D.; Luu, M. B.; Balaur, E.; Caradoc-Davies, T.

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography/diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  4. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil

    SciTech Connect

    Kappen, P. [Department of Physics, La Trobe University, Victoria 3086 (Australia); Arhatari, B. D.; Luu, M. B.; Balaur, E. [Department of Physics, La Trobe University, Victoria 3086 (Australia); ARC Centre of Excellence for Coherent X-ray Science, Melbourne (Australia); Caradoc-Davies, T. [Australian Synchrotron, 800 Blackburn Road, Victoria 3168 (Australia)

    2013-06-15

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography/diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  5. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography?diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements). PMID:23822348

  6. Diffraction grating transmission efficiencies for XUV and soft X rays. [for HEAO-B extrasolar astronomy

    NASA Technical Reports Server (NTRS)

    Schnopper, H. W.; Van Speybroeck, L. P.; Delvaille, J. P.; Epstein, A.; Kaellne, E.; Bachrach, R. Z.; Dijkstra, J.; Lantward, L.

    1977-01-01

    The manufacture and properties of a grating intended for extrasolar X-ray studies are described. The manufacturing process uses a split laser beam exposing an interference pattern on the photoresist-coated glass plated with a nickel parting layer. The grating, supporting structure, and mounting frame are electrodeposited on the nickel parting layer, and the final product is lifted from the glass substrate by selective etching of the nickel. A model was derived which relates the number of counts received in a given order m as a function of photon wavenumber. A 4-deg beam line was used to measure the efficiencies of gold transmission gratings for diffraction of X-rays in the range of 45 to 275 eV. The experimental results are in good agreement with model calculations.

  7. Determination by x-ray microscopy of the phases of the x-ray diffraction by macromolecular structures

    NASA Astrophysics Data System (ADS)

    Burge, Ronald E.; Buckley, Christopher J.; Foster, Guy F.; Bennett, Pauline

    1993-01-01

    The use of soft x-ray imaging is considered for the determination of the repeating macromolecular structure of biological fibers (e.g., collagen and muscle), within the available image resolution and subject to the effects of radiation damage. A comparison is made between the structure in sarcomere (2 (mu) to 3 (mu) long repeating unit) of striated muscle as seen directly by x-ray microscopy and as derived from published interpretations of x-ray diffraction data from whole muscle. The comparison shows that the loss by radiation damage of the ability of a muscle myofibril to contract is related to the loss of fine structure. Ways to minimize the effects of beam damage are discussed, including the use of images taken in phase, rather than amplitude contrast, and with photon energies above the `water window.'

  8. X-ray line broadening in plastically deformed calcite

    Microsoft Academic Search

    M. S. Paterson

    1959-01-01

    The broadening of several x-ray powder lines of calcite as a result of plastic deformation under a high confining pressure has been studied in Solenhofen limestone. The dependence of the broadening on the Bragg engle, the apparent influence of elastic anisotropy and the results of Fourier analysis of the lines suggest that the broadening is due mainly ta internal strains.

  9. Diffraction-limited microbeam with Fresnel zone plate optics in hard x-ray regions

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshio; Takeuchi, Akihisa; Takano, Hidekazu; Ohigashi, Takuji; Takenaka, Hisataka

    2001-12-01

    X-ray microbeam using Fresnel zone plate as a beam focusing device has been tested at an undulator beamline of Spring-8. The zone material is tantalum with thickness of 1 micrometers , and the zone structure is fabricated by using electron beam lithography technique. The outermost zone width of the zone plate is 0.25micrometers . By utilizing a fully coherent illumination, a focused spot size near to the diffraction- limit (0.3micrometers ) has been achieved at an X-ray energy of 8 keV. The measured beam profiles shows good agreement with the theoretical profile. The measured diffraction efficiency agrees well with theoretical value within an X- ray energy region from 6 keV to 10 keV. A scanning microscopy experiment has also been performed in order to evaluate the spatial resolution. Fine structures of up to 0.2micrometers are clearly observed in the measured image. The modulation transfer function derived from the measured image is 10% at 0.2micrometers line and 0.2micrometers space.

  10. X-rayEmissionfromMassiveStars: UsingEmissionLineProfilestoConstrainWind

    E-print Network

    Cohen, David

    X-rayEmissionfromMassiveStars: UsingEmissionLineProfilestoConstrainWind Kinematics Introduction:thecontextofhotstarX-rays Lineprofilediagnostics Whatdotheobservationslooklike? Whattrendsemerge? Pup:windX-rays,butlessabsorptionthanexpected OriandOri:similarsituation,verylittlewind absorption

  11. Coherent grating x-ray diffraction (CGXD) and its applications (invited)

    NASA Astrophysics Data System (ADS)

    Shen, Qun

    1996-09-01

    We show that an x-ray interference phenomenon, coherent grating x-ray diffraction (CGXD), can be used to study lateral nanostructure arrays on crystal surfaces and interfaces. Compared to Fraunhofer grating diffraction of visible light, x-ray grating diffraction contains information not only about geometric profiles of the surface but also about the internal crystalline structures and lattice strain distributions in the grating features. The grating diffraction pattern can also be measured in a white-beam Laue method using highly collimated polychromatic synchrotron radiation, which provides a parallel data collection scheme and may be useful in in situ studies on evolution of nanostructure arrays.

  12. A method for implementing the diffraction of a widely divergent X-ray beam

    SciTech Connect

    Avetyan, K. T.; Arakelyan, M. M., E-mail: marakelyan@ysu.am [Yerevan State University (Armenia)

    2008-11-15

    A method for implementing the diffraction of a widely divergent characteristic X-ray beam from a standard X-ray tube with a linear focal spot was improved. X rays, passing through a diaphragm 30 {mu}m in diameter, diffract from a crystal adjacent to the diaphragm. The crystal, together with a photographic plate, rotates around the axis perpendicular to the plate. It is shown that the diffraction image is a set of hyperbolas in this case. The equations of the hyperbolas are obtained and investigated. A method for interpreting the diffraction images in the case of small crystal asymmetry is proposed.

  13. Analysis of diatomite sediments from a paleolake in central Mexico using PIXE, X-ray tomography and X-ray diffraction

    Microsoft Academic Search

    J. Miranda; A. Oliver; G. Vilaclara; R. Rico-Montiel; V. M. Macías; J. L. Ruvalcaba; M. A. Zenteno

    1994-01-01

    Diatomite samples from paleolake Tlaxcala, in Central Mexico, have been analyzed using proton induced X-ray emission (PIXE), X-ray tomography and X-ray diffraction. Chiseled blocks were scanned with a 0.7 MeV proton beam, 0.1 mm in diameter, in 0.25 mm steps across the sediments. X-ray tomography with the same step sizes was then applied, in order to compare the concentrations obtained

  14. A Study of the Diffraction of Thermally Scattered Radiation in a Pyrolytic Graphite Crystal by Means of X-Ray Film and Mössbauer Diffraction

    NASA Astrophysics Data System (ADS)

    Kashiwase, Yasuji; Kainuma, Yoshiro; Minoura, Masayuki

    1982-01-01

    A defect line in the 002 diffuse spot of MoK? X-rays from a pyrolytic graphite crystal was observed in the diffraction pattern on an X-ray film. On the other hand, a dip in the inelastic intensity profile in the 002 Bragg reflection from the same crystal was observed also by means of Mössbauer ?-ray diffraction using 14.4 keV ?-rays and a position-sensitive detector. The correspondence between the defect line and the dip was ascertained using the two methods mentioned above.

  15. Real-time X-ray Diffraction Measurements of Shocked Polycrystalline Tin and Aluminum

    SciTech Connect

    Dane V. Morgan, Don Macy, Gerald Stevens

    2008-11-22

    A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35-ns pulse. The characteristic K? lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K? line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3-mm by 6-mm spot and 1° full-width-half-maximum (FWHM) angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5°. A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device (CCD) camera through a coherent fiberoptic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1-mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic (fcc) aluminum lattice with no phase transformation.

  16. Characterization of microstructures in Inconel 625 using X-ray diffraction peak broadening and lattice parameter measurements

    Microsoft Academic Search

    Sanjay K. Rai; Anish Kumar; Vani Shankar; T. Jayakumar; K. Bhanu Sankara Rao; Baldev Raj

    2004-01-01

    This study demonstrates that, three parameters which are microstrain, lattice parameter and crystallite size, obtained from X-ray diffraction line profile analysis, can be used in a complementary way to study the precipitation\\/dissolution of various intermetallics and carbides in nickel base superalloy Inconel 625, without extracting the precipitates from the matrix.

  17. Soft X-ray Excesses and X-ray Line Variability in Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Varlotta, Angelo; McCollough, Michael L

    2014-06-01

    Cygnus X-3 is an X-ray binary (XRB) system containing a stellar-mass compact object, most likely a black hole, and a Wolf-Rayet companion star, which produces collimated, relativistic jets, placing it in the sub-class of XRBs known as microquasars. During a Swift/XRT monitoring program of Cygnus X-3, a soft X-ray excess (below 1 keV) was observed at certain states and phases of activity. This soft excess appears to be similar to the variable soft emission observed in Seyfert galaxies. The presence of these features in Cygnus X-3 would argue for a greater support of the black-hole nature of the compact object and serve to better highlight the similarities of microquasars and AGN. We present the results of our investigations of these soft excesses, as well as the variations of the X-ray Fe line region (6.4-7.0 keV) as a function of the state activity and orbital phase.

  18. Spectral characterization of a flash X-ray diffraction transmission system

    SciTech Connect

    Champion, J.L.; Green, R.E. Jr. [Johns Hopkins Univ., Baltimore, MD (United States); Adams, K.J. [Los Alamos National Labs., NM (United States)

    1995-12-31

    X-ray diffraction from well-defined sources provides a powerful tool for investigating parameters that characterize the structure of polycrystalline materials. The current work is part of an effort to design and evaluate a flash X-ray diffraction transmission (FXDT) system for probing the interior of a hyper-velocity copper jet resulting from the detonation of a shaped charge. This is an extension of previous studies involving through-transmission diffraction with aluminum jets.

  19. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    Microsoft Academic Search

    Henry N. Chapman; Anton Barty; Stefano Marchesini; Aleksandr Noy; Stefan P. Hau-Riege; Congwu Cui; Malcolm R. Howells; Rachel Rosen; Haifeng He; John C. H. Spence; Uwe Weierstall; Tobias Beetz; Chris Jacobsen; David Shapiro

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no

  20. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steel

    Microsoft Academic Search

    Patrick Michael Fourspring

    1997-01-01

    X-ray double crystal diffractometry (XRDCD) and X-ray scanning diffractometry (XRSD) were used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if X-ray diffraction could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and

  1. Optically Induced Lattice Dynamics Probed with Ultrafast X-ray Diffraction

    Microsoft Academic Search

    H. J. Lee; A. J. Taylor; R. D. Averitt; D. Lim; J. Workman; J. P. Roberts; Q. McCulloch; D. E. Hof; D. J. Funk; N. Hur; S. W. Cheong

    2004-01-01

    We report our initial studies using ultrafast x-ray diffraction for the characterization of lattice dynamics in optically pumped manganites. For these studies, single crystal LuMnO3 is pumped with an 800 nm 100fs Ti:Sapphire laser. The induced lattice dynamics are observed using Al K-alpha x-rays, generated by focusing a portion of the same laser onto a moving Al wire. The x-rays

  2. X-ray-diffraction characterization of silicon-on-insulator films

    Microsoft Academic Search

    L. R. Thompson; G. J. Collins; B. L. Doyle; J. A. Knapp

    1991-01-01

    Silicon-on-insulator layers produced by the processes of oxygen implantation into single-crystal silicon substrates, zone melt recrystallization of deposited polysilicon films, and silicon epitaxy on sapphire substrates have been examined by an improved x-ray-diffraction technique. The technique incorporates a position-sensitive x-ray detector placed on the 2? arm of a conventional double-crystal diffractometer, thus allowing the measurement of scattered x-ray intensity in

  3. X-ray-diffraction characterization of silicon-on-insulator films

    Microsoft Academic Search

    L. R. Thompson; G. J. Collins; B. L. Doyle; J. A. Knapp

    1991-01-01

    Silicon-on-insulator layers produced by the processes of oxygen implantation into single-crystal silicon substrates, zone melt recrystallization of deposited polysilicon films, and silicon epitaxy on sapphire substrates have been examined by an improved x-ray-diffraction technique. The technique incorporates a position-sensitive x-ray detector placed on the 2θ arm of a conventional double-crystal diffractometer, thus allowing the measurement of scattered x-ray intensity in

  4. X-ray Diagnostics of Broad Absorption Line Quasar Geometry

    E-print Network

    Brian Punsly; Sebastian Lipari

    2005-03-09

    A new generation of sensitive X-ray measurements are indicating that the existence of X-ray attenuation column densities, $N_{H}>10^{24}\\mathrm{cm}^{-2}$ is quite common amongst broad absorption line quasars (BALQSOs). This is significant to the geometry of the broad absorption line (BAL) outflow. In particular, such an X-ray shield also shields equatorial accretion disk winds from the UV, thereby preventing high velocity equatorial outflows from being launched. By contrast, bipolar winds initiated by continuum radiation pressure from the funnel of a slim accretion disk flare outward (like a trumpet) and offer vastly different absorbing columns to the X-ray and UV emission which are emitted from distinct regions of the disk, $\\sim 6M$ and $\\sim 10M-40M$, respectively (where $M$ is the radius of the black hole). Recent numerical work indicates that it is also possible to launch bipolar outflows from the inner regions of a thin disk. The recent discovery with VLBI that the Galactic analog of a BALQSO, the X-ray binary Circinus X-1 (with high velocity P Cygni X-ray absorption lines) is viewed virtually along the radio jet axis (and therefore along the spin axis of the black hole and the normal to the accretion disk) has rekindled interest in the bipolar models of BALQSOs. We explore this possibility by studying the nearest BAL QSO, MRK 231. High resolution 2-D optical spectroscopy and VLBI mappings of the radio jet axis indicates that the BAL outflow is parallel to the parsec scale radio jet.

  5. Femtosecond X-ray diffraction from two-dimensional protein crystals

    PubMed Central

    Frank, Matthias; Carlson, David B.; Hunter, Mark S.; Williams, Garth J.; Messerschmidt, Marc; Zatsepin, Nadia A.; Barty, Anton; Benner, W. Henry; Chu, Kaiqin; Graf, Alexander T.; Hau-Riege, Stefan P.; Kirian, Richard A.; Padeste, Celestino; Pardini, Tommaso; Pedrini, Bill; Segelke, Brent; Seibert, M. Marvin; Spence, John C. H.; Tsai, Ching-Ju; Lane, Stephen M.; Li, Xiao-Dan; Schertler, Gebhard; Boutet, Sebastien; Coleman, Matthew; Evans, James E.

    2014-01-01

    X-ray diffraction patterns from two-dimensional (2-D) protein crystals obtained using femtosecond X-ray pulses from an X-ray free-electron laser (XFEL) are presented. To date, it has not been possible to acquire transmission X-ray diffraction patterns from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permit a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy approach at the Linac Coherent Light Source, Bragg diffraction was acquired to better than 8.5?Å resolution for two different 2-D protein crystal samples each less than 10?nm thick and maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals. PMID:25075325

  6. Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.

    PubMed

    Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young

    2014-11-17

    We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers. PMID:25402155

  7. Fitting dynamical x-ray diffraction data over the World Wide Web.

    SciTech Connect

    Stepanov, S.; Forrest, R.; Biosciences Division; Univ. of Houston

    2008-01-01

    The first implementation of fitting X-ray Bragg diffraction profiles from strained multilayer crystals at a remote web-based X-ray software server is presented. The algorithms and the software solutions involved in the process are described. The suggested technology can be applied to a wide range of scientific research and has the potential to promote remote collaborations across scientific communities.

  8. Bragg diffraction using a 100ps 17.5 keV x-ray backlighter and the Bragg Diffraction Imager

    SciTech Connect

    Maddox, B R; Park, H; Hawreliak, J; Comley, A; Elsholz, A; Van Maren, R; Remington, B A; Wark, J

    2010-05-13

    A new diagnostic for measuring Bragg diffraction from a laser-driven crystal using a 100ps 17.5 kV x-ray backlighter source is designed and tested successfully at the Omega EP laser facility on static Mo and Ta single crystal samples using a Mo Ka backlighter. The Bragg Diffraction Imager (BDI) consists of a heavily shielded enclosure and a precisely positioned beam block, attached to the main enclosure by an Aluminum arm. Image plate is used as the x-ray detector. The diffraction lines from Mo and Ta <222> planes are clearly detected with a high signal-to-noise using the 17.5 keV and 19.6 keV characteristic lines generated by a petawatt-driven Mo foil. This technique will be applied to shock and ramp-loaded single crystals on the Omega EP laser. Pulsed x-ray diffraction of shock- and ramp-compressed materials is an exciting new technique that can give insight into the dynamic behavior of materials at ultra-high pressure not achievable by any other means to date. X-ray diffraction can be used to determine not only the phase and compression of the lattice at high pressure, but by probing the lattice compression on a timescale equal to the 3D relaxation time of the material, information about dislocation mechanics, including dislocation multiplication rate and velocity, can also be derived. Both Bragg, or reflection, and Laue, or transmission, diffraction have been developed for shock-loaded low-Z crystalline structures such as Cu, Fe, and Si using nano-second scale low-energy implosion and He-{alpha} x-ray backlighters. However, higher-Z materials require higher x-ray probe energies to penetrate the samples, such as in Laue, or probe deep enough into the target, as in the case of Bragg diffraction. Petawatt laser-generated K{alpha} x-ray backlighters have been developed for use in high-energy radiography of dense targets and other HED applications requiring picosecond-scale burst of hard x-rays. While short pulse lasers are very efficient at producing high-energy x-rays, the characteristic x-rays produced in these thin foil targets are superimposed on a broad bremsstrahlung background and can easily saturate a detector if careful diagnostic shielding and experimental geometry are not implemented. A new diagnostic has been designed to measure Bragg diffraction from laser-driven crystal targets using characteristic x-rays from a short-pulse laser backlighter on the Omega EP laser. The Bragg Diffraction Imager, or BDI, is a TIM-mounted instrument consisting of a heavily shielded enclosure made from 3/8-inch thick Heavymet (W-Fe-Ni alloy) and a precisely positioned beam bock, attached to the main enclosure by an Aluminum arm. The beam block is made of 1-inch thick, Al-coated Heavymet and serves to block the x-rays directly from the petawatt backlight, while allowing the diffraction x-rays from the crystal to pass to the enclosure. A schematic of the BDI is shown in Fig. 1a. Image plates are used as the x-ray detector and are loaded through the top of the diagnostic in an Aluminum, light-tight cartridge. The front of the enclosure can be fitted with various filters to maximize the diffraction signal-to-noise.

  9. Real-time X-ray Diffraction: Applications to Materials Characterization

    NASA Technical Reports Server (NTRS)

    Rosemeier, R. G.

    1984-01-01

    With the high speed growth of materials it becomes necessary to develop measuring systems which also have the capabilities of characterizing these materials at high speeds. One of the conventional techniques of characterizing materials was X-ray diffraction. Film, which is the oldest method of recording the X-ray diffraction phenomenon, is not quite adequate in most circumstances to record fast changing events. Even though conventional proportional counters and scintillation counters can provide the speed necessary to record these changing events, they lack the ability to provide image information which may be important in some types of experiment or production arrangements. A selected number of novel applications of using X-ray diffraction to characterize materials in real-time are discussed. Also, device characteristics of some X-ray intensifiers useful in instantaneous X-ray diffraction applications briefly presented. Real-time X-ray diffraction experiments with the incorporation of image X-ray intensification add a new dimension in the characterization of materials. The uses of real-time image intensification in laboratory and production arrangements are quite unlimited and their application depends more upon the ingenuity of the scientist or engineer.

  10. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction

    SciTech Connect

    Buergi, J.; Molleja, J. Garcia; Feugeas, J. [Instituto de Fisica Rosario (CONICET-UNR), Bv. 27 de Febrero 210 bis, S2000EZP Rosario (Argentina); Neuenschwander, R. [Laboratorio Nacional Luz Sincrotron (LNLS), Caixa Postal 6192, CEP13083-970 Campinas (Brazil); Kellermann, G. [Departamento de Fisica (Universidade Federal do Parana), Caixa Postal 19044, CEP81531-990 Curitiba (Brazil); Craievich, A. F. [Instituto de Fisica (Universidade de Sao Paulo), Rua do Matao Travessa R 187, CEP05508-090 Sao Paulo (Brazil)

    2013-01-15

    The purpose of the designed reactor is (i) to obtain polycrystalline and/or amorphous thin films by controlled deposition induced by a reactive sputtering magnetron and (ii) to perform a parallel in situ structural study of the deposited thin films by X-ray diffraction, in real time, during the whole growth process. The designed reactor allows for the control and precise variation of the relevant processing parameters, namely, magnetron target-to-sample distance, dc magnetron voltage, and nature of the gas mixture, gas pressure and temperature of the substrate. On the other hand, the chamber can be used in different X-ray diffraction scanning modes, namely, {theta}-2{theta} scanning, fixed {alpha}-2{theta} scanning, and also low angle techniques such as grazing incidence small angle X-ray scattering and X-ray reflectivity. The chamber was mounted on a standard four-circle diffractometer located in a synchrotron beam line and first used for a preliminary X-ray diffraction analysis of AlN thin films during their growth on the surface of a (100) silicon wafer.

  11. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction.

    PubMed

    Bürgi, J; Neuenschwander, R; Kellermann, G; García Molleja, J; Craievich, A F; Feugeas, J

    2013-01-01

    The purpose of the designed reactor is (i) to obtain polycrystalline and?or amorphous thin films by controlled deposition induced by a reactive sputtering magnetron and (ii) to perform a parallel in situ structural study of the deposited thin films by X-ray diffraction, in real time, during the whole growth process. The designed reactor allows for the control and precise variation of the relevant processing parameters, namely, magnetron target-to-sample distance, dc magnetron voltage, and nature of the gas mixture, gas pressure and temperature of the substrate. On the other hand, the chamber can be used in different X-ray diffraction scanning modes, namely, ?-2? scanning, fixed ?-2? scanning, and also low angle techniques such as grazing incidence small angle X-ray scattering and X-ray reflectivity. The chamber was mounted on a standard four-circle diffractometer located in a synchrotron beam line and first used for a preliminary X-ray diffraction analysis of AlN thin films during their growth on the surface of a (100) silicon wafer. PMID:23387690

  12. Recent advances in continuum plasticity: phenomenological modeling and experimentation using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Edmiston, John Kearney

    This work explores the field of continuum plasticity from two fronts. On the theory side, we establish a complete specification of a phenomenological theory of plasticity for single crystals. The model serves as an alternative to the popular crystal plasticity formulation. Such a model has been previously proposed in the literature; the new contribution made here is the constitutive framework and resulting simulations. We calibrate the model to available data and use a simple numerical method to explore resulting predictions in plane strain boundary value problems. Results show promise for further investigation of the plasticity model. Conveniently, this theory comes with a corresponding experimental tool in X-ray diffraction. Recent advances in hardware technology at synchrotron sources have led to an increased use of the technique for studies of plasticity in the bulk of materials. The method has been successful in qualitative observations of material behavior, but its use in quantitative studies seeking to extract material properties is open for investigation. Therefore in the second component of the thesis several contributions are made to synchrotron X-ray diffraction experiments, in terms of method development as well as the quantitative reporting of constitutive parameters. In the area of method development, analytical tools are developed to determine the available precision of this type of experiment—a crucial aspect to determine if the method is to be used for quantitative studies. We also extract kinematic information relating to intragranular inhomogeneity which is not accessible with traditional methods of data analysis. In the area of constitutive parameter identification, we use the method to extract parameters corresponding to the proposed formulation of plasticity for a titanium alloy (HCP) which is continuously sampled by X-ray diffraction during uniaxial extension. These results and the lessons learned from the efforts constitute early reporting of the quantitative profitability of undertaking such a line of experimentation for the study of plastic deformation processes.

  13. Electrochemical in situ reaction cell for X-ray scattering, diffraction and spectroscopy.

    PubMed

    Braun, A; Shrout, S; Fowlks, A C; Osaisai, B A; Seifert, S; Granlund, E; Cairns, E J

    2003-07-01

    A versatile electrochemical in situ reaction cell for long-term hard X-ray experiments on battery electrodes is described. Applications include the small-angle scattering, diffraction and absorption spectroscopy of lithium manganese oxide electrodes. PMID:12824932

  14. X-Ray Diffraction Powder Patterns and Thin Section Observations from the Sierra Madera Impact Structure

    NASA Astrophysics Data System (ADS)

    Huson, S. A.; Foit, F. F.; Watkinson, A. J.; Pope, M. C.

    2006-03-01

    X-Ray powder diffraction analysis and thin section observations of carbonate and siliciclastic samples from the Sierra Madera impact structure indicate moderate shock pressures (8 to 30 GPa) were generated during the formation of this crater.

  15. High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution

    PubMed Central

    Sandberg, Richard L.; Song, Changyong; Wachulak, Przemyslaw W.; Raymondson, Daisy A.; Paul, Ariel; Amirbekian, Bagrat; Lee, Edwin; Sakdinawat, Anne E.; La-O-Vorakiat, Chan; Marconi, Mario C.; Menoni, Carmen S.; Murnane, Margaret M.; Rocca, Jorge J.; Kapteyn, Henry C.; Miao, Jianwei

    2008-01-01

    Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to ?200 nm. By using imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens with techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy, and photoactivated localization microscopy. Here, we report a versatile soft x-ray diffraction microscope with 70- to 90-nm resolution by using two different tabletop coherent soft x-ray sources—a soft x-ray laser and a high-harmonic source. We also use field curvature correction that allows high numerical aperture imaging and near-diffraction-limited resolution of 1.5?. A tabletop soft x-ray diffraction microscope should find broad applications in biology, nanoscience, and materials science because of its simple optical design, high resolution, large depth of field, 3D imaging capability, scalability to shorter wavelengths, and ultrafast temporal resolution. PMID:18162534

  16. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    E-print Network

    Mohseni, Hooman

    High-resolution x-ray diffraction microscopy of specifically labeled yeast cells Johanna Nelsona,1 of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which

  17. X-Ray Fiber Diffraction Recordings from Oriented Demembranated Chlamydomonas Flagellar Axonemes.

    PubMed

    Toba, Shiori; Iwamoto, Hiroyuki; Kamimura, Shinji; Oiwa, Kazuhiro

    2015-06-16

    The high homology of its axonemal components with humans and a large repertoire of axonemal mutants make Chlamydomonas a useful model system for experiments on the structure and function of eukaryotic cilia and flagella. Using this organism, we explored the spatial arrangement of axonemal components under physiological conditions by small-angle x-ray fiber diffraction. Axonemes were oriented in physiological solution by continuous shear flow and exposed to intense and stable x rays generated in the synchrotron radiation facility SPring-8, BL45XU. We compared diffraction patterns from axonemes isolated from wild-type and mutant strains lacking the whole outer arm (oda1), radial spoke (pf14), central apparatus (pf18), or the ?-chain of the outer arm dynein (oda11). Diffraction of the axonemes showed a series of well-defined meridional/layer-line and equatorial reflections. Diffraction patterns from mutant axonemes exhibited a systematic loss/attenuation of meridional/layer-line reflections, making it possible to determine the origin of various reflections. The 1/24 and 1/12 nm(-1) meridional reflections of oda1 and oda11 were much weaker than those of the wild-type, suggesting that the outer dynein arms are the main contributor to these reflections. The weaker 1/32 and 1/13.7 nm(-1) meridional reflections from pf14 compared with the wild-type suggest that these reflections come mainly from the radial spokes. The limited contribution of the central pair apparatus to the diffraction patterns was confirmed by the similarity between the patterns of the wild-type and pf18. The equatorial reflections were complex, but a comparison with electron micrograph-based models allowed the density of each axonemal component to be estimated. Addition of ATP to rigor-state axonemes also resulted in subtle changes in equatorial intensity profiles, which could report nucleotide-dependent structural changes of the dynein arms. The first detailed description of axonemal reflections presented here serves as a landmark for further x-ray diffraction studies to monitor the action of constituent proteins in functional axonemes. PMID:26083924

  18. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M. (Pittsburgh, PA); Cohen, Isadore (Pittsburgh, PA)

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  19. ELECTRON MICROSCOPE AND LOW-ANGLE X-RAY DIFFRACTION STUDIES OF THE NERVE MYELIN SHEATH

    PubMed Central

    Fernández-morán, H.; Finean, J. B.

    1957-01-01

    1. A close correlation has been obtained between high resolution electron microscopy and low-angle x-ray diffraction studies of the myelin sheath of frog and rat peripheral and central nerves. Extensive studies were performed by application of both techniques to the same specimens, prepared for examination by OsO4 or KMnO4 fixation, and embedding either in methacrylate or in gelatin employing a new procedure. Controlled physical and chemical modifications of the myelin sheath prior to fixation were also investigated. 2. A correspondence was established between the layer spacings observed in electron micrographs and the fundamental radial repeating unit indicated by the low-angle x-ray diffraction patterns. The variations in relative intensities of the low-angle x-ray reflections could be related to the radial density distributions seen in the electron micrographs. 3. An analysis of the preparation procedures revealed that OsO4 fixation introduces a greater shrinkage of the layer spacings and more pronounced changes in the density distribution within the layers than KMnO4 fixation. The effects of methacrylate and gelatin embedding are described, and their relative merits considered in relation to the preservation of myelin structure by OsO4 fixation. 4. The experimental modifications introduced by freezing and thawing of fresh whole nerve are described, particularly the enhancement of the intermediate lines and the dissociation of the layer components in the myelin sheath. A characteristic collapsing of the radial period of the sheath is observed after subjecting fresh nerve trunks to prolonged and intense ultracentrifugation. 5. Controlled extraction of fresh nerve with acetone at 0°C., which preferentially removes cholesterol, produces characteristic, differentiated modifications of the myelin sheath structure. Electron microscopy reveals several types of modifications within a single preparation, including both expanded and collapsed layer systems, and internal rearrangements of the layer components. Alcohol extraction leads to a more extensive structural breakdown, but in certain areas collapsed layer systems can still be observed. The components of the lipide extracts could be identified by means of x-ray diffraction. These modifications emphasize the importance of cholesterol in the myelin structure, and disclose a resistance of the dense osmiophilic lines to lipide solvents. 6. The significance of these structures is discussed in relation to present concepts of the molecular organization of myelin. The available evidence is consistent with the suggestion that the primary site of osmium deposition is at the lipoprotein interfaces and that the light bands probably represent regions occupied by lipide chains. The electron microscope and x-ray diffraction data also indicate the possibility of a regular organization within the plane of the layers, probably involving units of 60 to 80 A. The myelin sheath is regarded as a favourable cell membrane model for detailed analysis by combined application of x-ray diffraction and electron microscopy. PMID:13475388

  20. X-ray diffraction and laser heating: application of a moissanite anvil cell

    Microsoft Academic Search

    Jingzhu Hu; Jian Xu; M. Somayazulu; Q. Guo; R. Hemley; H. K. Mao

    2002-01-01

    A moissanite anvil cell (MAC) has been used in research at high-pressure recently. In this paper, we describe its application in x-ray diffraction studies with laser heating. A high temperature of 3700 K has been achieved in a MAC; the lattice constants of graphite were determined by means of in situ x-ray diffraction at room temperature and 3700 K, and

  1. X-ray diffraction and laser heating: application of a moissanite anvil cell

    NASA Astrophysics Data System (ADS)

    Hu, Jingzhu; Xu, Jian; Somayazulu, M.; Guo, Q.; Hemley, R.; Mao, H. K.

    2002-11-01

    A moissanite anvil cell (MAC) has been used in research at high-pressure recently. In this paper, we describe its application in x-ray diffraction studies with laser heating. A high temperature of 3700 K has been achieved in a MAC; the lattice constants of graphite were determined by means of in situ x-ray diffraction at room temperature and 3700 K, and the results are in good agreement with reference data.

  2. X-ray diffraction characterization of suspended structures forMEMS applications

    SciTech Connect

    Goudeau, P.; Tamura, N.; Lavelle, B.; Rigo, S.; Masri, T.; Bosseboeuf, A.; Sarnet, T.; Petit, J.-A.; Desmarres, J.-M.

    2005-09-15

    Mechanical stress control is becoming one of the major challenges for the future of micro and nanotechnologies. Micro scanning X-ray diffraction is one of the promising techniques that allows stress characterization in such complex structures at sub micron scales. Two types of MEMS structure have been studied: a bilayer cantilever composed of a gold film deposited on poly-silicon and a boron doped silicon bridge. X-ray diffraction results are discussed in view of numerical simulation experiments.

  3. Ris-R-1266(EN) The 3D X-Ray Diffraction Microscope

    E-print Network

    Risø-R-1266(EN) The 3D X-Ray Diffraction Microscope and its Application to the Study Preface 3 1 Introduction 5 2 The 3D X-Ray Diffraction Microscope 7 2.1 Experimental set-up 8 2.1.1 The x.3 Discussion and outlook 27 3 Recrystallization Kinetics and the 3DXRD Microscope 29 3.1 Experimental 30 3

  4. Better Living Through Minerals: X-Ray Diffraction of Household Products

    NSDL National Science Digital Library

    Barb Dutrow

    X-ray diffraction is a quick and valuable tool for identifying minerals. Minerals are an integral portion of our everyday life, in addition to composing our planet! They help bring electricity into our homes and remove our bathtub rings. In this lab, students analyze the X-ray diffraction patterns of three household cleansers, Ajax, White Magic, and Soft Scrub, in order to identify the abrasive minerals in each.

  5. Structure of Si(001)-(4×3)In Surface Studied by X-Ray Photoelectron Diffraction

    Microsoft Academic Search

    M. Shimomura; T. Nakamura; K.-S. Kim; T. Abukawa; J. Tani; S. Kono

    1999-01-01

    X-ray photoelectron diffraction (XPD) patterns of In 3d core levels have been measured for the Si(001)-(4×3)-In surface. An R factor analysis with single-scattering and multiple-scattering simulations of In 3d XPD patterns was performed for three structural models proposed so far. Only the model proposed by surface X-ray diffraction [Appl. Surf. Sci. 123\\/124, 104 (1998)] appeared to give a reasonably small

  6. Submicron X-Ray Diffraction and Its Applications to Problems in Materials and Environmental Science

    Microsoft Academic Search

    N. Tamura; R. S. Celestre; A. A. MacDowell; H. A. Padmore; R. Spolenak; B. C. Valek; N. Meier Chang; A. Manceau; J. R. Patel

    2002-01-01

    The availability of high brilliance 3rd generation synchrotron sources together with progress in achromatic focusing optics allow to add submicron spatial resolution to the conventional century-old X-ray diffraction technique. The new capabilities include the possibility to map in-situ, grain orientations, crystalline phase distribution and full strain\\/stress tensors at a very local level, by combining white and monochromatic X-ray microbeam diffraction.

  7. Synchrotron X-ray diffraction studies of inorganic materials and heterogeneous catalysts

    Microsoft Academic Search

    J. M. Newsam; K. S. Liang

    1989-01-01

    The special features of synchrotron X-radiation and the types of instrumentation required for a range of synchrotron X-ray diffraction experiments are outlined. A diverse range of applications to inorganic and heterogeneous catalyst systems are discussed. Grazing incidence X-ray diffraction experiments have revealed a number of surface structures and followed surface phase transformations; similar studies of boundary and interfacial structures are

  8. Microstructural Characterization of Spin-Valve Multilayers by X-Ray Anomalous Diffraction Technique

    Microsoft Academic Search

    C. X. Liu; M. Xu; G. M. Luo; T. Yang; C. C. Chai; Z. H. Mai; W. Y. Lai; H. Y. Jiang; Z. H. Wu; Y. F. Ding; J. Wang

    2001-01-01

    It is impossible to directly analyze the microstructure of spin-valve multilayers based on Ni, Fe, Cu and Mn by a conventional X-ray diffraction technique because the lattice parameter and atomic scattering factors of them are very close. To solve this problem, we use an X-ray anomalous diffraction technique to characterize the microstructures of the [Ni80Fe20\\/Fe50Mn50]15 and [Ni80Fe20\\/Cu]15 superlattice systems. The

  9. Strain energy density in the x-ray powder diffraction from mixed crystals and alloys

    NASA Astrophysics Data System (ADS)

    Rosenberg, Yu; Machavariani, V. Sh; Voronel, A.; Garber, S.; Rubshtein, A.; Frenkel, A. I.; Stern, E. A.

    2000-09-01

    A correlation between precise x-ray powder diffraction patterns and atomic size mismatch in disordered mixed crystals (alloys and ionic crystals) is observed. The anisotropy of the elastic moduli has been taken into account for evaluation of the strain energy density of the mixed crystals revealed in x-ray powder diffraction measurements. The precursor of the phase transformation for a quenched disordered Au-Cu alloy is identified.

  10. Time-resolved x-ray diffraction study of photostimulated purple membrane.

    PubMed Central

    Frankel, R D; Forsyth, J M

    1985-01-01

    A nanosecond resolution laser-driven x-ray source has been used to perform a time-resolved, x-ray diffraction study of the purple membrane of the Halobacterium halobium. Alterations in diffraction patterns have been observed 1 ms after photostimulation, and are interpreted to show disorder of bacteriorhodopsin packing in the plane of the membrane with little bacteriorhodopsin structural change. PMID:3978209

  11. [Urinary calculi analysis using X-ray diffraction: selection, use and advantages].

    PubMed

    Asper, R; Schmucki, O

    1981-08-01

    Analysis of urinary calculi by X-ray diffraction: The evaluation of X-ray diffraction for the analysis of urinary calculi led to the substitution of the analysis by qualitative-chemical reactions. This instrumental method is performed in the routine laboratory in Zurich since two years. The interlaboratory quality assurance programme of 100 laboratories showed the advantage of the new method, producing correct results. On the contrary the old fashioned method by qualitative-chemical reactions yields questionable results. PMID:7287486

  12. X-ray diffraction and scanning electron microscopy of galvannealed coatings on steel

    Microsoft Academic Search

    P. Schmid; K. Uran; F. Macherey; M. Ebert; H.-J. Ullrich; D. Sommer; F. Friedel

    2009-01-01

    The formation of Fe–Zn intermetallic compounds, as relevant in the commercial product galvannealed steel sheet, was investigated\\u000a by scanning electron microscopy and different methods of X-ray diffraction. A scanning electron microscope with high resolution\\u000a was applied to investigate the layers of the galvannealed coating and its topography. Grazing incidence X-ray diffraction\\u000a (GID) was preferred over conventional Bragg–Brentano geometry for analysing

  13. A portable X-ray diffraction apparatus for in situ analyses of masters' paintings

    NASA Astrophysics Data System (ADS)

    Eveno, Myriam; Duran, Adrian; Castaing, Jacques

    2010-09-01

    It is rare that the analyses of materials in paintings can be carried out by taking micro-samples. Valuable works of art are best studied in situ by non-invasive techniques. For that purpose, a portable X-ray diffraction and fluorescence apparatus has been designed and constructed at the C2RMF. This apparatus has been used for paintings of Rembrandt, Leonardo da Vinci, Van Gogh, Mantegna, etc. Results are given to illustrate the performance of X-ray diffraction, especially when X-ray fluorescence does not bring sufficient information to conclude.

  14. Near diffraction limited coherent diffractive imaging with tabletop soft x-ray sources

    NASA Astrophysics Data System (ADS)

    Sandberg, Richard L.; Raymondson, Daisy A.; Schlotter, William F.; Raines, Kevin; La-O-Vorakiat, Chan; Paul, Ariel; Murnane, Margaret M.; Kapteyn, Henry C.; Miao, Jianwei

    2009-09-01

    Tabletop coherent x-ray sources hold great promise for practical nanoscale imaging, in particular when coupled with diffractive imaging techniques. In initial work, we demonstrated lensless diffraction imaging using a tabletop high harmonic generation (HHG) source at 29 nm, achieving resolutions ~ 200 nm. In recent work, we significantly enhanced our diffractive imaging resolution by implementing a new high numerical aperture (up to NA=0.6) scheme and field curvature correction where we achieved sub-100 nm resolution. Here we report the first demonstration of Fourier transform holography (FTH) with a tabletop SXR source, to acquire images with a resolution approx 90 nm. The resolution can be refined by applying phase retrieval. Additionally, we show initial results from FTH with 13.5 nm HHG radiation and demonstrate ~ 180 nm resolution.

  15. The structure of tellurite glass: A combined NMR, neutron diffraction, and x-ray diffraction study

    SciTech Connect

    McLaughlin, J. C.; Tagg, S. L.; Zwanzier, J. W.; Shastri, S. D.; Haeffner, D. R.

    2000-04-04

    Models are presented of sodium tellurite glasses in the composition range (Na{sub 2}0){sub x}-(TeO{sub 2}){sub 1{minus}x}. 0.1 < x < 0.3. The models combine self-consistently data from three different and complementary sources: sodium-23 nuclear magnetic resonance (NMR), neutron diffraction, and x-ray diffraction. The models were generated using the Reverse Monte Carlo algorithm, modified to include NMR data in addition to diffraction data. The presence in the models of all five tellurite polyhedra consistent with the Te{sup +4} oxidation state were found to be necessary to achieve agreement with the data. The distribution of polyhedra among these types varied from a predominance of highly bridged species at low sodium content, to polyhedra with one or zero bridging oxygen at high sodium content. The models indicate that the sodium cations themselves form sodium oxide clusters particularly at the x = 0.2 composition.

  16. The Transformation of Illite to Muscovite in Pelitic Rocks: Constraints from X-ray Diffraction

    Microsoft Academic Search

    M. Gharrabi; B. VELDE; J.-P. SAGON

    1998-01-01

    The boundary between diagenesis and metamorphism most likely involves the change of illite into mica. Observations of this change can be made using decomposed X-ray diffraction (XRD) spectra of illitic clay mineral assemblages in pelitic sedimentary rocks. XRD analysis of the (003) diffraction peak of diagenetic illites indicates that there are 2 components, one of small coherent diffraction domains and

  17. Second order x-ray in-line phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Cong, Wenxiang; Wang, Ge

    2014-09-01

    X-ray phase imaging is sensitive to structural variation of soft tissue, and offers excellent contrast resolution for characterization of cancerous tissues. Also, the cross-section of x-ray phase shift is a thousand times greater than that of x-ray attenuation in soft tissue over the diagnostic energy range, allowing a much higher signal-to-noise ratio at a substantially lower radiation dose than attenuation-based x-ray imaging. In this paper, we present a second order approximation model with respect to phase shift based on the paraxial Fresnel-Kirchhoff diffraction theory, and also discuss in-line dark-field imaging based on the second order model. This proposed model accurately establishes a quantitative correspondence between phases and recorded intensity images, outperforming the linear phase approximation model widely used in the conventional methods of x-ray in-line phase-contrast imaging. This new model can be iteratively solved using the algebraic reconstruction technique (ART). The state of the art compressive sensing ingredients can be incorporated to achieve high quality image reconstruction. Our numerical simulation studies demonstrate the feasibility of the proposed approach that is more accurate and stable, and more robust against noise than the conventional approach.

  18. Plasticity and X-ray Line Profile Analysis of the semicrystalline polymer poly(3-hydroxybutyrate)

    NASA Astrophysics Data System (ADS)

    Spieckermann, F.; Wilhelm, H.; Schafler, E.; Kerber, M.; Bernstorff, S.; Zehetbauer, M. J.

    2010-07-01

    The evolution of the microstructure during compressive deformation of the biodegradable polymer poly(3-hydroxybutyrate) (P3HB) was investigated in-situ via X-ray diffraction using synchrotron radiation. Flow curves were measured in-situ together with X-ray profiles for several degrees of deformation. The profiles were analysed using Multi-Reflection X-ray Line Profile Analysis (MXPA) adapted by the authors for semicrystalline polymers providing lamella thickness, crystallinity, and the presence and density of dislocations as a function of the deformation. In contrast to previous investigations in ? crystallised isotactic polypropylene (?-iPP), P3HB does not exhibit a deformation induced increase of the dislocation density which suggests mechanisms other than dislocations to be involved in plastic deformation of P3HB.

  19. Defect studies by X-ray diffraction, electrical and optical properties of layer type tungsten mixed molybdenum sulphoselenide

    Microsoft Academic Search

    S. K. Srivastava; D. Palit

    2005-01-01

    Layer type tungsten mixed molybdenum sulphoselenide, Mo0.5W0.5SxSe2?x (0?x?2) starting from ternary Mo0.5W0.5Se2 compound and by substituting selenium with sulphur ended with Mo0.5W0.5S2 which is also a ternary compound, have been prepared and characterized. X-ray diffraction studies showed that all the compounds possess 2H–MoS2 structure with a small change in a- and c-parameters. X-ray line profile analysis has been used to

  20. First results from a next-generation off-plane X-ray diffraction grating

    NASA Astrophysics Data System (ADS)

    McEntaffer, Randall; DeRoo, Casey; Schultz, Ted; Gantner, Brennan; Tutt, James; Holland, Andrew; O'Dell, Stephen; Gaskin, Jessica; Kolodziejczak, Jeffrey; Zhang, William W.; Chan, Kai-Wing; Biskach, Michael; McClelland, Ryan; Iazikov, Dmitri; Wang, Xinpeng; Koecher, Larry

    2013-08-01

    Future NASA X-ray spectroscopy missions will require high throughput, high resolving power grating spectrometers. Off-plane reflection gratings are capable of meeting the performance requirements needed to realize the scientific goals of these missions. We have identified a novel grating fabrication method that utilizes common lithographic and microfabrication techniques to produce the high fidelity groove profile necessary to achieve this performance. Application of this process has produced an initial pre-master that exhibits a radial (variable line spacing along the groove dimension), high density (> 6000 grooves/mm), laminar profile. This pre-master has been tested for diffraction efficiency at the BESSY II synchrotron light facility and diffracts up to 55 % of incident light into usable spectral orders. Furthermore, tests of spectral resolving power show that these gratings are capable of obtaining resolving powers well above 1300 ( ?/? ?) with limitations due to the test apparatus, not the gratings. Obtaining these results has provided confidence that this fabrication process is capable of producing off-plane reflection gratings for the next generation of X-ray observatories.

  1. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    PubMed Central

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463

  2. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGESBeta

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; et al

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore »resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  3. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGESBeta

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore »freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  4. Evaluation of In-Vacuum Imaging Plate Detector for X-Ray Diffraction Microscopy

    SciTech Connect

    Nishino, Yoshinori; Takahashi, Yukio; Yamamoto, Masaki; Ishikawa, Tetsuya [SPring-8 / RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2007-01-19

    We performed evaluation tests of a newly developed in-vacuum imaging plate (IP) detector for x-ray diffraction microscopy. IP detectors have advantages over direct x-ray detection charge-coupled device (CCD) detectors, which have been commonly used in x-ray diffraction microscopy experiments, in the capabilities for a high photon count and for a wide area. The detector system contains two IPs to make measurement efficient by recording data with the one while reading or erasing the other. We compared speckled diffraction patterns of single particles taken with the IP and a direct x-ray detection CCD. The IP was inferior to the CCD in spatial resolution and in signal-to-noise ratio at a low photon count.

  5. X-ray diffraction and scanning electron microscopy of galvannealed coatings on steel.

    PubMed

    Schmid, P; Uran, K; Macherey, F; Ebert, M; Ullrich, H-J; Sommer, D; Friedel, F

    2009-04-01

    The formation of Fe-Zn intermetallic compounds, as relevant in the commercial product galvannealed steel sheet, was investigated by scanning electron microscopy and different methods of X-ray diffraction. A scanning electron microscope with high resolution was applied to investigate the layers of the galvannealed coating and its topography. Grazing incidence X-ray diffraction (GID) was preferred over conventional Bragg-Brentano geometry for analysing thin crystalline layers because of its lower incidence angle alpha and its lower depth of information. Furthermore, in situ experiments at an environmental scanning electron microscope (ESEM) with an internal heating plate and at an X-ray diffractometer equipped with a high-temperature chamber were carried out. Thus, it was possible to investigate the phase evolution during heat treatment by X-ray diffraction and to display the growth of the zeta crystals in the ESEM. PMID:19153722

  6. Stoichiometry optimization of homoepitaxial oxide thin films using x-ray diffraction.

    SciTech Connect

    LeBeau, J. M.; Engel-Herbert, R.; Jalan, B.; Cagnon, J.; Moetakef, P.; Stemmer, S.; Stephenson, G. B.; Materials Science Division; Univ. of California at Santa Barbara

    2009-10-05

    Homoepitaxial SrTiO{sub 3} thin films grown by molecular beam epitaxy are analyzed using high-resolution x-ray diffraction and transmission electron microscopy. Measured 00L x-ray scans from stoichiometric and nonstoichiometric films are compared with calculations that account for the effects of film thickness, lattice parameter, fractional site occupancy, and an offset between film and substrate at the interface. It is found that thickness fringes, commonly observed around Bragg reflections even in stoichiometric homoepitaxial SrTiO{sub 3} films, arise from a film/substrate interface offset. Transmission electron microscopy studies confirm the presence of strain at those homoepitaxial interfaces that show an offset in x-ray diffraction. The consequences for stoichiometry optimization of homoepitaxial films using high-resolution x-ray diffraction and the quality of regrown oxide interfaces are discussed.

  7. Stoichiometry optimization of homoepitaxial oxide thin films using x-ray diffraction

    SciTech Connect

    LeBeau, James M.; Engel-Herbert, Roman; Jalan, Bharat; Cagnon, Joeel; Moetakef, Pouya; Stemmer, Susanne [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States); Stephenson, G. Brian [Materials Science Division and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2009-10-05

    Homoepitaxial SrTiO{sub 3} thin films grown by molecular beam epitaxy are analyzed using high-resolution x-ray diffraction and transmission electron microscopy. Measured 00L x-ray scans from stoichiometric and nonstoichiometric films are compared with calculations that account for the effects of film thickness, lattice parameter, fractional site occupancy, and an offset between film and substrate at the interface. It is found that thickness fringes, commonly observed around Bragg reflections even in stoichiometric homoepitaxial SrTiO{sub 3} films, arise from a film/substrate interface offset. Transmission electron microscopy studies confirm the presence of strain at those homoepitaxial interfaces that show an offset in x-ray diffraction. The consequences for stoichiometry optimization of homoepitaxial films using high-resolution x-ray diffraction and the quality of regrown oxide interfaces are discussed.

  8. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGESBeta

    Nelson, Johanna [Stony Brook Univ., Stony Brook, NY (United States); Huang, Xiaojing [Stony Brook Univ., Stony Brook, NY (United States); Steinbrener, Jan [Stony Brook Univ., Stony Brook, NY (United States); Shapiro, David [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Kirz, Janos [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Marchesini, Stephano [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Neiman, Aaron M. [Northwestern Univ., Evanston, IL (United States); Turner, Joshua J. [Stony Brook Univ., Stony Brook, NY (United States); Jacobsen, Chris [Stony Brook Univ., Stony Brook, NY (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

  9. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M. (Voorheesville, NY); Gibson, Walter M. (Voorheesville, NY); Huang, Huapeng (Latham, NY)

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  10. Dynamical x-ray diffraction from an icosahedral Al-Pd-Mn quasicrystal

    SciTech Connect

    Kycia, S.

    1996-04-23

    Primary extinction effects in diffraction from single grains of Al-Pd- Mn, and presumably many other FCI alloys, may be significant and should be corrected for prior to use of diffraction data in structural determinations. Probes based on dynamical diffraction effects, such as x-ray standing wave fluorescence, multiple beam interference, and x-ray transmission topographs, may now be used to study the bulk and surface structure of some quasicrystals. The observation of dynamical diffraction from icosahedral Al-Pd-Mn is a striking confirmation of the fact that quasicrystals can present a degree of structural perfection comparable to that found in the best periodic intermetallic crystals.

  11. X-ray Diffraction and Polarized X-ray Absorption Study of Single Crystal LiFePO4

    NASA Astrophysics Data System (ADS)

    Liang, Gan; Benson, Ron; Li, Jiying; Vaknin, David; Croft, Mark

    2006-10-01

    Large size LiFePO4 single crystals have been grown by standard flux growth technique with the LiCl as the flux. Single crystal x-ray diffraction (XRD) and synchrotron polarized x-ray absorption spectroscopy (XAS) measurements have been performed on the crystals. The XRD measurements were performed at T = 293 K using Mo K? radiation (? = 0.7107å) to a resolution corresponding to sin?/? = 0.6486 å-1, with 2?max = 54.9 . A total number of 1330 reflections were processed with 350 unique data. The obtained crystal structure data were the following: lithium iron (II) phosphate, LiFePO4, orthorhombic, space group Pnma, lattice constants: a = 10.3172 (11) å, b = 6.0096(8) å, c = 4.6775 (4) å, Z = 4, formula weight: 157.76, density: 3.613, ? = 55.562 cm-1. The bond lengths between Fe and O and between P and O were obtained. The polarized XAS was performed at the Fe K-edge with the x-ray E-vector along the a-, b-, and c-axis. The XAS results show that the Fe ions in the LiFePO4 single crystals are divalent. We also observed a big shift in both the energies of the pre-edge 1s -> 3d transition feature and the main edge when the polarization direction of the E-vector changes from along a-axis to along c-axis.

  12. X-ray-line-profile analysis of titanium alloys

    Microsoft Academic Search

    E. A. Metzbower

    1977-01-01

    X-ray-line-profile analysis has been used to investigate the dislocation structures resulting from severe plastic deformation in a series of titanium alloys. The effect of oxygen level (up to 0.33 wt pct) on the dislocation arrangements in titanium as well as in a series of titanium-aluminum alloys (4, 6, and 9 wt pct Al) was the principal thrust of the investigation.

  13. X-ray-line-profile analysis of titanium alloys

    Microsoft Academic Search

    E. A. Metzbower

    1977-01-01

    X-ray-line-profile analysis has been used to investigate the dislocation structures resulting from severe plastic deformation\\u000a in a series of titanium alloys. The effect of oxygen level (up to 0.33 wt pct) on the dislocation arrangements in titanium\\u000a as well as in a series of titanium-aluminum alloys (4, 6, and 9 wt pct Al) was the principal thrust of the investigation.

  14. Human Interleukin4 and Variant R88Q: Phasing X-ray Diffraction Data by Molecular Replacement Using X-ray and Nuclear Magnetic Resonance Models

    Microsoft Academic Search

    Thomas Müller; Frank Oehlenschläger; Manfred Buehner

    1995-01-01

    The structure of recombinant human interleukin-4 (hIL-4) as been determined by both NMR and X-ray diffraction methods in several laboratories, including ours. The X-ray and NMR structures were successfully applied for solving the X-ray crystal structure by molecular replacement. Due to the small size of the hIL-4 molecule (129 residues) and its lack of structural diversity (4-helix bundle), this task

  15. Closing the gap to the diffraction limit: Near wavelength limited tabletop soft x-ray coherent diffractive imaging

    NASA Astrophysics Data System (ADS)

    Sandberg, Richard Lunt

    Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to around 200 nm. Using novel imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens using techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy and structured illumination microscopy [1--3]. This dissertation presents a versatile soft x-ray diffraction microscope with 50 nm resolution using tabletop coherent soft x-ray sources. This work represents the first high resolution demonstrations of coherent diffractive or lensless imaging using tabletop extreme ultraviolet and soft x-ray sources [4, 5]. This dissertation also presents the first use of field curvature correction in x-ray coherent imaging which allows high numerical aperture imaging and near-diffraction-limited resolution of 1.5lambda. The relevant theory behind high harmonic generation, the primary tabletop source used in this work, will be discussed as well as the theory behind coherent diffractive imaging. Additionally, the first demonstration of tabletop soft x-ray Fourier Transform holography is shown with important applications to shorter wavelength imaging with high harmonic generation with limited flux. A tabletop soft x-ray diffraction microscope should find broad applications in biology, nanoscience, and materials science due to its simple optical design, high resolution, large depth of field, 3D imaging capability, scalability to shorter wavelengths, and ultrafast temporal resolution.

  16. Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals

    SciTech Connect

    Frank, Matthias; Carlson, David B.; Hunter, Mark; Williams, Garth J.; Messerschmidt, Marc; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Chu, Kaiqin; Graf, Alexander; Hau-Riege, Stefan; Kirian, Rick; Padeste, Celestino; Pardini, Tommaso; Pedrini, Bill; Segelke, Brent; Seibert, M. M.; Spence , John C.; Tsai, Ching-Ju; Lane, Steve M.; Li, Xiao-Dan; Schertler, Gebhard; Boutet, Sebastien; Coleman, Matthew A.; Evans, James E.

    2014-02-28

    Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.

  17. Comparison of a CCD and an APS for soft X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Stewart, Graeme; Bates, R.; Blue, A.; Clark, A.; Dhesi, S. S.; Maneuski, D.; Marchal, J.; Steadman, P.; Tartoni, N.; Turchetta, R.

    2011-12-01

    We compare a new CMOS Active Pixel Sensor (APS) to a Princeton Instruments PIXIS-XO: 2048B Charge Coupled Device (CCD) with soft X-rays tested in a synchrotron beam line at the Diamond Light Source (DLS). Despite CCDs being established in the field of scientific imaging, APS are an innovative technology that offers advantages over CCDs. These include faster readout, higher operational temperature, in-pixel electronics for advanced image processing and reduced manufacturing cost. The APS employed was the Vanilla sensor designed by the MI3 collaboration and funded by an RCUK Basic technology grant. This sensor has 520 x 520 square pixels, of size 25 ?m on each side. The sensor can operate at a full frame readout of up to 20 Hz. The sensor had been back-thinned, to the epitaxial layer. This was the first time that a back-thinned APS had been demonstrated at a beam line at DLS. In the synchrotron experiment soft X-rays with an energy of approximately 708 eV were used to produce a diffraction pattern from a permalloy sample. The pattern was imaged at a range of integration times with both sensors. The CCD had to be operated at a temperature of -55°C whereas the Vanilla was operated over a temperature range from 20°C to -10°C. We show that the APS detector can operate with frame rates up to two hundred times faster than the CCD, without excessive degradation of image quality. The signal to noise of the APS is shown to be the same as that of the CCD at identical integration times and the response is shown to be linear, with no charge blooming effects. The experiment has allowed a direct comparison of back thinned APS and CCDs in a real soft x-ray synchrotron experiment.

  18. In situ analysis of electrocrystallization process of metal electrodeposition with confocal energy dispersive X-ray diffraction based on polycapillary X-ray optics

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Yang, Chaolin; Sun, Weiyuan; Sun, Xuepeng; Ma, Yongzhong; Ding, Xunliang

    2015-06-01

    The confocal energy dispersive X-ray diffraction (EDXRD) based on a polycapillary focusing X-ray lens (PFXRL) in excitation channel and a polycapillary parallel X-ray lens (PPXRL) in detection channel was presented to study the electrocrystallization process of metal electrodeposition. The input focal spot of the PPXRL and the output focal spot of the PFXRL was adjusted in a confocal configuration, and only the X-rays from the volume overlapped by the two foci could be accordingly detected by the detector. The experimental results demonstrated the confocal EDXRD could be used to in situ real-time analysis of electrochemical crystal growth process.

  19. Synchrotron-based ultrafast x-ray diffraction at high repetition rates.

    PubMed

    Navirian, H; Shayduk, R; Leitenberger, W; Goldshteyn, J; Gaal, P; Bargheer, M

    2012-06-01

    We present a setup for ultrafast x-ray diffraction (UXRD) based at the storage ring BESSY II, in particular, a pump laser that excites the sample using 250 fs laser-pulses at repetition rates ranging from 208 kHz to 1.25 MHz. We discuss issues connected to the high heat-load and spatio-temporal alignment strategies in the context of a UXRD experiment at high repetition rates. The spatial overlap between laser pump and x-ray probe pulse is obtained with 10 ?m precision and transient lattice changes can be recorded with an accuracy of ?a/a(0) = 10(-6). We also compare time-resolved x-ray diffraction signals from a laser excited LSMO/STO superlattice with phonon dynamics simulations. From the analysis we determine the x-ray pulse duration to 120 ps in standard operation mode and below 10 ps in low-? mode. PMID:22755618

  20. Synchrotron-based ultrafast x-ray diffraction at high repetition rates

    NASA Astrophysics Data System (ADS)

    Navirian, H.; Shayduk, R.; Leitenberger, W.; Goldshteyn, J.; Gaal, P.; Bargheer, M.

    2012-06-01

    We present a setup for ultrafast x-ray diffraction (UXRD) based at the storage ring BESSY II, in particular, a pump laser that excites the sample using 250 fs laser-pulses at repetition rates ranging from 208 kHz to 1.25 MHz. We discuss issues connected to the high heat-load and spatio-temporal alignment strategies in the context of a UXRD experiment at high repetition rates. The spatial overlap between laser pump and x-ray probe pulse is obtained with 10 ?m precision and transient lattice changes can be recorded with an accuracy of ?a/a0 = 10-6. We also compare time-resolved x-ray diffraction signals from a laser excited LSMO/STO superlattice with phonon dynamics simulations. From the analysis we determine the x-ray pulse duration to 120 ps in standard operation mode and below 10 ps in low-? mode.

  1. X-ray radiation damage of organic semiconductor thin films during grazing incidence diffraction experiments

    NASA Astrophysics Data System (ADS)

    Neuhold, A.; Novák, J.; Flesch, H.-G.; Moser, A.; Djuric, T.; Grodd, L.; Grigorian, S.; Pietsch, U.; Resel, R.

    2012-08-01

    Since modern synchrotrons with highly intense X-ray beams are in use to investigate organic materials, the stability of soft matter materials during beam exposure is a crucial issue. Grazing incidence X-ray diffraction and specular X-ray reflectivity measurements were performed on thin films of organic semiconducting materials, like poly(3-hexylthiophene) (P3HT), sexithiophene and pentacene. These films were irradiated with an average flux density between 1015 and 1016 photons/(s mm2) and evidenced a different stability in synchrotron X-ray radiation. The semi-crystalline P3HT showed a clear intensity decrease of the 1 0 0 Bragg peak and 0 2 0 Bragg peak compared to the rather stable diffraction features of the molecular crystals sexithiophene and pentacene. The difference in synchrotron X-ray radiation stability is explained by the interaction of the X-ray beam with the individual chemical components in the molecules as well as by the different crystallinities of the materials. Furthermore, the semi-crystalline P3HT film exhibited an increase of film thickness after irradiation and the surface roughness slightly decreased. To summarize, this study shows a strong influence of synchrotron X-ray radiation to specific organic thin films like e.g. P3HT, while others like pentacene and sexithiophene are observed as quite stable.

  2. Study on quasiperiodic Ta/Al multilayer films by x-ray diffraction

    SciTech Connect

    Peng, R.W.; Hu, A.; Jiang, S.S. (Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210008 (People's Republic of China))

    1991-11-11

    Quasiperiodic (Fibonacci) Ta/Al multilayer films with Ta(110) and Al(111) textures were fabricated by magnetron sputtering. The structure of the multilayers was characterized in detail by x-ray diffraction. The diffraction peaks at low and high angles can be indexed by the projection method from the high-dimension periodic structure. The experimental results were in good agreement with the numerical calculation using the model for the compositionally modulated multilayers. The diffraction spectrum of the quasiperiodic Ta/Al multilayers is totally different from that of periodic structure, and the possible application of Fibonacci films as optical elements in a soft x-ray region is discussed.

  3. Recombination of photodissociated iodine: A time-resolved x-ray-diffraction study

    E-print Network

    Ihee, Hyotcherl

    Recombination of photodissociated iodine: A time-resolved x-ray-diffraction study M. Wulff European-ray-diffraction experiment is presented that aims to study the recombination of laser-dissociated iodine molecules dissolved. INTRODUCTION The iodine photodissociation and recombination in solu- tions has been studied for 70 years

  4. X-ray diffraction studies of fluid rubidium: From the liquid to a dense vapor

    Microsoft Academic Search

    Kazuhiro Matsuda; Masanori Inui; Misato Kusakari; Kozaburo Tamura

    2007-01-01

    X-ray diffraction measurements have been carried out for fluid rubidium from the triple point up to supercritical conditions using synchrotron radiation at SPring-8. In order to achieve high- temperature diffraction experiments, we have developed a new sample cell made of molybdenum that is resistant to the highly corrosive nature of hot alkali metals. The use of the cell has made

  5. Quantitative determination of mineral composition by powder X-ray diffraction

    DOEpatents

    Pawloski, Gayle A. (Livermore, CA)

    1986-01-01

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  6. Quantitative determination of mineral composition by powder x-ray diffraction

    DOEpatents

    Pawloski, G.A.

    1984-08-10

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  7. X-ray diffraction\\/EDXA\\/SEM: A more comprehensive approach to pigment characterization

    Microsoft Academic Search

    Russell A. Parham; Jack D. Hultman

    The increasing use of polymeric pigments, microcapsules, and other non- crystalline materials in today's paper pigment and coating systems creates a complex objective for characterization by the paper scientist. Only by using data from x-ray diffraction (XD) combined with that from a scanning electron microscope (SEM) equipped with an energy-dispersive x-ray analyzer (EDXA) can a comprehensive picture of the morphology

  8. Femtosecond Diffractive Imaging with a Soft-X-Ray Free-Electron Laser

    Microsoft Academic Search

    Bogan; Michael James

    2010-01-01

    Theory predicts that with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus, or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft X-ray free-electron laser. An intense 25 fs, 4 x

  9. Femtosecond diffractive imaging with a soft-X-ray free-electron laser

    Microsoft Academic Search

    Henry N. Chapman; Anton Barty; Michael J. Bogan; Sébastien Boutet; Matthias Frank; Stefan P. Hau-Riege; Stefano Marchesini; Bruce W. Woods; Sasa Bajt; W. Henry Benner; Richard A. London; Elke Plönjes; Marion Kuhlmann; Rolf Treusch; Stefan Düsterer; Thomas Tschentscher; Jochen R. Schneider; Eberhard Spiller; Thomas Möller; Christoph Bostedt; Matthias Hoener; David A. Shapiro; Keith O. Hodgson; David van der Spoel; Florian Burmeister; Magnus Bergh; Carl Caleman; Gösta Huldt; M. Marvin Seibert; Filipe R. N. C. Maia; Richard W. Lee; Abraham Szöke; Nicusor Timneanu; Janos Hajdu

    2006-01-01

    Theory predicts that, with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft-X-ray free-electron laser. An intense 25fs, 4×1013Wcm-2 pulse, containing 1012

  10. The structure of betaxolol from single crystal X-ray diffraction and natural bond orbital analysis

    Microsoft Academic Search

    João Canotilho; Ricardo A. E. Castro; Mário T. S. Rosado; M. Ramos Silva; A. Matos Beja; J. A. Paixão; J. Simões Redinha

    2008-01-01

    The structure of betaxolol obtained from ethanol:water solution was studied by X-ray diffraction. The geometrical parameters needed to define the structure are tabulated. The X-ray data show the existence of two conformers in the unit cell differing only in the conformation of the cyclopropylmethoxy fragment. Differences in the bond lengths angles and dihedral between both conformations are observed. The cyclopropyl

  11. Elastic constants of fibre-textured thin films determined by X-ray diffraction

    PubMed Central

    Martinschitz, K. J.; Daniel, R.; Mitterer, C.; Keckes, J.

    2009-01-01

    A new methodology is presented that allows the rapid determination of elastic constants of cubic fibre-textured thin films by X-ray diffraction. The theoretical concept is developed and tested on calculated examples of Cu and CrN films. The mechanical elastic constants are extrapolated from X-ray elastic constants by taking into consideration crystal and macroscopic elastic anisotropy. The derived algorithm enables the determination of a reflection and the corresponding value of the X-ray anisotropic factor ? for which the X-ray elastic constants are equal to their mechanical counterparts in the case of fibre-textured cubic polycrystalline aggregates. The approach is independent of the crystal elastic anisotropy and depends on the fibre-texture type, the texture sharpness, the number of randomly oriented crystallites and the supposed grain-interaction model. In the experimental part, out-of-plane Young’s moduli of 111 and 311 fibre-textured Cu and CrN thin films deposited on monocrystalline Si(100) substrates are determined. The moduli are extrapolated from thin-film experimental X-ray elastic constants that are determined by a combination of X-ray diffraction substrate curvature and sin2? methods. For the calculation, the film macroscopic elastic anisotropy (texture) is considered. The advantage of the new technique lies in the fact that experimental moduli are determined nondestructively, using a static diffraction experiment, and represent volume-averaged quantities. PMID:22477770

  12. X-ray diffraction study on microstructures of shot/laser-peened AISI316 stainless steel

    NASA Astrophysics Data System (ADS)

    Kumagai, Masayoshi; Akita, Koichi; Itano, Yuta; Imafuku, Muneyuki; Ohya, Shin-ichi

    2013-11-01

    Microstructural features of AISI316 stainless steels processed by shot peening (SP) and laser peening (LP) were studied using X-ray diffraction line profile analyses. Both specimens exhibited similar compressive residual stress profiles. Although the number of dislocations was increased and the crystallites were refined with both processes, the dislocation density in the SP specimen was significantly greater than that in the LP specimen. The crystallite size in the SP specimen was one-third that in the LP specimen. The SP process induced martensite transformation. The variations in the microstructural features differed between samples subjected to the two processes. The SP process resulted in a greater variation in the microstructural features in a sample in which residual stresses similar to that induced by the LP process were induced. Thus, the variations in the microstructural features differed depending on the deformation process.

  13. Two-dimensional measurement of focused hard X-ray beam profile using coherent X-ray diffraction of isolated nanoparticle

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukio; Kubo, Hideto; Tsutsumi, Ryosuke; Sakaki, Shigeyuki; Zettsu, Nobuyuki; Nishino, Yoshinori; Ishikawa, Tetsuya; Yamauchi, Kazuto

    2010-05-01

    A method for evaluating the two-dimensional photon density distribution in focused hard X-ray beams is proposed and demonstrated in a synchrotron experiment at SPring-8. A synchrotron X-ray beam of 11.8 keV is focused to a ˜1 ?m spot by Kirkpatrick-Baez mirrors. The two-dimensional intensity distribution of the focused beam is derived by monitoring the forward diffracted intensity from an isolated silver nanocube with an edge length of ˜150 nm positioned in the beam waist, which is two-dimensionally scanned. Furthermore, the photon density of X-rays illuminated onto the nanocube is estimated by utilizing coherent X-ray diffraction microscopy. This method is useful for evaluating the photon density distribution of hard X-ray beams focused to a spot size of less than a few micrometers.

  14. Scanning force microscope for in situ nanofocused X-ray diffraction studies.

    PubMed

    Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie Ingrid; Furter, Jean Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W

    2014-09-01

    A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002

  15. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    PubMed Central

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2010-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens. PMID:19654762

  16. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE PAGESBeta

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore »using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  17. Solid-state /sup 13/C NMR and X-ray diffraction of dermatan sulfate

    SciTech Connect

    Winter, W.T.; Taylor, M.G.; Stevens, E.S.; Morris, E.R.; Rees, D.A.

    1986-05-29

    Dermatan sulfate in the solid state has been studied by /sup 13/C CP/MAS nmr and X-ray diffraction in order to establish the ring conformation of the L-iduronate moiety. The solid state nmr spectrum is similar to the solution spectrum obtained previously, indicating that a ring conformation at least approximating to /sup 1/C/sub 4/ predominates in the solid state. X-ray powder diffraction data from the same sample indicate the presence of the 8-fold helix form previously observed by fiber diffraction, and interpreted in terms of a /sup 4/C/sub 1/ ring form. A likely explanation of the results is that a distorted /sup 1/C/sub 4/ L-iduronate ring conformation, not considered in the initial X-ray analysis, may emerge to provide a satisfactory interpretation of all available physical-chemical data.

  18. Ultrafast X-ray Diffraction of Photodissociation of Iodoform in Solution

    SciTech Connect

    Lee, Jae Hyuk; Kim, Tae Kyu; Kim, Joonghan; Ihee, Hyotcherl [Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701 (Korea, Republic of); Lorenc, Maciej; Kong, Qingyu; Wulff, Michael [European Synchrotron Radiation Facility, Grenoble Cedex 38043, BP 220 (France)

    2007-01-19

    We studied structural dynamics in the photodissociation of iodoform (CHI3) dissolved in methanol by time-resolved x-ray diffraction. A femtosecond laser pulse induces the bond-breaking of an iodine atom from iodoform and an x-ray pulse generated from a synchrotron gives time-dependent diffraction signal which contains the structural information of photoproducts with 100 ps time-resolution and 0.001 Aa spatial resolution. CHI2 radical and I atom are formed by the results of the ultrafast photodissociation of iodoform and these intermediates recombine to form iodoform again via geminate recombination. The iodine atoms which escape from the cages nongeminately recombine to form I2. Solvent dynamics, heating and solvent expansion, caused by photodissociation, are also explained from time-resolved x-ray diffraction data.

  19. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE PAGESBeta

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.

  20. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers.

    SciTech Connect

    Parrot, I. M. [Institut Laue-Langevin (ILL); Urban, Volker S [ORNL; Gardner, K. H. [DuPont Experimental Station; Forsyth, V. T. [Institut Laue Langevin and Keele University

    2005-04-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar{reg_sign} or Twaron{reg_sign}.

  1. Industrial aspects of synchrotron X-ray powder diffraction

    NASA Astrophysics Data System (ADS)

    Cernik, R. J.; Barnes, P.

    1995-03-01

    This paper describes some of the applications of powder diffraction using synchrotron radiation with possible applications to industry. The advantages of differing synchrotron diffraction geometries, Debye-Scherrer, Analyser crystal, Hart Parrish, and Energy Dispersive, are discussed. The paper is not a comprehensive review but nevertheless considers the wider role of these powder diffraction geometries in elucidating crystal structures, highlighted examples being taken from polymers, catalyst and new drug materials, in addition to specific studies on polymer electrolyte complexes, textured materials (e.g. asbestos), pyrochlores, zeolites and cements. In the latter two cases rapid time-resolved powder diffraction is seen to be emerging as an important development in synchrotron-based techniques.

  2. Quality experimental and calculated powder x-ray diffraction

    SciTech Connect

    Sullenger, D.B.; Cantrell, J.S.; Beiter, T.A.; Tomlin, D.W.

    1996-08-01

    For several years, we have submitted quality powder XRD patterns to the International Centre for Diffraction Data for inclusion as reference standards in their Powder Diffraction File. The procedure followed is described; examples used are {beta}-UH{sub 3}, {alpha}- BaT{sub 2}, alpha-lithium disilicate ({alpha}-Li{sub 2}Si{sub 2}O{sub 5}), and 2,2`,4,4`,6,6`hexanitroazobenzene-III (HNAB-III).

  3. X-ray line formation in radiation dominated astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Loisel, G.; Bailey, J. E.; Hansen, S. B.; Nagayama, T.; Rochau, G. A.; Liedahl, D.; Mancini, R.; Koepke, M.

    2014-10-01

    A remarkable opportunity to observe matter in a regime where the effects of General Relativity are significant has arisen through measurements of strongly red-shifted iron x-ray lines emitted from black hole accretion disks. A major uncertainty in the spectral formation models is the efficiency of Resonant Auger Destruction (RAD), in which fluorescent Ka photons are resonantly absorbed by neighbor ions. The absorbing ion preferentially decays by Auger ionization, thus reducing the emerging Ka intensity. If Ka lines from L-shell ions are not observed in iron spectral emission, why are such lines observed from silicon plasma surrounding other accretion powered objects? To help answer this question, we are investigating photoionized silicon plasmas produced using intense x-rays from the Z facility. For the first time in a terrestrial lab, we measured simultaneous absorption and emission spectra from these plasmas at high resolution. The charge state distribution, electron temperature, and electron density are determined through space-resolved absorption spectra. The emission spectra have been recorded at different column densities thus testing different radiative transport regime. These should allow us to answer quantitatively the original RAD hypothesis. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  4. Single-shot femtosecond x-ray diffraction from randomly oriented ellipsoidal nanoparticles

    Microsoft Academic Search

    M. J. Bogan; S. Boutet; A. Barty; W. H. Benner; M. Frank; L. Lomb; R. Shoeman; D. Starodub; M. M. Seibert; S. P. Hau-Riege; B. Woods; P. Decorwin-Martin; S. Bajt; J. Schulz; U. Rohner; B. Iwan; N. Timneanu; S. Marchesini; I. Schlichting; J. Hajdu; H. N. Chapman

    2010-01-01

    Coherent diffractive imaging of single particles using the single-shot ``diffract and destroy'' approach with an x-ray free electron laser (FEL) was recently demonstrated. A high-resolution low-noise coherent diffraction pattern, representative of the object before it turns into a plasma and explodes, results from the interaction of the FEL with the particle. Iterative phase retrieval algorithms are used to reconstruct two-dimensional

  5. Single-Shot Femtosecond X-ray Diffraction from Randomly Oriented Ellipsoidal Nanoparticles

    Microsoft Academic Search

    M. J. Bogan; S. Boutet; A. Barty; W. H. Benner; M. Frank; L. Lomb; R. Shoeman; D. Starodub; M. M. Seibert; S. P. Hau-Riege; B. Woods; P. Decorwin-Martin; S. Bajt; J. Schulz; U. Rohner; B. Iwan; N. Timneanu; S. Marchesini; I. Schlichting; J. Hajdu; H. N. Chapman

    2012-01-01

    Coherent diffractive imaging of single particles using the single-shot 'diffract and destroy' approach with an x-ray free electron laser (FEL) was recently demonstrated. A high-resolution low-noise coherent diffraction pattern, representative of the object before it turns into a plasma and explodes, results from the interaction of the FEL with the particle. Iterative phase retrieval algorithms are used to reconstruct two-dimensional

  6. Femtosecond free-electron laser x-ray diffraction data sets for algorithm development.

    PubMed

    Kassemeyer, Stephan; Steinbrener, Jan; Lomb, Lukas; Hartmann, Elisabeth; Aquila, Andrew; Barty, Anton; Martin, Andrew V; Hampton, Christina Y; Bajt, Saša; Barthelmess, Miriam; Barends, Thomas R M; Bostedt, Christoph; Bott, Mario; Bozek, John D; Coppola, Nicola; Cryle, Max; DePonte, Daniel P; Doak, R Bruce; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hartmann, Andreas; Hartmann, Robert; Hauser, Günter; Hirsemann, Helmut; Hömke, André; Holl, Peter; Jönsson, Olof; Kimmel, Nils; Krasniqi, Faton; Liang, Mengning; Maia, Filipe R N C; Marchesini, Stefano; Nass, Karol; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schmidt, Carlo; Schulz, Joachim; Shoeman, Robert L; Sierra, Raymond G; Soltau, Heike; Spence, John C H; Starodub, Dmitri; Stellato, Francesco; Stern, Stephan; Stier, Gunter; Svenda, Martin; Weidenspointner, Georg; Weierstall, Uwe; White, Thomas A; Wunderer, Cornelia; Frank, Matthias; Chapman, Henry N; Ullrich, Joachim; Strüder, Lothar; Bogan, Michael J; Schlichting, Ilme

    2012-02-13

    We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume. PMID:22418172

  7. Effect of hydrostatic pressure on the crystal structure of sodium oxalate: X-ray diffraction study and ab initio simulations

    E-print Network

    Oganov, Artem R.

    -induced phase transitions in sodium oxalate is discussed. Introduction Oxalates are widely used in the designEffect of hydrostatic pressure on the crystal structure of sodium oxalate: X-ray diffraction study diffraction structure analysis / X-ray diffraction / Sodium oxalate Abstract. Effect of hydrostatic pressures

  8. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    SciTech Connect

    Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Zhang, Bangmin [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore (Singapore); NUSNNI-Nanocore, National University of Singapore, 117411 Singapore (Singapore); Chen, Jing-Sheng; Chow, G. M. [Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore (Singapore)] [Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore (Singapore); Venkatesan, T. [NUSNNI-Nanocore, National University of Singapore, 117411 Singapore (Singapore) [NUSNNI-Nanocore, National University of Singapore, 117411 Singapore (Singapore); Department of Physics, National University of Singapore, 117542 Singapore (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 117575 Singapore (Singapore)

    2014-04-15

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  9. Studies of Materials at the Nanometer Scale Using Coherent X-Ray Diffraction Imaging

    NASA Astrophysics Data System (ADS)

    Sandberg, Richard L.; Huang, Zhifeng; Xu, Rui; Rodriguez, Jose A.; Miao, Jianwei

    2013-09-01

    For many years, x-ray microscopy has been attractive for materials studies with its ability to image thick samples and provide nanometer-scale resolution. However, the ability to manufacture high-resolution x-ray optics has been a hurdle to achieving the full potential of diffraction limited x-ray imaging. Recently, the advent of bright and coherent x-ray sources at synchrotrons and x-ray free electron lasers has enabled a lensless imaging technique called coherent diffractive imaging (CDI). Since it was first demonstrated in 1999, CDI has been rapidly developing into a materials imaging technique with resolutions approaching a few nanometers. This review provides an overview of the development of CDI and several applications to nanometer-scale imaging in two and three dimensions of biological and condensed mater materials. Also, we review the development of tabletop, coherent, soft x-ray sources that provide a complimentary and potentially more accessible source for nanometer-scale coherent imaging of materials.

  10. Pump-probe X-ray Diffraction Technique for Irreversible Phase Change Materials

    SciTech Connect

    Fukuyama, Yoshimitsu; Yasuda, Nobuhiro; Kimura, Shigeru; Osawa, Hitoshi; Kim, Jungeun [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Japan Science and Technology Agency, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Tanaka, Yoshihito; Takata, Masaki [Japan Science and Technology Agency, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Murayama, Haruno [Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Moritomo, Yutaka [Japan Science and Technology Agency, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8571 (Japan); Toriumi, Koshiro [Japan Science and Technology Agency, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Tanaka, Hitoshi [RIKEN XFEL Joint Project/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2010-06-23

    We have developed a pump-probe X-ray diffraction measurement system for a sample with irreversible reaction at BL40XU in the SPring-8. The system mainly consists of a time-resolved measurement system, a sample disk rotation system, and an X-ray microbeam system. The time-resolved measurement system gives time resolution of 50 ps in laser-pump and X-ray probe method. A sample disk rotation system for repetitive measurements was made to give a virgin sample for every measurement. The number of repetitions for one sample disk was increased by using the X-ray microbeam technique. To keep the overlap of the X-ray microbeam and the laser beam on the sample surface during the disk rotation, the sample disk rotation system was constructed by a low-eccentric spindle motor. By using this system, the pump-probe X-ray diffraction measurement was demonstrated for a crystallization process of a DVD material.

  11. A method for automated determination of the crystal structures from X-ray powder diffraction data

    SciTech Connect

    Hofmann, D. W. M. [University of Frankfurt am Main (Germany)], E-mail: dwmhofmann@aol.com; Kuleshova, L. N. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation)], E-mail: lukul@xrlab.ineos.ac.ru

    2006-05-15

    An algorithm is proposed for determining the crystal structure of compounds. In the framework of this algorithm, X-ray powder diffraction patterns are compared using a new similarity index. Unlike the indices traditionally employed in X-ray powder diffraction analysis, the new similarity index can be applied even in the case of overlapping peaks and large differences in unit cell parameters. The capabilities of the proposed procedure are demonstrated by solving the crystal structures of a number of organic pigments (PY111, PR181, Me-PR170)

  12. Elastic properties of supported polycrystalline thin films and multilayers: An X-ray diffraction study

    SciTech Connect

    Goudeau, P.; Villain, P.; Tamura, N.; Renault, P.-O.; Badawi, K.F.; Padmore, H.A.

    2003-08-13

    Numerous experimental and theoretical studies have shown that thin film elastic behavior may be different from the bulk one due to size effects related to grain boundaries, free surfaces and interfaces. In addition, thin films often present high compressive residual stresses which may be responsible of thin film buckling. These two features will be discussed in this communication through recent x-ray diffraction experiments: in situ tensile testing for elastic constant analysis and scanning x-ray micro diffraction for stress relaxation measurements associated with film buckling.

  13. A framework for 3-D coherent diffraction imaging by focused beam x-ray Bragg ptychography.

    SciTech Connect

    Hruszkewycz, S. O.; Holt, M. V.; Tripathi, A.; Maser, J.; Fuoss, P. H. (Center for Nanoscale Materials); ( MSD); (Univ. of California at San Diego)

    2011-06-15

    We present the framework for convergent beam Bragg ptychography, and, using simulations, we demonstrate that nanocrystals can be ptychographically reconstructed from highly convergent x-ray Bragg diffraction. The ptychographic iterative engine is extended to three dimensions and shown to successfully reconstruct a simulated nanocrystal using overlapping raster scans with a defocused curved beam, the diameter of which matches the crystal size. This object reconstruction strategy can serve as the basis for coherent diffraction imaging experiments at coherent scanning nanoprobe x-ray sources.

  14. Single-crystal x-ray diffraction of brucite to 14 GPa

    Microsoft Academic Search

    Thomas S. Duffy; Jinfu Shu; Ho-kwang Mao; Russell J. Hemley

    1995-01-01

    Single-crystal brucite, Mg(OH)2, was studied to 14 GPa in a quasi-hydrostatic pressure medium using a diamond anvil cell and energy-dispersive synchrotron x-ray diffraction. The parameters of a third-order Birch-Murnaghan equation of state fit to the data are: KOT=42(2) GPa, and (?KOT\\/?P)T= 5.7(5). The bulk modulus is significantly lower than that obtained in recent shock compression and powder x-ray diffraction experiments

  15. Phase Sensitive X-Ray Diffraction Imaging of Defects in Biological Macromolecular Crystals

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Lai, B.; Chu, Y. S.; Cai, Z.; Mancini, D. C.; Thomas, B. R.; Chernov, A. A.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Characterization of defects and/or disorder in biological macromolecular crystals presents much greater challenges than in conventional small-molecule crystals. The lack of sufficient contrast of defects is often a limiting factor in x-ray diffraction topography of protein crystals. This has seriously hampered efforts to understand mechanisms and origins of formation of imperfections, and the role of defects as essential entities in the bulk of macromolecular crystals. In this report, we employ a phase sensitive x-ray diffraction imaging approach for augmenting the contrast of defects in protein crystals.

  16. Toward atomic resolution diffractive imaging of isolated molecules with x-ray free-electron lasers

    E-print Network

    Stern, Stephan; Filsinger, Frank; Rouzée, Arnaud; Rudenko, Artem; Johnsson, Per; Martin, Andrew V; Barty, Anton; Bostedt, Christoph; Bozek, John D; Coffee, Ryan N; Epp, Sascha; Erk, Benjamin; Foucar, Lutz; Hartmann, Robert; Kimmel, Nils; Kühnel, Kai-Uwe; Maurer, Jochen; Messerschmidt, Marc; Rudek, Benedikt; Starodub, Dmitri G; Thøgersen, Jan; Weidenspointner, Georg; White, Thomas A; Stapelfeldt, Henrik; Rolles, Daniel; Chapman, Henry N; Küpper, Jochen

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett. 112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i. e., picometers and femtoseconds, using x-ray free-electron lasers.

  17. Toward atomic resolution diffractive imaging of isolated molecules with X-ray free-electron lasers.

    PubMed

    Stern, S; Holmegaard, L; Filsinger, F; Rouzée, A; Rudenko, A; Johnsson, P; Martin, A V; Barty, A; Bostedt, C; Bozek, J; Coffee, R; Epp, S; Erk, B; Foucar, L; Hartmann, R; Kimmel, N; Kühnel, K-U; Maurer, J; Messerschmidt, M; Rudek, B; Starodub, D; Thøgersen, J; Weidenspointner, G; White, T A; Stapelfeldt, H; Rolles, D; Chapman, H N; Küpper, J

    2014-01-01

    We give a detailed account of the theoretical analysis and the experimental results of an X-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-diiodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett.112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i.e., picometers and femtoseconds, using X-ray free-electron lasers. PMID:25415561

  18. Diffraction-Enhanced Imaging of Musculoskeletal Tissues Using a Conventional X-Ray Tube

    SciTech Connect

    Muehleman, C.; Li, J; Connor, D; Parham, C; Pisano, E; Zhong, Z

    2009-01-01

    DEI based on a conventional x-ray tube allows the visualization of skeletal and soft tissues simultaneously. Although more in-depth testing and optimization of the DEI setup must be carried out, these data demonstrate a proof of principle for further development of the technology for future clinical imaging. In conventional projection radiography, cartilage and other soft tissues do not produce enough radiographic contrast to be distinguishable from each other. Diffraction-enhanced imaging (DEI) uses a monochromatic x-ray beam and a silicon crystal analyzer to produce images in which attenuation contrast is greatly enhanced and x-ray refraction at tissue boundaries can be detected. The aim of this study was to test the efficacy of conventional x-ray tube-based DEI for the detection of soft tissues in experimental samples.

  19. Coherent x-ray diffraction imaging of paint pigmentparticles by scanning a phase plate modulator

    SciTech Connect

    Chu Y. S.; Chen B.; Zhang F.; Berenguer F.; Bean R.; Kewish C.; Vila-Comamala J.; Rodenburg J.; Robinson I.

    2011-10-19

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  20. Diffraction-limited two-dimensional hard-x-ray focusing at the 100 nm level using a Kirkpatrick-Baez mirror arrangement

    Microsoft Academic Search

    S. Matsuyama; H. Mimura; H. Yumoto; K. Yamamura; Y. Sano; K. Endo; Y. Mori; Y. Nishino; K. Tamasaku; T. Ishikawa; M. Yabashi; K. Yamauchi

    2005-01-01

    The spatial resolution of scanning x-ray microscopy depends on the beam size of focused x rays. Recently, nearly diffraction-limited line focusing has been achieved using elliptical mirror optics at the 100 nm level. To realize such focusing two-dimensionally in a Kirkpatrick-Baez system, the required accuracies of the mirror aligners in this system were estimated using optical simulators based on geometrical

  1. Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging

    SciTech Connect

    Evans, P. G., E-mail: evans@engr.wisc.edu; Spalenka, J. W. [Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)] [Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Chahine, G.; Grifone, R.; Jacques, V. L. R.; Schülli, T. U. [European Synchrotron Radiation Facility, Grenoble 38043 (France)] [European Synchrotron Radiation Facility, Grenoble 38043 (France)

    2013-11-15

    X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1–2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.

  2. Single-shot femtosecond x-ray diffraction from randomly oriented ellipsoidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bogan, M. J.; Boutet, S.; Barty, A.; Benner, W. H.; Frank, M.; Lomb, L.; Shoeman, R.; Starodub, D.; Seibert, M. M.; Hau-Riege, S. P.; Woods, B.; Decorwin-Martin, P.; Bajt, S.; Schulz, J.; Rohner, U.; Iwan, B.; Timneanu, N.; Marchesini, S.; Schlichting, I.; Hajdu, J.; Chapman, H. N.

    2010-09-01

    Coherent diffractive imaging of single particles using the single-shot “diffract and destroy” approach with an x-ray free electron laser (FEL) was recently demonstrated. A high-resolution low-noise coherent diffraction pattern, representative of the object before it turns into a plasma and explodes, results from the interaction of the FEL with the particle. Iterative phase retrieval algorithms are used to reconstruct two-dimensional projection images of the object from the recorded intensities alone. Here we describe the first single-shot diffraction data set that mimics the data proposed for obtaining 3D structure from identical particles. Ellipsoidal iron oxide nanoparticles (250nm×50nm) were aerosolized and injected through an aerodynamic lens stack into a soft x-ray FEL. Particle orientation was not controlled with this injection method. We observed that, at the instant the x-ray pulse interacts with the particle, a snapshot of the particle’s orientation is encoded in the diffraction pattern. The results give credence to one of the technical concepts of imaging individual nanometer and subnanometer-sized objects such as single molecules or larger clusters of molecules using hard x-ray FELs and will be used to help develop robust algorithms for determining particle orientations and 3D structure.

  3. Single-Shot Femtosecond X-ray Diffraction from Randomly Oriented Ellipsoidal Nanoparticles

    SciTech Connect

    Bogan, M.J.; /SLAC; Boutet, S.; /SLAC; Barty, A.; /LLNL, Livermore /DESY; Benner, W.H.; Frank, M.; /LLNL, Livermore; Lomb, L.; Shoeman, R.; /Heidelberg, Max Planck Inst. Med. Res. /CFEL, Hamburg; Starodub, D.; /SLAC; Seibert, M.M.; /Uppsala U.; Hau-Riege, S.P.; Woods, B.; /LLNL, Livermore; Decorwin-Martin, P.; /SLAC; Bajt, S.; /DESY; Schulz, J.; /DESY; Rohner, U.; /LLNL, Livermore /Unlisted, CH; Iwan, B.; Timneanu, N.; /Uppsala U.; Marchesini, S.; /LBL, Berkeley; Schlichting, I.; /Heidelberg, Max Planck Inst. Med. Res. /CFEL, Hamburg; Hajdu, J.; /Uppsala U.; Chapman, H.N.; /DESY /Hamburg U., Inst. Theor. Phys. II

    2012-04-18

    Coherent diffractive imaging of single particles using the single-shot 'diffract and destroy' approach with an x-ray free electron laser (FEL) was recently demonstrated. A high-resolution low-noise coherent diffraction pattern, representative of the object before it turns into a plasma and explodes, results from the interaction of the FEL with the particle. Iterative phase retrieval algorithms are used to reconstruct two-dimensional projection images of the object from the recorded intensities alone. Here we describe the first single-shot diffraction data set that mimics the data proposed for obtaining 3D structure from identical particles. Ellipsoidal iron oxide nanoparticles (250 nm x 50 nm) were aerosolized and injected through an aerodynamic lens stack into a soft x-ray FEL. Particle orientation was not controlled with this injection method. We observed that, at the instant the x-ray pulse interacts with the particle, a snapshot of the particle's orientation is encoded in the diffraction pattern. The results give credence to one of the technical concepts of imaging individual nanometer and subnanometer-sized objects such as single molecules or larger clusters of molecules using hard x-ray FELs and will be used to help develop robust algorithms for determining particle orientations and 3D structure.

  4. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-?m-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  5. Electron diffraction and X-ray investigation of hydrothermally vitrified 5 A zeolite containing trapped gases

    SciTech Connect

    Penzhorn, R.D.; Mertin, W.

    1984-09-01

    The mechanism of gas fixation by hydrothermal treatment of zeolite type 5 A in the presence of densified gas has been examined by electron diffraction and X rays. Gas trapping seems to occur in an X-ray amorphous phase which is formed within a broad spectrum of fixation conditions. The amorphous matrix recrystallizes at 850/sup 0/C regardless of the parameter combination selected for vitrification. The recrystallization product consists essentially of anorthite and nepheline phases. In addition some CaAl/sub 2/Si/sub 2/O/sub 8/ was found. Observations made by X rays and by electron diffraction correlate well with leak rate data. 18 references, 9 figures, 1 table.

  6. Hydrogen atoms in protein structures: high-resolution X-ray diffraction structure of the DFPase

    PubMed Central

    2013-01-01

    Background Hydrogen atoms represent about half of the total number of atoms in proteins and are often involved in substrate recognition and catalysis. Unfortunately, X-ray protein crystallography at usual resolution fails to access directly their positioning, mainly because light atoms display weak contributions to diffraction. However, sub-Ångstrom diffraction data, careful modeling and a proper refinement strategy can allow the positioning of a significant part of hydrogen atoms. Results A comprehensive study on the X-ray structure of the diisopropyl-fluorophosphatase (DFPase) was performed, and the hydrogen atoms were modeled, including those of solvent molecules. This model was compared to the available neutron structure of DFPase, and differences in the protein and the active site solvation were noticed. Conclusions A further examination of the DFPase X-ray structure provides substantial evidence about the presence of an activated water molecule that may constitute an interesting piece of information as regard to the enzymatic hydrolysis mechanism. PMID:23915572

  7. Phase retrieval in in-line x-ray phase contrast imaging based on total variation

    E-print Network

    van Vliet, Lucas J.

    Phase retrieval in in-line x-ray phase contrast imaging based on total variation minimization X-ray phase-contrast imaging are aiming to solve an underdetermined linear system of equations of America OCIS codes: (110.7440) X-ray imaging; (100.5070) Phase retrieval; (100.3190) Inverse prob- lems

  8. Observation of a Diffraction Pattern Caused by Thermal Diffuse Scattering of X-Rays

    NASA Astrophysics Data System (ADS)

    Kashiwase, Yasuji; Kainuma, Yoshiro; Minoura, Masayuki

    1981-09-01

    The film observation of a defect line caused by the 002 Bragg reflection of the thermal diffuse scattering of X-rays in a urea nitrate single crystal is reported. An excess line, the pair to the defect line, was observed clearly near the incident beam direction.

  9. Magnetic symmetries in neutron and resonant x-ray Bragg diffraction patterns of four iridium oxides

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.; Khalyavin, D. D.; Manuel, P.; Chapon, L. C.; Cao, G.; Qi, T. F.

    2012-12-01

    The magnetic properties of Sr2IrO4, Na2IrO3, Sr3Ir2O7 and CaIrO3 are discussed, principally in the light of experimental data in recent literature for Bragg intensities measured in x-ray diffraction with enhancement at iridium L-absorption edges. The electronic structure factors we report, which incorporate parity-even and acentric entities, serve the immediate purpose of making full use of crystal and magnetic symmetry to refine our knowledge of the magnetic properties of the four iridates from resonant x-ray diffraction data. They also offer a platform on which to interpret future investigations, using dichroic signals, resonant x-ray diffraction and neutron diffraction, for example, as well as ab initio calculations of electronic structure. Unit-cell structure factors, suitable for x-ray Bragg diffraction enhanced by an electric dipole-electric dipole (E1-E1) event, reveal exactly which iridium multipoles are visible, e.g., a magnetic dipole parallel to the crystal c-axis (z-axis) and an electric quadrupole with yz-like symmetry in the specific case of CaIrO3. Magnetic space-groups are assigned to Sr2IrO4, Sr3Ir2O7 and CaIrO3, namely, PIcca, PAban and Cm?cm?, respectively, in the Belov-Neronova-Smirnova notation. The assignment for Sr2IrO4 is possible because of our new high-resolution neutron diffraction data, gathered on a powder sample. In addition, the new data are used to show that the ordered magnetic moment of an Ir4+ ion in Sr2IrO4 does not exceed 0.29(4) ?B. Na2IrO3 has two candidate magnetic space-groups that are not resolved with currently available resonant x-ray data.

  10. X-ray diffraction and spectral studies of biological native and modified tissues

    NASA Astrophysics Data System (ADS)

    Vazina, A. A.; Budantsev, A. Yu.; Bras, W.; Deshcherevskaya, N. P.; Dolbnya, I. P.; Gadzhiev, A. M.; Korneev, V. N.; Lanina, N. F.; Letyagin, V. P.; Maevsky, E. I.; Matyushin, A. M.; Podolsky, I. Ya.; Samsonova, M. V.; Sergienko, P. M.; Simonova, N. B.; Stankevich, V. G.; Trunova, V. A.; Vavilov, V. M.; Chernyaev, A. L.; Sharafutdinov, M. R.; Sheromov, M. A.

    2005-05-01

    X-ray diffraction and spectral data obtained by studying different types of native and modified human and animal tissues are reported. It has been found that the proteoglycan structure undergoes transformation upon interaction with calcium cations. The role of the extracellular matrix in the structure of the native tissue is discussed.

  11. Poly(vinyl chloride)\\/clay nanocomposites: X-ray diffraction, thermal and rheological behaviour

    Microsoft Academic Search

    T. Peprnicek; J. Duchet; L. Kovarova; J. Malac; J. F. Gerard; J. Simonik

    2006-01-01

    The paper concentrates on poly(vinyl chloride) – PVC – from the point of view of structural characterisation of PVC\\/clay nanocomposites through X-ray diffraction, thermogravimetric analysis and dynamic rheometric analysis. PVC plasticizer was mixed with clay, natural and organophilic, and the suspension was then compounded with other components. Two factors were followed: effect of shearing alone, and in combination with temperature.

  12. Smectic layering in polyphilic liquid crystals : X-ray diffraction and infra-red dichroism study

    Microsoft Academic Search

    L. M. Blinov; T. A. Lobko; B. I. Ostrovskii; S. N. Sulianov; F. G. Tournilhac

    1993-01-01

    We present X-ray diffraction measurements of lamellar ordering for a new class of mesogens --- polyphilic compounds --- which were reported to form achiral ferroelectrics. Two phases called smectic X and X' manifest polar properties. Analysis of the scattering profiles parallel and perpendicular to the smectic layer provides detailed data on the structure of smectic A, smectic X and X'

  13. Energy Dispersive X Ray Diffraction to identify Explosive Substances : spectra analysis procedure optimization

    E-print Network

    Paris-Sud XI, Université de

    , France tel: 0033472437084 Abstract: To detect the presence of explosives in packages, automated systems for explosive detection and identification. To this end, a database has been constructed, containing measured X: Explosives detection, X-ray diffraction, non destructive testing 1. Introduction Energy dispersive X

  14. Three-dimensional imaging of dislocations by X-ray diffraction laminography

    SciTech Connect

    Haenschke, D. [Karlsruhe Institute of Technology (KIT), Laboratory for Applications of Synchrotron Radiation (LAS), 76128 Karlsruhe (Germany); Helfen, L. [Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS/ANKA), 76344 Eggenstein (Germany); European Synchrotron Radiation Facility (ESRF), BP220, 38043 Grenoble (France); Altapova, V. [Karlsruhe Institute of Technology (KIT), Laboratory for Applications of Synchrotron Radiation (LAS), 76128 Karlsruhe (Germany); National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Danilewsky, A. [University Freiburg, Kristallographie, Institut fuer Geowissenschaften, 79104 Freiburg (Germany); Baumbach, T. [Karlsruhe Institute of Technology (KIT), Laboratory for Applications of Synchrotron Radiation (LAS), 76128 Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS/ANKA), 76344 Eggenstein (Germany)

    2012-12-10

    Synchrotron radiation laminography with X-ray diffraction contrast enables three-dimensional imaging of dislocations in monocrystalline wafers. We outline the principle of the technique, the required experimental conditions, and the reconstruction procedure. The feasibility and the potential of the method are demonstrated by three-dimensional imaging of dislocation loops in an indent-damaged and annealed silicon wafer.

  15. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  16. Anomalous X-ray diffraction studies of hydration effects in concentrated aqueous electrolyte solutions

    Microsoft Academic Search

    S. Ramos; A. C. Barnes; G. W. Neilson; M. J. Capitan

    2000-01-01

    The method of anomalous X-ray diffraction (AXD) was applied to two aqueous electrolyte solutions: 6 m rubidium bromide and 4 m rubidium chloride. Data from the former solution were used to determine Br? hydration and those from the latter to determine Rb+ hydration. The results are compared with those obtained from other techniques and contrasted with the hydration of other

  17. Structural analysis of zinc phthalocyanine (ZnPc) thin films: X-ray diffraction study

    Microsoft Academic Search

    S. Senthilarasu; Y. B. Hahn; Soo-Hyoung Lee

    2007-01-01

    X-ray diffraction (XRD) was used to analyze the structure of thermally evaporated zinc phthalocyanine (ZnPc) organic thin films, as functions of the substrate temperature and film thickness. A metastable alpha to stable beta phase transformation has been observed when the films are coated at higher substrate temperatures. The core structure of the zinc phthalocyanine macrocycle is formed by four isoindole

  18. Scattering operators for E1-E2 x-ray resonant diffraction

    NASA Astrophysics Data System (ADS)

    Marri, Ivan; Carra, Paolo

    2004-03-01

    Resonant x-ray diffraction in noncentrosymmetric crystals is studied by considering E1-E2 processes in the fast-collision approximation. The scattering amplitude is expressed in terms of polar and magnetoelectric operators of the valence states, which are involved in the resonance. Near-edge Bragg peaks from ferroelectric, antiferroelectric, and magnetoelectric structures are predicted.

  19. Stereochemistry Determination by Powder X-ray Diffraction Analysis and NMR Spectroscopy Residual Dipolar Couplings

    SciTech Connect

    Garcia, M.; Pagola, S; Navarro-Vasquez, A; Phillips, D; Gayathri, C; Krakauer, H; Stephens, P; Nicotra, V; Gil, R

    2009-01-01

    A matter of technique: For a new steroidal lactol, jaborosalactol 24 (1), isolated from Jaborosa parviflora, NMR spectroscopy residual dipolar couplings and powder X-ray diffraction analysis independently gave the same stereochemistry at C23-C26. Conventional NMR spectroscopic techniques, such as NOE and {sup 3}J coupling-constant analysis failed to unambiguously determine this stereochemistry.

  20. X-Ray Diffraction Structures of Some Phosphatidylethanolamine Lamellar and Inverted Hexagonal Phases*

    E-print Network

    Gruner, Sol M.

    X-Ray Diffraction Structures of Some Phosphatidylethanolamine Lamellar and Inverted Hexagonal phosphatidylethanolamines (PEs) whose hydrocarbon chains have the same effective chain length but whose structures vary phosphatidylethanolamines (PEs). In an accompanying article to be published elsewhere (D. A. Mannock, R. N. A. H. Lewis, R

  1. Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling

    SciTech Connect

    Veluraja, K., E-mail: veluraja@msuniv.ac.in [Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu 627012 (India); Vennila, K.N. [CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025 (India)] [CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025 (India); Umamakeshvari, K.; Jasmine, A. [Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu 627012 (India)] [Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu 627012 (India); Velmurugan, D. [CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025 (India)] [CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025 (India)

    2011-03-25

    Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of the homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.

  2. QUANTITATIVE X-RAY POWDER DIFFRACTION ANALYSIS OF AIR PARTICULATE SAMPLES

    EPA Science Inventory

    The design, operation and calibration of an x-ray powder diffraction system for the analysis of air particulate samples are described. The instrument analyzes a sample non-destructively for its major crystalline components. The system has been optimized for the non-destructive an...

  3. MICROSTRUCTURE OF A RAPIDLY QUENCHED NANOCRYSTALLINE Hf11Ni89 ALLOY FROM X-RAY DIFFRACTION

    E-print Network

    Gubicza, Jenõ

    and the dislocation structure of the dominant HfNi5 phase were determined by a recently developed method that the median and the variance of the crystallite size distribution are 3.3 nm and 0.70, respectively, anisotropic peak broadening. #12;2 1. INTRODUCTION X-ray diffraction (XRD) is an effective tool

  4. An Inquiry Based Exercise Using X-ray Diffraction Data to Incite Student Learning

    NASA Astrophysics Data System (ADS)

    Rogow, D. L.; McDonald, W.; Bresler, M. R.

    2010-12-01

    An inquiry based learning exercise was designed for an upper division advanced inorganic laboratory course that meets one of the requirements for the Bachelor of Science degree in Chemistry and Biochemistry at the University of California, Santa Cruz. The content goals of this exercise were evaluation of whether a given solid state structure was previously known by using powder X-ray diffraction data, and understanding how the diffraction pattern relates to the crystal structure of the compound in question. The scientific process goals included searching a database to match the patterns and preparing data for oral presentations. The goals of the exercise were addressed via an activity allowing students to utilize real X-ray powder diffraction data to search and match with known structures in a database (International Crystal Structure Database) and to give an oral presentation. After students found their structures in the database, they prepared oral presentations justifying their choice for the match and their reasoning through structural analysis of the X-ray data. Students learned about X-ray diffraction theory in an inquiry type environment and gained valuable experience and confidence in presenting their findings using strong reasoning and communication skills. Assessment was implemented during active facilitation throughout the activity and during the final oral presentations.

  5. Time-Resolved X-Ray Diffraction Studies of Laser Annealing and Photostriction in Silicon

    Microsoft Academic Search

    John R. Buschert

    1989-01-01

    Part I. Time resolved x-ray diffraction at grazing incidence is used to observe a silicon crystal exposed to intense pulsed laser irradiation. The Bragg peak is shown to disappear during melting and then gradually reappear as the surface recrystallizes. A new scan method is introduced which keeps the grazing angle constant and allows the surface temperature to be directly related

  6. ANALYSIS OF RESIDUAL STRESS STATE IN WELDED STEEL PLATES BY X-RAY DIFFRACTION METHOD

    Microsoft Academic Search

    Vladimir I. Monin

    2009-01-01

    There were investigated geometrical distortions of two steel plates jointed by metal inert gas welding. The distributions of residual stresses in this welded joint were measured by X-ray diffraction method. The measured residual stress distributions were compared with residual stress state obtained by means of finite element analysis with using of ABAQUS software. A good agree- ment was obtained between

  7. X-RAY POWDER DIFFRACTION SYSTEM FOR CHEMICAL SPECIATION OF PARTICULATE AEROSOL SAMPLES

    EPA Science Inventory

    An x-ray powder diffraction system has been developed for the automated measurement and analysis of particulate aerosol samples. The system is optimized to process samples with particle loadings of about 100 micrograms/sq cm which are acquired with dichotomous air samplers. A pos...

  8. X-RAY DIFFRACTION FROM A TWO-DIMENSIONAL SOLID T. CEVA and C. MARTI (*)

    E-print Network

    Paris-Sud XI, Université de

    to study the diffraction of X-rays by a two-dimensional solid is described; spectra of the oriented and non-oriented area is 20 m2/g (instead of 80 m2/g for graphon) but its preferential orientation [6, 8] largely overcomes this drawback. The sample is a hemicylinder with a vertical axis,. 10 mm in diameter and 2 cm

  9. R 3BLEMS WITH NON-DESTRUCTIVE SURFACE X-RAY DIFFRACTION RESIDUAL STRESS MEASUREMENT

    Microsoft Academic Search

    Paul S. Prevey

    Because surface measurements are nondestructive, x-ray diffraction is often considered as a method of residual stress measurementfor quality control testing. Unfortunately, errors caused by the presence of a subsurface stress gradient and difficulties in interpreting surface results often I imitthe usefulness of surface data. The magnitude ofthe potential errors, both in measurement and in interpretation, depends upon the nature of

  10. Diffraction crystal for sagittally focusing x-rays

    DOEpatents

    Ice, Gene E. (Oak Ridge, TN); Sparks, Jr., Cullie J. (Oak Ridge, TN)

    1984-01-01

    The invention is a new type of diffraction crystal designed for sagittally focusing photons of various energies. The invention is based on the discovery that such focusing is not obtainable with conventional crystals because of distortion resulting from anticlastic curvature. The new crystal comprises a monocrystalline base having a front face contoured for sagittally focusing photons and a back face provided with rigid, upstanding, stiffening ribs restricting anticlastic curvature. When mounted in a suitable bending device, the reflecting face of the crystal can be adjusted to focus photons having any one of a range of energies.

  11. Twisted X-rays: incoming waveforms yielding discrete diffraction patterns for helical structures

    E-print Network

    Friesecke, Gero; Jüstel, Dominik

    2015-01-01

    Conventional X-ray methods use incoming plane waves and result in discrete diffraction patterns when scattered at crystals. Here we find, by a systematic method, incoming waveforms which exhibit discrete diffraction patterns when scattered at helical structures. As examples we present simulated diffraction patterns of carbon nanotubes and tobacco mosaic virus. The new incoming waveforms, which we call twisted waves due to their geometric shape, are found theoretically as closed-form solutions to Maxwell's equations. The theory of the ensuing diffraction patterns is developed in detail. A twisted analogue of the Von Laue condition is seen to hold, with the peak locations encoding the symmetry and the helix parameters, and the peak intensities indicating the electronic structure in the unit cell. If suitable twisted X-ray sources can in the future be realized experimentally, it appears from our mathematical results that they will provide a powerful tool for directly determining the detailed atomic structure of ...

  12. Design and performance of an imaging plate system for X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Amemiya, Yoshiyuki; Matsushita, Tadashi; Nakagawa, Atsushi; Satow, Yoshinori; Miyahara, Junji; Chikawa, Jun-ichi

    1988-04-01

    A new readout system for a BaFBr: Eu 2+ photostimulable phosphor screen (imaging plate) was constructed by modifying a drum scanner, with a design optimized for X-ray diffraction and scattering applications. An effort was made to achieve a high detective quantum efficiency below 20 keV, a small pixel size (25 ?m × 25 ?m), a low quantization noise (0.22%) using 12-bit A/D converters, and the capability to cover an inherent dynamic range (1:10 5) of the photostimulated luminescence by using two photomultiplier tubes. This system is being used in several synchrotron radiation experiments: Laue diffraction of protein crystals, small angle diffraction from a single muscle fiber, powder diffraction from crystals in a diamond anvil cell, and time-resolved small-angle X-ray scattering from a synthetic polymer during stretching.

  13. Two-dimensional measurement of focused hard X-ray beam profile using coherent X-ray diffraction of isolated nanoparticle

    Microsoft Academic Search

    Yukio Takahashi; Hideto Kubo; Ryosuke Tsutsumi; Shigeyuki Sakaki; Nobuyuki Zettsu; Yoshinori Nishino; Tetsuya Ishikawa; Kazuto Yamauchi

    2010-01-01

    A method for evaluating the two-dimensional photon density distribution in focused hard X-ray beams is proposed and demonstrated in a synchrotron experiment at SPring-8. A synchrotron X-ray beam of 11.8keV is focused to a ?1?m spot by Kirkpatrick–Baez mirrors. The two-dimensional intensity distribution of the focused beam is derived by monitoring the forward diffracted intensity from an isolated silver nanocube

  14. Development of an x-ray diffraction camera used in magnetic fields up to 10 T

    NASA Astrophysics Data System (ADS)

    Mitsui, Yoshifuru; Koyama, Keiichi; Takahashi, Kohki; Watanabe, Kazuo

    2011-12-01

    A high-field x-ray diffraction (HF-XRD) camera was developed to observe structural changes of magnetic materials in magnetic fields up to 10 T. The instrument mainly consists of a Debye-Scherrer-type camera with a diameter of 80.1 mm, a 10-T cryocooled superconducting magnet with a 100-mm room-temperature bore, an x-ray source, a power supply, and a chiller for the x-ray source. An x-ray detector (image plate) in the HF-XRD camera can be taken out and inserted into the magnet without changing the sample position. The performance of the instrument was tested by measuring the HF-XRD for silicon and ferromagnetic MnBi powders. A change of x-ray diffraction pattern was observed due to the magnetic orientation of MnBi, showing that the instrument is useful for studying field-induced orientation processes and structural properties of field-controlled materials.

  15. Development of an x-ray diffraction camera used in magnetic fields up to 10 T.

    PubMed

    Mitsui, Yoshifuru; Koyama, Keiichi; Takahashi, Kohki; Watanabe, Kazuo

    2011-12-01

    A high-field x-ray diffraction (HF-XRD) camera was developed to observe structural changes of magnetic materials in magnetic fields up to 10 T. The instrument mainly consists of a Debye-Scherrer-type camera with a diameter of 80.1 mm, a 10-T cryocooled superconducting magnet with a 100-mm room-temperature bore, an x-ray source, a power supply, and a chiller for the x-ray source. An x-ray detector (image plate) in the HF-XRD camera can be taken out and inserted into the magnet without changing the sample position. The performance of the instrument was tested by measuring the HF-XRD for silicon and ferromagnetic MnBi powders. A change of x-ray diffraction pattern was observed due to the magnetic orientation of MnBi, showing that the instrument is useful for studying field-induced orientation processes and structural properties of field-controlled materials. PMID:22225246

  16. X-ray diffraction study of damage induced by swift heavy ion irradiation in fluorapatite

    Microsoft Academic Search

    S. Miro; D. Grebille; D. Chateigner; D. Pelloquin; J.-P. Stoquert; J.-J. Grob; J.-M. Costantini; F. Studer

    2005-01-01

    X-ray powder and high-resolution single-crystal diffraction techniques were used to study the irradiation damage of fluorapatites. Krypton, iodine and carbon irradiations were performed at high energy (?1MeV\\/a) in the 1011 to 5×1013cm?2 fluence range. Both diffraction techniques showed a strong unit-cell increase of the fluorapatite structure, with a full relaxation of the remaining part of the material for large fluences.

  17. An active pixel sensor x-ray diffraction (APXRD) system for breast cancer diagnosis

    Microsoft Academic Search

    Sarah E Bohndiek; Gary J Royle; Robert D Speller

    2009-01-01

    This paper describes the potential application of an active pixel sensor-based x-ray diffraction (APXRD) system in the field of breast cancer diagnosis. The design and initial testing of the system was reported previously (Bohndiek et al 2008b Phys. Med. Biol.53 655–72). The system has potential both as a ‘diffraction enhanced breast imager’ (DEBI) and as a probe for quantitative analysis

  18. An active pixel sensor x-ray diffraction (APXRD) system for breast cancer diagnosis

    Microsoft Academic Search

    Sarah E. Bohndiek; Gary J. Royle; Robert D. Speller

    2009-01-01

    This paper describes the potential application of an active pixel sensor-based x-ray diffraction (APXRD) system in the field of breast cancer diagnosis. The design and initial testing of the system was reported previously (Bohndiek et al 2008b Phys. Med. Biol. 53 655-72). The system has potential both as a 'diffraction enhanced breast imager' (DEBI) and as a probe for quantitative

  19. Structure of Molten Copper-Antimony Alloys by Combination of Neutron and X-ray Diffraction

    Microsoft Academic Search

    Walter Knoll; Siegfried Steeb

    1973-01-01

    Diffraction experiments with 21 alloys from the system Cu-Sb were done by means of neutrons (1.19 Å) in transmission and by X-rays in reflection (Mo K?, ?H-?H goniometer). Corrections for neutron diffraction data are given and the RDF were calculated. Discussion of the nearest neighbours' distance rI and the coordination number z versus the concentration was done. With variation of

  20. X-Ray Powder Diffraction from SubMicron Crystals of Photosystem1 Membrane Protein

    Microsoft Academic Search

    D. A. Shapiro; D. DePonte; R. B. Doak; P. Fromme; G. Hembree; M. Hunter; S. Marchesini; K. Schmidt; D. Starodub; U. Weierstall; H. Chapman; J. Spence

    2008-01-01

    We demonstrate that powder diffraction data can be collected from sub-micron crystals of a mbrane protein with nearly two orders of magnitude more atoms than the molecules commonly used for powder diffraction. The crystals of photosystem-1 protein were size-selected using a 500 nm pore- size filter and delivered to a soft x-ray beam with a photon energy of 1.5 keV

  1. Specific features of two diffraction schemes for a widely divergent X-ray beam

    NASA Astrophysics Data System (ADS)

    Avetyan, K. T.; Levonyan, L. V.; Semerjian, H. S.; Arakelyan, M. M.; Badalyan, O. M.

    2015-03-01

    We investigated the specific features of two diffraction schemes for a widely divergent X-ray beam that use a circular diaphragm 30-50 ?m in diameter as a point source of characteristic radiation. In one of the schemes, the diaphragm was set in front of the crystal (the diaphragm-crystal ( d-c) scheme); in the other, it was installed behind the crystal (the crystal-diaphragm ( c-d) scheme). It was established that the diffraction image in the c-d scheme is a topographic map of the investigated crystal area. In the d-c scheme at L = 2 l ( l and L are the distances between the crystal and the diaphragm and between the photographic plate and the diaphragm, respectively), the branches of hyperbolas formed in this family of planes ( hkl) by the characteristic K ? and K ? radiations, including higher order reflections, converge into one straight line. It is experimentally demonstrated that this convergence is very sensitive to structural inhomogeneities in the crystal under study.

  2. Phase tomography from x-ray coherent diffractive imaging projections.

    PubMed

    Guizar-Sicairos, Manuel; Diaz, Ana; Holler, Mirko; Lucas, Miriam S; Menzel, Andreas; Wepf, Roger A; Bunk, Oliver

    2011-10-24

    Coherent diffractive imaging provides accurate phase projections that can be tomographically combined to yield detailed quantitative 3D reconstructions with a resolution that is not limited by imaging optics. We present robust algorithms for post-processing and alignment of these tomographic phase projections. A simple method to remove undesired constant and linear phase terms on the reconstructions is given. Also, we provide an algorithm for automatic alignment of projections that has good performance even for samples with no fiducial markers. Currently applied to phase projections, this alignment algorithm has proven to be robust and should also be useful for lens-based tomography techniques that pursue nanoscale 3D imaging. Lastly, we provide a method for tomographic reconstruction that works on phase projections that are known modulo 2?, such that the phase unwrapping step is avoided. We demonstrate the performance of these algorithms by 3D imaging of bacteria population in legume root-nodule cells. PMID:22108985

  3. X-ray diffraction patterns of metal aurocyanides

    SciTech Connect

    Selig, W.S.; Smith, G.S.; Harding, K.K.; Summers, L.J.

    1989-06-01

    Aurocyanides of the following metal cations have been prepared: Ag, Hg(II), Ga, Fe(III), Tl(I), Bi, Pb, Mn(II), Ni, Zn, Cu(II), Cd, In, and Co(II). Most of the aurocyanides are of the type M(Au(CN)/sub 2/)/sub x/ where M is the metal cation and x its valence. However, under some conditions mixed aurocyanides containing K may be formed, such as KCo(Au(CN)/sub 2/)/sub 3/. Only Ag and Hg(II) form aurocyanides which are sufficiently insoluble for the potentiometric determination of the aurocyanide anion. The diffraction patterns of the various aurocyanides are reported. 12 refs., 16 tabs.

  4. Synchrotron X-ray Diffraction Study of Microtubules Buckling and Bundling under Osmotic Stress: A Probe of Interprotofilament Interactions

    E-print Network

    Weeks, Eric R.

    Synchrotron X-ray Diffraction Study of Microtubules Buckling and Bundling under Osmotic Stress 93106, USA (Received 21 April 2004; published 4 November 2004) Microtubules are hollow cylinders the microtubule wall. Synchrotron x-ray diffraction of microtubules under increasing osmotic stress shows

  5. Theory of ultrafast time-resolved x-ray diffraction and applications to vaporization kinetics of finite systems

    NASA Astrophysics Data System (ADS)

    Lin, Siming H.; Chao, C. H.; Ma, H.; Rentzepis, Peter M.

    1995-09-01

    In this paper, we present a general theory of time-resolved x-ray diffraction. To show the application of the theory, we calculate the time-resolved x-ray diffraction patterns for the laser-induced vaporization kinetics of a finite system. Effect of the system size and laser- intensity will be examined.

  6. A furnace for diffraction studies using synchrotron X-ray radiation B. Buras (*), B. Lebech and W. Kofoed

    E-print Network

    Paris-Sud XI, Université de

    743 A furnace for diffraction studies using synchrotron X-ray radiation B. Buras (*), B. Lebech ainsi possibles. Divers détails de construction du four sont explicités. Abstract. 2014 A furnace for diffraction studies using synchrotron X-ray radiation is described. The furnace can be operated between

  7. High-pressure structural studies of dysprosium using angle-dispersive x-ray diffraction

    SciTech Connect

    Shen Yongrong; Kumar, Ravhi S.; Cornelius, Andrew L.; Nicol, Malcolm F. [Department of Physics and High Pressure Science and Engineering Center, University of Nevada Las Vegas, Las Vegas, Nevada 89154-4002 (United States)

    2007-02-01

    We present structural results under pressure for elemental dysprosium (Dy) up to 87 GPa using in situ angle-dispersive x-ray diffraction measurements with synchrotron x rays and a diamond-anvil cell. Dy exhibits the structural transition sequence, hP2{yields}hR9{yields}hP4{yields}distorted cF4, from Rietveld full-profile refinements. Clear evidence is documented for the high-pressure distorted cF4 phase observed above 45 GPa to be an orthorhombic oS8 (Cmmm) structure for Dy in the lanthanide phase diagram.

  8. MBE apparatus for in situ grazing incidence x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Akimoto, K.; Mizuki, J.; Hirosawa, I.; Matsui, J.

    1989-07-01

    A molecular beam epitaxy (MBE) apparatus furnished with two E-gun evaporators, two Knudsen cells and RHEED, was built for in situ grazing incidence x-ray diffraction studies. By adopting horizontal sample setting geometry, the entire ultrahigh vacuum chamber was rotated simply with the aid of a spring, and a large sample area was irradiated by the x-rays. Using this apparatus, we observed the 7×7 superstructure on a Si(111) surface and at a SiO2/Si(111) interface.

  9. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole

    NASA Astrophysics Data System (ADS)

    Kürkçüo?lu, Güne? Süheyla; Kiraz, Fulya Çetinkaya; Say?n, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  10. The catalytic mechanism of an aspartic proteinase explored with neutron and X-ray diffraction

    SciTech Connect

    Kovalevsky, Andrey [Los Alamos National Laboratory (LANL); Erskine, Peter T. [University of Southampton, England; Cooper, Jon [University of Southampton, England

    2008-01-01

    Hydrogen atoms play key roles in enzyme mechanism, but as this study shows, even high-quality X-ray data to a resolution of 1 {angstrom} cannot directly visualize them. Neutron diffraction, however, can locate deuterium atoms even at resolutions around 2 {angstrom}. Both neutron and X-ray diffraction data have been used to investigate the transition state of the aspartic proteinase endothiapepsin. The different techniques reveal a different part of the story, revealing the clearest picture yet of the catalytic mechanism by which the enzyme operates. Room temperature neutron and X-ray diffraction data were used in a newly developed joint refinement software package to visualize deuterium atoms within the active site of the enzyme when a gem-diol transition state analogue inhibitor is bound at the active site. These data were also used to estimate their individual occupancy, while analysis of the differences between the bond lengths of the catalytic aspartates was performed using atomic resolution X-ray data. The two methods are in agreement on the protonation state of the active site with a transition state analogue inhibitor bound confirming the catalytic mechanism at which the enzyme operates.

  11. Protein crystallography: From X-ray diffraction spots to a three dimensional image

    SciTech Connect

    Terwilliger, T.C.; Berendzen, J.

    1998-02-25

    Proteins are remarkable molecular machines that are essential for life. They can do many things ranging from the precise control of blood clotting to synthesizing complex organic compounds. Pictures of protein molecules are in high demand in biotechnology because they are important for applications such as drug discovery and for engineering enzymes for commercial use. X-ray crystallography is the most common method for determining the three-dimensional structures of protein molecules. When a crystal of a protein is placed in an X-ray beam, scattering of X-rays off the ordered molecules produces a diffraction pattern that can be measured on a position-sensitive CCD or image-plate detector. Protein crystals typically contain thousands of atoms and the diffraction data are generally measured to relatively low resolution. Consequently the direct methods approaches generally cannot be applied. Instead, if the crystal is modified by adding metal atoms at specific sites or by tuning the wavelength of the X-rays to cross an absorption edge of a metal atom in the crystal, then the information from these additional measurements is sufficient to first identify the /locations of the metal atoms. This information is then used along with the diffraction data to make a three-dimensional picture of electron densities. This picture can be used to determine the position of most or all of the atoms in the protein.

  12. Serial femtosecond X-ray diffraction of 30S ribosomal subunit microcrystals in liquid suspension at ambient temperature using an X-ray free-electron laser

    PubMed Central

    Demirci, Hasan; Sierra, Raymond G.; Laksmono, Hartawan; Shoeman, Robert L.; Botha, Sabine; Barends, Thomas R. M.; Nass, Karol; Schlichting, Ilme; Doak, R. Bruce; Gati, Cornelius; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Jogl, Gerwald; Dahlberg, Albert E.; Gregory, Steven T.; Bogan, Michael J.

    2013-01-01

    High-resolution ribosome structures determined by X-ray crystallography have provided important insights into the mechanism of translation. Such studies have thus far relied on large ribosome crystals kept at cryogenic temperatures to reduce radiation damage. Here, the application of serial femtosecond X-ray crystallography (SFX) using an X-ray free-electron laser (XFEL) to obtain diffraction data from ribosome microcrystals in liquid suspension at ambient temperature is described. 30S ribosomal subunit microcrystals diffracted to beyond 6?Å resolution, demonstrating the feasibility of using SFX for ribosome structural studies. The ability to collect diffraction data at near-physiological temperatures promises to provide fundamental insights into the structural dynamics of the ribosome and its functional complexes. PMID:23989164

  13. The K X-ray line structures for a warm dense copper plasma

    NASA Astrophysics Data System (ADS)

    S?abkowska, K.; Szyma?ska, E.; Syrocki, ?.; Rzadkiewicz, J.; Polasik, M.

    2015-06-01

    Ionization affects the energy and shape of the characteristic X-ray lines that may be excited by energetic electrons in a partially ionized plasma. We present the first theoretical predictions for copper K-line spectra in different ionization states, one of a systematic series of computations on how ionization affects inner-shell X-ray lines. Detailed computations such as these may make it possible to use individual hard X-rays lines as diagnostics for warm, dense plasmas when high-resolution X-ray spectra are available.

  14. Direct Modeling of X-Ray Diffraction Pattern from Contracting Skeletal Muscle

    PubMed Central

    Koubassova, Natalia A.; Bershitsky, Sergey Y.; Ferenczi, Michael A.; Tsaturyan, Andrey K.

    2008-01-01

    A direct modeling approach was used to quantitatively interpret the two-dimensional x-ray diffraction patterns obtained from contracting mammalian skeletal muscle. The dependence of the calculated layer line intensities on the number of myosin heads bound to the thin filaments, on the conformation of these heads and on their mode of attachment to actin, was studied systematically. Results of modeling are compared to experimental data collected from permeabilized fibers from rabbit skeletal muscle contracting at 5°C and 30°C and developing low and high isometric tension, respectively. The results of the modeling show that: i), the intensity of the first actin layer line is independent of the tilt of the light chain domains of myosin heads and can be used as a measure of the fraction of myosin heads stereospecifically attached to actin; ii), during isometric contraction at near physiological temperature, the fraction of these heads is ?40% and the light chain domains of the majority of them are more perpendicular to the filament axis than in rigor; and iii), at low temperature, when isometric tension is low, a majority of the attached myosin heads are bound to actin nonstereospecifically whereas at high temperature and tension they are bound stereospecifically. PMID:18539638

  15. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE PAGESBeta

    Beetz, T.; Howells, M. R.; Jacobsen, C.; Kao, C. -C.; Kirz, J.; Lima, E.; Mentes, T. O.; Miao, H.; Sanchez-Hanke, C.; Sayre, D.; et al

    2005-06-01

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore »computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less

  16. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto.

    PubMed

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-12-01

    Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27,724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a=74.3, b=49.9, c=56.3?Å, ?=95.2°. Diffraction images were processed to a resolution of 1.74?Å with an Rmerge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase. PMID:21139221

  17. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE PAGESBeta

    Beetz, T. [Stony Brook Univ., Stony Brook, NY (United States); Howells, M. R. [Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source; Brookhaven National Laboratory (BNL), Upton, NY (United States). Center for Functional Nanomaterials; Jacobsen, C. [Stony Brook Univ., Stony Brook, NY (United States); Kao, C. -C. [Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source; Kirz, J. [Stony Brook Univ., Stony Brook, NY (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Lima, E. [Stony Brook Univ., Stony Brook, NY (United States); Mentes, T. O. [Stony Brook Univ., Stony Brook, NY (United States); TASC-INFM National Lab, Trieste (Italy); Miao, H. [Stony Brook Univ., Stony Brook, NY (United States); Sanchez-Hanke, C. [Brookhaven National Laboratory (BNL), Upton, NY (United States). National Synchrotron Light Source; Sayre, D. [Stony Brook Univ., Stony Brook, NY (United States); Shapiro, D. [Stony Brook Univ., Stony Brook, NY (United States)

    2005-06-01

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done by computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.

  18. HRTEM and X-ray diffraction analysis of Au wire bonding interface in microelectronics packaging

    NASA Astrophysics Data System (ADS)

    Junhui, Li; Ruishan, Wang; Lei, Han; Fuliang, Wang; Zhili, Long

    2011-01-01

    Interfacial microstructures of thermosonic Au wire bonding to an Al pad of die were investigated firstly by high-resolution transmission electron microscopy (HRTEM) and X-ray micro-diffractometer. The equal-thickness interference structures were observed by HRTEM due to diffusion and reaction activated by ultrasonic and thermal at the Au/Al bond interface. And X-ray diffraction results showed that three different interplanar crystal spacings ('d' value) of the interfacial microstructures were 2.2257 Å, 2.2645 Å, and 2.1806 Å respectively from the high intensity of diffraction to the low intensity of diffraction. These indicated that the intermetallic phase AlAu 2 formed within a very short time. It would be helpful to further research wire bonding technology.

  19. Transient x-ray diffraction with simultaneous imaging under high strain-rate loading.

    PubMed

    Fan, D; Lu, L; Li, B; Qi, M L; E, J C; Zhao, F; Sun, T; Fezzaa, K; Chen, W; Luo, S N

    2014-11-01

    Real time, in situ, multiframe, diffraction, and imaging measurements on bulk samples under high and ultrahigh strain-rate loading are highly desirable for micro- and mesoscale sciences. We present an experimental demonstration of multiframe transient x-ray diffraction (TXD) along with simultaneous imaging under high strain-rate loading at the Advanced Photon Source beamline 32ID. The feasibility study utilizes high strain-rate Hopkinson bar loading on a Mg alloy. The exposure time in TXD is 2-3 ?s, and the frame interval is 26.7-62.5 ?s. Various dynamic deformation mechanisms are revealed by TXD, including lattice expansion or compression, crystal plasticity, grain or lattice rotation, and likely grain refinement, as well as considerable anisotropy in deformation. Dynamic strain fields are mapped via x-ray digital image correlation, and are consistent with the diffraction measurements and loading histories. PMID:25430119

  20. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns.

    PubMed

    Starodub, D; Aquila, A; Bajt, S; Barthelmess, M; Barty, A; Bostedt, C; Bozek, J D; Coppola, N; Doak, R B; Epp, S W; Erk, B; Foucar, L; Gumprecht, L; Hampton, C Y; Hartmann, A; Hartmann, R; Holl, P; Kassemeyer, S; Kimmel, N; Laksmono, H; Liang, M; Loh, N D; Lomb, L; Martin, A V; Nass, K; Reich, C; Rolles, D; Rudek, B; Rudenko, A; Schulz, J; Shoeman, R L; Sierra, R G; Soltau, H; Steinbrener, J; Stellato, F; Stern, S; Weidenspointner, G; Frank, M; Ullrich, J; Strüder, L; Schlichting, I; Chapman, H N; Spence, J C H; Bogan, M J

    2012-01-01

    Diffractive imaging with free-electron lasers allows structure determination from ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-ray pulses provide snapshots of the randomly oriented particles frozen in time, and terminate before the onset of structural damage. As signal strength diminishes for small particles, the synthesis of a three-dimensional diffraction volume requires simultaneous involvement of all data. Here we report the first application of a three-dimensional spatial frequency correlation analysis to carry out this synthesis from noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples in random and unknown orientations, collected at the Linac Coherent Light Source. Our demonstration uses unsupported test particles created via aerosol self-assembly, and composed of two polystyrene spheres of equal diameter. The correlation analysis avoids the need for orientation determination entirely. This method may be applied to the structural determination of biological macromolecules in solution. PMID:23232406

  1. X-Ray Diffraction Studies of the Sulfur Globules Accumulated by Chromatium Species

    PubMed Central

    Hageage, G. J.; Eanes, E. D.; Gherna, R. L.

    1970-01-01

    Isolated wet and dried sulfur globules, obtained by osmotic lysis of lysozyme-ethylenediaminetetraacetic acid prepared spheroplasts of Chromatium okenii, C. weissei, and C. warmingii, were studied by polarizing microscopy and X-ray diffraction. When viewed through crossed Nicol prisms, the sulfur globules, whether in the cell or isolated in a pure, wet state, had a characteristic maltese cross appearance. The observation that rotation of the mount did not change the orientation of the arms suggested a symmetrical radial arrangement of the birefringent units. X-ray diffraction patterns of freshly isolated, wet sulfur globules gave two broad and diffuse diffraction rings with maxima at 0.36 and 0.52 nm. This pattern closely resembled the diffraction pattern of liquid sulfur. When allowed to stand in the wet state, the sulfur globules eventually converted into crystalline orthorhombic sulfur after passing through an unstable crystalline phase not previously described by X-ray diffraction. Vacuum drying of the sulfur globules accelerated the change into crystalline orthorhombic sulfur. Images PMID:5413821

  2. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    PubMed Central

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  3. Quantitative comparison of imaging performance of x-ray interferometric imaging and diffraction enhanced imaging

    SciTech Connect

    Akio, Yoneyama; Jin, Wu; Kazuyuki, Hyodo; Tohoru, Takeda [Advanced Research Laboratory, Hitachi, Ltd., 2520 Akanuma, Hatoyama, Saitama, 350-0395 (Japan); Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 (Japan); Institute of Materials Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 (Japan)

    2008-10-15

    For detailed biomedical observations using the optimum phase-contrast x-ray imaging, quantitative comparisons of imaging performances of two major imaging methods--x-ray interferometric imaging (XII) and diffraction enhanced imaging (DEI)--were performed. Density sensitivity and spatial resolution of each imaging method were evaluated using phantom tomograms obtained by each method with the same x-ray dosage. For practical comparison of the methods, biological samples were also observed under the same conditions. The results show that XII has a higher sensitivity than that of DEI and is thus suitable for observation of soft biological tissues. On the other hand, DEI has a wider dynamic range of density and is thus suitable for observation of samples with large differences in density of different regions.

  4. X-ray micro-diffraction from 90 degree domains in barium titanate

    NASA Astrophysics Data System (ADS)

    Hassani, Khosrow; Holt, Martin; Sutton, Mark

    2004-03-01

    We present the first results from the x-ray microprobe setup of the side station at the 8-ID beamline at Advanced Photon Source , Argonne National Labouratory. Using the x-ray beam from a synchrotron source and a Fresnel zone plate, a focal spot as small as 0.4 microns in the vertical and 3 microns in the horizontal is obtained. This combined with a 3-D XYZ translation stage with 40 nm step size over a 25 mm travel range allows us to do high resolution x-ray micro-diffraction measurments. As an illustration, we present results imaging the (100)/(001) Bragg peak from 90 degree ferroelectric domains in barium titanate. The domain pattern consists of alternating stripes of a and c domains with an average domain separation of 10 microns. With this data, we discuss the strain fields near the domain walls.

  5. High-precision laser-assisted absolute determination of x-ray diffraction angles

    SciTech Connect

    Kubicek, K.; Braun, J.; Bruhns, H.; Crespo Lopez-Urrutia, J. R.; Mokler, P. H.; Ullrich, J. [Max-Planck-Institute for Nuclear Physics, D-69117 Heidelberg (Germany)

    2012-01-15

    A novel technique for absolute wavelength determination in high-precision crystal x-ray spectroscopy recently introduced has been upgraded reaching unprecedented accuracies. The method combines visible laser beams with the Bond method, where Bragg angles ({theta} and -{theta}) are determined without any x-ray reference lines. Using flat crystals this technique makes absolute x-ray wavelength measurements feasible even at low x-ray fluxes. The upgraded spectrometer has been used in combination with first experiments on the 1s2p {sup 1}P{sub 1}{yields} 1s{sup 2} {sup 1}S{sub 0} w-line in He-like argon. By resolving a minute curvature of the x-ray lines the accuracy reaches there the best ever reported value of 1.5 ppm. The result is sensitive to predicted second-order QED contributions at the level of two-electron screening and two-photon radiative diagrams and will allow for the first time to benchmark predicted binding energies for He-like ions at this level of precision.

  6. Application of a pnCCD in X-ray diffraction: a three-dimensional X-ray detector.

    PubMed

    Leitenberger, Wolfram; Hartmann, Robert; Pietsch, Ullrich; Andritschke, Robert; Starke, Ines; Strüder, Lothar

    2008-09-01

    The first application of a pnCCD detector for X-ray scattering experiments using white synchrotron radiation at BESSY II is presented. A Cd arachidate multilayer was investigated in reflection geometry within the energy range 7 keV < E < 35 keV. At fixed angle of incidence the two-dimensional diffraction pattern containing several multilayer Bragg peaks and respective diffuse-resonant Bragg sheets were observed. Since every pixel of the detector is able to determine the energy of every incoming photon with a resolution DeltaE/E approximately 10(-2), a three-dimensional dataset is finally obtained. In order to achieve this energy resolution the detector was operated in the so-called single-photon-counting mode. A full dataset was evaluated taking into account all photons recorded within 10(5) detector frames at a readout rate of 200 Hz. By representing the data in reciprocal-space coordinates, it becomes obvious that this experiment with the pnCCD detector provides the same information as that obtained by combining a large number of monochromatic scattering experiments using conventional area detectors. PMID:18728315

  7. Prediction of Elastic Modulus + Anisotropy Using X-Ray and Electron Backscattered Diffraction Texture Quantification and Ultrasonic (Electromagnetic Acoustic Transducer) Measurements in Aluminum Sheets

    NASA Astrophysics Data System (ADS)

    Davis, C. L.; Strangwood, M.; Potter, M.; Dixon, S.; Morris, P. F.

    2008-03-01

    Crystallographic texture is generally measured using X-ray diffraction, performed off-line using small samples determining near-surface texture only; electron backscattered diffraction (EBSD) can also be used, but only samples relatively small areas. Ultrasonic methods determine elastic property anisotropy and texture, via orientation distribution coefficients (ODCs), and while there is substantial literature comparing ultrasonically determined properties with X-ray or neutron diffraction texture, there is little discussion about texture inhomogeneity (place to place in a sheet or through thickness) and sampling volume effects (X-ray compared to EBSD) on the accuracy of the correlations. In this article, the crystallographic texture of nominally pure aluminum and commercial aluminum alloy sheets has been determined by X-ray diffraction and EBSD and used to calculate the elastic anisotropy, which is then compared to ultrasonic electromagnetic acoustic transducer (EMAT) velocity anisotropy taking into account through-thickness texture variations. Significant and consistent spatial variability in texture occurs in the aluminum sheet samples (sheet edge to center and through thickness). Predictions of elastic anisotropy based on surface texture determination, as characterized by X-ray diffraction or surface EBSD, gave poor correlations with EMAT velocity anisotropy when the sample contained significant through thickness texture variations; however, accounting for this using multiple EBSD scans through thickness gave good correlations.

  8. SEARCHING FOR NARROW EMISSION LINES IN X-RAY SPECTRA: COMPUTATION AND METHODS Taeyoung Park,1

    E-print Network

    van Dyk, David

    SEARCHING FOR NARROW EMISSION LINES IN X-RAY SPECTRA: COMPUTATION AND METHODS Taeyoung Park,1 David of the high-redshift quasar PG 1634+706. Subject headinggs: methods: statistical -- quasars: emission lines 1 The detection and quantification of narrow emission lines in X-ray spectra is a challenging statistical task

  9. Complete k-space visualization of x-ray photoelectron diffraction

    SciTech Connect

    Denlinger, J.D. [Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Physics; [Lawrence Berkeley Lab., CA (United States). Advanced Light Source; Rotenberg, E. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; [Lawrence Berkeley Lab., CA (United States). Advanced Light Source; Kevan, S.D. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Tonner, B.P. [Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Physics

    1996-12-31

    A highly detailed x-ray photoelectron diffraction data set has been acquired for crystalline Cu(001). The data set for bulk Cu 3p emission encompasses a large k-space volume (k = 3--10 {angstrom}{sup {minus}1}) with sufficient energy and angular sampling to monitor the continuous variation of diffraction intensities. The evolution of back-scattered intensity oscillations is visualized by energy and angular slices of this volume data set. Large diffraction data sets such as this will provide rigorous experimental tests of real-space reconstruction algorithms and multiple-scattering simulations.

  10. Spectral x-ray diffraction using a 6 megapixel photon counting array detector

    NASA Astrophysics Data System (ADS)

    Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2015-03-01

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  11. X-Ray Diffraction Study of the Internal Structure of Supercooled Water

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Boyd, Bemrose

    1951-01-01

    A Bragg X-ray spectrometer equipped with a volume-sensitive Geiger counter and Soller slits and employing filtered molybdenum Ka radiation was used to obtain a set of diffracted intensity curves as a Punction of angle for supercooled water. Diffracted intensity curves in the temperature region of 21 to -16 C were obtained. The minimum between the two main diffraction peaks deepened continuously with lowering temperature, indicating a gradual change in the internal structure of the water. No discontinuity in this trend was noted at the melting point. The internal structure of supercooled water was concluded to become progressively more ice-like as the temperature is lowered.

  12. In-line phase-contrast imaging based on Tsinghua Thomson scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Du, Yingchao; Yan, Lixin; Hua, Jianfei; Yang, Jin; Xiao, Yongshun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2014-08-01

    Thomson scattering x-ray sources can produce ultrashort, energy tunable x-ray pulses characterized by high brightness, quasi-monochromatic, and high spatial coherence, which make it an ideal source for in-line phase-contrast imaging. We demonstrate the capacity of in-line phase-contrast imaging based on Tsinghua Thomson scattering X-ray source. Clear edge enhancement effect has been observed in the experiment.

  13. Coherent convergent-beam time-resolved X-ray diffraction

    PubMed Central

    Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng

    2014-01-01

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153

  14. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements

    NASA Astrophysics Data System (ADS)

    Barty, Anton; Caleman, Carl; Aquila, Andrew; Timneanu, Nicusor; Lomb, Lukas; White, Thomas A.; Andreasson, Jakob; Arnlund, David; Bajt, Saša; Barends, Thomas R. M.; Barthelmess, Miriam; Bogan, Michael J.; Bostedt, Christoph; Bozek, John D.; Coffee, Ryan; Coppola, Nicola; Davidsson, Jan; Deponte, Daniel P.; Doak, R. Bruce; Ekeberg, Tomas; Elser, Veit; Epp, Sascha W.; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Fromme, Petra; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y.; Hartmann, Robert; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S.; Johansson, Linda; Kassemeyer, Stephan; Kimmel, Nils; Kirian, Richard A.; Liang, Mengning; Maia, Filipe R. N. C.; Malmerberg, Erik; Marchesini, Stefano; Martin, Andrew V.; Nass, Karol; Neutze, Richard; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Scott, Howard; Schlichting, Ilme; Schulz, Joachim; Seibert, M. Marvin; Shoeman, Robert L.; Sierra, Raymond G.; Soltau, Heike; Spence, John C. H.; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Ullrich, Joachim; Wang, X.; Weidenspointner, Georg; Weierstall, Uwe; Wunderer, Cornelia B.; Chapman, Henry N.

    2012-01-01

    X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology should enable structural determination from submicrometre protein crystals with atomic resolution.

  15. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements

    PubMed Central

    Barty, Anton; Caleman, Carl; Aquila, Andrew; Timneanu, Nicusor; Lomb, Lukas; White, Thomas A.; Andreasson, Jakob; Arnlund, David; Bajt, Saša; Barends, Thomas R. M.; Barthelmess, Miriam; Bogan, Michael J.; Bostedt, Christoph; Bozek, John D.; Coffee, Ryan; Coppola, Nicola; Davidsson, Jan; DePonte, Daniel P.; Doak, R. Bruce; Ekeberg, Tomas; Elser, Veit; Epp, Sascha W.; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Fromme, Petra; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y.; Hartmann, Robert; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S.; Johansson, Linda; Kassemeyer, Stephan; Kimmel, Nils; Kirian, Richard A.; Liang, Mengning; Maia, Filipe R. N. C.; Malmerberg, Erik; Marchesini, Stefano; Martin, Andrew V.; Nass, Karol; Neutze, Richard; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Scott, Howard; Schlichting, Ilme; Schulz, Joachim; Seibert, M. Marvin; Shoeman, Robert L.; Sierra, Raymond G.; Soltau, Heike; Spence, John C. H.; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Ullrich, Joachim; Wang, X.; Weidenspointner, Georg; Weierstall, Uwe; Wunderer, Cornelia B.; Chapman, Henry N.

    2013-01-01

    X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1–4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution. PMID:24078834

  16. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements.

    PubMed

    Barty, Anton; Caleman, Carl; Aquila, Andrew; Timneanu, Nicusor; Lomb, Lukas; White, Thomas A; Andreasson, Jakob; Arnlund, David; Bajt, Saša; Barends, Thomas R M; Barthelmess, Miriam; Bogan, Michael J; Bostedt, Christoph; Bozek, John D; Coffee, Ryan; Coppola, Nicola; Davidsson, Jan; Deponte, Daniel P; Doak, R Bruce; Ekeberg, Tomas; Elser, Veit; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Fromme, Petra; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Robert; Hartmann, Andreas; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Johansson, Linda; Kassemeyer, Stephan; Kimmel, Nils; Kirian, Richard A; Liang, Mengning; Maia, Filipe R N C; Malmerberg, Erik; Marchesini, Stefano; Martin, Andrew V; Nass, Karol; Neutze, Richard; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Scott, Howard; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Shoeman, Robert L; Sierra, Raymond G; Soltau, Heike; Spence, John C H; Stellato, Francesco; Stern, Stephan; Strüder, Lothar; Ullrich, Joachim; Wang, X; Weidenspointner, Georg; Weierstall, Uwe; Wunderer, Cornelia B; Chapman, Henry N

    2012-01-01

    X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis(1). For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information(1-4). Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology(5) should enable structural determination from submicrometre protein crystals with atomic resolution. PMID:24078834

  17. Quantitative Imaging of Single Unstained Magnetotactic Bacteria by Coherent X-ray Diffraction Microscopy.

    PubMed

    Fan, Jiadong; Sun, Zhibin; Zhang, Jian; Huang, Qingjie; Yao, Shengkun; Zong, Yunbing; Kohmura, Yoshiki; Ishikawa, Tetsuya; Liu, Hong; Jiang, Huaidong

    2015-06-16

    Novel coherent diffraction microscopy provides a powerful lensless imaging method to obtain a better understanding of the microorganism at the nanoscale. Here we demonstrated quantitative imaging of intact unstained magnetotactic bacteria using coherent X-ray diffraction microscopy combined with an iterative phase retrieval algorithm. Although the signal-to-noise ratio of the X-ray diffraction pattern from single magnetotactic bacterium is weak due to low-scattering ability of biomaterials, an 18.6 nm half-period resolution of reconstructed image was achieved by using a hybrid input-output phase retrieval algorithm. On the basis of the quantitative reconstructed images, the morphology and some intracellular structures, such as nucleoid, poly?-hydroxybutyrate granules, and magnetosomes, were identified, which were also confirmed by scanning electron microscopy and energy dispersive spectroscopy. With the benefit from the quantifiability of coherent diffraction imaging, for the first time to our knowledge, an average density of magnetotactic bacteria was calculated to be ?1.19 g/cm(3). This technique has a wide range of applications, especially in quantitative imaging of low-scattering biomaterials and multicomponent materials at nanoscale resolution. Combined with the cryogenic technique or X-ray free electron lasers, the method could image cells in a hydrated condition, which helps to maintain their natural structure. PMID:26006162

  18. Realizing in-plane surface diffraction by x-ray multiple-beam diffraction with large incidence angle

    SciTech Connect

    Huang, Xian-Rong, E-mail: xiahuang@aps.anl.gov; Gog, Thomas; Assoufid, Lahsen [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Siddons, D. P. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-11-03

    Based on rigorous dynamical-theory calculations, we demonstrate the principle of an x-ray multiple-beam diffraction (MBD) scheme that overcomes the long-lasting difficulties of high-resolution in-plane diffraction from crystal surfaces. This scheme only utilizes symmetric reflection geometry with large incident angles but activates the out-of-plane and in-plane diffraction processes simultaneously and separately in the continuous MBD planes. The in-plane diffraction is realized by detoured MBD, where the intermediate diffracted waves propagate parallel to the surface, which corresponds to an absolute Bragg surface diffraction configuration that is extremely sensitive to surface structures. A series of MBD diffraction and imaging techniques may be developed from this principle to study surface/interface (misfit) strains, lateral nanostructures, and phase transitions of a wide range of (pseudo)cubic crystal structures, including ultrathin epitaxial films and multilayers, quantum dots, strain-engineered semiconductor or (multi)ferroic materials, etc.

  19. Emission lines from X-ray-heated accretion disks in low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Ko, Yuan-Kuen; Kallman, Timothy R.

    1994-01-01

    We investigate the structure of accretion disks illuminated by X-rays from a central compact object in a binary system. X-rays can photoionize the upper atmosphere of the disk and form an accretion disk corona (ADC) where emission lines can form. We construct a model to calculate the vertical structure and the emission spectrum of the ADC with parameters appropriate to low-mass X-ray binaries. These models are made by nonlocal thermodynamic equilibrium calculations of ion and level populations and include a large number of atomic processes for 10 cosmically abundant elements. Transfer of radiation is treated by using the escape probability formalism. The vertical temperature profile of the ADC consists of a Compton-heated region and a mid-T zone where the temperature is approximately 10(exp 6) K. A thermal instability occurs close to the disk photosphere and causes the temperature of the ADC to drop abruptly from 10(exp 6) K to several times 10(exp 4) K. The emission spectrum in the optical, ultraviolet, extreme ultraviolet, and X-ray range is discussed and compared with the observations.

  20. X-Ray Diffraction and Fluorescence Measurements for In-situ Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Hansford, G.; Hill, K. S.; Vernon, D.; Ambrosi, R. M.; Bridges, J.; Hutchinson, I.

    2010-12-01

    The X-Ray Diffraction (XRD) instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA EXOMARS missions and will provide the first demonstrations of an XRF/XRD instrument’s capabilities in-situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-Ray Diffraction instrument, Mars XRD. The ExoMars X-ray diffraction instrument incorporates an 55-Fe radioisotope source and three fixed-position CCDs to simultaneously acquire an X-Ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition [1]. The CCDs cover an angular range from 6 to 65-deg enabling the analysis of silicates, from clays, or other phyllosilicates characterised by varying d-spacings, to oxides, and carbonates or evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an 55-Fe source and X-ray sensitive CCD [1]. The XRD/XRD test system consists of a single CCD on a motorised arm, an 55-Fe X-ray source, source collimator and a sample table which approximately replicate the reflection geometry of the XRD instrument. It was used to test geological reference standard materials and Martian analogues. Incidence angle and CCD angles on both the diffraction and fluorescence results were evaluated. A key area of interest is the effect of sample roughness on the XRD/XRF results. We present results from testing pressed powder pellet samples of varying surface roughness, and a comparison with model results [2]. So far we have found that increased roughness causes a reduced intensity at lower take-off angles. Several methods for measuring surface roughness of the samples have been used including an Alicona Infinite Focus microscope. [1] Marinangeli et al. (2007) LPSC #1322 [2] Hansford et al. (2010) EGU General Assembly 2010

  1. X-ray and neutron diffraction measurements of dislocation density and subgrain size in a friction stir welded aluminum alloy

    SciTech Connect

    Claussen, Bjorn [Los Alamos National Laboratory; Woo, Wanchuck [ORNL; Zhili, Feng [ORNL; Edward, Kenik [ORNL; Ungar, Tamas [EOTVOS UNIV.

    2009-01-01

    The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 x 10{sup 14} m{sup 02} and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson-Hall method shows the dislocation density of about 3.2 x 10{sup 15} m{sup -2} and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation.

  2. X-ray diffraction imaging of metal–oxide epitaxial tunnel junctions made by optical lithography: use of focused and unfocused X-ray beams

    PubMed Central

    Mocuta, Cristian; Barbier, Antoine; Stanescu, Stefan; Matzen, Sylvia; Moussy, Jean-Baptiste; Ziegler, Eric

    2013-01-01

    X-ray diffraction techniques are used in imaging mode in order to characterize micrometre-sized objects. The samples used as models are metal–oxide tunnel junctions made by optical lithography, with lateral sizes ranging from 150?µm down to 10?µm and various shapes: discs, squares and rectangles. Two approaches are described and compared, both using diffraction contrast: full-field imaging (topography) and raster imaging (scanning probe) using a micrometre-sized focused X-ray beam. It is shown that the full-field image gives access to macroscopic distortions (e.g. sample bending), while the local distortions, at the micrometre scale (e.g. tilts of the crystalline planes in the vicinity of the junction edges), can be accurately characterized only using focused X-ray beams. These local defects are dependent on the junction shape and larger by one order of magnitude than the macroscopic curvature of the sample. PMID:23412494

  3. Spectroscopic and X-ray Diffraction Study of Structural Disorder in Cryomilled and Amorphous Griseofulvin

    SciTech Connect

    A Zarow; B Zhou; X Wang; R Pinal; Z Iqbal

    2011-12-31

    Structural disorder induced by cryogenic milling and by heating to the amorphous phase in the active pharmaceutical ingredient Griseofulvin has been studied using Raman spectroscopy, X-ray powder diffraction (XRPD), and fluorescence spectroscopy. A broad, exciting-frequency-independent scattering background in the Raman spectra and changes in intensities and splitting of some of the Raman lines due to lattice and molecular modes have been observed. In the cryomilled samples this strong background is deconvoluted into two components: one due to lattice disorder induced by cryomilling and the other due to Mie scattering from nanosized crystallites. A single-component background scattering attributed to lattice disorder is seen in the Raman spectrum of the amorphous sample. Fluorescence measurements showed an intrinsic fluorescence signal in as-received Griseofulvin that does not correspond to the inelastic background in the Raman spectra and, moreover, decreases in intensity upon cryomilling, thus excluding an assignment of the Raman background intensity to impurity- or molecular-defect-induced fluorescence. Wide-angle XRPD measurements on cryomilled Griseofulvin shows a broad two-component background consistent with the background-scattering component in the Raman data associated with lattice disorder, but at longer correlation lengths. Persistence of this disorder to even longer lengths is evident in small-angle synchrotron XRPD data on micronized Griseofulvin taken as a function of temperature from the crystalline to the amorphous phase.

  4. Crystallization and preliminary X-ray diffraction studies of human salivary alpha-amylase.

    PubMed

    Ramasubbu, N; Bhandary, K K; Scannapieco, F A; Levine, M J

    1991-01-01

    Nonglycosylated alpha-amylase, a major component of human parotid saliva, has been crystallized by the vapor diffusion technique using 2-methyl-2,4-pentanediol as the precipitant in the presence of CaCl2 at pH 9.0. The crystals are orthorhombic, space group P2(1)2(1)2(1) with unit cell dimensions of a = 53.3, b = 75.8, and c = 138.1 A. The asymmetric unit contains one amylase molecule. The solvent content is 54%. The crystals are stable to X-rays and diffract up to 2.8 A and appear to be suitable for X-ray diffraction studies. PMID:1749776

  5. A multi-sample automatic system for in situ electrochemical X-ray diffraction synchrotron measurements.

    PubMed

    Rosciano, Fabio; Holzapfel, Michael; Kaiser, Hermann; Scheifele, Werner; Ruch, Patrick; Hahn, Matthias; Kötz, Rüdiger; Novák, Petr

    2007-11-01

    An automatic system that allows continuous in situ electrochemical X-ray diffraction measurements has been developed and implemented at the MS-X04SA beamline at the Swiss Light Source. The system consists of an automatic sample changer, improved ;coffee bag' electrochemical cells, and simple control software. The sample changer can sequentially move up to 32 electrochemical cells into the beam. For each cell an independent electrochemical program is possible. The MYTHEN microstrip detector at the beamline enables parallel detection of diffracted X-ray beams and, thus, fast data acquisition, along with a high 2theta resolution. In this communication the set-up is presented on two typical examples from the field of lithium-ion batteries, (i) structural changes in a layered LiCoO(2) positive electrode upon battery charging and (ii) the effect of co-intercalation of ionic liquids into the graphite negative electrode. PMID:17960031

  6. Edge diffraction effect at the refraction of X rays in a diamond prism

    NASA Astrophysics Data System (ADS)

    Tur'yanskii, A. G.; Konovalov, O. V.; Gizha, S. S.; Beilin, N. D.

    2014-12-01

    The refraction of monochromatic X-ray radiation in an optically polished diamond prism has been studied. Measurements have been performed on the ID10 channel of the ESRF synchrotron (Grenoble). It has been found that parabolic geometric deviations of the profile of the refractive face of the prism from a plane are responsible for the interference pattern that is similar in the structure of oscillations to an edge diffraction effect. As a result, a diffraction pattern characteristic of the near-field Fresnel zone can be observed in the farfield zone. A high sensitivity to phase perturbations ensures the possibility of using this effect to analyze the parameters of an X-ray wavefront with a dimension of about 1 ?m.

  7. Experimental Approaches for Solution X-Ray Scattering And Fiber Diffraction

    SciTech Connect

    Tsuruta, H.; Irving, T.C.

    2009-05-26

    X-ray scattering and diffraction from non-crystalline systems have gained renewed interest in recent years, as focus shifts from the structural chemistry information gained by high-resolution studies to the context of structural physiology at larger length scales. Such techniques permit the study of isolated macromolecules as well as highly organized macromolecular assemblies as a whole under near-physiological conditions. Time-resolved approaches, made possible by advanced synchrotron instrumentation, add a crucial dimension to many of these investigations. This article reviews experimental approaches in non-crystalline X-ray scattering and diffraction that may be used to illuminate important scientific questions such as protein/nucleic acid folding and structure-function relationships in large macromolecular assemblies.

  8. Experimental approaches for solution X-ray scattering and fiber diffraction

    SciTech Connect

    Tsuruta, H.; Irving, T.C. (IIT); (SSRL)

    2008-11-03

    X-ray scattering and diffraction from non-crystalline systems have gained renewed interest in recent years, as focus shifts from the structural chemistry information gained by high-resolution studies to the context of structural physiology at larger length scales. Such techniques permit the study of isolated macromolecules as well as highly organized macromolecular assemblies as a whole under near-physiological conditions. Time-resolved approaches, made possible by advanced synchrotron instrumentation, add a crucial dimension to many of these investigations. This article reviews experimental approaches in non-crystalline X-ray scattering and diffraction that may be used to illuminate important scientific questions such as protein/nucleic acid folding and structure-function relationships in large macromolecular assemblies.

  9. X-ray and neutron diffraction study of nanocrystalline Ti-Ru-Fe-O compounds

    SciTech Connect

    Blouin, M.; Guay, D. [INRS-Energie et Materiaux, Varennes, Quebec (Canada)] [INRS-Energie et Materiaux, Varennes, Quebec (Canada); Huot, J.; Schulz, R. [Inst. de recherche d`Hydro-Quebec, Varennes, Quebec (Canada). Technologies Emergentes de Production et de Stockage] [Inst. de recherche d`Hydro-Quebec, Varennes, Quebec (Canada). Technologies Emergentes de Production et de Stockage; Swainson, I.P. [National Research Council, Chalk River, Ontario (Canada). Chalk River Labs.] [National Research Council, Chalk River, Ontario (Canada). Chalk River Labs.

    1998-11-01

    The effect of adding oxygen on the structure of nanocrystalline Ti-Ru-Fe compounds obtained by high-energy ball-milling has been studied by X-ray and neutron diffraction using a Rietveld refinement analysis. It is shown that oxygen atoms readily oxidize Ti to form various types of titanium oxides depending on the oxygen content. In each case, a simple cubic structure (cP2-CsCl) is also formed during milling but with a concentration higher than expected on the basis of various reaction schemes. Through a detailed analysis of the neutron and X-ray diffraction peaks, it is shown that the 1a site of the CsCl-type unit cell is depleted from Ti atoms by preferential substitution with Fe. At high oxygen concentration, the alloy is a multiphase material containing Ti{sub 2{minus}x}Ru{sub 1+y}Fe{sub 1+z}, Ti oxides, Ru, and Fe.

  10. In situ x-ray diffraction measurements of the capillary fountain jet produced via ultrasonic atomization.

    PubMed

    Yano, Yohko F; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo

    2006-11-01

    In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20 mol % ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist. PMID:17100459

  11. X-ray micro-diffraction studies of heterogeneous interfaces between cementitious materials and geological formations

    NASA Astrophysics Data System (ADS)

    Dähn, R.; Popov, D.; Schaub, Ph.; Pattison, P.; Grolimund, D.; Mäder, U.; Jenni, A.; Wieland, E.

    In the present study the challenge of analyzing complex micro X-ray diffraction (microXRD) patterns from cement-clay interfaces has been addressed. In order to extract the maximum information concerning both the spatial distribution and the crystal structure type associated with each of the many diffracting grains in heterogeneous, polycrystalline samples, an approach has been developed in which microXRD was applied to thin sections which were rotated in the X-ray beam. The data analysis, performed on microXRD patterns collected from a filled vein of a cement-clay interface from the natural analogue in Maqarin (Jordan), and a sample from a two-year-old altered interface between cement and argillaceous rock, demonstrate the potential of this method.

  12. In situ grazing-incidence x-ray-diffraction and electron-microscopic studies of small gold clusters

    Microsoft Academic Search

    Kenji Koga; Harutoshi Takeo; Takuji Ikeda; Ken-Ichi Ohshima

    1998-01-01

    Small gold clusters having diameters of 1-3 nm have been studied by using x-ray-diffraction and electron microscopy. Large amounts of small gold clusters generated by the inert-gas vapor-condensation method were deposited on a silicon wafer cooled down to 92 K to avoid coalescence growth and grazing-incidence x-ray-diffraction intensity from the cold cluster deposit was measured in situ. The diffraction pattern

  13. Cubic SiC Surface Structure Studied by X-Ray Diffraction

    E-print Network

    Chiang, Shirley

    Grazing-Incidence X-ray Diffraction (GIXRD) to deter- mine the atomic structure of the Si-rich 3C-SiC(001 frequency applications. Among all polytypes, 3C-SiC is the only cubic polytype and has the zinc- blende structure. The 3C-SiC(001) surface shows a great variety of reconstructions from Si-rich 3x2 to C

  14. X-ray synchrotron diffraction study of natural gas hydrates from African margin

    Microsoft Academic Search

    Christophe Bourry; Jean-Luc Charlou; Jean-Pierre Donval; Michela Brunelli; Cristian Focsa; Bertrand Chazallon

    2007-01-01

    Natural gas hydrates recovered from the Congo-Angola basin and Nigerian margins are analyzed by synchrotron X-ray powder diffraction. Biogenic methane is the most abundant gas trapped in the samples and others minor components (CO2, H2S) are co-clathrated in a type I cubic lattice structure. The refinement for the type I structure gives lattice parameters of a = 11.8646 (39) Å

  15. A Study of Sulphate Minerals using a Novel X-Ray Diffraction Technique

    NASA Astrophysics Data System (ADS)

    Turner, S. M. R.; Hansford, G. M.; Bridges, J. C.; Ambrosi, R. M.; Vernon, D.

    2013-09-01

    Here we present an analysis of sulphate minerals from the Triassic coastline of the South West UK, utilising an Energy Dispersive X-Ray Diffraction (EDXRD) instrument in a novel back-reflection geometry which enables analysis of unprepared rock samples. Sulphate minerals are of particular interest in planetary science as they are a product of an aqueous altered environment. This study highlights the potential of a lightweight, compact instrument that could be deployed on the robotic arm of a Mars rover.

  16. High pressure synchrotron X-ray diffraction studies of biological molecules using the diamond anvil technique

    Microsoft Academic Search

    C. Czeslik; R. Malessa; R. Winter; G. Rapp

    1996-01-01

    A system for high pressure synchrotron X-ray diffraction studies of biological samples in a diamond anvil cell (DAC) is described. It is capable of operating in the whole temperature and pressure range of interest for studies of biological molecules, i.e., in the temperature range from ?40 to 100°C at pressures between 1 bar and 50 kbar. The pressure is calibrated

  17. Energy Dispersive X-ray Diffraction (Edxd) Investigation Of Amorphous Poly(phenylacetylene) (Ppa)

    Microsoft Academic Search

    Alessandro Isopo; Ruggero Caminiti; Rosaria DAmato; Anita Furlani; Maria V. Russo

    2003-01-01

    The application of wide-angle x-ray diffraction in energy-dispersive modality (EDXD) to the investigation of the static structure of amorphous poly(phenylacetylene) (PPA) is discussed. The structural investigation was carried out through the systematic comparison of the measured functions (the reduced interference function and the radial distribution function) and the same functions calculated from three-dimensional theoretical models, suitably optimized. Possible configurations and

  18. Apparatus for High-Pressure High-Temperature X-Ray Powder Diffraction Studies

    Microsoft Academic Search

    P. J. Freud; C. B. Sclar

    1969-01-01

    A high-pressure high-temperature x-ray powder diffraction apparatus has been developed based on a modification of the belt apparatus, which is an internally heated compressible gasket device. The unique feature of this device is that the die-support ring assembly is fabricated in two parts which mate along a plane normal to the piston axis. The split-die design permits entry of the

  19. High-resolution NMR and synchrotron x-ray powder diffraction study of zeolite ZSM-11

    Microsoft Academic Search

    B. H. Toby; M. M. Eddy; C. A. Fyfe; G. T. Kokotailo; H. Strobl; D. E. Cox

    1988-01-01

    High-resolution nuclear magnetic resonance (NMR) spectra and synchrotron x-ray powder diffraction data have been obtained from a well-crystallized highly dealuminated sample of the zeolite ZSM-11. The Rietveld profile technique has been applied to the synchrotron data to give the first detailed refinement of the idealized structure derived ten years ago by distance least-squares modeling methods (G. T. Kokotailo, P. Chu,

  20. Measurement and interpretation of strain by high-resolution X-ray diffraction

    Microsoft Academic Search

    D. J. Dunstan

    2002-01-01

    Partially relaxed strained layers and structures are characterised for composition and strain by high-resolution X-ray diffraction, using rocking curves or reciprocal space maps. Multivariate linear regression analysis provides both a guide to the best reflections to measure and also the optimum extraction of strain and composition values and the errors on them. Strains are often large enough to require non-linear

  1. Planar techniques for fabricating X-ray diffraction gratings and zone plates

    NASA Technical Reports Server (NTRS)

    Smith, H. I.; Anderson, E. H.; Hawryluk, A. M.; Schattenburg, M. L.

    1984-01-01

    The state of current planar techniques in the fabrication of Fresnel zone plates and diffraction gratings is reviewed. Among the fabrication techniques described are multilayer resist techniques; scanning electron beam lithography; and holographic lithography. Consideration is also given to: X-ray lithography; ion beam lithography; and electroplating. SEM photographs of the undercut profiles obtained in a type AZ 135OB photoresistor by holographic lithography are provided.

  2. X-ray-diffraction studies of the magnetic state of thulium

    Microsoft Academic Search

    Jakob Bohr; Doon Gibbs; Kegang Huang

    1990-01-01

    X-ray diffraction has been applied to investigate the magnetic structure of thulium. Magnetic scattering was observed at the magnetic modulation wave vector q, and charge scattering at 2q and 4q. A high-resolution study of the temperature dependence of the modulation at 2q showed two regimes: one incommensurate and the other commensurate. An analysis of the charge scattering at 2q shows

  3. PREFACE: XTOP 2004 -- 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging

    Microsoft Academic Search

    Vaclav Holý

    2005-01-01

    The 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging (XTOP 2004) was held in the Prague suburb of Pruhonice, Czech Republic, during 7-10 September 2004. It was organized by the Czech and Slovak Crystallographic Association in cooperation with the Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Masaryk University, Brno, and Charles University, Prague. XTOP

  4. Spin Density Wave Dislocation in Chromium Probed by Coherent X-ray Diffraction

    SciTech Connect

    Wilkins, S.B.; Jacques, V.L.R.; Le Bolloc’h, D.; Ravy, S.; Giles, C.; Livet, F.

    2009-08-19

    We report on the study of a magnetic dislocation in pure chromium. Coherent X-ray diffraction profiles obtained on the incommensurate Spin Density Wave (SDW) reflection are consistent with the presence of a dislocation of the magnetic order, embedded at a few micrometers from the surface of the sample. Beyond the specific case of magnetic dislocations in chromium, this work may open up a new method for the study of magnetic defects embedded in the bulk.

  5. Elastic properties of polycrystalline gold thin films: Simulation and X-ray diffraction experiments

    Microsoft Academic Search

    D. Faurie; O. Castelnau; P.-O. Renault; G. Patriarche; R. Brenner; E. Le Bourhis; Ph. Goudeau

    2006-01-01

    The elastic behavior of supported gold thin films has been studied using a framework in which the elastic interaction between grains and the actual structure of the film (i.e. preferential grain orientation and grain shape) are taken into account. Experiments were carried out using synchrotron X-ray diffraction combined with in-situ tensile testing and thereafter, no assumptions on the residual stress

  6. Tem and X-Ray Diffraction Evidence for Cristobalite and Tridymite Stacking Sequences in Opal

    Microsoft Academic Search

    Jessica M. Elzea; STEPHEN B. RICE

    1996-01-01

    In an attempt to resolve the structure of opal-CT and opal-C more precisely, 24 opal samples from bentonites, Fuller's Earths, zeolite tufts, biogenic silicas and silicified kaolins have been analyzed by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Results of this examination demonstrate that opal-C and opal-CT are part of a continuous series of intergrowths between end-member

  7. Rietveld Refinement on X-Ray Diffraction Patterns of Bioapatite in Human Fetal Bones

    PubMed Central

    Meneghini, Carlo; Dalconi, Maria Chiara; Nuzzo, Stefania; Mobilio, Settimio; Wenk, Rudy H.

    2003-01-01

    Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction (?-XRD) techniques. Rietveld refinement analyses of XRD and ?-XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age. PMID:12609904

  8. Analysis of X-ray diffraction patterns from mechanically alloyed Al-Ti powders

    Microsoft Academic Search

    Hye-Sung Kim; Dong-Soo Suhr; Gyeung-Ho Kim; Dong-Wha Kum

    1996-01-01

    X-ray diffraction (XRD) method is one of the most versatile tools to characterize various forms of materials. Simplicity and\\u000a wealth of information from the spectrum makes it attractive for the evaluation of mechanical alloyed powders. However, careful\\u000a interpretation of the solubility of minor phase is necessary due to the effect of particle size on the detection limit in\\u000a XRD method.

  9. High-pressure phases of plutonium monoselenide studied by X-ray diffraction

    Microsoft Academic Search

    M. Gensini; E. Gering; S. Heathman; U. Benedict; J. C. Spirlet

    1990-01-01

    Plutonium monoselenide was studied under high pressure up to 47 GPa, at room temperature, using a diamond anvil cell in an energy dispersive X-ray diffraction facility. At ambient pressure, PuSe has the NaC1-type (B1) structure. The compound has been found to undergo a second-order crystallographic phase transition at around 20 GPa. This phase can be described as a distorted B1

  10. X-ray diffraction study of ?-stabilized plutonium alloys under pressure

    Microsoft Academic Search

    Ph Faure; C. Genestier

    2010-01-01

    Previous extensive studies of the ????-phase transformation induced by temperature and\\/or by pressure in ?-stabilized plutonium alloys indicate strong dependence on parameters such as solute type, solute distribution, chemical impurities, kinetics, thermodynamic path….The present paper reports results obtained on two Pu–2.3at.%Ga binary alloys differing by solute homogenization treatment and studied under pressure by in situ by X-ray diffraction in diamond

  11. An X-Ray Diffraction Study on Early Structural Changes in Skeletal Muscle Contraction

    Microsoft Academic Search

    Naoto Yagi

    2003-01-01

    Structural changes in frog skeletal muscle were studied using x-ray diffraction with a time resolution of 0.53–1.02ms after a single electrical stimulus at 8°C. Tension began to drop at 6ms (latency relaxation), reached a minimum at 8ms, and then twitch tension developed. The intensity of the meridional reflection at 1\\/38.5nm?1, from troponin molecules on the thin filament, began to increase

  12. Structure of nanosized materials by high-energy x-ray diffraction : study of titanate nanotubes.

    SciTech Connect

    Gateshki, M.; Chen, Q.; Peng, L.-M.; Chupas, P.; Petkov, V.; Central Michigan Univ.; Peking Univ.

    2007-01-01

    High-energy X-ray diffraction and atomic Pair Distribution Function analysis are employed to determine the atomic-scale structure of titanate nanotubes. It is found that the nanotube walls are built of layers of Ti-O{sub 6} octahedra simular to those observed in crystalline layered titanates. In the nanotubes, however, the layers are bent and not stacked in perfect registry as in the crystal.

  13. X-ray diffraction studies of phase transformations in heavy-metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.; Doremus, R. H.

    1985-01-01

    Powder X-ray diffraction and differential scanning calorimetry studies of the crystallization properties of five ZrF4-based glass compositions have indicated that the crystalline phase in Zr-Ba-La-Pb fluoride glass is beta-BaZrF6; no such identification of crystal phases was obtainable, however, for the other glasses. Reversible polymorphic phase transformations occur in Zr-Ba-La-Li and Zr-Ba-La-Na fluoride glasses, upon heating to higher temperatures.

  14. Residual Stress State Characterization of Machined Components by X-ray Diffraction and Multiparameter Micromagnetic Methods

    Microsoft Academic Search

    J. Epp; T. Hirsch

    2010-01-01

    Machining induced residual stress states have been identified to affect the distortion of parts during following heat treatments.\\u000a Thus, ideally a complete characterization of the components residual stress state is required. Magnetic and micromagnetic\\u000a analysis of residual stresses can represent an important gain of time compared to X-ray diffraction. Investigations with these\\u000a two methods were performed on different components with

  15. X-Ray Diffraction and Raman Studies of RF Sputtered Polycrystalline Silicon Germanium Films

    Microsoft Academic Search

    C. C. Leoy; W. K. Choi; K. L. Wong; K. M. Wong; T. Osipowicz; J. Rong

    2002-01-01

    Polycrystalline silicon germanium (Si1-xGex) films were characterized using x-ray diffraction (XRD) and Raman spectroscopy techniques. The XRD results show that our films consist of Si1-xGex alloy with no cluster of Ge or a Ge rich material embedded in a Si matrix. Comparison of the XRD results of RTA and furnace annealed samples for the same annealing conditions reveal that the

  16. X-ray diffraction experiments on aged graphite fiber\\/polyimide composites with embedded aluminum inclusions

    Microsoft Academic Search

    B. Benedikt; M. Gentz; L. Kumosa; P. Rupnowski; J. K. Sutter; P. K. Predecki; M. Kumosa

    2004-01-01

    Unidirectional and woven graphite fiber (T650-35)\\/polyimide (PMR-15) composites with embedded aluminum inclusions were investigated for their aging behavior either in nitrogen or air at 315 °C for up to 1170 h. Residual strains and stresses in the inclusions were determined as a function of aging by performing X-ray diffraction (XRD) measurements. Subsequently, residual strains and stresses in the interlaminar regions

  17. Lattice Misfit Measurement in Inconel 625 by X-Ray Diffraction Technique

    Microsoft Academic Search

    P. Mukherjee; A. Sarkar; P. Barat; T. Jayakumar; S. Mahadevan; Sanjay K. Rai

    2006-01-01

    Determination of lattice misfit and microstructural parameters of the coherent precipitates in Ni based alloy Inconel-625 is a challenging problem as their peaks are completely overlapping among themselves and also with the matrix. We have used a novel X-ray diffraction technique on the bulk samples of Inconel 625 at different heat-treated conditions to determine the lattice parameters, the lattice misfit

  18. The Study of Attic Black Gloss Sherds using Synchrotron X-ray Diffraction

    Microsoft Academic Search

    C. C. Tang; E. J. MacLean; M. A. Roberts; D. T. Clarke; E. Pantos; A. J. N. W. Prag

    2001-01-01

    We have studied the mineral composition of the gloss and the ceramic body of three pieces of Attic Greek pottery by applying the technique of high-resolution powder diffraction using synchroton X-rays. The measurements were performed on Stations 2·3 and 9·1 at the Synchrotron Radiation Source, Daresbury Laboratory. High quality powder patterns from the bulk of the ceramics and from the

  19. Real-time Studies of Shocked Polycrystalline Materials with Single-Pulse X-ray Diffraction

    SciTech Connect

    Dane V. Morgan

    2011-05-25

    Characteristic K-? x-rays used for single-pulse XRD are conventionally produced by a 37-stage high-voltage Marx pulse generator coupled to a vacuum needle-and-washer x-ray diode via coaxial transmission line. A large field-of-view x-ray image plate detection system typically enables observation of several Debye-Scherrer rings. Recently, we have developed a fiber-optic reducer, coupled to a CCD camera, to obtain low-noise, large field-of-view images. The direct beam spot is produced by bremsstrahlung radiation attenuated by a twomillimeter tungsten beam stop. Determination of the direct beam position is necessary to perform the ring integration.

  20. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading.

    PubMed

    Lambert, P K; Hustedt, C J; Vecchio, K S; Huskins, E L; Casem, D T; Gruner, S M; Tate, M W; Philipp, H T; Woll, A R; Purohit, P; Weiss, J T; Kannan, V; Ramesh, K T; Kenesei, P; Okasinski, J S; Almer, J; Zhao, M; Ananiadis, A G; Hufnagel, T C

    2014-09-01

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ~10(3)-10(4) s(-1) in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10-20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (~40??s) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation. PMID:25273733

  1. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    SciTech Connect

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C. [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vecchio, K. S. [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States); Huskins, E. L. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Casem, D. T. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Gruner, S. M. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853 (United States); Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Woll, A. R. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kannan, V.; Ramesh, K. T. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kenesei, P.; Okasinski, J. S.; Almer, J. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ?10{sup 3}–10{sup 4} s{sup ?1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (?40??s) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  2. X-Ray Diffraction Analysis of NLO Crystals: Traditional Applications and More New Opportunities

    NASA Technical Reports Server (NTRS)

    Antipin, Mikhail Yu.; Clark, Ronald D.; Nesterov, Vladimir N.

    1998-01-01

    Single crystal X-ray diffraction analysis is one of the more important methods for the molecular and crystal structure determination of matter and therefore it has a great importance in material science including design and engineering of different compounds with non-linear optical (NLO) properties. It was shown in our previous publications that this method provides unique information about molecular structure of NLO compounds, their crystal symmetry and crystal packing arrays, molecular conformation and geometries and many other structural and electronic characteristics that are important for understanding the nature of NLO properties of solids. A very new application of the X-ray diffraction method is related to analysis of the electron density distribution p(r) in crystals and some of its characteristics (atomic and group charges, dipole and higher multipole moments, etc.), that may be obtained directly form the diffraction measurements. In the present work, we will discuss our preliminary low temperature high-resolution X-ray data for the m-nitroaniline (mNA) single crystal (VI). This is one of the "classical" organic NLO materials and electron density distribution analysis in this simple compound has a great scientific interest.

  3. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility

    SciTech Connect

    Gupta, Y. M.; Turneaure, Stefan J.; Perkins, K.; Zimmerman, K.; Arganbright, N. [Institute for Shock Physics and the Department of Physics, Washington State University, Pullman, Washington 99164-2816 (United States); Shen, G.; Chow, P. [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60437 (United States)

    2012-12-15

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization/x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  4. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility.

    PubMed

    Gupta, Y M; Turneaure, Stefan J; Perkins, K; Zimmerman, K; Arganbright, N; Shen, G; Chow, P

    2012-12-01

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization?x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS. PMID:23278003

  5. Magnetic symmetries in neutron and resonant x-ray Bragg diffraction patterns of four iridium oxides.

    PubMed

    Lovesey, S W; Khalyavin, D D; Manuel, P; Chapon, L C; Cao, G; Qi, T F

    2012-12-12

    The magnetic properties of Sr(2)IrO(4), Na(2)IrO(3), Sr(3)Ir(2)O(7) and CaIrO(3) are discussed, principally in the light of experimental data in recent literature for Bragg intensities measured in x-ray diffraction with enhancement at iridium L-absorption edges. The electronic structure factors we report, which incorporate parity-even and acentric entities, serve the immediate purpose of making full use of crystal and magnetic symmetry to refine our knowledge of the magnetic properties of the four iridates from resonant x-ray diffraction data. They also offer a platform on which to interpret future investigations, using dichroic signals, resonant x-ray diffraction and neutron diffraction, for example, as well as ab initio calculations of electronic structure. Unit-cell structure factors, suitable for x-ray Bragg diffraction enhanced by an electric dipole-electric dipole (E1-E1) event, reveal exactly which iridium multipoles are visible, e.g., a magnetic dipole parallel to the crystal c-axis (z-axis) and an electric quadrupole with yz-like symmetry in the specific case of CaIrO(3). Magnetic space-groups are assigned to Sr(2)IrO(4), Sr(3)Ir(2)O(7) and CaIrO(3), namely, P(I)cca, P(A)ban and Cm'cm', respectively, in the Belov-Neronova-Smirnova notation. The assignment for Sr(2)IrO(4) is possible because of our new high-resolution neutron diffraction data, gathered on a powder sample. In addition, the new data are used to show that the ordered magnetic moment of an Ir(4+) ion in Sr(2)IrO(4) does not exceed 0.29(4) ?(B). Na(2)IrO(3) has two candidate magnetic space-groups that are not resolved with currently available resonant x-ray data. PMID:23160311

  6. Grazing-incidence X-ray diffraction from a crystal with subsurface defects

    NASA Astrophysics Data System (ADS)

    Gaevskii, A. Yu.; Golentus, I. E.

    2015-03-01

    The diffraction of X rays incident on a crystal surface under grazing angles under conditions of total external reflection has been investigated. An approach is proposed in which exact solutions to the dynamic problem of grazing-incidence diffraction in an ideal crystal are used as initial functions to calculate the diffuse component of diffraction in a crystal with defects. The diffuse component of diffraction is calculated for a crystal with surface defects of a dilatation-center type. Exact formulas of the continuum theory which take into account the mirror-image forces are used for defect-induced atomic displacements. Scattering intensity maps near Bragg peaks are constructed for different scan modes, and the conditions for detecting primarily the diffuse component are determined. The results of dynamic calculations of grazing-incidence diffraction in defect-containing crystals are compared with calculations in the kinematic approximation.

  7. DynAMITe: a prototype large area CMOS APS for breast cancer diagnosis using x-ray diffraction measurements

    NASA Astrophysics Data System (ADS)

    Konstantinidis, A.; Anaxagoras, T.; Esposito, M.; Allinson, N.; Speller, R.

    2012-03-01

    X-ray diffraction studies are used to identify specific materials. Several laboratory-based x-ray diffraction studies were made for breast cancer diagnosis. Ideally a large area, low noise, linear and wide dynamic range digital x-ray detector is required to perform x-ray diffraction measurements. Recently, digital detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been used in x-ray diffraction studies. Two APS detectors, namely Vanilla and Large Area Sensor (LAS), were developed by the Multidimensional Integrated Intelligent Imaging (MI-3) consortium to cover a range of scientific applications including x-ray diffraction. The MI-3 Plus consortium developed a novel large area APS, named as Dynamically Adjustable Medical Imaging Technology (DynAMITe), to combine the key characteristics of Vanilla and LAS with a number of extra features. The active area (12.8 × 13.1 cm2) of DynaMITe offers the ability of angle dispersive x-ray diffraction (ADXRD). The current study demonstrates the feasibility of using DynaMITe for breast cancer diagnosis by identifying six breast-equivalent plastics. Further work will be done to optimize the system in order to perform ADXRD for identification of suspicious areas of breast tissue following a conventional mammogram taken with the same sensor.

  8. Low angle x-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes

    Microsoft Academic Search

    JOHN P. LANGMORE; JAMES R. PAULSON

    1983-01-01

    Diffraction of x-rays from living cells, isolated nuclei, and metaphase chromosomes gives rise to several major low angle reflections characteristic of a highly conserved pattern of nucleosome packing within the chromatin fibers. We answer three questions about the x-ray data: Which reflections are characteristic of chromosomes in vivo? How can these reflections be preserved in vitro? What chromosome structures give

  9. The use of X-ray diffraction for analyzing biomodification of crystalline cellulose by wood decay fungi

    Microsoft Academic Search

    Caitlin Howell; Anne Christine; Steenkjær Hastrup; Jody Jellison

    X-ray diffraction (XRD) is based on the creation of an interference pattern by x- rays when they encounter a regularly spaced matrix. In wood, this process has been used to determine among other things the average width of the cellulose microcrystals, the percent of crystalline cellulose within the wood, and can be used to examine the changes in these parameters

  10. X-ray tube-based diffraction enhanced imaging prototype images of full-thickness breast specimens: reader study evaluation

    Microsoft Academic Search

    L. S. Faulconer; C. Parham; D. J. Connor; M. Koomen; C. Kuzmiak; D. Pavic; C. A. Livasy; E. Kim; D. Zeng; E. B. Cole; Z. Zhong; E. D. Pisano

    2009-01-01

    Conventional mammographic image contrast is derived from x-ray absorption, resulting in breast structure visualization due to density gradients that attenuate radiation without distinction between transmitted and scattered or refracted x-rays. This leads to image blurring and contrast reduction, hindering the early detection of small or otherwise occult cancers. Diffraction enhanced imaging (DEI) allows for dramatically increased contrast with decreased radiation

  11. High-pressure x-ray diffraction and Raman spectroscopy of ice VIII Yukihiro Yoshimura,a

    E-print Network

    Stewart, Sarah T.

    of continuing interest. At least 15 different stable and meta- stable forms e.g., ice Ih,Ic­XII, lowHigh-pressure x-ray diffraction and Raman spectroscopy of ice VIII Yukihiro Yoshimura,a Sarah T dynamics of ice VIII. The x-ray measurements show that the pressure-volume relations remain smooth up to 23

  12. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50?ps (pulse length). PMID:25294979

  13. Commissioning of Angle Dispersive X-ray Diffraction Beamline on Indus-2

    SciTech Connect

    Sinha, A. K.; Sagdeo, Archna; Gupta, Pooja; Kumar, Ashok; Singh, M. N.; Gupta, R. K.; Kane, S. R.; Deb, S. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013 (India)

    2011-07-15

    An Angle dispersive x-ray diffraction (ADXRD) beamline on bending magnet source of Indus-2 synchrotron (2.5 GeV, 300 mA) has been commissioned, for the study of single and polycrystalline samples. The beamline optics is based on vertically focusing Pt-coated pre and post mirrors and sagittal focusing Si (311) based double crystal monochromator. Experimental station consists of a six circle diffractometer equipped with scintillation detector and an image plate area detector for powder diffraction. XRD experiments have been performed to study single crystal and polycrystalline samples.

  14. Diffractive imaging at large Fresnel number: Challenge of dynamic mesoscale imaging with hard x rays

    NASA Astrophysics Data System (ADS)

    Barber, John L.; Barnes, Cris W.; Sandberg, Richard L.; Sheffield, Richard L.

    2014-05-01

    Real materials have structure at both the atomic or crystalline scale as well as at interfaces and defects at the larger scale of grains. There is a need for the study of materials at the "mesoscale," the scale at which subgranular physical processes and intergranular organization couple to determine microstructure, crucially impacting constitutive response at the engineering macroscale. Diffractive imaging using photons that can penetrate multiple grains of material would be a transformative technique for the study of the performance of materials in dynamic extremes. Thicker samples imply higher energy photons of shorter wavelength, and imaging of multiple grains implies bigger spot sizes. Such imaging requires the use of future planned and proposed hard x-ray free electron lasers (such as the European XFEL) to provide both the spatial coherence transverse to the large spots and the peak brilliance to provide the short illumination times. The result is that the Fresnel number of the system becomes large and is no longer in the Fraunhofer far-field limit. The interrelated issues of diffractive imaging at large Fresnel number are analyzed, including proof that diffractive imaging is possible in this limit and estimates of the signal-to-noise possible. In addition, derivation of the heating rates for brilliant pulses of x rays are presented. The potential and limitations on multiple dynamic images are derived. This paper will present a study of x-ray interactions with materials in this new regime of spatially coherent but relatively large mesoscale spots at very hard energies. It should provide the theory and design background for the experiments and facilities required to control materials in extreme environments, in particular for the next generation of very-hard-x-ray free electron lasers.

  15. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    NASA Astrophysics Data System (ADS)

    Post, J. E.; Bish, D. L.; Heaney, P. J.

    2006-05-01

    Sepiolite is a hydrous Mg-silicate clay mineral with fibrous morphology that typically occurs as fine-grained, poorly crystalline masses. It occurs in a wide variety of geological environments and has been mined for centuries because of its many uses, e.g. in the pharmaceutical, fertilizer, and pesticide industries. Its versatile functionality derives from the large surface area and microporosity that are characteristic of the material. In recent years, sepiolite has received considerable attention with regard to the adsorption of organics, for use as a support for catalysts, as a molecular sieve, and as an inorganic membrane for ultrafiltration. Because of its fine-grained and poorly crystalline nature, it has not been possible to study sepiolite's crystal structure using single-crystal X-ray diffraction methods, and consequently many details of the structure are still not well known. In this study, Rietveld refinements using synchrotron powder X-ray diffraction data were used to investigate the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room- temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic water site. The RT structure under vacuum retained only ~1/8 of the zeolitic water and the volume decreased 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic water is lost by ~390 K, accompanied by a decrease in the a and c unit-cell parameters. Above ~600 K the sepiolite structure folds as one-half of the crystallographically bound water is lost. Rietveld refinements of the "anhydrous" sepiolite structure reveal that, in general, unit-cell parameters a, b, â and volume steadily decrease with increasing temperature; there is an obvious change in slope at ~820 K suggesting a phase transformation coinciding with the loss of the remaining bound water molecule. These temperature-resolved real-time powder X-ray diffraction studies provide the first comprehensive description of the sepiolite structure and the complex changes it undergoes as it dehydrates. Additional heating and cooling in situ powder X-ray diffraction experiments are underway in order to investigate the relative stabilities and rehydration behaviors of the partially-hydrated sepiolite phases. The results of these studies should provide a more robust model for predicting and modifying the properties and applications of this critical industrial material and environmentally important mineral.

  16. A SEARCH FOR IRON EMISSION LINES IN THE CHANDRA X-RAY SPECTRA OF NEUTRON STAR LOW-MASS X-RAY BINARIES

    E-print Network

    Cackett, E. M.

    While iron emission lines are well studied in black hole systems, both in X-ray binaries and active galactic nuclei, there has been less of a focus on these lines in neutron star low-mass X-ray binaries (LMXBs). However, ...

  17. In situ high-pressure single-crystal X-ray diffraction study of chromite

    NASA Astrophysics Data System (ADS)

    Kyono, A.; Dera, P. K.; Yamanaka, T.; Ikuta, D.; Shu, J.; Mao, H.; Hemley, R. J.

    2009-12-01

    The present study deals with crystal structure investigations of chromite FeCr2O4 using in-situ single crystal monochromatic X-ray diffraction technique. Spinel, which is common accessory mineral in the Earth’s crust and mantle over a wide range of pressure and temperature, forms a variety of polymorphs. The spinel to post-spinel structural transitions are highly important for understanding the Earth's deep interior (Yamanaka et al. Am. Min. 93, 1874. 2008). We have already reported the transformations of cubic chromite-spinel structure to orthorhombic CaFe2O4-type structure at 12.5 GPa and then to orthorhombic CaTi2O4-type structures using laser-heated diamond anvil cell experiments (Chen et al. PNAS, 100, 14651, 2003). Furthermore, we reported that the cubic chromite-spinel transforms to orthorhombic CaAl2O4-type structure at 29 GPa under ambient temperature (Shu et al. Mat. Res. Soc. Symp. Proc. 987, 179, 2007). In this study, we performed the high-pressure X-ray diffraction analysis in more detail using the two-dimensional imaging plate detector systems by which we can measure large volumes of reciprocal space in a quantitative and rapid way. A total of 28 X-ray diffraction measurements from 2.7 to 54.4 GPa were conducted using diamond anvil cell at BL13-IDD in the Advanced Photon Source at Argonne National Laboratory. The X-ray diffraction patterns recorded on the imaging plate can be indexed only as a cubic cell with face-centered lattice up to 23.9 GPa. The a unit cell parameter of chromite decreases linearly from 8.228(2) to 8.074(5) Å with increasing pressure, but it increases seemingly between 23.9 and 29.6 GPa. At higher pressure, many diffraction spots which are not considered to belong to cubic symmetry were observed. The diffraction spots can be indexed to a mixture of the cubic spinel and a phase whose reciprocal lattice is described by orthorhombic system. Moreover, the diffraction spots corresponding to the cubic cell completely disappear at 34.2 GPa. These results are entirely in agreement with previous high-pressure experiments on the chromite-spinel. We conclude that the pressure-induced phase transition in chromite starts from about 24 GPa and persists up to 34 GPa at 300 K.

  18. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    NASA Astrophysics Data System (ADS)

    Sun, Weiyuan; Liu, Zhiguo; Sun, Tianxi; Peng, Song; Ma, Yongzhong; Ding, Xunliang

    2014-05-01

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays.

  19. Thirty-Meter X-Ray Pencil Beam Line at the Institute of Space and Astronautical Science

    Microsoft Academic Search

    Hideyo Kunieda; Yoshiyuki Tsusaka; Hisanori Suzuki; Yasushi Ogasaka; Hisamitsu Awaki; Yuzuru Tawara; Koujun Yamashita; Takashi Yamazaki; Masayuki Itoh; Tsuneo Kii; Fumiyoshi Makino; Yoshiaki Ogawara; Hiroshi Tsunemi; Kiyoshi Hayashida; Susumu Nomoto; Mikio Wada; Emi Miyata; Isamu Hatsukade

    1993-01-01

    A 30-m-long X-ray beam line has been built at the Institute of Space and Astronautical Science (ISAS) to evaluate the performance of X-ray optical instruments for space programs, in particular for the X-ray telescope onboard the Astro-D (Asca) satellite. This beam line consists of an X-ray generator, a 30-m-long vacuum duct, and measuring chambers. Strong and stable X-ray pencil beams

  20. X-ray and neutron diffraction studies of strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Castellan, John-Paul Adrian

    This thesis is comprised of three original works presented in Chapters 4,5, and 6. The three projects are comprised of three different problems in condensed matter physics, the commonality between the topics is the technique used to study the materials, diffraction. Two of which are in the form of journal articles that have been peer-reviewed and published in Physical Review B, while the third is that of an unpublished work. The unpublished work is presented first and uses neutron scattering techniques, while two published papers were performed using x-ray diffraction. The neutron scattering experiments were performed by myself with the assistance of William J.L. Buyers and B.D. Gaulin. These experiments were performed at Chalk River Laboratories in northern Ontario. The x-ray scattering experiments were carried out on the rotating anode x-ray laboratory at McMaster University and the Advanced Photon Source in Argonne Il. All data analysis was performed by myself under the guidance of B.D. Gaulin.

  1. Stress measurements in the field on a natural gas pipeline via x-ray diffraction

    SciTech Connect

    Pineault, J.A.; Brauss, M.E. [Proto Manufacturing Ltd., Oldcastle, Ontario (Canada)

    1995-10-01

    X-ray diffraction techniques can be applied in the accurate characterization of residual and applied stresses. In this case study, x-ray techniques were used to measure the stresses present in a natural gas pipeline under both pressurized and depressurized conditions. The technique measures the absolute or real stress present in the system in both cases. Hence, stresses due to working pressures, fabrication, shot blasting or peening and those stresses due to the pipe bending under its own weight are all measured. Furthermore, stresses in the pipeline due to environmental effects such as earth movement and erosion are also measured. The accurate characterization of residual and applied stresses in natural gas pipelines is essential for a successful preventative maintenance program. The importance of detecting conditions where distortions exist and cracks can easily initiate and propagate, particularly those conditions that may ultimately lead to catastrophic failures, cannot be underestimated. For field measurements of both residual and applied stresses, there is no other nondestructive method known that is as accurate, versatile or practical than the x-ray diffraction method. This paper describes the experiments and the results of stress measurements performed on a natural gas pipeline.

  2. Mineral identification in Colombian coals using Mössbauer spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Fajardo, M.; Mojica, J.; Barraza, J.; Pérez Alcázar, G. A.; Tabares, J. A.

    1999-11-01

    Minerals were identified in three Colombian coal samples from the Southwest of the country using Mössbauer spectroscopy and X-ray diffraction. Original and sink separated coal fractions of specific gravity 1.40 and 1.60 with particle size less than 600 µm were used in the study. Using Mössbauer spectroscopy, the minerals identified in the original coal samples were pyrite jarosite, ankerite, illite and ferrous sulfate, whereas by means of X-ray diffraction, minerals identified were kaolinite, quartz, pyrite, and jarosite. Differences in mineral composition were found in the original and sink separated fractions using both techniques. Mössbauer spectra show that the mineral phases in low concentrations such as illite, ankerite and ferrous sulfate do not always appear in the spectra of sink coals, despite of those minerals occurring in the original coal, due to the fact that they are associated with the organic matter and not liberated in the grinding process. X-ray results show that the peak intensity grows as the specific gravity is increased indicating that the density separation method could be an effective process to clean coal.

  3. Data preparation and evaluation techniques for x-ray diffraction microscopy

    PubMed Central

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J; Jacobsen, Chris

    2011-01-01

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. We show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffraction patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality. PMID:20940752

  4. Imaging at the X-ray Frontier: Coherent Diffraction Imaging (CDI) for Nano and Bioscience

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei (John)

    2013-03-01

    For centuries, lens-based microscopy, such as light, phase-contrast, fluorescence, confocal and electron microscopy, has played an important role in the evolution of modern sciences and technologies. In 1999, a novel form of microscopy, i.e. coherent diffraction imaging (also termed coherent diffraction microscopy or lensless imaging) was developed and transformed our traditional view of microscopy, in which the diffraction pattern of a noncrystalline object or a nanocrystal is first measured and then directly phased to obtain a high resolution image. The well-known phase problem is solved by the oversampling method in combination with iterative algorithms whose principle can be traced back to the Shannon sampling theorem. In this talk, I will briefly discuss the principle of coherent diffraction imaging and illustrate its broad application in nano and bioscience by using synchrotron radiation, high harmonic generation and X-ray free electron lasers.

  5. Data preparation and evaluation techniques for x-ray diffraction microscopy

    DOE PAGESBeta

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. We show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffraction patterns. Wemore »have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.« less

  6. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals

    PubMed Central

    Kern, Jan; Alonso-Mori, Roberto; Hellmich, Julia; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Sellberg, Jonas; Lassalle-Kaiser, Benedikt; Gildea, Richard J.; Glatzel, Pieter; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; McQueen, Trevor A.; DiFiore, Dörte; Fry, Alan R.; Messerschmidt, Marc; Miahnahri, Alan; Schafer, Donald W.; Seibert, M. Marvin; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Messinger, Johannes; Sauter, Nicholas K.; Zouni, Athina; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.

    2012-01-01

    Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn4CaO5 cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O–O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the ”probe before destroy” approach using an X-ray free electron laser works even for the highly-sensitive Mn4CaO5 cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn4CaO5 cluster without any damage at room temperature, and of the reaction intermediates of PS II during O–O bond formation. PMID:22665786

  7. A diffractometer for grazing incidence x-ray diffraction study of Langmuir monolayers (abstract)

    NASA Astrophysics Data System (ADS)

    Matsushita, Tadashi; Iida, Atsuo; Takeshita, Kunikazu; Saito, Kazuhiro; Kuroda, Shin-ichi; Oyanagi, Hiroyuki; Sugi, Michio; Furukawa, Yukito

    1992-01-01

    We report the design and performance of a diffractometer which is used on the 53 pole wiggler beamline at the Photon Factory for grazing incidence x-ray diffraction study of monolayers spread on the surface of water. It is a simple two-circle (?-2?) diffractometer. A Langmuir trough is mounted on a vertical translation stage on the ? axis. A one-dimensional position sensitive detector is vertically mounted on the 2? arm with a 50-mm-high Soller collimator (0.1° resolution) in front of it. With this position sensitive detector, the intensity distribution along the Bragg rod is simultaneously recorded during the 2? scan. A saggitally focusing Si(111) double-crystal monochromator is used to monochromatize and horizontally focus the x-ray beam. X-ray beams are then reflected downward and vertically focused by a bent mirror. The grazing incidence angle of the x-ray beam to the surface of water is also controlled by adjusting this mirror. The instrumental angular resolution in the horizontal plane was measured to be 0.17°. With this diffractometer, we studied the structure of arachidic acid monolayers spread on surfaces of (i) pure water, (ii) 10-4 M Cd2+ solution, and (iii) 10-4 M cyanine dye solution. By analyzing the x-ray intensity distribution along the Bragg rod using a simple model proposed by Kjaer et al. [K. Kjaer, J. Als-Nielsen, C. A. Helm, P. Tippman-Krayer, and H. Möhwald, J. Phys. Chem. 93, 3200 (1989)] we obtained the following conclusions. In the case on pure water, molecules tilt toward the nearest neighbors at low surface pressures and stand upright at higher pressures. In the presence of Cd2+, molecules stand upright even at a very low pressure. In the presence of cyanine dye in the water, molecules tilt toward the next nearest neighbors at low pressures and stand upright at higher pressures.

  8. X-ray absorption in active galaxies - Constraints on the broad-line emitting regions

    NASA Technical Reports Server (NTRS)

    Reichert, G. A.; Mushotzky, R. F.; Holt, S. S.

    1986-01-01

    X-ray observations of intrinsic absorption in active galactic nuclei (AGN) provide direct information concerning the amount and physical properties of cool (unionized) material along the line of sight. The X-ray absorption is assumed to occur in the broad-line emitting gas, so that the X-ray data can be used to probe the conditions in the broad-line regions of AGN. The results of Einstein Observatory solid state spectrometer observations are used to derive detailed physical constraints concerning the geometry of the broad-line region. Physical implications of these constraints are also discussed.

  9. Time-, frequency-, and wavevector-resolved x-ray diffraction from single molecules

    PubMed Central

    Bennett, Kochise; Biggs, Jason D.; Zhang, Yu; Dorfman, Konstantin E.; Mukamel, Shaul

    2014-01-01

    Using a quantum electrodynamic framework, we calculate the off-resonant scattering of a broadband X-ray pulse from a sample initially prepared in an arbitrary superposition of electronic states. The signal consists of single-particle (incoherent) and two-particle (coherent) contributions that carry different particle form factors that involve different material transitions. Single-molecule experiments involving incoherent scattering are more influenced by inelastic processes compared to bulk measurements. The conditions under which the technique directly measures charge densities (and can be considered as diffraction) as opposed to correlation functions of the charge-density are specified. The results are illustrated with time- and wavevector-resolved signals from a single amino acid molecule (cysteine) following an impulsive excitation by a stimulated X-ray Raman process resonant with the sulfur K-edge. Our theory and simulations can guide future experimental studies on the structures of nano-particles and proteins. PMID:24880284

  10. Pathway of a damaging mechanism - Analyzing chloride attack by synchrotron based X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Schlegel, M. C.; Stroh, J.; Malaga, K.; Meng, B.; Panne, U.; Emmerling, F.

    2015-06-01

    Typically, the changes of the phase compositions due to the chemical attack are studied in-situ only by chemical analysis or microscopy. In this study, the chloride transport and binding in the cement matrix in different cementitious materials was analyzed by synchrotron based X-ray diffraction (SyXRD) and energy dispersive X-ray spectroscopy (EDX). Sample materials consisting of cement paste were embedded in high concentrated sodium chloride solution over different time spans. Afterwards, the phase and chemical compositions were determined. The high spatial resolution and the information about the chloride distribution offer a detailed view of chloride binding in the cement matrix and allow the conclusions about the degradation mechanisms. The results are discussed related to the influence of different supplementary cementitious materials on the damaging mechanism.

  11. Application of Si-strip technology to X-ray diffraction instrumentation

    NASA Astrophysics Data System (ADS)

    Gerndt, E.; D?browski, W.; Brügemann, L.; Fink, J.; ?wientek, K.; Wi?cek, P.

    2010-12-01

    We describe the successful technology transfer of High Energy Physics (HEP) silicon-strip detectors for tracking of minimum ionising particles (MIPS) to industrial X-ray diffraction instruments. In our application the detector is used to measure 1-D intensity profiles of low-energy photons. The challenges of such an application are low noise because of the relatively low energy of X-ray photons, from 5 to 22 keV, and high count rate capability. The technical implementation, with a focus on custom designed front-end electronics and optimisation of strip geometry taking into account the charge division effects, is shown and the achieved performance is summarized. The detector was launched several years ago and we report on the in-field experience. Lastly, we describe several scientific applications.

  12. Mesoscale X-ray diffraction measurement of stress relaxation associated with buckling in compressed thin films

    SciTech Connect

    Goudeau, Philippe; Villain, Pascale; Tamura, Nobumichi; Padmore, Howard A.

    2003-07-01

    Compressed thin films deposited on substrates may buckle depending on the geometrical and mechanical properties of the film/substrate set. Until recently, the small dimensions of the buckling have prevented measurements of their local in plane internal stress distribution. Using a Scanning X-ray Micro diffraction (mSXRD) technique developed at a 3rd generation x-ray synchrotron source, we obtained thin film internal stress maps for circular blisters and telephone chord buckling with micrometric spatial resolution. A fair agreement was found between the film delamination topology observed by optical microscopy and the measured stress maps. We evidenced residual stress relaxation associated with the film buckling: the top is essentially stress-free while adherent region exhibits large compressive stresses.

  13. Pseudomonoenergetic x-ray diffraction measurements using balanced filters for coherent-scatter computed tomography

    SciTech Connect

    Beath, S. R.; Cunningham, I. A. [Department of Medical Biophysics, Robarts Research Institute, and Lawson Health Research Institute, University of Western Ontario, 100 Perth Drive, London, Ontario N6A 5K8 (Canada)

    2009-05-15

    Coherent-scatter computed tomography (CSCT) is a method of ''composition'' imaging based on measurements of diffraction patterns from tissues. Use of an x-ray tube degrades scatter pattern angular resolution due to the x-ray spectral width, making it difficult to uniquely identify some materials. The use of two transmission filters with similar atomic numbers (balanced ''Ross filters'') to generate pseudomonoenergetic scatter patterns is described as it applies to CSCT. An analysis of angular-blur mechanisms reveals that focal spot size and beam width are the most important factors determining Bragg-peak width when Er-Tm filters are used. A relative RMS spectral width of 1% can be achieved in the difference spectrum and a Bragg-peak RMS angular width of approximately 0.14 deg. (relative width of 3% at 5 deg. scatter angle) can be achieved with an effective energy of 58 keV.

  14. Non-destructive thickness characterization of Si based heterostructure by X-ray diffraction and reflectivity

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Chao; Myronov, M.; Dobbie, A.; Nguyen, Van H.; Leadley, D. R.

    2011-06-01

    High-resolution X-ray diffraction rocking curve (RC) and X-ray reflectivity (XRR) were used to characterize the Si based heterostructures grown by reduced pressure chemical vapour deposition. The investigation focused on the reliability and accuracy of thickness measurement by the different techniques. For smooth Si epilayers grown on a thin (20 nm) strained Si 0.9Ge 0.1 buffer, it is found that both XRR and RC produce reliable values that agree well with transmission electron microscope (TEM) results over a wide range. The best-fit thickness from both XRR and RC is within ±5% of the TEM measurement, with XRR producing more accurate values than RC. However, the agreement is not good for Si epilayer grown on a thick (2 ?m) relaxed Si 07Ge 0.3 virtual substrate due to the presence of rough surface.

  15. A Mössbauer and X-ray powder diffraction study of some ferrous hematinics.

    PubMed

    Coe, E M; Bowen, L H; Bereman, R D

    1995-06-01

    Iron deficiency anemia is a relatively common illness that can arise from a number of different causes. Three ferrous salts are usually used in its treatment: ferrous fumarate, gluconate, and sulfate. They are administered orally and are relatively well tolerated. These hematinics have been studied by Mössbauer spectroscopy and X-ray powder diffraction, and can easily be distinguished by both techniques. It was found that the two ferrous sulfates studied (Eckerd and SmithKline Beckman Co.) most closely resemble the monohydrate by comparison of the X-ray powder pattern with those of the JCPDS. Both the ferrous fumarate (Femiron) and gluconate (Spring Valley) had approximately 10% ferric iron present. To the authors' knowledge, this is the first reported Mössbauer spectrum for ferrous fumarate. PMID:7500090

  16. A novel wafer-scale CMOS APS X-ray detector for breast cancer diagnosis using X-ray diffraction studies

    NASA Astrophysics Data System (ADS)

    Konstantinidis, A.; Zheng, Y.; Philip, D.; Vinnicombe, S.; Speller, R.

    2012-12-01

    The current study uses a novel large area (12.8 cm × 13.1 cm) complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector, named Dynamic range Adjustable for Medical Imaging Technology (DynAMITe), for breast cancer diagnosis. The detector consists of two geometrically superimposed grids: a) 2560 × 2624 fine-pitch grid of pixels (50 ?m pitch), named Sub-Pixels (SP camera), for low intrinsic noise and high spatial resolution and b) 1280 × 1312 large-pitch grid of pixels (100 ?m pitch), named Pixels (P camera), for high dynamic range. X-ray performance characterization measurements show that the detective quantum efficiency (DQE) of the SP camera is in the range 0.7-0.75 at low spatial frequencies using a tungsten (W) anode X-ray source at 28 kV. Hence, the detector is suitable for mammography. Furthermore, we used the SP camera to combine mammograms with angle dispersive X-ray diffraction (ADXRD) measurements in order to apply the X-ray biopsy concept in one examination. The results show that ADXRD technique indicates the presence of cancer in suspicious areas on the mammogram. Hence, it could be used to determine the region affected by cancer and assist in planning surgery. This study is the proof of concept that mammography and ADXRD can be combined in one examination.

  17. Line-source based X-ray Tomography Deepak Bharkhada1,2

    E-print Network

    Plemmons, Robert J.

    reconstruction technique (SART) algorithm for image reconstruction from projection data generated by an x-rayLine-source based X-ray Tomography Deepak Bharkhada1,2 , Hengyong Yu4 , Hong Liu3 , Robert Plemmons5 , Ge Wang1,2,4 1. Biomedical Imaging Division, VT-WFU School of Biomedical Engineering & Science

  18. Velocity gradient induced line splitting in x-ray emission accompanying plasmawall interaction

    E-print Network

    Liska, Richard

    gradients a b s t r a c t High-resolution x-ray spectroscopy was applied to study the ion back-scattering-produced plasmas X-ray spectroscopy Plasma­wall interaction Spectral line profiles Doppler shift Ion velocity. The radial expansion of ions back-scattered in the near-wall region was directly observed via the Doppler

  19. Theory of radial X-ray Diffraction from a Polycrystalline Sample Undergoing Plastic Deformation

    SciTech Connect

    S Karato

    2011-12-31

    Theory of lattice strain in a polycrystalline aggregate under deviatoric stress is extended to include the influence of ongoing plastic deformation. When deviatoric stress is applied to a polycrystalline material at high temperatures (or above the yield stress), applied macroscopic stress is redistributed to individual grains by plastic deformation according to their orientations with respect to the macroscopic stress and plastic anisotropy of a given crystal. This microstress causes elastic deformation of individual grains that can be measured by x-ray diffraction. Consequently, the observed lattice strain depends on two material properties, viscosity (plasticity) and elastic compliance as well as the applied macroscopic stress and the stress-strain distribution among various grains. The influence of plastic deformation on lattice strain is analyzed using an anisotropic and nonlinear power-law constitutive relationship. In this model, the dependence of inferred macroscopic stress on the crystallographic orientation of diffraction plane (hkl) comes from elastic and plastic anisotropy of a crystal. In many materials, plastic anisotropy dominates over elastic anisotropy. This explains the observed large dependence of inferred stress on the diffraction plane and means that the determination of elastic anisotropy is difficult when plastic deformation occurs with anisotropic plasticity. When elastic anisotropy is known, plastic anisotropy of single crystal and/or stress-strain distribution in a deformed polycrystal can be determined from radial x-ray diffraction using the present model. Some examples are presented using the data on MgO.

  20. KOTOBUKI-1 apparatus for cryogenic coherent X-ray diffraction imaging

    SciTech Connect

    Nakasako, Masayoshi; Takayama, Yuki; Oroguchi, Tomotaka; Sekiguchi, Yuki; Kobayashi, Amane [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan) [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Shirahama, Keiya [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)] [Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Yamamoto, Masaki; Hikima, Takaaki; Yonekura, Koji; Maki-Yonekura, Saori; Kohmura, Yoshiki; Inubushi, Yuichi [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)] [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Takahashi, Yukio; Suzuki, Akihiro [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan) [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Matsunaga, Sachihiro; Inui, Yayoi [Department of Applied Biological Science Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)] [Department of Applied Biological Science Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Tono, Kensuke; Kameshima, Takashi; Joti, Yasumasa [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)] [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Hoshi, Takahiko [Kohzu Precision Co., Ltd., 2-6-15 Kurigi, Aso-ku, Kawasaki, Kanagawa 215-8521 (Japan)] [Kohzu Precision Co., Ltd., 2-6-15 Kurigi, Aso-ku, Kawasaki, Kanagawa 215-8521 (Japan)

    2013-09-15

    We have developed an experimental apparatus named KOTOBUKI-1 for use in coherent X-ray diffraction imaging experiments of frozen-hydrated non-crystalline particles at cryogenic temperature. For cryogenic specimen stage with small positional fluctuation for a long exposure time of more than several minutes, we here use a cryogenic pot cooled by the evaporation cooling effect for liquid nitrogen. In addition, a loading device is developed to bring specimens stored in liquid nitrogen to the specimen stage in vacuum. The apparatus allows diffraction data collection for frozen-hydrated specimens at 66 K with a positional fluctuation of less than 0.4 ?m and provides an experimental environment to easily exchange specimens from liquid nitrogen storage to the specimen stage. The apparatus was developed and utilized in diffraction data collection of non-crystalline particles with dimensions of ?m from material and biological sciences, such as metal colloid particles and chloroplast, at BL29XU of SPring-8. Recently, it has been applied for single-shot diffraction data collection of non-crystalline particles with dimensions of sub-?m using X-ray free electron laser at BL3 of SACLA.

  1. X-ray diffraction study of short-period AlN/GaN superlattices

    SciTech Connect

    Kyutt, R. N., E-mail: r.kyutt@mail.ioffe.ru; Shcheglov, M. P.; Ratnikov, V. V.; Yagovkina, M. A.; Davydov, V. Yu.; Smirnov, A. N.; Rozhavskaya, M. M.; Zavarin, E. E.; Lundin, V. V. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)

    2013-12-15

    The structure of short-period hexagonal GaN/AlN superlattices (SLs) has been investigated by X-ray diffraction. The samples have been grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal reactor at a temperature of 1050°C on (0001)Al{sub 2}O{sub 3} substrates using GaN and AlN buffer layers. The SL period changes from 2 to 6 nm, and the thickness of the structure varies in a range from 0.3 to 1 ?m. The complex of X-ray diffraction techniques includes a measurement of ?-2? rocking curves of symmetric Bragg reflection, the construction of intensity maps for asymmetric reflections, a measurement and analysis of peak broadenings in different diffraction geometries, a precise measurement of lattice parameters, and the determination of radii of curvature. The thickness and strain of separate SL layers are determined by measuring the ?-2? rocking curves subsequent simulation. It is shown that most SL samples are completely relaxed as a whole. At the same time, relaxation is absent between sublayers, which is why strains in the AlN and GaN sublayers (on the order of 1.2 × 10{sup ?2}) have different signs. An analysis of diffraction peak half-widths allows us to determine the densities of individual sets of dislocations and observe their change from buffer layers to SLs.

  2. KOTOBUKI-1 apparatus for cryogenic coherent X-ray diffraction imaging.

    PubMed

    Nakasako, Masayoshi; Takayama, Yuki; Oroguchi, Tomotaka; Sekiguchi, Yuki; Kobayashi, Amane; Shirahama, Keiya; Yamamoto, Masaki; Hikima, Takaaki; Yonekura, Koji; Maki-Yonekura, Saori; Kohmura, Yoshiki; Inubushi, Yuichi; Takahashi, Yukio; Suzuki, Akihiro; Matsunaga, Sachihiro; Inui, Yayoi; Tono, Kensuke; Kameshima, Takashi; Joti, Yasumasa; Hoshi, Takahiko

    2013-09-01

    We have developed an experimental apparatus named KOTOBUKI-1 for use in coherent X-ray diffraction imaging experiments of frozen-hydrated non-crystalline particles at cryogenic temperature. For cryogenic specimen stage with small positional fluctuation for a long exposure time of more than several minutes, we here use a cryogenic pot cooled by the evaporation cooling effect for liquid nitrogen. In addition, a loading device is developed to bring specimens stored in liquid nitrogen to the specimen stage in vacuum. The apparatus allows diffraction data collection for frozen-hydrated specimens at 66 K with a positional fluctuation of less than 0.4 ?m and provides an experimental environment to easily exchange specimens from liquid nitrogen storage to the specimen stage. The apparatus was developed and utilized in diffraction data collection of non-crystalline particles with dimensions of ?m from material and biological sciences, such as metal colloid particles and chloroplast, at BL29XU of SPring-8. Recently, it has been applied for single-shot diffraction data collection of non-crystalline particles with dimensions of sub-?m using X-ray free electron laser at BL3 of SACLA. PMID:24089834

  3. KOTOBUKI-1 apparatus for cryogenic coherent X-ray diffraction imaging

    NASA Astrophysics Data System (ADS)

    Nakasako, Masayoshi; Takayama, Yuki; Oroguchi, Tomotaka; Sekiguchi, Yuki; Kobayashi, Amane; Shirahama, Keiya; Yamamoto, Masaki; Hikima, Takaaki; Yonekura, Koji; Maki-Yonekura, Saori; Kohmura, Yoshiki; Inubushi, Yuichi; Takahashi, Yukio; Suzuki, Akihiro; Matsunaga, Sachihiro; Inui, Yayoi; Tono, Kensuke; Kameshima, Takashi; Joti, Yasumasa; Hoshi, Takahiko

    2013-09-01

    We have developed an experimental apparatus named KOTOBUKI-1 for use in coherent X-ray diffraction imaging experiments of frozen-hydrated non-crystalline particles at cryogenic temperature. For cryogenic specimen stage with small positional fluctuation for a long exposure time of more than several minutes, we here use a cryogenic pot cooled by the evaporation cooling effect for liquid nitrogen. In addition, a loading device is developed to bring specimens stored in liquid nitrogen to the specimen stage in vacuum. The apparatus allows diffraction data collection for frozen-hydrated specimens at 66 K with a positional fluctuation of less than 0.4 ?m and provides an experimental environment to easily exchange specimens from liquid nitrogen storage to the specimen stage. The apparatus was developed and utilized in diffraction data collection of non-crystalline particles with dimensions of ?m from material and biological sciences, such as metal colloid particles and chloroplast, at BL29XU of SPring-8. Recently, it has been applied for single-shot diffraction data collection of non-crystalline particles with dimensions of sub-?m using X-ray free electron laser at BL3 of SACLA.

  4. Diffraction-Based Techniques For High Contrast X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Peerzada, Lubna Naseem

    Two X-ray diffraction based techniques for high contrast were explored to improve contrast in radiology: diffraction enhanced imaging (DEI) and coherent scatter imaging. DEI produces contrast in images based upon the difference in the X-ray refractive indices of materials or tissues. Two DEI systems were devised. Both were comprised of a conventional polychromatic copper X-ray source, polycapillary collimating optics and two silicon crystals.Lucite step phantoms and nylon tubing were imaged. No fringe effects were observed. The lack of observable edge enhancement may have been due to the optic structure which obscured refraction effects. Better results might have been achieved if a higher resolution detector or phantom of larger step size or larger diameter thin walled tubing had been used. The second technique was coherent scatter X-ray imaging. The purpose of this work was to differentiate between healthy and diseased human breast tissues. For instance, breast carcinoma is known to have a peak coherent scattering angle at 12.2° for Mo Ka radiation at 17.5 keV, whereas fatty tissue peaks around 9°. A system which would be compatible with screening mammography was developed. The system was expanded to include sample scanning to allow for a larger image area. The modulation transfer function was computed for static and scanned images of a resolution phantom. These showed good agreement, indicating that the scanning was properly aligned and timed. Static and scanned images of phantoms were taken and the contrast was calculated for a series of experimental parameters including, grid tilt angle. A complex phantom was also then imaged. It was possible to distinguish tissue-equivalent phantom types. Good contrast resolution scanned images were obtained which is promising for a diagnostic system.

  5. Quantification of mineral matter in the Argonne Premium Coals using interactive Rietveld-based X-ray diffraction

    Microsoft Academic Search

    Colin R. Ward; John C. Taylor; C. E. Matulis; L. S. Dale

    2001-01-01

    The mineral matter in the eight reference North American coal samples of the Argonne Premium Coal series has been investigated on a quantitative basis using X-ray diffraction (XRD) techniques. X-ray diffraction data obtained from electronic low-temperature (oxygen–plasma) ash (LTA) residues, from ashes produced by heating the coals in air at 370°C, and also from the raw coals themselves, were evaluated

  6. A method for sizing sub-micron particles using small angle diffraction of soft x-rays

    Microsoft Academic Search

    D. J. Berkeland; J. H. Underwood; R. C. C. Perera

    1988-01-01

    The purpose of this work is to develop a method of sizing sub-micron particles using small-angle soft x-ray diffraction. Solid poly-styrene spheres of known sizes were used as scattering samples, with C-K..cap alpha.. (44.8\\/angstrom\\/) and V-L..cap alpha.. (24.3\\/angstrom\\/) radiation from a conventional x-ray source. Two devices were used to diffract the x-rays. One collimates the radiation using a series of

  7. Fixture for supporting and aligning a sample to be analyzed in an x-ray diffraction apparatus

    DOEpatents

    Green, L.A.; Heck, J.L. Jr.

    1985-04-23

    A fixture is provided for supporting and aligning small samples of material on a goniometer for x-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the x-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an x-ray diffraction apparatus previously limited to the analysis of much larger samples.

  8. X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.

    2011-12-01

    The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2? = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I., Baliva, A., Stevoli, A., Ambrosi, R., Critani, F., Delhez, R., Scandelli, L., Holland, A., Nelms, N. & the Mars-XRD Team, Proceedings of the 38th Lunar and Planetary Science Conference, 12 - 16 March 2007, League City, Texas, USA. [2] L. Marinangeli, I. B. Hutchinson, A. Stevoli, G. Adami, R. Ambrosi, R. Amils, V. Assis Fernandes, A. Baliva, A. T. Basilevsky, G. Benedix, P. Bland, A. J. Böttger, J. Bridges, G. Caprarelli, G. Cressey, F. Critani, N. d'Alessandro, R. Delhez, C. Domeneghetti, D. Fernandez-Remolar, R. Filippone, A. M. Fioretti, J. M. Garcia Ruiz, M. Gilmore, G. M. Hansford, G. Iezzi, R. Ingley, M. Ivanov, G. Marseguerra, L. Moroz, C. Pelliciari, P. Petrinca, E. Piluso, L. Pompilio, J. Sykes, F. Westall and the MARS-XRD Team, EPSC-DPS Joint Meeting 2011, 3 - 7 October 2011, La Cité Internationale des Congrès Nantes Métropole, Nantes, France.

  9. Performance characteristics needed for protein crystal diffraction x-ray detectors.

    SciTech Connect

    Westbrook, E. M.

    1999-09-21

    During the 1990's, macromolecular crystallography became progressively more dependent on synchrotrons X-ray sources for diffraction data collection. Detectors of this diffraction data at synchrotrons beamlines have evolved over the decade, from film to image phosphor plates, and then to CCD systems. These changes have been driven by the data quality and quantity improvements each newer detector technology provided. The improvements have been significant. It is likely that newer detector technologies will be adopted at synchrotron beamlines for crystallographic diffraction data collection in the future, but these technologies will have to compete with existing CCD detector systems which are already excellent and are getting incrementally better in terms of size, speed, efficiency, and resolving power. Detector development for this application at synchrotrons must concentrate on making systems which are bigger and faster than CCDs and which can capture weak data more efficiently. And there is a need for excellent detectors which are less expensive than CCD systems.

  10. The Discovery of Soft X-ray Loud Broad Absorption Line Quasars

    E-print Network

    Kajal K. Ghosh; Brian Punsly

    2008-01-08

    It is been known for more than a decade that BALQSOs (broad absorption line quasars) are highly attenuated in the X-ray regime compared to other quasars, especially in the soft band ($density ratios that are higher than typical nonBAL radio quiet quasars. Our sample of 3 sources includes one LoBALQSO (low ionization BALQSO) which are generally considered to be the most highly attenuated in the X-rays. The three QSOs are the only known BALQSOs that have X-ray observations that are consistent with no intrinsic soft X-ray absorption. The existence of a large X-ray luminosity and the hard ionizing continuum that it presents to potential UV absorption gas is in conflict with the ionization states that are conducive to line driving forces within BAL winds (especially for the LoBALs).

  11. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D x-ray diffraction.

    SciTech Connect

    Jakobsen, B.; Poulsen, H. F.; Lienert, U.; Bernier, J.; Gundlach, C.; Pantleon, W.; Riso National Lab.; Roskilde Univ.; LLNL; European Synchrotron Research Facility

    2008-01-01

    300 {micro}m thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain is characterized in-situ by the behavior of individual subgrains. The loading sequence consists of three continuous deformation stages with strain rates of 1.1 x 10{sup -6} s{sup -1} and 3 x 10{sup -2} s{sup -1}, in each case followed by a period of extended stress relaxation at fixed motor positions, as well as an unloading step. In contrast to the deformation stages, during each stress relaxation stage, number, size and orientation of subgrains are found to be constant, while a minor amount of clean-up of the microstructure is observed as narrowing of the radial X-ray diffraction line profile. The associated decrease in the width of the strain distribution indicates homogenization of the elastic strains present in the deformation structure. During reloading, the subgrain structure seemingly starts to develop further when the entire dislocation structure is deforming plastically. Upon unloading of the sample, the average backward strain of the subgrains increases.

  12. Sample preparation of x-ray diffraction analysis and clay mineralogy of Devonian shale from the Appalachian basin

    SciTech Connect

    Hosterman, J.W.; Loferski, P.J.

    1981-03-01

    Three well-known methods of preparing the clay fraction for x-ray diffraction analysis were tested and evaluated. Kaolinite was not identified in samples prepared by the two settling methods because of layering due to differing/settling rates of the clay minerals. It is suggested that if one of the two settling methods of sample preparation is used that the clay film should be thin enough for the x-ray beam to penetrate the entire thickness of clay. The vacuum method of sample preparation is preferred. Chlorite, kaolinite, 2M illite (muscovite), and mixed layer are the clay minerals found by x-ray diffraction analysis in Devonian shale of the Appalachian basin. The proportions of mixed-layer clay minerals were determined by comparing areas of selected basal peaks on x-ray diffraction traces of untreated samples with those of samples that had been heated and saturated by ethylene glycol.

  13. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    SciTech Connect

    Nam, Daewoong [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan) [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Park, Jaehyun; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan)] [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Gallagher-Jones, Marcus [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan) [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom)

    2013-11-15

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10{sup ?2} Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  14. Laboratory manual: mineral X-ray diffraction data retrieval/plot computer program

    USGS Publications Warehouse

    Hauff, Phoebe L.; VanTrump, George

    1976-01-01

    The Mineral X-Ray Diffraction Data Retrieval/Plot Computer Program--XRDPLT (VanTrump and Hauff, 1976a) is used to retrieve and plot mineral X-ray diffraction data. The program operates on a file of mineral powder diffraction data (VanTrump and Hauff, 1976b) which contains two-theta or 'd' values, and intensities, chemical formula, mineral name, identification number, and mineral group code. XRDPLT is a machine-independent Fortran program which operates in time-sharing mode on a DEC System i0 computer and the Gerber plotter (Evenden, 1974). The program prompts the user to respond from a time-sharing terminal in a conversational format with the required input information. The program offers two major options: retrieval only; retrieval and plot. The first option retrieves mineral names, formulas, and groups from the file by identification number, by the mineral group code (a classification by chemistry or structure), or by searches based on the formula components. For example, it enables the user to search for minerals by major groups (i.e., feldspars, micas, amphiboles, oxides, phosphates, carbonates) by elemental composition (i.e., Fe, Cu, AI, Zn), or by a combination of these (i.e., all copper-bearing arsenates). The second option retrieves as the first, but also plots the retrieved 2-theta and intensity values as diagrammatic X-ray powder patterns on mylar sheets or overlays. These plots can be made using scale combinations compatible with chart recorder diffractograms and 114.59 mm powder camera films. The overlays are then used to separate or sieve out unrelated minerals until unknowns are matched and identified.

  15. Effect of grain size on stability of X-ray diffraction patterns used for threat detection

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Rebuffel, V.; Tabary, J.; Paulus, C.; Verger, L.; Duvauchelle, Ph.

    2012-08-01

    Energy Dispersive X-ray Diffraction (EDXRD) is well-suited to detecting narcotics and a wide range of explosives. The integrated intensity of an X-ray diffraction peak is proportional to the number of grains in the inspected object which are oriented such that they satisfy Bragg's condition. Several parameters have a significant influence on this number. Among them, we can list grain size and the fill rate for polycrystalline materials that both may significantly vary for a same material according to its way of production. Consequently, peak intensity may change significantly from one measurement to another one, thus increasing the risk of losing peaks. This instability is one of the many causes of false alarms. To help avoid these, we have developed a model to quantify the stability of the diffraction patterns measured. Two methods (extension of the detector in a direction perpendicular to the diffractometer plane and slow rotation of both source and detector) can be used to decrease the coefficient of variation, leading to a more stable spectral measurement.

  16. An active pixel sensor x-ray diffraction (APXRD) system for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Bohndiek, Sarah E.; Royle, Gary J.; Speller, Robert D.

    2009-06-01

    This paper describes the potential application of an active pixel sensor-based x-ray diffraction (APXRD) system in the field of breast cancer diagnosis. The design and initial testing of the system was reported previously (Bohndiek et al 2008b Phys. Med. Biol. 53 655-72). The system has potential both as a 'diffraction enhanced breast imager' (DEBI) and as a probe for quantitative analysis of breast biopsy samples. The resolution of the system in a DEBI arrangement is 1 mm and the contrast available using a material-specific x-ray diffraction image was found to be up to seven times greater than that of a transmission image. Scatter signatures from a series of biopsy-equivalent samples, ranging in composition from 100% fat to 100% fibrous tissue, were acquired with the APXRD system. Multivariate data analysis was used to produce a partial least squares (PLS) model sensitive to sample fat content. The final model is able to accurately predict the fat content of a series of unknown samples and is robust to significant added noise. This suggests that the APXRD system could provide a simple, semi-automated, quantitative measurement system for analysis of breast biopsy samples. Training on a range of scatter signatures from real breast biopsy samples covering various stages of disease is now needed to test this hypothesis.

  17. Selective imaging of nano-particle contrast agents by a single-shot x-ray diffraction technique.

    PubMed

    Stein, Ashley F; Ilavsky, Jan; Kopace, Rael; Bennett, Eric E; Wen, Han

    2010-06-01

    Iron oxide nano-particles have very different x-ray diffraction properties from tissue. They can be clearly visualized against suppressed tissue background in a single-shot x-ray diffraction imaging technique. This technique is able to acquire both diffraction and absorption images from a single grating-modulated projection image through analysis in the spatial frequency domain. We describe the use of two orthogonal transmission gratings to selectively retain diffraction signal from iron oxide particles that are larger than a threshold size, while eliminating the background signal from soft tissue and bone. This approach should help the tracking of functionalized particles in cell labeling and targeted therapy. PMID:20588456

  18. Elastic strains in antler trabecular bone determined by synchrotron x-ray diffraction.

    SciTech Connect

    Akhtar, R.; Daymond, M.; Almer, J.; Mummery, P.; X-Ray Science Division; Univ. of Manchester; Queen's Univ.

    2008-01-01

    The microstructure and associated mechanical properties of antler trabecular bone have been studied using a variety of techniques. The local trabeculae properties, as well as the three-dimensional architecture were characterized using nanoindentation and X-ray microtomography, respectively. An elastic modulus of 10.9+/-1.1 GPa is reported for dry bone, compared with 5.4+/-0.9 GPa for fully hydrated bone. Trabeculae thickness and separation were found to be comparable to those of bovine trabecular bone. Uniaxial compression conducted in situ during X-ray microtomography showed that antler can undergo significant architectural rearrangement, dominated by trabeculae bending and buckling, due to its low mineral content. High-energy synchrotron X-ray diffraction was used to measure elastic strains in the apatite crystals of the trabeculae, also under in situ uniaxial compression. During elastic loading, strain was found to be accommodated largely by trabeculae aligned parallel to the loading direction. Prior to the macroscopic yield point, internal strains increased as trabeculae deformed by bending, and load was also found to be redistributed to trabeculae aligned non-parallel to the loading direction. Significant bending of trabecular walls resulted in tensile strains developing in trabeculae aligned along the loading direction

  19. Structure of ZnO Nanorods using X-ray Diffraction

    SciTech Connect

    Howdyshell, Marci; /Albion Coll. /SLAC

    2007-11-07

    Many properties of zinc oxide, including wide bandgap semiconductivity, photoconductivity, and chemical sensing, make it a very promising material for areas such as optoelectronics and sensors. This research involves analysis of the formation, or nucleation, of zinc oxide by electrochemical deposition in order to gain a better understanding of the effect of different controlled parameters on the subsequently formed nanostructures. Electrochemical deposition involves the application of a potential to an electrolytic solution containing the species of interest, which causes the ions within to precipitate on one of the electrodes. While there are other ways of forming zinc oxide, this particular process is done at relatively low temperatures, and with the high amount of x-ray flux available at SSRL it is possible to observe such nucleation in situ. Additionally, several parameters can be controlled using the x-ray synchrotron; the concentration of Zn{sup 2+} and the potential applied were controlled during this project. The research involved both gathering the X-ray diffraction data on SSRL beamline 11-3, and analyzing it using fit2d, Origin 6.0 and Microsoft Excel. A time series showed that both the in-plane and out-of-plane components of the ZnO nanorods grew steadily at approximately the same rate throughout deposition. Additionally, analysis of post-scans showed that as potential goes from less negative to more negative, the resulting nanostructures become more oriented.

  20. Ab initio simulation of diffractometer instrumental function for high-resolution X-ray diffraction1

    PubMed Central

    Mikhalychev, Alexander; Benediktovitch, Andrei; Ulyanenkova, Tatjana; Ulyanenkov, Alex

    2015-01-01

    Modeling of the X-ray diffractometer instrumental function for a given optics configuration is important both for planning experiments and for the analysis of measured data. A fast and universal method for instrumental function simulation, suitable for fully automated computer realization and describing both coplanar and noncoplanar measurement geometries for any combination of X-ray optical elements, is proposed. The method can be identified as semi-analytical backward ray tracing and is based on the calculation of a detected signal as an integral of X-ray intensities for all the rays reaching the detector. The high speed of calculation is provided by the expressions for analytical integration over the spatial coordinates that describe the detection point. Consideration of the three-dimensional propagation of rays without restriction to the diffraction plane provides the applicability of the method for noncoplanar geometry and the accuracy for characterization of the signal from a two-dimensional detector. The correctness of the simulation algorithm is checked in the following two ways: by verifying the consistency of the calculated data with the patterns expected for certain simple limiting cases and by comparing measured reciprocal-space maps with the corresponding maps simulated by the proposed method for the same diffractometer configurations. Both kinds of tests demonstrate the agreement of the simulated instrumental function shape with the measured data. PMID:26089760

  1. Thermal, structural and diffraction analyses of a gallium-cooled x- ray monochromator

    SciTech Connect

    Rogers, C.S.; Macrander, A.T.; Mills, D.M.

    1992-06-01

    The next generation of synchrotron radiation sources will produce very high power and power density x-ray beams. For example, the Advanced Photon Source (APS) under construction at Argonne National Laboratory will produce beams containing up to 5 kill of power and peak normal power densities in excess of 150 W/mm{sup 2}. Normally, the first optical component to intercept the x-ray beam is a crystal monochromator. This device typically uses a single crystal of silicon or germanium as a band-pass filter according to Braggs' law of diffraction. Under the severe heat loading of modem synchrotron beams, the performance of the monochromator is degraded by reducing the photon throughput and increasing the beam divergence. This paper describes the methods used to calculate the thermally induced deformations in standardly configured monochromator crystals using finite element analysis. The results of these analyses are compared to recent experiments conducted at the Cornell High Energy Synchrotron Source (CHESS) using a high-performance, gallium-cooled crystal. Computer simulations can be used to evaluate the performance of high-heat-load x-ray optics for future synchrotron sources.

  2. Thermal, structural and diffraction analyses of a gallium-cooled x- ray monochromator

    SciTech Connect

    Rogers, C.S.; Macrander, A.T.; Mills, D.M.

    1992-06-01

    The next generation of synchrotron radiation sources will produce very high power and power density x-ray beams. For example, the Advanced Photon Source (APS) under construction at Argonne National Laboratory will produce beams containing up to 5 kill of power and peak normal power densities in excess of 150 W/mm{sup 2}. Normally, the first optical component to intercept the x-ray beam is a crystal monochromator. This device typically uses a single crystal of silicon or germanium as a band-pass filter according to Braggs` law of diffraction. Under the severe heat loading of modem synchrotron beams, the performance of the monochromator is degraded by reducing the photon throughput and increasing the beam divergence. This paper describes the methods used to calculate the thermally induced deformations in standardly configured monochromator crystals using finite element analysis. The results of these analyses are compared to recent experiments conducted at the Cornell High Energy Synchrotron Source (CHESS) using a high-performance, gallium-cooled crystal. Computer simulations can be used to evaluate the performance of high-heat-load x-ray optics for future synchrotron sources.

  3. Tracking the motion of charges in a terahertz light field byfemtosecond X-ray diffraction

    SciTech Connect

    Cavalleri, A.; Wall, S.; Simpson, C.; Statz, E.; Ward, D.W.; Nelson, K.A.; Rini, M.; Schoenlein, R.W.

    2006-07-01

    In condensed matter, light propagation near resonances isdescribed in terms of polaritons, electro-mechanical excitations in whichthe time-dependent electric field is coupled to the oscillation ofcharged masses. This description under pins our understanding of themacroscopic optical properties of solids, liquids and plasmas, as well asof their dispersion with frequency. In ferroelectric materials, terahertzradiation propagates by driving infrared-active lattice vibrations,resulting in phononpolariton waves. Electro-optic sampling withfemtosecond optical pulses can measure the time-dependent electricalpolarization, providing a phase-sensitive analogue to optical Ramanscattering. Here we use femtosecond time-resolved X-ray diffraction, aphase-sensitive analogue to inelastic X-ray scattering, to measure thecorresponding displacements of ions in ferroelectric lithium tantalate,LiTaO3. Amplitude and phase of all degrees of freedom in a light fieldare thus directly measured in the time domain. Notably, extension ofother X-ray techniques to the femtosecond timescale (for example,magnetic or anomalous scattering) would allow for studies in complexsystems, where electric fields couple to multiple degrees offreedom.

  4. High Pressure X-ray Diffraction Study on Icosahedral Boron Arsenide (B12As2)

    SciTech Connect

    J Wu; H Zhu; D Hou; C Ji; C Whiteley; J Edgar; Y Ma

    2011-12-31

    The high pressure properties of icosahedral boron arsenide (B12As2) were studied by in situ X-ray diffraction measurements at pressures up to 25.5 GPa at room temperature. B12As2 retains its rhombohedral structure; no phase transition was observed in the pressure range. The bulk modulus was determined to be 216 GPa with the pressure derivative 2.2. Anisotropy was observed in the compressibility of B12As2-c-axis was 16.2% more compressible than a-axis. The boron icosahedron plays a dominant role in the compressibility of boron-rich compounds.

  5. Massive Submandibular Sialolith: Complete Radiographic Registration and Biochemical Analysis through X-Ray Diffraction

    PubMed Central

    de Carvalho Mattos, Mayara Jessica; Ferrari, Francine; dos Reis Neto, José Manoel; Carta Gambus, Luiz Carlos; Couto Souza, Paulo Henrique; Berti-Couto, Soraya de Azambuja

    2014-01-01

    Sialolithiasis is a pathologic condition that affects 60 million people per year, which is caused by the presence of calcified structures, named sialoliths, inside the salivary glands and their salivary ducts. Despite the large incidence of sialolithiasis, its etiology is still unknown. In the present case report, a 47-year-old female patient, presenting with local pain and hampered mouth opening, underwent a surgical approach for the removal of a 20?mm sialolith, which was further analyzed through X-ray diffraction. In parallel, a radiographic registration of 8 years, covering all the period for sialolith formation, is presented along the case report. PMID:25258693

  6. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOEpatents

    Smither, Robert K. (Hinsdale, IL)

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  7. Surface, morphology and X-ray diffraction studies of Co (II) complexes of pyrazole ligands

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Jain, Garima; Ninama, S.

    2014-09-01

    Pyrazole based complexes of the cobalt (II) Bis-(diethyl 4-amino-1-(P-nitrophenyl) 1H-pyrazole-3,5dicarboxylate) [Co (D4A1(P-N)1HP35D)] and cobalt (II) Bis-(diethyl 4- amino-1-(3-chlorophenyl) 1H-pyrazole-3,5dicarboxylate) [Co (D4A1(3-Cl)1HP35D)] were synthesized by chemical root method and characterized by different method viz. X-ray diffraction, Fourier transform infrared spectroscopy and Transmission electron microscopy studies. All these studies were in good agreement with the synthesized complexes.

  8. X-ray diffraction study of elemental thulium at pressures up to 86 GPa

    SciTech Connect

    Pravica, Michael; Quine, Zachary; Romano, Edward [High Pressure Science and Engineering Center, Department of Physics, University of Nevada Las Vegas, Las Vegas, Nevada 89154-4002 (United States)

    2006-09-01

    We have performed a high-pressure synchrotron x-ray diffraction experiment on elemental thulium in a diamond anvil cell to 86 GPa. A series of phase transitions was observed as a function of pressure that follow the expected hexagonal-close-packed{yields}Samarium-type{yields}double hexagonal-close-packed{yields}distorted distorted face-centered cubic sequence. In particular, we present evidence for the predicted double hexagonal close packed{yields}distorted face-centered cubic phase transition near 68 GPa. Equation of state data for thulium are also reported up to 86 GPa.

  9. MEASURING THE PLASTIC RESPONSE IN POLYCRSYTALLINE MATERIALS USING IN-SITU X-RAY DIFFRACTION

    SciTech Connect

    Hawreliak, J; Butterfield, M; El-Dasher, B; McNaney, J; Lorenzana, H

    2008-10-01

    The insight provided by ultra-fast lattice level measurements during high strain rate high pressure experiments is key to understanding kinetic material properties like plasticity. In-situ x-ray diffraction provides a diagnostic technique which can be used to study the governing physical phenomena of plasticity at the relevant time and spatial scale. Here we discuss the recent development of a geometry capable of investigating plasticity in polycrystalline foils. We also present some preliminary data of investigations into shock compressed rolled copper foils.

  10. Load transfer in bovine plexiform bone determined by synchrotron x-ray diffraction.

    SciTech Connect

    Akhtar, R.; Daymond, M.; Almer, J.; Mummery, P.; The Univ. of Manchester; Queen's Univ.

    2008-02-01

    High-energy synchrotron x-ray diffraction (XRD) has been used to quantify load transfer in bovine plexiform bone. By using both wide-angle and small-angle XRD, strains in the mineral as well as the collagen phase of bone were measured as a function of applied compressive stress. We suggest that a greater proportion of the load is borne by the more mineralized woven bone than the lamellar bone as the applied stress increases. With a further increase in stress, load is shed back to the lamellar regions until macroscopic failure occurs. The reported data fit well with reported mechanisms of microdamage accumulation in bovine plexiform bone.

  11. Anomaly of X-ray Diffraction Profile in Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Maniwa, Yutaka; Kumazawa, Yoshinori; Saito, Yumi; Tou, Hideki; Kataura, Hiromichi; Ishii, Hiroyoshi; Suzuki, Shinzou; Achiba, Yohji; Fujiwara, Akihiko; Suematsu, Hiroyoshi

    1999-06-01

    X-ray diffraction (XRD) studies on single-walled carbon nanotube (SWNT) samples prepared by the arc-discharge method were reported. The XRD profile was basically explained to be a result of triangular packing of SWNTs with a lattice constant of 17.1 Å and an average nanotube radius of 7.1 Å. We found an anomalous change in XRD profiles before and after heat-treatment of the SWNT samples in air at ˜350°C. Combined with gravimetric measurements and resistivity measurements, a detailed simulation of the XRD profiles showed that air (oxygen, and/or nitrogen and/or water) can be condensed inside the SWNTs.

  12. Application of X-ray diffraction dynamics to strong anomalous scattering region of an atom

    NASA Astrophysics Data System (ADS)

    Zhao, Zongyan; Han, Jiahua; Zhou, Shengming; Xu, Zhangcheng; Fukamachi, Tomoe; Negishi, Riichiro; Yoshizawa, Masami; Nakajima, Tetsuo

    1995-12-01

    This paper gives new formulae of X-ray dynamical diffraction for a plane-parallel crystal with finite thickness. These formulae are applicable when the ratio of the two absolute values, i.e. the real part of the atomic scattering factor and the imaginary part, is arbitrary. Based on these formulae, the results calculated in both the Bragg and the Laue cases show that the formulae not only agree well with originally theoretical predictions, but also provide an incentive for cases which have not been studied.

  13. Quantum oscillations and beats in X-ray diffraction during film growth.

    PubMed

    Lee, Y-R; Gray, A; Tischler, J; Czoschke, P; Hong, H; Chang, S-L; Chiang, T-C

    2007-10-12

    X-ray diffraction from a growing film at an anti-Bragg point should exhibit bilayer oscillations caused by interference. In an experiment of TiN film growth by laser ablation onto sapphire, an unexpected beating envelope function is found to modulate the oscillations. The successive nodes and antinodes are identified with the development of new growth domains separated by one atomic layer in thickness. This effect allows atomic layer counting of the film thickness distribution. The results imply that the growth is not characterized by a continuum stochastic process, as usually assumed. PMID:17995191

  14. Aortic valvular tophus: identification by X-ray diffraction of urate and calcium phosphates.

    PubMed Central

    Gawoski, J M; Balogh, K; Landis, W J

    1985-01-01

    A typical gouty tophus with birefringent, dichroic, needle shaped crystals was found in a resected calcified aortic valve on routine histological examination. The patient, an elderly man, had a long history of gout. X-ray diffraction confirmed the presence of sodium acid urate monohydrate and identified hydroxyapatite and whitlockite in the accompanying dystrophic calcification of the aortic valves. Previous reports indicate that gouty tophi of the cardiac valves are rare: of the nine cases reported, eight occurred in the mitral valve. Images PMID:4031099

  15. X-ray diffraction investigation of 1-phenyl-3-isopropyl-5-(benzothiazol-2-yl)formazan

    SciTech Connect

    Slepukhin, P. A. [Russian Academy of Sciences, Postovskii Institute of Organic Synthesis, Ural Division (Russian Federation)], E-mail: slepukhin@ios.uran.ru; Pervova, I. G.; Rezinskikh, Z. G. [Ural State Forestry Engineering University (Russian Federation); Lipunova, G. N. [Ural State Technical University (UPI) (Russian Federation); Gorbatenko, Yu. A.; Lipunov, I. N. [Ural State Forestry Engineering University (Russian Federation)

    2008-01-15

    The crystal structure of 1-phenyl-3-isopropyl-5-(benzothiazol-2-yl)formazan is investigated using X-ray diffraction. The compound crystallizes in the form of two crystallographically independent molecules (A and B) in identical conformations that are stabilized by intermolecular hydrogen bonds. The intermolecular hydrogen bonds N-H-N (N-N, 2.892 and 2.939 A) link molecules into AB dimers. Both molecules have a flattened structure, except for the isopropyl fragment. The bonds in the formazan chains are delocalized. Molecules A and B have close geometric characteristics.

  16. Structural investigation of Lisinopril by powder X-ray diffraction and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Filip, Xenia; Tripon, Carmen; Borodi, Gheorghe; Oprean, Lumini?a; Filip, Claudiu

    2009-08-01

    Structural studies on polycrystalline Lisinopril (N-N-[(s)-1-carboxy-3-phenylpropyl]-L-lysil-L-proline) are performed by combined powder X-Ray diffraction and 13C solid-state nuclear magnetic resonance (NMR). The crystal structure of this drug, used primarily for the treatment of hypertension, has not yet been determined due to the impossibility of synthesizing single crystals of sufficient quality. It is shown here that valuable insights into the crystal and molecular structure of Lisinopril can be obtained on polycrystalline powder based on the complementary character of the information provided by the two techniques.

  17. Crystallization and preliminary X-ray diffraction data of ?-galactosidase from Saccharomyces cerevisiae

    PubMed Central

    Fernández-Leiro, Rafael; Pereira-Rodríguez, Ángel; Cerdán, M. Esperanza; Becerra, Manuel; Sanz-Aparicio, Juliana

    2010-01-01

    Saccharomyces cerevisiae ?-galactosidase is a highly glycosylated extracellular protein that catalyzes the hydrolysis of ?-galactosidic linkages in various glucids. Its enzymatic activity is of interest in many food-related industries and has biotechnological applications. Glycosylated and in vitro deglycosylated protein samples were both assayed for crystallization, but only the latter gave good-quality crystals that were suitable for X-ray crystallography. The crystals belonged to space group P4212, with unit-cell parameters a = b = 101.24, c = 111.52?Å. A complete diffraction data set was collected to 1.95?Å resolution using a synchrotron source. PMID:20057068

  18. Triple-axis X-ray diffraction study of polishing damage in III-V semiconductors

    Microsoft Academic Search

    C. D. Moore; I. Pape; B. K. Tanner

    1997-01-01

    Summary  Triple-axis X-ray diffraction has been performed on a series of GaAs and InP crystals polished by different techniques. Symmetric-reflection\\u000a reciprocal space maps show that the lattice strain normal to the surface does not vary with sample preparation but that the\\u000a tilt distribution does vary greatly. Asymmetric reflections, which probe the in-plane strain distribution, reveal that the\\u000a lattice strains are again

  19. X-ray diffraction and vibrational spectroscopic studies of indolecarboxylic acids and their metal complexes

    Microsoft Academic Search

    Barbara Morzyk-Ociepa

    2008-01-01

    In the present studies the novel catena-poly[(di-?3-aqua)(?2-:-?2-indole-3-propionato-O,O?:-O)(?3-indole-3-propionato-O)disodium], [Na2(I3PA)2(H2O)2]n has been synthesized and characterized by X-ray diffraction analysis and infrared and Raman spectroscopic methods. In the [Na2(I3PA)2(H2O)2]n, there are two different crystallographic sites for the Na+ ions, which are coordinated by six and seven oxygen atoms. Moreover, two O-deprotonated I3PA ions exhibit different coordination modes. One I3PA ion acts as a

  20. Investigation of hepatic fibrosis in rats with x-ray diffraction enhanced imaging

    SciTech Connect

    Li Hui [School of Biomedical Engineering, Capital Medical University, Beijing 100069 (China); Department of Medical Physics, Peking University Health Science Center, Beijing 100191 (China); Zhang Lu; Wang Xueyan; Luo Shuqian [School of Biomedical Engineering, Capital Medical University, Beijing 100069 (China); Wang Tailing [Department of Pathology, China-Japan Friendship Hospital, Beijing 100029 (China); Wang Baoen; Zhao Xinyan [Liver Research Center, Beijing Friendship Hospital, Beijing 100050 (China)

    2009-03-23

    X-ray diffraction enhanced imaging (DEI) is a phase contrast technique that generates excellent contrast of biological soft tissues compared to conventional absorption radiography. We explore the application of DEI in the diagnosis of hepatic fibrosis. The produced refraction contrast images of fibrous rat liver samples show clearly abnormal liver architectures. Moreover, by comparing to histological pictures, different stages of fibrosis are discriminated, and the corresponding morphological features are analyzed. Besides, quantitative analyses of texture features are presented. The results reported herein show that DEI can be a potential noninvasive technique to diagnose and stage hepatic fibrosis.

  1. A structural study of saturated aqueous solutions of some alkali halides by X-ray diffraction

    Microsoft Academic Search

    Hitoshi Ohtaki; Nobuhiro Fukushima

    1992-01-01

    The structure of nearly saturated or supersaturated aqueous solutions of NaCI [6.18 mol (kg H2O)-1], KCI [4.56 mol (kg H2O)-1], KF [16.15 mol (kg H2O)-1] and CsF [31.96 mol (kg H2O)-1] has been investigated by means of solution X-ray diffraction at 25°C. In the NaCI and KCI solutions about 30% and 60%, respectively, of the ions form ion pairs and

  2. Characterization of correlated line edge roughness of nanoscale line gratings using small angle x-ray scattering

    Microsoft Academic Search

    Chengqing Wang; Ronald L. Jones; Eric K. Lin; Wen-Li Wu; Bryan J. Rice; Kwang-Woo Choi; George Thompson; Steven J. Weigand; Denis T. Keane

    2007-01-01

    To meet the challenges in dimensional metrology as the minimum feature size in semiconductor devices approaches sub-35 nm length scales, we have been developing a nondestructive method using x rays termed critical dimension small angle x-ray scattering (SAXS). Its capacity to quantify the dimension of linewidth, pitch, line height, and sidewall angle of line gratings has been demonstrated. In this

  3. Determination of line profiles on photomasks using DUV, EUV, and x-ray scattering

    NASA Astrophysics Data System (ADS)

    Scholze, F.; Bodermann, B.; Burger, S.; Endres, J.; Haase, A.; Krumrey, M.; Laubis, C.; Soltwisch, V.; Ullrich, A.; Wernecke, J.

    2014-10-01

    Non-imaging techniques like X-ray scattering are supposed to play an important role in the further development of CD metrology for the semiconductor industry. GISAXS provides directly assessable information on structure roughness and long-range periodic perturbations. The disadvantage of the method is the large footprint of the X-ray beam on the sample due to the extremely shallow angle of incidence. This can be overcome by using wavelengths in the extreme ultraviolet (EUV) spectral range which allow for much steeper angles of incidence but preserve the large range of momentum transfer that can be observed. At the Physikalisch-Technische Bundesanstalt (PTB), the available photon energy range extends from 50 eV up to 10 keV at two adjacent beamlines. PTB commissioned a new versatile Ellipso-Scatterometer which is capable of measuring 6" square substrates in a clean, hydrocarbon-free environment with full flexibility regarding the direction of the incident light polarization. The reconstruction of line profiles using a geometrical model with six free parameters, a finite element method (FEM) Maxwell solver and least-squares optimization yielded consistent results for EUV and deep ultraviolet (DUV) scatterometry. For EUV photomasks, the actinic wavelength EUV scatterometry yields particular advantages. A significant polarization dependence of the diffraction intensities for 0th and +1st orders in the geometry with the grating lines perpendicular to the plane of reflection is observed and the 0th order intensity shows sufficient sensitivity to the line width such that a CD-resolution below 0.1 nm is within reach. In this contribution we present scatterometry data for line gratings using GISAXS, and EUV and DUV scatterometry and consistent reconstruction results of the line geometry for EUV and DUV scatterometry.

  4. Commissioning of a Soft X-ray Beamline PF-BL-16A with a Variable-Included-Angle Varied-Line-Spacing Grating Monochromator

    SciTech Connect

    Amemiya, Kenta; Toyoshima, Akio; Kikuchi, Takashi; Kosuge, Takashi; Nigorikawa, Kazuyuki; Sumii, Ryohei; Ito, Kenji [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-06-23

    The design and commissioning of a new soft X-ray beamline, BL-16A, at the Photon Factory is presented. The beamline consists of a pre-focusing mirror, an entrance slit, a variable-included-angle varied-line-spacing plane grating monochromator, and a post-focusing system as usual, and provides circularly and linearly polarized soft X rays in the energy range 200-1500 eV with an APPLE-II type undulator. The commissioning procedure for the beamline optics is described in detail, especially the check of the focal position for the zero-th order and diffracted X rays.

  5. Microwave-assisted synthesis of iron(III) oxyhydroxides\\/oxides characterized using transmission electron microscopy, X-ray diffraction, and X-ray absorption spectroscopy

    Microsoft Academic Search

    J. G. Parsons; C. Luna; C. E. Botez; J. Elizalde; J. L. Gardea-Torresdey

    2009-01-01

    Microwave-assisted synthesis of iron oxide\\/oxyhydroxide nanophases was conducted using iron(III) chloride titrated with sodium hydroxide at seven different temperatures from 100 to 250°C with pulsed microwaves. From the X-ray diffraction (XRD) results, it was determined that there were two different phases synthesized during the reactions which were temperature dependent. At the lower temperatures, 100 and 125°C, it was determined that

  6. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    Microsoft Academic Search

    W. Ludwig; A. King; P. Reischig; M. Herbig; E. M. Lauridsen; S. Schmidt; H. Proudhon; S. Forest; P. Cloetens; S. Rolland du Roscoat; J. Y. Buffière; T. J. Marrow; H. F. Poulsen

    2009-01-01

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures

  7. The Discovery of Soft X-Ray-loud Broad Absorption Line Quasars

    NASA Astrophysics Data System (ADS)

    Ghosh, Kajal K.; Punsly, Brian

    2008-02-01

    It has been known for more than a decade that BALQSOs (broad absorption line quasars) are highly attenuated in the X-ray regime compared to other quasars, especially in the soft band (<1 keV). Using X-ray selection techniques, we have found ``soft X-ray-loud'' BALQSOs that, by definition, have soft X-ray (0.3 keV) to UV (3000 Å) flux density ratios that are higher than typical non-BAL radio-quiet quasars. Our sample of three sources includes one LoBALQSO (low-ionization BALQSO), which is generally considered to be the most highly attenuated in X-rays. The three QSOs are the only known BALQSOs that have X-ray observations that are consistent with no intrinsic soft X-ray absorption. The existence of a large X-ray luminosity and the hard ionizing continuum that it presents to potential UV absorption gas is in conflict with the ionization states that are conducive to line-driving forces within BAL winds (especially for the LoBALs).

  8. The hydration pressure between lipid bilayers. Comparison of measurements using x-ray diffraction and calorimetry.

    PubMed Central

    Simon, S. A.; Fink, C. A.; Kenworthy, A. K.; McIntosh, T. J.

    1991-01-01

    The hydration pressure between dipalmitoyl phosphatidyl-N,N-dimethylethanolamine (DPPE-Me2) bilayers has been analyzed by both x-ray diffraction measurements of osmotically stressed liposomes and by differential scanning calorimetry. By the x-ray method, we obtain a magnitude (Po) and decay length (lambda) for the hydration pressure which are both quite similar to those found for bilayers of other zwitterionic lipids, such as phosphatidylcholines. That is, x-ray analysis of DPPE-Me2 in the gel phase gives lambda = 1.3 A, the same as that previously measured for the analogous gel phase lipid dipalmitoylphosphatidylcholine (DPPC), and Po = 3.9 x 10(9) dyn/cm2, which is in excellent agreement with the value of 3.6 x 10(9) dyn/cm2 calculated from the measured Volta potential of DPPE-Me2 monolayers in equilibrium with liposomes. These results indicate that the removal of one methyl group to convert DPPC to DPPE-Me2 does not markedly alter the range or magnitude of the hydration pressure. Calorimetry shows that the main gel to liquid-crystalline phase transition temperature of DPPE-Me2 is approximately constant for water contents ranging from 80 to 10 water molecules per lipid molecule, but increases monotonically with decreasing water content below 10 waters per lipid. A theoretical fit to these temperature vs. water content data predicts lambda = 6.7 A. The difference in observed values of lambda for x-ray and calorimetry measurements can be explained by effects on the thermograms of additional intra- and intermolecular interactions which occur at low water contents where apposing bilayers are in contact. We conclude that, although calorimetry provides important data on the energetics of bilayer hydration, it is difficult to obtain quantitative information on the hydration pressure from this technique. PMID:2049518

  9. X-ray emission lines from three Galactic bulge sources

    NASA Technical Reports Server (NTRS)

    Vrtilek, S. D.; Helfand, D. J.; Halpern, J. P.; Kahn, S. M.; Seward, F. D.

    1986-01-01

    X-ray spectroscopic observations obtained with the Einstein objective grating spectrometer (OGS) and monitor proportional counter (MPC) instruments of three Galactic bulge sources, the globular cluster burst source 1820-30, the burster Serpens X-1, and the GX 9+9 are presented. Joint spectral fits to the OGS and MPC data are consistent for all three sources with either a thermal bremsstrahlung model with temperature ranging from 6 to 10 keV or with a two-component blackbody model, where one component may be associated with the neutron star and one with the accretion disk. The spectra of Serpens X-1 and 1820-30 harden with increases in intensity. The implications of the results for recent models of low-mass X-ray binaries are discussed.

  10. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies

    NASA Astrophysics Data System (ADS)

    Szlachetko, J.; Nachtegaal, M.; de Boni, E.; Willimann, M.; Safonova, O.; Sa, J.; Smolentsev, G.; Szlachetko, M.; van Bokhoven, J. A.; Dousse, J.-Cl.; Hoszowska, J.; Kayser, Y.; Jagodzinski, P.; Bergamaschi, A.; Schmitt, B.; David, C.; Lücke, A.

    2012-10-01

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  11. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies

    SciTech Connect

    Szlachetko, J. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Nachtegaal, M.; Boni, E. de; Willimann, M.; Safonova, O.; Sa, J.; Smolentsev, G.; Szlachetko, M.; Bergamaschi, A.; Schmitt, B.; David, C.; Luecke, A. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bokhoven, J. A. van [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zuerich (Switzerland); Dousse, J.-Cl.; Hoszowska, J.; Kayser, Y. [Department of Physics, University of Fribourg, 1700 Fribourg (Switzerland); Jagodzinski, P. [University of Technology, Kielce (Poland)

    2012-10-15

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  12. Wide-angle incidence x-ray waveguides prepared by micro-/nano-technology using crystal surface diffraction

    NASA Astrophysics Data System (ADS)

    Chen, Sung-Yu; Shen, Yu-Chi; Chiu, Mau-Sen; Chu, Chia-Hung; Stetsko, Yuriy P.; Shew, Bo-Yuan; Chang, Shih-Lin

    2008-03-01

    Grazing incidence x-ray waveguides have been most studied because of its simple geometry and its applicability for all photon energies. However, wide-angle incidence waveguides are also essential for modern x-ray optics, as far as coupling/guiding x-ray beams into given directions are concerned. To investigate this possibility we have prepared waveguides on silicon wafers by x-ray lithographic technique. The waveguides are 100?m high and 1cm long with different widths and the distance between the adjacent waveguides is 2.5 mm. Both the top and bottom surface of a waveguide are plated with gold. With this type of waveguides we have actually observed the effects of guiding x-rays in both lateral and vertical directions using (113) surface diffraction in Au/Si waveguide systems.

  13. X-ray line spectropolarimetry as a new diagnostic of anisotropic plasma sources

    Microsoft Academic Search

    Alla S. Shlyaptseva; Victor L. Kantsyrev; Nick D. Ouart; Dmitry A. Fedin; Safeia Hamasha; Stephanie B. Hansen

    2004-01-01

    The results of theoretical and experimental studies of anisotropic plasma sources are reported. They are based on x-ray line spectropolarimetry, a powerful new tool for investigating anisotropy of high-temperature plasmas. It is based on theoretical modeling of polarization-sensitive x-ray line spectra recorded simultaneously by two spectrometers with different sensitivities to polarization. The difference in these polarization-sensitive spectra is used to

  14. Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies.

    PubMed

    Zucchini, F; Bland, S N; Chauvin, C; Combes, P; Sol, D; Loyen, A; Roques, B; Grunenwald, J

    2015-03-01

    X-ray emission from a molybdenum X-pinch has been investigated as a potential probe for the high pressure states made in dynamic compression experiments. Studies were performed on a novel 300 kA, 400 ns generator which coupled the load directly to a low inductance capacitor and switch combination. The X-pinch load consisted of 4 crossed molybdenum wires of 13 ?m diameter, crossed at an angle of 62°. The load height was 10 mm. An initial x-ray burst generated at the wire crossing point, radiated in the soft x-ray range (h? < 10 keV). This was followed, 2-5 ns later, by at least one harder x-ray burst (h? > 10 keV) whose power ranged from 1 to 7 MW. Time integrated spectral measurements showed that the harder bursts were dominated by K-alpha emission; though, a lower level, wide band continuum up to at least 30 keV was also present. Initial tests demonstrated that the source was capable of driving Laue diffraction experiments, probing uncompressed samples of LiF and aluminium. PMID:25832229

  15. Probing deformation substructure by synchrotron X-ray diffraction and dislocation dynamics modelling.

    PubMed

    Korsunsky, Alexander M; Hofmann, Felix; Song, Xu; Eve, Sophie; Collins, Steve P

    2010-09-01

    Materials characterization at the nano-scale is motivated by the desire to resolve the structural aspects and deformation behavior at length scales relevant to those mechanisms that define the novel and unusual properties of nano-structured materials. A range of novel techniques has recently become accessible with the help of synchrotron X-ray beams that can be focused down to spot sizes of less than a few microns on the sample. The unique combination of tunability (energy selection), parallelism and brightness of synchrotron X-ray beams allows their use for high resolution diffraction (determination of crystal structure and transformations, analysis of dislocation sub-structures, orientation and texture analysis, strain mapping); small angle X-ray scattering (analysis of nano-scale voids and defects; orientation analysis) and imaging (radiography and tomography). After a brief review of the state-of-the-art capabilities for monochromatic and white beam synchrotron diffraction, we consider the usefulness of these techniques for the task of bridging the gap between experiment and modeling. Namely, we discuss how the experiments can be configured to provide information relevant to the validation and improvement of modeling approaches, and also how the results of various simulations can be post-processed to improve the possibility of (more or less) direct comparison with experiments. Using the example of some recent experiments carried out on beamline 116 at Diamond Light Source near Oxford, we discuss how such experimental results can be interpreted in view and in conjunction with numerical deformation models, particularly those incorporating dislocation effects, e.g., finite-element based pseudo-continuum strain gradient formulations, and discrete dislocation simulations. Post-processing of FE and discrete dislocation simulations is described, illustrating the kind of information that can be extracted from comparisons between modeling and experimental data. PMID:21133131

  16. Extraordinarily Hot X-ray Emission from the 09 Emission Line Star HD 119682

    E-print Network

    C. E. Rakowski; N. S. Schulz; S. J. Wolk; P. Testa

    2006-08-15

    We present new optical and X-ray observations to show that the X-ray source 1 WGA J1346.5--6255 previously associated with the SNR G309.2--0.6 can be unequivocally identified with the emission line star HD 119682 located in the foreground open cluster NGC 5281. Images from Chandra in the X-ray band as well as from Magellan in the narrow optical H-alpha band show a coincidence of the source positions within 0.5". The X-ray source appears extremely hot for an OB-star identified as of O9.7e type. XMM-Newton spectra show plasma temperatures of 1 keV and >8 keV with an X-ray luminosity of 6.2E32 +/-0.1E32 erg/s. The optical and X-ray properties are very reminiscent of the prototype emission line star Gamma-Cas. We discuss the ramifications of this similarity with respect to very early type emission line stars as a new class of hard X-ray sources.

  17. High energy white beam x-ray diffraction studies of residual strains in engineering components

    NASA Astrophysics Data System (ADS)

    Zhang, S. Y.; Vorster, W.; Jun, T. S.; Song, X.; Golshan, M.; Laundy, D.; Walsh, M. J.; Korsunsky, A. M.

    2008-09-01

    In order to predict the durability of engineering components and improve performance, it is mandatory to understand residual stresses. The last decade has witnessed a significant increase of residual stress evaluation using diffraction of penetrating radiation, such as neutrons or high energy X-rays. They provide a powerful non-destructive method for determining the level of residual stresses in engineering components through precise characterisation of interplanar crystal lattice spacing. The unique non-destructive nature of these measurement techniques is particularly beneficial in the context of engineering design, since it allows the evaluation of a variety of structural and deformational parameters inside real components without material removal, or at worst with minimal interference. However, while most real engineering components have complex shape and are often large in size, leading to measurement and interpretation difficulties, since experimental facilities usually have limited space for mounting the sample, limited sample travel range, limited loading capacity of the sample positioning system, etc. Consequently, samples often have to be sectioned, requiring appropriate corrections on measured data; or facilities must be improved. Our research group has contributed to the development of engineering applications of high-energy X-ray diffraction methods for residual stress evaluation, both at synchrotron sources and in the lab setting, including multiple detector setup, large engineering component manipulation and measurement at the UK Synchrotron Radiation Source (SRS Daresbury), and in our lab at Oxford. A nickel base superalloy combustion casing and a large MIG welded Al alloy plate were successfully studied.

  18. Mesoscale morphology of airborne core-shell nanoparticle clusters: x-ray laser coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Pedersoli, E.; Loh, N. D.; Capotondi, F.; Y Hampton, C.; Sierra, R. G.; Starodub, D.; Bostedt, C.; Bozek, J.; Nelson, A. J.; Aslam, M.; Li, S.; Dravid, V. P.; Martin, A. V.; Aquila, A.; Barty, A.; Fleckenstein, H.; Gumprecht, L.; Liang, M.; Nass, K.; Schulz, J.; White, T. A.; Coppola, N.; Bajt, S.; Barthelmess, M.; Graafsma, H.; Hirsemann, H.; Wunderer, C.; Epp, S. W.; Erk, B.; Rudek, B.; Rudenko, A.; Foucar, L.; Kassemeyer, S.; Lomb, L.; Rolles, D.; Shoeman, R. L.; Steinbrener, J.; Hartmann, R.; Hartmann, A.; Hauser, G.; Holl, P.; Kimmel, N.; Reich, C.; Soltau, H.; Weidenspointner, G.; Benner, W. H.; Farquar, G. R.; Hau-Riege, S. P.; Hunter, M. S.; Ekeberg, T.; Hantke, M.; Maia, F. R. N. C.; Tobias, H. J.; Marchesini, S.; Frank, M.; Strüder, L.; Schlichting, I.; Ullrich, J.; Chapman, H. N.; Bucksbaum, P. H.; Kiskinova, M.; Bogan, M. J.

    2013-08-01

    Unraveling the complex morphology of functional materials like core-shell nanoparticles and its evolution in different environments is still a challenge. Only recently has the single-particle coherent diffraction imaging (CDI), enabled by the ultrabright femtosecond free-electron laser pulses, provided breakthroughs in understanding mesoscopic morphology of nanoparticulate matter. Here, we report the first CDI results for Co@SiO2 core-shell nanoparticles randomly clustered in large airborne aggregates, obtained using the x-ray free-electron laser at the Linac Coherent Light Source. Our experimental results compare favourably with simulated diffraction patterns for clustered Co@SiO2 nanoparticles with ˜10 nm core diameter and ˜30 nm shell outer diameter, which confirms the ability to resolve the mesoscale morphology of complex metastable structures. The findings in this first morphological study of core-shell nanomaterials are a solid base for future time-resolved studies of dynamic phenomena in complex nanoparticulate matter using x-ray lasers.

  19. Identification of inversion domains in KTiOPO4via resonant X-ray diffraction.

    PubMed

    Fabrizi, Federica; Thomas, Pamela A; Nisbet, Gareth; Collins, Stephen P

    2015-07-01

    A novel method is presented for the identification of the absolute crystallographic structure in multi-domain polar materials such as ferroelectric KTiOPO4. Resonant (or `anomalous') X-ray diffraction spectra collected across the absorption K edge of Ti (4.966?keV) on a single Bragg reflection demonstrate a huge intensity ratio above and below the edge, providing a polar domain contrast of ?270. This allows one to map the spatial domain distribution in a periodically inverted sample, with a resolution of ?1?µm achieved with a microfocused beam. This non-contact, non-destructive technique is well suited for samples of large dimensions (in contrast with traditional resonant X-ray methods based on diffraction from Friedel pairs), and its potential is particularly relevant in the context of physical phenomena connected with an absence of inversion symmetry, which require characterization of the underlying absolute atomic structure (such as in the case of magnetoelectric coupling and multiferroics). PMID:25970297

  20. Biochemical profiles of membranes from x-ray and neutron diffraction

    SciTech Connect

    McCaughan, L.; Krimm, S.

    1982-02-01

    X-ray and neutron diffraction methods provide some information about the distribution of mass in biological membranes and lipid-water systems. Scattering density profiles obtained from thes systems, however, usually are not directly interpretable in terms of the relative amounts of chemical constituents (e.g., lipid, protein, and water) as a function of position in the membrane. We demonstrate here that the combined use of x-ray and neutron-scattering profiles, together with information on the total amounts of each of the major membrane components, are sufficient to calculate unambiguously the volume fractions of these components at well-defined regions of the lamellar unit. Three cases are considered: a calculated model membrane pair, dipalmitoylphosphatidyl-choline-water multilayers, and rabbit sciatic nerve myelin. For the model system, we discuss the limitations imposed by finite resolution in the diffraction patterns. For the lipid-water multilayers, we calculate water volume fractions in the hydrocarbon tail, lipid headgroup, and interlamellar regions; estimates of these values by various methods are in good agreement with our results. For the nerve myelin, we predict new results for the distribution of protein through the membrane.

  1. X-ray diffraction study of defects in zinc-diffusion-doped silicon

    SciTech Connect

    Privezentsev, V. V., E-mail: privezentsev@ftian.ru [Russian Academy of Sciences, Institute of Physics and Technology (Russian Federation)

    2013-12-15

    Samples of CZ n-Si?Zn?(111) are prepared by high-temperature zinc-diffusion annealing followed by quenching and are studied by X-ray diffraction. The silicon contains an initial phosphorus impurity and zinc-compensating admixture at concentrations N{sub P} = 1.5 × 10{sup 14} cm{sup ?3} and N{sub Zn} = 1 × 10{sup 14} cm{sup ?3}; i.e., the relation N{sub P}/2 < N{sub Zn} < N{sub P} is fulfilled. Microdefects are studied by double- and triple-crystal X-ray diffraction in the dispersion free modes (n, ?n) and (n, ?n, +n). The samples are found to contain microdefects with two characteristic sizes (average sizes of about 1 ?m and 70 nm). The interplanar distance in the near-surface layer with a thickness of 0.1 ?m is smaller than this parameter in the remaining matrix, the difference being equal to d{sub 0} ?d/d{sub 0} ? 2 × 10{sup ?5}. This layer contains mainly vacancy-type microdefects. The angle between the reflecting planes and the local surface relief is ?? = (7 ± 1) arcmin.

  2. Dynamic in-situ X-ray Diffraction of Catalyzed Alanates

    SciTech Connect

    Gross, K.J.; Sandrock, G.; Thomas, G.J.

    2000-11-01

    The discovery that hydrogen can be reversible absorbed and desorbed from NaAlH{sub 4} by the addition of catalysts has created an entirely new prospect for lightweight hydrogen storage. NaAlH{sub 4} releases hydrogen through the following set of decomposition reactions: NaAlH{sub 4} {r_arrow} 1/3({alpha}-Na{sub 3}AlH{sub 6}) + 2/3Al + H{sub 2} {r_arrow} NaH + Al + 3/2H{sub 2}. These decomposition reactions as well as the reverse recombination reactions were directly observed using time-resolved in-situ x-ray powder diffraction. These measurements were performed under conditions similar to those found in PEM fuel cell operations (hydrogen absorption: 50--70 C, 10--15 bar Hz, hydrogen resorption: 80--110 C, 5--100 mbar H{sub 2}). Catalyst doping was found to dramatically improve kinetics under these conditions. In this study, the alanate was doped with a catalyst by dry ball-milling NaAlH{sub 4} with 2 mol.% solid TiCl{sub 3}. X-ray diffraction clearly showed that TiCl{sub 3} reacts with NaAlH{sub 4} to form NaCl during the doping process. Partial desorption of NaAlH{sub 4} was even observed to occur during the catalyst doping process.

  3. Structure of phospholipid-cholesterol membranes: An x-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Karmakar, Sanat; Raghunathan, V. A.

    2005-06-01

    We have studied the phase behavior of mixtures of cholesterol with dipalmitoyl phosphatidylcholine (DPPC), dimyristoyl phosphatidylcholine (DMPC), and dilauroyl phosphatidylethanolamine (DLPE), using x-ray diffraction techniques. Phosphatidylcholine (PC)-cholesterol mixtures are found to exhibit a modulated phase for cholesterol concentrations around 15mol% at temperatures below the chain melting transition. Lowering the relative humidity from 98% to 75% increases the temperature range over which it exists. An electron density map of this phase in DPPC-cholesterol mixtures, calculated from the x-ray diffraction data, shows bilayers with a periodic height modulation, as in the ripple phase observed in many PCs in between the main- and pretransitions. However, these two phases differ in many aspects, such as the dependence of the modulation wavelength on the cholesterol content and thermodynamic stability at reduced humidities. This modulated phase is found to be absent in DLPE-cholesterol mixtures. At higher cholesterol contents the gel phase does not occur in any of these three systems, and the fluid lamellar phase is observed down to the lowest temperature studied (5°C) .

  4. Mossbauer spectroscopy and X-ray diffraction of samples from the Santa Catharina iron meteorite

    NASA Technical Reports Server (NTRS)

    Roy-Poulsen, H.; Clarke, R. S., Jr.; Jensen, G. B.; Knudsen, J. M.; Larsen, L.; Roy-Poulsen, N. O.; Vistisen, L.

    1984-01-01

    Conversion electron Mossbauer spectroscopy (CEMS) of samples from the Santa Catharina iron meteorite shows the presence of the ordered iron-nickel phase with 50% Ni, tetrataenite, and of the paramagnetic iron-nickel phase with 25% Ni. The FeNi phase with 50% Ni amounts to 70% of the iron-nickel alloys. Futhermore, the CEM spectra show the presence of small peaks from one or more spinel compounds. These small peaks are more pronounced when regions near the rim of the samples are analyzed. The X-ray diffraction of different areas of the samples, both optically dark and optically light areas, shows the presence of a diffraction pattern from a single f.c.c. lattice with a lattice parameter of a=3.58A This means that the two different Fe-Ni phases seen in the CEMS analysis occupy the same lattice. The X-ray photographs also show the presence of super-structure reflections from the ordered FeNi phase, and that the orientation of the f.c.c. lattice is the same within the whole sample.

  5. Time-Resolved Soft X-ray Diffraction Reveals Transient Structural Distortions of Ternary Liquid Crystals

    PubMed Central

    Quevedo, Wilson; Peth, Christian; Busse, Gerhard; Scholz, Mirko; Mann, Klaus; Techert, Simone

    2009-01-01

    Home-based soft X-ray time-resolved scattering experiments with nanosecond time resolution (10 ns) and nanometer spatial resolution were carried out at a table top soft X-ray plasma source (2.2–5.2 nm). The investigated system was the lyotropic liquid crystal C16E7/paraffin/glycerol/formamide/IR 5. Usually, major changes in physical, chemical, and/or optical properties of the sample occur as a result of structural changes and shrinking morphology. Here, these effects occur as a consequence of the energy absorption in the sample upon optical laser excitation in the IR regime. The liquid crystal shows changes in the structural response within few hundred nanoseconds showing a time decay of 182 ns. A decrease of the Bragg peak diffracted intensity of 30% and a coherent macroscopic movement of the Bragg reflection are found as a response to the optical pump. The Bragg reflection movement is established to be isotropic and diffusion controlled (1 ?s). Structural processes are analyzed in the Patterson analysis framework of the time-varying diffraction peaks revealing that the inter-lamellar distance increases by 2.7 Å resulting in an elongation of the coherently expanding lamella crystallite. The present studies emphasize the possibility of applying TR-SXRD techniques for studying the mechanical dynamics of nanosystems. PMID:20087463

  6. Comprehensive X-Ray Diffraction Study of YBa 2Cu 3O 7-? Thin Films

    NASA Astrophysics Data System (ADS)

    Moshfegh, A.; Fatollahi, A.; Wang, Y.; Sun, Y.; Hor, P.; Ignatiev, A.

    1995-11-01

    In situ annealed high temperature superconducting YBa2Cu3O7-? thin films have been deposited on an MgO (100) substrate from a single stoichiometric target using DC magnetron sputtering. The films were characterized by X-Ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The effect of varying substrate temperature, T s, and O2/Ar ratio on lattice parameters and on the degree of orientation of the films were examined. Both c- and a-lattice parameters decreased with increasing T s. The reduction of c and a-lattice parameters as well as the oxygen deficiency in the films, ?, obey general (T s - T0)-4 behavior. We develope a new method to measure a more accurate way to find the degree of preferrential orientation along c and a-axis of the deposited films, (?V006/?V200), at different T s by using X-ray diffraction theory and JCPDS files to obtain \\mid {F(006)}/{F(200)}\\mid2. At T s=735°C, the volume fraction along the c-axis was found to be ?Vc?5.5 ×?Va corresponding to 85 grains having preferred orientation along c-axis. In addition, we have also measured FWHM of the (006) and (200) peaks by varying T s. The thickness of the grains were estimated at different substrate temperature using the Scherrer formula.

  7. Radiation-induced melting in coherent X-ray diffractive imaging at the nanoscale

    PubMed Central

    Ponomarenko, O.; Nikulin, A. Y.; Moser, H. O.; Yang, P.; Sakata, O.

    2011-01-01

    Coherent X-ray diffraction techniques play an increasingly significant role in the imaging of nanoscale structures, ranging from metallic and semiconductor to biological objects. In material science, X-rays are usually considered to be of a low-destructive nature, but under certain conditions they can cause significant radiation damage and heat loading on the samples. The qualitative literature data concerning the tolerance of nanostructured samples to synchrotron radiation in coherent diffraction imaging experiments are scarce. In this work the experimental evidence of a complete destruction of polymer and gold nanosamples by the synchrotron beam is reported in the case of imaging at 1–10?nm spatial resolution. Numerical simulations based on a heat-transfer model demonstrate the high sensitivity of temperature distribution in samples to macroscopic experimental parameters such as the conduction properties of materials, radiation heat transfer and convection. However, for realistic experimental conditions the calculated rates of temperature rise alone cannot explain the melting transitions observed in the nanosamples. Comparison of these results with the literature data allows a specific scenario of the sample destruction in each particular case to be presented, and a strategy for damage reduction to be proposed. PMID:21685675

  8. Crystallization and X-ray diffraction of virus-like particles from a piscine betanodavirus.

    PubMed

    Luo, Yu-Chun; Wang, Chun-Hsiung; Wu, Yi-Min; Liu, Wangta; Lu, Ming-Wei; Lin, Chan-Shing

    2014-08-01

    Dragon grouper nervous necrosis virus (DGNNV), a member of the genus Betanodavirus, causes high mortality of larvae and juveniles of the grouper fish Epinephelus lanceolatus. Currently, there is no reported crystal structure of a fish nodavirus. The DGNNV virion capsid is derived from a single open reading frame that encodes a 338-amino-acid protein of approximately 37?kDa. The capsid protein of DGNNV was expressed to form virus-like particles (VLPs) in Escherichia coli. The VLP shape is T = 3 quasi-symmetric with a diameter of ?38?nm in cryo-electron microscopy images and is highly similar to the native virion. In this report, crystals of DGNNV VLPs were grown to a size of 0.27?mm within two weeks by the hanging-drop vapour-diffusion method at 283?K and diffracted X-rays to ?7.5?Å resolution. In-house X-ray diffraction data of the DGNNV VLP crystals showed that the crystals belonged to space group R32, with unit-cell parameters a = b = 353.00, c = 800.40?Å, ? = ? = 90, ? = 120°. 23?268 unique reflections were acquired with an overall Rmerge of 18.2% and a completeness of 93.2%. Self-rotation function maps confirmed the fivefold, threefold and twofold symmetries of the icosahedron of DGNNV VLPs. PMID:25084387

  9. Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy

    NASA Astrophysics Data System (ADS)

    Kern, Jan; Tran, Rosalie; Alonso-Mori, Roberto; Koroidov, Sergey; Echols, Nathaniel; Hattne, Johan; Ibrahim, Mohamed; Gul, Sheraz; Laksmono, Hartawan; Sierra, Raymond G.; Gildea, Richard J.; Han, Guangye; Hellmich, Julia; Lassalle-Kaiser, Benedikt; Chatterjee, Ruchira; Brewster, Aaron S.; Stan, Claudiu A.; Glöckner, Carina; Lampe, Alyssa; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Seibert, M. Marvin; Koglin, Jason E.; Gallo, Erik; Uhlig, Jens; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Skinner, David E.; Bogan, Michael J.; Messerschmidt, Marc; Glatzel, Pieter; Williams, Garth J.; Boutet, Sébastien; Adams, Paul D.; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.

    2014-07-01

    The dioxygen we breathe is formed by light-induced oxidation of water in photosystem II. O2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction centre is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2-flash (2F) and 3-flash (3F) photosystem II samples, and of a transient 3F’ state (250??s after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn reduction, does not yet occur within 250??s after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5?Å. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II.

  10. Crystallization and preliminary X-ray diffraction analysis of recombinant hepatitis E virus-like particle

    SciTech Connect

    Wang, Che-Yen [Molecular and Cellular Biology, University of California, Davis, CA 95616 (United States); Karolinska Institute Structural Virology, F68 Karolinska University Hospital, SE-14186 Stockholm (Sweden); Institute of Public Health, National Yang-Ming University, 112 Taipei,Taiwan (China); Miyazaki, Naoyuki [Molecular and Cellular Biology, University of California, Davis, CA 95616 (United States); Karolinska Institute Structural Virology, F68 Karolinska University Hospital, SE-14186 Stockholm (Sweden); Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yamashita, Tetsuo [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Institute for Microbial Diseases, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Higashiura, Akifumi; Nakagawa, Atsushi [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Li, Tian-Cheng; Takeda, Naokazu [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Xing, Li [Molecular and Cellular Biology, University of California, Davis, CA 95616 (United States); Karolinska Institute Structural Virology, F68 Karolinska University Hospital, SE-14186 Stockholm (Sweden); Hjalmarsson, Erik; Friberg, Claes [Crystal Research AB, 22370 Lund (Sweden); Liou, Der-Ming [Institute of Public Health, National Yang-Ming University, 112 Taipei,Taiwan (China); Sung, Yen-Jen [Institute of Public Health, National Yang-Ming University, 112 Taipei,Taiwan (China); Institute of Anatomy and Cell Biology, National Yang-Ming University, 112 Taipei,Taiwan (China); Tsukihara, Tomitake [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Matsuura, Yoshiharu [Institute for Microbial Diseases, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Miyamura, Tatsuo [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Cheng, R. Holland, E-mail: rhch@ucdavis.edu [Molecular and Cellular Biology, University of California, Davis, CA 95616 (United States); Karolinska Institute Structural Virology, F68 Karolinska University Hospital, SE-14186 Stockholm (Sweden)

    2008-04-01

    A recombinant virus-like particle that is a potential oral hepatitis E vaccine was crystallized. Diffraction data were collected to 8.3 Å resolution and the X-ray structure was phased with the aid of a low-resolution density map determined using cryo-electron microscopy data. Hepatitis E virus (HEV) accounts for the majority of enterically transmitted hepatitis infections worldwide. Currently, there is no specific treatment for or vaccine against HEV. The major structural protein is derived from open reading frame (ORF) 2 of the viral genome. A potential oral vaccine is provided by the virus-like particles formed by a protein construct of partial ORF3 protein (residue 70–123) fused to the N-terminus of the ORF2 protein (residues 112–608). Single crystals obtained by the hanging-drop vapour-diffusion method at 293 K diffract X-rays to 8.3 Å resolution. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 337, b = 343, c = 346 Å, ? = ? = ? = 90°, and contain one particle per asymmetric unit.

  11. X-ray diffraction study of damage induced by swift heavy ion irradiation in fluorapatite

    NASA Astrophysics Data System (ADS)

    Miro, S.; Grebille, D.; Chateigner, D.; Pelloquin, D.; Stoquert, J.-P.; Grob, J.-J.; Costantini, J.-M.; Studer, F.

    2005-01-01

    X-ray powder and high-resolution single-crystal diffraction techniques were used to study the irradiation damage of fluorapatites. Krypton, iodine and carbon irradiations were performed at high energy (?1 MeV/a) in the 1011 to 5 × 1013 cm-2 fluence range. Both diffraction techniques showed a strong unit-cell increase of the fluorapatite structure, with a full relaxation of the remaining part of the material for large fluences. X-ray powder experiments revealed an amorphization of the material up to 85% for fluences around 1013 ions cm-2. Simulation of the relationship between amorphous volume fraction and fluence evidenced that the amorphization mechanisms could be dominated by a single impact process for iodine and double impacts for krypton. The effective radius of the track core remained nearly constant although the electronic energy loss increases from Kr to I. Moreover total amorphization of fluorapatite irradiated by swift heavy ions could not be obtained in this study. Experiments performed on (0 0 2)-oriented single-crystals allowed us to separate the change of the c-parameters of the damaged and virgin phases, and pointed out an anisotropic response of the material to the damage process.

  12. High pressure Raman scattering and synchrotron X-ray diffraction studies of benzyl azide.

    PubMed

    Jiang, Junru; Wu, Xiaoxin; Li, Dongmei; Ma, Boheng; Liu, Ruirui; Wang, Xiaoli; Zhang, Jian; Zhu, Hongyang; Cui, Qiliang

    2015-01-15

    Benzyl azide was investigated by high-pressure Raman scattering spectroscopy and X-ray diffraction technologies. A complete vibrational analysis of benzyl azide was performed by combining the experimental measurements and theoretical calculations using DFT-based scaled quantum chemical approach. The high-pressure Raman spectra and calculation results indicate that benzyl azide underwent a conformational change at 0.67 GPa accompanied by rotation of methylene group and azide group. The frequency of the CH2 bending mode decreases with increasing pressure due to the increase of the C-H···? interactions, which is similar to the role of the hydrogen bond. A liquid to solid phase transition occurred at 2.7 GPa, which was confirmed by the X-ray diffraction measurements. As the pressure reached 25.6 GPa, all the azide group vibrations vanished, indicating that the decomposition pressure of the molecular azide groups in organic azides is lower than that of the azide ions in inorganic azides. PMID:25523511

  13. High-energy X-ray diffraction studies of i-Sc12Zn88

    SciTech Connect

    Goldman, A. I.; Kreyssig, A.; Nandi, S.; Kim, M. G.; Caudle, M. L.; Canfield, P. C.

    2010-09-16

    Although quasicrystals form in a wide variety of ternary and quaternary metallic alloys, examples of stable binary icosahedral quasicrystals are quite rare. Indeed, it has been a decade since the discovery of icosahedral phases in Yb-Cd and Ca-Cd. We have discovered millimeter-sized facetted grains of i-Sc12Zn88 with icosahedral (pentagonal dodecahedral and rhombic triacontahedral) morphologies in solution-grown samples. Structural characterization of the bulk icosahedral phase was accomplished through single-grain high-energy X-ray diffraction. For both growth morphologies, all diffraction peaks could be indexed by a primitive (P-type) icosahedral phase. The two types of morphology do, however, present interesting differences in their respective degrees of quasicrystalline order.

  14. An x-ray diffraction method for semiquantitative mineralogical analysis of chilean nitrate ore

    USGS Publications Warehouse

    John, C.; George, J.; Ericksen, E.

    1997-01-01

    Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.

  15. An X-ray diffraction method for semiquantitative mineralogical analysis of Chilean nitrate ore

    USGS Publications Warehouse

    Jackson, J.C.; Ericksent, G.E.

    1997-01-01

    Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.

  16. X-ray diffraction determination of the dimensions of individual crystals and fragments

    SciTech Connect

    Bega, N.D.

    1987-10-01

    The aim of this investigation was to develop a method of decreasing the error in determination of the dimensions of individual grains and fragments with the use of the diffractometric method. Coarse-grained (grain size up to 0.5 mm) type MCh molybdenum was investigated. The specimens in the form of 2-mm-thick plates were electropolished and annealed to remove surface work hardening. The crystals had a subgrain had a subgrain structure with a subgrain size of about 1 ..mu..m and with components of disorientations of less than 0.5'. The x-ray diffraction determination of the dimensions of the crystals was made by the method of recording of the curves of reflection from individual grains on a DRON-3 diffractometer with an oscillating specimen and a stationary counter located at the angle of diffraction.

  17. Energy-dispersive X-ray diffraction using an annular beam.

    PubMed

    Dicken, A J; Evans, J P O; Rogers, K D; Greenwood, C; Godber, S X; Prokopiou, D; Stone, N; Clement, J G; Lyburn, I; Martin, R M; Zioupos, P

    2015-05-18

    We demonstrate material phase identification by measuring polychromatic diffraction spots from samples at least 20 mm in diameter and up to 10 mm thick with an energy resolving point detector. Within our method an annular X-ray beam in the form of a conical shell is incident with its symmetry axis normal to an extended polycrystalline sample. The detector is configured to receive diffracted flux transmitted through the sample and is positioned on the symmetry axis of the annular beam. We present the experiment data from a range of different materials and demonstrate the acquisition of useful data with sub-second collection times of 0.5 s; equating to 0.15 mAs. Our technique should be highly relevant in fields that demand rapid analytical methods such as medicine, security screening and non-destructive testing. PMID:26074592

  18. Single-crystal X-ray diffraction at megabar pressures and temperatures of thousands of degrees

    SciTech Connect

    Dubrovinsky, L.; Boffa-Ballaran, T.; Glazyrin, K.; Kurnosov, A.; Frost, D.; Merlini, M.; Hanfland, M.; Prakapenka, V.B.; Schouwink, P.; Pippinger, T.; Dubrovinskaia, N. (Heidelberg); (Bayreuth); (UDSDF); (ESRF); (UC)

    2011-08-09

    The most reliable information about crystal structures and their response to changes in pressure and temperature is obtained from single-crystal diffraction experiments. We have developed a methodology to perform single-crystal X-ray diffraction experiments in laser-heated diamond anvil cells and demonstrate that structural refinements and accurate measurements of the thermal equation of state of metals, oxides and silicates from single-crystal intensity data are possible in pressures ranging up to megabars and temperatures of thousands of degrees. A new methodology was applied to solve the in situ high pressure, high temperature structure of iron oxide and study structural variations of iron and aluminum bearing silicate perovskite at conditions of the Earth's lower mantle.

  19. Thermal expansion studies on Inconel-600 ® by high temperature X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Raju, X.-ray diffraction S.; Sivasubramanian, K.; Divakar, R.; Panneerselvam, G.; Banerjee, A.; Mohandas, E.; Antony, M. P.

    2004-02-01

    The lattice thermal expansion characteristics of Inconel-600 ® have been studied by high temperature X-ray diffraction (HT-XRD) technique in the temperature range 298-1200 K. Altogether four experimental runs were conducted on thin foils of about 75-100 ?m thickness. The diffraction profiles have been accurately calibrated to offset the shift in 2 ? values introduced by sample buckling at elevated temperatures. The corrected lattice parameter data have been used to estimate the instantaneous and mean linear thermal expansion coefficients as a function of temperature. The thermal expansion values estimated in the present study show a fair degree of agreement with other existing dilatometer based bulk thermal expansion estimates. The lattice parameter for this alloy at 300 K is found to be 0.3549(1) nm. The mean linear thermal expansivity is found to be 11.4 × 10 -6 K -1.

  20. Coherent X-Ray Diffraction Imaging and Characterization of Strain in Silicon-on-Insulator Nanostructures

    PubMed Central

    Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred; Harder, Ross; Robinson, Ian

    2014-01-01

    Coherent X-ray diffraction imaging (CDI) has emerged in the last decade as a promising high resolution lens-less imaging approach for the characterization of various samples. It has made significant technical progress through developments in source, algorithm and imaging methodologies thus enabling important scientific breakthroughs in a broad range of disciplines. In this report, we will introduce the principles of forward scattering CDI and Bragg geometry CDI (BCDI), with an emphasis on the latter. BCDI exploits the ultra-high sensitivity of the diffraction pattern to the distortions of crystalline lattice. Its ability of imaging strain on the nanometer scale in three dimensions is highly novel. We will present the latest progress on the application of BCDI in investigating the strain relaxation behavior in nanoscale patterned strained silicon-on-insulator (sSOI) materials, aiming to understand and engineer strain for the design and implementation of new generation semiconductor devices. PMID:24955950