Science.gov

Sample records for x-ray spectroscopy instrumentation

  1. The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source

    SciTech Connect

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric

    2015-03-03

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.

  2. The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source

    DOE PAGESBeta

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; et al

    2015-03-03

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.

  3. The X-ray Correlation Spectroscopy instrument attheLinac Coherent Light Source

    PubMed Central

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric

    2015-01-01

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 425?keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120?Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented. PMID:25931061

  4. Solar X-Ray Spectroscopy And Polarimetry By Instrument Ping-M Onboard Interhelioprobe

    NASA Astrophysics Data System (ADS)

    Kotov, Yury; Dergachev, Valentin; Kochemasov, Alexey; Yurov, Vitaly; Tyshkevich, V.; Glyanenko, Alexander; Savchenko, Mikhail; Lazutkov, Vadim; Skorodumov, Dmitry; Trofimov, Yury; Zakharov, Mikhail; Rubtsov, Igor; Kruglov, Evgeniy

    The instrument PING-M for X-ray spectroscopy and polarimetry of solar full disk radiation is described. It will be the part of scientific instrument set for the InterHelioProbe space mission. Instrument consists of three detectors: the Soft X-ray detector (SXRD), the Hard X-ray detector (HXRD) and Hard X-ray polarimeter (PING-P). Spectrometer SXRD is based on a relatively novel type of semiconductor detector SDD (Silicon Drift Detector) that will operate in the energy range 1.5-25 keV, which is similar to GOES X-Ray Sensor (XRS) region. Unlike GOES the SXRD is capable to measure the energy of each photon with high resolution (better 200 eV at 5.9 keV) and operate with high count rate. The X-ray spectra of solar flares obtained by the SXRD should show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. HXRD operates in energy range 15-150 keV. Fast nonorganic scintillator (is based on LaBr3(Ce)) with good energy resolution (?12% at 60keV and ?3.5% at 662keV) is used. Apart from measurement of spectra the value of the break energy point that separates the thermal and non-thermal processes in flare would be revealed. In the talk the results of testing of laboratory models are presented. PING-P Hard X-ray polarimeter consists of active scatterer made of three organic p-terphenyl scintillators and six peripheral scattered radiation detectors made of CsI(Tl) scintillators. Effective area of polarimeter is about 5 cm2 in its energy range. Minimal measurable degree of polarization is 0.9 % for 100 sec exposition and X1 solar flare.

  5. Photon excitation for satellite free x-ray spectroscopy: Instrumentation challenges

    SciTech Connect

    Perera, R.C.C.

    1991-10-01

    First systematic study of satellites in x-ray emission spectra was performed by Deslattes using quasi-monochromatic photon excitation from a group of L{alpha} x-ray sources lying close to the K edge of Cl. He observed significant alterations in the Cl K{beta} spectrum of KCl depending on the character of the excitation radiation and identified the initial state of these satellites as a double vacancy state. Recently, the valence electronic structure of the chlorofluoromethanes were analyzed by chlorine K x-ray emission under satellite-free conditions. These studies were based on the use of synchrotron radiation to eliminate the multivacancy effects that are inherent in conventional x-ray spectroscopy. In this report, satellite free x-ray emission spectra from chlorofluoromethanes will be presented to demonstrate that the simplified spectra can be obtained using selective photon excitation. Results from various research groups world wide, utilizing the tunable photon excitation form synchrotron sources to eliminate the obscuring features in x-ray emission spectra of rare-gas solids (RGS) and metals will be discussed. Also, the technical challenges in utilizing the small phase-space attributes of high brightness from third generation SR sources producing x-ray and vacuum ultra-violet wavelengths to study weak features like satellites in x-ray emission spectra will be presented.

  6. A versatile instrument for ambient pressure x-ray photoelectron spectroscopy: The Lund cell approach

    NASA Astrophysics Data System (ADS)

    Knudsen, Jan; Andersen, Jesper N.; Schnadt, Joachim

    2016-04-01

    During the past one and a half decades ambient pressure x-ray photoelectron spectroscopy (APXPS) has grown to become a mature technique for the real-time investigation of both solid and liquid surfaces in the presence of a gas or vapour phase. APXPS has been or is being implemented at most major synchrotron radiation facilities and in quite a large number of home laboratories. While most APXPS instruments operate using a standard vacuum chamber as the sample environment, more recently new instruments have been developed which focus on the possibility of custom-designed sample environments with exchangeable ambient pressure cells (AP cells). A particular kind of AP cell solution has been driven by the development of the APXPS instrument for the SPECIES beamline of the MAX IV Laboratory: the solution makes use of a moveable AP cell which for APXPS measurements is docked to the electron energy analyser inside the ultrahigh vacuum instrument. Only the inner volume of the AP cell is filled with gas, while the surrounding vacuum chamber remains under vacuum conditions. The design enables the direct connection of UHV experiments to APXPS experiments, and the swift exchange of AP cells allows different custom-designed sample environments. Moreover, the AP cell design allows the gas-filled inner volume to remain small, which is highly beneficial for experiments in which fast gas exchange is required. Here we report on the design of several AP cells and use a number of cases to exemplify the utility of our approach.

  7. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    SciTech Connect

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-12-15

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn{sub 1-x}Co{sub x}O dilute magnetic semiconductor under applied voltages, both at low (?20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected.

  8. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  9. X-ray absorption spectroscopy.

    PubMed

    Yano, Junko; Yachandra, Vittal K

    2009-01-01

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn(4)Ca cluster in Photosystem II is presented. PMID:19653117

  10. Tokamak x ray diagnostic instrumentation

    SciTech Connect

    Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

    1987-01-01

    Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

  11. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed.

  12. Large Area X-ray Spectroscopy Mission

    NASA Technical Reports Server (NTRS)

    Tananbaum, Harvey

    1996-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission study concept has evolved strongly over the last year culminating in the merging of LAXS with the Goddard Space Flight Center (GSFC) proposal for a similar mission, the Next Generation X-ray Observatory (NGXO, PI: Nick White). The resulting merger, re-named the High Throughput X-rays Spectroscopy (HTXS) Mission has also expanded by the inclusion of another SAO proposed new mission concept proposal, the Hard X-Ray Telescope (PI: Paul Gorenstein). The resultant multi-instrument mission retains much of heritage from the LAXS proposal, including the use of multiple satellites for robustness. These mergers resulted from a series of contacts between various team members, via e-mail, telecons, and in-person meetings. The impetus for the mergers was the fundamental similarity between the missions, and the recognition that all three proposal teams had significant contributions to make in the effort to define the next stage in the X-ray exploration of the universe. We have enclosed four items that represent some of the work that has occurred during the first year of the study: first, a presentation at the Leicester meeting, second a presentation that was made to Dan Goldin following the merging of LAXS and NGXO, third a copy of the first announcement for the Workshop, and finally the interim report that was prepared by the HTXS study team towards the end of the first year. This last document provides the foundation for the HTXS Technology Roadmap that is being generated. The HTXS roadmap will define the near-term goals that the merged mission must achieve over the next few years. A web site has been developed and populated that contains much of the material that has been generated over the past year.

  13. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach

    SciTech Connect

    Weinhardt, L.; Fuchs, O.; Blum, M.; Bär, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

    2008-06-17

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

  14. X-ray Spectroscopy of Cooling Cluster

    SciTech Connect

    Peterson, J.R.; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2006-01-17

    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

  15. MSL Chemistry and Mineralogy X-ray Diffraction X-ray Fluorescence (CheMin) Instrument

    NASA Astrophysics Data System (ADS)

    Zimmerman, W.; Blake, D.; Harris, W.; Morookian, J. M.; Randall, D.; Reder, L. J.; Sarrazin, P.

    This paper provides an overview of the Mars Science Laboratory (MSL) Chemistry and Mineralogy X-ray Diffraction (XRD), X-ray Fluorescence (XRF) (CheMin) Instrument, an element of the landed Curiosity rover payload, which landed on Mars in August of 2012. The scientific goal of the MSL mission is to explore and quantitatively assess regions in Gale Crater as a potential habitat for life - past or present. The CheMin instrument will receive Martian rock and soil samples from the MSL Sample Acquisition/Sample Processing and Handling (SA/SPaH) system, and process it utilizing X-Ray spectroscopy methods to determine mineral composition. The Chemin instrument will analyze Martian soil and rocks to enable scientists to investigate geophysical processes occurring on Mars. The CheMin science objectives and proposed surface operations are described along with the CheMin hardware with an emphasis on the system engineering challenges associated with developing such a complex instrument.

  16. Soft X-Ray Absorption Spectroscopy at an X-ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Higley, Daniel; Schlotter, William; Turner, Joshua; Moeller, Stefan; Mitra, Ankush; Tsukamoto, Arata; Marvel, Robert; Haglund, Richard; Durr, Hermann; Stohr, Joachim; Dakovski, Georgi

    2015-03-01

    X-ray free electron lasers, providing coherent, ultrafast, high intensity x-ray pulses, have enabled groundbreaking scattering experiments to probe the atomic structure of materials on femtosecond timescales. Nonetheless, x-ray absorption spectroscopy (XAS), one of the most fundamental and common x-ray techniques practiced at synchrotron light sources, has proven challenging to conduct with satisfactory signal-to-noise levels at soft x-ray energies using free electron laser sources. The ability to routinely collect high quality XAS spectra, especially in a time-resolved manner, will open many new scientific possibilities in the areas of ultrafast demagnetization, phase transitions and chemical dynamics to highlight a few. Here, we report how XAS using total fluorescence yield detection yields high signal-to-noise x-ray absorption spectra at an x-ray free electron laser source. Data were collected over multiple absorption edges on technologically relevant materials. These measurements were recorded on the Soft X-Ray Materials Science instrument at the Linac Coherent Light Source. The results are easily extendable to time-resolved measurements.

  17. Large Area X-Ray Spectroscopy Mission

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1997-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission concept study continues to evolve strongly following the merging of the LAXS mission with the Next Generation X-ray Observatory (NGXO, PI: Nick White) into the re-named High Throughput X-ray Spectroscopy (HTXS) Mission. HTXS retains key elements of the LAXS proposal, including the use of multiple satellites for risk-reduction and cost savings. A key achievement of the program has been the recommendation by the Structure and Evolution of the Universe (SEUS) (April 1997) for a new start for the HTXS mission in the 2000-2004 timeframe.

  18. X-ray Spectroscopy of Stellar Coronae: History - Present - Future

    NASA Astrophysics Data System (ADS)

    Mewe, Rolf

    1996-12-01

    Since in 1948 X-rays were detected from the solar corona, stellar coronae were among the first predicted non-solar X-ray sources. However, because of their relatively low X-ray luminosity, the first non-solar stellar corona was not detected in X-rays until 1974 - twelve years after the discovery of the first non-solar X-ray source. After the 1980s, with the advent of sensitive X-ray imaging instruments on board the EINSTEIN, EXOSAT, and later the ROSAT observatories, the study of stellar coronae has become a vastly growing field of research. These X-ray observations have demonstrated that X-ray emitting coronae are a common feature among stars on the cool side of the Hertzsprung-Russell diagram, with the probable exception of single very cool giant and supergiant stars and A-type dwarfs. The instruments on board these satellites provided for the first time a taste of what can be achieved with X-ray spectroscopy and with the advent of the EUVE (1992) and ASCA (1993), detailed spectroscopy of stellar coronae in the EUV and X-ray regimes got off to a real start. The observations have permitted the identification of coronal material at different temperatures whose existence relates to a range of possible magnetic loop structures in the hot outer atmospheres of stars. The higher spectral resolution of the next generation of spectrometers on board NASA's AXAF (1998), ESA's XMM (1999), and the Japanese ASTRO-E (2000) will improve the determination of coronal temperature structure, abundances, and densities from which loop geometries can be derived and will enable velocity diagnostics. This paper reviews our present knowledge of observational stellar X-ray spectroscopy up to EUVE and ASCA and briefly discusses the perspectives for coronal diagnostics offered by AXAF, XMM, and ASTRO-E.

  19. European XFEL: Soft X-Ray instrumentation

    SciTech Connect

    Molodtsov, S. L.

    2011-12-15

    The currently constructed European X-Ray Free Electron Laser (XFEL) will generate new knowledge in almost all the technical and scientific disciplines that are shaping our daily life-including nanotechnology, medicine, pharmaceutics, chemistry, materials science, power engineering and electronics. On 8 January 2009, civil engineering work (tunnels, shafts, halls) has been started at all three construction sites. In this presentation status and parameters of the European XFEL facility and instrumentation as well as planned research applications particularly in the range of soft X-rays are reviewed.

  20. Fourier transform spectroscopy in the soft X-ray regime: An instrument for the study of the spectrum of helium

    NASA Astrophysics Data System (ADS)

    Locklin, Scott Christopher

    This dissertation is an account of an attempt to develop a novel type of vacuum ultraviolet spectrometer; with the most obvious application being the study of quantum chaos in the electronic spectrum of helium, as a classic example of the three body problem. The three-body problem in the form of the earth-moon-sun system has a history dating back to the ancient Greeks. It remains today an object of intense study in atomic physics. Classically, the problem is chaotic, yet, it remains a quantum mechanical problem. The history of the classical three-body problem is briefly examined. Some ideas in chaotic dynamics are explored, with a numeric investigation of the double-pendulum being used as an example. The quantum mechanics of the helium atom is reviewed, and the tension between classical and quantum physics; and the signs that one expects from the so-called "quantum chaos" are explored. Finally, a novel Fourier transform spectrometer designed to operate in the soft X-ray regime and based on a division-of-wavefront strategy is discussed. This is eventually to be used for the ultra-high resolution study of the helium atom. The instrument is described, and directions for future progress with this system are given.

  1. X-Ray Spectroscopy with PIN diodes

    SciTech Connect

    Ramirez-Jimenez, F. J.

    2006-09-25

    A PIN diode and a low noise preamplifier are included in a nuclear spectroscopy chain for X-ray measurements. This is a laboratory session designed to review the main concepts needed to set up the detector-preamplifier array and to make measurements of X-ray energy spectra with a room temperature PIN diode. The results obtained are compared with those obtained from radioactive sources with a high resolution cooled Si-Li detector.

  2. X-ray spectroscopy of solar flares

    NASA Technical Reports Server (NTRS)

    Culhane, J. L.

    1981-01-01

    After a brief review of the nature of the solar corona, the X-ray output of solar flares is discussed in some detail with particular reference to emission line excitation mechanisms and to the information that can be obtained about the flare plasma from studies of the intensities, profiles and wavelengths of these lines. The X-ray crystal spectrometers on the NASA Solar Maximum Mission spacecraft are described and the interpretation of the spectra obtained with these instruments is discussed.

  3. Bent crystal spectrometer for solar X-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Rapley, C. G.; Culhane, J. L.; Acton, L. W.; Catura, R. C.; Joki, E. G.; Bakke, J. C.

    1977-01-01

    A bent crystal spectrometer employs a collimated beam of X-rays incident on the crystal over a range of Bragg angles determined by the orientation and curvature of the crystal surface. It provides continuous and simultaneous coverage of all X-ray wavelengths within its spectral range. In-flight testing for solar X-ray spectroscopy was performed using a small instrument to supplement the wavelength coverage of several scanning spectrometers used to study solar active regions in the 9-24 A range. Later testing included modifications to alleviate problems caused by ultraviolet radiation. Future usage of the device will include studies of time variable emission from solar flares or discrete galactic X-ray sources, and the first major experiment to utilize bent crystal spectrometers will be the Solar Maximum Mission satellite in 1979.

  4. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    NASA Astrophysics Data System (ADS)

    Seidler, G. T.; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-01

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of 5 keV to 10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 106-107 photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  5. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    SciTech Connect

    Seidler, G. T. Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  6. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements.

    PubMed

    Seidler, G T; Mortensen, D R; Remesnik, A J; Pacold, J I; Ball, N A; Barry, N; Styczinski, M; Hoidn, O R

    2014-11-01

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10(6)-10(7) photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species. PMID:25430123

  7. X-ray spectroscopy on tokamaks

    SciTech Connect

    von Goeler, S.; Bitter, M.; Cohen, S.

    1982-01-01

    During the last decade, the x-ray spectroscopy of high temperature plasmas has witnessed a rapid development. Most of the impulses have come from astrophysics, in particular, from the research on solar flares. On the other hand, the attainment of well-diagnosed, high-temperature laboratory plasmas in laser-pellet implosions and in tokamaks, has precipitated a fertile exchange between theory and experiment. Agreement and very detailed understanding has been reached for a great number of spectra with the result, that x-ray spectroscopy represents today a powerful and reliable new plasma diagnostic with important applications for fusion plasmas as well as solar flares. This paper is a short review of the experimental results from tokamaks.

  8. Imaging and nondispersive spectroscopy of soft X rays using a laboratory X-ray charge-coupled-device system

    NASA Technical Reports Server (NTRS)

    Luppino, Gerard A.; Doty, John P.; Ricker, George R.; Vallerga, John V.; Ceglio, Natale M.

    1987-01-01

    This paper describes the design and performance of a laboratory instrument for imaging and nondispersive spectroscopy of soft X-rays (300 eV to 10 keV) utilizing a virtual-phase CCD. This instrument has achieved a spatial resolution of 22 microns (limited by pixel size) with an overall array area of 584 x 390 pixels. It has achieved an energy resolution of about 140 eV FWHM for single-pixel Fe-55 X-ray events (5.9 keV) with the CCD operated at -30 C. The CCD has been operated in photon-counting mode at room temperature, and X-ray spectra with an energy resolution of about 450 eV at 5.9 keV have been obtained. The low energy X-ray sensitivity of the CCD also has been demonstrated by detecting carbon K-alpha X-rays (277eV).

  9. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1?kHz, 20?W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75??m FWHM x-ray spot size, containing ?106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  10. X-ray instrumentation in astronomy II; Proceedings of the Meeting, San Diego, CA, Aug. 15-17, 1988

    NASA Astrophysics Data System (ADS)

    Golub, Leon

    1988-01-01

    Various papers on X-ray instrumentation in astronomy are presented. Individual topics addressed include: concentrating hard X-ray collector, advanced X-ray Astrophysics Facility high resolution camera, Fano-noise-limited CCDs, linear CCD with enhanced X-ray quantum efficiency, advances in microchannel plate detectors, X-ray imaging spectroscopy with EEV CCDs, large aperture imaging gas scintillation proportional counter, all-sky monitor for the X-ray Timing Explorer, and miniature satellite technology capabilities for space astronomy. Also discussed are: high-resolution X-ray spectroscopy using microcalorimeters, high-throughput X-ray astrophysics cornerstone, gas mixtures for X-ray proportional counters, transmission grating spectrometer for SPEKTROSAT, efficiency of X-ray reflection gratings, soft X-ray spectrographs for solar observations, observability of coronal variations, Berkeley extreme-UV calibration facility, SURF-II radiometric instrumentation calibration facility, and evaluation of toroidal gratings in the EUV.

  11. In situ soft X-ray absorption spectroscopy of flames

    NASA Astrophysics Data System (ADS)

    Frank, Jonathan H.; Shavorskiy, Andrey; Bluhm, Hendrik; Coriton, Bruno; Huang, Erxiong; Osborn, David L.

    2014-10-01

    The feasibility of in situ soft X-ray absorption spectroscopy for imaging carbonaceous species in hydrocarbon flames is demonstrated using synchrotron radiation. Soft X-rays are absorbed by core level electrons in all carbon atoms regardless of their molecular structure. Core electron spectroscopy affords distinct advantages over valence spectroscopy, which forms the basis of traditional laser diagnostic techniques for combustion. In core level spectroscopy, the transition linewidths are predominantly determined by the instrument response function and the decay time of the core-hole, which is on the order of a femtosecond. As a result, soft X-ray absorption measurements can be performed in flames with negligible Doppler and collisional broadening. Core level spectroscopy has the further advantage of measuring all carbonaceous species regardless of molecular structure in the far-edge region, whereas near-edge features are molecule specific. Interferences from non-carbon flame species are unstructured and can be subtracted. In the present study, absorption measurements in the carbon K-edge region are demonstrated in low-pressure ( P total = 20-30 Torr) methane jet flames. Two-dimensional imaging of the major carbonaceous species, CH4, CO2, and CO, is accomplished by tuning the synchrotron radiation to the respective carbon K-edge, near-edge X-ray absorption fine structure (NEXAFS) transitions and scanning the burner.

  12. X-Ray spectroscopy of cooling flows

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea

    1996-01-01

    Cooling flows in clusters of galaxies occur when the cooling time of the gas is shorter than the age of the cluster; material cools and falls to the center of the cluster potential. Evidence for short X-ray cooling times comes from imaging studies of clusters and X-ray spectroscopy of a few bright clusters. Because the mass accretion rate can be high (a few 100 solar mass units/year) the mass of material accumulated over the lifetime of a cluster can be as high as 10(exp 12) solar mass units. However, there is little evidence for this material at other wavelengths, and the final fate of the accretion material is unknown. X-ray spectra obtained with the Einstein SSS show evidence for absorption; if confirmed this result would imply that the accretion material is in the form of cool dense clouds. However ice on the SSS make these data difficult to interpret. We obtained ASCA spectra of the cooling flow cluster Abell 85. Our primary goals were to search for multi-temperature components that may be indicative of cool gas; search for temperature gradients across the cluster; and look for excess absorption in the cooling region.

  13. X-ray spectroscopy of astrophysical plasmas.

    PubMed

    Kahn, Steven M; Behar, Ehud; Kinkhabwala, Ali; Savin, Daniel W

    2002-09-15

    We provide a qualitative review of key X-ray spectral diagnostics of astrophysical plasmas. We begin with a brief discussion of the two major types of equilibria, collisional ionization and photoionization, and then consider the behaviour of hydrogen-like, helium-like, iron L-shell and iron K-shell transitions for these separate cases. Where possible, we discuss explicit examples using high-resolution spectra acquired by the grating instruments on the Chandra and XMM-Newton observatories. PMID:12804237

  14. X-ray spectroscopy of low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Juett, Adrienne Marie

    2004-10-01

    I present high-resolution X-ray grating spectroscopy of neutron stars in low-mass X-ray binaries (LMXBs) using instruments onboard the Chandra X-ray Observatory and the X-ray Multi-Mirror Mission (XMM-Newton). The first part of this thesis concentrates on results from the subset of LMXBs with orbital periods less than an hour, known as ultracompact binaries. Previous low- resolution X-ray spectra of four systems (4U 0614+091, 2S 0918-549, 4U 1543-624, and 4U 1850-087) all contain a broad residual near 0.7 keV which had been attributed to unresolved line emission. I show that this residual is due to an incorrect model of the intervening photoelectric absorption and can be accounted for by allowing a non-standard Ne/O abundance ratio in the intervening material. I propose that there is neon-rich material local to each binary and that the mass donor is a low-mass, neon-rich degenerate dwarf in an ultracompact binary. Follow-up spectroscopy of 2S 0918-549 and 4U 1543-624 with the High Energy Transmission Grating Spectrometer (HETGS) onboard Chandra and the Reflection Grating Spectrometer onboard XMM confirms the excess neutral neon absorption. Interestingly, the Ne/O ratio of 4U 1543-624 varies by a factor of three between the Chandra and XMM observations, supporting the suggestion that some of the absorption originates local to the binaries. I also present X-ray spectroscopy of another ultracompact binary, the accretion-powered millisecond pulsar XTE J0929-314. No emission or absorption features are found in the high-resolution spectrum of this source, and the neutral absorption edge depths are consistent with the estimated interstellar absorption. The second part of this thesis uses LMXBs as probes of the interstellar medium (ISM). High-resolution X-ray studies of ISM absorption features can provide measurements of the relative abundances and ionization fractions of all the elements from carbon through iron. X-ray studies also probe the ISM on larger scales than is possible in the optical and ultraviolet wavebands. I present high-resolution spectroscopy of the oxygen K-shell ISM absorption edge in seven X- ray binaries using Chandra. The best-fit model consists of two absorption edges and five Gaussian absorption lines and can be explained by the recent theoretical calculations of K-shell absorption by neutral and ionized atomic oxygen. Significant oxygen features from dust or molecular components, suggested in previous studies, are not required by the Chandra spectra. These measurements also probe large-scale properties of the ISM, placing a limit on the velocity dispersion of the neutral lines of less than 200 km s-1 and constraining the interstellar ratio of O II/O I to approximately 0.1 and the ratio of O III/O I to less than 0.1. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  15. Miniaturization in x ray and gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.; Wang, Yuzhong J.; Bradley, James G.

    1993-01-01

    The paper presents advances in two new sensor technologies and a miniaturized associated electronics technology which, when combined, can allow for very significant miniaturization and for the reduction of weight and power consumption in x-ray and gamma-ray spectroscopy systems: (1) Mercuric iodide (HgI2) x-ray technology, which allows for the first time the construction of truly portable, high-energy resolution, non-cryogenic x-ray fluorescence (XRF) elemental analyzer systems, with parameters approaching those of laboratory quality cryogenic instruments; (2) the silicon avalanche photodiode (APD), which is a solid-state light sensitive device with internal amplification, capable of uniquely replacing the vacuum photomultiplier tube in scintillation gamma-ray spectrometer applications, and offering substantial improvements in size, ruggedness, low power operation and energy resolution; and (3) miniaturized (hybridized) low noise, low power amplification and processing electronics, which take full advantage of the favorable properties of these new sensors and allow for the design and fabrication of advanced, highly miniaturized x-ray and gamma-ray spectroscopy systems. The paper also presents experimental results and examples of spectrometric systems currently under construction. The directions for future developments are discussed.

  16. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGESBeta

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  17. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  18. New Developments in Femtosecond Soft X-ray Spectroscopy

    SciTech Connect

    Erko, A.; Firsov, A.; Holldack, K.

    2010-06-23

    Recent instrumentation developments in X-ray spectroscopy for ultra-fast time-resolved measurements with soft X-rays done in HZB Berlin during the last years are described. The significant performance improvements achieved this way are based on Fresnel diffraction from structures being fabricated on a surface of a total externally reflecting mirror. The first type of this spectrometer, an off-axis reflection zone plate, has been implemented at the BESSY Femtoslicing setup and shows on the order of 20 times higher flux in the focal plane compared to the classical grating monochromator beamline. It has proven to serve very precise experiments with a time resolution down to 100 fs on magnetic materials after optical laser pulse excitation.

  19. Future X-ray Missions for High Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ohashi, Takaya

    2010-12-01

    The future X-ray missions for high resolution spectroscopy are briefly reviewed. ASTRO-H, planned for launch in 2014, will introduce microcalorimeters for the first time and reveal dynamical motions of hot gas in extended objects. High resolution spectroscopy will also be used for the search of missing baryons with oxygen lines in the local universe. Dedicated X-ray missions are also planned. A very large X-ray observatory IXO, under joint study of NASA, ESA and JAXA, will explore the evolution of the universe using X-ray spectroscopy as a very powerful tool.

  20. Soft X-ray Instruments at LCLS-II

    NASA Astrophysics Data System (ADS)

    Bozek, John; Bostedt, Christoph

    2013-05-01

    The LCLS x-ray free electron laser (FEL) at SLAC National Accelerator Laboratory is being upgraded to include two additional FELs over the next four years. The soft x-ray instruments will be moved to one of these new sources and a new suite of beamlines and instruments will be built. A description of the capabilities of the source and the new beamlines will be presented.

  1. X-ray Photoelectron Spectroscopy (XPS), Rutherford Back Scattering (RBS) studies

    NASA Technical Reports Server (NTRS)

    Neely, W. C.; Bozak, M. J.; Williams, J. R.

    1993-01-01

    X-ray photoelectron spectroscopy (XPS), Rutherford Back Scattering (RBS) studies of each of sample received were completed. Since low angle X-ray could not be performed because of instrumentation problems, Auger spectrometry was employed instead. The results of these measurements for each of the samples is discussed in turn.

  2. High energy resolution off-resonant X-ray spectroscopy

    SciTech Connect

    Wojciech, Blachucki

    2015-01-01

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  3. The Need for X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy R.; Cirtain, Jonathan; Kobayashi, Ken

    2011-01-01

    For over four decades, X-ray, EUV, and UV spectral observations have been used to measure physical properties of the solar atmosphere. During this time, there has been substantial improvement in the spectral, spatial, and temporal resolution of the observations for the EUV and UV wavelength ranges. At wavelengths below 100 Angstroms, however, observations of the solar corona with simultaneous spatial and spectral resolution are limited, and not since the late 1970's have spatially resolved solar X-ray spectra been measured. The soft-X-ray wavelength range is dominated by emission lines formed at high temperatures and provides diagnostics unavailable in any other wavelength range. In this presentation, we will discuss the important science questions that can be answered using spatially and spectrally resolved X-ray spectra.

  4. Charge-Pump Detector for X-ray Correlation Spectroscopy

    SciTech Connect

    Carini, G.A.; Rehak, P.; Chen, W.; Siddons, D.P.

    2011-01-15

    A detector for the X-ray Correlation Spectroscopy (XCS) instrument at the Linac Coherent Light Source (LCLS) in Stanford (CA) is being developed at Brookhaven National Laboratory (BNL). The LCLS is the first operational X-ray free electron laser. It provides extremely bright coherent laser-like X-ray pulses with energy up to 8 keV, shorter than 100 fs and with a repetition rate that will go up to 120 Hz. An ideal detector for XCS experiments should cover a large angular range with high efficiency and provide a proper resolution to resolve the speckle. The requirement for dynamic range is not particularly stringent while a fast readout is needed. In particular, the Charge Pump Detector has to be highly efficient at the energy of 8 keV, provide a dynamic range of 100 photons and a readout noise much better than one photon. The 1024 x 1024 pixels have to be read within the repetition rate of the laser pulses, that is faster than 8 ms. The pixel size of 56 {micro} m x 56 {micro}m is a compromise between charge sharing and small pixel. Working principle and details of the detector will be discussed.

  5. Crystals for astronomical X-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Burek, A.

    1976-01-01

    Crystal spectrometric properties and the factors that affect their measurement are discussed. Theoretical and experimental results on KAP are summarized and theoretical results based on the dynamical theory of X-ray diffraction are given for the acid phthalates as well as for the commonly used planes of ADP, PET and EDDT. Anomalous dispersion is found to be important for understanding the details of crystal Bragg reflection properties at long X-ray wavelengths and some important effects are pointed out. The theory of anomalous dispersion is applied to explain the anomalous reflectivity exhibited by KAP at 23.3 A.

  6. RHESSI hard X-ray and gamma-ray imaging spectroscopy of solar flares

    NASA Astrophysics Data System (ADS)

    Lin, R.; Rhessi Team

    The RHESSI Ramaty High Energy Solar Spectroscopic Imager mission that has provided for the first time gamma-ray imaging high resolution gamma-ray spectroscopy hard X-ray imaging spectroscopy of solar flares We review the major results from the first four years operation including the imaging of five flares in the 2 223 MeV neutron-capture line produced by energetic ions the detection of pre-impulsive phase acceleration of electrons high in the corona the evidence from hard X-ray footpoint motions for energy release and particle acceleration from magnetic reconnection in the corona the inversion of the hard X-ray spectrum to obtain the parent energetic electron energy spectrum the detection of albedo emission and the possible detection of hard X-ray polarization In the context of these pioneering observations we discuss the requirements for the next generation hard X-ray gamma-ray imaging and spectroscopy instrumentation

  7. Instrumentation and analytical methods of an x-ray photoelectron spectroscopy-scanning tunneling microscopy surface analysis system for studying nanostructured materials

    NASA Astrophysics Data System (ADS)

    Lahtonen, K.; Lampimki, M.; Jussila, P.; Hirsimki, M.; Valden, M.

    2006-08-01

    The design and performance of an x-ray photoelectron spectroscopy (XPS)-scanning tunneling microscopy (STM) surface analysis system for studying nanostructured materials are described. The analysis system features electron spectroscopy methods (XPS and Auger electron spectroscopy) in addition to a variable temperature STM. With the analytical methods of the system, surface chemical analysis as well as surface morphology down to atomic resolution can be obtained. The system also provides facilities for sample cleaning, annealing, gas dosing, depth profiling, and surface modifications by sputtering and evaporation. Controlled gas exposures from ultrahigh vacuum to atmospheric pressures in the adjustable temperature range of 120-1100K can be carried out in different chambers. A fast entry air lock allows the transfer of samples and STM tips into the system without air exposures. The surface analysis system uses a common sample holder in all five chambers which are independently pumped and separated from each other by gate valves. Thus, it is possible to make all sample preparations and experiments in situ under well-defined conditions as illustrated by the formation and characterization of strained, self-assembled nano-oxides on Cu(100).

  8. X-ray spectroscopy of manganese clusters

    SciTech Connect

    Grush, M.M.

    1996-06-01

    Much of this thesis represents the groundwork necessary in order to probe Mn clusters more productively than with conventional Mn K-edge XAS and is presented in Part 1. Part 2 contains the application of x-ray techniques to Mn metalloproteins and includes a prognosis at the end of each chapter. Individual Mn oxidation states are more readily distinguishable in Mn L-edge spectra. An empirical mixed valence simulation routine for determining the average Mn oxidation state has been developed. The first Mn L-edge spectra of a metalloprotein were measured and interpreted. The energy of Mn K{beta} emission is strongly correlated with average Mn oxidation state. K{beta} results support oxidation states of Mn(III){sub 2}(IV){sub 2} for the S{sub 1} state of Photosystem II chemical chemically reduced preparations contain predominantly Mn(II). A strength and limitation of XAS is that it probes all of the species of a particular element in a sample. It would often be advantageous to selectively probe different forms of the same element. The first demonstration that chemical shifts in x-ray fluorescence energies can be used to obtain oxidation state-selective x-ray absorption spectra is presented. Spin-dependent spectra can also be used to obtain a more simplified picture of local structure. The first spin-polarized extended x-ray absorption fine structure using Mn K{beta} fluorescence detection is shown.

  9. Beyond hard x-ray photoelectron spectroscopy: Simultaneous combination with x-ray diffraction

    SciTech Connect

    Rubio-Zuazo, Juan; Castro, German R.

    2013-05-15

    Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO{sub 2}/SiO{sub 2} interfaces on Ge-based CMOS devices, and (ii) strain study on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} ultrathin films grown on SrTiO{sub 3}(001) substrate.

  10. Synchrotron radiation, soft-X-ray spectroscopy andnanomaterials

    SciTech Connect

    Guo, Jinghua

    2004-09-13

    Both synchrotron radiation based soft-X-ray absorption spectroscopy (XAS) and resonant soft-X-ray emission spectroscopy (XES) on a variety of nano-structured systems has yielded characteristic fingerprints. With high-resolution monochromatized synchrotron radiation excitation, resonant inelastic X-ray scattering (RIXS) has emerged as a new source of information about electronic structure and excitation dynamics of nanomaterials. The selectivity of the excitation, in terms of energy and polarization, has also facilitated studies of emission anisotropy. Various features observed in resonant emission spectra have been identified and studied.

  11. X-ray Spectroscopy of Galactic Feedback

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel

    2012-05-01

    Diffuse soft X-ray line emission has commonly been used to trace various types of galactic feedback in galaxies. But the exact origins of this emission remain largely uncertain. We have analyzed XMM-Newton RGS spectra of nearby non-AGN galaxies, including both starburst and normal ones. In particular, we have found that the Kalpha triplet of OVII shows that the resonance line is typically weaker than the forbidden and/or inter-combination lines. This suggests that a substantial fraction of the emission may not arise directly from optically thin thermal plasma, as commonly assumed, and may instead originate at its interface with neutral gas via charge exchange. This latter origin naturally explains the observed spatial correlation of the emission with various tracers of cool gas in some of the galaxies. We are also examining alternative scenarios, such as the resonance scattering by the plasma and the relic photo-ionization by AGNs in the recent past, which cannot yet be ruled out, at least in some cases. We will further report results from an analysis of the OVII Kalpha line centroids of the Galactic diffuse X-ray background, as observed with Suzaku in various regions. Such X-ray spectroscopic studies are important to the understanding of the relationship of the emission to various high-energy feedback processes in galaxies.

  12. Soft X-ray induced damage in PVA-based membranes in water environment monitored by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Spth, Andreas; Fink, Rainer H.

    2014-10-01

    The effect of synchrotron X-ray flux in a soft X-ray scanning-transmission microspectroscope (STXM) instrument on the chemical structure of air-filled poly(vinyl alcohol) (PVA) based microbubbles and their stabilizing shell has been examined. Prolonged soft X-ray illumination of the particles in aqueous suspension leads to the breaking of the microbubbles' protective polymer shell and substantial chemical changes. The latter were clarified via a micro-spot C K-edge near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with further respect to the absorbed X-ray doses. Our results revealed a continuous degradation of the PVA network associated with formation of carbonyl- and carboxyl-containing species as well as an increased content of unsaturated bonds. The observed effects must be taken into account in studies of micro- and nanostructured polymer materials utilizing X-rays.

  13. A high-resolution large-acceptance analyzer for X-ray fluorescence and Raman spectroscopy

    SciTech Connect

    Bergmann, Uwe; Cramer, Stephen P.

    2001-08-02

    A newly designed multi-crystal X-ray spectrometer and its applications in the fields of X-ray fluorescence and X-ray Raman spectroscopy are described. The instrument is based on 8 spherically curved Si crystals, each with a 3.5 inch diameter form bent to a radius of 86 cm. The crystals are individually aligned in the Rowland geometry capturing a total solid angle of 0.07 sr. The array is arranged in a way that energy scans can be performed by moving the whole instrument, rather than scanning each crystal by itself. At angles close to back scattering the energy resolution is between 0.3 and 1 eV depending on the beam dimensions at the sample. The instrument is mainly designed for X-ray absorption and fluorescence spectroscopy of transition metals in dilute systems such as metalloproteins. First results of the Mn K{beta} (3p -> 1s) emission in photosystem II are shown. An independent application of the instrument is the technique of X-ray Raman spectroscopy which can address problems similar to those in traditional soft X-ray absorption spectroscopies, and initial results are presented.

  14. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  15. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    NASA Astrophysics Data System (ADS)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Bregman, Joel; Garcia, Michael; Zhang, W.; Kelley, R.; Kilbourne, C.; Bandler, S.

    2012-09-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe SMBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a microcalorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high-resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arcsec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer- review.

  16. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  17. Advanced X-ray Astrophysics Facility (AXAF) science instrumentation

    NASA Technical Reports Server (NTRS)

    Dailey, C. C.; Cumings, N. P.; Winkler, C. E.

    1985-01-01

    AXAF is to be equipped with a high performance X-ray telescope for the conduction of detailed astrophysics research. The observatory is to be serviced by the Space Station or the Shuttle, depending on capabilities during the AXAF operational period. The AXAF is to utilize the wavelength band from 1.2 A to 120 A. Attention is given to the AXAF science team, the AXAF observatory characteristics, the AXAF science instrument definition program, the Advanced Charge Coupled Device (CCD) Imaging Spectrometer (ACIS), the High Resolution Camera (HRC), the Bragg Crystal Spectrometer (BCS), the X-ray Spectrometer (XRS), the transmission gratings, and the program schedule.

  18. X-ray spectroscopy to determine line coincidences

    SciTech Connect

    Burkhalter, P.G.; Charatis, G.; Rockett, P.

    1983-01-31

    X-ray spectroscopy in the 12 to 15 A region of L-shell lines from selected transition elements was performed in a joint Naval Research Laboratory - KMS Fusion, Inc. experiment. The accurate wavelengths determined in this work will be utilized in selecting potential pumping candidates in future x-ray lasing schemes. Specifically, high-resolution x-ray spectra were collected under controlled geometric and target conditions using both red and green light laser excitation in the KMS Chroma laser. Three groups of x-ray spectra were collected with highly-dispersive x-ray crystals at wavelengths centered at 12.543, 13.781 and 14.458 A corresponding to He- and H-like lines from fluorine. Two specially-designed flat crystal spectrographs employing film shutters were used with pairs of beryl and TAP crystals. The spectra from potential lasant and pump candidates could be recorded on the same spectrogram to aid in identifying x-ray line coincidences. In cases where wavelengths were measured in both the red and green laser work, agreement within 1 to 3 mA was obtained for the L-series x-ray lines. Within this accuracy range, five L series x-ray lines, mostly 2p-3d transitions from the metals Cr, Mn, and Ni, had wavelength values coincident to K-series lines in fluorine.

  19. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect

    Guo, J.-H.

    2005-07-30

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  20. X-Ray Spectroscopy Using Low Temperature Detectors

    NASA Technical Reports Server (NTRS)

    Porter, Frederick

    2011-01-01

    After several decades of development, a significant amount of the effort in low temperature detectors (LTDs) is concentrated on deploying real-world experiments. This has resulted from a great deal of basic detector physics performed by several generations of students, post-docs, and researchers. One of the most fruitful applications of LTDs is in non-dispersive x-ray spectroscopy. LTD x-ray spectrometers are broadband, efficient, moderately high-resolution, and can handle moderately high count rates. However, they require significantly more power, mass, and infrastructure compared to traditional solid state x-ray spectrometers, and cannot achieve, at least at low energies, the resolving powers achieved with dispersive spectrometers. In several fields, however, LTDs have or will make a significant contribution. In this review, we will discuss x-ray spectroscopy in general, the fields of science where LTDs are making a significant impact, and some of the current and near-term LTD spectrometers.

  1. Development and applications of grazing exit micro X-ray fluorescence instrument using a polycapillary X-ray lens*1

    NASA Astrophysics Data System (ADS)

    Emoto, T.; Sato, Y.; Konishi, Y.; Ding, X.; Tsuji, K.

    2004-08-01

    A polycapillary X-ray lens is an effective optics to obtain a ?m-size X-ray beam for micro-X-ray fluorescence spectrometry (?-XRF). We developed a ?-XRF instrument using a polycapillary X-ray lens, which also enabled us to perform Grazing Exit ?-XRF (GE-?-XRF). The evaluated diameter of the primary X-ray beam was 48 ?m at the focal distance of the X-ray lens. Use of this instrument enabled two-dimensional mapping of the elemental distributions during growth of the plant "Quinoa". The results of the mapping revealed elemental transition during growth. In addition, a small region of thin film was analyzed by GE-?-XRF. We expect that GE-?-XRF will become an effective method of estimating the film thickness of a small region.

  2. New focusing multilayer structures for X-ray plasma spectroscopy

    SciTech Connect

    Bibishkin, M S; Luchin, V I; Salashchenko, N N; Chernov, V V; Chkhalo, N I; Kazakov, E D; Shevelko, A P

    2008-02-28

    New focusing short-period multilayer structures are developed which opens up wide possibilities for X-ray and VUV spectroscopy. Multilayer structures are deposited on a flat surface of a mica crystal which is then bent to a small-radius cylinder. The use of this structure in a von Hamos spectrometer for X-ray laser plasma diagnostics is demonstrated. (interaction of laser radiation with matter. laser plasma)

  3. Broad band X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Serlemitsos, P. J.; Petre, R.; Glasser, C.; Birsa, F.

    1984-01-01

    The Broad Band X-Ray Telescope (BBXRT) experiment has been designed for high sensitivity, moderate resolution spectrophotometry of cosmic sources in the range 0.5 to 12 keV. Principal elements are two co-aligned imaging telescopes with cooled Si(Li) detectors at each focus. The mirror design uses an approximate geometry of tightly nested, conical, foil reflectors that allow a large filling factor (high throughput) at small grazing angles (high energy response). Each detector consists of a cluster of five elements defined with grooves on a single crystal. This arrangement affords some spatial resolution as well as a means of substantial background reduction. Shuttle borne measurements will typically be of 2000 s duration for sources with a flux of 10 to the -12 erg/sq cm-s.

  4. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering.

    PubMed

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael; Alonso-Mori, Roberto; Bergmann, Uwe; Bordage, Amlie; Cammarata, Marco; Canton, Sophie E; Dohn, Asmus O; van Driel, Tim Brandt; Fritz, David M; Galler, Andreas; Glatzel, Pieter; Harlang, Tobias; Kjr, Kasper S; Lemke, Henrik T; Mller, Klaus B; Nmeth, Zoltn; Ppai, Mtys; Sas, Norbert; Uhlig, Jens; Zhu, Diling; Vank, Gyrgy; Sundstrm, Villy; Nielsen, Martin M; Bressler, Christian

    2016-02-18

    In liquid phase chemistry dynamic solute-solvent interactions often govern the path, ultimate outcome, and efficiency of chemical reactions. These steps involve many-body movements on subpicosecond time scales and thus ultrafast structural tools capable of capturing both intramolecular electronic and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3](2+), with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering patterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited solute. By simultaneous combination of both methods only, we can extract new information about the solvation dynamic processes unfolding during the first picosecond (ps). The measured bulk solvent density increase of 0.2% indicates a dramatic change of the solvation shell around each photoexcited solute, confirming previous ab initio molecular dynamics simulations. Structural changes in the aqueous solvent associated with density and temperature changes occur with ?1 ps time constants, characteristic for structural dynamics in water. This slower time scale of the solvent response allows us to directly observe the structure of the excited solute molecules well before the solvent contributions become dominant. PMID:26783685

  5. The soft x-ray materials research (SXR) instrument at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Turner, Joshua J.; Krupin, Oleg; Schlotter, William

    2011-03-01

    The soft x-ray materials science research (SXR) instrument completed commissioning in June 2010 and began experimental user operations shortly afterwards. This instrument delivers intense, ultra-short soft x-ray pulses from the Linac Coherent Light Source, the free-electron laser at the SLAC National Accelerator Laboratory. These are fully coherent and can contain up to 1013 photons per pulse (or about 3 mJ per pulse) with bunch lengths from 300 femtoseconds down to sub-10 femtoseconds. The instrument includes a monochromator whose energy range spans energies from 480 eV - 2000 eV and a Kirkpatrick-Baez mirror system to create a focal spot of a few microns in diameter. The SXR instrument has a diverse set of end stations available to conduct a large variety of experimental techniques such as coherent imaging, resonant x-ray diffraction, photoelectron spectroscopy, and x-ray emission and/or absorption. First studies include fields spanning liquid femtosecond chemistry and time-resolved resonant inelastic x-ray scattering to ordering in solids and ultrafast magnetization. An overview of the instrument and its capabilities will be given.

  6. EUV spectroscopy of high-redshift x-ray objects

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.; Barstow, M. A.

    2010-07-01

    As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGN for example, will be redshifted into the EUV waveband. Consequently, a wealth of critical spectral diagnostics, provided by, for example, the Fe L-shell complex and the O VII/VIII lines, will be lost to future planned X-ray missions (e.g., IXO, Gen-X) if operated at traditional X-ray energies. This opens up a critical gap in performance located at short EUV wavelengths, where critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nanolaminate replication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs. We conclude with a discussion of a breakthrough technology, nanolaminate replication, which enables such instruments.

  7. Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides

    SciTech Connect

    Tobin, J G

    2011-03-17

    The subjects of discussion included: VUV photoelectron spectroscopy, X-ray photoelectron spectroscopy, Synchrotron-radiation-based photoelectron spectroscopy, Soft x-ray absorption spectroscopy, Soft x-ray emission spectroscopy, Inverse photoelectron spectroscopy, Bremstrahlung Isochromat Spectroscopy, Low energy IPES, Resonant inverse photoelectron spectroscopy.

  8. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser

    SciTech Connect

    Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Kameshima, Takashi; Inubushi, Yuichi; Sato, Takahiro; Hatsui, Takaki; Yabashi, Makina; Obara, Yuki; Misawa, Kazuhiko; Bhattacharya, Atanu; Kurahashi, Naoya; Ogi, Yoshihiro; Suzuki, Toshinori; Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198

    2013-09-23

    We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (ΔE/E ∼ 5 × 10{sup −3}), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ∼3 × 10{sup −3}, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.

  9. X-ray induced damage in DNA monitored by X-ray photoelectron spectroscopy

    SciTech Connect

    Ptasinska, Sylwia; Stypczynska, Agnieszka; Nixon, Tony; Mason, Nigel J.; Klyachko, Dimitri V.; Sanche, Leon

    2008-08-14

    In this work, the chemical changes in calf thymus DNA samples were analyzed by X-ray photoelectron spectroscopy (XPS). The DNA samples were irradiated for over 5 h and spectra were taken repeatedly every 30 min. In this approach the X-ray beam both damages and probes the samples. In most cases, XPS spectra have complex shapes due to contributions of C, N, and O atoms bonded at several different sites. We show that from a comparative analysis of the modification in XPS line shapes of the C 1s, O 1s, N 1s, and P 2p peaks, one can gain insight into a number of reaction pathways leading to radiation damage to DNA.

  10. Effect of X-ray flux on polytetrafluoroethylene in X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1982-01-01

    The effect of the X-ray flux in X-ray photoelectron spectroscopy (STAT) on the constitution of the polytetrafluoroethylene (PTFE) surface has been examined. The radiation dose rate for our specimen was about 10 to the 7th rad/s. The structure, magnitude and binding energy of the C(1s) and F(1s) features of the XPS spectrum and the mass spectrum of gaseous species evolved during irradiation are observed. The strong time dependence of these signals over a period of several hours indicated that the surface constitution of PTFE is greatly affected by this level of radiation dose. The results are consistent with the development of a heavily cross-linked or branched structure in the PTFE surface region and the evolution of short chain fragments into the gas phase.

  11. [Development of Nanotechnology for X-Ray Astronomy Instrumentation

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2004-01-01

    This Research Grant provides support for development of nanotechnology for x-ray astronomy instrumentation. MIT has made significant progress in several development areas. In the last year we have made considerable progress in demonstrating the high-fidelity patterning and replication of x-ray reflection gratings. We developed a process for fabricating blazed gratings in silicon with extremely smooth and sharp sawtooth profiles, and developed a nanoimprint process for replication. We also developed sophisticated new fixturing for holding thin optics during metrology without causing distortion. We developed a new image processing algorithm for our Shack-Hartmann tool that uses Zernike polynomials. This has resulted in much more accurate and repeatable measurements on thin optics.

  12. Development of polycapillary x-ray optics for synchrotron spectroscopy

    NASA Astrophysics Data System (ADS)

    Popecki, Mark A.; Bennis, Daniel; Adams, Bernhard; O'Mahony, Aileen; Craven, Christopher A.; Foley, Michael R.; Minot, Michael J.; Renaud, Joseph M.; Bond, Justin L.; Stochaj, Michael E.; Attenkofer, Klaus; Stavitski, Eli

    2015-08-01

    A new spectrometer design that will result in a highly efficient, easy to handle, low-cost, high-resolution spectroscopy system with excellent background suppression is being developed for the NSLS-II Inner-Shell Spectroscopy beamline. This system utilizes non-diffractive optics comprised of fused and directed glass capillary tubes that will be used to collect and pre-collimate fluorescence photons. There are several advantages enabled by this design; a large energy range is accessible without modifying the s-stem, a large collection angle is achieved per detection unit: 4-5% of the full solid angle, easy integration in complex and harsh environments is enabled due to the use of a pre-collimation system as a secondary source for the spectrometer, and background from a complex sample environment can be easily and efficiently suppressed. The polycapillary X-ray focusing optics segment of this application has been under development. This includes improvement in manufacturing methods of polycapillary structure for x-ray optics, forming the polycapillary structure to produce X-ray optics to achieve the required solid angle collection and transmission efficiency, and measurement of X-ray focusing properties of the optics using an X-ray source. Two promising advances are large open area ratios of 80% or more, and the possibility of adding coatings in the capillaries using Atomic Layer Deposition techniques to improve reflection efficiency.

  13. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    National Institute of Standards and Technology Data Gateway

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  14. EUV Spectroscopy of High-redshift X-ray Objects

    NASA Astrophysics Data System (ADS)

    Kowalski, Michael Paul; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.

    2010-02-01

    As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGNs for example, will have their maxima redshifted into the EUV waveband ( 90-912 /0.1-0.01 keV). Consequently, a wealth of spectral diagnostics, provided by, for example, the Fe L-shell complex ( 60-6 /0.2-2.0 keV) and the O VII/VIII lines ( 20 /0.5 keV), will be lost to X-ray instruments operating at traditional ( 0.5-10 keV) and higher X-ray energies. There are precedents in other wavebands. For example, HST evolutionary studies will become largely the province of JWST. Despite the successes of EUVE, the ROSAT WFC, and the Chandra LETG, the EUV continues to be unappreciated and under-utilized, partly because of a preconception that absorption by neutral galactic Hydrogen in the ISM prevents any useful extragalactic measurements at all EUV wavelengths and, until recently, by a lack of a suitable enabling technology. Thus, if future planned X-ray missions (e.g., IXO, Gen-X) are optimized again for traditional X-ray energies, their performance (effective area, resolving power) will be cut off at ultrasoft X-ray energies or at best be radically reduced in the EUV. This opens up a critical gap in performance located right at short EUV wavelengths, where the critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nano-laminate fabrication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs.

  15. A rocket borne instrument for the study of soft X-ray emission from cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Moore, W. E.; Garmire, G. P.

    1974-01-01

    Details about a rocket-borne instrument designed for studying the various characteristics of soft X-ray emission from cosmic X-ray sources in the energy range of 0.2 to 3 keV are presented. The X-ray detector consists of a bank of four multilayer, wall-less proportional counters, each with an area of 400 sq cm. The detectors are covered by windows of 1.4-micron polypropylene and are maintained at a constant pressure in flight using a gas control system. Two of the detectors are equipped with 0.4- by 10-deg collimators for mapping the spatial distribution of soft X-rays from extended X-ray sources. A pair of balanced filters consisting of oxygen and CF4 are used for detecting oxygen emission lines.

  16. Improved x-ray spectroscopy with room temperature CZT detectors.

    PubMed

    Fritz, Shannon G; Shikhaliev, Polad M; Matthews, Kenneth L

    2011-09-01

    Compact, room temperature x-ray spectroscopy detectors are of interest in many areas including diagnostic x-ray imaging, radiation protection and dosimetry. Room temperature cadmium zinc telluride (CZT) semiconductor detectors are promising candidates for these applications. One of the major problems for CZT detectors is low-energy tailing of the energy spectrum due to hole trapping. Spectral post-correction methods to correct the tailing effect do not work well for a number of reasons; thus it is advisable to eliminate the hole trapping effect in CZT using physical methods rather than correcting an already deteriorated energy spectrum. One method is using a CZT detector with an electrode configuration which modifies the electric field in the CZT volume to decrease low-energy tailing. Another method is to irradiate the CZT surface at a tilted angle, which modifies depth of interaction to decrease low-energy tailing. Neither method alone, however, eliminates the tailing effect. In this work, we have investigated the combination of modified electric field and tilted angle irradiation in a single detector to further decrease spectral tailing. A planar CZT detector with 10 × 10 × 3 mm³ size and CZT detector with 5 × 5 × 5 mm³ size and cap-shaped electrode were used in this study. The cap-shaped electrode (referred to as CAPture technology) modifies the electric field distribution in the CZT volume and decreases the spectral tailing effect. The detectors were investigated at 90° (normal) and 30° (tilted angle) irradiation modes. Two isotope sources with 59.6 and 122 keV photon energies were used for gamma-ray spectroscopy experiments. X-ray spectroscopy was performed using collimated beams at 60, 80 and 120 kVp tube voltages, in both normal and tilted angle irradiation. Measured x-ray spectra were corrected for K x-ray escape fractions that were calculated using Monte Carlo methods. The x-ray spectra measured with tilted angle CAPture detector at 60, 80 and 120 kVp tube voltages were compared to corresponding theoretical spectra. The low-energy tailing was nearly completely eliminated from 59.6 and 122 keV isotope spectra, and 60, 80 and 120 kVp x-ray spectra, when CAPture detector was used with 30° tilted angle irradiation. It is concluded that using a CZT detector with modified electric field in tilted angle configuration resolves problem of the tailing effect in CZT detectors, opening promising possibilities in gamma-ray and x-ray spectroscopy applications. PMID:21841213

  17. Biological X-ray absorption spectroscopy and metalloproteomics.

    PubMed

    Ascone, Isabella; Strange, Richard

    2009-05-01

    In the past seven years the size of the known protein sequence universe has been rapidly expanding. At present, more then five million entries are included in the UniProtKB/TrEMBL protein database. In this context, a retrospective evaluation of recent X-ray absorption studies is undertaken to assess its potential role in metalloproteomics. Metalloproteomics is the structural and functional characterization of metal-binding proteins. This is a new area of active research which has particular relevance to biology and for which X-ray absorption spectroscopy is ideally suited. In the last three years, biological X-ray absorption spectroscopy (BioXAS) has been included among the techniques used in post-genomics initiatives for metalloprotein characterization. The emphasis of this review is on the progress in BioXAS that has emerged from recent meetings in 2007-2008. Developments required to enable BioXAS studies to better contribute to metalloproteomics throughput are also discussed. Overall, this paper suggests that X-ray absorption spectroscopy could have a higher impact on metalloproteomics, contributing significantly to the understanding of metal site structures and of reaction mechanisms for metalloproteins. PMID:19395808

  18. Robust infrared filters for X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, N. A.; Ullom, J. N.; Beall, J. A.; Hilton, G. C.; Deiker, S.; Doriese, W. B.; Irwin, K. D.; Reintsema, C. D.; Vale, L. R.; Xu, Y.

    2004-03-01

    One challenge to using cryogenic detectors for X-ray spectroscopy on a scanning electron microscope is the implementation of infrared blocking filters. In order to achieve high X-ray transmission, these filters can be as thin as 250 nm and consequently are extremely fragile. To avoid breaking the filters, the cryostat must be evacuated slowly and by a trained operator. In this presentation, we describe the filter system currently used at NIST. In addition, we describe recent efforts to build a more robust and easy-to-use filter system. We present initial efforts to strengthen conventional aluminum-parylene filters with micromachined silicon grids that only reduce X-ray transmission by 2%. We also describe an automated pump-out system based on a commercial mass-flow controller.

  19. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    SciTech Connect

    Serrano, A.; Rodriguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Castro, G. R.; Monton, C.; Garcia, M. A.

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  20. Tracking of azobenzene isomerization by X-ray emission spectroscopy.

    PubMed

    Ebadi, H

    2014-09-11

    Cis-trans isomerizations are among the fundamental processes in photochemistry. In azobenzene or its derivatives this dynamics is, due to its reversibility, one of the reactions widely used in photostimulation of molecular motors or in molecular electronics. Though intensively investigated in the optical regime, no detailed study exists in the X-ray regime so far. Because the X-ray emission spectroscopy echoes the electronic structure sensitive to the geometry, this theoretical report based on the density functional theory and its time-dependent version presents different nitrogen K-edge X-ray emission spectra for cis and trans isomers with close interrelation to their electron configuration. Considering the spectrum along the isomerization path, these structural signatures can be utilized to probe the isomerization dynamics in the excited molecule. The scheme can further be generalized to the element specific photoreactions. PMID:25134009

  1. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy.

    PubMed

    Serrano, A; Rodrguez de la Fuente, O; Collado, V; Rubio-Zuazo, J; Monton, C; Castro, G R; Garca, M A

    2012-08-01

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10(-3) to 10(-5), depending on the particular experiment. PMID:22938268

  2. An upgraded x-ray spectroscopy diagnostic on MST.

    PubMed

    Clayton, D J; Almagri, A F; Burke, D R; Forest, C B; Goetz, J A; Kaufman, M C; O'Connell, R

    2010-10-01

    An upgraded x-ray spectroscopy diagnostic is used to measure the distribution of fast electrons in MST and to determine Z(eff) and the particle diffusion coefficient D(r). A radial array of 12 CdZnTe hard-x-ray detectors measures 10-150 keV Bremsstrahlung from fast electrons, a signature of reduced stochasticity and improved confinement in the plasma. A new Si soft-x-ray detector measures 2-10 keV Bremsstrahlung from thermal and fast electrons. The shaped output pulses from both detector types are digitized and the resulting waveforms are fit with Gaussians to resolve pileup and provide good time and energy resolution. Lead apertures prevent detector saturation and provide a well-known etendue, while lead shielding prevents pickup from stray x-rays. New Be vacuum windows transmit >2?keV x-rays, and additional Al and Be filters are sometimes used to reduce low energy flux for better resolution at higher energies. Measured spectra are compared to those predicted by the Fokker-Planck code CQL3D to deduce Z(eff) and D(r). PMID:21034007

  3. Probing Ultrafast Chemical Dynamics with X-ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiao, Yishuo; Adams, Bernhard; Rose-Petruck, Christoph; Argonne National Lab Collaboration

    2015-03-01

    X-ray spectroscopy of solutions yields useful information about atoms and molecules including properties of molecular orbitals, molecular structure, and the surrounding solvation shells of the probed molecules. A streak camera with 2ps time resolution was built and positioned in the 7IDC hutch at the Advanced Photon Source, Argonne National Lab. Laser pump X-ray probe experiments measured the X-ray absorption spectra of Fe(CN)64- and MnO4- solutions using this streak camera. The solutions were pumped with a 266nm 50fs laser pulses, and then probed with monochromatic X-ray pulses of energies covering the K-edge of the Fe and the pre-edge of Mn, respectively. The changes of absorption features of the photoexcited samples at specific x-ray energies were measured with picosecond time resolution. The dynamics of not only the solute molecules, but also the water molecules in the solutes' solvation shells were studied. Oscillatory phenomena caused by the rotation of water molecules were observed.

  4. Advanced X-ray Astrophysics Facility (AXAF) science instruments

    NASA Technical Reports Server (NTRS)

    Winkler, Carl E.; Dailey, Carroll C.; Cumings, Nesbitt P.

    1991-01-01

    The overall AXAF program is summarized, with particular emphasis given to its science instruments. The science objectives established for AXAF are to determine the nature of celestial objects, from normal stars to quasars, to elucidate the nature of the physical processes which take place in and between astronomical objects, and to shed light on the history and evolution of the universe. Attention is given to the AXAF CCD imaging spectrometer, which is to provide spectrally and temporally resolved imaging, or, in conjunction with transmission grating, high-resolution dispersed spectral images of celestial sources. A high-resolution camera, an X-ray spectrometer, and the Bragg Crystal Spectrometer are also discussed.

  5. Ambient-Pressure X-ray Photoelectron Spectroscopy

    SciTech Connect

    Bluhm, Hendrik; Bluhm, Hendrik; Mun, Bongjin Simon; Salmeron, Miquel

    2008-04-01

    This workshop focused on the application of ambient pressure X-ray photoelectron spectroscopy (APXPS) to environmental science and catalysis. Pioneering work on APXPS was done in the early 1970's by Hans and Kai Siegbahn et al., who demonstrated that XPS can operate at pressures of up to 1 Torr. A new type of APXPS instrument that utilizes a differentially-pumped electrostatic lens system at the ALS in 2001 increased the pressure limit to above 5 Torr, which opened the door to XPS experiments on water and aqueous solutions at temperatures above the melting point, in equilibrium with the vapor pressure of water. The impact of APXPS on fields such as environmental and atmospheric science as well as heterogeneous catalysis is already visible in numerous high impact publications. Today several other synchrotron facilities around the world have already implemented beam lines for APXPS or planning to do so in the near future. The goal of this workshop (organized by Miquel Salmeron (Molecular Foundry, LBNL), B. Simon Mun (Advanced Light Source, LBNL) and Hendrik Bluhm (Chemical Sciences Division, LBNL)) was to bring together researchers interested in the technique, review its current progress, discuss scientific opportunities and desirable technical improvements as well as consider the consequences of the increased user demand on the existing beam lines and ways to expand the availability of time.

  6. What can be Learned from X-ray Spectroscopy Concerning Hot Gas in Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2007-01-01

    What can be learned from x-ray spectroscopy in observing hot gas in local bubble and charge exchange processes depends on spectral resolution, instrumental grasp, instrumental energy band, signal-to-nose, field of view, angular resolution and observatory location. Early attempts at x-ray spectroscopy include ROSAT; more recently, astronomers have used diffuse x-ray spectrometers, XMM Newton, sounding rocket calorimeters, and Suzaku. Future observations are expected with calorimeters on the Spectrum Roentgen Gamma mission, and the Solar Wind Charge Exchange (SWCX). The Geospheric SWCX may provide remote sensing of the solar wind and magnetosheath and remote observations of solar CMEs moving outward from the sun.

  7. Simultaneous X-ray and optical spectroscopy of the Oef supergiant λ Cephei

    NASA Astrophysics Data System (ADS)

    Rauw, G.; Hervé, A.; Nazé, Y.; González-Pérez, J. N.; Hempelmann, A.; Mittag, M.; Schmitt, J. H. M. M.; Schröder, K.-P.; Gosset, E.; Eenens, P.; Uuh-Sonda, J. M.

    2015-08-01

    Context. Probing the structures of stellar winds is of prime importance for the understanding of massive stars. Based on their optical spectral morphology and variability, it has been suggested that the stars in the Oef class feature large-scale structures in their wind. Aims: High-resolution X-ray spectroscopy and time-series of X-ray observations of presumably single O-type stars can help us understand the physics of their stellar winds. Methods: We have collected XMM-Newton observations and coordinated optical spectroscopy of the O6 Ief star λ Cep to study its X-ray and optical variability and to analyse its high-resolution X-ray spectrum. We investigate the line profile variability of the He ii λ 4686 and Hα emission lines in our time series of optical spectra, including a search for periodicities. We further discuss the variability of the broadband X-ray flux and analyse the high-resolution spectrum of λ Cep using line-by-line fits as well as a code designed to fit the full high-resolution X-ray spectrum consistently. Results: During our observing campaign, the He ii λ 4686 line varies on a timescale of ~18 h. On the contrary, the Hα line profile displays a modulation on a timescale of 4.1 days which is likely the rotation period of the star. The X-ray flux varies on timescales of days and could in fact be modulated by the same 4.1-day period as Hα, although both variations are shifted in phase. The high-resolution X-ray spectrum reveals broad and skewed emission lines as expected for the X-ray emission from a distribution of wind-embedded shocks. Most of the X-ray emission arises within less than 2 R∗ above the photosphere. Conclusions: The properties of the X-ray emission of λ Cep generally agree with the expectations of the wind-embedded shock model. There is mounting evidence for the existence of large-scale structures that modulate the Hα line and about 10% of the X-ray emission of λ Cep. Based on observations collected with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the USA (NASA), and with the TIGRE telescope (La Luz, Mexico) and the 1.5 m telescope at Observatoire de Haute Provence (France).

  8. The GEMS X-Ray Polarlimeter: Instrument Concpet and Calibration Requirements

    NASA Technical Reports Server (NTRS)

    Jahoda, Keith

    2010-01-01

    The instrument and detector concepts for the Gravity and Extreme Magnetism Small Explorer (GEMS) X-ray polarimetry mission will be presented. The calibration requirements for astrophysical X-ray polarimeters in general and GEMS in particular will be discussed.

  9. Crystal optics for precision x-ray spectroscopy on highly charged ionsconception and proof

    NASA Astrophysics Data System (ADS)

    Beyer, H. F.; Gassner, T.; Trassinelli, M.; He, R.; Spillmann, U.; Bana?, D.; Blumenhagen, K.-H.; Bosch, F.; Brandau, C.; Chen, W.; Dimopoulou, Chr; Frster, E.; Grisenti, R. E.; Gumberidze, A.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Jagodzinski, P.; Kmpfer, T.; Kozhuharov, Chr; Lestinsky, M.; Liesen, D.; Litvinov, Yu A.; Loetzsch, R.; Manil, B.; Mrtin, R.; Nolden, F.; Petridis, N.; Sanjari, M. S.; Schulze, K. S.; Schwemlein, M.; Simionovici, A.; Steck, M.; Sthlker, Th; Szabo, C. I.; Trotsenko, S.; Uschmann, I.; Weber, G.; Wehrhan, O.; Winckler, N.; Winters, D. F. A.; Winters, N.; Ziegler, E.

    2015-07-01

    The experimental investigation of quantum-electrodydamic contributions to the binding energies of inner shells of highly charged heavy ions requires an accurate spectroscopy in the region of hard x-rays suitable at a limited source strength. For this purpose the focusing compensated asymmetric Laue crystal optics has been developed and a twin-spectrometer assembly has been built and commissioned at the experimental storage ring of the GSI Helmholtzzentrum Darmstadt. We characterize the crystal optics and demonstrate the usefulness of the instrumentation for accurate spectroscopy of both stationary and fast moving x-ray sources. The experimental procedures discussed here may also be applied for other spectroscopic studies where a transition from conventional germanium x-ray detectors to crystal spectrometers seems too demanding because of low source intensity.

  10. Atomic Multiplets in X-ray Spectroscopies of Solids

    NASA Astrophysics Data System (ADS)

    Delley, Bernard; Uldry, Anne-Christine

    2013-03-01

    The electronic structures of compounds involving open d- and f- shell are studied frequently by X-ray and electron spectroscopies. For a better understanding of the multiplets arising in spectra involving one or more open shells, we have developed recently an easy to use program multiX,[2] which is available to download.[3] This first step allows the inclusion of the crystal environment as a crystal field entered simply as positions and charges of a cluster of atoms around the core hole site. This often gives valuable insights in the case of x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray spectroscopy (RIXS) measurements. However, in many cases it is desirable to allow for hybridization of the open shell electrons with the orbitals of neighbor atoms. This requires dealing with a significantly larger active Hilbert space. This is addressed with our recent Lanczos-based procedure to calculate spectra. First results will be discussed. Swiss SNF grant 200021-129970 is gratefully acknowledged.

  11. Pushing the Boundaries of Suborbital Soft X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    McEntaffer, Randall

    There are two primary objectives for this investigation. First, we propose to launch a preexisting payload to perform scientific investigations. Second, we propose to build a new payload which will integrate and demonstrate key technologies vital to future X-ray observatories. These efforts will train graduate students and prepare junior researchers to be major contributors to the next suite of NASA missions. We propose to increase the ability of gratings to obtain high resolution at energies below 1 keV. The concept that will be developed in this proposed investigation will be capable of meeting the requirements of future X-ray observatories. In addition, the design could be utilized effectively on smaller, Explorer class missions as pathfinders to the larger observatories while providing important scientific insights along the way. For this investigation, we propose to fly two separate, but related, rocket payloads. The first payload, christened OGRESS, has already been constructed and successfully flown three times. OGRESS is optimized to observe diffuse X-ray sources with a wire-grid collimating optic, parallel groove sinusoidal gratings, and Gaseous Electron Multiplier (GEM) detectors and is capable of attaining high resolution of E/dE ~ 25-80 in the 1/4 keV band. OGRESS will take high resolution spectra of the Vela Supernova Remnant (SNR) in the 1/4 keV band. This flight will provide the highest resolution spectra yet taken of Vela in this band and will produce a PhD thesis. The second payload, OGRE, will demonstrate key technologies necessary for the next X-ray observatory and provide even higher resolution of E/dE ~ 1000-2000 between 0.2 1.0 keV. To improve upon the resolution of OGRESS, OGRE will integrate several key technologies which have already been developed in a laboratory setting, but have not been flight proven. OGRE will use a modified Wolter telescope made from slumped glass to provide a smaller focus and increase throughput. Slumped glass optics are planned for every future large X-ray mission and flight-proving the design is extremely important. The gratings will be radially grooved and blazed to reduce grating aberrations and to focus the spectrum to one side of zero-order. Gratings of this type have been well developed by the IXO Off- Plane X-ray Grating Spectrometer concept study, but have not been flight proven. The spectrum will be focused onto high spatial resolution CCD detectors. OGRE will draw heavily from the heritage gained from OGRESS. OGRE will observe Capella. Due to its high flux and spectral line density, Capella is an ideal target for showcasing the resolution capabilities of our instrument. As an important calibration target, our improved resolution measurements will be extremely helpful for many future X-ray observations. OGRESS has already provided three thesis projects for past graduate students. The upgrades and flights proposed here will produce at least two more PhD theses. This program in hands-on training of young scientists in the techniques of instrumental X-ray astronomy has proven very successful over nearly three decades, leading to high rates of launch, publication, graduation, and flight qualification of instrumental PI's. It will also provide full experiment cycle experience - design, fabrication, tolerancing, assembly, flight-qualification, calibration, integration, launch, and data analysis - with reflection gratings, GEM and CCD detectors, and other technologies suitable for adaptation to NASA's major missions. The University of Iowa and University of Colorado programs in suborbital X-ray astronomy represent an exciting mix of compelling science, cutting- edge technology development, and training of young scientists.

  12. Probing deeper by hard x-ray photoelectron spectroscopy

    SciTech Connect

    Risterucci, P.; Renault, O. Martinez, E.; Delaye, V.; Detlefs, B.; Zegenhagen, J.; Gaumer, C.; Grenet, G.; Tougaard, S.

    2014-02-03

    We report an hard x-ray photoelectron spectroscopy method combining high excitation energy (15?keV) and improved modelling of the core-level energy loss features. It provides depth distribution of deeply buried layers with very high sensitivity. We show that a conventional approach relying on intensities of the core-level peaks is unreliable due to intense plasmon losses. We reliably determine the depth distribution of 1 ML La in a high-?/metal gate stack capped with 50?nm a-Si. The method extends the sensitivity of photoelectron spectroscopy to depths beyond 50?nm.

  13. Energy dispersive X-ray spectroscopy with microcalorimeters

    NASA Astrophysics Data System (ADS)

    Hollerith, C.; Wernicke, D.; Bühler, M.; Feilitzsch, F. v.; Huber, M.; Höhne, J.; Hertrich, T.; Jochum, J.; Phelan, K.; Stark, M.; Simmnacher, B.; Weiland, W.; Westphal, W.

    2004-03-01

    Shrinking feature sizes in semiconductor device production as well as the use of new materials demand innovation in device technology and material analysis. X-ray spectrometers based on superconducting sensor technology are currently closing the gap between fast energy dispersive spectroscopy (EDS) and high-resolution wavelength dispersive spectroscopy (WDS). This work reports on the successful integration of iridium/gold transition edge sensors in the first industrially used microcalorimeter EDS. The POLARIS microcalorimeter system is installed at the failure analysis lab FA5 at Infineon Technologies AG in Neuperlach (Munich) and is used in routine analysis.

  14. Operando X-ray absorption and infrared fuel cell spectroscopy

    SciTech Connect

    Lewis, Emily A.; Kendrick, Ian; Jia, Qingying; Grice, Corey; Segre, Carlo U.; Smotkin, Eugene S.

    2011-11-17

    A polymer electrolyte fuel cell enables operando X-ray absorption and infrared spectroscopy of the membrane electrode assembly catalytic layer with flowing fuel and air streams at controlled temperature. Time-dependent X-ray absorption near edge structure spectra of the Pt and Ni edge of Pt based catalysts of an air-breathing cathode show that catalyst restructuring, after a potential step, has time constants from minutes to hours. The infrared Stark tuning plots of CO adsorbed on Pt at 100, 200, 300 and 400 mV vs. hydrogen reference electrode were obtained. The Stark tuning plots of CO adsorbed at 400 mV exhibit a precipitous drop in frequency coincident with the adsorption potential. The turn-down potential decreases relative to the adsorption potential and is approximately constant after 300 mV. These Stark tuning characteristics are attributed to potential dependent adsorption site selection by CO and competitive adsorption processes.

  15. X-ray Photoelectron Spectroscopy of Isolated Nanoparticles.

    PubMed

    Sublemontier, Olivier; Nicolas, Christophe; Aureau, Damien; Patanen, Minna; Kintz, Harold; Liu, Xiaojing; Gaveau, Marc-Andr; Le Garrec, Jean-Luc; Robert, Emmanuel; Barreda, Flory-Anne; Etcheberry, Arnaud; Reynaud, Ccile; Mitchell, James B; Miron, Catalin

    2014-10-01

    X-ray photoelectron spectroscopy (XPS) is a very efficient and still progressing surface analysis technique. However, when applied to nano-objects, this technique faces drawbacks due to interactions with the substrate and sample charging effects. We present a new experimental approach to XPS based on coupling soft X-ray synchrotron radiation with an in-vacuum beam of free nanoparticles, focused by an aerodynamic lens system. The structure of the Si/SiO2 interface was probed without any substrate interaction or charging effects for silicon nanocrystals previously oxidized in ambient air. Complete characterization of the surface was obtained. The Si 2p core level spectrum reveals a nonabrupt interface. PMID:26278452

  16. X-ray absorption spectroscopy of photoionised plasmas at Z

    NASA Astrophysics Data System (ADS)

    Mancini, R. C.

    2011-06-01

    Photoionised plasmas are found in astrophysical environments such as x-ray binaries, active galactic nuclei, and in the accretion disks of compact objects. The Z facility at Sandia National Laboratories is a powerful source of x-rays that enables us to produce and study in the laboratory photoionised plasmas relevant for astrophysics under well characterized conditions. We discuss an experimental and theory/modeling effort in which the intense x-ray flux emitted at the collapse of a z-pinch experiment conducted at Z is employed to produce a neon photoionized plasma. The broad-band x-ray radiation flux from the z-pinch is used to both create the neon photoionised plasma and provide a source of backlighting photons to study the atomic kinetics through K-shell line absorption spectroscopy. The plasma is contained in a cm-scale gas cell located at about 5 cm from the z-pinch, and the filling pressure is carefully monitored all the way to shot time since it determines the particle number density of the plasma. Time-integrated and gated transmission spectra are recorded with a TREX spectrometer equipped with two elliptically-bent crystals and a set of slits to record up to six spatially-resolved spectra per crystal in the same shot. The spectral resolution is approximately 1000. The transmission data shows line absorption transitions in several ionization stages of neon including Be-, Li-, He- and H-like Ne ions. Detailed modeling calculations of the absorption spectra are used to interpret and model the high-resolution transmission spectra recorded in the Z experiments with the goal of extracting the ion population distribution of the plasma. Furthermore, the analysis of the gated data provides a window into the dynamics of the photoionized plasma. The data analysis is performed with the aid of a novel application of genetic algorithms to plasma spectroscopy.

  17. 28 CFR 552.13 - X-ray, major instrument, fluoroscope, or surgical intrusion.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false X-ray, major instrument, fluoroscope, or... INSTITUTIONAL MANAGEMENT CUSTODY Searches of Housing Units, Inmates, and Inmate Work Areas § 552.13 X-ray, major... reasons only, with the inmate's consent. (b) The institution physician may authorize use of an X-ray...

  18. 28 CFR 552.13 - X-ray, major instrument, fluoroscope, or surgical intrusion.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false X-ray, major instrument, fluoroscope, or... INSTITUTIONAL MANAGEMENT CUSTODY Searches of Housing Units, Inmates, and Inmate Work Areas § 552.13 X-ray, major... reasons only, with the inmate's consent. (b) The institution physician may authorize use of an X-ray...

  19. 28 CFR 552.13 - X-ray, major instrument, fluoroscope, or surgical intrusion.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false X-ray, major instrument, fluoroscope, or... INSTITUTIONAL MANAGEMENT CUSTODY Searches of Housing Units, Inmates, and Inmate Work Areas § 552.13 X-ray, major... reasons only, with the inmate's consent. (b) The institution physician may authorize use of an X-ray...

  20. 28 CFR 552.13 - X-ray, major instrument, fluoroscope, or surgical intrusion.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false X-ray, major instrument, fluoroscope, or... INSTITUTIONAL MANAGEMENT CUSTODY Searches of Housing Units, Inmates, and Inmate Work Areas § 552.13 X-ray, major... reasons only, with the inmate's consent. (b) The institution physician may authorize use of an X-ray...

  1. 28 CFR 552.13 - X-ray, major instrument, fluoroscope, or surgical intrusion.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false X-ray, major instrument, fluoroscope, or... INSTITUTIONAL MANAGEMENT CUSTODY Searches of Housing Units, Inmates, and Inmate Work Areas § 552.13 X-ray, major... reasons only, with the inmate's consent. (b) The institution physician may authorize use of an X-ray...

  2. X-ray absorption spectroscopy of liquid surface

    NASA Astrophysics Data System (ADS)

    Watanabe, Iwao; Tanida, Hajime; Kawauchi, Sigehiro; Harada, Makoto; Nomura, Masaharu

    1997-09-01

    An apparatus has been constructed for x-ray absorption spectroscopy of elements at air/aqueous solution interface. Its surface sensitivity is gained from glancing incidence of synchrotron radiation under total reflection condition. The absorption is detected by total conversion He ion-yield method. This apparatus was operated at the beam line 7C of Photon Factory, where the incident photon beam comes from a sagittal focus double-crystal monochromator via a 70-cm-long bent mirror. The mirror focuses the beam vertically and changes the beam direction downward by 1 mrad to irradiate solution surface. The essential requirement of this technique, ripple-free liquid surface at accurate position, was attained by introducing a trough on a floating boat, continuous surface level monitoring, and an automatic Z-stage control. The x-ray absorption edge jump demonstrated that surface concentration of bromide ion follows the Langmuir type adsorption for tetraalkylammonuim bromide solution. By comparing the jump values for surface-active and -inactive bromide salt solutions, the detecting depth of the present technique was determined to be 8.8 nm. An extended x-ray absorption fine structure analysis of bromide ion segregated to the surface by stearyltrimethylammonium cation indicated that its solvation structure is different from that of bulk.

  3. X-ray Absorption Spectroscopy in Mineralogy: A Review

    NASA Astrophysics Data System (ADS)

    Mottana, Annibale

    2003-01-01

    The number of mineral species known to date rapidly approaches 4000, and yet they represent but a small fraction of all the known inorganic and organic compounds. Nevertheless, minerals represent an ideal field of activity for X-ray absorption spectroscopy (XAS), because the investigation of their crystal-chemical peculiarities takes an enormous advantage of the property of this method of being atom-selective, even in the presence of a wide range of competing atoms located in similar structural environments. As a matter of fact, XAS on minerals proved to be a useful probing method as early as for W. Kossel's pioneer studies of in the 1930's, just after the fine structures occurring at and near the absorption edge had been first detected. However, XAS did not really become consolidated in mineral studies until the 1980's, when synchrotron sources became available to users. A concise, but complete review of the historical and recent applications of XAS to minerals and to their analogues synthesized for geological/geophysical purposes i.e., to better understand the mechanisms by which the Earth evolves, is here given. Special reference will be made to transition metals (Ca, Ti, Cr, Mn, Fe, Ni) which absorb in the hard X-ray spectral region (> 4 KeV) and to the geologically-significant elements (O, Na, Mg, Al, Si, S and K) which absorb in the soft X-ray region (500-4000 eV).

  4. X-ray Imaging Spectroscopy for Planetary Science

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph P.; Kenter, A.; Murray, S.; Elvis, M.; Branduardi-Raymont, G.; Garcia, M.; Forman, W.; Geary, J.; McCoy, T.; Smith, R.

    2012-10-01

    We are developing monolithic backside illuminated CMOS detectors as soft X-ray imaging spectrometers for high energy astrophysics missions. These devices represent a significant advance over CCD technology and have unique properties that would make them ideal sensors for various planetary mission concepts. The benefits of CMOS include higher levels of integration which provide maximum pixel gain and therefore very low noise, very fast parallel output signal chains for high frame rates. CMOS imaging detectors have zero or one charge transfer so that they can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs provide near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines. Possible mission concepts for these sensors include X-ray fluorescence studies of rocky bodies, and investigation of the magnetospheres of the gas giants and their moons. In this presentation, we discuss the current state of our technology development and outline its scientific potential for planetary physics with particular emphasis on studies of the Jovian magnetosphere. We contrast the capabilities of our instrument with that which has been achieved by the current generation of Earth-orbiting X-ray observatories.

  5. X-Ray Spectroscopy of Accretion Shocks in Young Stars

    NASA Astrophysics Data System (ADS)

    Brickhouse, Nancy S.

    2011-01-01

    High resolution X-ray spectroscopy of accreting young stars is providing new insights into the physical conditions of the shocked plasma. While young stars exhibit exceedingly active coronae (>10 MK) with highly energetic flares, the relatively low temperature ( 3 MK), high density (>1012 cm-3) accretion shock can only be clearly distinguished at high spectral resolution. The nearby Classical T Tauri star TW Hydrae was the first to show evidence of accretion using 50 ks with the Chandra High Energy Transmission Grating (HETG). More recently a Chandra HETG Large Program (489 ks obtained over the course of one month) on TW Hydrae has found evidence for a new type of coronal structure. In the standard model, the accreting gas shocks near the atmosphere of the star and gently settles onto the surface as it slows down and cools. On TW Hydrae the observed post-shock region is not this predicted settling flow, since its mass is 30 times the mass of material that passes through the shock. Instead the stellar atmosphere must be heated to soft X-ray emitting temperatures. Of the CTTS systems observed with the gratings on Chandra and XMM-Newton not all show the accretion shock signature; however, all of them show excess soft X-ray emission related to accretion. The production of highly charged ions in the proximity of both open and closed magnetic field lines has important implications for coronal heating, winds and jets in the presence of accretion. This work is supported by the Chandra X-ray Observatory through a NASA contract with the Smithsonian Astrophysical Observatory.

  6. Stochastic stimulated electronic x-ray Raman spectroscopy.

    PubMed

    Kimberg, Victor; Rohringer, Nina

    2016-05-01

    Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the [Formula: see text] transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations. PMID:26958585

  7. Stochastic stimulated electronic x-ray Raman spectroscopy

    PubMed Central

    Kimberg, Victor; Rohringer, Nina

    2016-01-01

    Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the O1s→π* transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations. PMID:26958585

  8. X-ray absorption spectroscopy of liquid surfaces

    NASA Astrophysics Data System (ADS)

    Wilson, Kevin Roger

    By combining synchrotron-based x-ray spectroscopy with liquid microjets, we have developed new techniques for the investigation of the geometric and electronic structure of volatile liquid surfaces. An endstation has been constructed to allow windowless introduction of volatile liquids to the UHV environment of synchrotron soft x-ray beamlines (Advanced Light Source, LBL). The high vacuum (10-5 torr) obtained in the photon-microjet interaction volume, allows the use of standard surface science charged particle detection to analyze the ions and electrons produced via core-level excitation. The difference in escape depths of ions and electrons from condensed phase samples yields convenient surface-bulk contrast via the total ion (TIY) (˜5 A) versus the total electron (TEY) (˜20--50 A) yields. This contrast has been exploited in an effort to understand the surface hydrogen bond structure of liquid water and methanol. The temperature profile of these microjets has been characterized under the high vacuum conditions essential for measuring x-ray absorption "action" spectra. We find only moderate cooling of larger diameter (>10 microns) microjets, while smaller jets undergo rapid evaporation, yielding liquid water temperatures as low as -36°C. Extended x-ray absorption fine structure (EXAFS) is a common technique that is an ideal probe of local "liquid structure" (near neighbor distance, coordination numbers, etc.). Moreover, the EXAFS TIY and TEY "action" spectra allow the direct comparison of surface and bulk liquid properties. In both liquid water and methanol, a sizable surface relaxation of the intermolecular O-O distance is observed. On average water molecules at the liquid surface are ˜6% further apart than their bulk counterparts. Near edge x-ray absorption fine structure (NEXAFS) has been shown to be extremely sensitive to not only to the formation of hydrogen bonds, but more importantly to the detailed nature (acceptor vs. donor) of such bonds. TIY NEXAFS spectra combined with DFT analysis has yielded evidence for at least two different species at the liquid water surface. The sharp spectral structure in the TIY signal provides a clear fingerprint for "acceptor-only" H2O molecules at the liquid water interface. Analysis of mass-selected NEXAFS spectra provide corroborating evidence for surface single donor molecules that have been previously identified by SFG spectroscopy. (Abstract shortened by UMI.)

  9. X-Ray Absorption Spectroscopy of Uranium Dioxide

    SciTech Connect

    Tobin, J G

    2010-12-10

    After the CMMD Seminar by Sung Woo Yu on the subject of the x-ray spectroscopy of UO2, there arose some questions concerning the XAS of UO2. These questions can be distilled down to these three issues: (1) The validity of the data; (2) The monchromator energy calibration; and (3) The validity of XAS component of the figure shown. The following will be shown: (1) The data is valid; (2) It is possible to calibrate the monchromator; and (3) The XAS component of the above picture is correct. The remainder of this document is in three sections, corresponding to these three issues.

  10. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    SciTech Connect

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-ray Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.

  11. Near Edge X-Ray Absorption Fine Structure Spectroscopy with X-Ray Free-Electron Lasers

    SciTech Connect

    Bernstein, D.P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stohr, J.; Beye, M.; Schlotter, W.F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Fohlisch, A.; /Hamburg U.

    2009-12-11

    We demonstrate the feasibility of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the Free-Electron Laser at Hamburg (FLASH), used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example we recorded the {sup 3}D{sub 1} N{sub 4,5}-edge absorption resonance of La{sup 3+}-ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  12. X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples

    PubMed Central

    George, Graham N.; Pickering, Ingrid J.; Pushie, M. Jake; Nienaber, Kurt; Hackett, Mark J.; Ascone, Isabella; Hedman, Britt; Hodgson, Keith O.; Aitken, Jade B.; Levina, Aviva; Glover, Christopher; Lay, Peter A.

    2012-01-01

    As synchrotron light sources and optics deliver greater photon flux on samples, X-ray-induced photo-chemistry is increasingly encountered in X-ray absorption spectroscopy (XAS) experiments. The resulting problems are particularly pronounced for biological XAS experiments. This is because biological samples are very often quite dilute and therefore require signal averaging to achieve adequate signal-to-noise ratios, with correspondingly greater exposures to the X-ray beam. This paper reviews the origins of photo-reduction and photo-oxidation, the impact that they can have on active site structure, and the methods that can be used to provide relief from X-ray-induced photo-chemical artifacts. PMID:23093745

  13. Near edge x-ray absorption fine structure spectroscopy with x-ray free-electron lasers

    SciTech Connect

    Bernstein, D. P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stoehr, J.; Beye, M.; Schlotter, W. F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Foehlisch, A.

    2009-09-28

    We demonstrate the feasibility of near edge x-ray absorption fine structure spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the FEL at Hamburg used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection, and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example, we recorded the {sup 3}D{sub 1} N{sub 4,5} edge absorption resonance of La{sup 3+} ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  14. Small pixel CZT detector for hard X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  15. Pushing the boundaries of x-ray grating spectroscopy in a suborbital rocket

    NASA Astrophysics Data System (ADS)

    DeRoo, Casey; McEntaffer, Randall L.; Schultz, Ted; Zhang, William W.; Murray, Neil J.; O'Dell, Stephen L.; Cash, Webster

    2013-09-01

    The Off-Plane Grating Rocket Experiment (OGRE) will greatly advance the current capabilities of soft X-ray grating spectroscopy and provide an important technological bridge towards future X-ray observatories. The OGRE sounding rocket will fly an innovative X-ray spectrograph operating at resolving powers of R ~ 2000 and effective areas < 100 cm2 in the 0.2-1.5 keV bandpass. This represents a factor of two improvement in spectral resolution over currently operating instruments. OGRE will observe the astrophysical X-ray calibration source Capella, which has a linedominated spectrum and will showcase the full capabilities of the OGRE spectrograph. We outline the mission design for OGRE and provide detailed overviews of relevant technologies to be integrated into the payload, including slumped glass mirrors, blazed reflection gratings customized for the off-plane mount, and electron-multiplying CCDs (EMCCDs). The OGRE mission will bring these components to a high technology readiness level, paving the way for the use of such a spectrograph on future X-ray observatories or Explorer-class missions.

  16. Hubbard Model Approach to X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahmed, Towfiq

    We have implemented a Hubbard model based first-principles approach for real-space calculations of x-ray spectroscopy, which allows one to study excited state electronic structure of correlated systems. Theoretical understanding of many electronic features in d and f electron systems remains beyond the scope of conventional density functional theory (DFT). In this work our main effort is to go beyond the local density approximation (LDA) by incorporating the Hubbard model within the real-space multiple-scattering Green's function (RSGF) formalism. Historically, the first theoretical description of correlated systems was published by Sir Neville Mott and others in 1937. They realized that the insulating gap and antiferromagnetism in the transition metal oxides are mainly caused by the strong on-site Coulomb interaction of the localized unfilled 3d orbitals. Even with the recent progress of first principles methods (e.g. DFT) and model Hamiltonian approaches (e.g., Hubbard-Anderson model), the electronic description of many of these systems remains a non-trivial combination of both. X-ray absorption near edge spectra (XANES) and x-ray emission spectra (XES) are very powerful spectroscopic probes for many electronic features near Fermi energy (EF), which are caused by the on-site Coulomb interaction of localized electrons. In this work we focus on three different cases of many-body effects due to the interaction of localized d electrons. Here, for the first time, we have applied the Hubbard model in the real-space multiple scattering (RSGF) formalism for the calculation of x-ray spectra of Mott insulators (e.g., NiO and MnO). Secondly, we have implemented in our RSGF approach a doping dependent self-energy that was constructed from a single-band Hubbard model for the over doped high-T c cuprate La2-xSrxCuO4. Finally our RSGF calculation of XANES is calculated with the spectral function from Lee and Hedin's charge transfer satellite model. For all these cases our calculated x-ray spectra yield reasonable agreement with experiment. The above work has been implemented as an extension into the FEFF9 code, and we have also included notes for the new and modified key features of this development. Aside from the x-ray spectroscopy of correlated systems, we also present our calculation of the ground state local electronic structure of DNA nucleotides on graphene, and the transmission currents through graphene nanopores. Our calculation and analysis provide theoretical guidelines for developing DNA sequencing techniques using scanning tunneling spectroscopy (STS) and nanopore experiment. Evolved as a secondary focus of this thesis, we have added an additional chapter discussing our calculation of DNA-graphene hybrids.

  17. Electron and X-Ray Spectroscopy of Electron-Atom Collisions.

    NASA Astrophysics Data System (ADS)

    Chaudhry, Muhammad Afzal

    Available from UMI in association with The British Library. Requires signed TDF. Electron-ion and x-ray-ion coincidence techniques have been used to measure the relative values of double -differential cross-sections for n-fold ionization, DDCS(n+), for helium, argon, krypton and xenon atoms. In these experiments a focussed beam of energetic electrons is crossed with a dilute beam of thermal gas atoms. The electron-atom interaction can produce ionization of the atom when the incident electron energy is greater than its ionization potential. In electron-ion coincidence experiments the electrons ejected from an atom as a result of the ionization are energy analysed in a 30^ circ parallel plate electrostatic analyser and are detected in coincidence with the product ions which are also analysed with respect to charge by a time-of-flight (TOF) type analyser. The delay time of the ions with respect to the detected electron gives information about the charge state of the ions. From these delay time spectra true coincidences are measured for every charge state n up to n = 9 to determine (Chaudhry et al. 1986; Hippler et al. 1984b) relative values of DDCS(n+) as a function of the detected electron energy and the incident electron energy. These values have been compared with other experimental data as well as theoretical values from literature, where possible. In x-ray-ion coincidence experiments with xenon atoms, x-rays produced as a result of the de-excitation of the ionized atoms are detected with a liquid nitrogen cooled hyperpure germanium (HPGe) detector, in coincidence with the product ions which are analysed by a TOF type analyser. The time delay of the detected ions with respect to the detected x-ray gives information about the charge states of these ions. A Bragg type crystal x-ray spectrometer (Jitschin et al. 1984) has also been set up for high resolution x-ray spectroscopy. In this instrument collimated x-rays are specularly reflected from a plane crystal which is rotated by a micro-computer-controlled stepping motor. A constant gas flow type proportional counter with a large thin window monitors the reflected x-rays. Pulses from the proportional counter are fed to an MCA in MCS mode which is also controlled by the same micro-computer. An x-ray spectrum can be built up in the MCA giving about 10-15 times better resolution than the HPGe detector in the region of the characteristic x-rays emitted by the ionized rare gas atoms.

  18. X-ray Spectroscopy and Magnetism in Mineralogy

    NASA Astrophysics Data System (ADS)

    Sainctavit, Philippe; Brice-Profeta, Sandrine; Gaudry, Emilie; Letard, Isabelle; Arrio, Marie-Anne

    The objective of this paper is to present the kind of information that can be gained in the field of mineralogy from the use of x-ray magnetic spectroscopies. We review some of the questions that are unsettled and that could benefit from an interdisciplinary approach where magnetism, spectroscopy and mineralogy could be mixed. Most of the attention is focused on iron and some other 3d transition elements. The mineralogy of planetary cores and its relation with known meteorites are exemplified. The various oxide phases in the mantle and the nature of iron in these phases is also underlined. The presence of transition elements in insulating minerals and its relation with macroscopic properties such as the color of gemstones are reviewed. Finally an introduction to paleomagnetism is given with a special attention to nanomaghemites.

  19. X-ray photoelectron spectroscopy and x-ray excited Auger spectroscopy studies of manganese thiophosphate intercalated with sodium ions

    SciTech Connect

    Silipigni, L.; Quattrone, T.; Schiro, L.; Grasso, V.; Scolaro, L. Monsu; De Luca, G.; Salvato, G.

    2008-12-15

    Polycrystalline powders of Na{sub 2x}Mn{sub 1-x}PS{sub 3} have been synthesized from layered MnPS{sub 3} material by successive ion-exchange intercalation of potassium and sodium ions. Their x-ray photoelectron spectroscopy (XPS) and x-ray excited Auger spectroscopy spectra have been measured at room temperature using Mg K{alpha} (1253.6 eV) x-ray source. In particular, the Mn, P, and S 2p and Na 1s and 2p core-level regions and the Na Auger KL{sub 23}L{sub 23} transition have been investigated. All the analyzed XPS core-level spectra display a single-peak structure, suggesting the absence of nonequivalent atoms of Na, Mn, P, and S. The manganese XPS spectrum shows, as observed in MnPS{sub 3} and in its cesium and potassium intercalation compounds, typical shake-up satellites, suggesting that the Mn-S bond is yet mainly ionic in nature. The comparison with the XPS spectra relative to MnPS{sub 3} and its potassium intercalation compound (K{sub 2x}Mn{sub 1-x}PS{sub 3}) does not emphasize any relevant difference in the binding energy positions of the investigated core levels, indicating that sodium ion intercalation process does not alter the electronic properties of pure host matrix. Moreover, Na 2p core levels are discrete and well localized in agreement with the hypothesis of a weak link between the guest (the Na{sup +} ions) and the host lattice (the negatively charged Mn{sub 1-x}PS{sub 3} sheets). Such a hypothesis finds confirmation by the calculation of the Na modified Auger parameter.

  20. Phase-resolved X-ray spectroscopy and spectral energy distribution of the X-ray soft polar RS Caeli

    NASA Astrophysics Data System (ADS)

    Traulsen, I.; Reinsch, K.; Schwope, A. D.; Schwarz, R.; Walter, F. M.; Burwitz, V.

    2014-02-01

    Context. RS Cae is the third target in our series of XMM-Newton observations of soft X-ray-dominated polars. Aims: Our observational campaign aims to better understand and describe the multiwavelength data, the physical properties of the system components, and the short- and long-term behavior of the component fluxes in RS Cae. Methods: We employ stellar atmosphere, stratified accretion-column, and widely used X-ray spectral models. We fit the XMM-Newton spectra, model the multiband light curves, and opt for a mostly consistent description of the spectral energy distribution. Results: Our XMM-Newton data of RS Cae are clearly dominated by soft X-ray emission. The X-ray light curves are shaped by emission from the main accretion region, which is visible over the whole orbital cycle, interrupted only by a stream eclipse. The optical light curves are formed by cyclotron and stream emission. The XMM-Newton X-ray spectra comprise a black-body-like and a plasma component at mean temperatures of 36 eV and 7 keV. The spectral fits give evidence of a partially absorbing and a reflection component. Multitemperature models, covering a broader temperature range in the X-ray emitting accretion regions, reproduce the spectra appropriately well. Including archival data, we describe the spectral energy distribution with a combination of models based on a consistent set of parameters and derive a lower limit estimate of the distance d ? 750 pc. Conclusions: The high bolometric soft-to-hard flux ratios and short-term variability of the (X-ray) light curves are characteristic of inhomogeneous accretion. RS Cae clearly belongs in the group of polars that show a very strong soft X-ray flux compared to their hard X-ray flux. The different black-body fluxes and similar hard X-ray and optical fluxes during the XMM-Newton and ROSAT observations show that soft and hard X-ray emission are not directly correlated. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  1. Confirmation of sample quality: X-ray and ultraviolet photoelectron spectroscopies of uranium dioxide

    SciTech Connect

    Yu, S.-W.; Tobin, J. G.

    2011-03-15

    X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy have been utilized to demonstrate the sample quality of a UO{sub 2} specimen. This specimen is to be used in further studies with bremsstrahlung isochromat spectroscopy and Fano spectroscopy.

  2. CUBIC - A non-dispersive Diffuse X-ray Background spectrometer. [Cosmic Unresolved X-ray Background Instrument

    NASA Technical Reports Server (NTRS)

    Burrows, David N.; Skinner, Mark A.; Antunes, Alexander J. D.; Catalano, Mark A.; Cocklin, Eric J.; Engel, Leland G.; Entingh, Timothy J.; Garmire, Gordon P.; Green, Roland; Kelly, Douglas A.

    1992-01-01

    The Cosmic Unresolved X-ray Background Instrument using CCDs (CUBIC) is designed to obtain spectral observations of the Diffuse X-ray Background (DXRB) with moderate spectral resolution over the energy range 0.2-10 keV, using mechanically-collimated CCDs. At this time, it is the only planned satellite payload devoted to the study of the spectrum of the DXRB. Over the anticipated 3 year lifetime of the satellite, CUBIC will be able to study up to 50 percent of the sky with 5 x 5 deg spatial resolution for the subkilovolt Galactic diffuse background, and with 10 x 10 deg spatial resolution for the extragalactic diffuse background above 2 keV. CUBIC will obtain high quality nondispersive spectra of soft X-ray emission from the interstellar medium, supernova remnants, and some bright sources, and will make a sensitive seach for line emission or other features in the extragalactic cosmic X-ray background from 2-10 keV.

  3. X-Ray Absorption Spectroscopy Imaging of Biological Tissues

    SciTech Connect

    Pickering, Ingrid J.; George, Graham N.

    2007-02-02

    X-ray absorption spectroscopy (XAS) is proving invaluable in determining the average chemical form of metals or metalloids in intact biological tissues. As most tissues have spatial structure, there is great additional interest in visualizing the spatial location of the metal(loid) as well as its chemical forms. XAS imaging gives the opportunity of producing maps of specific chemical types of elements in vivo in dilute biological systems. X-ray fluorescence microprobe techniques are routinely used to study samples with spatial heterogeneity. Microprobe produces elemental maps, with chemical sensitivity obtained by recording micro-XAS spectra at selected point locations on the map. Unfortunately, using these procedures spatial detail may be lost as the number of point spectra recorded generally is limited. A powerful extension of microprobe is XAS imaging or chemically specific imaging. Here, the incident energy is tuned to features in the near-edge which are characteristic of the expected chemical forms of the element. With a few simple assumptions, these XAS images can then be converted to quantitative images of specific chemical form, yielding considerable clarity in the distributions.

  4. X-Ray Absorption Spectroscopy Imaging of Biological Tissues

    SciTech Connect

    Pickering, I.J.; George, G.N.

    2009-06-05

    X-ray absorption spectroscopy (XAS) is proving invaluable in determining the average chemical form of metals or metalloids in intact biological tissues. As most tissues have spatial structure, there is great additional interest in visualizing the spatial location of the metal(loid) as well as its chemical forms. XAS imaging gives the opportunity of producing maps of specific chemical types of elements in vivo in dilute biological systems. X-ray fluorescence microprobe techniques are routinely used to study samples with spatial heterogeneity. Microprobe produces elemental maps, with chemical sensitivity obtained by recording micro-XAS spectra at selected point locations on the map. Unfortunately, using these procedures spatial detail may be lost as the number of point spectra recorded generally is limited. A powerful extension of microprobe is XAS imaging or chemically specific imaging. Here, the incident energy is tuned to features in the near-edge which are characteristic of the expected chemical forms of the element. With a few simple assumptions, these XAS images can then be converted to quantitative images of specific chemical form, yielding considerable clarity in the distributions.

  5. (Diffraction gratings used in x-ray spectroscopy): Final report

    SciTech Connect

    Smith, H.I.

    1988-11-01

    This subcontract was initiated in order to facilitate the development at MIT of technologies for fabricating the very fine diffraction grating required in x-ray spectroscopy at Lawrence Livermore Laboratory (LLL). These gratings are generally gold transmission gratings with spatial periods of 200 nm or less. The major focus of our efforts was to develop a means of fabricating gratings of 100 nm period. We explored two approaches: e-beam fabrication of x-ray lithography masks, and achromatic holographic lithography. This work was pursued by Erik Anderson as a major component of his Ph.D. thesis. Erik was successful in both the e-beam and holographic approaches. However, the e-beam method proved to be highly impractical: exposure times of about 115 days would be required to cover an area of 1 cm/sup 2/. The achromatic holography, on the other hand, should be capable of exposing areas well in excess of 1 cm/sup 2/ in times under 1 hour. Moreover, 100 nm-period gratings produced by achromatic holography are coherent over their entire area whereas gratings produced by e-beam lithography are coherent only over areas /approximately/100 ..mu..m. The remainder of this report consists of portions excerpted from Erik Anderson's thesis. These contain all the details of our work on 100 nm period gratings. 26 refs., 17 figs.

  6. In-situ/operando soft x-ray spectroscopy characterization of interfacial phenomena in energy materials and devices

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Sheng; Glans, Per-Anders; Arthur, Timothy S.; Mizuno, Fuminori; Chang, Chinglin; Pong, Way-Faung; Guo, Jinghua

    2015-09-01

    Many important energy systems are based on the complexity of material architecture, chemistry and interactions among constituents within. To understand and thus ultimately control the energy applications calls for in-situ/operando characterization tools. Recently, we have developed the in-situ/operando soft X-ray spectroscopic systems for the studies of catalytic and electrochemical reactions, and reveal how to overcome the challenge that soft X-rays cannot easily peek into the high-pressure catalytic or liquid electrochemical reactions. The unique design of in-situ/operando soft X-ray spectroscopy instrumentation and fabrication principle and one example are presented.

  7. Research relative to high energy astrophysics. [large area modular array of reflectors, X-ray spectroscopy, and thermal control

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1984-01-01

    Various parameters which affect the design of the proposed large area modular array of reflectors (LAMAR) are considered, including thermal control, high resolution X-ray spectroscopy, pointing control, and mirror performance. The LAMAR instrument is to be a shuttle-launched X-ray observatory to carry out cosmic X-ray investigations. The capabilities of LAMAR are enumerated. Angular resolution performance of the mirror module prototype was measured to be 30 sec of ARC for 50% of the power. The LAMAR thermal pre-collimator design concepts and test configurations are discussed in detail.

  8. X-Ray Spectroscopy of the Liquid Water Surface

    NASA Astrophysics Data System (ADS)

    Saykally, Richard

    2004-03-01

    We have developed a new experiment for probing molecular details of liquid-vapor interfaces of volatile substances and their solutions under equilibrium conditions. Electronic and geometric structures of interfacial molecules are probed by EXAFS and NEXAFS methods in the soft X-ray region, using the Advanced Light Source, Berkeley, CA. Liquids are introduced into a high vacuum environment through the use of liquid microjets, which have been characterized independently by Raman spectroscopy. Detection of ions and electrons produced by the Auger avalanche probe the bulk and surface regions of the microjet, respectively, as a result of their different escape depths. Our first efforts involved a comparative study of the interfaces of water and methanol, wherein we detailed the first observation of surface relaxation for a liquid. Analysis of EXAFS data yielded a 6distance at the water interface, whereas a 5was found for methanol. NEXAFS measurements, interpreted in terms of density functional theory simulations, indicate a large population of interfacial water molecules having two free OH bonds ("acceptor only molecules"). This complements the "single donor" species identified in sum frequency generation experiments. These results are supported by recent theoretical calculations. For methanol and other simple alcohols, the data indicate that free alkyl groups extend into the vapor part of the interface. Preliminary results for aqueous solutions, as well as for other pure liquids, have been obtained and are presently under analysis. REFERENCES 1. K.R. Wilson, R.D. Schaller, B.S. Rude, T. Catalano, D.T. Co, J.D. Bozek, and R.J. Saykally, "Surface relaxation in liquid water and methanol studied by X-ray absorption spectroscopy," J. Chem. Phys 117,7738(2002). 2. K.R. Wilson, M. Cavalleri, B.S. Rude, R.D. Schaller, A. Nilsson, L.G.M. Pettersson, N. Goldman, T. Catalano, J.D. Bozek, and R.J. Saykally, "Characterization of hydrogen bond acceptor molecules at the water surface using near-edge x-ray absorption fine-structure spectroscopy and density functional theory," J. Phys.: Condens. Matter 14, L221-L226 (2002).

  9. Synchrotron Radiation X-Ray Spectroscopy for Investigations of Intracellular Metallointercalators: X-Ray Fluorescence Imaging and X-Ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dillon, Carolyn T.

    In an effort to determine the therapeutic feasibility of DNA metallointercalators as potential anticancer drugs it is important to confirm that they are capable of targeting DNA in cancer cells or tumours - as is the intended purpose of their design. Microprobe synchrotron radiation X-ray fluorescence (micro-SRXRF) spectroscopy is an ideal technique for investigating the cellular uptake and distribution of metallointercalators. The technique is capable of submicron elemental imaging so that samples as small as individual cells (~10 ?m diameter), and the features within them, can be resolved. Consequently, the technique can ascertain whether intracellular metallointercalators colocalise with DNA; namely, in the nucleus during interphase or at the chromosomes during middle prophase to late anaphase. Metals, such as those commonly incorporated into metallointercalators (e.g., Cr, Ni, Co, Pd, Pt, Ru, Rh), are often naturally present in negligible quantities in cancer cells. This fact, together with their higher atomic number, Z, makes them ideal for direct probing using hard X-ray microprobes (as discussed in Sect. 11.2). There is no need for the incorporation of fluorescent tracker dyes or radioactive labels into their chemical structure. This is advantageous since it is unknown whether such chemical modifications alter the uptake kinetics of the metallointercalator [1, 2].

  10. X-Ray Imaging-Spectroscopy of Abell 1835

    NASA Technical Reports Server (NTRS)

    Peterson, J. R.; Paerels, F. B. S.; Kaastra, J. S.; Arnaud, M.; Reiprich T. H.; Fabian, A. C.; Mushotzky, R. F.; Jernigan, J. G.; Sakelliou, I.

    2000-01-01

    We present detailed spatially-resolved spectroscopy results of the observation of Abell 1835 using the European Photon Imaging Cameras (EPIC) and the Reflection Grating Spectrometers (RGS) on the XMM-Newton observatory. Abell 1835 is a luminous (10(exp 46)ergs/s), medium redshift (z = 0.2523), X-ray emitting cluster of galaxies. The observations support the interpretation that large amounts of cool gas are present in a multi-phase medium surrounded by a hot (kT(sub e) = 8.2 keV) outer envelope. We detect O VIII Ly(alpha) and two Fe XXIV complexes in the RGS spectrum. The emission measure of the cool gas below kT(sub e) = 2.7 keV is much lower than expected from standard cooling-flow models, suggesting either a more complicated cooling process than simple isobaric radiative cooling or differential cold absorption of the cooler gas.

  11. Polytetrafluoroethylene transfer film studied with X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1980-01-01

    Polytetrafluoroethylene (PTFE) was rubbed against nickel in ultrahigh vacuum at loads up to 3.9 N and speeds up to 94 mm/sec. The transfer film formed on the nickel was analyzed using X-ray phototectron spectroscopy. The film was indistinguishable from bulk PTFE except for the possible presence of a small amount of NiF2. The transfer film was found to be about 1 molecule (0.5 nm) thick under all conditions; but at speeds above 10 mm/sec, there was evidence of bulk transfer in the form of fragments as well. The thickness measurements required a choice among conflicting published values of the inelastic mean free path for electrons in polymers. The values chosen gave internally consistent results.

  12. VUV and soft x-ray spectroscopy of actinides

    SciTech Connect

    Olson, C. G.; Joyce, J. J.; Durakiewicz, T.; Guziewicz, E.

    2004-01-01

    Optical and photoelectron spectroscopies using VUV and Soft X-ray photons are powerful tools for studies of elemental and compound actinides. Large changes in the relative atomic cross sections of the 5f, 6d and sp electrons allow decomposition of the character of the valence bands using photoemission. Resonant enhancement of photoelectrons and Auger electrons at the 5d core threshold further aids the decomposition and gives a measure of elemental specificity. Angle-resolved photoemission can be used to map the momentum dependence of the electronic states. The large changes in relative cross section with photon energy yields further details when the mapping is done at equivalent points in multiple zones. Spectra for well understood rare earth materials will be presented to establish spectral characteristics for known atomic character initial states. These signatures will be applied to the case of USb to investigate f-d hybridization near the Fermi level.

  13. Investigating DNA Radiation Damage Using X-Ray Absorption Spectroscopy.

    PubMed

    Czapla-Masztafiak, Joanna; Szlachetko, Jakub; Milne, Christopher J; Lipiec, Ewelina; Sá, Jacinto; Penfold, Thomas J; Huthwelker, Thomas; Borca, Camelia; Abela, Rafael; Kwiatek, Wojciech M

    2016-03-29

    The biological influence of radiation on living matter has been studied for years; however, several questions about the detailed mechanism of radiation damage formation remain largely unanswered. Among all biomolecules exposed to radiation, DNA plays an important role because any damage to its molecular structure can affect the whole cell and may lead to chromosomal rearrangements resulting in genomic instability or cell death. To identify and characterize damage induced in the DNA sugar-phosphate backbone, in this work we performed x-ray absorption spectroscopy at the P K-edge on DNA irradiated with either UVA light or protons. By combining the experimental results with theoretical calculations, we were able to establish the types and relative ratio of lesions produced by both UVA and protons around the phosphorus atoms in DNA. PMID:27028640

  14. X-ray imaging-spectroscopy of Abell 1835

    NASA Astrophysics Data System (ADS)

    Peterson, J. R.; Paerels, F. B. S.; Kaastra, J. S.; Arnaud, M.; Reiprich, T. H.; Fabian, A. C.; Mushotzky, R. F.; Jernigan, J. G.; Sakelliou, I.

    2001-01-01

    We present detailed spatially-resolved spectroscopy results of the observation of Abell 1835 using the European Photon Imaging Cameras (EPIC) and the Reflection Grating Spectrometers (RGS) on the XMM-Newton observatory. Abell 1835 is a luminous (1046 ergs {s}-1), medium redshift (z=0.2523), X-ray emitting cluster of galaxies. The observations support the interpretation that large amounts of cool gas are present in a multi-phase medium surrounded by a hot (kT{e}=8.2 keV) outer envelope. We detect O VIII Lyalpha and two Fe XXIV complexes in the RGS spectrum. The emission measure of the cool gas below kT{e}=2.7 keV is much lower than expected from standard cooling-flow models, suggesting either a more complicated cooling process than simple isobaric radiative cooling or differential cold absorption of the cooler gas.

  15. The LNLS soft X-ray spectroscopy beamline.

    PubMed

    Tolentino, H; Compagnon-Cailhol, V; Vicentin, F C; Abbate, M

    1998-05-01

    The soft X-ray spectroscopy beamline installed at a bending-magnet source at the LNLS is described. The optics are designed to cover energies from 800 to 4000 eV with good efficiency. The focusing element is a gold-coated toroidal mirror with an angle of incidence of 17 mrad. The UHV double-crystal monochromator has three pairs of crystals, Si (111), InSb (111) and beryl (101;0), that can be selected by a sliding movement. The UHV workstation is equipped with an ion gun, an electron gun, an electron analyser, LEED optics, an open channeltron and a photodiode array. This beamline is intended for photoemission, photoabsorption, reflectivity and dichroism experiments. PMID:15263571

  16. Hard x ray/microwave spectroscopy of solar flares

    NASA Technical Reports Server (NTRS)

    Gary, Dale E.

    1992-01-01

    The joint study of hard x ray and microwave observations of solar flares is extremely important because the two complementary ways of viewing the accelerated electrons yield information that cannot be obtained using hard x rays or microwaves alone. The microwaves can provide spatial information lacking in the hard x rays, and the x ray data can give information on the energy distribution of electrons that remove ambiguities in the radio data. A prerequisite for combining the two data-sets, however, is to first understand which range of microwave frequencies correlate best with the hard x rays. This SMM Guest Investigator grant enabled us to combine multi-frequency OVRO data with calibrated hard x ray data to shed light on the relationship between the two emissions. In particular, the questions of which microwave frequencies correspond to which hard x ray energies, and what is the corresponding energy of the electrons that produce both types of emission are investigated.

  17. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team.

    PubMed

    Xiao, Y M; Chow, P; Boman, G; Bai, L G; Rod, E; Bommannavar, A; Kenney-Benson, C; Sinogeikin, S; Shen, G Y

    2015-07-01

    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed. PMID:26233346

  18. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team

    NASA Astrophysics Data System (ADS)

    Xiao, Y. M.; Chow, P.; Boman, G.; Bai, L. G.; Rod, E.; Bommannavar, A.; Kenney-Benson, C.; Sinogeikin, S.; Shen, G. Y.

    2015-07-01

    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.

  19. Electronic Structure of In2O3 from Resonant X-ray Emission Spectroscopy

    SciTech Connect

    Piper, L.; DeMasi, A; Cho, S; Smith, K; Fuchs, F; Bechstedt, F; Korber, C; Klein, A; Payne, D; Egdell, R

    2009-01-01

    The valence and conduction band structures of In2O3 have been measured using a combination of valence band x-ray photoemission spectroscopy, O K-edge resonant x-ray emission spectroscopy, and O K-edge x-ray absorption spectroscopy. Excellent agreement is noted between the experimental spectra and O 2p partial density of states calculated within hybrid density functional theory. Our data are consistent with a direct band gap for In2O3.

  20. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C

    PubMed Central

    Orville, Allen M.; Buono, Richard; Cowan, Matt; Hroux, Annie; Shea-McCarthy, Grace; Schneider, Dieter K.; Skinner, John M.; Skinner, Michael J.; Stoner-Ma, Deborah; Sweet, Robert M.

    2011-01-01

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population. PMID:21525643

  1. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C

    SciTech Connect

    Orville, A.M.; Buono, R.; Cowan, M.; Heroux, A.; Shea-McCarthy, G.; Schneider, D. K.; Skinner, J. M.; Skinner, M. J.; Stoner-Ma, D.; Sweet, R. M.

    2011-05-01

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

  2. Correlated Single-Crystal Electronic Absorption Spectroscopy and X-ray Crystallography at NSLS Beamline X26-C

    SciTech Connect

    A Orville; R Buono; M Cowan; A Heroux; G Shea-McCarthy; D Schneider; J Skinner; M Skinner; D Stoner-Ma; R Sweet

    2011-12-31

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

  3. High-efficiency blazed transmission gratings for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Schattenburg, Mark L.

    2015-09-01

    High-resolution spectroscopy of astrophysical sources is the key to gaining a quantitative understanding of the history, dynamics, and current conditions of the cosmos. A large-area (> 1,000 cm2), high resolving power (R = λ/Δλ> 3000) soft x-ray grating spectrometer (XGS) that covers the lines of C, N, O, Ne and Fe ions is the ideal tool to address a number of high-priority science questions from the 2010 Decadal Survey, such as the connection between super-massive black holes and large-scale structure via cosmic feedback, the evolution of large- scale structure, the behavior of matter at high densities, and the conditions close to black holes. While no grating missions or instruments are currently approved, an XGS aboard a potential future X-ray Surveyor could easily surpass the above performance metrics. To improve the chances for future soft x-ray grating spectroscopy missions or instruments, grating technology has to progress and advance to higher Technology Readiness Levels (TRLs). To that end we have developed Critical-Angle Transmission (CAT) gratings that combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, high transparency at higher energies). A CAT grating-based spectrometer can provide performance 1-2 orders of magnitude better than current grating instruments on Chandra and Newton-XMM with minimal resource requirements. At present we have fabricated large-area freestanding CAT gratings with narrow integrated support structures from silicon-on- insulator wafers using advanced lithography and a combination of deep reactive-ion and wet etching. Our latest x-ray test results show record high absolute diffraction efficiencies in blazed orders in excess of 30% with room for improvement.

  4. High-Resolution X-ray Spectroscopy Close to Room Temperature.

    PubMed

    Strder; Meidinger; Stotter; Kemmer; Lechner; Leutenegger; Soltau; Eggert; Rohde; Schulein

    1998-11-01

    : Originally designed as position-sensitive detectors for particle tracking, silicon drift detectors (SDDs) are now used for high-count rate X-ray spectroscopy, operating close to room temperature. Their low-capacitance read-node concept places them among the fastest high-resolution detector systems. They have been used in a new spectrum of experiments in the wide field of X-ray spectroscopy: fluorescent analysis, diffractometry, materials analysis, and synchrotron experiments such as X-ray holography and element imaging in scanning electron microscopes. The fact that the detector system can be used at room temperature with good spectroscopic performance and at -10 degrees C with excellent energy resolution, avoiding liquid nitrogen for cooling and high-quality vacuum, guarantees a large variety of new applications, independent of the laboratory environment. A brief description of the device principles is followed by basics on low noise amplification. The performance results of a complete detector system are presented as well as some dedicated applications already realized, including use in a surface mapping instrument and use of a "mini-spectrometer" for the analysis of works of art. Fully depleted pn-charge-coupled devices (pn-CCDs) have been fabricated for the European X-ray Multi-Mirror mission (XMM) and the German X-ray satellite ABRIXAS, enabling high-speed, low-noise, position-resolving X-ray spectroscopy. The detector was designed and fabricated with a homogeneously sensitive area of 36 cm2. At -70 degrees C it has a noise of 4 e- rms, with a readout time of the total focal plane array of 4 msec. The maximum count rate for single photon counting was 10(5) cps under flat field conditions. In the integration mode, more than 10(9) cps can be detected at 6 keV. Its position resolution is on the order of 100 m. The quantum efficiency is higher than 90%, ranging from carbon K X-rays (277 eV) up to 10 keV. PMID:10087285

  5. The GEMS X-Ray Polarimeter: Instrument Concept and Calibration Requirements

    NASA Technical Reports Server (NTRS)

    Jahoda, Keith

    2010-01-01

    The instrument and detector concepts for the Gravity and Extreme Magnetism Small Explorer (GEMS) X-ray polarimetry mission will be presente d. The calibration requirements for astrophysical X-ray polarimeters in general and GEMS in particular will be discussed.

  6. Investigations of the composition of macro-, micro- and nanoporous silicon surface by ultrasoft X-ray spectroscopy and X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lenshin, A. S.; Kashkarov, V. M.; Domashevskaya, E. P.; Bel'tyukov, A. N.; Gil'mutdinov, F. Z.

    2015-12-01

    The features of atomic and electron structure and phase composition of the surface in the samples of macro-, micro- and nanoporous silicon and their changes with depth were investigated with the use of X-ray photoelectron spectroscopy, ultrasoft X-ray emission spectroscopy and scanning electron microscopy. Analysis of the X-ray emission spectra applying the simulation method allowed to follow the trends in the changes of the composition for the investigated samples starting from the surface and into the bulk and to show the differences in the phase composition between the samples of porous silicon with different pores size.

  7. High-efficiency blazed transmission gratings for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Schattenburg, Mark L.

    2015-01-01

    High-resolution spectroscopy of astrophysical sources is the key to gaining a quantitative understanding of the history, dynamics, and current conditions of the cosmos. A large-area (> 1,000 cm2), high resolving power (R = ?/?? > 3,000) soft x-ray spectrometer that covers the lines of C, N, O, Ne and Fe ions is the ideal tool to address a number of high-priority sciences questions from the 2010 Decadal Survey, such as the connection between super-massive black holes and large-scale structure via cosmic feedback, the evolution of large-scale structure, the behavior of matter at high densities, and the conditions close to black holes. Numerous mission concepts that meet these requirements have been studied and proposed over the last few years, including grating instruments for the International X-ray Observatory. Nevertheless, no grating missions are currently approved. To improve the chances for future soft x-ray grating spectroscopy missions, grating technology has to progress and be advanced to higher TRLs. We have developed Critical-Angle Transmission (CAT) gratings that combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies). A CAT grating-based spectrometer can provide performance 1-2 orders of magnitude better than current grating instruments on Chandra and Newton-XMM with minimal resource requirements. We have fabricated large-area free-standing CAT gratings with minimal integrated support structures from silicon-on-insulator wafers using advanced lithography and a combination of deep reactive-ion and wet etching, and will present our latest x-ray test results showing record high diffraction efficiencies in blazed orders.

  8. Application of X-ray synchrotron microscopy instrumentation in biology

    SciTech Connect

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.; Calasans-Maia, M. D.; Rossi, A. M.; Perez, C. A.; Lopes, R. T.; Lima, I.

    2011-07-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  9. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Mascali, David; Castro, Giuseppe; Biri, Sándor; Rácz, Richárd; Pálinkás, József; Caliri, Claudia; Celona, Luigi; Neri, Lorenzo; Romano, Francesco Paolo; Torrisi, Giuseppe; Gammino, Santo

    2016-02-01

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed "on-line" during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  10. Depth-Resolved X-ray Absorption Spectroscopy by Means of Grazing Emission X-ray Fluorescence.

    PubMed

    Kayser, Yves; S, Jacinto; Szlachetko, Jakub

    2015-11-01

    Grazing emission X-ray fluorescence (GEXRF) is well suited for nondestructive elemental-sensitive depth-profiling measurements on samples with nanometer-sized features. By varying the grazing emission angle under which the X-ray fluorescence signal is detected, the probed depth range can be tuned from a few to several hundred nanometers. The dependence of the XRF intensity on the grazing emission angle can be assessed in a sequence of measurements or in a scanning-free approach using a position-sensitive area detector. Hereafter, we will show that the combination of scanning-free GEXRF and fluorescence detected X-ray absorption spectroscopy (XAS) allows for depth-resolved chemical speciation measurements with nanometer-scale accuracy. While the conventional grazing emission geometry is advantageous to minimize self-absorption effects, the use of a scanning-free setup makes the sequential scanning of the grazing emission angles obsolete and paves the way toward time-resolved depth-sensitive XAS measurements. The presented experimental approach was applied to study the surface oxidation of an Fe layer on the top of bulk Si and of a Ge bulk sample. Thanks to the penetrating properties and the insensitivity toward the electric conduction properties of the incident and emitted X-rays, the presented experimental approach is well suited for in situ sample surface studies in the nanometer regime. PMID:26458105

  11. Software System for the Calibration of X-Ray Measuring Instruments

    SciTech Connect

    Gaytan-Gallardo, E.; Tovar-Munoz, V. M.; Cruz-Estrada, P.; Vergara-Martinez, F. J.; Rivero-Gutierrez, T.

    2006-09-08

    A software system that facilities the calibration of X-ray measuring instruments used in medical applications is presented. The Secondary Standard Dosimetry Laboratory (SSDL) of the Nuclear Research National Institute in Mexico (ININ in Spanish), supports activities concerning with ionizing radiations in medical area. One of these activities is the calibration of X-ray measuring instruments, in terms of air kerma or exposure by substitution method in an X-ray beam at a point where the rate has been determined by means of a standard ionization chamber. To automatize this process, a software system has been developed, the calibration system is composed by an X-ray unit, a Dynalizer IIIU X-ray meter by RADCAL, a commercial data acquisition card, the software system and the units to be tested and calibrated. A quality control plan has been applied in the development of the software system, ensuring that quality assurance procedures and standards are being followed.

  12. Software System for the Calibration of X-Ray Measuring Instruments

    NASA Astrophysics Data System (ADS)

    Gaytán-Gallardo, E.; Tovar-Muñoz, V. M.; Cruz-Estrada, P.; Vergara-Martínez, F. J.; Rivero-Gutiérrez, T.

    2006-09-01

    A software system that facilities the calibration of X-ray measuring instruments used in medical applications is presented. The Secondary Standard Dosimetry Laboratory (SSDL) of the Nuclear Research National Institute in México (ININ in Spanish), supports activities concerning with ionizing radiations in medical area. One of these activities is the calibration of X-ray measuring instruments, in terms of air kerma or exposure by substitution method in an X-ray beam at a point where the rate has been determined by means of a standard ionization chamber. To automatize this process, a software system has been developed, the calibration system is composed by an X-ray unit, a Dynalizer IIIU X-ray meter by RADCAL, a commercial data acquisition card, the software system and the units to be tested and calibrated. A quality control plan has been applied in the development of the software system, ensuring that quality assurance procedures and standards are being followed.

  13. Electron Spectroscopy: Ultraviolet and X-Ray Excitation.

    ERIC Educational Resources Information Center

    Baker, A. D.; And Others

    1980-01-01

    Reviews recent growth in electron spectroscopy (54 papers cited). Emphasizes advances in instrumentation and interpretation (52); photoionization, cross-sections and angular distributions (22); studies of atoms and small molecules (35); transition, lanthanide and actinide metal complexes (50); organometallic (12) and inorganic compounds (2);

  14. X-Ray Absorption Spectroscopy of Dinuclear Metallohydrolases

    PubMed Central

    Tierney, DavidL.; Schenk, Gerhard

    2014-01-01

    In this mini-review, we briefly discuss the physical origin of x-ray absorption spectroscopy (XAS) before illustrating its application using dinuclear metallohydrolases as exemplary systems. The systems we have selected for illustrative purposes present a challenging problem for XAS, one that is ideal to demonstrate the potential of this methodology for structure/function studies of metalloenzymes in general. When the metal ion is redox active, XAS provides a sensitive measure of oxidation-state-dependent differences. When the metal ion is zinc, XAS is the only spectroscopic method that will provide easily accessible structural information in solution. In the case of heterodimetallic sites, XAS has the unique ability to interrogate each metal site independently in the same sample. One of the strongest advantages of XAS is its ability to examine metal ion site structures with crystallographic precision, without the need for a crystal. This is key for studying flexible metal ion sites, such as those described in the selected examples, because it allows one to monitor structural changes that occur during substrate turnover. PMID:25229134

  15. Near Edge X-ray Absorption Spectroscopy of Polymers

    NASA Astrophysics Data System (ADS)

    Dhez, Olivier; Ade, Harald; Urquhart, Stephen

    2001-03-01

    Synthetic and natural polymers exhibit a rich carbon, nitrogen and oxygen K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS). The spectroscopic variations with chemical structure and composition are interesting in their own right. In addition, the large spectroscopic variability can be utilized for the compositional analysis of materials. This is particularly useful for high spatial resolution NEXAFS microanalysis at lateral spatial resolutions exceeding that achievable with more traditional compositional analysis tools such as Infrared and NMR spectroscopy. To increase our understanding of NEXAFS spectra and to start a database for microanalysis, we acquired carbon NEXAFS spectra of the following polymers: polycarbonate, poly(oxybenzoate-co-2,6oxynaphthoate), poly (p-phenylene terephtalamide), toluene diisocyanate polyurethane, toluene diisocyanate polyurea, 4,4'-methylene di-p-phenylene isocyanate polyurethane, 4,4'-methylene di-p-phenylene isocyanate polyurea, poly(ether ether ketone), poly(alpha-methylstyrene), poly-styrene, poly bromostyrene, poly(2-vinyl styrene), polyethylene, poly(ethylene oxide), polypropylene, poly(propylene oxide), polyisobutylene, ethylene propylene rubber, poly(methyl -metacrylate). These spectra were obtained in transmission with an energy resolution of 150 meV. The energy scale was carefully calibrated in-situ utilizing C02 gas as a reference. Spectral assignments are made based on model compounds and theoretical calculations.

  16. Diffraction peaks in x-ray spectroscopy: Friend or foe?

    SciTech Connect

    Tissot, R.G.; Goehner, R.P.

    1992-11-01

    Diffraction peaks can occur as unidentifiable peaks in the energy spectrum of an x-ray spectrometric analysis. Recently, there has been increased interest in oriented polycrystalline films and epitaxial films on single crystal substrates for electronic applications. Since these materials diffract x-rays more efficiently than randomly oriented polycrystalline materials, diffraction peaks are being observed more frequently in x-ray fluorescent spectra. In addition, micro x-ray spectrometric analysis utilizes a small, intense, collimated x-ray beam that can yield well defined diffraction peaks. In some cases these diffraction peaks can occur at the same position as elemental peaks. These diffraction peaks, although a possible problem in qualitative and quantitative elemental analysis, can give very useful information about the crystallographic structure and orientation of the material being analyzed. The observed diffraction peaks are dependent on the geometry of the x-ray spectrometer, the degree of collimation and the distribution of wavelengths (energies) originating from the x-ray tube and striking the sample.

  17. Diffraction peaks in x-ray spectroscopy: Friend or foe

    SciTech Connect

    Tissot, R.G.; Goehner, R.P.

    1992-01-01

    Diffraction peaks can occur as unidentifiable peaks in the energy spectrum of an x-ray spectrometric analysis. Recently, there has been increased interest in oriented polycrystalline films and epitaxial films on single crystal substrates for electronic applications. Since these materials diffract x-rays more efficiently than randomly oriented polycrystalline materials, diffraction peaks are being observed more frequently in x-ray fluorescent spectra. In addition, micro x-ray spectrometric analysis utilizes a small, intense, collimated x-ray beam that can yield well defined diffraction peaks. In some cases these diffraction peaks can occur at the same position as elemental peaks. These diffraction peaks, although a possible problem in qualitative and quantitative elemental analysis, can give very useful information about the crystallographic structure and orientation of the material being analyzed. The observed diffraction peaks are dependent on the geometry of the x-ray spectrometer, the degree of collimation and the distribution of wavelengths (energies) originating from the x-ray tube and striking the sample.

  18. The Soft X-ray research instrument at the Linac Coherent Light Source

    DOE PAGESBeta

    Dakovski, Georgi L.; Heimann, Philip; Holmes, Michael; Krupin, Oleg; European XFEL, Hamburg; Minitti, Michael P.; Mitra, Ankush; Moeller, Stefan; Rowen, Michael; Schlotter, William F.; et al

    2015-04-02

    The Soft X-ray Research instrument provides intense ultrashort X-ray pulses in the energy range 280–2000 eV. A diverse set of experimental stations may be installed to investigate a broad range of scientific topics such as ultrafast chemistry, highly correlated materials, magnetism, surface science, and matter under extreme conditions. A brief description of the main instrument components will be given, followed by some selected scientific highlights.

  19. The Soft X-ray research instrument at the Linac Coherent Light Source

    SciTech Connect

    Dakovski, Georgi L.; Heimann, Philip; Holmes, Michael; Krupin, Oleg; European XFEL, Hamburg; Minitti, Michael P.; Mitra, Ankush; Moeller, Stefan; Rowen, Michael; Schlotter, William F.; Turner, Joshua J.

    2015-04-02

    The Soft X-ray Research instrument provides intense ultrashort X-ray pulses in the energy range 2802000 eV. A diverse set of experimental stations may be installed to investigate a broad range of scientific topics such as ultrafast chemistry, highly correlated materials, magnetism, surface science, and matter under extreme conditions. A brief description of the main instrument components will be given, followed by some selected scientific highlights.

  20. The Soft X-ray Research instrument at the Linac Coherent Light Source

    PubMed Central

    Dakovski, Georgi L.; Heimann, Philip; Holmes, Michael; Krupin, Oleg; Minitti, Michael P.; Mitra, Ankush; Moeller, Stefan; Rowen, Michael; Schlotter, William F.; Turner, Joshua J.

    2015-01-01

    The Soft X-ray Research instrument provides intense ultrashort X-ray pulses in the energy range 2802000?eV. A diverse set of experimental stations may be installed to investigate a broad range of scientific topics such as ultrafast chemistry, highly correlated materials, magnetism, surface science, and matter under extreme conditions. A brief description of the main instrument components will be given, followed by some selected scientific highlights. PMID:25931059

  1. CXO X-ray spectroscopy of comets and abundances of heavy ions in the solar wind

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2015-02-01

    X-rays from comets originate in charge exchange between heavy ions of the solar wind and cometary species. Spectra of nine comets observed by the Chandra X-ray Observatory (CXO) are analyzed using the time-dependent instrument sensitivity and the energy-dependent spectral resolution. X-ray emissions are extracted from the spectra in the range of 150-1100 eV using the ?2-fitting. Production of X-rays varies in the observed comets by a factor of 500 from 4.4 1013 erg s-1 in Comet 73P to 2.2 1016 erg s-1 in Comet Ikeya-Zhang. The measured solar wind flow varies within a factor of 20, being the weakest in Comet 73P and the strongest in 9P/Tempel 1. The retrieved X-ray line intensities vary within a factor of 5 104. These lines above 300 eV are attributed to emissions of the H- and He-like ions, and laboratory data on the excitation cross sections for these emissions (Greenwood et al. [2000]. Astrophys. J. 533, L175-L178) are used to convert the observed emissions into abundances of heavy ions in the solar wind. Continuity equations for charge exchange in comets are solved analytically and result in relationships between the X-ray emissions and the ion fluxes. The flux of O7+ scaled to 1 AU varies within a factor of 35 with a mean value of 1.6 104 cm-2 s-1. The retrieved ratios of O8+/O7+, C6+/C5+, Ne10+/Ne9+, C6+/O7+, N6+/O7+, and Ne9+/O7+ demonstrate significant variations, while their mean values for O, C, and N agree with those recommended by Schwadron and Cravens (Schwadron and Cravens [2000]. Astrophys. J. 544, 558-566) for the slow and fast solar wind. (Data on Ne9+ and Ne10+ are lacking in Scwadron and Cravens (Schwadron and Cravens [2000]. Astrophys. J. 544, 558-566).) The results are compared with the ion ratios from Bodewits et al. (Bodewits et al. [2007]. Astron. Astrophys. 469, 1183-1195) that were obtained from the same CXO spectra of comets, and some significant differences are briefly discussed. CXO X-ray spectroscopy of comets is a diagnostic tool to study the composition of the solar wind and its variations.

  2. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    SciTech Connect

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mchler, Jean-Pierre; Jordan, Inga; Wrner, Hans Jakob; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto; Bokhoven, Jeroen A. van; Paul Scherrer Institute, CH-5232 Villigen PSI

    2013-07-15

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II ? lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  3. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    NASA Astrophysics Data System (ADS)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Jordan, Inga; Duyckaerts, Nicolas; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Mchler, Jean-Pierre; Birrer, Mario; Honegger, Juri; Wetter, Reto; Wrner, Hans Jakob; van Bokhoven, Jeroen A.

    2013-07-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II ? lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  4. Comment on ``Relation between copper {ital L} x-ray fluorescence and 2{ital p} x-ray photoelectron spectroscopies``

    SciTech Connect

    Ohno, M.

    1995-08-15

    Kawai {ital et} {ital al}. [Phys. Rev. B 48, 8560 (1993)] concluded that for Cu compounds and high-{ital T}{sub {ital c}} superconductors, there is a strong correlation between the {ital L}{sub 3} x-ray emission spectroscopy (XES) spectrum satellite intensity and the 2{ital p}{sub 3/2} x-ray photoelectron spectroscopy (XPS) spectrum satellite intensity. They interpreted the XES satellite to be mainly due to the transition from the initial core-hole charge-transfer (CT) shakeup state rather than due to the {ital L}{sub 2}{ital L}{sub 3}{ital M}{sub 4,5} Coster-Kronig (CK) decay preceding the {ital L}{sub 3}{ital M}{sub 4,5-}{ital M}{sub 4,5}{ital M}{sub 4,5} spectator x-ray emission transition. One of the available experimental data shows that, despite a significant initial core-hole CT shakeup satellite intensity increase from metal Cu to high-{ital T}{sub {ital c}} superconductors, the relative {ital L}{sub 3} XES satellite intensity does not change at all because of the relative CK satellite intensity decrease. The latter is due to the decrease of the CK decay energy from metal Cu to high-{ital T}{sub {ital c}} superconductors.

  5. Probing wavepacket dynamics using ultrafast x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Capano, G.; Milne, C. J.; Chergui, M.; Rothlisberger, U.; Tavernelli, I.; Penfold, T. J.

    2015-11-01

    The advent of x-ray free electron lasers is providing new opportunities for probing the ultrafast excited state dynamics using structurally sensitive techniques. Herein we use excited state wavepacket dynamics of a prototypical Cu(I)-phenanthroline complex, [Cu(dmp)2]+ (dmp = 2, 9-dimethyl-1, 10-phenanthroline) to investigate how femtosecond vibrational and electronic relaxation is translated into transient x-ray absorption and emission. Using realistic experimental parameters we also derive the anticipated signal strengths for these transient features. This indicates that although recording a signal capturing the strongest transient (i.e. excited state-ground state) changes will be possible for all cases, only with x-ray absorption near-edge structure and extended x-ray absorption fine structure will it be possible to resolve the fine details associated with the wavepacket dynamics within realistic experimental acquisition times.

  6. X-ray spectroscopy in the EC nucleus

    NASA Astrophysics Data System (ADS)

    Ko, Seung Kook; Cho, Hyun Jae; Nha, Sang Kyun

    1998-10-01

    The probabilities PKK of double K-shell vacancy production per K electron capture decay and per K internal conversion of 109Cd and 207Bi have been determined by means of the double- and triple-coincidence experiments using K? X-ray and K internal conversion. For 109Cd we find PKK(EC) = (4.2 0.5) 10 -5 and PKK(IC) = (4.32 0.46) 10 -5, and for 207Bi, PKK(EC) = (2.54 0.50) 10 -5. The observed X-ray energy shifts of the hypersatellite Ag ( K?1H) X-ray and the hypersatellite Pb ( K?1H) X-ray lines are 54515 eV and 123845 eV, respectively.

  7. Spectroscopy of six X-ray-selected BL Lacertae candidates

    SciTech Connect

    Margon, B.; Boroson, T.A.; Chanan, G.A.; Thompson, I.B.; Schneider, D.P.

    1986-11-01

    Results of a continuing program aimed at extending the small list of X-ray-selected BL Lac objects are reported. High-quality spectra have been obtained of six faint blue objects that lie within the positional error boxes of X-ray sources discovered serendipitously by the Einstein Observatory. Three of the objects are found to be previously uncataloged low-red-shift quasi-stellar objects, including one formerly suggested as BL Lac candidate. Two are faint galactic stars, while the final object has a featureless spectrum, and thus remains a candidate. Although X-ray selection may ultimately be an effective means of discovering faint BL Lac objects, such sources are evidently rare at the X-ray flux levels attainable by the Einstein Observatory. 15 references.

  8. Si/Li/ X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1976-01-01

    The principles of operation of solid state nondispersive spectrometers are reviewed. Si(Li) is shown to be the preferred nondispersive X-ray spectrometer because of its inherent resolution advantages and its adaptability to the constraints and philosophy of the HEAO-B observatory. A schematic diagram is presented of the geometry of the HEAO-B solid state detector assembly as a block diagram of the primary logic mode of the HEAO-B X-ray spectrometer.

  9. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    PubMed

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser. PMID:26740326

  10. TES-based microcalorimeter for future X-ray astronomy missions. Software development for instrument calibration

    NASA Astrophysics Data System (ADS)

    Fraga-Encinas, R.; Cobo, B.; Ceballos, M.; Schuurmans, J.; van der Kuur, J.; Carrera, F.; Barcons, X.

    2013-05-01

    The XMS (X-ray Microcalorimeter Spectrometer) is an instrument prototype with imaging capability in X-rays and high-spectral resolution. This instrument is a microcalorimeter based on transition edge sensors. As part of the Spanish contribution to the advancement of the XMS, we present the work carried out by the X-ray astronomy group at the Instituto de Física de Cantabria in collaboration with The Netherlands Institute for Space Research. The main work hereby presented includes the development and testing of software for this prototype with the purpose of instrument calibration and characterization, X-ray pulse detection and energy resolution calculations (Bergmann 2004, Tekst. Proefschrift Universiteit Utrecht; Boyce et al. 1999, Proc SPIE 3765; Den Herder et al. 2011, SRON-XMS-RP-2011-033; ATHENA Assessment Study Report, ESA/SRE(2011)17)

  11. Detection limits for actinides in a monochromatic, wavelength-dispersive x-ray fluorescence instrument

    SciTech Connect

    Collins, Michael L; Havrilla, George J

    2009-01-01

    Recent developments in x-ray optics have made it possible to examine the L x-rays of actinides using doubly-curved crystals in a bench-top device. A doubly-curved crystal (DCC) acts as a focusing monochromatic filter for polychromatic x-rays. A Monochromatic, Wavelength-Dispersive X-Ray Fluorescence (MWDXRF) instrument that uses DCCs to measure Cm and Pu in reprocessing plant liquors was proposed in 2007 by the authors at Los Alamos National Laboratory. A prototype design of this MWDXRF instrument was developed in collaboration with X-ray Optical Systems Inc. (XOS), of East Greenbush, New York. In the MWDXRF instrument, x-rays from a Rhodium-anode x-ray tube are passed through a primary DCC to produce a monochromatic beam of 20.2-keV photons. This beam is focused on a specimen that may contain actinides. The 20.2-keV interrogating beam is just above the L3 edge of Californium; each actinide (with Z = 90 to 98) present in the specimen emits characteristic L x-rays as the result of L3-shell vacancies. In the LANL-XOS prototype MWDXRf, these x-rays enter a secondary DCC optic that preferentially passes 14.961-keV photons, corresponding to the L-alpha-1 x-ray peak of Curium. In the present stage of experimentation, Curium-bearing specimens have not been analyzed with the prototype MWDXRF instrument. Surrogate materials for Curium include Rubidium, which has a K-beta-l x-ray at 14.961 keV, and Yttrium, which has a K-alpha-1 x-ray at 14.958 keV. In this paper, the lower limit of detection for Curium in the LANL-XOS prototype MWDXRF instrument is estimated. The basis for this estimate is described, including a description of computational models and benchmarking techniques used. Detection limits for other actinides are considered, as well as future safeguards applications for MWDXRF instrumentation.

  12. EBIT x-ray spectroscopy studies for applications to photo-pumped x-ray lasers

    SciTech Connect

    Elliott, S.R.; Beiersdorfer, P.; Nilsen, J.

    1994-05-10

    Several pumping mechanisms have been suggested for x-ray lasers including collisional excitation, recombination, photo-ionization and photo-pumping. The success of photo-pumping as an x-ray laser scheme hinges on sufficient overlap of the emission and adsorption lines. For such a scheme to exhibit gain, the difference of the energies of the two lines must be within the line widths determined by the plasma dynamics, such as Doppler and opacity broadening. Typically, an overlap of a few parts in 10{sup 4} is required. Due to correlation effects, high-n levels of multi-electron ions are difficult to calculate and are reliable to roughly a part in 10{sup 3}. These differences are large enough to preclude accurate predictions of successful overlaps. As a result, precise measurements of the overlaps are needed. The continued interest in photo-pumping schemes lies in its potential to improve the laser output. It also allows the excitation of lasing transitions not accessible to other mechanisms and thus to the test laser kinetics from a different perspective. We have studied several such photo-pumping schemes at the LLNL electron beam ion trap. The N-like isoelectronic sequence 3d-5f and 3d-6f transitions were studied for photo-pumping by He-like ions, the Ne-like 2p-4d transitions were studied for photo-pumping by N-like 3d-4f transitions, and Ni-like 3d{sub 5/2}-6f{sub 7/2} transitions were studied for photo-pumping by H-like Ly-{alpha} transitions. A number of other chance coincidence pairs which do not follow an isoelectronic sequence were also studied. The data were taken with a flat-crystal vacuum spectrometer, a flat-crystal helium atmosphere spectrometer, or a curved-crystal spectrometer in the von Hamos geometry. The advantage of EBIT over laser-produced or tokamak plasmas for such experiments is its ability to control the charge balance and the excitation process. By choosing the electron beam energy, we can select a dominant charge state.

  13. X-ray spectroscopy and imaging of a plasma collision

    SciTech Connect

    Chenais-Popovics, C.; Rancu, O.; Renaudin, P.

    1995-07-14

    The collision of laser-produced plasmas has been diagnosed by x-ray spectroscopy and imaging. The two colliding plasmas are produced on Al thin foils at a distance of 200 to 900 {mu}m irradiated at {lambda} = 0.53 {mu}m with laser intensities of 3 {times} 10{sup 13} to 6 {times} 10{sup 13} W/cm{sup 2}. Interpenetration of the plasmas was visualized by replacing one of the foils material by magnesium. The main diagnostics viewing the inter-target space were time-resolved monochromatic imaging of the 1s{sup 2} 1s3p aluminum line (He{Beta} at {lambda} {minus} 6.635 {Angstrom}). Doppler broadening measurement with a vertical Johann very high resolution spectrograph in the range 6.5--6.7{Angstrom}, space-resolved high resolution spectra of the dielectronic satellites of the 1s-2p 1 yman, space-resolved spectra with a flat-crystal spectrograph in the range 5--7 {Angstrom} and in the range of 43--48 {Angstrom} obtained with a new OHM crystal spectrograph and a pinhole camera. A multifluid eulerian monodimensional hydrodynamic code coupled with a radiative-atomic package provided simulations of the experiments. Hydrodynamic 2D simulations calculating the lateral expansion of the plasma enabled a reliable treatment of reabsorption along the line of sight of the spectrographs. The size the time duration of the collision, the plasma parameters (Te,Ti and ne) in the collision region and interpenetration were measured. The hydrocode simulations give a good understanding of the behavior of the collision in function of intertarget distance and laser intensity.

  14. Johann Spectrometer for High Resolution X-ray Spectroscopy

    SciTech Connect

    Machek, Pavel; Froeba, Michael; Welter, Edmund; Caliebe, Wolfgang; Brueggmann, Ulf; Draeger, Guenter

    2007-01-19

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 {mu}m thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5x1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  15. Advances in X-ray Raman spectroscopy at Stanford Synchrotron Radiation Lightsource

    NASA Astrophysics Data System (ADS)

    Sokaras, Dimosthenis; Nordlund, Dennis; Weng, Tsu-Chien; Alonso Mori, Roberto; Bergmann, Uwe

    2012-02-01

    We present a state-of-the-art x-ray Raman spectroscopy end-station recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The end-station consists of two multicrystal Johann type spectrometers arranged on a Rowland circle of 1m. The first one, positioned at the forward scattering angles (low-q), consists of 40 diced and spherically bended Si(110) crystals of 4" of diameter providing a large solid angle of detection as well as an overall energy resolution of about 270 meV at 6462.20 eV. The second spectrometer, consisting of 14 spherically bent Si(110) crystal analyzers, is positioned at the backward scattering angles (high-q) enabling the study of non-dipole transitions. These features, in particular the improved total resolution with a substantial increase in solid angle, positions the instrumentation as a unique alternative to soft x-ray absorption for difficult sample conditions and bulk sensitive measurements, which allows a systematic implementation of this photon-in/photon-out hard x-ray technique on emerging research of multidisciplinary scientific fields in energy-related science, physics, and material science. Preliminary results and prospects will be presented and discussed, in particular for applications in Energy Science.

  16. Development of spatially resolved high resolution x-ray spectroscopy for fusion and light-source research

    NASA Astrophysics Data System (ADS)

    Lu, J.; Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Pablant, N. A.; Efthimion, P.; Beiersdorfer, P.; Chen, H.; Widmann, K.; Sanchez del Rio, M.

    2014-09-01

    One dimensional spatially resolved high resolution x-ray spectroscopy with spherically bent crystals and 2D pixelated detectors is an established technique on magnetic confinement fusion (MCF) experiments world wide for Doppler measurements of spatial profiles of plasma ion temperature and flow velocity. This technique is being further developed for diagnosis of High Energy Density Physics (HEDP) plasmas at laser-plasma facilities and synchrotron/x-ray free electron laser (XFEL) facilities. Useful spatial resolution (micron scale) of such small-scale plasma sources requires magnification, because of the finite pixel size of x-ray CCD detectors (13.5 ?m). A von-Hamos like spectrometer using spherical crystals is capable of magnification, as well as uniform sagittal focusing across the full x-ray spectrum, and is being tested in laboratory experiments using a tungsten-target microfocus (5-10 ?m) x-ray tube and 13-?m pixel x-ray CCD. A spatial resolution better than 10 ?m has been demonstrated. Good spectral resolution is indicated by small differences (0.02 - 0.1 eV) of measured line widths with best available published natural line widths. Progress and status of HEDP measurements and the physics basis for these diagnostics are presented. A new type of x-ray crystal spectrometer with a convex spherically bent crystal is also reported. The status of testing of a 2D imaging microscope using matched pairs of spherical crystals with x rays will also be presented. The use of computational x-ray optics codes in development of these instrumental concepts is addressed.

  17. Centaurus X-3. [early x-ray binary star spectroscopy

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Cowley, A. P.; Crampton, D.; Van Paradus, J.; White, N. E.

    1979-01-01

    Spectroscopic observations of Krzeminski's star at dispersions 25-60 A/mm are described. The primary is an evolved star of type O6-O8(f) with peculiarities, some of which are attributable to X-ray heating. Broad emission lines at 4640A (N III), 4686 A(He II) and H-alpha show self-absorption and do not originate entirely from the region near the X-ray star. The primary is not highly luminous (bolometric magnitude about -9) and does not show signs of an abnormally strong stellar wind. The X-ray source was 'on' at the time of optical observations. Orbital parameters are presented for the primary, which yield masses of 17 + or - 2 and 1.0 + or - 3 solar masses for the stars. The optical star is undermassive for its luminosity, as are other OB-star X-ray primaries. The rotation is probably synchronized with the orbital motion. The distance to Cen X-3 is estimated to be 10 + or - 1 kpc. Basic data for 12 early-type X-ray primaries are discussed briefly

  18. X27A - A New Hard X-ray Micro-Spectroscopy Facility at the National Synchrtron Light Source

    SciTech Connect

    Ablett,J.; Kao, C.; Reeder, R.; Tang, Y.; Lanzirotti, A.

    2006-01-01

    A new hard X-ray micro-spectroscopy beamline has recently been installed at bending-magnet beamline X27A at the National Synchrotron Light Source, where the focus of research is primarily directed towards the environmental, geological and materials science communities. This instrument delivers moderate, {approx}10 {micro}m spatial resolution using achromatic dynamically bent Kirkpatrick-Baez mirrors, in addition to providing high X-ray flux throughput and selectable energy resolution. The balance between moderate spatial resolution and high flux throughput, in combination with a liquid nitrogen-cooled 13-element energy-dispersive high-purity germanium detector, is particularly well suited to the investigation of dilute and thin-film systems using the fluorescence X-ray absorption fine-structure mode of detection. In this paper, we report on the design and performance of this instrument and highlight a recent experimental study undertaken at this facility.

  19. The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser

    SciTech Connect

    Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G.; Heimann, P.; Krupin, O.; Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S.; Kelez, N.; Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W.; and others

    2012-04-15

    The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

  20. A whole-system approach to x-ray spectroscopy in cargo inspection systems

    NASA Astrophysics Data System (ADS)

    Langeveld, Willem G. J.; Gozani, Tsahi; Ryge, Peter; Sinha, Shrabani; Shaw, Tim; Strellis, Dan

    2013-04-01

    The bremsstrahlung x-ray spectrum used in high-energy, high-intensity x-ray cargo inspection systems is attenuated and modified by the materials in the cargo in a Z-dependent way. Therefore, spectroscopy of the detected x rays yields information about the Z of the x-rayed cargo material. It has previously been shown that such ZSpectroscopy (Z-SPEC) is possible under certain circumstances. A statistical approach, Z-SCAN (Z-determination by Statistical Count-rate ANalysis), has also been shown to be effective, and it can be used either by itself or in conjunction with Z-SPEC when the x-ray count rate is too high for individual x-ray spectroscopy. Both techniques require fast x-ray detectors and fast digitization electronics. It is desirable (and possible) to combine all techniques, including x-ray imaging of the cargo, in a single detector array, to reduce costs, weight, and overall complexity. In this paper, we take a whole-system approach to x-ray spectroscopy in x-ray cargo inspection systems, and show how the various parts interact with one another. Faster detectors and read-out electronics are beneficial for both techniques. A higher duty-factor x-ray source allows lower instantaneous count rates at the same overall x-ray intensity, improving the range of applicability of Z-SPEC in particular. Using an intensity-modulated advanced x-ray source (IMAXS) allows reducing the x-ray count rate for cargoes with higher transmission, and a stacked-detector approach may help material discrimination for the lowest attenuations. Image processing and segmentation allow derivation of results for entire objects, and subtraction of backgrounds. We discuss R&D performed under a number of different programs, showing progress made in each of the interacting subsystems. We discuss results of studies into faster scintillation detectors, including ZnO, BaF2 and PbWO4, as well as suitable photo-detectors, read-out and digitization electronics. We discuss high-duty-factor linear-accelerator x-ray sources and their associated requirements, and how such sources improve spectroscopic techniques. We further discuss how image processing techniques help in correcting for backgrounds and overlapping materials. In sum, we present an integrated picture of how to optimize a cargo inspection system for x-ray spectroscopy.

  1. A whole-system approach to x-ray spectroscopy in cargo inspection systems

    SciTech Connect

    Langeveld, Willem G. J.; Gozani, Tsahi; Ryge, Peter; Sinha, Shrabani; Shaw, Tim; Strellis, Dan

    2013-04-19

    The bremsstrahlung x-ray spectrum used in high-energy, high-intensity x-ray cargo inspection systems is attenuated and modified by the materials in the cargo in a Z-dependent way. Therefore, spectroscopy of the detected x rays yields information about the Z of the x-rayed cargo material. It has previously been shown that such ZSpectroscopy (Z-SPEC) is possible under certain circumstances. A statistical approach, Z-SCAN (Z-determination by Statistical Count-rate ANalysis), has also been shown to be effective, and it can be used either by itself or in conjunction with Z-SPEC when the x-ray count rate is too high for individual x-ray spectroscopy. Both techniques require fast x-ray detectors and fast digitization electronics. It is desirable (and possible) to combine all techniques, including x-ray imaging of the cargo, in a single detector array, to reduce costs, weight, and overall complexity. In this paper, we take a whole-system approach to x-ray spectroscopy in x-ray cargo inspection systems, and show how the various parts interact with one another. Faster detectors and read-out electronics are beneficial for both techniques. A higher duty-factor x-ray source allows lower instantaneous count rates at the same overall x-ray intensity, improving the range of applicability of Z-SPEC in particular. Using an intensity-modulated advanced x-ray source (IMAXS) allows reducing the x-ray count rate for cargoes with higher transmission, and a stacked-detector approach may help material discrimination for the lowest attenuations. Image processing and segmentation allow derivation of results for entire objects, and subtraction of backgrounds. We discuss R and D performed under a number of different programs, showing progress made in each of the interacting subsystems. We discuss results of studies into faster scintillation detectors, including ZnO, BaF{sub 2} and PbWO{sub 4}, as well as suitable photo-detectors, read-out and digitization electronics. We discuss high-duty-factor linear-accelerator x-ray sources and their associated requirements, and how such sources improve spectroscopic techniques. We further discuss how image processing techniques help in correcting for backgrounds and overlapping materials. In sum, we present an integrated picture of how to optimize a cargo inspection system for x-ray spectroscopy.

  2. Examination of the local structure in composite and lowdimensional semiconductor by X-ray Absorption Spectroscopy

    SciTech Connect

    Lawniczak-Jablonska, K.; Demchenko, I.N.; Piskorska, E.; Wolska,A.; Talik, E.; Zakharov, D.N.; Liliental-Weber, Z.

    2006-09-25

    X-ray absorption methods have been successfully used to obtain quantitative information about local atomic composition of two different materials. X-ray Absorption Near Edge Structure analysis and X-Ray Photoelectron Spectroscopy allowed us to determine seven chemical compounds and their concentrations in c-BN composite. Use of Extended X-ray Absorption Fine Structure in combination with Transmission Electron Microscopy enabled us to determine the composition and size of buried Ge quantum dots. It was found that the quantum dots consisted out of pure Ge core covered by 1-2 monolayers of a layer rich in Si.

  3. Soft X-ray emission spectroscopy of polycyclic aromatichydrocarbons

    SciTech Connect

    Muramatsu, Yasuji; Tomizawa, Kana; Denlinger, Jonathan D.; Perera, Rupert C.C.

    2004-04-02

    High-resolution CK X-ray emission spectra of polycyclicaromatic hydrocarbons (PAH) were measured using synchrotron radiation.The main peak energies in the PAH X-ray spectra shifted to a higherenergy region as the ratio of hydrogenated outer carbon atoms tothenon-hydrogenated inner carbon atoms increased. Discrete variational(DV)-Xa molecular orbital calculations provided theoretical confirmationthat the spectral features depend on the ratio ofhydrogenated/non-hydrogenated carbon atoms, which suggests that thefeatures around the main peaks provide the information of the degree ofhydrogenation in PAH compounds.

  4. Instrumentation advances and detector development with the Stony Brook scanning transmission X-ray microscope

    NASA Astrophysics Data System (ADS)

    Feser, M.; Beetz, T.; Carlucci-Dayton, M.; Jacobsen, C.

    2000-05-01

    Driven by the requirements of new x-ray microscopy instrumentation the Stony Brook microscopy beamline X-1A has undergone considerable evolution [1]. The room temperature scanning transmission X-ray microscope (STXM) has been completely redesigned improving performance, case of use and compatibility with other experiments. We present the highlights of the new design, the available detectors and the result of early tests of this new microscope.

  5. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    DOE PAGESBeta

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; et al

    2015-04-15

    The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  6. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    PubMed Central

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; Schafer, Donald W.; Guillet, Serge; Busse, Armin; Bergan, Robert; Olson, William; Fox, Kay; Stewart, Nathaniel; Curtis, Robin; Miahnahri, Alireza Alan; Boutet, Sébastien

    2015-01-01

    The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter. PMID:25931062

  7. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source.

    PubMed

    Liang, Mengning; Williams, Garth J; Messerschmidt, Marc; Seibert, M Marvin; Montanez, Paul A; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S; Koglin, Jason E; Schafer, Donald W; Guillet, Serge; Busse, Armin; Bergan, Robert; Olson, William; Fox, Kay; Stewart, Nathaniel; Curtis, Robin; Miahnahri, Alireza Alan; Boutet, Sébastien

    2015-05-01

    The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump-probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter. PMID:25931062

  8. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    SciTech Connect

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; Schafer, Donald W.; Guillet, Serge; Busse, Armin; Bergan, Robert; Olson, William; Fox, Kay; Stewart, Nathaniel; Curtis, Robin; Miahnahri, Alireza Alan; Boutet, Sbastien

    2015-04-15

    The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 m focus, are available, each with multiple diagnostics, sample injection, pumpprobe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  9. Application of confocal X-ray fluorescence micro-spectroscopy to the investigation of paint layers.

    PubMed

    Sun, Tianxi; Liu, Zhiguo; Wang, Guangfu; Ma, Yongzhong; Peng, Song; Sun, Weiyuan; Li, Fangzuo; Sun, Xuepeng; Ding, Xunliang

    2014-12-01

    A confocal micro X-ray fluorescence (MXRF) spectrometer based on polycapillary X-ray optics was used for the identification of paint layers. The performance of the confocal MXRF was studied. Multilayered paint fragments of a car were analyzed nondestructively to demonstrate that this confocal MXRF instrument could be used in the discrimination of the various layers in multilayer paint systems. PMID:25151613

  10. Application of ultra-small-angle X-ray scattering / X-ray photon correlation spectroscopy to relate equilibrium or non-equilibrium dynamics to microstructure

    NASA Astrophysics Data System (ADS)

    Allen, Andrew; Zhang, Fan; Levine, Lyle; Ilavsky, Jan

    2013-03-01

    Ultra-small-angle X-ray scattering (USAXS) can probe microstructures over the nanometer-to-micrometer scale range. Through use of a small instrument entrance slit, X-ray photon correlation spectroscopy (XPCS) exploits the partial coherence of an X-ray synchrotron undulator beam to provide unprecedented sensitivity to the dynamics of microstructural change. In USAXS/XPCS studies, the dynamics of local structures in a scale range of 100 nm to 1000 nm can be related to an overall hierarchical microstructure extending from 1 nm to more than 1000 nm. Using a point-detection scintillator mode, the equilibrium dynamics at ambient temperature of small particles (which move more slowly than nanoparticles) in aqueous suspension have been quantified directly for the first time. Using a USAXS-XPCS scanning mode for non-equilibrium dynamics incipient processes within dental composites have been elucidated, prior to effects becoming detectable using any other technique. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

  11. Corrosion and degradation studies utilizing X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hixson, Holly Gwyndolen

    1997-08-01

    This dissertation involves studies of corrosion behavior at the surface of various metal samples, as well as the degradation of wool fibers obtained from the Star-Spangled Banner. Molybdenum metal and iron-zinc alloys were examined under corrosive conditions, and the degradation of the wool fibers was studied. The behavior of a polished molybdenum metal surface upon exposure to both aerated and deaerated water and 1.0 M NaCl solution was studied by X-ray Photoelectron Spectroscopy (XPS). Exposure to deaerated water and NaCl failed to produce oxidation of the metal surfaces, but exposing the polished metal surface to aerated water produced significant oxidation. Metal surfaces cleaned by argon-ion etching were found to be inert to oxidation by aerated water. The etching process also appears to passivate the metal surface. The behavior of molybdenum metal in 0.5 M Hsb2SOsb4 treated at various potentials has been studied using core and valence band XPS. The study indicates that Mosp{IV} and Mosp{VI} (including possibly Mosp{V} in some cases) were formed as the potential of the system was increased within the active range of molybdenum. The corrosive behavior of iron-zinc alloys that have been electroplated on plain steel in both aerated and deaerated quadruply-distilled water has been studied using XPS. Several different iron-zinc alloys were electroplated for comparative purposes: an iron-rich alloy, a zinc-rich alloy, and an alloy of similar iron and zinc composition. Treatment in aerated water produces oxidation for the iron-rich and similar composition alloys, but the oxide is reduced for the zinc-rich alloy. Degradation of the fibers in the original Star-Spangled Banner has been monitored using XPS and Scanning Electron Microscopy (SEM). Comparison of white and red wool fibers and linen fibers from the flag with new, mechanically-abraded, and chemically-treated white, red, and linen fibers, respectively, was performed in an attempt to determine the fibers' levels of physical and chemical degradation. Chemical treatment of the fibers gives results similar to those for the fibers from the flag, demonstrating that chemical changes to the fiber surface have occurred over time.

  12. Si(Li) X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1975-01-01

    The general considerations involved in the choice of Si(Li) as a non-dispersive spectrometer for X-ray astronomy are discussed. In particular, its adaptation to HEAO-B is described as an example of the space-borne application of Si(Li) technology.

  13. A novel instrument for quantitative nanoanalytics involving complementary X-ray methodologies

    SciTech Connect

    Lubeck, J.; Beckhoff, B.; Fliegauf, R.; Holfelder, I.; Hoenicke, P.; Mueller, M.; Pollakowski, B.; Reinhardt, F.; Weser, J.

    2013-04-15

    A novel ultra-high vacuum instrument for X-ray reflectometry and spectrometry-related techniques for nanoanalytics by means of synchrotron radiation has been constructed and commissioned. This versatile instrument was developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute, and includes a 9-axis manipulator that allows for an independent alignment of the samples with respect to all degrees of freedom. In addition, a rotational and translational movement of several photodiodes as well as a translational movement of an aperture system in and out of the beam is provided. Thus, the new instrument enables various analytical techniques based on energy dispersive X-ray detectors such as reference-free X-ray fluorescence analysis (XRF), total-reflection XRF, grazing-incidence XRF in addition to optional X-ray reflectometry measurements or polarization-dependent X-ray absorption fine structure analyses. With this instrument samples having a size of up to 100 mm Multiplication-Sign 100 mm can be analyzed with respect to their mass deposition, elemental or spatial composition, or the species in order to probe surface contamination, layer composition and thickness, the depth profile of matrix elements or implants, the species of nanolayers, nanoparticles or buried interfaces as well as the molecular orientation of bonds. Selected applications of this advanced ultra-high vacuum instrument demonstrate both its flexibility and capability.

  14. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution better than 25 nm. Limiting factors for Stardust STXM analyses were self-imposed limits of photon dose due to radiation damage concerns, and significant attenuation of <1500 eV X-rays by {approx}80{micro}m thick, {approx}25 mg/cm{sup 3} density silica aerogel capture medium. In practice, the ISPE team characterized the major, light elements using STXM (O, Mg, Al, Si) and the heavier minor and trace elements using SXRF. The two data sets overlapped only with minor Fe and Ni ({approx}1% mass abundance), providing few quantitative cross-checks. New improved standards for cross calibration are essential for consortium-based analyses of Stardust interstellar and cometary particles, IDPs. Indeed, they have far reaching application across the whole synchrotron-based analytical community. We have synthesized three ALD multilayers simultaneously on silicon nitride membranes and silicon and characterized them using RBS (on Si), XRF (on Si{sub 3}N{sub 4}) and STXM/XAS (holey Si{sub 3}N{sub 4}). The systems we have started to work with are Al-Zn-Fe and Y-Mg-Er. We have found these ALD multi-layers to be uniform at {micro}m- to nm scales, and have found excellent consistency between four analytical techniques so far. The ALD films can also be used as a standard for e-beam instruments, eg., TEM EELS or EDX. After some early issues with the consistency of coatings to the back-side of the membrane windows, we are confident to be able to show multi-analytical agreement to within 10%. As the precision improves, we can use the new standards to verify or improve the tabulated cross-sections.

  15. The BioCAT undulator beamline 18ID: A facility for biological non-crystalline diffraction and x-ray absorption spectroscopy at the APS

    SciTech Connect

    Fischetti, R.; Stepanov, S.; Rosenbaum, G.; Barrea, R.; Black, E.; Gore, D.; Heurich, R.; Kondrashkina, E.; Kropf, A.J.; Wang, S.; Zhang, K.; Irving, T.C.; Bunker, G.B.

    2008-07-02

    The 18ID undulator beamline of the Biophysics Collaborative Access Team at the Advanced Photon Source, Argonne, IL, USA, is a high-performance instrument designed for, and dedicated to, the study of partially ordered and disordered biological materials using the techniques of small-angle X-ray scattering, fiber diffraction, and X-ray absorption spectroscopy. The beamline and associated instrumentation are described in detail and examples of the representative experimental results are presented.

  16. X-ray absorption and micro X-ray fluorescence spectroscopy investigation of copper and zinc speciation in biosolids.

    PubMed

    Donner, Erica; Howard, Daryl L; de Jonge, Martin D; Paterson, David; Cheah, Mun Hon; Naidu, Ravi; Lombi, Enzo

    2011-09-01

    Despite its pivotal role in determining the risks and time frames associated with contaminant release, metal speciation remains a poorly understood aspect of biosolids chemistry. The work reported here used synchrotron-based spectroscopy techniques to investigate the speciation of copper and zinc in a range of Australian biosolids. High resolution element mapping of biosolids samples using micro X-ray fluorescence spectroscopy revealed considerable heterogeneity in key element associations, and a combination of both organic and inorganic copper and zinc binding environments. Linear combination fitting of K-edge X-ray absorption spectra indicated consistent differences in metal speciation between freshly produced and stockpiled biosolids. While sulfide minerals play a dominant role in metal binding in freshly dewatered biosolids, they are of lesser importance in dried biosolids that have been stockpiled. A degree of metal binding with iron oxide minerals was apparent but the results did not support the hypothesis that biosolids metals are chiefly associated with iron minerals. This work has potential implications for the long-term stability of metals in biosolids and their eventual fate following land application. PMID:21793501

  17. Electrochemical in situ reaction cell for X-ray scattering, diffraction and spectroscopy.

    PubMed

    Braun, A; Shrout, S; Fowlks, A C; Osaisai, B A; Seifert, S; Granlund, E; Cairns, E J

    2003-07-01

    A versatile electrochemical in situ reaction cell for long-term hard X-ray experiments on battery electrodes is described. Applications include the small-angle scattering, diffraction and absorption spectroscopy of lithium manganese oxide electrodes. PMID:12824932

  18. Quantification of Element Abundances of Stardust Interstellar Candidates by Synchrotron Radiation X-Ray Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Simionovici, A. S.; Lemelle, L.; Cloetens, P.; Sol, V. A.; Sans Tresseras, J.-A.; Butterworth, A. L.; Westphal, A. J.; Gainsforth, Z.; Stodolna, J.; Allen, C.; Anderson, D.; Ansari, A.; Bajt, S.; Bassim, N.; Bastien, R. S.; Bechtel, H. A.; Borg, J.; Brenker, F. E.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghamme, M.; Changela, H.; Davis, A. M.; Doll, R.; Floss, Ch.; Flynn, G. J.; Frank, D. R.; Grn, E.; Heck, Ph. R.; Hillier, J. K.; Hoppe, P.; Hudson, B.; Huth, J.; Hvide, B.; Kearsley, A.; King, A. J.; Lai, B.; Leitner, J.; Leonard, A.; Leroux, H.; Lettieri, R.; Marchant, W.; Nittler, L. R.; Ogliore, R.; Ja Ong, W. J.; Postberg, F.; Price, M. C.; Sandford, S. A.; Schmitz, S.; Schoonjans, T.; Schreiber, K.; Silversmit, G.; Srama, R.; Stephan, Th.; Sterken, V. J.; Stroud, R. M.; Sutton, S.; Trieloff, M.; Tsou, P.; Tsuchiyama, A.; Tyliszczak, T.; Vekemans, B.; Vincze, L.; Von Korff, J.; Wordsworth, N.; Zevin, D.; Zolensky, M. E.

    2013-09-01

    Orion and Sirius, two Interstellar Dust Candidates from the NASA Stardust mission were analyzed using hyperspectral fluorescence/diffraction nano-X-ray imaging. Correlation spectroscopy of associated elements helped propose an associated mineralogy.

  19. Simulated 'On-Line' Wear Metal Analysis of Lubricating Oils by X-Ray Fluorescence Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Partos, Richard D.; Nelson, Irina

    1996-01-01

    The objective of this project was to assess the sensitivity of X-ray Fluorescence Spectroscopy (XFS) for quantitative evaluation of metal particle content in engine oil suspensions and the feasibility of real-time, dynamic wear metal analysis. The study was focused on iron as the majority wear metal component. Variable parameters were: particle size, particle concentration and oil velocity. A commercial XFS spectrometer equipped with interchangeable static/dynamic (flow cell) sample chambers was used. XFS spectra were recorded for solutions of Fe-organometallic standard and for a series of DTE oil suspensions of high purity spherical iron particles of 2g, 4g, and 8g diameter, at concentrations from 5 ppm to 5,000 ppm. Real contaminated oil samples from Langley Air Force Base aircraft engines and NASA Langley Research Center wind tunnels were also analyzed. The experimental data conform the reliability of XFS as the analytical method of choice for this project. Intrinsic inadequacies of the instrument for precise analytic work at low metal concentrations were identified as being related to the particular x-ray beam definition, system geometry, and flow-cell materials selection. This work supports a proposal for the design, construction and testing of a conceptually new, miniature XFS spectrometer with superior performance, dedicated to on-line, real-time monitoring of lubricating oils in operating engines. Innovative design solutions include focalization of the incident x-ray beam, non-metal sample chamber, and miniaturization of the overall assembly. The instrument would contribute to prevention of catastrophic engine failures. A proposal for two-year funding has been presented to NASA Langley Research Center Internal Operation Group (IOG) Management, to continue the effort begun by this summer's project.

  20. X-ray spectroscopy of photoionized plasmas in astrophysics.

    NASA Astrophysics Data System (ADS)

    Kunieda, H.

    Among astrophysical objects, active galactic nuclei (AGN) are good examples of photoionized plasmas illuminated by central bright sources. X-rays emerging from such plasmas are observed by ASCA. In soft X-rays, emission lines are observed from He-like Ca, Ar, S, Si, and Mg, whose ionization temperature are much higher than the electron temperature. From some Sy I's, an absorption feature due to O VII/O VIII was found, which suggests it ionized (warm) absorber. Such a warm absorber has been identified by emission lines seen by EUVE. A common spectral feature of Sy I's is the iron K emission line. ASCA discovered broad line feature due to gravitational and Doppler effects of reprocessor on the accretion disk around a massive black hole.

  1. An instrument for 3D x-ray nano-imaging

    SciTech Connect

    Holler, M.; Raabe, J.; Diaz, A.; Guizar-Sicairos, M.; Quitmann, C.; Menzel, A.; Bunk, O.

    2012-07-15

    We present an instrument dedicated to 3D scanning x-ray microscopy, allowing a sample to be precisely scanned through a beam while the angle of x-ray incidence can be changed. The position of the sample is controlled with respect to the beam-defining optics by laser interferometry. The instrument achieves a position stability better than 10 nm standard deviation. The instrument performance is assessed using scanning x-ray diffraction microscopy and we demonstrate a resolution of 18 nm in 2D imaging of a lithographic test pattern while the beam was defined by a pinhole of 3 {mu}m in diameter. In 3D on a test object of copper interconnects of a microprocessor, a resolution of 53 nm is achieved.

  2. Beam synchronous detection techniques for X-Ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Goujon, Grard; Rogalev, Andre; Goulon, Jos; Feite, Serge; Wilhelm, Fabrice

    2013-03-01

    The Photo diode detectors combine a set of properties that make them most appropriate, in particular, for X-ray Magnetic Circular Dichroism (XMCD) experiments. Under standard operating conditions, the detection bandwidth is primarily limited by the transimpedance preamplifier that converts the very low ac photocurrent into a voltage. On the other hand, when the photodiode is reverse biased, its finite shunt resistance will cause an undesirable, temperature dependent DC dark current. The best strategy to get rid of it is to use synchronous detection techniques. A classical implementation is based on the use of a chopper modulating the X-ray beam intensity at rather low frequencies (typically below 1 kHz). Here we report on the recent development of a fast Xray detection which has the capability to fully exploit the frequency structure of the ESRF X-ray beam (355 KHz and its harmonics). The availability of new wide band preamplifiers allowed us to extend the working frequency range up to a few MHz. A beam synchronous data processing was implemented in large FPGAs. Performances of the new detection system implemented at the ESRF beamline ID12 are illustrated with detection of the Fe K-edge XMCD spectra in garnets, using 4 bunches operation mode with modulation frequency of 1.4 MHz.

  3. Spectroscopy of optical counterparts of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Abolmasov, P.; Fabrika, S.; Sholukhova, O.; Afanasiev, V.

    2007-03-01

    Here we present the results of panoramic and long-slit observations of eight ULX nebular counterparts performed with the 6m SAO telescope. In two ULX nebulae (ULXNe) we detected for the first time signatures of high excitation ([O III]λ5007 / H β > 5). Two of the ULXs were identified with young ( T ˜ 5 10 Myr) massive star clusters. Four of the eight ULXNe show bright high-excitation lines. This requires existence of luminous (˜ 1038 ÷ 1040 erg s-1) UV/EUV sources coinciding with the X-ray sources. The other 4 ULXNe require shock excitation of the gas with shock velocities of 20 100 km s -1. However, all the studied ULXNe spectra show signatures of shock excitation, but even those ULXNe where the shocks are prevailing show presence of a hard ionizing source with a luminosity of at least ˜ 1038 erg s-1. Most likely shock waves, X-ray and EUV ionization act simultaneously in all the ULXNe, but they may be roughly separated in two groups: shock-dominated and photoionization-dominated ULXNe. The ULXs have to produce strong winds and/or jets (˜ 1039 erg s-1) for powering their nebulae. Both the wind/jet activity and the existence of a bright UV source are consistent with the suggestion that ULXs are high-mass X-ray binaries with supercritical accretion disks of the SS433 type.

  4. High Resolution X-Ray Spectroscopy with a Microcalorimeter

    SciTech Connect

    Norrell, J.; Anderson, I.

    2005-01-01

    Energy-dispersive spectrometry (EDS) is often the preferred choice for X-ray microanalysis, but there are still many disadvantages associated with EDS, the most significant of which is the relatively poor energy resolution, which limits detection sensitivity and the ability to distinguish among closely spaced spectral features, limiting even qualitative analysis. A new type of EDS detector that operates on the principle of microcalorimetry has the potential to eliminate this shortcoming, reaching resolutions an order of magnitude better. The detector consists of an absorber in thermal contact with a transition edge sensor (TES). An X-ray from the specimen hits the absorber and manifests itself as a change in temperature. Because the system is kept at 80 mK, the heat capacity is low and the temperature spike is observable. The TES responds to the increase in temperature by transitioning from its superconducting to its normal conducting state, thus sharply raising the overall resistance of the circuit. The circuit is kept at a constant voltage, so the increase in resistance is manifested as a decrease in current flow. This decrease in current is measured by a superconducting quantum interference device (SQUID), and by integrating the current over time, the energy of the incident X-ray is determined. The prototype microcalorimeter was developed by NIST, and this technology is now available commercially through a partnership between Vericold Technologies and EDAX International. ORNL has received the first of these commercial microcalorimeters in the United States. The absorber in this detector is gold, and the TES consists of a gold-iridium bilayer. It is designed to offer spectral resolution of 10-15 eV at a count rate of ~150 s-1. The goal of this project was to analyze and document the performance of the detector, with particular attention given to the effects of an X-ray optic used to improve collection efficiency, the multiple window system and any other sources of spectral artifacts. It was found that the detector is capable of distinguishing many L? and L? spectral lines, with a resolution between 13 and 17 eV. It was also observed that the background has an unusual shape, and this is largely being attributed to the variable transmission coefficient of the X-ray optic. These preliminary results suggest that the microcalorimeter has a high potential for use in microanalysis, but more work to quantify its capabilities must still be done.

  5. The X-ray Pump–Probe instrument at the Linac Coherent Light Source

    DOE PAGESBeta

    Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; Damiani, Daniel; Defever, Jim; Delor, James T.; Feng, Yiping; Glownia, James M.; Langton, J. Brian; Nelson, Silke; et al

    2015-04-21

    The X-ray Pump–Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4–24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.

  6. The X-ray Pump–Probe instrument at the Linac Coherent Light Source

    PubMed Central

    Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; Damiani, Daniel; Defever, Jim; Delor, James T.; Feng, Yiping; Glownia, James M.; Langton, J. Brian; Nelson, Silke; Ramsey, Kelley; Robert, Aymeric; Sikorski, Marcin; Song, Sanghoon; Stefanescu, Daniel; Srinivasan, Venkat; Zhu, Diling; Lemke, Henrik T.; Fritz, David M.

    2015-01-01

    The X-ray Pump–Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4–24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale. PMID:25931060

  7. The X-ray Pump-Probe instrument at the Linac Coherent Light Source.

    PubMed

    Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; Damiani, Daniel; Defever, Jim; Delor, James T; Feng, Yiping; Glownia, James M; Langton, J Brian; Nelson, Silke; Ramsey, Kelley; Robert, Aymeric; Sikorski, Marcin; Song, Sanghoon; Stefanescu, Daniel; Srinivasan, Venkat; Zhu, Diling; Lemke, Henrik T; Fritz, David M

    2015-05-01

    The X-ray Pump-Probe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 4-24 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale. PMID:25931060

  8. The X-ray PumpProbe instrument at the LinacCoherent Light Source

    SciTech Connect

    Chollet, Matthieu; Alonso-Mori, Roberto; Cammarata, Marco; Damiani, Daniel; Defever, Jim; Delor, James T.; Feng, Yiping; Glownia, James M.; Langton, J. Brian; Nelson, Silke; Ramsey, Kelley; Robert, Aymeric; Sikorski, Marcin; Song, Sanghoon; Stefanescu, Daniel; Srinivasan, Venkat; Zhu, Diling; Lemke, Henrik T.; Fritz, David M.

    2015-04-21

    The X-ray PumpProbe instrument achieves femtosecond time-resolution with hard X-ray methods using a free-electron laser source. It covers a photon energy range of 424 keV. A femtosecond optical laser system is available across a broad spectrum of wavelengths for generating transient states of matter. The instrument is designed to emphasize versatility and the scientific goals encompass ultrafast physical, chemical and biological processes involved in the transformation of matter and transfer of energy at the atomic scale.

  9. AEGIS: An Astrophysics Experiment for Grating and Imaging Spectroscopy---a Soft X-ray, High-resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Huenemoerder, David; Bautz, M. W.; Davis, J. E.; Heilmann, R. K.; Houck, J. C.; Marshall, H. L.; Neilsen, J.; Nicastro, F.; Nowak, M. A.; Schattenburg, M. L.; Schulz, N. S.; Smith, R. K.; Wolk, S.; AEGIS Team

    2012-01-01

    AEGIS is a concept for a high-resolution soft X-ray spectroscopic observatory developed in response to NASA's request for definitions of the next X-ray astronomy mission. At a small fraction of the cost of the once-planned International X-ray Observatory (IXO), AEGIS has capabilities that surpass IXO grating spectrometer requirements, and which are far superior to those of existing soft X-ray spectrometers. AEGIS incorporates innovative technology in X-ray optics, diffraction gratings and detectors. The mirror uses high area-to-mass ratio segmented glass architecture developed for IXO, but with smaller aperture and larger graze angles optimized for high-throughput grating spectroscopy with low mass and cost. The unique Critical Angle Transmission gratings combine low mass and relaxed figure and alignment tolerances of Chandra transmission gratings but with high diffraction efficiency and resolving power of blazed reflection gratings. With more than an order of magnitude better performance over Chandra and XMM grating spectrometers, AEGIS can obtain high quality spectra of bright AGN in a few hours rather than 10 days. Such high resolving power allows detailed kinematic studies of galactic outflows, hot gas in galactic haloes, and stellar accretion flows. Absorption line spectroscopy will be used to study large scale structure, cosmic feedback, and growth of black holes in thousands of sources to great distances. AEGIS will enable powerful multi-wavelength investigations, for example with Hubble/COS in the UV to characterize the intergalactic medium. AEGIS will be the first observatory with sufficient resolution below 1 keV to resolve thermally-broadened lines in hot ( 10 MK) plasmas. Here we describe key science investigations enable by Aegis, its scientific payload and mission plan. Acknowledgements: Support was provided in part by: NASA SAO contract SV3-73016 to MIT for the Chandra X-ray Center and Science Instruments; NASA grant NNX08AI62G; and the MKI Instrumentation Development Fund.

  10. In Situ Small Angle X-ray Scattering, Wide Angle X-ray Scattering, and Raman Spectroscopy of Microwave Synthesis

    SciTech Connect

    Tompsett,G.; Panzarella, B.; Conner, W.; Yngvesson, K.; Lu, F.; Suib, S.; Jones, K.; Bennett, S.

    2006-01-01

    Recent studies in microwave chemistry have proven many enhancements in reaction rates and selectivities. Most dramatic are several zeolite syntheses where over an order of magnitude more rapid rates are often, but not always, found. The reasons for these enhancements are not understood in part because in situ spectroscopies under microwave exposure are problematic. Thus, techniques have been slow to develop. This study describes a novel system with which x-ray scattering and Raman studies can be performed in situ during exposure to microwave radiation. The mechanisms and rates for the syntheses of zeolites or other microwave syntheses can be studied dynamically in this manner. A 2.45 GHz waveguide system operating in single pass or as a tuned cavity was developed through which an x-ray beam and/or a Raman laser could probe a synthesis solution and the appropriate scattering are studied. The X10A beamline at Brookhaven National Synchrotron Light Source was used for these studies.

  11. In situ small angle x-ray scattering, wide angle x-ray scattering, and Raman spectroscopy of microwave synthesis

    NASA Astrophysics Data System (ADS)

    Tompsett, G. A.; Panzarella, B.; Conner, W. C.; Yngvesson, K. S.; Lu, F.; Suib, S. L.; Jones, K. W.; Bennett, S.

    2006-12-01

    Recent studies in microwave chemistry have proven many enhancements in reaction rates and selectivities. Most dramatic are several zeolite syntheses where over an order of magnitude more rapid rates are often, but not always, found. The reasons for these enhancements are not understood in part because in situ spectroscopies under microwave exposure are problematic. Thus, techniques have been slow to develop. This study describes a novel system with which x-ray scattering and Raman studies can be performed in situ during exposure to microwave radiation. The mechanisms and rates for the syntheses of zeolites or other microwave syntheses can be studied dynamically in this manner. A 2.45GHz waveguide system operating in single pass or as a tuned cavity was developed through which an x-ray beam and/or a Raman laser could probe a synthesis solution and the appropriate scattering are studied. The X10A beamline at Brookhaven National Synchrotron Light Source was used for these studies.

  12. Soft x-ray spectroscopy for probing electronic and chemical states of battery materials

    NASA Astrophysics Data System (ADS)

    Wanli, Yang; Ruimin, Qiao

    2016-01-01

    The formidable challenge of developing high-performance battery system stems from the complication of battery operations, both mechanically and electronically. In the electrodes and at the electrode–electrolyte interfaces, chemical reactions take place with evolving electron states. In addition to the extensive studies of material synthesis, electrochemical, structural, and mechanical properties, soft x-ray spectroscopy provides unique opportunities for revealing the critical electron states in batteries. This review discusses some of the recent soft x-ray spectroscopic results on battery binder, transition-metal based positive electrodes, and the solid-electrolyte-interphase. By virtue of soft x-ray’s sensitivity to electron states, the electronic property, the redox during electrochemical operations, and the chemical species of the interphases could be fingerprinted by soft x-ray spectroscopy. Understanding and innovating battery technologies need a multimodal approach, and soft x-ray spectroscopy is one of the incisive tools to probe the chemical and physical evolutions in batteries.

  13. Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species

    PubMed Central

    2015-01-01

    X-ray spectroscopies, when combined in laser-pump, X-ray-probe measurement schemes, can be powerful tools for tracking the electronic and geometric structural changes that occur during the course of a photoinitiated chemical reaction. X-ray absorption spectroscopy (XAS) is considered an established technique for such measurements, and X-ray emission spectroscopy (XES) of the strongest core-to-core emission lines (K? and K?) is now being utilized. Flux demanding valence-to-core XES promises to be an important addition to the time-resolved spectroscopic toolkit. In this paper we present measurements and density functional theory calculations on laser-excited, solution-phase ferrocyanide that demonstrate the feasibility of valence-to-core XES for time-resolved experiments. We discuss technical improvements that will make valence-to-core XES a practical pumpprobe technique. PMID:26568779

  14. X-ray scattering and spectroscopy in correlated electron systems

    NASA Astrophysics Data System (ADS)

    Sawatzky, George

    2002-03-01

    Resonant x ray scattering is evolving as a very important technique to study the interplay between the atomic structure and the electronic structure of correlated systems like the high Tc superconductors, collossal magneto resistance materials and transition metal compounds in general. The interpretation of the measurements is however far from trivial and reguires approaches which depend strongly on which core levels and valence bands are involved. I will present the basic physics regarding the approximations most suitable for several cases and demonstrate their success with examples from the classes of systems above. It turns out that the transition metal K edge data is not really a direct measure of orbital ordering but rather a measure of the local bond length distortions accompanying the orbital ordering and is well described in density functional band theory. On the other hand soft x ray L edge data is more directly a measure of the orbital as well as spin ordering. These data cannot be described with a band theory approach because of the importance of correlation effects and one must resort to methods like cluster approaches including the strong correlation effects explicitly. In cases where the atom of interest is not at an inversion center new effects in volving dipole and quadrupole channels are important and the experimental studies in these sytems provides direct information on the p-d hybridization in the conduction band. Resonant inelastic scattering in addition provides direct k dependent dispersion relations for a variety of elementary excitations including magnons, phonons and excitons. At soft x ray energies we can expect very strong inelastic scattering for spin flip excitations provided the core state used has a resolved spin orbit coupling.

  15. Paraboloidal X-ray telescope mirror for solar coronal spectroscopy

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Bruner, E. C., Jr.; Acton, L. W.; Franks, A.; Stedman, M.; Speer, R. J.

    1979-01-01

    The telescope mirror for the X-ray Spectrograph Spectrometer Telescope System is a sixty degree sector of an extreme off-axis paraboloid of revolution. It was designed to focus a coronal region 1 by 10 arc seconds in size on the entrance slit of the spectrometer after reflection from the gold surface. This paper discusses the design, manufacture, and metrology of the mirror, the methods of precision mechanical metrology used to focus the system, and the mounting system which locates the mirror and has proven itself through vibration tests. In addition, the results of reflection efficiency measurements, alignment tolerances, and ray trace analysis of the effects of misalignment are considered.

  16. Soft X-ray spectroscopy of metalloproteins using fluorescence detection

    NASA Astrophysics Data System (ADS)

    Cramer, S. P.; Chen, J.; George, S. J.; van Elp, J.; Moore, J.; Tensch, O.; Colaresi, J.; Yocum, M.; Mullins, O. C.; Chen, C. T.

    1992-08-01

    Fluorescence detection methods have been developed for measuring the L 2.3 X-ray absorption spectra of first transition series metalloprotiens. Samples are prepared as thin films on silicon supports, and mounted on a liquid helium cooled cold finger in a UHV chamber. A windowless Ge array detector discriminates metal L fluorescence from oxygen K a background. The high resolution, strong sensitivity to chemical environment and amenability to quantitative spectral shape analysis indicate that L-edges of the first transition series metals are a useful probe for bioinorganic studies.

  17. Precision Spectroscopy of X-rays from Antiprotonic Hydrogen

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Siems, Th.; Simons, L. M.

    Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong-interaction effects. In LEAR experiment PS207, the X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection-type crystal spectrometer. A complete set of strong-interaction parameters for the 1s and the 2p levels is now available for both bar{p}H and bar{p}D after evidence was found for the bar{p}D Kalpha transition.

  18. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    SciTech Connect

    Boutet, Sebastien; Williams, Garth J.; ,

    2011-08-16

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  19. Ultrafast X-Ray Absorption Spectroscopy of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Engelhorn, Kyle Craig

    This dissertation will present a series of new tools, together with new techniques, focused on the understanding of warm and dense matter. We report on the development of a high time resolution and high detection efficiency x-ray camera. The camera is integrated with a short pulse laser and an x-ray beamline at the Advanced Light Source synchrotron. This provides an instrument for single shot, broadband x-ray absorption spectroscopy of warm and dense matter with 2 picosecond time resolution. Warm and dense matter is created by isochorically heating samples of known density with an ultrafast optical laser pulse, and X-ray absorption spectroscopy probes the unoccupied electronic density of states before the onset of hydrodynamic expansion and electron-ion equilibrium is reached. Measured spectra from a variety of materials are compared with first principle molecular dynamics and density functional theory calculations. In heated silicon dioxide spectra, two novel pre-edge features are observed, a peak below the band gap and absorption within the band gap, while a reduction was observed in the features above the edge. From consideration of the calculated spectra, the peak below the gap is attributed to valence electrons that have been promoted to the conduction band, the absorption within the gap is attributed to broken Si-O bonds, and the reduction above the edge is attributed to an elevated ionic temperature. In heated copper spectra, a time-dependent shift and broadening of the absorption edge are observed, consistent with and elevated electron temperature. The temporal evolution of the electronic temperature is accurately determined by fitting the measured spectra with calculated spectra. The electron-ion equilibration is studied with a two-temperature model. In heated nickel spectra, a shift of the absorption edge is observed. This shift is found to be inconsistent with calculated spectra and independent of incident laser fluence. A shift of the chemical potential is applied to the calculated spectra to obtain satisfactory agreement with measured spectra.

  20. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Chu, W. S.; Yang, F. F.; Yu, M. J.; Chen, D. L.; Guo, X. Y.; Zhou, D. W.; Shi, N.; Marcelli, A.; Niu, L. W.; Teng, M. K.; Gong, W. M.; Benfatto, M.; Wu, Z. Y.

    2007-09-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase ( LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  1. High-resolution X-ray Emission Spectroscopy as a Microprobe Imaging Modality

    NASA Astrophysics Data System (ADS)

    Pacold, Joseph; Seidler, Gerald; Mattern, Brian; Haave, Matthew; Gordon, Robert

    2011-03-01

    Hard x-ray microprobe beamlines at third generation light sources have made significant impacts in several fields of science and technology. Such facilities permit rapid 2-dimensional studies of multiphase materials on submicron length scales using a variety of pixel-by-pixel imaging modalities (e.g., x-ray diffraction, x-ray absorption near edge fine structure, or x-ray fluorescence). Here, we aim to expand hard x-ray microprobe imaging modalities to include high-resolution x-ray emission spectroscopy (XES). When performed at 1-eV resolution, such measurements can provide quite direct atomic-level information on ionic valence, spin, and local electronic and chemical environment. Ongoing work in our research group has improved the efficiency of XES via the development of a new type of compact and inexpensive x-ray spectrometer design, the ``miniature x-ray spectrometer'' or ``miniXS'' paradigm. We will report preliminary 2-dimensional XES studies of planar multiphase materials, with specific applications to samples of interest for geophysics and catalysis science. Supported by the U.S. Department of Energy Office of Basic Energy Sciences.

  2. X-Ray and Gamma Ray Spectroscopy at 433 Eros

    NASA Astrophysics Data System (ADS)

    Squyres, S. W.; Trombka, J. I.; Brueckner, J.; Boynton, W. V.; Reedy, R. C.; Gorenstein, P.; Evans, L. G.; Arnold, J. R.; Starr, R. D.; Nittler, L. R.; McCoy, T. J.; Mikheeva, I.; McNutt, R. L.; McClanahan, T. P.; McCartney, E.; Goldsten, J. O.; Gold, R. E.; Floyd, S. R.; Clark, P. E.; Burbine, T. H.; Banghoo, J. S.; Bailey, S. H.; Murphy, M. E.

    2000-10-01

    From 2 May to 25 July 2000, while the NEAR Shoemaker spacecraft was in 50- and 35-km orbits around Eros, more than 80 M-class and higher solar flares occurred, of which about 30 produced measurable fluorescence from the asteroid. We report the major element composition (Mg, Al, Si, S, Ca, Fe) for regions of the asteroid observed during both flares and quiet Sun conditions. The quiet Sun spectra are concentrated around the craters Psyche and Himeros, while the best flare data are centered on Himeros and just outside and to the west of Psyche. Low aluminum abundances for all these regions argue strongly against global differentiation of Eros. In contrast to the aluminum-rich compositions found in the howardite-eucrite-diogeniate suite, Eros is compositionally similar to the unfractionated H, L and LL ordinary chondrites. Fe is detectable only in flare spectra. Fe/Si ratios bracket the ordinary chondrites, as well as some meteorites that have experienced limited partial melting (e.g., winonaites, acapulcoites). Mg/Si ratios overlap ordinary chondrites. Ca/Si ratios are identical, within error, to ordinary chondrites, but sulfur is markedly depleted relative to ordinary chondrites. The sulfur depletion could result from limited partial melting or impact volatilization. Further x-ray measurements should allow us to search for spatial heterogeneity in composition. Gamma-ray measurements, which require significantly longer integration times, will yield information about some other elements, and also will allow sampling to depths significantly greater than sampled with x rays.

  3. X-ray spectroscopy of the SSME plume

    NASA Technical Reports Server (NTRS)

    Olive, Dan F.

    1988-01-01

    In order to examine the potential of using SSME exhaust plume radiation in the soft X-ray spectrum as an early warning system of imminent engine failure, a low cost, low risk experiment was devised. An approach was established, equipment was leased, the system was installed and checked out, and data were successfully acquired demonstrating the proof-of-concept. One spectrum measurement of the SSME plume was acquired during a 300 second burn on the A-1 Test Stand. This spectrum showed a prominent, line emission feature at about 34.5 KeV, a result which was not expected, nor can it be explained at this time. If X-ray spectra are to be useful as a means of monitoring nominal engine operation, it will be necessary to explore this region of the EM spectrum in greater detail. The presence of structure in the spectrum indicates that this technology may prove to be useful as an engine health monitoring system.

  4. X-ray polarization spectroscopy from ultra-intense interactions

    NASA Astrophysics Data System (ADS)

    Booth, N.; Clarke, R.; Gallegos, P.; Gizzi, L.; Gregori, G.; Koester, P.; Labate, L.; Levato, T.; Li, B.; Makita, M.; Pasley, J.; Rajeev, P. P.; Riley, D.; Wagenaars, E.; Waugh, J. N.; Woolsey, N. C.

    2010-08-01

    Detailed knowledge of fast electron energy transport following the interaction of ultrashort intense laser pulses is a key subject for fast ignition. This is a problem relevant to many areas of laser-plasma physics with particular importance to fast ignition and X-ray secondary source development, necessary for the development of large-scale facilities such as HiPER and ELI. Operating two orthogonal crystal spectrometers set at Bragg angles close to 45° determines the X-ray s- and p- polarization ratio. From this ratio, it is possible to infer the velocity distribution function of the fast electron beam within the dense plasma. We report on results of polarization measurements at high density for sulphur and nickel buried layer targets in the high intensity range of 1019 - 1021 Wcm-2. We observe at 45° the Ly-α doublet using two sets of orthogonal highly-orientated pyrolytic graphite (HOPG) crystals set in 1st order for sulphur and 3rd order for nickel.

  5. Science Instruments for the Advanced X-Ray Astrophysics Facility (AXAF)

    NASA Technical Reports Server (NTRS)

    Winkler, Carl E.; Cumings, Nesbitt P.; Randolph, Joseph L.; Talley, Drayton H.

    1993-01-01

    The AXAF program has undergone major changes since the Announcement of Opportunity was extended by NASA Headquarters in 1983. The Science Instruments (SI's) for AXAF have also experienced several design changes since they were competitively selected in 1985. Moreover, two separate complementary missions are now being baselined for AXAF; one is designated AXAF-I for imaging and will include the high precision Wolter type I optics, and the other is called AXAF-S for spectroscopy. The resulting less-costly AXAF will still be superior to any previous x-ray observatories. Both missions continue to be managed. AXAF-I contains two focal plane SI's, the High Resolution Camera (HRC), and the AXAF Charge-Coupled Device (CCD) imaging spectrometer (ACIS), as well as the High-Energy Transmission Grating Spectrometer (HETGS) and the Low-Energy Transmission Grating Spectrometer (LETGS). Optics/Cryogenics Division (BECD). AXAF-S features only one focal plane SI, the X-Ray Spectrometer (XRS). The grazing incidence mirrors for this mission are mainly to provide a large collecting area and to concentrate these x-ray photons onto the XRS detector. Precise focusing, although preferred, is of secondary importance. Nested conical foil mirrors are currently baselined; however, replicated imaging optics are being evaluated for collecting efficiency and cost. AXAF-S is scheduled to be launched in late 1999. It has been designated as an MSFC in-house project. In addition to overall management, MSFC is fully responsible for the design, development, integration, and test of the complete AXAF-S observatory, including the XRS which will be furnished by the Goddard Space Flight Center (GSFC). Together, AXAF-I and AXAF-S constitute the third of NASA's series of Great Observatories, joining the Hubble space telescope (HST) and the Gamma-Ray Observatory (GRO) which are already operational. The develop- ment, launch, and operation of the Space InfraRed Telescope Facility (SIRTF) will follow later to complete the Great Observatory series. This paper summarizes the impact these changes have had on the SI's.

  6. Atomic physics studies of highly charged ions on tokamaks using x-ray spectroscopy

    SciTech Connect

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.

    1989-07-01

    An overview is given of atomic physics issues which have been studied on tokamaks with the help resolution x-ray spectroscopy. The issues include the testing of model calculations predicting the excitation of line radiation, the determination of rate coefficients, and accurate atomic structure measurements. Recent research has focussed primarily on highly charged heliumlike (22 less than or equal to Z less than or equal to 28) and neonlike (34 less than or equal to Z less than or equal to 63) ions, and results are presented from measurements on the PLT and TFTR tokamaks. Many of the measurements have been aided by improved instrumental design and new measuring techniques. Remarkable agreement has been found between measurements and theory in most cases. However, in this review those areas are stressed where agreement is worst and where further investigations are needed. 19 refs., 13 figs., 2 tabs.

  7. A novel von Hamos spectrometer for efficient X-ray emission spectroscopy in the laboratory

    SciTech Connect

    Anklamm, Lars Schlesiger, Christopher; Malzer, Wolfgang; Grötzsch, Daniel; Neitzel, Michael; Kanngießer, Birgit

    2014-05-15

    We present a novel, highly efficient von Hamos spectrometer for X-ray emission spectroscopy (XES) in the laboratory using highly annealed pyrolitic graphite crystals as the dispersive element. The spectrometer covers an energy range from 2.5 keV to 15 keV giving access to chemical speciation and information about the electronic configuration of 3d transition metals by means of the Kβ multiplet. XES spectra of Ti compounds are presented to demonstrate the speciation capabilities of the instrument. A spectral resolving power of E/ΔE = 2000 at 8 keV was achieved. Typical acquisition times range from 10 min for bulk material to hours for thin samples below 1 μm.

  8. Fast Detection Allows Analysis of the Electronic Structure of Metalloprotein by X-ray Emission Spectroscopy at Room Temperature.

    PubMed

    Davis, Katherine M; Mattern, Brian A; Pacold, Joseph I; Zakharova, Taisiya; Brewe, Dale; Kosheleva, Irina; Henning, Robert W; Graber, Timothy J; Heald, Steve M; Seidler, Gerald T; Pushkar, Yulia

    2012-07-19

    The paradigm of "detection-before-destruction" was tested for a metalloprotein complex exposed at room temperature to the high x-ray flux typical of third generation synchrotron sources. Following the progression of the x-ray induced damage by Mn K? x-ray emission spectroscopy, we demonstrated the feasibility of collecting room temperature data on the electronic structure of native Photosystem II, a trans-membrane metalloprotein complex containing a Mn(4)Ca cluster. The determined non-damaging observation timeframe (about 100 milliseconds using continuous monochromatic beam, deposited dose 1*10(7) photons/m(2) or 1.3*10(4) Gy, and 66 microseconds in pulsed mode using pink beam, deposited dose 4*10(7) photons/m(2) or 4.2*10(4) Gy) is sufficient for the analysis of this protein's electron dynamics and catalytic mechanism at room temperature. Reported time frames are expected to be representative for other metalloproteins. The described instrumentation, based on the short working distance dispersive spectrometer, and experimental methodology is broadly applicable to time-resolved x-ray emission analysis at synchrotron and x-ray free-electron laser light sources. PMID:22919444

  9. Fast Detection Allows Analysis of the Electronic Structure of Metalloprotein by X-ray Emission Spectroscopy at Room Temperature

    PubMed Central

    Davis, Katherine M.; Mattern, Brian A.; Pacold, Joseph I.; Zakharova, Taisiya; Brewe, Dale; Kosheleva, Irina; Henning, Robert W.; Graber, Timothy J.; Heald, Steve M.; Seidler, Gerald T.; Pushkar, Yulia

    2012-01-01

    The paradigm of detection-before-destruction was tested for a metalloprotein complex exposed at room temperature to the high x-ray flux typical of third generation synchrotron sources. Following the progression of the x-ray induced damage by Mn K? x-ray emission spectroscopy, we demonstrated the feasibility of collecting room temperature data on the electronic structure of native Photosystem II, a trans-membrane metalloprotein complex containing a Mn4Ca cluster. The determined non-damaging observation timeframe (about 100 milliseconds using continuous monochromatic beam, deposited dose 1*107 photons/m2 or 1.3*104 Gy, and 66 microseconds in pulsed mode using pink beam, deposited dose 4*107 photons/m2 or 4.2*104 Gy) is sufficient for the analysis of this proteins electron dynamics and catalytic mechanism at room temperature. Reported time frames are expected to be representative for other metalloproteins. The described instrumentation, based on the short working distance dispersive spectrometer, and experimental methodology is broadly applicable to time-resolved x-ray emission analysis at synchrotron and x-ray free-electron laser light sources. PMID:22919444

  10. X-ray imaging crystal spectroscopy for use in plasma transport research

    SciTech Connect

    Reinke, M. L.; Podpaly, Y. A.; Hutchinson, I. H.; Rice, J. E.; Gao, C.; Greenwald, M.; Howard, N. T.; Hubbard, A.; Hughes, J. W.; White, A. E.; Wolfe, S. M.; Bitter, M.; Delgado-Aparicio, L.; Hill, K.; Pablant, N.

    2012-11-15

    This research describes advancements in the spectral analysis and error propagation techniques associated with x-ray imaging crystal spectroscopy (XICS) that have enabled this diagnostic to be used to accurately constrain particle, momentum, and heat transport studies in a tokamak for the first time. Doppler tomography techniques have been extended to include propagation of statistical uncertainty due to photon noise, the effect of non-uniform instrumental broadening as well as flux surface variations in impurity density. These methods have been deployed as a suite of modeling and analysis tools, written in interactive data language (IDL) and designed for general use on tokamaks. Its application to the Alcator C-Mod XICS is discussed, along with novel spectral and spatial calibration techniques. Example ion temperature and radial electric field profiles from recent I-mode plasmas are shown, and the impact of poloidally asymmetric impurity density and natural line broadening is discussed in the context of the planned ITER x-ray crystal spectrometer.

  11. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    NASA Technical Reports Server (NTRS)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  12. X-Ray Fluorescence Correlation Spectroscopy: A Method for Studying Particle Dynamics in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Sood, Ajay K.; Satyam, Parlapalli V.; Feng, Yiping; Wu, Xiao-Zhong; Cai, Zhonghou; Yun, Wenbing; Sinha, Sunil K.

    1998-02-01

    We have demonstrated that x-ray fluorescence correlation spectroscopy, in conjunction with microfocused synchrotron x-ray beams, can be used for elucidating particle dynamics. The dynamics of gold and ferromagnetic colloidal particles and aggregates undergoing both diffusion and sedimentation in water has been studied by measuring the time autocorrelation of the x-ray fluorescence intensity from a small illuminated volume. The dynamical parameters obtained are in excellent agreement with theoretical estimates and other measurements. Potential applications of the technique are discussed.

  13. Diamond solid state ionization chambers for x-ray absorption spectroscopy applications

    SciTech Connect

    De Sio, A.; Bocci, A.; Pace, E.; Castellano, C.; Cinque, G.; Tartoni, N.; D'Acapito, F.

    2008-08-25

    The photoresponse of a diamond detector has been compared with a standard ionization chamber in x-ray absorption spectroscopy applications. A photoconductive device based on a nitrogen-doped single crystal diamond has been tested by synchrotron radiation. Time stability and linearity have been studied by x rays at 10 keV to assess its performances. Finally, extended x-ray absorption fine structure at the Fe K-edge was carried on a standard iron target using both the diamond device and the IC. Spectroscopical results have been compared including references to literature.

  14. A robot-based detector manipulator system for a hard x-ray nanoprobe instrument.

    SciTech Connect

    Shu, D., Maser, J., Holt, M. , Winarski, R., Preissner, C.,Lai, B., Vogt, S., Stephenson, G.B.

    2007-11-11

    This paper presents the design of a robot-based detector manipulator for microdiffraction applications with a hard X-ray nanoprobe instrument system being constructed at the Advanced Photon Source (APS) for the Center for Nanoscale Materials (CNM) being constructed at Argonne National Laboratory (ANL). Applications for detectors weighing from 1.5 to 100 kg were discussed in three configurations.

  15. Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.; Achilles, C. N.; Downs, R. T.; Farmer, J. D.; Crisp, J. A.; Morookian, J. M.; Des Marais, D. J.; Grotzinger, J. P.; Sarrazin, P.; Yen, A. S.

    2014-01-01

    To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.

  16. Broad-band soft x-ray diagnostic instruments at the LLNL Novette laser facility

    SciTech Connect

    Tirsell, K.G.; Lee, P.H.Y.; Nilson, D.G.; Medecki, H.

    1983-09-15

    Complementary broad-band instruments have been developed to measure time dependent, absolute soft x-ray spectra at the Lawrence Livermore National Laboratory (LLNL) Nd glass laser irradiation facilities. Absolute flux measurements of x rays emitted from laser-produced plasmas are important for understanding laser absorption and energy transport. We will describe two new 10-channel XRD systems that have been installed at the LLNL Novette facility for use in the 0.15- to 1.5-keV range. Since XRD channel time response is limited by available oscilloscope performance to 120 ps, a soft x-ray streak camera has been developed for better time resolution (20 ps) and greater dynamic range (approx.10/sup 3/) in the same x-ray energy region. Using suitable filters, grazing incidence mirrors, and a gold or cesium-iodide transmission cathode, this streak camera instrument has been installed at Novette to provide one broad and four relatively narrow channels. It can also be used in a single channel, spatially discriminating mode by means of pinhole imaging. The complementary nature of these instruments has been enhanced by locating them in close proximity and matching their channel energy responses. As an example of the use of these instruments, we present results from Novette 2..omega..(0.53 ..mu..m) gold disk irradiations at 1 ns and 10/sup 14/ to 10/sup 15/ W/cm/sup 2/.

  17. X-ray Raman spectroscopy of carbon in asphaltene: light element characterization with bulk sensitivity.

    PubMed

    Bergmann, U; Mullins, O C; Cramer, S P

    2000-06-01

    X-ray Raman spectra of the carbon K-edge have been recorded using 6.461 keV radiation for a petroleum asphaltene. By comparison with coronene, graphite, and paraffin standards, the asphaltene spectrum is seen to be composed of contributions from saturated and aromatic carbon species. The information contained in the carbon K-edge was extracted with bulk (approximately 1 mm) sensitivity, because the Raman method used hard X-rays. This helps alleviate concerns about surface artifacts that frequently occur with soft X-ray spectroscopy of light elements. X-ray Raman spectroscopy shows great potential for characterization of light elements in fuels, catalysts, and other complex materials under chemically relevant conditions. PMID:10857643

  18. Solving the structure of reaction intermediates by time-resolved synchrotron x-ray absorption spectroscopy.

    PubMed

    Wang, Qi; Hanson, Jonathan C; Frenkel, Anatoly I

    2008-12-21

    We present a robust data analysis method of time-resolved x-ray absorption spectroscopy experiments suitable for chemical speciation and structure determination of reaction intermediates. Chemical speciation is done by principal component analysis (PCA) of the time-resolved x-ray absorption near-edge structure data. Structural analysis of intermediate phases is done by theoretical modeling of their extended x-ray absorption fine-structure data isolated by PCA. The method is demonstrated using reduction and reoxidation of Cu-doped ceria catalysts where we detected reaction intermediates and measured fine details of the reaction kinetics. This approach can be directly adapted to many time-resolved x-ray spectroscopy experiments where new rapid throughput data collection and analysis methods are needed. PMID:19102533

  19. X-ray Spectroscopy of Hot Dense Plasmas: Experimental Limits, Line Shifts and Field Effects

    SciTech Connect

    Renner, Oldrich; Sauvan, Patrick; Dalimier, Elisabeth; Riconda, Caterina; Rosmej, Frank B.; Weber, Stefan; Nicolai, Philippe; Peyrusse, Olivier; Uschmann, Ingo; Hoefer, Sebastian; Kaempfer, Tino; Loetzsch, Robert; Zastrau, Ulf; Foerster, Eckhart; Oks, Eugene

    2008-10-22

    High-resolution x-ray spectroscopy is capable of providing complex information on environmental conditions in hot dense plasmas. Benefiting from application of modern spectroscopic methods, we report experiments aiming at identification of different phenomena occurring in laser-produced plasma. Fine features observed in broadened profiles of the emitted x-ray lines and their satellites are interpreted using theoretical models predicting spectra modification under diverse experimental situations.

  20. Watching energy transfer in metalloporphyrin heterodimers using stimulated X-ray Raman spectroscopy

    PubMed Central

    Zhang, Yu; Healion, Daniel; Mukamel, Shaul

    2013-01-01

    Understanding the excitation energy transfer mechanism in multiporphyrin arrays is key for designing artificial light-harvesting devices and other molecular electronics applications. Simulations of the stimulated X-ray Raman spectroscopy signals of a Zn/Ni porphyrin heterodimer induced by attosecond X-ray pulses show that these signals can directly reveal electronhole pair motions. These dynamics are visualized by a natural orbital decomposition of the valence electron wavepackets. PMID:24019462

  1. Nonlinear Spectroscopy of Core and Valence Excitations Using Short X-Ray Pulses: Simulation Challenges.

    PubMed

    Zhang, Yu; Hua, Weijie; Bennett, Kochise; Mukamel, Shaul

    2016-01-01

    Measuring the nonlinear response of electrons and nuclei to attosecond broadband X-ray radiation has become possible by newly developed free electron lasers and high harmonic generation light sources. The design and interpretation of these novel experiments poses considerable computational challenges. In this chapter we survey the basic description of nonlinear X-ray spectroscopy signals and the electronic structure protocols which may be used for their simulation. PMID:25863816

  2. UPDATED ATOMIC DATA AND CALCULATIONS FOR X-RAY SPECTROSCOPY

    SciTech Connect

    Foster, A. R.; Smith, R. K.; Brickhouse, N. S.; Ji, L.

    2012-09-10

    We describe the latest release of AtomDB, version 2.0.2, a database of atomic data and a plasma modeling code with a focus on X-ray astronomy. This release includes several major updates to the fundamental atomic structure and process data held within AtomDB, incorporating new ionization balance data, state-selective recombination data, and updated collisional excitation data for many ions, including the iron L-shell ions from Fe{sup +16} to Fe{sup +23} and all of the hydrogen- and helium-like sequences. We also describe some of the effects that these changes have on calculated emission and diagnostic line ratios, such as changes in the temperature implied by the He-like G-ratios of up to a factor of two.

  3. Updated Atomic Data and Calculations for X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Foster, A. R.; Ji, L.; Smith, R. K.; Brickhouse, N. S.

    2012-09-01

    We describe the latest release of AtomDB, version 2.0.2, a database of atomic data and a plasma modeling code with a focus on X-ray astronomy. This release includes several major updates to the fundamental atomic structure and process data held within AtomDB, incorporating new ionization balance data, state-selective recombination data, and updated collisional excitation data for many ions, including the iron L-shell ions from Fe+16 to Fe+23 and all of the hydrogen- and helium-like sequences. We also describe some of the effects that these changes have on calculated emission and diagnostic line ratios, such as changes in the temperature implied by the He-like G-ratios of up to a factor of two.

  4. X-ray Spectroscopy for Quality Control of Chemotherapy Drugs

    SciTech Connect

    Greaves, E. D.; Barros, H.; Bermudez, J.; Sajo-Bohus, L.; Angeli-Greaves, M.

    2007-10-26

    We develop a method, employing Compton peak standardization and the use of matrix-matched spiked samples with Total Reflection X-ray Fluorescence (TXRF), for the determination of platinum plasma concentrations of patients undergoing chemotherapy with Pt-bearing drugs. Direct blood plasma analysis attains Pt detection limits of 70 ng/ml. Measurement results of prescribed drug doses are compared to achieved blood Pt concentrations indicating a lack of expected correlations. Direct analysis of Pt-containing infused drugs from a variety of suppliers indicates cases of abnormal concentrations which raises quality control issues. We demonstrate the potential usefulness of the method for pharmacokinetic studies or for routine optimization and quality control of Pt chemotherapy treatments.

  5. X-ray spectroscopy of the first z>7 QSO

    NASA Astrophysics Data System (ADS)

    Page, Mathew

    2011-10-01

    We have recently discovered the most distant QSO, ULAS J1120+0641, at z=7.085, just 760 Myr after the big bang. As the first luminous, persistent source to be discovered at z>7, ULAS J1120 is a unique probe of the intergalactic medium deep in the epoch of reionization, and already constrains the neutral fraction to be more than 10% at z=7. Its black hole is estimated to be 2.0e9 Msun, and the small size of the ionized region in which it is embedded implies it has been shining for less than 10^7 yrs. Thus it also provides important constraints on the formation and evolution of massive black holes. We propose to obtain an X-ray spectrum with XMM-Newton to examine the physical conditions in this young QSO, and to better determine its ionizing spectrum for reionization modelling.

  6. Arcus: An X-ray Grating Spectroscopy Mission

    NASA Astrophysics Data System (ADS)

    Smith, Randall K.; Arcus Collaboration

    2016-01-01

    We present the design and scientific motivation for Arcus, an X-ray grating spectrometer mission to be proposed to NASA as a MIDEX in 2016. This mission will observe structure formation at and beyond the edges of clusters and galaxies, feedback from supermassive black holes, the structure of the interstellar medium and the formation and evolution of stars. Key mission design parameters are R~3000 and >700 cm^2 of effective area at the crucial O VII and O VIII lines, with the full bandpass going from ~10-50Å. Arcus will use the silicon pore optics proposed for ESA's Athena mission, paired with off-plane gratings being developed at the University of Iowa and combined with MIT/Lincoln Labs CCDs.

  7. High resolution X- and gamma-ray spectroscopy of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1983-01-01

    A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.

  8. X-ray Fluorescence Spectroscopy: the Potential of Astrophysics-developed Techniques

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Allen, B.; Hong, J.; Grindlay, J.; Kraft, R.; Binzel, R. P.; Masterton, R.

    2012-12-01

    X-ray fluorescence from the surface of airless bodies has been studied since the Apollo X-ray fluorescence experiment mapped parts of the lunar surface in 1971-1972. That experiment used a collimated proportional counter with a resolving power of ~1 and a beam size of ~1degree. Filters separated only Mg, Al and SI lines. We review progress in X-ray detectors and imaging for astrophysics and show how these advances enable much more powerful use of X-ray fluorescence for the study of airless bodies. Astrophysics X-ray instrumentation has developed enormously since 1972. Low noise, high quantum efficiency, X-ray CCDs have flown on ASCA, XMM-Newton, the Chandra X-ray Observatory, Swift and Suzaku, and are the workhorses of X-ray astronomy. They normally span 0.5 to ~8 keV with an energy resolution of ~100 eV. New developments in silicon based detectors, especially individual pixel addressable devices, such as CMOS detectors, can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs mean near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines.such as CMOS detectors, promise advances. X-ray imaging has advanced similarly far. Two types of imager are now available: specular reflection and coded apertures. X-ray mirrors have been flown on the Einstein Observatory, XMM-Newton, Chandra and others. However, as X-ray reflection only occurs at small (~1degree) incidence angles, which then requires long focal lengths (meters), mirrors are not usually practical for planetary missions. Moreover the field of view of X-ray mirrors is comparable to the incident angle, so can only image relatively small regions. More useful are coded-aperture imagers, which have flown on ART-P, Integral, and Swift. The shadow pattern from a 50% full mask allows the distribution of X-rays from a wide (10s of degrees) field of view to be imaged, but uniform emission presents difficulties. A version of a coded-aperture plus CCD detector for airless bodies study is being built for OSIRIS-REx as the student experiment REXIS. We will show the quality of the spectra that can be expected from this class of instrument.

  9. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    SciTech Connect

    Sun, Cheng-Jun Brewe, Dale L.; Heald, Steve M.; Zhang, Bangmin; Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore; NUSNNI-Nanocore, National University of Singapore, 117411 Singapore ; Chen, Jing-Sheng; Chow, G. M.; Venkatesan, T.; Department of Physics, National University of Singapore, 117542 Singapore; Department of Electrical and Computer Engineering, National University of Singapore, 117575 Singapore

    2014-04-15

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  10. X-ray imaging and spectroscopy using low cost COTS CMOS sensors

    NASA Astrophysics Data System (ADS)

    Lane, David W.

    2012-08-01

    Whilst commercial X-ray sensor arrays are capable of both imaging and spectroscopy they are currently expensive and this can limit their widespread use. This study examines the use of very low cost CMOS sensors for X-ray imaging and spectroscopy based on the commercial off the shelf (COTS) technology used in cellular telephones, PC multimedia and children's toys. Some examples of imaging using a 'webcam' and a modified OmniVision OV7411 sensor are presented, as well as a simple energy dispersive X-ray detector based on an OmniVision OV7221 sensor. In each case X-ray sensitivity was enabled by replacing the sensor's front glass window with a 5 ?m thick aluminium foil, with X-rays detected as an increase in a pixel's dark current due to the generation of additional electron-hole pairs within its active region. The exposure control and data processing requirements for imaging and spectroscopy are discussed. The modified OV7221 sensor was found to have a linear X-ray energy calibration and a resolution of approximately 510 eV.

  11. Instrumentation for Time-Dependent X-Ray Resonant Raman Scattering

    NASA Astrophysics Data System (ADS)

    Attenkofer, K.; Adams, B. W.; Beno, M. A.

    2004-05-01

    X-ray absorption/fluorescence spectroscopy probes valence states relative to a core level and thus provides an absolute energy reference. The core hole lifetime broadening can be reduced by restricting the fluorescence signal with a sub-eV crystal energy analyzer. We describe the design and first performance tests of adaptive optics for a bent-crystal analyzer which is characterized by a high counting efficency and a large solid angle acceptance. The device was designed for the determination of charge carrier dynamics in photoexcited semiconductors in laser pump, x-ray probe experiments. It can also be used in a wide range of near-edge spectroscopic applications and as an ultrafast laser/x-ray cross correlator...

  12. Microcontrolled pyro-electric instrument for measuring X-ray intensity in mammography.

    PubMed

    de Paula, M H; de Carvalho, A A; Brassalotti, A L; Alter, A J; Sakamoto, W K; Malmonge, J A; de Almeida, A

    2005-11-01

    A novel instrument for measurement of X-ray intensity from mammography consists of a sensitive pyro-electric detector, a high-sensitivity, low-noise current-to-voltage converter, a microcontroller and a digital display. The heart of this device, and what makes it unique is the pyro-electric detector, which measures radiation by converting heat from absorbed incident X-rays into an electric current. This current is then converted to a voltage and digitised. The detector consists of a ferro-electric crystal; two types were tested: lithium tantalate and lithium niobate. X-ray measurement in mammography is challenging because of its relatively low photon energy range, from 11 keV to 15 keV equivalent mean energy, corresponding to a peak tube potential from 22 to 36 kV. Consequently, energy fluence rate or intensity is low compared with that of common diagnostic X-ray. The instrument is capable of measuring intensities as low as 0.25 mW m(-2) with precision greater than 99%. Not only was the instrument capable of performing in the clinical environment, with high background electromagnetic interference and vibration, but its performance was not degraded after being subjected to 140 roentgen (3.6 x 10(-2) C kg(-2) air) as measured by piezo-electric (d33) or pyro-electric coefficients. PMID:16594302

  13. Prototyping a Global Soft X-ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra; Kuntz, Kip; Read, Any M.; Robertson, Ina P.; Sembay, Steve; Snowden, Steven; Thomas, Nick

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission

  14. Prototyping a Global Soft X-Ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    NASA Technical Reports Server (NTRS)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; Kuntz, K.; Read, A. M.; Robertson, I. P.; Sembay, S.; Snowden, S.; Thomas, N.

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  15. Prototyping a global soft X-ray imaging instrument for heliophysics, planetary science, and astrophysics science

    NASA Astrophysics Data System (ADS)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; Kuntz, K.; Read, A. M.; Robertson, I. P.; Sembay, S.; Snowden, S.; Thomas, N.

    2012-04-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  16. Investigation of surface structure with X-ray absorption and electron emission spectroscopies

    NASA Astrophysics Data System (ADS)

    Pauli, Mark Daniel

    The use of electron spectromicroscopy for the study of the chemical composition and electronic properties of surfaces, overlayers, and interfaces has become widely accepted. Improvements to the optics of instruments such as the X-ray photo electron emission microscope have pushed spectroscopic microscopies into the realm of very high spatial resolution, at and below 1 micrometer [1]. Coupled with the high spectral resolution available from third generation synchrotron sources, this spatial resolution allows the measurement of micro-X-ray absorption near-edge spectra in addition to the more typical electron emission spectra and diffraction patterns. Complementary to the experimental developments is the development of improved theoretical methods for computational modeling of X-ray absorption and emission spectroscopies. In the field of tribochemistry, zinc dialkyl dithiophosphate (ZDDP) has long been a topic of much study. ZDDP is widely used as an anti-wear additive in engine oils and there is interest in determining the decomposition products of ZDDP that provide this protection against friction. An analysis of X-ray absorption near-edge spectra of thermal films from ZDDP samples is presented, including a comparison of the Zinc L-edge spectra with model calculations [2]. It was found essential to carry out self-consistent calculations of the electronic structure for the modeling. For the techniques of electron diffraction, a new method for a full multiple-scattering calculation of diffraction patterns from crystals with two-dimensional periodicity parallel to the surface is presented [3]. The calculation makes use of Helmholtz's reciprocity principle to compute the path-reversed process of the back propagation of a photoelectron from the position of a distant detector to that of the emitting atom. Early application is demonstrated with simulations of 64 eV M2,3VV and 914 eV L 2,3VV Auger electron diffraction from a Cu(001) surface. The functionality of the path-reversed calculation is greatly increased by extension to photoelectron diffraction for crystal surfaces with many atoms per unit cell [4]. The results are essentially indistinguishable from those of a conventional forward-path calculation. Application to photoelectron diffraction for 955 eV O 1s emission from a MgO(001) surface shows good agreement with experiment.

  17. Evaluation of the medical exposure doses regarding dental examinations with different X-ray instruments

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Chi; Chuang, Keh-Shih; Yu, Cheng-Ching; Chao, Jiunn-Hsing; Hsu, Fang-Yuh

    2015-11-01

    Modern dental X-ray examination that consists of traditional form, panorama, and cone-beamed 3D technologies is one of the most frequent diagnostic applications nowadays. This study used the Rando Phantom and thermoluminescence dosimeters (TLD) to measure the absorbed doses of radiosensitive organs recommended by International Commission on Radiological Protection (ICRP), and whole body effective doses which were delivered due to dental X-ray examination performed with different types of X-ray instrument. Besides, enamel samples which performed reading with Electronic Paramagnetic Resonance (EPR) procedure were also used to estimate the tooth doses. EPR is a dose reconstruction method of measuring free radicals induced by radiation exposure to the calcified tissue (mainly in the tooth enamel or bone) to evaluate the accepted high dose. The tooth doses estimated by TLD and EPR methods were compared. Relationships between the tooth doses and effective doses by dental X-ray examinations with different types of X-ray equipment were investigated in this work.

  18. Recent Developments of Multilayer Mirror Optics for Laboratory X-ray Instrumentation

    NASA Astrophysics Data System (ADS)

    Michaelsen, Carsten; Wiesmann, Jrg; Hoffmann, C.; Wulf, K.; Brugemann, Lutz; Storm, A.

    2002-12-01

    In this paper we review various improvements that we made in the development of multilayer mirror optics for home-lab x-ray analytical equipment in recent years. For the detection of light elements using x-ray fluorescence spectrometry, we developed a number of new multilayers with improved detection limits. In detail, we found that La/B4C multilayers improve the detection limit of boron by 29 % compared to the previous Mo/B4C multilayers. For the detection of carbon, TiO2/C multilayers improve the detection limit also by 29 % compared to the V/C multilayers previously used. For the detection of aluminum, WSi2/Si or Ta/Si multilayers can lead to detection limit improvements over the current W/Si multilayers of up to 60 % for samples on silicon wafers. For the use as beam-conditioning elements in x-ray diffractometry, curved optics coated with laterally d-spacing graded multilayers give rise to major improvements concerning usable x-ray intensity and beam quality. Recent developments lead to a high quality of these multilayer optics concerning beam intensity, divergence, beam uniformity and spectral purity. For example, x-ray reflectometry instruments equipped with such multilayer optics have dynamic ranges previously only available at synchrotron sources. Two-dimensional focusing multilayer optics are shown to become essential optical elements in protein crystallography and structural proteomics.

  19. Design and Operation of a High Pressure Reaction Cell for in situ X-ray Absorption Spectroscopy

    SciTech Connect

    Bare,S.; Yang, N.; Kelly, S.; Mickelson, G.; Modica, F.

    2007-01-01

    X-ray absorption spectroscopy measurements of catalytic reactions have been instrumental in advancing the understanding of catalytic processes. These measurements require an in situ catalysis reaction cell with unique properties. Here we describe the design and initial operation of an in situ/operando catalysis reaction cell for transmission X-ray absorption spectroscopy measurements. The cell is designed: to be an ideal catalytic reactor with no mass transfer effects; to give the same conversion and selectivity under similar space velocities as standard laboratory micro-reactors; to be operational temperatures up to 600 {sup o}C and pressures up to 14 bar; to be X-ray transparent allowing XAS measurement to be collected in transmission for all elements with Z {>=} 23 (vanadium K-edge at 5.5 keV); to measure the actual catalyst bed temperature; to not use o-ring seals, or water cooling; to be robust, compact, easy to assemble, and use, and relatively low cost to produce. The heart of the cell is fabricated from an X-ray transparent beryllium tube that forms a plug flow reactor. XAFS data recorded during the reduction of a Re/{gamma}-A{sub 2}O{sub 3} catalyst as a function of hydrogen pressure from 0.05 to 8 bar, and from a Pt-Sn/{gamma}-A{sub 2}O{sub 3} catalyst during n-heptane reforming are given as initial examples of the versatility of the reactor.

  20. Applications of X-ray absorption spectroscopy to biologically relevant metal-based chemistry

    NASA Astrophysics Data System (ADS)

    Best, Stephen P.; Cheah, Mun Hon

    2010-02-01

    Recent developments in the understanding of the biosynthesis of the active site of the nitrogenase enzyme, the structure of the iron centre of [Fe]-hydrogenase and the structure and biomimetic chemistry of the [FeFe] hydrogenase H-cluster as deduced by application of X-ray spectroscopy are reviewed. The techniques central to this work include X-ray absorption spectroscopy either in the form of extended X-ray absorption fine structure (EXAFS), X-ray absorption near-edge structure (XANES) and nuclear resonant vibrational spectroscopy (NRVS). Examples of the advances in the understanding of the chemistry of the system through integration of a range of spectroscopic and computational techniques with X-ray spectroscopy are highlighted. The critical role played by ab initio calculation of structural and spectroscopic properties of transition-metal compounds using density functional theory (DFT) is illustrated both by the calculation of nuclear resonance vibrational spectroscopy (NRVS) spectra and the structures and spectra of intermediates through the catalytic reactions of hydrogenase model compounds.

  1. Development of a hard X-ray delay line for X-ray photon correlation spectroscopy and jitter-free pumpprobe experiments at X-ray free-electron laser sources

    PubMed Central

    Roseker, Wojciech; Franz, Hermann; Schulte-Schrepping, Horst; Ehnes, Anita; Leupold, Olaf; Zontone, Federico; Lee, Sooheyong; Robert, Aymeric; Grbel, Gerhard

    2011-01-01

    A hard X-ray delay line capable of splitting and delaying single X-ray pulses has been developed with the aim of performing X-ray photon correlation spectroscopy (XPCS) and X-ray pumpprobe experiments at hard X-ray free-electron laser sources. The performance of the device was tested with 8.39?keV synchrotron radiation. Time delays up to 2.95?ns have been demonstrated. The feasibility of the device for performing XPCS studies was tested by recording static speckle patterns. The achieved speckle contrast of 56% indicates the possibility of performing ultra-fast XPCS studies with the delay line. PMID:21525658

  2. What Can Be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    2008-01-01

    Both solar wind charge exchange emission and diffuse thermal emission from the Local Bubble are strongly dominated in the soft X-ray band by lines from highly ionized elements. While both processes share many of the same lines, the spectra should differ significantly due to the different production mechanisms, abundances, and ionization states. Despite their distinct spectral signatures, current and past observatories have lacked the spectral resolution to adequately distinguish between the two sources. High-resolution X-ray spectroscopy instrumentation proposed for future missions has the potential to answer fundamental questions such as whether there is any hot plasma in the Local Hot Bubble, and if so, what are the abundances of the emitting plasma and whether the plasma is in equilibrium. Such instrumentation will provide dynamic information about the solar wind including data on ion species which are currently difficult to track. It will also make possible remote sensing of the solar wind.

  3. FORTRAN program for x ray photoelectron spectroscopy data reformatting

    NASA Astrophysics Data System (ADS)

    Abel, Phillip B.

    1989-11-01

    A FORTRAN program has been written for use on an IBM PC/XT or AT or compatible microcomputer (personal computer, PC) that converts a column of ASCII-format numbers into a binary-format file suitable for interactive analysis on a Digital Equipment Corporation (DEC) computer running the VGS-5000 Enhanced Data Processing (EDP) software package. The incompatible floating-point number representations of the two computers were compared, and a subroutine was created to correctly store floating-point numbers on the IBM PC, which can be directly read by the DEC computer. Any file transfer protocol having provision for binary data can be used to transmit the resulting file from the PC to the DEC machine. The data file header required by the EDP programs for an x ray photoelectron spectrum is also written to the file. The user is prompted for the relevant experimental parameters, which are then properly coded into the format used internally by all of the VGS-5000 series EDP packages.

  4. FORTRAN program for x ray photoelectron spectroscopy data reformatting

    NASA Technical Reports Server (NTRS)

    Abel, Phillip B.

    1989-01-01

    A FORTRAN program has been written for use on an IBM PC/XT or AT or compatible microcomputer (personal computer, PC) that converts a column of ASCII-format numbers into a binary-format file suitable for interactive analysis on a Digital Equipment Corporation (DEC) computer running the VGS-5000 Enhanced Data Processing (EDP) software package. The incompatible floating-point number representations of the two computers were compared, and a subroutine was created to correctly store floating-point numbers on the IBM PC, which can be directly read by the DEC computer. Any file transfer protocol having provision for binary data can be used to transmit the resulting file from the PC to the DEC machine. The data file header required by the EDP programs for an x ray photoelectron spectrum is also written to the file. The user is prompted for the relevant experimental parameters, which are then properly coded into the format used internally by all of the VGS-5000 series EDP packages.

  5. Branching ratio in x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Thole, B. T.; van der Laan, G.

    1988-08-01

    The origin of nonstatistical branching ratios in spin-orbit-split x-ray absorption spectra is explained. Atomic calculations for transition metals show a systematic change which is due to initial-state spin-orbit splitting and electrostatic interactions between core hole and valence electrons. We have formulated the results of these atomic calculations in general rules, which are also applicable to solids. In the free atom the branching ratio reaches a maximum for the Hund's-rule ground state and its value decreases gradually for S, L, and J levels of higher energy. The presence of a crystal field results in a lower branching ratio when it produces a low-spin ground state. The rules can be used to assess the spin state and the spin-orbit splitting from the experimental branching ratio in transition-metal and rare-earth compounds. A specific example is given for the influence of second-order spin-orbit interactions in high-spin Ni compounds.

  6. High-resolution x-ray saturation spectroscopy of krypton L-shell autoionizing transitions

    NASA Astrophysics Data System (ADS)

    Borisov, Alex B.; McCorkindale, John C.; Poopalasingam, Sankar; Longworth, James W.; Rhodes, Charles K.

    2014-09-01

    The achievement of controlled saturation with high spectral resolution (2-3 eV) provides a refined diagnostic for the quantitative study of the propagation of intense beams of x-rays. This work demonstrates the characteristics of saturation spectroscopy with an analysis of Kr(L) autoionizing transitions at ?? = 1652 eV. The data include single-pulse x-ray spatial morphologies, corresponding Thomson images of the electron density, and spatially resolved transversely observed x-ray spectra that are recorded longitudinally along the direction of propagation of a Kr26+ (?26 = 7.504 ) beam in a Kr n cluster medium. The results reveal the complex interactions associated with the propagation of the 7.504 x-ray beam and, based on sets of quantitative criteria, attribute the observed behavior to the saturation of 2p ? 3d transitions to autoionizing states of Kr15+ and Kr16+ ionic species.

  7. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    SciTech Connect

    Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2010-05-01

    We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

  8. A stored-ion target for x-ray spectroscopy of multicharged ions

    SciTech Connect

    Kanter, E.P.

    1996-08-01

    With the evolution of the new third generation synchrotron radiation sources providing intense beams of hard x-rays, it is natural to consider exploiting these to investigate the 3-body Coulomb problem. The atomic physics community could advance this field considerably by developing general techniques to investigate the x-ray spectroscopy of heliumlike ions. To do so, however, requires the development of a target of such ions with sufficient density to permit photoexcitation studies in the hard x-ray regime. A possible scheme to achieve this is described. Such a target system would permit x-ray studies with exotic species such as highly charged atomic ions, size-selected cluster ions, and atomic and molecular negative ions which have hitherto been impractical to study with conventional techniques.

  9. Local structure analysis of magnetic transparent conducting films by x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Toshihiro

    2016-02-01

    We prepared Mn-doped indium-tin oxide (ITO) films on glass substrates by radio-frequency magnetron sputtering and investigated local structures surrounding Mn ions in the films by x-ray absorption spectroscopy. The Fourier transform of the extended x-ray absorption fine structure (EXAFS) spectrum indicated that the Mn ions preferably substitute the In ions at the b sites of the In2O3 lattice. According to the threshold energy obtained from the inflection point of the edge in the x-ray absorption near edge structure (XANES) spectrum, the valence of the Mn ions was evaluated to range from  +2 to  +3. These x-ray absorption spectroscopic data are useful for revealing the origin of the magnetism of the Mn-doped ITO films.

  10. X-ray photoemission and energy dispersive spectroscopy of hydroxyapatite-coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-07-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (X-ray photoemission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls and specimens aged 30 min and 3 h at room temperature in distilled water and 0.2M sodium phosphate buffer (pH 7.2). Each X-ray photoemission cycle consisted of three scans followed by argon sputtering for 10 min for usually 20 cycles, corresponding to a sampling depth of {approximately}1,500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {micro}m area for 500 s. The X-ray photoemission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorus. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis.

  11. X-Ray Absorption Spectroscopy Determination of Oxidation States

    NASA Astrophysics Data System (ADS)

    Bajt, S.; Sutton, S. R.; Smith, J. V.

    1993-07-01

    Introduction: The oxidation state of minor and trace elements in minerals from planetary materials can be used to directly probe the oxygen fugacity of the environment from which the minerals formed. For example, on the basis of existing oxygen fugacity determinations it has been suggested that the parent bodies of chondrites were > 30 km in diameter [1]. Petrogenetic models generally assume oxygen fugacities based on indirect evidence. The x-ray microprobe offers the capability to determine oxidation states for a large suite of elements in individual coexisting phases in conventional rock thin sections using the microXANES (X-ray Absorption Near Edge Structure) technique. Recent Results: Initial research has concentrated on transition metals particularly Cr. The results on Cr oxidation state for olivine and pyroxene from mare basalts 15555 [2] showed that olivine contains predominately divalent Cr while pyroxene accommodates Cr mainly in trivalent state. Similar results for olivine from kimberlitic diamonds showed a mixture of the two states [3]. These results suggest that the terrestrial olivine crystallized in a more oxidizing environment than the lunar olivine and that divalent chromium is a ubiquitous component of olivine crystallized under reducing conditions. Calibration of the method in terms of oxygen fugacity requires the analysis of synthetic olivine crystallized from melts of appropriate composition at controlled fO(sub)2 [4]. MicroXANES analyses of Fe surprisingly suggested that Fe in plagioclase from lunar anorthosite 15415 is more oxidized than that in plagioclase from Stillwater anorthosites and shergottites [5]. Recently, iron oxide specimens were analyzed, specifically, magnetite (Fe3O4), hematite (Fe2O3) and altered magnetites (i.e., magnetites suspected of containing substantial alteration to hematite). The results showed that the altered magnetites are roughly equal mixtures of magnetite and hematite [6]. Future Research: The work on lunar olivines in lunar basalts is being extended to lunar olivines in highlands rocks. Oxygen fugacities of the early lunar magmas will be compared with those of the latter mare systems. Determinations of Cr oxidation state in olivine from carbonaceous meteorites are also being pursued but the Cr content of olivine from primitive meteorites is close to current detection limit with microXANES (about 10 ppm). MicroXANES will also provide valuable information on the oxidation states of transition elements in primitive interplanetary dust particles (IDPs). Preliminary results on one IDP indicated that Fe was in both the divalent and trivalent states and the shape of the spectrum is inconsistent with an oxide host. This technique will also be useful in estimating magnetite content in heated IDPs. Iron oxidation states of SNC meteorites and other achondrites will be valuable in constraining the oxygen fugacity of igneous planetary systems. Measurements of Ti^3+, Ti^4+, V^2+ and V^3+ in the constituent phases of CAIs will help to constrain the chemical history of materials that formed in the early solar nebula. The next generation synchrotron source, the Advanced Photon Source at Argonne National Laboratory, will be available for use by planetary scientists in 1996 and will extend these techniques to 1 ppm detection limits and 1 micrometer spatial resolution. References: [1] Rubin A. E. et al. (1988) In Meteorites and the Early Solar System, 488-511. [2] Sutton S. R. et al. (1993) GCA, 57-2, 461-468. [3] Sutton S. R. et al. (1993) LPS XXIV, 1383- 1384. [4] Hanson B. Z. and Delano J. W. (1992) LPS XXIII, 481- 482. [5] Delaney J. S. et al. (1992) LPS XXIII, 299-300. [6] Sutton S. R. et al. (1993) LPS XXIV, 1385-1386.

  12. X-ray fluorescence beamline at the LNLS: Current instrumentation and future developments (abstract)

    NASA Astrophysics Data System (ADS)

    Prez, C. A.; Bueno, M. I. S.; Neuenshwander, R. T.; Snchez, H. J.; Tolentino, H.

    2002-03-01

    The x-ray fluorescence (XRF) beamline, constructed at the Brazilian National Synchrotron Radiation Laboratory (LNLS-http://www.lnls.br), has been operating for the external users since August of 1998 (C. A. Prez et al., Proc. of the European Conference on Energy Dispersive X-Ray Spectrometry, Bologna, Italy, 1998, pp. 125-129). The synchrotron source for this beamline is the D09B (15) dipole magnet of the LNLS storage ring. Two main experimental setups are mounted at the XRF beamline. One consists of a high vacuum chamber adapted to carry out experiments in grazing excitation conditions. This allows chemical trace and ultratrace element determination on several samples, mainly coming from environmental and biological sciences. Another setup consists of an experimental station, operated in air, in which x-ray fluorescence analysis with spatial resolution can be done. This station is equipped with a fine conical capillary, capable of achieving 20 ?m spatial resolution, and with an optical microscope in order to select the region of interest on the sample surface. In this work, the main characteristic of the beamline, experimental stations as well as the description of some new experimental facilities will be given. Future development in the instrumentation focuses on an appropriate x-ray optic to be able to carry out chemical trace analysis of light elements using the total x-ray fluorescence technique. Also, chemical mapping below 10 ?m spatial resolution, while keeping high flux of photon on the sample, will be achieved by using the Kirkpatrick-Baez x-ray microfocusing optic.

  13. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    SciTech Connect

    Bertram, F. Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-07-21

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  14. Neutron and synchrotorn x-ray small angle scattering instruments for applications in biology at the Brookhaven National Laboratory

    SciTech Connect

    Schoenborn, B.P.; Wise, D.S.; Schneider, D.K.

    1983-01-01

    Facilities for small angle x-ray and neutron scattering are described, with emphasis on the characterization of the primary beam of the neutron instrument and the spectrometer control logic of the synchrotron instrument. (LEW)

  15. A cosmic and solar X-ray and gamma-ray instrument for a scout launch

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.

    1988-01-01

    An overview is presented for a set of simple and robust X-ray and gamma ray instruments which have both cosmic and solar objectives. The primary solar scientific objective is the study of the beaming of energetic electrons and ions in solar flares. The instrument will measure spectra and polarization of flare emissions up to 10 MeV. At X-ray energies both the directly emitted flux and the reflected albedo flux will be measured with a complement of six X-ray sensors. Each of these detectors will have a different high Z filter selected to optimize both the energy resolution and high rate capabilities in the energy band 10 to 300 keV. At energies greater than 100 keV seven 7.6 x 7.6 cm NaI and a set of 30 concentric plastic scattering detectors will record the spectra and polarization of electron bremsstrahlung and nuclear gamma rays. All of the components of the instrument are in existence and have passed flight tests for earlier space missions. The instrument will use a spinning solar oriented Scout spacecraft. The NaI detectors will act as a self-modulating gamma ray detector for cosmic sources in a broad angular band which lies at 90 degrees to the Sun-Earth vector and hence will scan the entire sky in 6 months.

  16. Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments.

    PubMed

    Toner, Brandy M; German, Christopher R; Dick, Gregory J; Breier, John A

    2016-01-19

    The reactivity and mobility of natural particles in aquatic systems have wide ranging implications for the functioning of Earth surface systems. Particles in the ocean are biologically and chemically reactive, mobile, and complex in composition. The chemical composition of marine particles is thought to be central to understanding processes that convert globally relevant elements, such as C and Fe, among forms with varying bioavailability and mobility in the ocean. The analytical tools needed to measure the complex chemistry of natural particles are the subject of this Account. We describe how a suite of complementary synchrotron radiation instruments with nano- and micrometer focusing, and X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) capabilities are changing our understanding of deep-ocean chemistry and life. Submarine venting along mid-ocean ridges creates hydrothermal plumes where dynamic particle-forming reactions occur as vent fluids mix with deep-ocean waters. Whether plumes are net sources or sinks of elements in ocean budgets depends in large part on particle formation, reactivity, and transport properties. Hydrothermal plume particles have been shown to host microbial communities and exhibit complex size distributions, aggregation behavior, and composition. X-ray microscope and microprobe instruments can address particle size and aggregation, but their true strength is in measuring chemical composition. Plume particles comprise a stunning array of inorganic and organic phases, from single-crystal sulfides to poorly ordered nanophases and polymeric organic matrices to microbial cells. X-ray microscopes and X-ray microprobes with elemental imaging, XAS, and XRD capabilities are ideal for investigating these complex materials because they can (1) measure the chemistry of organic and inorganic constituents in complex matrices, usually within the same particle or aggregate, (2) provide strong signal-to-noise data with exceedingly small amounts of material, (3) simplify the chemical complexity of particles or sets of particles with a focused-beam, providing spatial resolution over 6 orders of magnitude (nanometer to millimeter), (4) provide elemental specificity for elements in the soft-, tender-, and hard-X-ray energies, (5) switch rapidly among elements of interest, and (6) function in the presence of water and gases. Synchrotron derived data sets are discussed in the context of important advances in deep-ocean technology, sample handling and preservation, molecular microbiology, and coupled physical-chemical-biological modeling. Particle chemistry, size, and morphology are all important in determining whether particles are reactive with dissolved constituents, provide substrates for microbial respiration and growth, and are delivered to marine sediments or dispersed by deep-ocean currents. PMID:26636984

  17. X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories

    NASA Astrophysics Data System (ADS)

    Bhringer, Hans; Werner, Norbert

    2010-02-01

    Galaxy clusters, the largest clearly defined objects in our Universe, are ideal laboratories to study in detail the cosmic evolution of the intergalactic intracluster medium (ICM) and the cluster galaxy population. For the ICM, which is heated to X-ray radiating temperatures, X-ray spectroscopy is the most important tool to obtain insight into the structure and astrophysics of galaxy clusters. The ICM is also the hottest plasma that can be well studied under thermal equilibrium conditions. In this review we recall the basic principles of the interpretation of X-ray spectra from a hot, tenuous plasma and we illustrate the wide range of scientific applications of X-ray spectroscopy. The determination of galaxy cluster masses, the most important prerequisite for using clusters in cosmological studies, rest crucially on a precise spectroscopic determination of the ICM temperature distribution. The study of the thermal structure of the ICM provides a very interesting fossil record of the energy release during galaxy formation and evolution, giving important constraints on galaxy formation models. The temperature and pressure distribution of the ICM gives us important insight into the process of galaxy cluster merging and the dissipation of the merger energy in form of turbulent motion. Cooling cores in the centers of about half of the cluster population are interesting laboratories to investigate the interplay between gas cooling, star- and black hole formation and energy feedback, which is diagnosed by means of X-ray spectroscopy. The element abundances deduced from X-ray spectra of the ICM provide a cosmic history record of the contribution of different supernovae to the nucleosynthesis of heavy elements and their spatial distribution partly reflects important transport processes in the ICM. Some discussion of plasma diagnostics for conditions out of thermal equilibrium and an outlook on the future prospects of X-ray spectroscopic cluster studies complete our review.

  18. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    SciTech Connect

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  19. Identification of hexagonal polycrystal in epitaxially grown InN by synchrotron x-ray diffraction and near-edge x-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Ik Jae; Shin, Hyun-Joon; Chang, Suk Sang; Lee, Min Kyu; Kim, Hyung-Kook

    2003-05-01

    The structures and crystallographic orientations of indium nitride films of varying thicknesses on sapphire(0001) were investigated using high-resolution synchrotron x-ray scattering and angle-dependent near-edge x-ray absorption fine structure (NEXAFS) spectroscopy with linearly polarized x rays. The x-ray scattering data showed that epitaxially grown InN films have a polycrystalline structure when their thickness is greater than 3000 . The N 1s NEXAFS spectra of thin films have a strong polarization-dependent spectral feature resulting from the preferred c-axis orientation. This polarization dependence decreases as the film thickness increases and is not present in the spectra of films that are more than 3000 thick. These results indicate that the c axis has a preferred orientation in thin films, but that this orientation is random in thick films, which have a polycrystalline hexagonal structure.

  20. High Resolution Soft X-ray Spectroscopy for Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Brickhouse, Nancy S.

    2011-05-01

    Young stellar objects exhibit X-ray emission throughout their evolution. The emission above about 1 keV is primarily produced from coronal structures and flares, indicating that magnetic activity is present from early on. For stars that are still actively accreting, X-ray accretion signatures of accretion are only distinguishable at low energies in high resolution grating spectra from Chandra and XMM-Newton. The accretion shock itself is identified in only a few of these sources through line ratio diagnostics for high electron density at relatively low temperature. However, a soft X-ray excess, compared with main sequence and weak-line T Tauri stars, is found in all the Classical T Tauri grating targets. This emission presents as excess O VII. Exactly what produces the soft excess and how it relates to the shock and to the photospheric accretion hot spot is unclear without additional diagnostics. Shocks in jets and winds, as well as magnetic heating at the hot spot are possible. High resolution soft X-ray spectroscopy will allow us to determine the velocity structure from line profiles, the density and volume from line diagnostics for a range of soft X-ray emitting temperatures, and the absorbing column density of pre-shock gas as a function of shock structure. The author's work is supported by the Chandra X-ray Observatory through a NASA contract with the Smithsonian Astrophysical Observatory.

  1. The neutron, gamma-ray, X-ray spectrometer (NGXS): A compact instrument for making combined measurements of neutrons, gamma-rays, and X-rays

    NASA Astrophysics Data System (ADS)

    Lawrence, David J.; Feldman, William C.; Gold, Robert E.; Goldsten, John O.; McNutt, Ralph L.

    2014-01-01

    The Neutron, Gamma ray, and X-ray Spectrometer (NGXS) is a compact instrument designed to detect neutrons, gamma-rays, and hard X-rays. The original goal of NGXS was to detect and characterize neutrons, gamma-rays, and X-rays from the Sun as part of the Solar Probe Plus mission in order to provide direct insight into particle acceleration, magnetic reconnection, and cross-field transport processes that take place near the Sun. Based on high-energy neutron detections from prompt solar flares, it is estimated that the NGXS would detect neutrons from 15 to 24 impulsive flares. The NGXS sensitivity to 2.2 MeV gamma rays would enable a detection of 50-60 impulsive flares. The NGXS is estimated to measure 120 counts/s for a GOES C1-type flare at 0.1 AU, which allows for a large dynamic range to detect both small and large flares.

  2. A Positional X-ray Instrumentation Test Stand For Beam-Line Experiments

    NASA Astrophysics Data System (ADS)

    Nikoleyczik, Jonathan; Prieskorn, Z.; Burrows, D. N.; Falcone, A.

    2014-01-01

    A multi-axis, motion controlled test stand has been built in the PSU 47 m X-ray beam-line for the purpose of testing X-ray instrumentation and mirrors using parallel rays. The test stand is capable of translation along two axes and rotation about two axes with motorized fine position control. The translation stages have a range of motion of 200 mm with a movement accuracy of ± 2.5 microns. Rotation is accomplished with a two-axis gimbal which can rotate 360° about one axis and 240° about another; movement with ± 35 arcsecond accuracy are achieved in both axes. The position and status are monitored using a LabView program. An XCalibr source with multiple target materials is used as an X-ray source and can produce multiple lines between 0.8 and 8 keV. Some sample spectra are shown from a Si-PIN diode detector. This system is well suited for testing X-ray mirror segments which are currently being developed.

  3. Instrumental limits to our knowledge of the X-ray sky

    NASA Astrophysics Data System (ADS)

    Guainazzi, Matteo

    2014-08-01

    In the last decade, performances of X-ray detectors have improved over all parameter spaces (throughput, energy and spatial resolution, timing). However, the quality of our science is only as good as the quality our instruments' calibration. Measurements of X-ray observables in celestial sources are increasingly limited by systematic rather then by statistical errors. Unfortunately, all attempts at defining X-ray "standard candles" have proven unsuccessful so far. The energy scale can be still absolutely calibrated through emission lines produced by atomic transitions in on-board or astrophysical calibration sources. Likewise, timing accuracy can be estimated using fast rotators such as the Crab pulsar. On the other hand, uncertainties at the level of the order of 10% (and more) affect the absolute flux calibration. These "cross-calibration" uncertainties are energy-dependent, thus implying uncertainties on spectral measurements. I present in this talk the calibration and cross-calibration status of historical and operational X-ray detectors. Efforts to monitor, document and improve the cross-calibration status are carried out primarily by the IACHEC (International Astronomical Consortium for High Energy Calibration: http://web.mit.edu/iachec/). I will also briefly discuss the impact that these uncertainties (may) have on fields as diverse as the measurements of spin in accreting black holes, and the determination of cosmological parameters through surveys of galaxy clusters.

  4. Feasibility of an integrated X-ray instrument for Mars exobiology and geology. [Abstract only

    NASA Technical Reports Server (NTRS)

    Fonda, M. L.; Schwartz, D. E.; Koppel, L. N.; Franco, E. D.; Kerner, J. A.

    1994-01-01

    By employing an integrated X-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details relevant to the possibility of the origin and evolution of life on Mars will be acquired. An integrated combined X Ray Fluorescence/X Ray Detection (XRF/XRD) instrument has been breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for Mars Environmental Survey (MESUR) and future Mars missions. Among others, primary objectives for the exploration of Mars include: the intense study of local areas on Mars to 'establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epochs; and to establish the global chemical and physical characteristics of the Martian surface'. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment.

  5. Potential of the PANTER x-ray test facility for calibration of instrumentation for XEUS

    NASA Astrophysics Data System (ADS)

    Freyberg, Michael; Budau, Bernd; Burkert, Wolfgang; Hartner, Gisela; Hasinger, Gnther; Collon, Maximilien; Kraft, Stefan; Beijersbergen, Marco; Bavdaz, Marcos; Lumb, David; Wallace, Kotska; Kampf, Dirk

    2006-06-01

    The PANTER X-ray Test Facility was originally designed to support the development and construction of the ROSAT mirror system. A large instrument chamber (length 12 m, diameter 3.5m) accommodates the optics to be analysed. The X-ray sources covering an 0.2 - 50 keV energy range are located at a distance of 123m from the entrance to the chamber to provide an almost parallel X-ray beam. Both are connected by a vacuum tube of 1m diameter. In addition to ROSAT a large number of astronomical systems like telescopes for Exosat, BeppoSAX, JET-X, ABRIXAS, XMM-Newton and Swift - but also gratings (e.g., LETG on Chandra), filters, and focal plane detectors have been measured at the facility. As a "growing facility" we are currently planning to apply changes to the facility layout to support measurements of instrumentation for future missions like XEUS. Currently a parallel beam is set up using a spare CDS mirror ("Coronal Diagnostic Spectrometer", for the SOHO mission) as condensor. Moreover, extensions to vacuum tube and instrument chamber are under consideration, both to allow calibration of systems with focal lengths significantly longer than XMM-Newton. A new focal plane camera using a CCD developed for the eROSITA mission will improve spatial and spectral resolution. Finally, the energy coverage shall be extended to lower and to higher energies. Already with the present configuration important issues like performance under low temperatures could be investigated.

  6. Picosecond-resolved X-ray absorption spectroscopy at low signal contrast using a hard X-ray streak camera.

    PubMed

    Adams, Bernhard W; Rose-Petruck, Christoph; Jiao, Yishuo

    2015-07-01

    A picosecond-resolving hard-X-ray streak camera has been in operation for several years at Sector 7 of the Advanced Photon Source (APS). Several upgrades have been implemented over the past few years to optimize integration into the beamline, reduce the timing jitter, and improve the signal-to-noise ratio. These include the development of X-ray optics for focusing the X-rays into the sample and the entrance slit of the streak camera, and measures to minimize the amount of laser light needed to generate the deflection-voltage ramp. For the latter, the photoconductive switch generating the deflection ramp was replaced with microwave power electronics. With these, the streak camera operates routinely at 88?MHz repetition rate, thus making it compatible with all of the APS fill patterns including use of all the X-rays in the 324-bunch mode. Sample data are shown to demonstrate the performance. PMID:26134806

  7. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    SciTech Connect

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  8. Multi-angular regolith effects on planetary soft X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Nrnen, J.; Parviainen, H.; Carpenter, J.; Muinonen, K.

    2009-04-01

    Fluorescent X-rays from the surfaces of airless planetary bodies in the inner solar system have been measured by instruments on several spacecraft. MESSENGER carries an X-ray spectrometer (XRS) on-board and has already attempted to obtain fluorescent X-rays from the Hermean surface. BepiColombo will later on carry an X-ray telescope (MIXS-T) along with a more conventional collimating detector (MIXS-C) to the Hermean orbit, supported by a next-generation X-ray solar monitor (SIXS). These instruments will provide unprecedented knowledge about the geochemical properties of the Hermean regolith. X-ray emission from planetary surfaces follows photoionisation by incident solar X-rays and charged particles and reveals information about the elemental composition of the surface. Analyses of X-ray spectra, obtained by orbiting spacecraft, use both the relative intensities of elemental emission lines (e.g., Ca/Si, Fe/Si) and absolute abundancies of the elements to determine the geochemistry of the target body. Historically, the analysis of X-ray spectra has largely assumed that surfaces can be considered as homogeneous plane-parallel media. It has been shown, however, that fluorescent line intensities are affected by the physical properties of the target surface (e.g., surface roughness of the regolith) as a function of the viewing and illumination geometry of observations in a way that cannot be explained by the traditional models. We describe experimental investigations where we simulated the effects of regolith properties on the fluorescent lines measured by an orbiting instrument, with a large variety of illumination and viewing angles. The planetary regolith analogue used in these experiments was a terrestrial, olivine rich basalt, which has been used by previous authors as an analogue to the lunar maria. The basalt samples were ground to powder and sieved to discriminate particles in the ranges, <75 micrometers, 75-250 micrometers, and 250-500 micrometers. These separate powders were then pressed into solid pellets. The separation of particles with different sizes allows some determination of the effects due to changes in, e.g., surface roughness. The pellets were imaged with a CT scanner to obtain the physical parameters of the samples. All measurements were made at near-vacuum pressures to prevent absorption of fluorescent X-rays in air. The relative fluorescent line ratios of several major rock-forming elements (e.g., Si, K, Ca, Ti, Fe) were measured. In addition to experimental studies we have simulated the X-ray emission from a regolith using a numerical Monte-Carlo ray-tracing model. This model simulates a regolith of spherical particles, with defined physical properties (particle size distribution, packing density, etc.) and with a realistic macro-scale surface roughness characteristics generated by constraining the surface with a fractional-Brownian-motion surface model. A comparison is made between the modelling and experimental results to validate the modelling. A good agreement between the results is found. We find that both the measured and the simulated spectra become increasingly hard as the phase angle increases (i.e., X-ray lines at higher energies are enhanced relative to those at lower energies). Some hardening of spectra is predicted by the fundamental parameters equation (FPE) of X-ray fluorescence, which assumes a smooth, flat, and homogeneous surface, but we observe further spectral hardening that is in excess to that predicted by the FPE and that this excess hardening is also a function of the surface roughness. We propose to use modelling similar to ours for the data analysis of soft X-ray fluorescence spectra to take the multi-angular effects related to the physical properties of the regolith into account.

  9. Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Alfonso, A. J.; Freitag, B.; Klenov, D.; Allen, L. J.

    2010-03-01

    We demonstrate atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy in scanning transmission electron microscopy. Theoretical simulations of the imaging process demonstrate that these images are directly interpretable. This is due to the fact that the effective ionization interaction is local and this is an incoherent mode of imaging.

  10. Passive Spectroscopy Bolometers, Grating- And X-Ray Imaging Crystal Spectrometers

    SciTech Connect

    Bitter, M; Hill, K W; Scott, S; Paul, S; Ince-Cushmann, A; Reinke, M; Rice, J; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2007-11-07

    This tutorial gives a brief introduction into passive spectroscopy and describes the working principles of bolometers, a high-resolution grating spectrometer, and a novel X-ray imaging crystal spectrometer, which is of particular interest for profile measurements of the ion temperature and plasma rotation velocity on ITER and future burning plasma experiments.

  11. Secondary ion mass spectrometry and X-ray photoelectron spectroscopy of derivitized coal surfaces

    SciTech Connect

    Martin, R.R.; Mc Intyre, N.S.; Mac Phee, J.A.; Aye, K.T.

    1987-04-01

    Secondary Ion Mass Spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS) have been used to study the low temperature oxidation of coal. /sup 18/O has been used to trace the oxygen distribution on the coal surface. Several chemical derivations have been observed on the oxidized coal surface and the reactivity of specific regions have been monitored.

  12. Application of x-ray absorption spectroscopy to the study of corrosion and inhibition

    SciTech Connect

    Davenport, A.J.; Isaacs, H.S.

    1991-01-01

    X-ray absorption spectroscopy is a powerful technique for determination of valency and coordination. Measurements can be made in air or in situ under electrochemical control. The technique will be described and its application to the analysis of passive oxide films, corrosion products, and inhibitors will be reviewed.

  13. Visible, EUV, and X-ray Spectroscopy at the NIST EBIT Facility

    NASA Astrophysics Data System (ADS)

    Gillaspy, J. D.; Blagojevic, B.; Dalgarno, A.; Fahey, K.; Kharchenko, V.; Laming, J. M.; Le Bigot, E.-O.; Lugosi, L.; Makonyi, K.; Ratliff, L. P.; Schnopper, H. W.; Silver, E. H.; Takcs, E.; Tan, J. N.; Tawara, H.; Toksi, K.

    2004-10-01

    After a brief introduction to the NIST EBIT facility, we present the results of three different types of experiments that have been carried out there recently: EUV and visible spectroscopy in support of the microelectronics industry, laboratory astrophysics using an x-ray microcalorimeter, and charge exchange studies using extracted beams of highly charged ions.

  14. Visible, EUV, and X-ray Spectroscopy at the NIST EBIT Facility

    SciTech Connect

    Gillaspy, J.D.; Blagojevic, B.; Le Bigot, E.-O.; Makonyi, K.; Ratliff, L.P.; Tan, J.N.; Dalgarno, A.; Kharchenko, V.; Schnopper, H.W.; Silver, E.H.; Fahey, K.; Laming, J.M.; Lugosi, L.; Tokesi, K.; Tawara, H.

    2004-10-20

    After a brief introduction to the NIST EBIT facility, we present the results of three different types of experiments that have been carried out there recently: EUV and visible spectroscopy in support of the microelectronics industry, laboratory astrophysics using an x-ray microcalorimeter, and charge exchange studies using extracted beams of highly charged ions.

  15. X-ray and Dielectric Spectroscopy Studies Of Chiral Ferroelectric Liquid Crystals With Keto Group

    NASA Astrophysics Data System (ADS)

    Stojanovi?, Maja; Obadovi?, Dusanka .; Bubnov, Alexej; Hamplov, Vera; Ka?par, Miroslav

    2007-04-01

    Series of ferroelectric liquid crystals with the keto group attached to the molecule core and one lactate group as the chiral centre have been studied by X-ray and dielectric spectroscopy. The thickness of smectic layers and the average distance between the long axes of neighboring molecules increases with increase of both chains.

  16. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    SciTech Connect

    Marrs, R.E.; Bennett, C.; Chen, M.H.; Cowan, T.; Dietrich, D.; Henderson, J.R.; Knapp, D.A.; Levine, M.A.; Schneider, M.B.; Scofield, J.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab.

  17. Structure of the manganese complex in photosystem II: insights from X-ray spectroscopy.

    PubMed

    Yachandra, Vittal K

    2002-10-29

    We have used Mn K-edge absorption and Kbeta emission spectroscopy to determine the oxidation states of the Mn complex in the various S states. We have started exploring the new technique of resonant inelastic X-ray scattering spectroscopy; this technique can be characterized as a Raman process that uses K-edge energies (1s to 4p, ca. 6550 eV) to obtain L-edge-like spectra (2p to 3d, ca. 650 eV). The relevance of these data to the oxidation states and structure of the Mn complex is presented. We have obtained extended X-ray absorption fine structure data from the S(0) and S(3) states and observed heterogeneity in the Mn-Mn distances leading us to conclude that there may be three rather than two di-mu-oxo-bridged units present per tetranuclear Mn cluster. In addition, we have obtained data using Ca and Sr X-ray spectroscopy that provide evidence for a heteronuclear Mn-Ca cluster. The possibility of three di-mu-oxo-bridged Mn-Mn moieties and the proximity of Ca is incorporated into developing structural models for the Mn cluster. The involvement of bridging and terminal O ligands of Mn in the mechanism of oxygen evolution is discussed in the context of our X-ray spectroscopy results. PMID:12437873

  18. Stereochemistry Determination by Powder X-ray Diffraction Analysis and NMR Spectroscopy Residual Dipolar Couplings

    SciTech Connect

    Garcia, M.; Pagola, S; Navarro-Vasquez, A; Phillips, D; Gayathri, C; Krakauer, H; Stephens, P; Nicotra, V; Gil, R

    2009-01-01

    A matter of technique: For a new steroidal lactol, jaborosalactol 24 (1), isolated from Jaborosa parviflora, NMR spectroscopy residual dipolar couplings and powder X-ray diffraction analysis independently gave the same stereochemistry at C23-C26. Conventional NMR spectroscopic techniques, such as NOE and {sup 3}J coupling-constant analysis failed to unambiguously determine this stereochemistry.

  19. Picosecond x-ray absorption spectroscopy of photochemical transient species in solution

    SciTech Connect

    Schoenlein, Robert William; Khalil, Munira; Marcus, Matthew A.; Smeigh, Amanda L.; McCusker, James K.; Chong, Henry H.W.; Schoenlein, Robert W.

    2006-08-07

    A photoinduced Fe(II) spin crossover reaction in solution is studied with ultrafast x-ray absorption spectroscopy. The iron-nitrogen bond lengthens by 0.21+-0.03 Angstrom in the high-spin transient excited state relative to the ground state.

  20. EUV and X-ray Spectroscopy of the Active Sun

    NASA Astrophysics Data System (ADS)

    Raftery, Claire L.

    2012-10-01

    This thesis strives to improve our understanding of solar activity, specifically the behaviour of solar flares and coronal mass ejections. An investigation into the hydrodynamic evolution of a confined solar flare was carried out using RHESSI, CDS, GOES and TRACE. Evidence for pre-flare heating, explosive and gentle chromospheric evaporation and loop draining were observed in the data. The observations were compared to a 0-D hydrodynamic model, EBTEL, to aid interpretation. This led to the conclusion that the flare was not heated purely by non-thermal beam heating as previously believed, but also required direct heating of the plasma. An observational investigation in to the initiation mechanism of a coronal mass ejection and eruptive flare was then carried out, again utilising observations from a wide range of spacecraft: MESSENGER/SAX, RHESSI, EUVI, Cor1 and Cor2. Observations provided evidence of CME triggering by internal tether-cutting and not by breakout reconnection. A comparison of the confined and eruptive flares suggests that while they have different characteristics, timescales and topologies, these two phenomena are the result of the same fundamental processes. Finally, an investigation into the sensitivity of EUV imaging telescopes was carried out. This study established a new technique for calculating the sensitivity of EUV imagers to plasmas of different temperatures for four different types of plasma: coronal hole, quiet sun, active region and solar flare. This was carried out for six instruments: Proba-2/SWAP, TRACE, SOHO/EIT, STEREO A/EUVI, STEREO B/EUVI and SDO/AIA. The importance of considering the multi-thermal nature of these instruments was then put into the context of investigating explosive solar activity.

  1. The Mn4Ca photosynthetic water-oxidation catalyst studied by simultaneous X-ray spectroscopy and crystallography using an X-ray free-electron laser

    PubMed Central

    Tran, Rosalie; Kern, Jan; Hattne, Johan; Koroidov, Sergey; Hellmich, Julia; Alonso-Mori, Roberto; Sauter, Nicholas K.; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yano, Junko; Yachandra, Vittal K.

    2014-01-01

    The structure of photosystem II and the catalytic intermediate states of the Mn4CaO5 cluster involved in water oxidation have been studied intensively over the past several years. An understanding of the sequential chemistry of light absorption and the mechanism of water oxidation, however, requires a new approach beyond the conventional steady-state crystallography and X-ray spectroscopy at cryogenic temperatures. In this report, we present the preliminary progress using an X-ray free-electron laser to determine simultaneously the light-induced protein dynamics via crystallography and the local chemistry that occurs at the catalytic centre using X-ray spectroscopy under functional conditions at room temperature. PMID:24914152

  2. New developments in micro-X-ray diffraction and X-ray absorption spectroscopy for high-pressure research at 16-BM-D at the Advanced Photon Source.

    PubMed

    Park, Changyong; Popov, Dmitry; Ikuta, Daijo; Lin, Chuanlong; Kenney-Benson, Curtis; Rod, Eric; Bommannavar, Arunkumar; Shen, Guoyin

    2015-07-01

    The monochromator and focusing mirrors of the 16-BM-D beamline, which is dedicated to high-pressure research with micro-X-ray diffraction (micro-XRD) and X-ray absorption near edge structure (XANES) (6-45 keV) spectroscopy, have been recently upgraded. Monochromatic X-rays are selected by a Si (111) double-crystal monochromator operated in an artificial channel-cut mode and focused to 5 μm × 5 μm (FWHM) by table-top Kirkpatrick-Baez type mirrors located near the sample stage. The typical X-ray flux is ∼5 × 10(8) photons/s at 30 keV. The instrumental resolution, Δq/qmax, reaches to 2 × 10(-3) and is tunable through adjustments of the detector distance and X-ray energy. The setup is stable and reproducible, which allows versatile application to various types of experiments including resistive heating and cryogenic cooling as well as ambient temperature compression. Transmission XANES is readily combined with micro-XRD utilizing the fixed-exit feature of the monochromator, which allows combined XRD-XANES measurements at a given sample condition. PMID:26233345

  3. Two-dimensional stimulated resonance Raman spectroscopy of molecules with broadband x-ray pulses

    SciTech Connect

    Biggs, Jason D.; Zhang Yu; Healion, Daniel; Mukamel, Shaul

    2012-05-07

    Expressions for the two-dimensional stimulated x-ray Raman spectroscopy (2D-SXRS) signal obtained using attosecond x-ray pulses are derived. The 1D- and 2D-SXRS signals are calculated for trans-N-methyl acetamide (NMA) with broad bandwidth (181 as, 14.2 eV FWHM) pulses tuned to the oxygen and nitrogen K-edges. Crosspeaks in 2D signals reveal electronic Franck-Condon overlaps between valence orbitals and relaxed orbitals in the presence of the core-hole.

  4. Interfacial energy-dispersive spectroscopy profile X-ray resolution measurements in variable pressure SEM.

    PubMed

    Zoukel, Abdelhalim; Khouchaf, Lahcen; Di Martino, Jean; Ruch, David

    2014-10-01

    A procedure has been developed to follow degradation of energy-dispersive spectroscopy (EDS) X-ray lateral resolution in a variable pressure scanning electron microscope. This procedure is based on evaluation of the EDS profile shape change for different experimental conditions. Some parameters affecting the X-ray resolution in high-vacuum mode have been taken into account. Good agreement between the simulated and experimental EDS profiles shows the reliability of the proposed procedure. A significant improvement in measurement of the EDS profile interfacial distance (DINT) has been achieved. PMID:24960537

  5. Effect of shot noise on X-ray speckle visibility spectroscopy.

    PubMed

    Inoue, Ichiro; Shinohara, Yuya; Watanabe, Akira; Amemiya, Yoshiyuki

    2012-11-19

    X-ray speckle visibility spectroscopy (XSVS) is a method for studying dynamics in disordered systems. This method was originally developed in the visible-light region, in which an intense laser can be used. When applied in the X-ray region, where the number of photons is much smaller than in the visible-light region, it suffers from photon statistics. In this paper, we quantitatively discuss the effect of photon shot noise on XSVS analyses. The effect is experimentally confirmed using sequential speckle patterns from Brownian polystyrene nanospheres in glycerol. PMID:23187541

  6. Thermal Expansion Behaviour of Silver Examined by Extended X-Ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Dubiel, M.; Chasse, A.; Haug, J.; Schneider, R.; Kruth, H.

    2007-02-02

    EXAFS (extended X-ray absorption fine structure) investigations are reported concerning the thermal expansion behaviour of silver in an extended range of temperature from 10 K to about 950 K measured in transmission mode. Both the ratio method and an EXAFS fitting procedure were applied to reveal the temperature dependence of EXAFS parameters. Models based on quantum and classical thermodynamic perturbation theory have been used to interpret experimental data and compared to XRD (X-ray diffraction) results of bulk silver material. The description of thermodynamic data of thermal expansion of silver in the complete range of temperature by EXAFS Spectroscopy was successful by first calculations using third order quantum perturbation theory.

  7. Applications and instrumentation advances with the Stony Brook scanning transmission x-ray microscope

    NASA Astrophysics Data System (ADS)

    Feser, Michael; Carlucci-Dayton, Mary; Jacobsen, Chris J.; Kirz, Janos; Neuhaeusler, Ulrich; Smith, Graham; Yu, Bo

    1998-11-01

    Scanning transmission x-ray microscopes (STXM) are well matched to the optics of high resolution monochromators, offer a variety of imaging modes and can minimize radiation damage to the specimen. We describe the Stony Brook STXM at the NSLS. This microscope is used for a variety of studies by many users; we briefly outline its use for studies of hydrated colloidal system and for dark field microscopy on immunogold labeled specimens as examples. In order to keep pace with developments in zone plate optics, spectroscopy and a variety of imaging modalities, the microscope is being redesigned and its characteristics are discussed. Its preliminary x-ray detector will be a new multiware proportional counter with high count rate capability.

  8. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    PubMed Central

    Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  9. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies.

    PubMed

    Strocov, V N; Schmitt, T; Flechsig, U; Schmidt, T; Imhof, A; Chen, Q; Raabe, J; Betemps, R; Zimoch, D; Krempasky, J; Wang, X; Grioni, M; Piazzalunga, A; Patthey, L

    2010-09-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0-180 degrees rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/DeltaE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 x 10(13) photons s(-1) (0.01% BW)(-1) at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 microm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/DeltaE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  10. Time and space resolved spectroscopy of x-ray laser experiments

    SciTech Connect

    Ceglio, N.M.

    1986-04-01

    We report experimental data from one of the first of this new generation of instruments designed specifically for laboratory x-ray laser diagnosis. Representative TGSS-EM data are presented from three different x-ray laser inversion schemes: collisional excitation of neon-like selenium (lambda approx. = 206, 209A); resonant photoexcitation of hydrogen-like fluorine (lambda = 81A); and recombination of hydrogen-like magnesium (lambda approx. = 130A). The data illustrate the measurement capabilities of the TGSS-EM and provide insight to the dynamics and emission characteristics of this new class of laser produced plasmas.

  11. X-ray spectroscopy of plasmas created by the Nike KrF laser

    SciTech Connect

    Aglitskiy, Y.; Lehecka, T.; Deniz, A.; Hardgrove, J.; Seely, J.; Brown, C.; Feldman, U.; Pawley, C.; Gerber, K.; Bodner, S.; Obenschain, S.; Lehmberg, R.; McLean, E.; Pronko, M.; Sethian, J.; Stamper, J.; Schmitt, A.; Sullivan, C.; Holland, G.; Laming, M.

    1997-01-01

    The x-ray emission from plasmas created by the Naval Research Laboratory Nike KrF laser was characterized using spectroscopic instruments. The targets were thin foils of aluminum and titanium and were irradiated by laser energies in the range 100{endash}1500 J. Using a spherical-crystal imaging spectrometer operating in the 1{endash}2 keV x-ray region, the density, temperature, and opacity of aluminum plasmas were determined with a spatial resolution of 10 {mu}m in the direction perpendicular to the target surface. The spectral line ratios indicated that the aluminum plasmas were relatively dense, cool, and optically thick near the target surface.

  12. Status of the optics for the X-ray Evolving Universe Spectroscopy mission (XEUS)

    NASA Astrophysics Data System (ADS)

    Bavdaz, Marcos; Beijersbergen, Marco W.; Peacock, Anthony J.; Aschenbach, Bernd; Braeuninger, Heinrich W.; Willingale, Richard

    2000-11-01

    The X-ray optics for the X-ray Evolving Universe Spectroscopy Mission (XEUS) have to satisfy the demanding requirements of this ambitious mission. XEUS is under study at the European Space Agency in the frame of the Horizon 2000+ program, utilizing the International Space Station (ISS) to take X-ray astrophysics into a new era. In a single launch XEUS1 is brought into orbit and deployed, providing a 4.5 m diameter X- ray optics with an angular resolution of 5 arcseconds. After a pre-cursor phase of astrophysical observation the XEUS mirror spacecraft docks to the ISS and is there significantly expanded, whereby the effective area of the optics is increased by a factor of 5, reaching 30 m2. This servicing at the ISS is based on the currently foreseen capabilities of the ISS and strongly relies on robotics and the presence of astronauts. The progress in developing the X-ray optics for XEUS is reported. Based on electro-formed mirror plates, which are mounted into mirror petals, the optics is modular and elegantly breaks the size limitation dictated by current designs. The necessary high level of control of the Nickel electroforming process is based on the legacy of the XMM project, launched by ESA in December 1999, but substantially improves the angular resolution and the collecting area. New materials are being explored for the fabrication of the high precision Wolter I shaped mandrels, scaled model petals are being made to study the X-ray imaging properties, and full- scale structural models are built to confirm the numerical evaluation of the optics and engineering designs. Appreciable progress has been achieved on the X-ray optics, supporting the system level and feasibility studies of the mission, which are aimed at proving the feasibility of the novel concept of XEUS.

  13. An alpha particle instrument with alpha, proton, and X-ray modes for planetary chemical analyses

    NASA Technical Reports Server (NTRS)

    Economou, T. E.; Turkevich, A. L.

    1976-01-01

    The interaction of alpha particles with matter is employed in a compact instrument that could provide rather complete in-situ chemical analyses of surfaces and thin atmospheres of extraterrestrial bodies. The instrument is a miniaturized and improved version of the Surveyor lunar instrument. The backscattering of alpha particles and (alpha, p) reactions provide analytical data on the light elements (carbon-iron). An X-ray mode that detects the photons produced by the alpha sources provides sensitivity and resolution for the chemical elements heavier than about silicon. The X-rays are detected by semiconductor detectors having a resolution between 150 and 250 eV at 5.9 keV. Such an instrument can identify and determine with good accuracy 99 percent of the atoms (except hydrogen) in rocks. For many trace elements, the detecting sensitivity is a few ppm. Auxiliary sources could be used to enhance the sensitivities for elements of special interest. The instrument could probably withstand the acceleration involved in semi-hard landings.

  14. Performance of the Hampshire Instruments Model 5000 proximity x-ray stepper

    NASA Astrophysics Data System (ADS)

    Frackoviak, John; Celler, George K.; Jurgensen, Charles W.; Kola, R. R.; Novembre, Anthony E.; Trimble, Lee E.; Tomes, David N.

    1993-06-01

    The Hampshire Instruments Model 5000 Stepper is a commercially available laser based 1:1 proximity x-ray stepper. The source of this system is a 25 watt Nd:glass slab laser which is focused to approximately 200 micrometers diameter spot on an iron alloy tape target. Nanosecond pulses fired at a 2 Hz burst (1 Hz average) repetition rate produce slightly more than 1 mJ/cm2 of x-ray flux per pulse at the wafer plane. This flux of soft x-ray has a spectrum of 8 - 20 angstroms centered on the 14 angstroms band. This is the first system shipped by Hampshire Instruments. It is a research and development tool which is not meant for the production line, but rather as a means to investigate issues associated with x-ray lithography and inserting a system of this type into a manufacturing environment. This paper will present final acceptance test results for system resolution, critical dimension control and registration, as well as data showing system performance for the first five months of operation. Results showing 0.2 micrometers line and space resolution across a 14.7 mm field in 1.0 micrometers thick resist printed using a tungsten absorber mask will be presented. Registration test results show a variation of 0.13 micrometers (3 (sigma) ) across a five wafer lot. When the alignment system was slowed down, however, a result of 0.09 micrometers was achieved. Metrology issues dealing with critical dimension control as they pertain to this stepper will be addressed.

  15. Arsenic Speciation by X-Ray Spectroscopy using Resonant Raman Scattering

    NASA Astrophysics Data System (ADS)

    Sánchez, H. J.; Leani, J. J.; Pérez, C. A.; Pèrez, R. D.

    2014-01-01

    We have shown that X-ray resonant Raman scattering (RRS) spectroscopy can be used to analyze arsenic species. This work is a pioneering work in the area and is important in the interpretation of results in the future. Nevertheless, the behavior of RRS residuals of compounds can be used to identify the oxidation state of the elements under study, offering a new possibility for chemical environment determination using RRS spectroscopy.

  16. X-RAY ABSORPTION SPECTROSCOPY OF YB3+-DOPED OPTICAL FIBERS

    SciTech Connect

    Citron, Robert; Kropf, A.J.

    2008-01-01

    Optical fibers doped with Ytterbium-3+ have become increasingly common in fiber lasers and amplifiers. Yb-doped fibers provide the capability to produce high power and short pulses at specific wavelengths, resulting in highly effective gain media. However, little is known about the local structure, distribution, and chemical coordination of Yb3+ in the fibers. This information is necessary to improve the manufacturing process and optical qualities of the fibers. Five fibers doped with Yb3+ were studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES), in addition to Yb3+ mapping. The Yb3+ distribution in each fiber core was mapped with 2D and 1D intensity scans, which measured X-ray fluorescence over the scan areas. Two of the five fibers examined showed highly irregular Yb3+ distributions in the core center. In four of the five fibers Yb3+ was detected outside of the given fiber core dimensions, suggesting possible Yb3+ diffusion from the core, manufacturing error, or both. X-ray absorption spectroscopy (XAS) analysis has so far proven inconclusive, but did show that the fibers had differing EXAFS spectra. The Yb3+ distribution mapping proved highly useful, but additional modeling and examination of fiber preforms must be conducted to improve XAS analysis, which has been shown to have great potential for the study of similar optical fi bers.

  17. X-ray fluorescence correlation spectroscopy for studying particle dynamics in condensed matter

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Sood, Ajay K.; Satyam, Parlapalli; Feng, Yiping; Wu, Xiao-zhong; Cai, Zhonghou; Yun, Wenbing; Sinha, Sunil K.

    1997-07-01

    Photon correlation spectroscopy probing fluctuations in scattered or fluorescent intensity to study particle dynamics in fluids is by now well established in the visible light regime. With the advent of high-brilliance synchrotron radiation sources, correlation spectroscopy utilizing scattered radiation has recently been extended to the x-ray wavelength regime by using spatially coherent x-rays to study the time fluctuations of the corresponding speckle patterns. In this presentation, we report the development of a new technique, x-ray fluorescence correlation spectroscopy (XFCS) for elucidating the dynamics of particles. This technique does not require coherent beams but relies on intense microfocused x-ray beams. Further, it is element specific. As a demonstration of this method, the dynamics of gold colloidal particles and aggregates undergoing diffusion and sedimentation in water was studied by measuring the time autocorrelation of the gold fluorescence intensity from a small illuminated volume. The values of the translational diffusion constants and sedimentation velocities obtained are in excellent agreement with theoretical estimates and other measurements. Further potential applications of the technique are discussed.

  18. X-ray spectroscopy of Cu impurities on NSTX and comparison with Z-pinch plasmas.

    PubMed

    Safronova, A S; Ouart, N D; Lepson, J K; Beiersdorfer, P; Stratton, B; Bitter, M; Kantsyrev, V L; Cox, P G; Shlyaptseva, V; Williamson, K M

    2010-10-01

    X-ray spectroscopy of mid-Z metal impurities is important in the study of tokamak plasmas and may reveal potential problems if their contribution to the radiated power becomes substantial. The analysis of the data from a high-resolution x-ray and extreme ultraviolet grating spectrometer, XEUS, installed on NSTX, was performed focused on a detailed study of x-ray spectra in the range 7-18 A?. These spectra include not only commonly seen iron spectra but also copper spectra not yet employed as an NSTX plasma impurity diagnostic. In particular, the L-shell Cu spectra were modeled and predictions were made for identifying contributions from various Cu ions in different spectral bands. Also, similar spectra, but from much denser Cu plasmas produced on the UNR Z-pinch facility and collected using the convex-crystal spectrometer, were analyzed and compared with NSTX results. PMID:21034004

  19. Pushing the Boundaries of X-ray Grating Spectroscopy in a Suborbital Rocket

    NASA Technical Reports Server (NTRS)

    McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Zhang, William W.; Murray, Neil J.; O'Dell, Stephen; Cash, Webster

    2013-01-01

    Developments in grating spectroscopy are paramount for meeting the soft X-ray science goals of future NASA X-ray Observatories. While developments in the laboratory setting have verified the technical feasibility of using off-plane reflection gratings to reach this goal, flight heritage is a key step in the development process toward large missions. To this end we have developed a design for a suborbital rocket payload employing an Off-Plane X-ray Grating Spectrometer. This spectrometer utilizes slumped glass Wolter-1 optics, an array of gratings, and a CCD camera. We discuss the unique capabilities of this design, the expected performance, the science return, and the perceived impact to future missions.

  20. L-edge X-ray absorption spectroscopy of pyrococcus furiosus rubredoxin

    SciTech Connect

    George, S.J.; Elp, J. van; Chen, J.

    1992-05-20

    In this communication the authors present new experiments and theoretical simulations, using iron L-edge X-ray absorption spectroscopy, to study the metalloprotein Pyrococcus furiosus rubredoxin. the 3d transition metal L-edges are found between 400 and 1100 eV, in the soft X-ray region. Synchrotron radiation beam lines producing the high photon flux and high-energy resolution necessary to observe and resolve 3d transition metal L-edge spectra have only become available in the last few years. L-edge spectra are interesting not only because of the 3-4-fold-higher energy resolution (vs K-edges) but also for the sensitivity to spin state, oxidation state, and ligand field offered by p{r_arrow}d transitions. In addition, the X-ray magnetic circular dichroism (XMCD) of transition metal L-edges is predicted to be strong, and experiments have confirmed these predictions. 21 refs., 1 fig.

  1. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser.

    PubMed

    Lehmkhler, Felix; Kwa?niewski, Pawe?; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grbel, Gerhard

    2015-01-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources. PMID:26610328

  2. Gas cell for in situ soft X-ray transmission-absorption spectroscopy of materials

    SciTech Connect

    Drisdell, W. S.; Kortright, J. B.

    2014-07-15

    A simple gas cell design, constructed primarily from commercially available components, enables in situ soft X-ray transmission-absorption spectroscopy of materials in contact with gas at ambient temperature. The cell has a minimum X-ray path length of 1 mm and can hold gas pressures up to ∼300 Torr, and could support higher pressures with simple modifications. The design enables cycling between vacuum and gas environments without interrupting the X-ray beam, and can be fully sealed to allow for measurements of air-sensitive samples. The cell can attach to the downstream port of any appropriate synchrotron beamline, and offers a robust and versatile method for in situ measurements of certain materials. The construction and operation of the cell are discussed, as well as sample preparation and proper spectral analysis, illustrated by examples of spectral measurements. Potential areas for improvement and modification for specialized applications are also mentioned.

  3. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    SciTech Connect

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.

  4. IN SITU STUDIES OF CORROSION USING X-RAY ABSORPTION NEAR SPECTROSCOPY (XANES)

    SciTech Connect

    ISAACS, H.S.; SCHMUKI, P.; VIRTANEN, S.

    2001-03-25

    Applications of x-ray absorption near-edge spectroscopy (XANES) and the design of cells for in situ corrosion studies are reviewed. Passive films studies require very thin metal or alloy layers be used having a thickness of the order of the films formed because of penetration of the x-ray beam into the metal substrate. The depth of penetration in water also limits the thickness of solutions that can be used because of water reduces the x-ray intensity. Solution thickness must also be limited in studies of conversion layer formation studies because the masking of the Cr in solution. Illustrative examples are taken from the anodic behavior of Al-Cr alloys, the growth of passive films on Fe and stainless steels, and the formation of chromate conversion layers on Al.

  5. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-11-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.

  6. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser

    PubMed Central

    Lehmkhler, Felix; Kwa?niewski, Pawe?; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grbel, Gerhard

    2015-01-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources. PMID:26610328

  7. An x-ray absorption spectroscopy study of Mo oxidation in Pb at elevated temperatures

    SciTech Connect

    Liu, Shanshan; Olive, Daniel; Terry, Jeff; Segre, Carlo U.

    2009-06-30

    The corrosion of fuel cladding and structural materials by lead and lead-bismuth eutectic in the liquid state at elevated temperatures is an issue that must be considered when designing advanced nuclear systems and high-power spallation neutron targets. In this work, lead corrosion studies of molybdenum were performed to investigate the interaction layer as a function of temperature by X-ray absorption spectroscopy. In situ X-ray absorption measurements on a Mo substrate with a 3-6 {micro}m layer of Pb deposited by thermal evaporation were performed at temperatures up to 900 C and at a 15{sup o} angle to the incident X-rays. The changes in the local atomic structure of the corrosion layer are visible in the difference extended X-ray absorption fine structure and the linear combination fitting of the X-ray absorption near-edge structure to as-deposited molybdenum sample and molybdenum oxide (MoO{sub 2} and MoO{sub 3}) standards. The data are consistent with the appearance of MoO{sub 3} in an intermediate temperature range (650-800 C) and the more stable MoO{sub 2} phase dominating at high and low temperatures.

  8. Quantification of total element concentrations in soils using total X-ray fluorescence spectroscopy (TXRF).

    PubMed

    Towett, Erick K; Shepherd, Keith D; Cadisch, Georg

    2013-10-01

    Total X-ray fluorescence spectroscopy (TXRF) determines concentrations of major and trace elements in multiple media. We developed and tested a method for the use of TXRF for direct quantification of total element concentrations in soils using an S2 PICOFOX spectrometer (Bruker AXS Microanalysis GmbH, Germany). We selected 15 contrasting soil samples from across sub-Saharan Africa for element analysis to calibrate the instrument against concentrations determined using the inductively coupled plasma-mass spectroscopy (ICP-MS) standard method. A consistent underestimation of element concentrations using TXRF compared to ICP-MS reference analysis occurred, indicating that spectrometer recalibration was required. Single-element recalibration improved the TXRF spectrometer's sensitivity curve. Subsequent analysis revealed that TXRF determined total element concentrations of Al, K, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Ga accurately (model efficacy/slope close to 1:1 line, and R(2)>0.80) over a wide range of soil samples. Other elements that could be estimated with an acceptable precision (R(2)>0.60) compared with ICP-MS although generally somewhat under- or overestimated were P, Ca, As, Rb, Sr, Y, Pr, Ta and Pb. Even after recalibration, compared to ICP-MS the TXRF spectrometer produced underestimations for elements Na, Mg, Ba, Ce, Hf, La, Nd, W and Sm and overestimations for elements Bi, Tl and Zr. We validated the degree of accuracy of the TXRF analytical method after recalibration using an independent set of 20 soil samples. We also tested the accuracy of the analysis using 2 multi-element standards as well as the method repeatability on replicate samples. The resulting total element concentration repeatability for all elements analyzed were within 10% coefficient of variability after the instrument recalibration except for Cd and Tl. Our findings demonstrate that TXRF could be used as a rapid screening tool for total element concentrations in soils assuming that sufficient calibration measures are followed. PMID:23831788

  9. Ultrafast Structural Dynamics by X-Ray Diffraction and Structural Spectroscopy

    NASA Astrophysics Data System (ADS)

    Weber, Peter M.

    2015-05-01

    The ability to observe molecular reactions in real time is expected to aid the exploration of new reaction mechanisms, the development of catalysts, the understanding of biomolecular processes and the control of chemical reactions and material properties on a molecular level. To reach this goal, we have developed a gas-phase x-ray diffraction experiment that uses the ultrashort x-ray pulses from the Linac Coherent Light Source (LCLS) to capture atomic motions within molecules in a dilute gas (< 5 Torr). The delay time dependence of the gas x-ray diffraction pattern is measured in a pump-probe scheme with 267 nm excitation laser and 8.3 keV X-ray probe pulses. Optical excitation prepares 1,3-cyclohexadiene on the excited 1B surface, from where it accelerates past a conical intersection down the 2A potential energy surfaces before opening the ring structure on a 140 fs time scale. A ``molecular movie'' of the observed dynamics is constructed by comparing ab initio quantum molecular dynamics simulations with the experimental diffraction signal to derive weighted trajectories that provide a good representation of the structural dynamics, with the weighted ensemble of trajectories corresponding to the nuclear flux during the chemical reaction. The x-ray structural data thus provide reaction pathways for which ionization energies can be calculated at each step. We use ultrafast time-resolved multiphoton - ionization photoelectron spectroscopy to measure the travel time required for the molecule to reach certain resonance windows to Rydberg states. By so combining the results from the ultrafast x-ray diffraction with observations from ultrafast (structural) spectroscopy, it appears that we can make significant progress towards the ultimate goal: a comprehensive understanding of the spatially resolved photochemical reaction dynamics.

  10. X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.

    2011-12-01

    The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2θ = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I., Baliva, A., Stevoli, A., Ambrosi, R., Critani, F., Delhez, R., Scandelli, L., Holland, A., Nelms, N. & the Mars-XRD Team, Proceedings of the 38th Lunar and Planetary Science Conference, 12 - 16 March 2007, League City, Texas, USA. [2] L. Marinangeli, I. B. Hutchinson, A. Stevoli, G. Adami, R. Ambrosi, R. Amils, V. Assis Fernandes, A. Baliva, A. T. Basilevsky, G. Benedix, P. Bland, A. J. Böttger, J. Bridges, G. Caprarelli, G. Cressey, F. Critani, N. d'Alessandro, R. Delhez, C. Domeneghetti, D. Fernandez-Remolar, R. Filippone, A. M. Fioretti, J. M. Garcia Ruiz, M. Gilmore, G. M. Hansford, G. Iezzi, R. Ingley, M. Ivanov, G. Marseguerra, L. Moroz, C. Pelliciari, P. Petrinca, E. Piluso, L. Pompilio, J. Sykes, F. Westall and the MARS-XRD Team, EPSC-DPS Joint Meeting 2011, 3 - 7 October 2011, La Cité Internationale des Congrès Nantes Métropole, Nantes, France.

  11. A hard X-ray imaging instrument for solar and cosmic sources

    NASA Technical Reports Server (NTRS)

    Hurford, G. J.

    1977-01-01

    A hard X-ray imaging instrument is described which is capable of high-resolution imaging of solar and cosmic hard X-ray sources between 2 and 80 keV during Shuttle sortie flights. The properties of solar burst sources and the resulting instrument requirements are discussed. The instrument envelope of 1.2 x 1.2 x 3.0 meters includes a tungsten multigrid collimator which has 4-arcsec resolution, a 40-arcmin response envelope and a point-source effective area of 26 sq cm. A combination of periodic fan beams and nonperiodic pencil beams enables a unique deconvolution to be achieved within a 128 x 128 arcsec field without mechanical scanning. The detector system is a set of direct-readout 40 atm-cm xenon-filled proportional counters designed to minimize background. The instrument is capable of refurbishment to optimize the collimator configuration for specific solar or cosmic scientific objectives, to upgrade the angular resolution, or to extend the high-energy response.

  12. Electronic ground states of Fe 2+ and Co 2+ as determined by x-ray absorption and x-ray magnetic circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Zamudio-Bayer, V.; Hirsch, K.; Langenberg, A.; ?awicki, A.; Terasaki, A.; v. Issendorff, B.; Lau, J. T.

    2015-12-01

    The 6? electronic ground state of the Co 2+ diatomic molecular cation has been assigned experimentally by x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap. Three candidates, 6?, 8?, and 8?, for the electronic ground state of Fe 2+ have been identified. These states carry sizable orbital angular momenta that disagree with theoretical predictions from multireference configuration interaction and density functional theory. Our results show that the ground states of neutral and cationic diatomic molecules of 3d transition elements cannot generally be assumed to be connected by a one-electron process.

  13. Electronic ground states of Fe2 (+) and Co2 (+) as determined by x-ray absorption and x-ray magnetic circular dichroism spectroscopy.

    PubMed

    Zamudio-Bayer, V; Hirsch, K; Langenberg, A; Ławicki, A; Terasaki, A; V Issendorff, B; Lau, J T

    2015-12-28

    The (6)Π electronic ground state of the Co2 (+) diatomic molecular cation has been assigned experimentally by x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap. Three candidates, (6)Φ, (8)Φ, and (8)Γ, for the electronic ground state of Fe2 (+) have been identified. These states carry sizable orbital angular momenta that disagree with theoretical predictions from multireference configuration interaction and density functional theory. Our results show that the ground states of neutral and cationic diatomic molecules of 3d transition elements cannot generally be assumed to be connected by a one-electron process. PMID:26723682

  14. SURFACE SEGREGATION STUDIES OF SOFC CATHODES: COMBINING SOFT X-RAYS AND ELECTROCHEMICAL IMPEDENCE SPECTROSCOPY

    SciTech Connect

    Miara, Lincoln J.; Piper, L.F.J.; Davis, Jacob N.; Saraf, Laxmikant V.; Kaspar, Tiffany C.; Basu, Soumendra; Smith, K. E.; Pal, Uday B.; Gopalan, Srikanth

    2010-12-01

    A system to grow heteroepitaxial thin-films of solid oxide fuel cell (SOFC) cathodes on single crystal substrates was developed. The cathode composition investigated was 20% strontium-doped lanthanum manganite (LSM) grown by pulsed laser deposition (PLD) on single crystal (111) yttria-stabilized zirconia (YSZ) substrates. By combining electrochemical impedance spectroscopy (EIS) with x-ray photoemission spectroscopy (XPS) and x-ray absorption spectroscopy XAS measurements, we conclude that electrically driven cation migration away from the two-phase gas-cathode interface results in improved electrochemical performance. Our results provide support to the premise that the removal of surface passivating phases containing Sr2+ and Mn2+, which readily form at elevated temperatures even in O2 atmospheric pressures, is responsible for the improved cathodic performance upon application of a bias.

  15. Surface relaxation in liquid water and methanol studied by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Kevin R.; Schaller, R. D.; Co, D. T.; Saykally, R. J.; Rude, Bruce S.; Catalano, T.; Bozek, J. D.

    2002-10-01

    X-ray absorption spectroscopy is a powerful probe of local electronic structure in disordered media. By employing extended x-ray absorption fine structure spectroscopy of liquid microjets, the intermolecular O-O distance has been observed to undergo a 5.9% expansion at the liquid water interface, in contrast to liquid methanol for which there is a 4.6% surface contraction. Despite the similar properties of liquid water and methanol (e.g., abnormal heats of vaporization, boiling points, dipole moments, etc.), this result implies dramatic differences in the surface hydrogen bond structure, which is evidenced by the difference in surface tension of these liquids. This result is consistent with surface vibrational spectroscopy, which indicates both stronger hydrogen bonding and polar ordering at the methanol surface as a consequence of "hydrophobic packing" of the methyl group.

  16. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    NASA Astrophysics Data System (ADS)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  17. MULTI-INSTRUMENT X-RAY OBSERVATIONS OF THERMONUCLEAR BURSTS WITH SHORT RECURRENCE TIMES

    SciTech Connect

    Keek, L.; Heger, A.; Galloway, D. K.; In't Zand, J. J. M.

    2010-07-20

    Type I X-ray bursts from low-mass X-ray binaries result from a thermonuclear runaway in the material accreted onto the neutron star. Although typical recurrence times are a few hours, consistent with theoretical ignition model predictions, there are also observations of bursts occurring as promptly as 10 minutes or less after the previous event. We present a comprehensive assessment of this phenomenon using a catalog of 3387 bursts observed with the BeppoSAX/WFCs and RXTE/PCA X-ray instruments. This catalog contains 136 bursts with recurrence times of less than 1 hr, that come in multiples of up to four events, from 15 sources. Short recurrence times are not observed from the so-called ultra-compact binaries, indicating that hydrogen-burning processes play a crucial role. As far as the neutron star spin frequency is known, these sources all spin fast at over 500 Hz; the rotationally induced mixing may explain burst recurrence times of the order of 10 minutes. Short recurrence time bursts generally occur at all mass accretion rates where normal bursts are observed, but for individual sources the short recurrence times may be restricted to a smaller interval of accretion rate. The fraction of such bursts is roughly 30%. We also report the shortest known recurrence time of 3.8 minutes.

  18. Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Newby, David, Jr.

    Soft x-ray spectroscopy can provide a wealth of information on the electronic structure of solids. In this work, a suite of soft x-ray spectroscopies is applied to organic and inorganic materials with potential applications in electronic and energy generation devices. Using the techniques of x-ray absorption (XAS), x-ray emission spectroscopy (XES), and x-ray photoemission spectroscopy (XPS), the fundamental properties of these different materials are explored. Cycloparaphenylenes (CPPs) are a recently synthesized family of cyclic hydrocarbons with very interesting properties and many potential applications. Unusual UV/Visible fluorescence trends have spurred a number of theoretical investigations into the electronic properties of the CPP family, but thus far no comprehensive electronic structure measurements have been conducted. XPS, XAS, and XES data for two varieties, [8]- and [10]-CPP, are presented here, and compared with the results of relevant DFT calculations. Turning towards more application-centered investigations, similar measurements are applied to two materials commonly used in solid oxide fuel cell (SOFC) cathodes: La1-xSrxMnO 3 (LSMO) and La1-xSr1- xCo1-yFe yO3 (LSCF). Both materials are structurally perovskites, but they exhibit strikingly different electronic properties. SOFC systems very efficiently produce electricity by catalyzing reactions between oxygen and petroleum-based hydrocarbons at high temperatures (> 800 C). Such systems are already utilized to great effect in many industries, but more widespread adoption could be had if the cells could operate at lower temperatures. Understanding the electronic structure and operational evolution of the cathode materials is essential for the development of better low-temperature fuel cells. LSCF is a mixed ion-electron conductor which holds promise for low-temperature SOFC applications. XPS spectra of LSCF thin films are collected as the films are heated and gas-dosed in a controlled environment. The surface evolution of these films is discussed, and the effects of different gas environments on oxygen vacancy concentration are elucidated. LSMO is commonly used in commercial fuel cell devices. Here the resonant soft x-ray emission (RIXS) spectrum of LSMO is examined, and it is shown that the inelastic x-ray emission structure of LSMO arises from local atomic multiplet effects.

  19. Instrumentation for a next-generation x-ray all-sky monitor

    SciTech Connect

    Peele, A. G.

    1999-12-15

    We have proposed an x-ray all-sky monitor for a small satellite mission that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1-3.0 keV) for study. We discuss three approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates; this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. The third method, while still in its infancy, may yet prove to be the most powerful; this approach relies on photolithography to expose a substrate that can then be developed and replicated. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of hundreds of the brightest x-ray stars can be monitored. In addition the classical objectives of all-sky monitors--long-term all-sky archive and watchdog alert to new events--will be fulfilled at an unprecedented level. We also note that by opening up a little-explored band of the x-ray sky the opportunity for new discovery is presented. A satisfying example of entering new territory while still retaining the guarantee of expanding the domain of existing research.

  20. Glancing Angle Dependence of the X-Ray Emission Measured under Total Reflection Angle X-Ray Spectroscopy (TRAXS) Condition during Reflection High Energy Electron Diffraction Observation

    NASA Astrophysics Data System (ADS)

    Yamanaka, Toshiro; Hanada, Takashi; Ino, Shozo; Daimon, Hiroshi

    1992-10-01

    We measured the glancing angle (?g) dependence of the X-ray emission from Si(111)-\\sqrt{3}\\sqrt{3}-Ag and ?-\\sqrt{3}\\sqrt{3}-Au surfaces during Reflection High Energy Electron Diffraction observation under the Total Reflection Angle X-ray Spectroscopy condition. The characteristic X-rays AgL and AuM decreased according to 1/sin ?g. The function 1/\\sin?g is easily understood in terms of Ag and Au atoms located at the top layer of the surface. The SiK and the bremsstrahlung showed broad peaks around 8. These trends of the curves are explained by an analysis using Monte Carlo electron trajectory simulation. By measuring the glancing angle dependence we can easily distinguish whether or not a specific kind of atom is confined at the top layer of the surface.

  1. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  2. ON RELATIVISTIC DISK SPECTROSCOPY IN COMPACT OBJECTS WITH X-RAY CCD CAMERAS

    SciTech Connect

    Miller, J. M.; Cackett, E. M.; D'Ai, A.; Bautz, M. W.; Nowak, M. A.; Bhattacharyya, S.; Burrows, D. N.; Kennea, J.; Fabian, A. C.; Reis, R. C.; Freyberg, M. J.; Haberl, F.; Strohmayer, T. E.; Tsujimoto, M.

    2010-12-01

    X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/{Delta}E), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon 'pile-up', wherein two or more photons may be registered as a single event during one frame time. We have conducted a large number of simulations using a statistical model of photon pile-up to assess its impacts on relativistic disk line and continuum spectra from stellar-mass black holes and neutron stars. The simulations cover the range of current X-ray CCD spectrometers and operational modes typically used to observe neutron stars and black holes in X-ray binaries. Our results suggest that severe photon pile-up acts to falsely narrow emission lines, leading to falsely large disk radii and falsely low spin values. In contrast, our simulations suggest that disk continua affected by severe pile-up are measured to have falsely low flux values, leading to falsely small radii and falsely high spin values. The results of these simulations and existing data appear to suggest that relativistic disk spectroscopy is generally robust against pile-up when this effect is modest.

  3. In Situ identification of mineral resources with an X-ray-optical "Hand-Lens" instrument

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Koppel, L.; Bratton, C.; Metzger, E.; Hecht, M.

    1997-01-01

    The recognition of material resources on a planetary surface requires exploration strategies not dissimilar to those employed by early field geologists who searched for ore deposits primarily from surface clues. In order to determine the location of mineral ores or other materials, it will be necessary to characterize host terranes at regional or subregional scales. This requires geographically broad surveys in which statistically significant numbers of samples are rapidly scanned from a roving platform. To enable broad-scale, yet power-conservative planetary-surface exploration, we are developing an instrument that combines x-ray diffractometry (XRD), x-ray fluorescence spectrometry (XRF), and optical capabilities; the instrument can be deployed at the end of a rover's robotic arm, without the need for sample capture or preparation. The instrument provides XRD data for identification of mineral species and lithological types; diffractometry of minerals is conducted by ascertaining the characteristic lattice parameters or "d-spacings" of mineral compounds. D-spacings of 1.4 to 25 angstroms can be determined to include the large molecular structures of hydrated minerals such as clays. The XRF data will identify elements ranging from carbon (Atomic Number = 6) to elements as heavy as barium (Atomic Number = 56).

  4. Structure of the Mn complex in photosystem II: Insights from x-ray spectroscopy

    SciTech Connect

    Yachandra, Vittal K.

    2002-04-02

    We have used Mn K-edge absorption and Kb emission spectroscopies to determine the oxidation states of the Mn complex in the various S-states. We have started exploring the new technique of resonant inelastic X-ray scattering spectroscopy (RIXS); this technique can be characterized as a Raman process that uses K-edge energies (1s to 4p, {approx}6550 eV) to obtain L-edge-like spectra (2p to 3d, {approx}650 eV). The relevance of these data to the oxidation states and structure of the Mn complex is presented. We have obtained EXAFS data from the S0 and S3 states and observed heterogeneity in the Mn-Mn distances, leading us to conclude that there may be three rather than two di-(mu)-oxo bridged units present per tetranuclear Mn cluster. In addition, we have obtained data using Ca/Sr X-ray spectroscopy that provide evidence for a heteronuclear Mn/Ca cluster. The possibility of three di-(mu)-oxo-bridged Mn Mn moieties and the proximity of Ca is incorporated into developing structural models for the Mn cluster. The involvement of bridging and terminal O ligands of Mn in the mechanism of oxygen evolution is discussed in the context of our X-ray spectroscopy results.

  5. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    SciTech Connect

    Drummond, J.L.; Steinberg, A.D.; Krauss, A.R.

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  6. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    SciTech Connect

    Hamad, K.S.

    2000-05-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  7. Instrument for nm-scale spatial resolution x-ray microscopy using MLL optics

    NASA Astrophysics Data System (ADS)

    Nazaretski, Evgeny; Yan, Hanfei; Lauer, Kenneth; Mullany, Brian; Kuhne, Dennis; Xu, Weihe; Huang, Xiaojing; Gofron, Kazimierz; Kalbfleisch, Sebastian; Yan, Hui; Shu, Deming; Bouet, Nathalie; Zhou, Juan; Conley, Raymond; Chu, Yong

    2015-03-01

    The Hard X-ray Nanoprobe (HXN) beamline at the NSLS-II has been designed and constructed to address challenges related to nanoscale science and technology. HXN will provide a suite of experimental capabilities which include scanning fluorescence, diffraction, differential phase contrast and ptychography utilizing Multilayer Laue Lenses (MLL) and zoneplate (ZP) as nanofocusing optics. To provide more versatility and explore the phase space in materials research studies, the instrument is equipped with a temperature regulation system capable of varying specimen temperature between 100 K and 1000 K. During this presentation, different phases of the instrument development process will be reviewed. Various prototype systems designed and constructed will be discussed. Preliminary data demonstrating 2D sub-20 nm imaging resolution using MLL optics will be presented. Some of the early science applications will be covered emphasizing strengths of the developed instrument.

  8. Multilayer graphene stacks grown by different methods-thickness measurements by X-ray diffraction, Raman spectroscopy and optical transmission

    SciTech Connect

    Tokarczyk, M. Kowalski, G.; Kępa, H.; Grodecki, K.; Drabińska, A.; Strupiński, W.

    2013-12-15

    X-ray diffraction, Raman spectroscopy and Optical absorption estimates of the thickness of graphene multi layer stacks (number of graphene layers) are presented for three different growth techniques. The objective of this work was focused on comparison and reconciliation of the two already widely used methods for thickness estimates (Raman and Absorption) with the calibration of the X-ray method as far as Scherer constant K is concerned and X-ray based Wagner-Aqua extrapolation method.

  9. Toward femtosecond X-ray spectroscopy at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Chong, Henry Herng Wei

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates 100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a DeltaS = 2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented.

  10. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    SciTech Connect

    Chong, Henry Herng Wei

    2004-04-16

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates {approx}100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a {Delta}S=2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented.

  11. X-ray spectroscopy of the photosynthetic oxygen-evolving complex

    SciTech Connect

    Sauer, Ken; Yano, Junko; Yachandra, Vittal K

    2007-04-05

    Water oxidation to dioxygen in photosynthesis is catalyzed by a Mn4Ca cluster with O bridging in Photosystem II (PS II) of plants, algae and cyanobacteria. A variety of spectroscopic methods have been applied to analyzing the participation of the complex. X-ray spectroscopy is particularly useful because it is element-specific, and because it can reveal important structural features of the complex with high accuracy and identify the participation of Mn in the redox chemistry. Following a brief history of the application of X-ray spectroscopy to PS II, an overview of newer results will be presented and a description of the present state of our knowledge based on this approach.

  12. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schwanke, C.; Golnak, R.; Xiao, J.; Lange, K. M.

    2014-10-01

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl2 aqueous solution by X-ray absorption and emission spectroscopy is presented.

  13. Determination of Zeff by integrating measurements from x-ray tomography and charge exchange recombination spectroscopy

    NASA Astrophysics Data System (ADS)

    Galante, M. E.; Reusch, L. M.; Den Hartog, D. J.; Franz, P.; Johnson, J. R.; McGarry, M. B.; Nornberg, M. D.; Stephens, H. D.

    2015-11-01

    The effective ionic charge, {{Z}\\text{eff}} , is determined through the integration of soft x-ray tomography and charge exchange recombination spectroscopy impurity density measurements in the Madison Symmetric Torus. {{Z}\\text{eff}} is found is be 2.3????0.1 in the core of high temperature, high current, improved confinement discharges, with a slightly hollow profile peaking near mid-radius. A Bayesian probability framework, developed as part of an on-going effort in Integrated Data Analysis, was used to incorporate these two measurements. This framework provides a method to address different systematic and statistical uncertainties associated with each diagnostic and to test hypothetical contributions to {{Z}\\text{eff}} against the existing data set. The combined analysis provides much higher confidence in the result than previous single-diagnostic attempts to characterize {{Z}\\text{eff}} using near-infrared bremsstrahlung or x-ray spectroscopy.

  14. Total reflection X-ray photoelectron spectroscopy as a semiconductor lubricant elemental analysis method

    NASA Astrophysics Data System (ADS)

    Alshehabi, Abbas; Sasaki, Nobuharu; Kawai, Jun

    2015-12-01

    Photoelectron spectra from a typical hard disk storage media device (HDD) were measured at total reflection and non-total reflection at unburnished, acetone-cleaned, and argon-sputtered conditions. F, O, N, and C usually making the upper layer of a typical hard disk medium were detected. Enhancement of the photoelectron emission of the fluorocarbon lubricant was observed at total reflection. Pt and Co were only found by non-total X-ray photoelectron spectroscopy (XPS) because they are constituents of a deeper region than the top and interface regions. Argon-sputtered, ultrasonic acetone-cleaned, and unburnished top layers were compared at total and non-total reflection conditions. Total reflection X-ray photoelectron spectroscopy (TRXPS) is demonstrated to be a powerful tool for storage media lubrication layer chemical state analysis, reliable for industrial quality control application , and reproducible.

  15. The hydrogen bond of water from the perspective of soft X-ray spectroscopy.

    PubMed

    Lange, Kathrin M; Aziz, Emad F

    2013-02-01

    Its importance for life and its unusual properties keep water within the focus of ongoing research; this focus especially applies to water in the liquid phase. Scientists agree that the hydrogen-bond network, which is formed by interactions between the water molecules, is key for understanding the anomalies of water. However, a better understanding of the structure of this network, as well as its dynamics, must yet be established. Soft X-ray spectroscopy allows the investigation of the local electronic structure of water by probing the occupied and unoccupied valence molecular orbitals. In this Focus Review, we present soft-X-ray-based techniques, their development in terms of liquid spectroscopy, and recent studies on the hydrogen-bond network of liquid water. PMID:22945810

  16. X-Ray Spectroscopy of the Photosynthetic Oxygen-Evolving Complex

    SciTech Connect

    Sauer, K.; Yano, J.; Yachandra, V.K.

    2009-05-27

    Water oxidation to dioxygen in photosynthesis is catalyzed by a Mn{sub 4}Ca cluster with O bridging in Photosystem II (PS II) of plants, algae and cyanobacteria. A variety of spectroscopic methods have been applied to analyzing the participation of the complex. X-ray spectroscopy is particularly useful because it is element-specific, and because it can reveal important structural features of the complex with high accuracy and identify the participation of Mn in the redox chemistry. Following a brief history of the application of X-ray spectroscopy to PS II, an overview of newer results will be presented and a description of the present state of our knowledge based on this approach.

  17. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy

    SciTech Connect

    Schwanke, C.; Lange, K. M.; Golnak, R.; Xiao, J.

    2014-10-15

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl{sub 2} aqueous solution by X-ray absorption and emission spectroscopy is presented.

  18. X-ray absorption spectroscopy on the basis of hybrid X-pinch radiation

    NASA Astrophysics Data System (ADS)

    Tilikin, I. N.; Shelkovenko, T. A.; Pikuz, S. A.; Knapp, P. F.; Hammer, D. A.

    2015-07-01

    Results of experiments on X-ray absorption spectroscopy carried out at the BIN (270 kA, 100 ns) and XP (450 kA, 45 ns) facilities are presented. Continuum radiation of a Mo hybrid X-pinch was used as probing radiation, against which absorption lines of the plasma of exploded Al wires placed in the return current circuit of a hybrid X-pinch, as well as in a two- and four-wire array, were observed. The experiments have demonstrated that the radiation of a hybrid X-pinch hot spot can be used as probing radiation for X-ray absorption spectroscopy and that, in many parameters, such a source surpasses those on the basis of laser-produced plasma. The plasma parameters in arrays made of two and four Al wires were studied experimentally.

  19. X-Ray spectroscopy of the photosynthetic oxygen-evolving complex

    PubMed Central

    Sauer, Kenneth; Yano, Junko; Yachandra, Vittal K.

    2008-01-01

    Water oxidation to dioxygen in photosynthesis is catalyzed by a Mn4Ca cluster with O bridging in Photosystem II (PS II) of plants, algae and cyanobacteria. A variety of spectroscopic methods have been applied to analyzing the participation of the complex. X-ray spectroscopy is particularly useful because it is element-specific, and because it can reveal important structural features of the complex with high accuracy and identify the participation of Mn in the redox chemistry. Following a brief history of the application of X-ray spectroscopy to PS II, an overview of newer results will be presented and a description of the present state of our knowledge based on this approach. PMID:19190720

  20. Precision determination of pion mass using x-ray CCD spectroscopy

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, D. F.; Augsburger, M.; Borchert, Gunther L.; Chatellard, D.; Daum, M.; Egger, J.-P.; Gotta, Detlev; Hauser, P.; Indelicato, P.; Jeannet, E.; Kirch, K.; Nelms, Nick; Schult, O. W.; Siems, T.; Simons, Leopold M.; Wells, Alan A.

    1998-12-01

    An experiment is described which aims to determine the pion mass to 1 ppm or better, from which a new determination of the upper limit of the muon neutrino mass is anticipated. The approach utilizes spectroscopy of X-ray emissions from pionic atoms formed in gaseous targets. The spectroscopy is performed with a Bragg crystal spectrometer, with an energy resolution of approximately 300 meV, using an array of X-ray CCDs mounted at the focus to measure the spectral line structure of the 4 keV pionic nitrogen transition. To achieve sub-ppm accuracy, as energy calibration a muonic oxygen transition is used. It is known with a precision of 0.3 ppm and almost coincides in energy with the pionic transition.

  1. Spatial high resolution energy dispersive X-ray spectroscopy on thin lamellas.

    PubMed

    Notthoff, Christian; Winterer, Markus; Beckel, Andreas; Geller, Martin; Heindl, Jrgen

    2013-06-01

    For conventional samples and measurement geometries the spatial resolution of energy dispersive X-ray spectroscopy is limited by a tear drop shaped emission volume to about 1 ?m. This restriction can be substantially improved using thin samples and high acceleration voltage. In this contribution the spatial resolution of energy dispersive X-ray spectroscopy in a scanning electron microscope using thin lamella samples is investigated. At an acceleration voltage of 30 kV, an edge resolution down to ?dedge = 40 10 nm is observed performing linescans across an interface, using an 80 nm thin sample prepared from a GaAs/AlAs-heterostructure. Furthermore, Monte-Carlo simulations of pure elements ranging from sodium to mercury are performed for different sample thicknesses. From the simulations we can derive a simple empirical formula to predict the spatial resolution as a function of sample thickness. PMID:23545434

  2. Technology Development for the Constellation-X Spectroscopy X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Petre, Robert; Lehan, John; O'Dell, Stephen; Owens, Scott; Reid, Paul B.; Saha, Timo; Stewart, Jeff; Jones, William D.; Zhang, William

    2005-01-01

    The Constellation-X Spectroscopy X-ray Telescope (SXT) is a large diameter, high throughput, grazing incidence imaging mirror system, designed to perform high sensitivity spectroscopy of cosmic X-ray sources in the 0.2-10.0 keV band. The baseline effective area requirement is -3 m# at 1 keV. The system-level angular-resolution requirement is a 15-arcseconds half-power diameter, with a 5-arcsecond goal. The effective area is attained through a modular design, involving the nesting of many confocal, thin-walled Wolter I mirror segments. Considerable progress has been made in developing thin, thermally formed, glass mirror substrates that meet or better the angular-resolution requirement. Several approaches to mounting and aligning reflector segments into a mirror system are under investigation. We report here on the progress of the SXT technology development program toward reaching the performance goals.

  3. Thermal design and performance of the REgolith x-ray imaging spectrometer (REXIS) instrument

    NASA Astrophysics Data System (ADS)

    Stout, Kevin D.; Masterson, Rebecca A.

    2014-08-01

    The REgolith X-ray Imaging Spectrometer (REXIS) instrument is a student collaboration instrument on the OSIRIS-REx asteroid sample return mission scheduled for launch in September 2016. The REXIS science mission is to characterize the elemental abundances of the asteroid Bennu on a global scale and to search for regions of enhanced elemental abundance. The thermal design of the REXIS instrument is challenging due to both the science requirements and the thermal environment in which it will operate. The REXIS instrument consists of two assemblies: the spectrometer and the solar X-ray monitor (SXM). The spectrometer houses a 2x2 array of back illuminated CCDs that are protected from the radiation environment by a one-time deployable cover and a collimator assembly with coded aperture mask. Cooling the CCDs during operation is the driving thermal design challenge on the spectrometer. The CCDs operate in the vicinity of the electronics box, but a 130 °C thermal gradient is required between the two components to cool the CCDs to -60 °C in order to reduce noise and obtain science data. This large thermal gradient is achieved passively through the use of a copper thermal strap, a large radiator facing deep space, and a two-stage thermal isolation layer between the electronics box and the DAM. The SXM is mechanically mounted to the sun-facing side of the spacecraft separately from the spectrometer and characterizes the highly variable solar X-ray spectrum to properly interpret the data from the asteroid. The driving thermal design challenge on the SXM is cooling the silicon drift detector (SDD) to below -30 °C when operating. A two-stage thermoelectric cooler (TEC) is located directly beneath the detector to provide active cooling, and spacecraft MLI blankets cover all of the SXM except the detector aperture to radiatively decouple the SXM from the flight thermal environment. This paper describes the REXIS thermal system requirements, thermal design, and analyses, with a focus on the driving thermal design challenges for the instrument. It is shown through both analysis and early testing that the REXIS instrument can perform successfully through all phases of its mission.

  4. X-ray absorption spectroscopy beyond the core-hole lifetime

    SciTech Connect

    Haemaelaeinen, K.; Hastings, J.B.; Siddons, D.P.; Berman, L.

    1992-01-01

    A new technique to overcome the core-hole lifetime broadening in x-ray absorption spectroscopy is presented. It utilizes a high resolution fluorescence spectrometer which can be used to analyze the fluorescence photon energy with better resolution than the natural lifetime width. Furthermore, the high resolution spectrometer can also be used to select the final state in the fluorescence process which can offer spin selectivity even without long range magnetic order in the sample.

  5. X-ray absorption spectroscopy beyond the core-hole lifetime

    SciTech Connect

    Haemaelaeinen, K.; Hastings, J.B.; Siddons, D.P.; Berman, L.

    1992-10-01

    A new technique to overcome the core-hole lifetime broadening in x-ray absorption spectroscopy is presented. It utilizes a high resolution fluorescence spectrometer which can be used to analyze the fluorescence photon energy with better resolution than the natural lifetime width. Furthermore, the high resolution spectrometer can also be used to select the final state in the fluorescence process which can offer spin selectivity even without long range magnetic order in the sample.

  6. Organization Around Cations in Oxide Glasses Using X-Ray Absorption Spectroscopy

    SciTech Connect

    Cormier, Laurent; Galoisy, Laurence; Calas, Georges

    2003-01-24

    X-ray absorption spectroscopy (XANES and EXAFS) has been used to determine the environment of cations (Ni, Zn, Zr, Fe and Mo) in oxide glasses and their redox state. Direct quantitative structural information can be extracted which indicates that cations are often present in unusually low coordination number compared to crystals. Medium range environment can be assessed with second and further neighbors. This yields to define structural models on the connectivity between cation polyhedra and the network structure.

  7. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    SciTech Connect

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  8. Repair of fractured framework: scanning electron microscopy and energy dispersive X-ray spectroscopy.

    PubMed

    Maalhagh-Fard, Ahmad; Wagner, Warren C

    2004-09-01

    Fractured metal prostheses can be analyzed for possible causes of failure using scanning electron microscopy (SEM). In this study, fractography is used to determine the cause of the failure and whether repair is practical. Energy-dispersive x-ray spectroscopy (EDS) is used to determine composition of the fractured prosthesis so that a repair process can be recommended. The technique is presented for the repair of a titanium framework for an implant-supported overdenture based on the analysis data. PMID:15359153

  9. X-ray photoelectron spectroscopy of γ-ray-irradiated single-stranded DNA

    NASA Astrophysics Data System (ADS)

    Lee, Eunmo; Hong, W.; Han, J. H.; Choi, D. M.; Lee, Cheol Eui; Kim, H. D.; Kim, J.

    2015-07-01

    The effects of γ-ray irradiation on herring sperm single-stranded DNA have been studied by using X-ray photoelectron spectroscopy (XPS) in the view of the bonding configurations and the structural modifications. The significant changes in the hydrogen, carbon, nitrogen, and phosphorous bonding energies, as revealed by the XPS analysis, indicate that electron transfers result in the creation of radicals and in DNA strand breaks.

  10. Coherent X-ray and laser spectroscopy measurements of diffusion in concentrated alpha-crystallin solutions

    NASA Astrophysics Data System (ADS)

    Karunaratne, V. N. C.

    The mammalian eye lens is composed of a concentrated solution of water soluble proteins called crystallins. Alpha-crystallin, the most abundant protein found in the lens, plays a crucial role in maintaining lens transparency and lens accommodation. However, alpha-crystallins along with other ocular proteins suffer from irreversible processes such as oxidation. One cause of oxidation is radiation-induced radical formation which alters the inter-molecular interactions, thereby degrading the normal function of ocular proteins. The main goal of this thesis is to quantify molecular scale dynamics of concentrated solutions of alpha-crystallins using coherent X-rays and visible laser light. I believe a detailed analysis of the dynamics pertaining to alpha-crystallin will provide the foundation to understand molecular scale mechanisms that lead to conditions like cataract and presbyopia. I explore the dynamics of concentrated alpha-crystallin solutions by measuring diffusive motion over a range of length scales using Dynamic light scattering (DLS) and X-ray photon correlation spectroscopy (XPCS). To a certain extent, the dynamical properties of crystallins obtained in this manner are consistent with established theories in colloidal physics. However, there are some deviations, which I will address in this thesis. In terms of X-ray data, I employed a new, efficient photon correlation technique to obtain the best possible signal, furthermore this technique is embedded in a stand-alone software program that has the ability to provide real time results, quickly and efficiently with the help of high performance computing resources available at Northern Illinois University (NIU). The technique has potential to be used by the coherent X-ray spectroscopy community in the future. In addition, by using X-ray scattering data, I probe potential modifications and or damage effects on alpha-crystallins due to radiation exposure. The damage analysis methodology described in this thesis will be an important check for future XPCS experiments on biological systems. During the entire research project two X-ray detectors were used to collect data. Both are based on a quasi column-parallel, charge-coupled device (CCD) architecture which had identical back-end electronics and control circuits, but differed mainly in terms of their size and data readout mode. In this thesis, I will also focus on characterizing and optimizing the aforementioned X-ray detectors for XPCS measurements on alpha-crystallins.

  11. The First X-Ray Imaging Spectroscopy of Quiescent Solar Active Regions with NuSTAR

    NASA Astrophysics Data System (ADS)

    Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.; Glesener, Lindsay; Krucker, Säm; Hudson, Hugh S.; Madsen, Kristin K.; Marsh, Andrew; White, Stephen M.; Caspi, Amir; Shih, Albert Y.; Harrison, Fiona A.; Stern, Daniel; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Zhang, William W.

    2016-03-01

    We present the first observations of quiescent active regions (ARs) using the Nuclear Spectroscopic Telescope Array (NuSTAR), a focusing hard X-ray telescope capable of studying faint solar emission from high-temperature and non-thermal sources. We analyze the first directly imaged and spectrally resolved X-rays above 2 keV from non-flaring ARs, observed near the west limb on 2014 November 1. The NuSTAR X-ray images match bright features seen in extreme ultraviolet and soft X-rays. The NuSTAR imaging spectroscopy is consistent with isothermal emission of temperatures 3.1–4.4 MK and emission measures 1–8 × 1046 cm‑3. We do not observe emission above 5 MK, but our short effective exposure times restrict the spectral dynamic range. With few counts above 6 keV, we can place constraints on the presence of an additional hotter component between 5 and 12 MK of ∼ {10}46 cm‑3 and ∼ {10}43 cm‑3, respectively, at least an order of magnitude stricter than previous limits. With longer duration observations and a weakening solar cycle (resulting in an increased livetime), future NuSTAR observations will have sensitivity to a wider range of temperatures as well as possible non-thermal emission.

  12. Development of Thin-Window Silicon Drift Detector for X-ray Spectroscopy

    SciTech Connect

    Chen, W.; Carini, G.A.; De Geronimo, G.; Fried, J.; Gaskin, J.A.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2009-10-01

    A new set of thin-window silicon drift detectors composed of an array of hexagonal shaped detectors has been designed, constructed and tested for X-ray spectroscopy. Each individual ThinWinSDD has a thin entrance window on one side and a spiral shaped hexagonal cathode around a center anode on the other side. To produce the thin entrance window a 10 keV implantation of boron through a 500 A silicon dioxide was used. The implantation was followed by an annealing at 700 C for 30 min and a reactive ion etching step to ensure the removal of silicon dioxide from the smallest feature (5 mum). An aluminum layer is coated in the same vacuum system after back-sputtering. This step involves removing the native oxide that has formed on the top of the silicon substrate and then sputtering a 1100 A thick layer of aluminum onto the X-ray entrance window. The aluminum layer must be thick enough to block visible light, but thin enough to be transparent to soft X-rays down to 280 eV. We discuss first test results that include detector leakage current measurements and the response for multiple detectors exposed to the National Synchrotron Light Source's UV beam line U3C located at Brookhaven National Laboratory for X-ray energies as low as 280 eV.

  13. Development of Thin-Window Silicon Drift Detector for X-ray Spectroscopy

    SciTech Connect

    Chen, W.; Carini, G.; De Geronimo, G; Fried, J.; Gaskin, J.A.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2008-01-22

    A new set of Thin-Window Silicon Drift Detectors composed of an array of hexagonal shaped detectors has been designed, constructed and tested for X-ray spectroscopy. Each individual ThinWinSDD has a thin entrance window on one side and a spiral shaped hexagonal cathode around a center anode on the other side. To produce the thin entrance window a 10 keV implantation of boron through a 500 {angstrom} silicon dioxide was used. The implantation was followed by an annealing at 700 C for 30 min and a reactive ion etching step to ensure the removal of silicon dioxide from the smallest feature (5 {micro}m). An aluminum layer is coated in the same vacuum system after back-sputtering. This step involves removing the native oxide that has formed on the top of the silicon substrate and then sputtering a 1100 {angstrom} thick layer of aluminum onto the X-ray entrance window. The aluminum layer must be thick enough to block visible light, but thin enough to be transparent to soft x-rays down to 280 eV. We discuss first test results that include detector leakage current measurements and the response for multiple detectors exposed to the National Synchrotron Light Source's UV beam line U3C located at Brookhaven National Laboratory for X-ray energies as low as 280 eV.

  14. Synchrotron X-ray Powder Diffraction and Absorption Spectroscopy in Pulsed Magnetic Fields with Milliseconds Duration

    SciTech Connect

    Vanacken, J.; Detlefs, C.; Mathon, O.; Dominguez, M.-C.; Frings, P.; Duc, F.; Nardone, M.; Billette, J.; Zitouni, A.; Rikken, G.; Lorenzo, J. E.; Herczeg, J.; Moshchalkov, V. V.; Bras, W.

    2007-03-30

    X-ray Powder Diffraction and X-ray Absorption Spectroscopy experiments (WAS) and X-ray magnetic circular dichroism (XMCD) experiments were carried out at the ESRF DUBBLE beam line (BM26) and at the energy dispersive beam line (ID24), respectively. A mobile pulse generator, developed at the LNCMP, delivered 110kJ to the load coil, which was sufficient to generate peak fields of 30T with a rise time of about 5 ms. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 4.2K and 300K.Powder diffraction patterns of TbVO4 were recorded in a broad temperature range using 21 keV monochromatic X-rays and using an on-line image plate detector. We observed the suppression of the Jahn-Teller structural distortion in TbVO4 due to the high magnetic pulsed field.XAS spectra could be measured and finite XMCD signals, directly proportional to the magnetic moment on the Gd absorber atom, were measured in thin Gd foils. Thanks to its element and orbital selectivity, XMCD proofs to be very useful in probing the magnetic properties and due to the strong brilliance of the synchrotron beam, the signals can be measured even in the ms range.

  15. Laboratory Scale X-ray Fluorescence Tomography: Instrument Characterization and Application in Earth and Environmental Science.

    PubMed

    Laforce, Brecht; Vermeulen, Bram; Garrevoet, Jan; Vekemans, Bart; Hoorebeke, Luc Van; Janssen, Colin; Vincze, Laszlo

    2016-03-15

    A new laboratory scale X-ray fluorescence (XRF) imaging instrument, based on an X-ray microfocus tube equipped with a monocapillary optic, has been developed to perform XRF computed tomography experiments with both higher spatial resolution (20 μm) and a better energy resolution (130 eV @Mn-Kα) than has been achieved up-to-now. This instrument opens a new range of possible applications for XRF-CT. Next to the analytical characterization of the setup by using well-defined model/reference samples, demonstrating its capabilities for tomographic imaging, the XRF-CT microprobe has been used to image the interior of an ecotoxicological model organism, Americamysis bahia. This had been exposed to elevated metal (Cu and Ni) concentrations. The technique allowed the visualization of the accumulation sites of copper, clearly indicating the affected organs, i.e. either the gastric system or the hepatopancreas. As another illustrative application, the scanner has been employed to investigate goethite spherules from the Cretaceous-Paleogene boundary, revealing the internal elemental distribution of these valuable distal ejecta layer particles. PMID:26891032

  16. Characterization and Evolution of the Swift X-ray Telescope Instrumental Background

    NASA Technical Reports Server (NTRS)

    Hill, Joanne; Pagani, C.; Morris, D. C.; Racusin, J.; Grupe, D.; Vetere, L.; Stroh, M.; Falcone, A.; Kennea, J.; Burrows, D. N.; Nousek, J. A.; Abbey, A. F.; Angelini, L.; Beardmore, A. P.; Campana, S.; Capalbi, M.; Chincarini, G.; Citterio O.; Cusumano, G.; Giommi, P.; Godet, O.; Hill, J. E.; LaParola, V.; Mangano, V.; Mineo, T.

    2007-01-01

    The X-ray telescope (XRT) on board the Swift Gamma Ray Burst Explorer has successfully operated since the spacecraft launch on 20 November 2004, automatically locating GRB afterglows, measuring their spectra and lightcurves and performing observations of high-energy sources. In this work we investigate the properties of the instrumental background, focusing on its dynamic behavior on both long and short timescales. The operational temperature of the CCD is the main factor that influences the XRT background level. After the failure of the Swift active on-board temperature control system, the XRT detector now operates at a temperature range between -75C and -45C thanks to a passive cooling Heat Rejection System. We report on the long-term effects on the background caused by radiation, consisting mainly of proton irradiation in Swift's low Earth orbit and on the short-term effects of transits through the South Atlantic Anomaly (SAA), which expose the detector to periods of intense proton flux. We have determined the fraction of the detector background that is due to the internal, instrumental background and the part that is due to unresolved astrophysical sources (the cosmic X-ray background) by investigating the degree of vignetting of the measured background and comparing it to the expected value from calibration data.

  17. X-ray laser spectroscopy of highly charged ions at FLASH

    NASA Astrophysics Data System (ADS)

    Epp, S. W.; Crespo Lpez-Urrutia, J. R.; Simon, M. C.; Baumann, T.; Brenner, G.; Ginzel, R.; Guerassimova, N.; Mckel, V.; Mokler, P. H.; Schmitt, B. L.; Tawara, H.; Ullrich, J.

    2010-10-01

    Laser spectroscopy, widely applied in physics and chemistry, is extended into the soft x-ray region for the first time. Resonant fluorescence excitation of highly charged ions (HCIs) by soft x-ray free-electron lasers (FELs) shows here the potential for unprecedented precision on photonic transitions hitherto out of reach. The novel experiments combine an electron beam ion trap (EBIT) with the Free-electron LASer at Hamburg (FLASH) to measure resonant fluorescence by trapped HCIs as a function of the laser's wavelength. The present experiments have already reached the performance of conventional soft and hard x-ray spectroscopy. We present the results obtained for three fundamental and theoretically challenging transitions in Li-like ions, namely 1s22s 2S1/2-1s22p 2P1/2 in Fe23+ at 48.6 eV, in Cu26+ at 55.2 eV and 1s22s 2S1/2-1s22p 2P3/2 in Fe23+ at 65.3 eV. The latter demonstrates laser spectroscopy of multiply or HCIs at more than one order of magnitude higher energies than hitherto reported. Resolving power leading to relative precision up to 6 parts-per-million points to the possibility of providing an atomic absolute wavelength standard in this spectral region, which is still lacking.

  18. In Situ Identification of Mineral Resources with an X-Ray-Optical "Hands-Lens" Instrument

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Koppel, L.; Bratton, C.; Metzger, E.; Hecht, M.

    1999-01-01

    The recognition of material resources on a planetary surface requires exploration strategies not dissimilar to those employed by early field geologists who searched for ore deposits primarily from surface clues. In order to determine the location of mineral ores or other materials, it will be necessary to characterize host terranes at regional or subregional scales. This requires geographically broad surveys in which statistically significant numbers of samples are rapidly scanned from a roving platform. To enable broad-scale, yet power-conservative planetary-surface exploration, we are developing an instrument that combines x-ray diffractometry (XRD), x-ray fluorescence spectrometry (XRF), and optical capabilities; the instrument can be deployed at the end of a rover's robotic arm, without the need for sample capture or preparation. The instrument provides XRD data for identification of mineral species and lithological types; diffractometry of minerals is conducted by ascertaining the characteristic lattice parameters or "d-spacings" of mineral compounds. D-spacings of 1.4 to 25 angstroms can be determined to include the large molecular structures of hydrated minerals such as clays. The XRF data will identify elements ranging from carbon (Atomic Number = 6) to elements as heavy as barium (Atomic Number = 56). While a sample is being x-rayed, the instrument simultaneously acquires an optical image of the sample surface at magnifications from lx to at least 50x (200x being feasible, depending on the sample surface). We believe that imaging the sample is extremely important as corroborative sample-identification data (the need for this capability having been illustrated by the experience of the Pathfinder rover). Very few geologists would rely on instrument data for sample identification without having seen the sample. Visual inspection provides critical recognition data such as texture, crystallinity, granularity, porosity, vesicularity, color, lustre, opacity, and so forth. These data can immediately distinguish sedimentary from igneous rocks, for example, and can thus eliminate geochemical or mineral ambiguities arising, say between arkose and granite. It would be important to know if the clay being analyzed was part of a uniform varve deposit laid down in a quiescent lake, or the matrix of a megabreccia diamictite deposited as a catastrophic impact ejecta blanket. The unique design of the instrument, which combines Debye-Scherrer geometry with elements of standard goniometry, negates the need for sample preparation of any kind, and thus negates the need for power-hungry and mechanically-complex sampling systems that would have to chip, crush, sieve, and mount the sample for x-ray analysis. Instead, the instrument is simply rested on the sample surface of interest (like a hand lens); the device can interrogate rough rock surfaces, coarse granular material, or fine rock flour. A breadboard version of the instrument has been deployed from the robotic arm of the Marsokhod rover in field trials at NASA Ames, where large vesicular boulders were x-rayed to demonstrate the functionality of the instrument design, and the ability of such a device to comply with constraints imposed by a roving platform. Currently under development is a flight prototype concept of this instrument that will weigh 0.3 kg, using about 4500 J of energy per sample analysis. It requires about 5 min. for XRD analysis, and about 30 min. for XRF interrogation. Its small mass and rugged design make it ideal for deployment on small rovers of the type currently envisaged for the exploration of Mars (e.g., Sojourner-scale platforms). The design utilizes a monolithic P-N junction photodiode pixel array for XRD, a Si PIN photodiode/avalanche photodiode system for XRF, and an endoscopic imaging camera system unobtrusively embedded between the detectors and the x-ray source (the endoscope with its board-mounted camera can be adapted for IR light in addition to visible wavelenths. A rugged, miniature (7 cu cm) x-ray source for the instrument has already b

  19. In Situ Identification of Mineral Resources with an X-Ray-Optical "Hands-Lens" Instrument

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Koppel, L.; Bratton, C.; Metzger, E.; Hecht, M.

    1999-01-01

    The recognition of material resources on a planetary surface requires exploration strategies not dissimilar to those employed by early field geologists who searched for ore deposits primarily from surface clues. In order to determine the location of mineral ores or other materials, it will be necessary to characterize host terranes at regional or subregional scales. This requires geographically broad surveys in which statistically significant numbers of samples are rapidly scanned from a roving platform. To enable broad-scale, yet power-conservative planetary-surface exploration, we are developing an instrument that combines x-ray diffractometry (XRD), x-ray fluorescence spectrometry (XRF), and optical capabilities; the instrument can be deployed at the end of a rover's robotic arm, without the need for sample capture or preparation. The instrument provides XRD data for identification of mineral species and lithological types; diffractometry of minerals is conducted by ascertaining the characteristic lattice parameters or "d-spacings" of mineral compounds. D-spacings of 1.4 to 25 angstroms can be determined to include the large molecular structures of hydrated minerals such as clays. The XRF data will identify elements ranging from carbon (Atomic Number = 6) to elements as heavy as barium (Atomic Number = 56). While a sample is being x-rayed, the instrument simultaneously acquires an optical image of the sample surface at magnifications from lx to at least 50x (200x being feasible, depending on the sample surface). We believe that imaging the sample is extremely important as corroborative sample-identification data (the need for this capability having been illustrated by the experience of the Pathfinder rover). Very few geologists would rely on instrument data for sample identification without having seen the sample. Visual inspection provides critical recognition data such as texture, crystallinity, granularity, porosity, vesicularity, color, lustre, opacity, and so forth. These data can immediately distinguish sedimentary from igneous rocks, for example, and can thus eliminate geochemical or mineral ambiguities arising, say between arkose and granite. It would be important to know if the clay being analyzed was part of a uniform varve deposit laid down in a quiescent lake, or the matrix of a megabreccia diamictite deposited as a catastrophic impact ejecta blanket. The unique design of the instrument, which combines Debye-Scherrer geometry with elements of standard goniometry, negates the need for sample preparation of any kind, and thus negates the need for power-hungry and mechanically-complex sampling systems that would have to chip, crush, sieve, and mount the sample for x-ray analysis. Instead, the instrument is simply rested on the sample surface of interest (like a hand lens); the device can interrogate rough rock surfaces, coarse granular material, or fine rock flour. A breadboard version of the instrument has been deployed from the robotic arm of the Marsokhod rover in field trials at NASA Ames, where large vesicular boulders were x-rayed to demonstrate the functionality of the instrument design, and the ability of such a device to comply with constraints imposed by a roving platform. Currently under development is a flight prototype concept of this instrument that will weigh 0.3 kg, using about 4500 J of energy per sample analysis. It requires about 5 min. for XRD analysis, and about 30 min. for XRF interrogation. Its small mass and rugged design make it ideal for deployment on small rovers of the type currently envisaged for the exploration of Mars (e.g., Sojourner-scale platforms). The design utilizes a monolithic P-N junction photodiode pixel array for XRD, a Si PIN photodiode/avalanche photodiode system for XRF, and an endoscopic imaging camera system unobtrusively embedded between the detectors and the x-ray source (the endoscope with its board-mounted camera can be adapted for IR light in addition to visible wavelenths. A rugged, miniature (7 cu cm) x-ray source for the instrument has already been breadboarded.

  20. In Situ Identification of Mineral Resources with an X-Ray-Optical "Hands-Lens" Instrument

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Koppel, L.; Bratton, C.; Metzger, E.; Hecht, M.

    1999-09-01

    The recognition of material resources on a planetary surface requires exploration strategies not dissimilar to those employed by early field geologists who searched for ore deposits primarily from surface clues. In order to determine the location of mineral ores or other materials, it will be necessary to characterize host terranes at regional or subregional scales. This requires geographically broad surveys in which statistically significant numbers of samples are rapidly scanned from a roving platform. To enable broad-scale, yet power-conservative planetary-surface exploration, we are developing an instrument that combines x-ray diffractometry (XRD), x-ray fluorescence spectrometry (XRF), and optical capabilities; the instrument can be deployed at the end of a rover's robotic arm, without the need for sample capture or preparation. The instrument provides XRD data for identification of mineral species and lithological types; diffractometry of minerals is conducted by ascertaining the characteristic lattice parameters or "d-spacings" of mineral compounds. D-spacings of 1.4 to 25 angstroms can be determined to include the large molecular structures of hydrated minerals such as clays. The XRF data will identify elements ranging from carbon (Atomic Number = 6) to elements as heavy as barium (Atomic Number = 56). While a sample is being x-rayed, the instrument simultaneously acquires an optical image of the sample surface at magnifications from lx to at least 50x (200x being feasible, depending on the sample surface). We believe that imaging the sample is extremely important as corroborative sample-identification data (the need for this capability having been illustrated by the experience of the Pathfinder rover). Very few geologists would rely on instrument data for sample identification without having seen the sample. Visual inspection provides critical recognition data such as texture, crystallinity, granularity, porosity, vesicularity, color, lustre, opacity, and so forth. These data can immediately distinguish sedimentary from igneous rocks, for example, and can thus eliminate geochemical or mineral ambiguities arising, say between arkose and granite. It would be important to know if the clay being analyzed was part of a uniform varve deposit laid down in a quiescent lake, or the matrix of a megabreccia diamictite deposited as a catastrophic impact ejecta blanket. The unique design of the instrument, which combines Debye-Scherrer geometry with elements of standard goniometry, negates the need for sample preparation of any kind, and thus negates the need for power-hungry and mechanically-complex sampling systems that would have to chip, crush, sieve, and mount the sample for x-ray analysis. Instead, the instrument is simply rested on the sample surface of interest (like a hand lens); the device can interrogate rough rock surfaces, coarse granular material, or fine rock flour. A breadboard version of the instrument has been deployed from the robotic arm of the Marsokhod rover in field trials at NASA Ames, where large vesicular boulders were x-rayed to demonstrate the functionality of the instrument design, and the ability of such a device to comply with constraints imposed by a roving platform. Currently under development is a flight prototype concept of this instrument that will weigh 0.3 kg, using about 4500 J of energy per sample analysis. It requires about 5 min. for XRD analysis, and about 30 min. for XRF interrogation. Its small mass and rugged design make it ideal for deployment on small rovers of the type currently envisaged for the exploration of Mars (e.g., Sojourner-scale platforms). The design utilizes a monolithic P-N junction photodiode pixel array for XRD, a Si PIN photodiode/avalanche photodiode system for XRF, and an endoscopic imaging camera system unobtrusively embedded between the detectors and the x-ray source (the endoscope with its board-mounted camera can be adapted for IR light in addition to visible wavelenths. A rugged, miniature (7 cu cm) x-ray source for the instrument has already been breadboarded.

  1. Comparing Compositions of Modern Cast Bronze Sculptures: Optical Emission Spectroscopy Versus x-Ray Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Young, M. L.; Dunand, D. C.

    2015-07-01

    Bulk elemental compositions of 74 modern cast bronze sculptures from the collection at the Art Institute of Chicago, the Philadelphia Museum of Art, and the Rodin Museum (Philadelphia, PA) were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and a handheld x-ray fluorescence (XRF) spectrometer. The elemental compositions of the cast sculptures as measured previously by ICP-OES and presently by XRF are compared: A good match is found between the two methods for the base metal (Cu) and the two majority alloying elements (Zn and Sn). For both ICP-OES and XRF data, when the Zn composition is plotted versus the Sn composition, three discernable clusters are found that are related to the artist, foundry, casting date, and casting method; they consist of (A) high-zinc brass, (B) low-zinc, low-tin brass, and (C) low-zinc, tin bronze. Thus, our study confirms that the relatively fast, nondestructive XRF spectrometry can be used effectively over slower and invasive, but more accurate, ICP-OES to help determine a sculpture's artist, foundry, date of creation, date of casting, and casting method.

  2. Pixellated Cd(Zn)Te high-energy X-ray instrument

    PubMed Central

    Seller, P.; Bell, S.; Cernik, R.J.; Christodoulou, C.; Egan, C.K.; Gaskin, J.A.; Jacques, S.; Pani, S.; Ramsey, B.D.; Reid, C.; Sellin, P.J.; Scuffham, J.W.; Speller, R.D.; Wilson, M.D.; Veale, M.C.

    2012-01-01

    We have developed a pixellated high energy X-ray detector instrument to be used in a variety of imaging applications. The instrument consists of either a Cadmium Zinc Telluride or Cadmium Telluride (Cd(Zn)Te) detector bump-bonded to a large area ASIC and packaged with a high performance data acquisition system. The 80 by 80 pixels each of 250 ?m by 250 ?m give better than 1 keV FWHM energy resolution at 59.5 keV and 1.5 keV FWHM at 141 keV, at the same time providing a high speed imaging performance. This system uses a relatively simple wire-bonded interconnection scheme but this is being upgraded to allow multiple modules to be used with very small dead space. The readout system and the novel interconnect technology is described and how the system is performing in several target applications. PMID:22737179

  3. Diagnosis of laser-target implosions by space-resolved continuum absorption x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Delettrez, J. A.; Epstein, R.; Yaakobi, B.

    1994-05-01

    A technique for diagnosing the core temperature kTcore and shell areal density ?Rshell of laser-imploded targets by measurement of the space-resolved, continuum x-ray emission is described in this work. An estimate of kTcore is obtained from a fit to the space-resolved core x-ray spectrum. Observation of absorption by the cooler surrounding shell material is used to estimate ?Rshell. For the x-ray emission from the core to be detected, its flux density must exceed that of the time-integrated emission from the ablation layer, making this technique particularly applicable to diagnosis of targets with low-Z ablators. In contrast to techniques that depend upon measurements of the reaction products (e.g., knock-ons, secondary-reaction products), which are limited to low shell-areal-density implosions (<100 mg/cm2), space-resolved continuum-absorption spectroscopy should be applicable to the diagnosis of higher shell-areal-density implosions (>100 mg/cm2). This technique has been successfully applied to the diagnosis of evacuated, polymer-coated, deuterated polystyrene (CD) shell implosions (surrogate-cryogenic implosions) performed with the University of Rochester's, 24-beam uv, OMEGA laser system. Space-resolved spectra of the target x-ray emission (~1 to ~6 keV) were obtained with a grazing-incidence reflection microscope, dispersed by a transmission grating. Both a high-energy tail and absorption at low energies were observed in the x-ray spectra allowing estimates of kTcore and ?Rshell to be obtained.

  4. Injection Methods and Instrumentation for Serial X-ray Free Electron Laser Experiments

    NASA Astrophysics Data System (ADS)

    James, Daniel

    Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques. The XFEL is characterized by high intensity pulses, which are only about 50 femtoseconds in duration. The intensity allows for scattering from microscopic particles, while the short pulses offer a way to outrun radiation damage. XFELs are powerful enough to obliterate most samples in a single pulse. While this allows for a "diffract and destroy" methodology, it also requires instrumentation that can position microscopic particles into the X-ray beam (which may also be microscopic), continuously renew the sample after each pulse, and maintain sample viability during data collection. Typically these experiments have used liquid microjets to continuously renew sample. The high flow rate associated with liquid microjets requires large amounts of sample, most of which runs to waste between pulses. An injector designed to stream a viscous gel-like material called lipidic cubic phase (LCP) was developed to address this problem. LCP, commonly used as a growth medium for membrane protein crystals, lends itself to low flow rate jetting and so reduces the amount of sample wasted significantly. This work discusses sample delivery and injection for XFEL experiments. It reviews the liquid microjet method extensively, and presents the LCP injector as a novel device for serial crystallography, including detailed protocols for the LCP injector and anti-settler operation.

  5. The X-ray Microcalorimeter Spectrometer (XMS): A Reference Cryogenic Instrument Design for Constellation-X

    NASA Technical Reports Server (NTRS)

    Whitehouse, Paul L.

    2003-01-01

    Constellation-X, a mission now belonging to the Beyond Einstein initiative, is being planned to inherit the x-ray sky from Chandra, XMM-Newton and Astro-E. The first two of four observatories in the constellation will be launched together in 2013 and followed a year later by the launch of the remaining two. The four will independently orbit the Sun-Earth Lagrange point L2. An instrument compliment resides in the Focal Plane Module (FPM) of each observatory 10 m from the Optics Module and consists of three Hard X-ray Telescope (HXT) detectors, a Reflection Grating Spectrometer (RGS) focal plane CCD camera and an X-ray Microcalorimeter Spectrometer (XMS). Instrument awards are scheduled for early 2006. The reference detector for XMS is a 32 x 32 array of microcalorimetric superconducting Transition Edge Sensors (TES). Each pixel casts a variable resistance in a SQUID based multiplexed readout circuit which is coupled to series SQUID arrays for amplification and finally read out by external electronics. A multi-stage continuous ADR will provide the stable 50 mK desired for the TES array and a stable 1 K for the series SQUID arrays while also lifting thermal parasitic and inefficiency loads to a 6 K cryocooler interface. The 6 K cryocooler is expected to emerge from the joint-project Advanced Cryocooler Technology Development Program (ACTDP) in which Constellation-X is an active participant. Project Pre-Formulation activities are marked by extensive technology development necessitating early, but realistic, thermal and cooling load requirements for ADR and ACTDP-cryocooler design points. Such requirements are driven by the encompassing XMS cryostat and ultimately by the thermal environment imposed by the FPM. It is further desired that the XMS instrument be able to operate on its side in the laboratory, with a warm vacuum shell, during an extensive calibration regime. It is that reference system design of the XMS instrument (microcalorimeter, ADR, cryocooler and cryostat) which is the subject of this paper.

  6. Coherent stimulated x-ray Raman spectroscopy: Attosecond extension of resonant inelastic x-ray Raman scattering

    SciTech Connect

    Harbola, Upendra; Mukamel, Shaul

    2009-02-15

    Spontaneous and stimulated resonant inelastic x-ray Raman-scattering signals are calculated using the Keldysh-Schwinger closed-time path loop and expressed as overlaps of doorway and window electron-hole wave packets. These are recast in terms of the one-particle Green's functions and expansion coefficients of configuration-interaction singles for valence excitations, which can be obtained from standard electronic structure codes. Calculation for many-body states of ground and core-excited systems is avoided.

  7. Near-Edge X-ray Absorption Fine Structure Spectroscopy as a Tool for Investigating Nanomaterials

    SciTech Connect

    Hemraj-Benny,T.; Banerjee, S.; Sambasivan, S.; Balasubramanian, M.; Fischer, D.; Lowndes, D.; Han, W.; Misewich, J.; Wong, S.; et al.

    2006-01-01

    We have demonstrated near-edge X-ray absorption fine structure (NEXAFS) spectroscopy as a particularly useful and effective technique for simultaneously probing the surface chemistry, surface molecular orientation, degree of order, and electronic structure of carbon nanotubes and related nanomaterials. Specifically, we employ NEXAFS in the study of single-walled carbon nanotube and multi-walled carbon nanotube powders, films, and arrays, as well as of boron nitride nanotubes. We have focused on the advantages of NEXAFS as an exciting, complementary tool to conventional microscopy and spectroscopy for providing chemical and structural information about nanoscale samples.

  8. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Ulbricht, Gerhard; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint; Bumble, Bruce

    2015-06-01

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV.

  9. A short-pulse X-ray beamline for spectroscopy and scattering.

    PubMed

    Reininger, R; Dufresne, E M; Borland, M; Beno, M A; Young, L; Evans, P G

    2014-09-01

    Experimental facilities for picosecond X-ray spectroscopy and scattering based on RF deflection of stored electron beams face a series of optical design challenges. Beamlines designed around such a source enable time-resolved diffraction, spectroscopy and imaging studies in chemical, condensed matter and nanoscale materials science using few-picosecond-duration pulses possessing the stability, high repetition rate and spectral range of synchrotron light sources. The RF-deflected chirped electron beam produces a vertical fan of undulator radiation with a correlation between angle and time. The duration of the X-ray pulses delivered to experiments is selected by a vertical aperture. In addition to the radiation at the fundamental photon energy in the central cone, the undulator also emits the same photon energy in concentric rings around the central cone, which can potentially compromise the time resolution of experiments. A detailed analysis of this issue is presented for the proposed SPXSS beamline for the Advanced Photon Source. An optical design that minimizes the effects of off-axis radiation in lengthening the duration of pulses and provides variable X-ray pulse duration between 2.4 and 16?ps is presented. PMID:25178012

  10. Multidimensional x-ray spectroscopy of valence and core excitations in cysteine

    PubMed Central

    Biggs, Jason D.; Zhang, Yu; Healion, Daniel; Mukamel, Shaul

    2013-01-01

    Several nonlinear spectroscopy experiments which employ broadband x-ray pulses to probe the coupling between localized core and delocalized valence excitation are simulated for the amino acid cysteine at the K-edges of oxygen and nitrogen and the K- and L-edges of sulfur. We focus on two-dimensional (2D) and 3D signals generated by two- and three-pulse stimulated x-ray Raman spectroscopy (SXRS) with frequency-dispersed probe. We show how the four-pulse x-ray signals \\documentclass[12pt]{minimal}\\begin{document}${\\bm k}_\\mathrm{I} =-{\\bm k} _1+{\\bm k} _2+{\\bm k} _3$\\end{document}kI=?k1+k2+k3 and \\documentclass[12pt]{minimal}\\begin{document}${\\bm k}_\\mathrm{II} ={\\bm k} _1-{\\bm k} _2+{\\bm k} _3$\\end{document}k II =k1?k2+k3 can give new 3D insight into the SXRS signals. The coupling between valence- and core-excited states can be visualized in three-dimensional plots, revealing the origin of the polarizability that controls the simpler pump-probe SXRS signals. PMID:24981531

  11. Study of exploding Al wire plasmas using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Pikuz, Sergey A.; Shelkovenko, Tatiana A.; Hoyt, Cad L.; Cahill, Adam D.; Hammer, David A.

    2012-10-01

    X-ray absorption spectroscopy is a powerful diagnostic technique useful for determining the charge state, temperature and density of plasmas under a wide range of conditions and situations. Our particular interest was the study of the core-corona system generated in electrically exploded wires and wire array Z-pinches. Two wide-bandwidth spectrographs with flat and concave cylindrically bent KAP crystals, and high-resolution spectrographs with spherically bent quartz crystals have been used on the XP and COBRA pulsers at Cornell University. The hybrid X-pinch was used as the continuum x-ray source in the photon energy range of interest for absorption spectroscopy with exploding Al wire experiments. This source is capable of producing broadband continuum x-ray pulses with micron source size and 100 ps duration. Absorption spectra of single exploded Al wires and 2 - 4 wire arrays were recorded with high spatial resolution. The parameters of the dense wire core plasmas and the ablating plasma streams were estimated under different experimental conditions. New spectral features in absorption spectra were observed.

  12. Surface Arsenic Speciation of a Drinking-Water Treatment Residual Using X-Ray Absorption Spectroscopy

    SciTech Connect

    Makris, K.C.; Sarkar, D.; Parsons, J.G.; Datta, R.; Gardea-Torresdey, J.L.

    2009-06-03

    Drinking-water treatment residuals (WTRs) present a low-cost geosorbent for As-contaminated waters and soils. Previous work has demonstrated the high affinity of WTRs for As, but data pertaining to the stability of sorbed As is missing. Sorption/desorption and X-ray absorption spectroscopy (XAS), both XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) studies, were combined to determine the stability of As sorbed by an Fe-based WTR. Arsenic(V) and As(III) sorption kinetics were biphasic in nature, sorbing <90% of the initial added As (15,000 mg kg{sup -1}) after 48 h of reaction. Subsequent desorption experiments with a high P load (7500 mg kg{sup -1}) showed negligible As desorption for both As species, approximately <3.5% of sorbed As; the small amount of desorbed As was attributed to the abundance of sorption sites. XANES data showed that sorption kinetics for either As(III) or As(V) initially added to solution had no effect on the sorbed As oxidation state. EXAFS spectroscopy suggested that As added either as As(III) or as As(V) formed inner-sphere mononuclear, bidentate complexes, suggesting the stability of the sorbed As, which was further corroborated by the minimum As desorption from the Fe-WTR.

  13. Gemini-GMOS Spectroscopy of X-ray Sources in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Jonker, P. G.; Torres, M.; McClintock, J. E.

    2013-04-01

    The Galactic Bulge Survey (GBS) is a multiwavelength project with the aim of understanding the population of faint X-ray sources towards the Galactic center. It consists of Chandra and multiwavelength observations of two 6x1 degree strips centered 1.5 degrees above/below the Galactic plane. The main science goals of the GBS include testing binary evolution models by the number counts of detected sources (e.g., CVs and LMXBs), constraining neutron star equation of state and black hole mass function by measuring their masses, and investigating Galactic structure and formation with the spatial distribution of LMXBs. We expect to identify quiescent eclipsing neutron star and black hole LMXBs. For all these goals, it is crucial to classify the X-ray sources via optical spectroscopy. Here we present the time-resolved Gemini-GMOS spectroscopy and the radial velocity analyses of 21 X-ray sources detected by the GBS. Broad (and some double-peaked) H_alpha emissions are found for a few sources which makes them likely to be CVs.

  14. New instruments for measuring x-rays from rocket-triggered lightning

    NASA Astrophysics Data System (ADS)

    Al Dayeh, M.; Dwyer, J. R.; Uman, M. A.; Rassoul, H. K.; Rakov, V. A.; Caraway, L.; Wright, B.; Chrest, A.; Rambo, K. J.; Jordan, D. M.; Jerauld, J.; Smyth, C.

    2003-12-01

    We have previously reported the observations of energetic radiation from rocket-triggered lightning made in the summer of 2002. These observations used one 12.7 cm diameter NaI(Tl)/PMT detector and one identical control detector (with no scintillator), housed in a container designed to operate in the electromagnetically noisy environment near lightning. Since then, we have constructed four new instruments, using seven 7.6 cm diameter NaI(Tl)/PMT detectors plus one control detector. The instruments were each housed in a heavy aluminum box. The sides of the boxes were 1.27 cm thick, except for a 0.32 cm thick Al window on the top that allowed x-rays with energies down to 30 keV to enter. The boxes were welded and RF gaskets and O-rings were used on all access doors to prevent RF noise, moisture and light from entering. The instruments were battery powered, and controlled on and off through fiber optic signals. In addition, the data were transmitted through fiber optic cables to a receiver in a shielded metal trailer and saved on the hard drives of three PCs. Data acquisition was initiated by an external trigger derived from the lightning current, signaling the time of the leading edge of the return strokes or other large current pulses. The entire waveforms from seven of the PMT detectors were then digitized with 0.2 microsecond resolution for 220 msec with 20 msec of pre-trigger sampling. For three detectors the waveforms were digitized with 10 nanosecond resolution for 10 msec with 1 msec of pre-trigger sampling. Measurements were made using these instruments at the International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, FL during the summer of 2003, and 10 flashes were observed with a total of 28 dart leader/return strokes sequences and two initial continuous current intervals. For the first five lightning flashes, 1.7 cm thick bronze collimators were placed around and in front of the detectors in order to study the intensity and arrival time of the x-rays as a function of height above the ground. The collimators had an opening angle of about plus or minus 15 degrees and were pointed in the direction of the lightning channel at 0, 15, 30 and 45 degrees from vertical. For the remaining five flashes, the collimators were replaced with bronze attenuators to study the energy spectra and electron and photon components of the energetic radiation. In a final experiment, the spacing and distance of the instruments were varied to study the spatial extent of the x-rays. In this report we shall describe the x-ray instruments, the observations made, and give a brief overview of the results.

  15. High Resolution X-ray Spectroscopy of AGN: Recent Results and Future Advances

    NASA Astrophysics Data System (ADS)

    Marshall, Herman L.

    2011-05-01

    I will summarize findings from the past ten years of high resolution X-ray spectroscopy of AGN using Chandra and XMM-Newton, concentrating on the energy range from 0.1 to 1.0 keV. The main scientific findings concentrate in three broad categories: 1) measuring photoexcited gas at mild outflow or transverse speeds via absorption, 2) tracking photoexcited gas in emission outside the nucleus, and 3) probing the inner accretion disk via relativistically broadened emission lines. I will show how these studies may be advanced with new observations at high resolution and improved effective area. This work has been funded in part by National Aeronautics and Space Administration (NASA) through the Smithsonian Astrophysical Observatory (SAO) contract SV3-73016 to MIT for support of the Chandra X-Ray Center (CXC), which is operated by SAO for and on behalf of NASA under contract NAS8-03060.

  16. Hard x-ray photoelectron spectroscopy using an environmental cell with silicon nitride membrane windows

    NASA Astrophysics Data System (ADS)

    Tsunemi, Eika; Watanabe, Yoshio; Oji, Hiroshi; Cui, Yi-Tao; Son, Jin-Young; Nakajima, Atsushi

    2015-06-01

    We applied hard x-ray photoelectron spectroscopy (HAXPES) to a sample under ambient pressure conditions using an environmental cell with an approximately 24 nm-thick SiNx membrane window. As a model chemical substance, europium (II) iodide (EuI2) sealed in the cell with argon gas was investigated with HAXPES to identify the chemical species present inside the cell. The optical and morphological properties of the sample within the cell were measured with optical and fluorescent microscopy, scanning electron microscopy, cathodoluminescence, and energy dispersive x-ray spectrometry. We confirmed the effectiveness of the gas barrier properties of the cell with the SiNx window and demonstrated its applicability to various other optical and electron measurements as well as HAXPES.

  17. Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy

    SciTech Connect

    Mikhaylova, A.; Davidson, M.; Toastmann, H.; Channell, J.E.T.; Guyodo, Y.; Batich, C.; Dobson, J.

    2008-06-16

    This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 {micro}m. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders - a problem which has vexed researchers for 50 years.

  18. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy

    SciTech Connect

    Mantouvalou, Ioanna; Grtzsch, Daniel; Neitzel, Michael; Gnther, Sabrina; Baumann, Jonas; Kanngieer, Birgit; Witte, Katharina; Jung, Robert; Stiel, Holger; Sandner, Wolfgang

    2015-03-15

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  19. X-ray Fluorescence Correlation Spectroscopy: A Method for Studying Particle Dynamics in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sood, A. K.; Satyam, P. V.; Feng, Y. P.; Wu, X.-Z.; Cai, Z.; Yun, W.; Sinha, S. K.

    1998-03-01

    X-ray fluorescence correlation spectroscopy (XFCS), in conjunction with microfocused synchrotron x-ray beams, has been demonstrated to be a viable technique for elucidating particle dynamics in an element-specific manner. As a demonstration of this method, the dynamics of gold and ferromagnetic colloidal particles and aggregates undergoing both diffusion and sedimentation in water was studied by measuring the time autocorrelation of the gold or iron fluorescence intensity from a small illuminated volume. The dynamical parameters obtained are in excellent agreement with theoretical estimates and other measurements. Possible applications of XFCS include studies of particle dynamics in bulk as well as at surfaces and interfaces, the motion of biological macromolecules containing heavy atoms on or across membranes, and kinetics of chemical reactions. This technique is particularly useful for studying both diffusive particle motion and flow in optically opaque systems for which methods employing visible light are not suited.

  20. Hard x-ray photoemission spectroscopy of Bi2S3 thin films

    NASA Astrophysics Data System (ADS)

    ten Haaf, Sebastian; Balke, Benjamin; Felser, Claudia; Jakob, Gerhard

    2012-09-01

    The electronic structure of polycrystalline Bi2S3 thin films deposited by thermal evaporation under high vacuum conditions was investigated with respect to their potential use as absorber materials in p-i-n solar cells by means of hard x-ray photoemission spectroscopy at the PETRA III synchrotron. A clear influence of the post-deposition treatment on the electronic structure could be observed, resulting in a lowering of the Fermi level as well as in a change of the electronic states in the valence band. Furthermore, chemical shifts of Bi2S3 were determined in the bulk-sensitive hard x-ray regime as ?EB ,Bi=1.35 eV and ?EB ,S=-2.80 eV.

  1. Hard x-ray photoelectron spectroscopy using an environmental cell with silicon nitride membrane windows

    SciTech Connect

    Tsunemi, Eika; Watanabe, Yoshio; Oji, Hiroshi; Cui, Yi-Tao; Son, Jin-Young

    2015-06-21

    We applied hard x-ray photoelectron spectroscopy (HAXPES) to a sample under ambient pressure conditions using an environmental cell with an approximately 24 nm-thick SiN{sub x} membrane window. As a model chemical substance, europium (II) iodide (EuI{sub 2}) sealed in the cell with argon gas was investigated with HAXPES to identify the chemical species present inside the cell. The optical and morphological properties of the sample within the cell were measured with optical and fluorescent microscopy, scanning electron microscopy, cathodoluminescence, and energy dispersive x-ray spectrometry. We confirmed the effectiveness of the gas barrier properties of the cell with the SiN{sub x} window and demonstrated its applicability to various other optical and electron measurements as well as HAXPES.

  2. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    SciTech Connect

    Arp, U.; LeBrun, T.; Southworth, S.H.; Jung, M.; MacDonald, M.A.

    1996-12-01

    Argon L{sub 2.3}-M{sub 2.3}M{sub 2.3} Auger-electron spectra were measured in coincidence with K{alpha} fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons.

  3. The nature of arsenic in uranium mill tailings by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cutler, J. N.; Chen, N.; Jiang, D. T.; Demopoulos, G. P.; Jia, Y.; Rowson, J. W.

    2003-05-01

    In order to understand the evolving world of environmental issues, the ability to characterize and predict the stability and bioavailability of heavy mtal contaminants in mine waste is becoming increasingly more important. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopies were used to characterize a series of synthetic and natural samples associated with mine tailings processing. XANES was shown to be excellent as a tool to rapidly differentiate oxidation states of arsenic within the samples. The EXAFS spectra provided information on the mineralogy of the precipitated raffinate and tailings and showed that these samples are composed of a mixture of amorphous ferric arsenates, adsorbed arsenates and a mixture of other poorly ordered arsenates.

  4. Structural conformation in a poly (ethylene oxide) film obta inedfrom X-ray emission spectroscopy (XES)

    SciTech Connect

    Kashtanov, S.; Zhuang, G.V.; Augustsson, A.; Guo, J.-H.; Nordgren, J.; Luo, Y.; Ross, P.N.

    2007-03-16

    The electronic structure of poly(ethylene oxide) (PEO) in a thin (< 1 {micro}) film sample was experimentally probed by X-ray emission spectroscopy. The emission spectra from this film were much sharper with more resolved fine structure than the spectra from the bulk polymer from which it was cast. Both non-resonant and resonant X-ray emission spectra were simulated using density functional theory (DFT) applied to four different models representing different conformations in the polymer. Calculated spectra were compared with experimental results for the PEO film. It was found that the best fit was obtained with the polymer conformation in PEO electrolytes from which the salt (LiMF6, M=P, As, or Sb) had been removed. This conformation is different from that in the crystalline bulk polymer and implies that film casting, commonly used to form electrolytes for Li polymer batteries, induces the same conformation in the polymer with or without the salt present.

  5. In situ x-ray photoelectron spectroscopy for electrochemical reactions in ordinary solvents

    SciTech Connect

    Masuda, Takuya; PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi, Saitama 333-0012 ; Yoshikawa, Hideki; Kobata, Masaaki; Kobayashi, Keisuke; Noguchi, Hidenori; PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi, Saitama 333-0012; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810; International Center for Materials Nanoarchitectonics , National Institute for Materials Science , Tsukuba, Ibaraki 305-0044 ; Kawasaki, Tadahiro; Uosaki, Kohei; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810; International Center for Materials Nanoarchitectonics , National Institute for Materials Science , Tsukuba, Ibaraki 305-0044

    2013-09-09

    In situ electrochemical X-ray photoelectron spectroscopy (XPS) apparatus, which allows XPS at solid/liquid interfaces under potential control, was constructed utilizing a microcell with an ultra-thin Si membrane, which separates vacuum and a solution. Hard X-rays from a synchrotron source penetrate into the Si membrane surface exposed to the solution. Electrons emitted at the Si/solution interface can pass through the membrane and be analyzed by an analyzer placed in vacuum. Its operation was demonstrated for potential-induced Si oxide growth in water. Effect of potential and time on the thickness of Si and Si oxide layers was quantitatively determined at sub-nanometer resolution.

  6. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    PubMed

    Mantouvalou, Ioanna; Witte, Katharina; Grtzsch, Daniel; Neitzel, Michael; Gnther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy. PMID:25832284

  7. Effect of X-ray spot size on liquid jet photoelectron spectroscopy

    PubMed Central

    Olivieri, Giorgia; Goel, Alok; Kleibert, Armin; Brown, Matthew A.

    2015-01-01

    A 30 µm pinhole is introduced in the intermediate focus of the SIM beamline at the Swiss Light Source to improve the spot size at the second downstream focus, which is used here for liquid jet X-ray photoelectron spectroscopy experiments. The 30 µm pinhole reduces the beam dimensions from 250 (v) × 100 (h) µm to 75 × 45 µm for a vertical exit slit of 100 µm. The smaller X-ray spot results in a substantial decrease in the gas-phase contribution of the spectra from 40% down to 20% and will help to simplify the interpretation and peak assignments of future experiments. PMID:26524318

  8. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngießer, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  9. Applications of soft x-ray fluorescence spectroscopy in materials science

    SciTech Connect

    Callcott, T.A.; Jia, J.J.; Zhou, L.

    1996-12-31

    Soft x-ray fluorescence spectroscopy provides an element and angular momentum selective measure of the valence band density of states in complex materials. Results are presented demonstrating the use of SXF both as a means of solving materials problems and as a means of increasing the fundamental understanding of low energy excitation processes in various types of materials. As examples of materials applications, the authors discuss the L spectra of Si in various environments, and describe radiation damage studies in Beryl. Fundamental new insights are provided by the study of SXF spectra excited near an x-ray threshold. For such excitation, recent work demonstrates that an electronic Raman scattering process can greatly modify the normal fluorescence spectrum. The authors discuss near threshold studies of graphite, h-BN and NiS to demonstrate that the nature of the electronic excitation processes differs dramatically in various classes of materials and provides important new insights into their properties.

  10. Note: Sample chamber for in situ x-ray absorption spectroscopy studies of battery materials

    SciTech Connect

    Pelliccione, CJ; Timofeeva, EV; Katsoudas, JP; Segre, CU

    2014-12-01

    In situ x-ray absorption spectroscopy (XAS) provides element-specific characterization of both crystalline and amorphous phases and enables direct correlations between electrochemical performance and structural characteristics of cathode and anode materials. In situ XAS measurements are very demanding to the design of the experimental setup. We have developed a sample chamber that provides electrical connectivity and inert atmosphere for operating electrochemical cells and also accounts for x-ray interactions with the chamber and cell materials. The design of the sample chamber for in situ measurements is presented along with example XAS spectra from anode materials in operating pouch cells at the Zn and Sn K-edges measured in fluorescence and transmission modes, respectively. (C) 2014 AIP Publishing LLC.

  11. Lunar X-ray fluorescence spectrometery with the Selene orbiter: science and instrument

    NASA Astrophysics Data System (ADS)

    Okada, T.; Shirai, K.; Yamamoto, Y.; Arai, T.; Ogawa, K.; Kato, M.; Selene Xrs Team

    We have been developing an X-ray fluorescence spectrometer, XRS, for the SELENE lunar orbiter mission to map major elemental composition of the Moon as well as to understand the mechanism of X-ray excitation in the nightside and physical properties caused by surface materials. We present here scientific objectives and instrumentation of the XRS, since a critical design review and satellite interface test has been finished and the flight model is now in preparation. The XRS is based on charge-coupled devices with heritage technology after the S310-28 sounding rocket experiment in 1999 and HAYABUSA (former MUSES-C) asteroid mission launched in 2003 but has been redesigned most suitable for lunar mission and improved its performance. The detection area of 100cm2 and FOV of 12 deg enables to limit the footprint of 20km. Utilization of CCD under more stable control of temperature and short integration time increases the apparent energy resolution. On the SELENE around the lunar polar orbit, total surface coverage except for the polar region will be achieved. The mission is now in the component calibration phase after satellite interface tests has been finished. The XRS is in final preparation for flight and has been also examined in detail its function and performance in the laboratory.

  12. Microcalorimeters for High Resolution X-Ray Spectroscopy of Laboratory and Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Silver, E.; Flowers, Bobby J. (Technical Monitor)

    2003-01-01

    The proposal has three major objectives. The first focuses on advanced neutron-transmutation-doped (NTD)-based microcalorimeter development. Our goal is to develop an array of microcalorimeters with sub- 5 eV energy resolution that can operate with pile-up-free throughput of at least 100 Hz per pixel. The second objective is to establish our microcalorimeter as an essential x-ray diagnostic for laboratory astrophysics studies. We propose to develop a dedicated microcalorimeter spectrometer for the EBIT (electron beam ion trap). This instrument will incorporate the latest detector and cryogenic technology that we have available. The third objective is to investigate innovative ideas related to possible flight opportunities. These include compact, long lived cryo-systems, ultra-low temperature cold stages, low mass and low power electronics, and novel assemblies of thin windows with high x-ray transmission.

  13. X-ray absorption spectroscopy measurements of thin foil heating by Z-pinch radiation.

    PubMed

    MacFarlane, J J; Bailey, J E; Chandler, G A; Deeney, C; Douglas, M R; Jobe, D; Lake, P; Nash, T J; Nielsen, D S; Spielman, R B; Wang, P; Woodruff, P

    2002-10-01

    Absorption spectroscopy measurements of the time-dependent heating of thin foils exposed to intense z-pinch radiation sources are presented. These measurements and their analysis provide valuable benchmarks for, and insights into, the radiative heating of matter by x-ray sources. Z-pinch radiation sources with peak powers of up to 160 TW radiatively heated thin plastic-tamped aluminum foils to temperatures approximately 60 eV. The foils were located in open slots at the boundary of z-pinch hohlraums surrounding the pinch. Time-resolved Kalpha satellite absorption spectroscopy was used to measure the evolution of the Al ionization distribution, using a geometry in which the pinch served as the backlighter. The time-dependent pinch radius and x-ray power were monitored using framing camera, x-ray diode array, and bolometer measurements. A three-dimensional view factor code, within which one-dimensional (1D) radiation-hydrodynamics calculations were performed for each surface element in the view factor grid, was used to compute the incident and reemitted radiation flux distribution throughout the hohlraum and across the foil surface. Simulated absorption spectra were then generated by postprocessing radiation-hydrodynamics results for the foil heating using a 1D collisional-radiative code. Our simulated results were found to be in good general agreement with experimental x-ray spectra, indicating that the spectral measurements are consistent with independent measurements of the pinch power. We also discuss the sensitivity of our results to the spectrum of the radiation field incident on the foil, and the role of nonlocal thermodynamic equilibrium atomic kinetics in affecting the spectra. PMID:12443339

  14. Tracking reaction dynamics in solution by pump-probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering).

    PubMed

    Kim, Jeongho; Kim, Kyung Hwan; Oang, Key Young; Lee, Jae Hyuk; Hong, Kiryong; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Kim, Tae Kyu; Ihee, Hyotcherl

    2016-02-25

    Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump-probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive to changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions. PMID:26785280

  15. Laboratory x-ray spectroscopy experiments in support of NASA`s x-ray satellite missions

    SciTech Connect

    Kahn, S. M., Columbia University

    1998-05-22

    With support from NASA, we are performing a series of laboratory astrophysics investigations designed to address fundamental uncertainties in basic atomic physics processes relevant to the interpretation of discrete X-ray spectra of cosmic plasmas. Moderate resolution spectra acquired by the ASCA Observatory already demonstrate the inadequacy of currently available spectral modelling codes for this wavelength band. With the upcoming launches of AXAF, XMM, ASTRO E, and Spektrum Roentgen-Gamma, the demand for significant advances in this field will increase dramatically. Our program is based on the exploitation of the Electron Beam Ion Trap facility at the Lawrence Livermore National Laboratory, and a unique set of spectrometers and experimental techiques specifically developed for this purpose. Recent experiments have been devoted to definitive measurements of line emissivities for iron L-shell ions in optically thin, collisional plasmas.

  16. Differentiation of biological hydroxyapatite compounds by infrared spectroscopy, x-ray diffraction and extended x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Chassot, E.; Oudadesse, H.; Irigaray, J.; Curis, E.; Bnazeth, S.; Nicolis, I.

    2001-12-01

    Pure hydroxyapatite (HAP) and HAP doped with 800 ppm of zinc were implanted in cortical bone of femur diaphysis of ovines [J. L. Irigaray et al., Mater. Clin. Appl. 28, 399 (1999)]. We observed that the doped HAP was better resorbed than pure HAP. The first hypothesis is that zinc acts as a stimulator on macrophage cells and improves quantity and quality of osteoblast cells. The second hypothesis is that zinc yields HAP structure that is better resorbed in biological field. For our experiment we used HAP doped with 3000 ppm of zinc in order to have a good sensitivity. In the present work, chemical studies by inductively coupled plasma absorption emission spectrometry, x ray diffraction, and infrared were carried out to determine the composition of major and trace elements in the doped hydroxyapatite, and the crystallographic structure. These studies can indicate possible modifications induced by the insertion of zinc. We used the extended x-ray absorption fine structure experimental station of LURE (Orsay, France) to try to clarify the atomic surroundings of zinc in doped HAP structure and transformations induced in initial lattice. Despite the low zinc concentration, we got good quality fluorescence mode spectra. These spectra showed medium range order of the material that is consistent with its crystalline form. To perform the analysis, we compared the result obtained with another models like ? tricalcium phosphate and we created theoretical models of zinc in substitution of calcium in order to reproduce as well as possible the experimental spectrum. After this study, only two models are coherent with experimental spectrum, zinc in substitution of calcium in site I and zinc in the interstice between the two hydroxydes.

  17. Electronic Properties of Hydrogen Storage Materials with Photon-in/Photon-out Soft-X-Ray Spectroscopy

    SciTech Connect

    Guo, Jinghua

    2008-09-22

    The applications of resonant soft X-ray emission spectroscopy on a variety of carbon systems have yielded characteristic fingerprints. With high-resolution monochromatized synchrotron radiation excitation, resonant inelastic X-ray scattering has emerged as a new source of information about electronic structure and excitation dynamics. Photon-in/photon-out soft-X-ray spectroscopy is used to study the electronic properties of fundamental materials, nanostructure, and complex hydrides and will offer potential in-depth understanding of chemisorption and/or physisorption mechanisms of hydrogen adsorption/desorption capacity and kinetics.

  18. Demonstration of a time-resolved x-ray scattering instrument utilizing the full-repetition rate of x-ray pulses at the Pohang Light Source

    NASA Astrophysics Data System (ADS)

    Jo, Wonhyuk; Eom, Intae; Landahl, Eric C.; Lee, Sooheyong; Yu, Chung-Jong

    2016-03-01

    We report on the development of a new experimental instrument for time-resolved x-ray scattering (TRXS) at the Pohang Light Source (PLS-II). It operates with a photon energy ranging from 5 to 18 keV. It is equipped with an amplified Ti:sappahire femtosecond laser, optical diagnostics, and laser beam delivery for pump-probe experiments. A high-speed single-element detector and high trigger-rate oscilloscope are used for rapid data acquisition. While this instrument is capable of measuring sub-nanosecond dynamics using standard laser pump/x-ray probe techniques, it also takes advantage of the dense 500 MHz standard fill pattern in the PLS-II storage ring to efficiently record nano-to-micro-second dynamics simultaneously. We demonstrate this capability by measuring both the (fast) impulsive strain and (slower) thermal recovery dynamics of a crystalline InSb sample following intense ultrafast laser excitation. Exploiting the full repetition rate of the storage ring results in a significant improvement in data collection rates compared to conventional bunch-tagging methods.

  19. Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy.

    PubMed

    Ravel, B; Attenkofer, K; Bohon, J; Muller, E; Smedley, J

    2013-10-01

    Diamond sensors are evaluated as incident beam monitors for X-ray absorption spectroscopy experiments. These single crystal devices pose a challenge for an energy-scanning experiment using hard X-rays due to the effect of diffraction from the crystalline sensor at energies which meet the Bragg condition. This problem is eliminated by combination with polycapillary lenses. The convergence angle of the beam exiting the lens is large compared to rocking curve widths of the diamond. A ray exiting one capillary from the lens meets the Bragg condition for any reflection at a different energy from the rays exiting adjacent capillaries. This serves to broaden each diffraction peak over a wide energy range, allowing linear measurement of incident intensity over the range of the energy scan. Extended X-ray absorption fine structure data are measured with a combination of a polycapillary lens and a diamond incident beam monitor. These data are of comparable quality to data measured without a lens and with an ionization chamber monitoring the incident beam intensity. PMID:24182100

  20. Infrared and X-ray simultaneous spectroscopy: a novel conceptual beamline design for time resolved experiments.

    PubMed

    Marcelli, Augusto; Xu, Wei; Hampai, Dariush; Malfatti, Luca; Innocenzi, Plinio; Schade, Ulrich; Wu, Ziyu

    2010-07-01

    Many physical/chemical processes such as metal-insulator transitions or self-assembly phenomena involve correlated changes of electronic and atomic structure in a wide time range from microseconds to minutes. To investigate these dynamic processes we not only need a highly brilliant photon source in order to achieve high spatial and time resolution but new experimental methods have to be implemented. Here we present a new optical layout for performing simultaneous or concurrent infrared and X-ray measurements. This approach may indeed return unique information for example the interplay between structural changes and chemical processes occurring in the investigated sample. A beamline combining two X-ray and IR beams may really take advantage of the unique synchrotron radiation properties: the high brilliance and the broad spectrum. In this contribution we will describe the conceptual layout and the expected performance of a complex system designed to collect IR and X-ray radiation from the same bending magnet on a third-generation synchrotron radiation ring. If realized, this beamline will enable time-resolved spectroscopy experiments offering new scientific opportunities at the frontiers of science. PMID:20461504

  1. The amorphous Zn biomineralization at Naracauli stream, Sardinia: electron microscopy and X-ray absorption spectroscopy.

    PubMed

    Medas, D; Lattanzi, P; Podda, F; Meneghini, C; Trapananti, A; Sprocati, A; Casu, M A; Musu, E; De Giudici, G

    2014-01-01

    An amorphous Zn biomineralization ("white mud"), occurring at Naracauli stream, Sardinia, in association with cyanobacteria Leptolyngbya frigida and diatoms, was investigated by electron microscopy and X-ray absorption spectroscopy. Preliminary diffraction analysis shows that the precipitate sampled on Naracauli stream bed is mainly amorphous, with some peaks ascribable to quartz and phyllosilicates, plus few minor unattributed peaks. Scanning electron microscopy analysis shows that the white mud, precipitated in association with a seasonal biofilm, is made of sheaths rich in Zn, Si, and O, plus filaments likely made of organic matter. Transmission electron microscopy analysis shows that the sheaths are made of smaller units having a size in the range between 100 and 200 nm. X-ray absorption near-edge structure and extended X-ray absorption fine structure data collected at the Zn K-edge indicate that the biomineral has a local structure similar to hemimorphite, a zinc sorosilicate. The differences of this biomineral with respect to the hydrozincite biomineralization documented about 3 km upstream in the same Naracauli stream may be related to either variations in the physicochemical parameters and/or different metabolic behavior of the involved biota. PMID:23832800

  2. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    DOE PAGESBeta

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; et al

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore » based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less

  3. Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy

    SciTech Connect

    Ravel, B.; Attenkofer, K.; Bohon, J.; Muller, E.; Smedley, J.

    2013-10-15

    Diamond sensors are evaluated as incident beam monitors for X-ray absorption spectroscopy experiments. These single crystal devices pose a challenge for an energy-scanning experiment using hard X-rays due to the effect of diffraction from the crystalline sensor at energies which meet the Bragg condition. This problem is eliminated by combination with polycapillary lenses. The convergence angle of the beam exiting the lens is large compared to rocking curve widths of the diamond. A ray exiting one capillary from the lens meets the Bragg condition for any reflection at a different energy from the rays exiting adjacent capillaries. This serves to broaden each diffraction peak over a wide energy range, allowing linear measurement of incident intensity over the range of the energy scan. Extended X-ray absorption fine structure data are measured with a combination of a polycapillary lens and a diamond incident beam monitor. These data are of comparable quality to data measured without a lens and with an ionization chamber monitoring the incident beam intensity.

  4. Classification of X-ray Sources in the Direction of Andromeda Using Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Green, Jerica M.; Williams, B. F.; Hatzidimitriou, D.

    2010-05-01

    A deep XMM survey has identified hundreds of bright X-ray sources from the direction of Andromeda. These sources are mostly comprised of supernova remnants, X-ray Binaries and background Active Galactic Nuclei (AGN). We have obtained 35 optical spectra of their candidate counterparts using the 3.5-meter telescope at the Apache Point Observatory. After calibrating and extracting the objects' spectra from the sky background, we've been able to classify 8 as background AGN with red shifts (1.15< z <2.11). Preliminary classifications of the 27 others include 9 stars in Andromeda and 1 supernova remnant in Andromeda. With these results we are beginning to constrain the background contamination in the XMM survey and to find good high-mass X-ray binary candidates in Andromeda. Furthermore, future high-resolution spectroscopy of the background AGN may allow detailed absorption studies of the Andromeda interstellar medium. Support for this work has been provided by NASA grant NNX06AF58G, through the XMM-Newton Guest Observer Facility.

  5. X-ray-absorption-spectroscopy study of manganese-containing compounds and photosynthetic spinach chloroplasts

    SciTech Connect

    Kirby, J.A.

    1981-05-01

    The manganese sites in chloroplasts, long thought to be involved in photosynthetic oxygen evolution have been examined and partially characterized by x-ray Absorption Spectroscopy (XAS) using synchrotron radiation. The local environment about the manganese atoms is estimated from an analysis of the extended X-ray Absorption Fine Structure (EXAFS). Comparisons with and simulations of the manganese EXAFS for several reference compounds leads to a model in which the chloroplast manganese atoms are contained in a binuclear complex similar to di-u-oxo-tetrakis-(2,2'-bipyridine) dimanganese. It is suggested that the partner metal is another manganese. The bridging ligands are most probably oxygen. The remaining manganese ligands are carbon, oxygen, or nitrogen. A roughly linear correlation between the X-ray K edge onset energy and the coordination charge of a large number of manganese coordination complexes and compounds has been developed. Entry of the chloroplast manganese edge energy onto this correlation diagram establishes that the active pool of manganese is in an oxidation state greater than +2.

  6. In Situ Soft X-ray Spectroscopy Characterization of Interfacial Phenomena in Energy Materials and Devices

    NASA Astrophysics Data System (ADS)

    Guo, Jinghua; Liu, Yi-Sheng; Kapilashrami, Mukes; Glans, Per-Anders; Bora, Debajeet; Braun, Artur; Velasco Vlez, Juan Jess; Salmeron, Miquel; ALS/LBNL Team; EMPA, MSD/LBNL Collaboration

    2015-03-01

    Advanced energy technology arises from the understanding in basic science, thus rest in large on in-situ/operando characterization tools for observing the physical and chemical interfacial processes, which has been largely limited in a framework of thermodynamic and kinetic concepts or atomic and nanoscale. In many important energy systems such as energy conversion, energy storage and catalysis, advanced materials and functionality in devices are based on the complexity of material architecture, chemistry and interactions among constituents within. To understand and thus ultimately control the energy conversion and energy storage applications calls for in-situ/operando characterization tools. Soft X-ray spectroscopy offers a number of very unique features. We will present our development of the in-situ/operando soft X-ray spectroscopic tools of catalytic and electrochemical reactions in recent years, and reveal how to overcome the challenge that soft X-rays cannot easily peek into the high-pressure catalytic cells or liquid electrochemical cells. In this presentation a number of examples are given, including the nanocatalysts and the recent experiment performed for studying the hole generation in a specifically designed photoelectrochemical cell under operando conditions. The ALS is supported by the the U.S. Department of Energy.

  7. X-ray Spectroscopy for Chemical and Energy Sciences. the Case of Heterogeneous Catalysis

    SciTech Connect

    Frenkel, A. I.; van Bokhoven, J. A.

    2014-09-01

    Heterogeneous catalysis is the enabling technology for much of the current and future processes relevant for energy conversion and chemicals synthesis. The development of new materials and processes is greatly helped by the understanding of the catalytic process at the molecular level on the macro/micro-kinetic time scale and on that of the actual bond breaking and bond making. The performance of heterogeneous catalysts is inherently the average over the ensemble of active sites. Much development aims at unravelling the structure of the active site; however, in general, these methods yield the ensemble-average structure. A benefit of X-ray-based methods is the large penetration depth of the X-rays, enabling in situ and operando measurements. Furthermore, the potential of X-ray absorption and emission spectroscopy methods (XANES, EXAFS, HERFD, RIXS and HEROS) to directly measure the structure of the catalytically active site at the single nanoparticle level using nanometer beams at diffraction-limited storage ring sources is highlighted. Use of pump-probe schemes coupled with single-shot experiments will extend the time range from the micro/macro-kinetic time domain to the time scale of bond breaking and making.

  8. Local structure and dynamics of hemeproteins by X-ray absorption near edge structure spectroscopy.

    PubMed

    Arcovito, Alessandro; della Longa, Stefano

    2012-07-01

    X-ray absorption near edge structure (XANES) spectroscopy is a synchrotron radiation technique sensitive to the local structure and dynamics around the metal site of a heme containing protein. Advances in detection techniques and theoretical/computational platforms in the last 15 years allowed the use of XANES as a quantitative probe of the key structural determinants driving functional changes, both in a concerted way with protein crystallography and EXAFS (extended X-ray absorption fine structure), or as a stand-alone method to apply in the crystal state as well as in solution. Moreover, the local dynamics of the heme site has been deeply investigated, on one hand, coupling XANES to classical photolysis experiments at cryogenic temperatures; on the other hand, the intrinsic property of the synchrotron radiation to induce radiolysis events, has been exploited to investigate specific cryotrapped intermediates, using X-rays both as a pump and a probe. Insights on the XANES method and some specific examples are presented to illustrate these topics. PMID:22541673

  9. Observation of iron spin-states using tabletop x-ray emission spectroscopy and microcalorimeter sensors

    NASA Astrophysics Data System (ADS)

    Joe, Y. I.; ONeil, G. C.; Miaja-Avila, L.; Fowler, J. W.; Jimenez, R.; Silverman, K. L.; Swetz, D. S.; Ullom, J. N.

    2016-01-01

    X-ray emission spectroscopy (XES) is a powerful probe of the electronic and chemical state of elemental species embedded within complex compounds. X-ray sensors that combine high resolving power and high collecting efficiency are desirable for photon-starved XES experiments such as measurements of dilute, gaseous, and radiation-sensitive samples, time-resolved measurements, and in-laboratory XES. To assess whether arrays of cryogenic microcalorimeters will be useful in photon-starved XES scenarios, we demonstrate that these emerging energy-dispersive sensors can detect the spin-state of 3d electrons of iron in two different compounds, Fe2O3 and FeS2. The measurements were conducted with a picosecond pulsed laser-driven plasma as the exciting x-ray source. The use of this tabletop source suggests that time-resolved in-laboratory XES will be possible in the future. We also present simulations of {{K}}? and {{K}}? spectra that reveal the spin-state sensitivity of different combinations of sensor resolution and accumulated counts. These simulations predict that our current experimental apparatus can perform time-resolved XES measurements on some samples with a measurement time of a few 10 s of hours per time delay.

  10. The Constellation-X Spectroscopy X-ray Telescope: Recent Technology Development

    NASA Technical Reports Server (NTRS)

    Petre, Robert; Lehan, John L.; Owens, Scott; Saha, Timo; Stewart, Jeff; Zhang, William W.; O'Dell, Stephen L.; Jones, Wiliam D.; Reid, Paul B.

    2006-01-01

    We describe recent progress in the technology development program for the mirror system for the Constellation-X Spectroscopy X-ray Telescope (SXT). Development of this mirror represents a significant technology challenge, as it must provide a combination of large effective area (3 sq. m) and modest angular resolution (15 arc second half power diameter requirement; 5 arc second goal) with a limited mass allocation. The baseline design incorporates over 200 nested Wolter 1 mirrors. Each of these in turn is segmented in order to simplify handling of the mirrors and facilitate mass production. The X-ray reflecting surfaces are fabricated from thin, thermally formed glass sheets. Production improvements have yielded mirror segments that approach the performance requirement without the need for epoxy replication. A mounting and alignment approach incorporating piezoelectric actuators has been shown to manipulate mirror segments with the required precision without introducing significant distortion. Substantial improvements in metrology methodology have provided insights into the mirror segment forming and alignment processes. An X-ray demonstration of a mirror segment pair is planned for early 2006.

  11. ODS steel raw material local structure analysis using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cintins, A.; Anspoks, A.; Purans, J.; Kuzmin, A.; Timoshenko, J.; Vladimirov, P.; Grning, T.; Hoffmann, J.

    2015-03-01

    Oxide dispersion strengthened (ODS) steels are promising materials for fusion power reactors, concentrated solar power plants, jet engines, chemical reactors as well as for hydrogen production from thermolysis of water. In this study we used X-ray absorption spectroscopy at the Fe and Cr K-edges as a tool to get insight into the local structure of ferritic and austenitic ODS steels around Fe and Cr atoms and its transformation during mechanical alloying process. Using the analysis of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) we found that for austenitic samples a transformation of ferritic steel to austenitic steel is detectable after 10 hours of milling and proceeds till 40 hours of milling; only small amount of a-phase remains after 80 hours of milling. We found that the Cr K-edge EXAFS can be used to observe distortions inside the material and to get an impression on the formation of chromium clusters. In-situ EXAFS experiments offer a reliable method to investigate the ferritic to austenitic transformation.

  12. Ultra-Small-Angle X-ray Scattering – X-ray Photon Correlation Spectroscopy Studies of Incipient Structural Changes in Amorphous Calcium Phosphate Based Dental Composites

    PubMed Central

    Zhang, F.; Allen, A.J.; Levine, L.E.; Espinal, L.; Antonucci, J.M.; Skrtic, D.; O’Donnell, J.N.R.; Ilavsky, J.

    2012-01-01

    The local structural changes in amorphous calcium phosphate (ACP) based dental composites were studied under isothermal conditions using both static, bulk measurement techniques and a recently developed methodology based on combined ultra-small angle X-ray scattering – X-ray photon correlation spectroscopy (USAXS-XPCS), which permits a dynamic approach. While results from conventional bulk measurements do not show clear signs of structural change, USAXS-XPCS results reveal unambiguous evidence for local structural variations on a similar time scale to that of water loss in the ACP fillers. A thermal-expansion based simulation indicates that thermal behavior alone does not account for the observed dynamics. Together, these results suggest that changes in the water content of ACP affect the composite morphology due to changes in ACP structure that occur without an amorphous-to-crystalline conversion. It is also noted that biomedical materials research could benefit greatly from USAXS-XPCS, a dynamic approach. PMID:22374649

  13. Investigation of magnetic field manipulated electrons produced from laser-driven ultrafast x-ray sources using x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Changju; Davidson, R. Andrew; Guo, Ting

    2015-03-01

    We used x-ray emission spectroscopy to study energetic electrons (10-100?keV) generated at the laser focus of an intense ultrafast laser interacting with a primary thin film tape target. The electrons penetrated the tape and reached a secondary target of thin metal foils as the probe. The trajectories of these electrons were manipulated with an external magnetic field generated from a home-made Halbach magnet. The interaction of these energetic electrons with the probe produced characteristic x-rays, which were used to infer the flux and temperature of the electrons emitted from the laser focus at the primary tape target. A potential application using these energetic electrons is discussed.

  14. Characterization of Mo additions in iron-based Fischer Tropsch catalysts using X-ray absorption spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Campos, A.; Spivey, J. J.; Roy, A.; Lohitharn, N.; Goodwin, J.; Lotero, E.; Lamb, H.

    2007-11-01

    An iron-based Fischer-Tropsch catalyst with a low concentration of molybdenum (90Fe/10Mo/5Cu/17Si) used as a promoter was characterized by X-ray absorption spectroscopy (XAS) and X-ray diffractometry (XRD). The catalyst was prepared using coprecipitation, pretreated in CO, then one sample passivated and one calcined. The XRD data show that after CO pretreatment the calcined and passivated catalysts are almost amorphous with respect to Fe 2O 3 with nanoparticle size of 10 and 100 Å for Fe 3C (only present in the passivated sample). Least squares fitting of the XANES region show that the calcined and passivated samples were similar in the bulk and surface structures, with the calcined samples completely oxidized. As expected, K and L III edges Mo-XANES shows only small molybdenum carbide formation compared to iron carbide.

  15. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications.

    PubMed

    Zhong, Jun; Zhang, Hui; Sun, Xuhui; Lee, Shuit-Tong

    2014-12-10

    Carbon and silicon materials are two of the most important materials involved in the history of the science and technology development. In the last two decades, C and Si nanoscale materials, e.g., carbon nanotubes, graphene, and silicon nanowires, and quantum dots, have also emerged as the most interesting nanomaterials in nanoscience and nanotechnology for their myriad promising applications such as for electronics, sensors, biotechnology, etc. In particular, carbon and silicon nanostructures are being utilized in energy-related applications such as catalysis, batteries, solar cells, etc., with significant advances. Understanding of the nature of surface and electronic structures of nanostructures plays a key role in the development and improvement of energy conversion and storage nanosystems. Synchrotron soft X-ray absorption spectroscopy (XAS) and related techniques, such as X-ray emission spectroscopy (XES) and scanning transmission X-ray microscopy (STXM), show unique capability in revealing the surface and electronic structures of C and Si nanomaterials. In this review, XAS is demonstrated as a powerful technique for probing chemical bonding, the electronic structure, and the surface chemistry of carbon and silicon nanomaterials, which can greatly enhance the fundamental understanding and also applicability of these nanomaterials in energy applications. The focus is on the unique advantages of XAS as a complementary tool to conventional microscopy and spectroscopy for effectively providing chemical and structural information about carbon and silicon nanostructures. The employment of XAS for in situ, real-time study of property evolution of C and Si nanostructures to elucidate the mechanisms in energy conversion or storage processes is also discussed. PMID:25204894

  16. Imaging x-ray sources at a finite distance in coded-mask instruments

    SciTech Connect

    Donnarumma, Immacolata; Pacciani, Luigi; Lapshov, Igor; Evangelista, Yuri

    2008-07-01

    We present a method for the correction of beam divergence in finite distance sources imaging through coded-mask instruments. We discuss the defocusing artifacts induced by the finite distance showing two different approaches to remove such spurious effects. We applied our method to one-dimensional (1D) coded-mask systems, although it is also applicable in two-dimensional systems. We provide a detailed mathematical description of the adopted method and of the systematics introduced in the reconstructed image (e.g., the fraction of source flux collected in the reconstructed peak counts). The accuracy of this method was tested by simulating pointlike and extended sources at a finite distance with the instrumental setup of the SuperAGILE experiment, the 1D coded-mask x-ray imager onboard the AGILE (Astro-rivelatore Gamma a Immagini Leggero) mission. We obtained reconstructed images of good quality and high source location accuracy. Finally we show the results obtained by applying this method to real data collected during the calibration campaign of SuperAGILE. Our method was demonstrated to be a powerful tool to investigate the imaging response of the experiment, particularly the absorption due to the materials intercepting the line of sight of the instrument and the conversion between detector pixel and sky direction.

  17. Ge overlayer and surface alloy structures on Pt(100) studied using alkali ion scattering spectroscopy, x-ray photoelectron spectroscopy and x-ray photoelectron diffraction.

    PubMed

    Matsumoto, T; Ho, C-S; Batzill, M; Roszell, J P; Koel, B E

    2014-04-01

    We have investigated surface structures formed by deposition of Ge on a Pt(100) substrate by using a multi-technique approach utilizing alkali ion scattering spectroscopy (ALISS), x-ray photoelectron spectroscopy (XPS), and x-ray photoelectron diffraction (XPD). ALISS was used to distinguish Ge overlayers from incorporated alloy layers for the surface structures reported, and to supply structural information about the surface alloy or 'layer compound' formed by the deposition of 1.5-ML Ge. A Ge adlayer forms following the deposition of 0.2-ML Ge on Pt(100) and annealing at 600K. ALISS revealed that Ge adatoms in these overlayers had 1D (incomplete c(2 2)) Ge-Ge ordering along [010] and equivalent directions, even though this was not directly apparent in observations using LEED and STM. A c(2 2)-Ge overlayer was produced after 0.5ML-Ge deposition on Pt(100) and annealing at 600K. Deposition of 1.5-ML Ge on Pt(100) and annealing at 600K caused extensive Ge interdiffusion into the third (subsurface) layer, while the first and second layers remained as a c(2 2) Ge overlayer and (1 1) Pt layer, respectively. We propose that the Pt(100) substrate thus is 'capped' by an alloy film with the structure of a body-centered tetragonal Pt2Ge layer compound, which is terminated by a pure-Ge layer that is indistinguishable from a c(2 2)-Ge adlayer. This explains the apparently 'strange' result that even though extensive Ge interdiffusion was occurring deeply into the Pt bulk during annealing at 900 and 1200K, a Ge overlayer remained on the surface. XPS spectra showed a +0.5eV binding energy shift of the Ge 3d core level and a small (0-0.1eV) positive shift of the Pt 5d core level compared to Ge(100) and Pt(100) surfaces for the c(2 2)-Ge overlayer. There was no effect on these binding energies upon formation of the Pt2Ge layer compound at the surface, and this indicates similar Ge-Pt interactions in the two cases. Compared to other overlayers of Group-IV atoms on metal surfaces, the Ge overlayer on Pt(100) was extraordinarily stable. PMID:24614055

  18. Excited-state molecular structures captured by x-ray transient absorption spectroscopy : a decade and beyond.

    SciTech Connect

    Chen, L. X.; Zhang, X.; Lockard, J. V.; Stickrath, A. B.; Attenkofer, K.; Jennings, G.; Liu, D.-J.; Northwestern Univ.

    2010-03-02

    Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes have been studied in disordered media from homogeneous solutions to heterogeneous solution-solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled.

  19. Excited-state molecular structures captured by X-ray transient absorption spectroscopy: a decade and beyond.

    PubMed

    Chen, Lin X; Zhang, Xiaoyi; Lockard, Jenny V; Stickrath, Andrew B; Attenkofer, Klaus; Jennings, Guy; Liu, Di-Jia

    2010-03-01

    Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes have been studied in disordered media from homogeneous solutions to heterogeneous solution-solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled. PMID:20164647

  20. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2010-01-08

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  1. Quantitative analysis of annealed scanning probe tips using energy dispersive x-ray spectroscopy

    SciTech Connect

    Cobley, R. J.; Brown, R. A.; Barnett, C. J.; Maffeis, T. G. G.; Penny, M. W.

    2013-01-14

    A quantitative method to measure the reduction in oxide species on the surface of electrochemically etched tungsten tips during direct current annealing is developed using energy dispersive x-ray spectroscopy. Oxide species are found to decrease with annealing current, with the trend repeatable over many tips and along the length of the tip apex. A linear resistivity approximation finds significant oxide sublimation occurs at 1714 K, but surface melting and tip broadening at 2215 K. This method can be applied to calibrate any similar annealing stage, and to identify the tradeoff regime between required morphological and chemical properties.

  2. Oxidation of stepped Pt(111) studied by x-ray photoelectron spectroscopy and density functional theory

    SciTech Connect

    Bandlow, Jochen; Kaghazchi, Payam; Jacob, Timo; Papp, C.; Traenkenschuh, B.; Streber, R.; Lorenz, M. P. A.; Fuhrmann, T.; Steinrueck, H.-P.; Denecke, R.

    2011-05-01

    In this comparative density functional theory and x-ray photoelectron spectroscopy study on the interaction of oxygen with stepped Pt(111) surfaces, we show that both the initial adsorption and oxidation occur at the steps rather than terraces. An equivalent behavior was observed for the oxide formation at higher chemical potentials, where, after the formation of a one-dimensional PtO{sub 2}-type oxide at the steps, similar oxide chains form on the (111) terraces, indicating the initial stages of bulk oxide formation.

  3. X-Ray Absorption Spectroscopy as a Probe of Elemental Speciation

    SciTech Connect

    Pickering, Ingrid

    2003-09-25

    An effective bioremediation strategy for metals and metalloids must take the chemical state of the contaminants into account. The oxidation state and local atomic environment of contaminants critically affect such factors as their mobility, reactivity and toxicity, and hence the remediation strategy which might be applied. Since contamination exists in diverse environments, it is very likely that the chemical state of the contaminant will be site specific. X-ray absorption spectroscopy provides a unique tool for determining the chemical form of contaminants in most matrices with minimal pretreatment of the sample.

  4. Slow dynamics of nanocomposite polymer aerogels as revealed by X-ray photocorrelation spectroscopy (XPCS).

    PubMed

    Hernndez, Rebeca; Nogales, Aurora; Sprung, Michael; Mijangos, Carmen; Ezquerra, Tiberio A

    2014-01-14

    We report on a novel slow dynamics of polymer xerogels, aerogels, and nanocomposite aerogels with iron oxide nanoparticles, as revealed by X-ray photon correlation spectroscopy. The polymer aerogel and its nanocomposite aerogels, which are porous in nature, exhibit hyper-diffusive dynamics at room temperature. In contrast, non-porous polymer xerogels exhibit an absence of this peculiar dynamics. This slow dynamical process has been assigned to a relaxation of the characteristic porous structure of these materials and not to the presence of nanoparticles. PMID:24437913

  5. X-ray photoelectron spectroscopy analysis of organic materials irradiated with gas cluster ion beam

    SciTech Connect

    Nakagiri, Motohiro; Toyoda, Noriaki; Yamada, Isao

    2011-01-07

    Irradiation effect of gas cluster ion beams (GCIB) on organic materials were studied with X-ray photoelectron spectroscopy by comparison to that with Ar-monomer ions. In the case of polyimide, the intensity of both N-C = O and -C-O- bond decreased with 500 eV Ar monomer ion irradiation. On the other hand, there was no significant change in the XPS spectra after Ar-GCIB irradiation. From the size-selected GCIB irradiation study, the damages in polyimide decreased with increasing the cluster size owing to the reduction of energy per atoms.

  6. X-ray photoelectron spectroscopy study of polyimide thin films with Ar cluster ion depth profiling

    SciTech Connect

    Miyayama, T.; Sanada, N.; Suzuki, M.; Hammond, J. S.; Si, S.-Q. D.; Takahara, A.

    2010-03-15

    X-ray photoelectron spectroscopy depth profiling of polyimide thin films on silicon substrates using an Ar cluster ion beam results in an extremely low degradation of the polyimide chemistry. In the range from 2.5 to 20 kV, a lower cluster ion energy produces a lower sputter induced damage to the polymer and results in an improved polyimide to silicon interface width. The sputtering rates of the polyimide are found to increase exponentially with an increase in the Ar cluster ion energy.

  7. X-ray absorption spectroscopy studies of electrochemically deposited thin oxide films.

    SciTech Connect

    Balasubramanian, M.

    1998-06-02

    We have utilized ''in situ'' X-ray Absorption Fine Structure Spectroscopy to investigate the structure and composition of thin oxide films of nickel and iron that have been prepared by electrodeposition on a graphite substrate from aqueous solutions. The films are generally disordered. Structural information has been obtained from the analysis of the data. We also present initial findings on the local structure of heavy metal ions, e.g. Sr and Ce, incorporated into the electrodeposited nickel oxide films. Our results are of importance in a number of technological applications, among them, batteries, fuel cells, electrochromic and ferroelectric materials, corrosion protection, as well as environmental speciation and remediation.

  8. Contact-free pyroelectric measurements using x-ray photoelectron spectroscopy

    SciTech Connect

    Ehre, D.; Cohen, H.

    2013-07-29

    Non-contact pyroelectricity measurements based on x-ray photoelectron spectroscopy (XPS) are presented. Applied to Lithium Tantalate crystals, we demonstrate how the XPS-derived surface potential provides a simple probe of the desired property, free of all top-contact related difficulties. In particular, the increase in Lithium Tantalate spontaneous polarization under cooling, an experimentally challenging feature, is evaluated. We further inspect the roll of surface contaminants and the control over trapped surface charge in the XPS vacuum environment. Our approach can be extended to other non-contact probes, as well as to measuring additional electrical properties, such as piezoelectricity and ferroelectricity.

  9. X-ray photoelectron spectroscopy investigation on electrochemical degradation of proton exchange membrane fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Andersen, Shuang Ma; Dhiman, Rajnish; Skou, Eivind

    2015-05-01

    X-ray photoelectron spectroscopy studies were systematically carried out on the electrodes before and after the electrochemical stress tests in an aqueous electrolyte at 20 C and 70 C. The electrodes have different ionomer structures (no ionomer, only ionomer, physically mixed ionomer and hot pressed ionomer) but have identical, commercial catalyst and catalyst loading. A significant degree of carbon corrosion, platinum migration and ionomer degradation were observed in the electrodes after the treatment. The degradation of the ionomer in the electrode is more severe than that of membrane. The electrode structure and the corresponding interface are crucial for the catalyst performance and durability.

  10. Composition of RF-sputtered refractory compounds determined by X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1978-01-01

    RF-sputtered coatings of CrB2, MoSi2, Mo2C, TiC, and MoS2 were examined by X-ray photoelectron spectroscopy (XPS). Data on stoichiometry, impurity content, and chemical bonding were obtained. The influences of sputtering target history, deposition time, RF power level, and substrate bias were studied. Significant deviations from stoichiometry and high oxide levels were related to target outgassing. The effect of substrate bias depended on the particular coating material studied.

  11. The Chemical Forms of Mercury in Human Hair: A Study using X-ray Absorption Spectroscopy

    PubMed Central

    George, Graham N.; Singh, Satya P.; Myers, Gary J.; Watson, Gene E.; Pickering, Ingrid J.

    2013-01-01

    Human hair is frequently used as a bio-indicator of mercury exposure. We have used X-ray absorption spectroscopy to examine the chemical forms of mercury in human hair samples taken from individuals with high fish consumption and concomitant exposure to methylmercury. The mercury is found to be predominantly methylmercury cysteine or closely related species, comprising approximately 80% of the total mercury with the remainder an inorganic thiolate-coordinated mercuric species. No appreciable role was found for selenium in coordinating mercury in hair. PMID:20225071

  12. X-Ray Absorption Spectroscopy of Cuprous-Thiolate Clusters in Saccharomyces Cerevisiae Metallothionein

    SciTech Connect

    Zhang, L.; Pickering, I.J.; Winge, D.R.; George, G.N.

    2009-05-28

    Copper (Cu) metallothioneins are cuprous-thiolate proteins that contain multimetallic clusters, and are thought to have dual functions of Cu storage and Cu detoxification. We have used a combination of X-ray absorption spectroscopy (XAS) and density-functional theory (DFT) to investigate the nature of Cu binding to Saccharomyces cerevisiae metallothionein. We found that the XAS of metallothionein prepared, containing a full complement of Cu, was quantitatively consistent with the crystal structure, and that reconstitution of the apo-metallothionein with stoichiometric Cu results in the formation of a tetracopper cluster, indicating cooperative binding of the Cu ions by the metallothionein.

  13. Grazing incidence telescopes - A new class for soft X-ray and EUV spectroscopy

    NASA Technical Reports Server (NTRS)

    Hettrick, M. C.; Bowyer, S.

    1984-01-01

    A new class of grazing incidence telescopes is identified, and its advantages for stellar spectroscopy are discussed. In particular, three types of telescope geometry consisting of a primary and a secondary, both at grazing incidence, are proposed. Type I delivers a converging beam having a real focus; type II delivers a diverging beam from a virtual focus, and type III delivers a collimated beam concentrated relative to the primary aperture. The three telescope types are shown to possess unique properties which improve the efficiency and shorten the length of soft X-ray/EUV spectrographs.

  14. X-ray photoelectron spectroscopy investigation of commercial passivated tinplate surface layer

    NASA Astrophysics Data System (ADS)

    Chen, Sheng; Xie, Long; Xue, Fei

    2013-07-01

    X-ray photoelectron spectroscopy (XPS) combined with the low energy Ar+ sputtering technique has been used to investigate the chemical compositions and chemical states of elements at different depths of commercial passivated tinplate surface layer. It is found that Cr2O3, SnO, Cr(OH)3, metallic Sn and a small amount of metallic Cr have been mixed in this layer. According to peak fitting and relative sensitivity factor method, the concentrations of elements in various chemical environments on different depth planes of the passivated tinplate surface layer have been obtained.

  15. Meeting Report: International Workshop for New Opportunities in Hard X-ray Photoelectron Spectroscopy: HAXPES 2009

    SciTech Connect

    Woicik, J.; Fischer, D; Vescovo, E; Arena, D; Starr, D; Wells, B; Fadley, C

    2010-01-01

    The third international workshop on hard X-ray photoelectron spectroscopy (HAXPES 2009) was held at Brookhaven National Laboratory, Upton, New York, from May 20-22, 2009. This three-day workshop brought together approximately 100 scientists from 14 countries to discuss progress and future prospects for this rapidly developing field of research. The conference was sponsored by the National Synchrotron Light Source, the National Synchrotron Light Source-II Project, Brookhaven National Laboratory Condensed Matter Physics and Materials Science Department, and the National Institute of Standards and Technology.

  16. Slow dynamics of nanocomposite polymer aerogels as revealed by X-ray photocorrelation spectroscopy (XPCS)

    SciTech Connect

    Hernndez, Rebeca E-mail: aurora.nogales@csic.es; Mijangos, Carmen; Nogales, Aurora E-mail: aurora.nogales@csic.es; Ezquerra, Tiberio A.; Sprung, Michael

    2014-01-14

    We report on a novel slow dynamics of polymer xerogels, aerogels, and nanocomposite aerogels with iron oxide nanoparticles, as revealed by X-ray photon correlation spectroscopy. The polymer aerogel and its nanocomposite aerogels, which are porous in nature, exhibit hyper-diffusive dynamics at room temperature. In contrast, non-porous polymer xerogels exhibit an absence of this peculiar dynamics. This slow dynamical process has been assigned to a relaxation of the characteristic porous structure of these materials and not to the presence of nanoparticles.

  17. Quantitative surface analysis of urban airborne particles by x-ray photoelectron spectroscopy.

    PubMed

    Davide, Atzei; Rossi, Antonella

    2004-03-01

    X-ray photoelectron spectroscopy (XPS) has been used to determine the species present in urban particulate matter collected in the city of Cagliari (Sardinia, Italy) and in an industrial area near to Cagliari. Samples were collected on both cellulose and glass fiber filters. Elemental identification, chemical state and quantitative analyses of the examined samples indicated the presence of Na3AlF6, SiO2 and Al2O3 in the ratio 2:2:5, carbon and oxygen being the major components. The results obtained on NIST SRM 1648 urban particulate matter, before and after grinding, are also presented. PMID:15206834

  18. FPGA-based compression of streaming x-ray photon correlation spectroscopy data

    SciTech Connect

    Madden, Timothy; Jemian, Peter; Narayanan, Surcsh; Sandy, Alec; Sikorski, Marcin; Sprung, Michael; Weizeorick, John

    2011-08-09

    A data acquisition system to perform real-time background subtraction and lower-level-discrimination-based compression of streaming x-ray photon correlation spectroscopy (XPCS) data from a fast charge-coupled device (CCD) area detector has been built and put into service at the Advanced Photon source (APS) at Argonne National Laboratory. A commercial frame grabber with on-board field-programmable gate array (FPGA) was used in the design, and continuously processes 60 frames per second each consisting of 1,024 x 1,024 pixels with up to 64512 photon hits per frame.

  19. Localized high spin states in transition-metal dimers: X-ray absorption spectroscopy study

    NASA Astrophysics Data System (ADS)

    Lau, J. T.; Hirsch, K.; Langenberg, A.; Probst, J.; Richter, R.; Rittmann, J.; Vogel, M.; Zamudio-Bayer, V.; Mller, T.; von Issendorff, B.

    2009-06-01

    X-ray absorption spectroscopy provides direct evidence for localized valence electrons in Cr2+ , Mn2+ , and CrMn+ dimer cations. Bonding in these transition-metal molecules is predominantly mediated by 4s electrons. This behavior is markedly different from other 3d transition-metal dimers with open 3d subshells and can be ascribed to the highly stable 3d5(S6) configuration of the 3d subshell in chromium and manganese atoms and ions. In Cr2+ , Mn2+ , and CrMn+ , 3d electron localization indicates local high spin states.

  20. Hard X-ray and gamma-ray imaging spectroscopy for the next solar maximum

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Crannell, C. J.; Dennis, B. R.; Spicer, D. S.; Davis, J. M.; Hurford, G. J.; Lin, R. P.

    1990-01-01

    The objectives and principles are described of a single spectroscopic imaging package that can provide effective imaging in the hard X- and gamma-ray ranges. Called the High-Energy Solar Physics (HESP) mission instrument for solar investigation, the device is based on rotating modulation collimators with germanium semiconductor spectrometers. The instrument is planned to incorporate thick modulation plates, and the range of coverage is discussed. The optics permit the coverage of high-contrast hard X-ray images from small- and medium-sized flares with large signal-to-noise ratios. The detectors allow angular resolution of less than 1 arcsec, time resolution of less than 1 arcsec, and spectral resolution of about 1 keV. The HESP package is considered an effective and important instrument for investigating the high-energy solar events of the near-term future efficiently.

  1. The focusing optics x-ray solar imager (FOXSI): instrument and first flight

    NASA Astrophysics Data System (ADS)

    Krucker, Sm.; Christe, Steven; Glesener, Lindsay; Ishikawa, Shinnosuke; Ramsey, Brian; Gubarev, Mikhail; Saito, Shinya; Takahashi, Tadayuki; Watanabe, Shin; Tajima, Hiroyasu; Tanaka, Takaaki; Turin, Paul; Glaser, David; Fermin, Jose; Lin, Robert P.

    2013-09-01

    Solar flares accelerate particles up to high energies (MeV and GeV scales for electrons and ions, respectively) through efficient acceleration processes that are not currently understood. Hard X-rays (HXRs) are the most direct diagnostic of flare-accelerated electrons. However, past and current solar HXR observers lack the necessary sensitivity and imaging dynamic range to make detailed studies of faint HXR sources in the solar corona (where particle acceleration is thought to occur); these limitations are mainly due to the indirect Fourier imaging techniques used by these observers. With greater sensitivity and dynamic range, electron acceleration sites could be systematically studied in detail. Both these capabilities can be advanced by the use of direct focusing optics. The recently own Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload demonstrates the unique diagnostic power of focusing optics for observations of solar HXRs. FOXSI features grazing-incidence replicated nickel optics with 5 arcsecond resolution and fine-pitch silicon strip detectors with a 7.7 arcsecond strip pitch. FOXSI flew successfully on 2012 November 2, producing images and spectra of a microflare and performing a search for non-thermal emission (4{15 keV) from nanoflares occurring outside active regions in the quiet Sun. A future spacecraft version of FOXSI, featuring similar optics and detectors, could make detailed observations of HXRs from flare-accelerated electrons, identifying and characterizing particle acceleration sites and mapping out paths of energetic electrons as they leave these sites and propagate throughout the solar corona. This paper will describe the FOXSI instrument and present images from the first flight.

  2. Some results from the exploration of the solar atmosphere with high-resolution x-ray-EUV spectroscopy at the Naval Research Laboratory.

    PubMed

    Doschek, G A

    2015-11-01

    The Naval Research Laboratory has been one of the world leaders in high-resolution UV-x-ray solar spectroscopy. Much has been learned about the morphology and physical conditions in the atmosphere from spectroscopic instrumentation flown on orbiting spacecraft. In this short summary I discuss the solar atmosphere and our current knowledge of it, and show some of the results obtained by spectroscopic investigations at the Naval Research Laboratory. PMID:26560622

  3. On the sensitivity of hard X-ray spectroscopies to the chemical state of Br.

    PubMed

    Bordage, Amlie; Ppai, Mtys; Sas, Norbert S; Szlachetko, Jakub; Nachtegaal, Maarten; Vank, Gyrgy

    2013-07-14

    The sensitivity of the 1s X-ray emission and high-energy-resolution fluorescence-detected X-ray absorption spectroscopies (XES and HERFD-XAS) to resolve the variations in the chemical state (electronic structure and local coordination) of Br has been investigated for a selected set of compounds including NaBrO3, NH4Br and C2H4Br2 (1,2-dibromoethane). For the Br K-edge XAS, employing the HERFD mode significantly increases the energy resolution, which demonstrates that with a crystal spectrometer used as a detector the absorption technique becomes a more powerful analytical tool. In the case of XES, the experimental results as well as the density functional theory (DFT) modeling both show that the chemical sensitivity of the main 1s diagram emission lines (K?1,2 and K?1,3) is rather limited. However, the valence-to-core (K?2) region of XES displays significant shape and intensity variations, as expected for transitions having the same final states as those of photoemission spectroscopy. The spectra are in good agreement with the molecular orbital description delivered by DFT calculations. Calculations for an extended series of Br compounds confirm that valence-to-core XES can serve as a probe for chemical analysis, and, being a hard X-ray photon-in/photon-out technique, it is particularly well-suited for in situ investigations of molecular transformations, even on the ultrafast time scales down to femtosecond time resolution. PMID:23719632

  4. A liquid flatjet system for solution phase soft-x-ray spectroscopy

    PubMed Central

    Ekimova, Maria; Quevedo, Wilson; Faubel, Manfred; Wernet, Philippe; Nibbering, Erik T. J.

    2015-01-01

    We present a liquid flatjet system for solution phase soft-x-ray spectroscopy. The flatjet set-up utilises the phenomenon of formation of stable liquid sheets upon collision of two identical laminar jets. Colliding the two single water jets, coming out of the nozzles with 50??m orifices, under an impact angle of 48 leads to double sheet formation, of which the first sheet is 4.6?mm long and 1.0?mm wide. The liquid flatjet operates fully functional under vacuum conditions (<10?3 mbar), allowing soft-x-ray spectroscopy of aqueous solutions in transmission mode. We analyse the liquid water flatjet thickness under atmospheric pressure using interferomeric or mid-infrared transmission measurements and under vacuum conditions by measuring the absorbance of the O K-edge of water in transmission, and comparing our results with previously published data obtained with standing cells with Si3N4 membrane windows. The thickness of the first liquid sheet is found to vary between 1.43??m, depending on the transverse and longitudinal position in the liquid sheet. We observe that the derived thickness is of similar magnitude under 1 bar and under vacuum conditions. A catcher unit facilitates the recycling of the solutions, allowing measurements on small sample volumes (?10?ml). We demonstrate the applicability of this approach by presenting measurements on the N K-edge of aqueous NH4+. Our results suggest the high potential of using liquid flatjets in steady-state and time-resolved studies in the soft-x-ray regime. PMID:26798824

  5. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    SciTech Connect

    Degueldre, Claude Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O? lattice in an irradiated (60 MW d kg?) MOX sample was performed employing micro-X-ray fluorescence (-XRF) and micro-X-ray absorption fine structure (-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (~0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am? species within an [AmO?]? coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix. - Graphical abstract: Americium LIII XAFS spectra recorded for the irradiated MOX sub-sample in the rim zone for a 300 ?m300 ?m beam size area investigated over six scans of 4 h. The records remain constant during multi-scan. The analysis of the XAFS signal shows that Am is found as trivalent in the UO? matrix. This analytical work shall open the door of very challenging analysis (speciation of fission product and actinides) in irradiated nuclear fuels. - Highlights: Americium was characterized by microX-ray absorption spectroscopy in irradiated MOX fuel. The americium redox state as determined from XAS data of irradiated fuel material was Am(III). In the sample, the Am? face an AmO??coordination environment in the (Pu,U)O? matrix. The americium dioxide is reduced by the uranium dioxide matrix.

  6. A liquid flatjet system for solution phase soft-x-ray spectroscopy.

    PubMed

    Ekimova, Maria; Quevedo, Wilson; Faubel, Manfred; Wernet, Philippe; Nibbering, Erik T J

    2015-09-01

    We present a liquid flatjet system for solution phase soft-x-ray spectroscopy. The flatjet set-up utilises the phenomenon of formation of stable liquid sheets upon collision of two identical laminar jets. Colliding the two single water jets, coming out of the nozzles with 50??m orifices, under an impact angle of 48 leads to double sheet formation, of which the first sheet is 4.6?mm long and 1.0?mm wide. The liquid flatjet operates fully functional under vacuum conditions (<10(-3) mbar), allowing soft-x-ray spectroscopy of aqueous solutions in transmission mode. We analyse the liquid water flatjet thickness under atmospheric pressure using interferomeric or mid-infrared transmission measurements and under vacuum conditions by measuring the absorbance of the O K-edge of water in transmission, and comparing our results with previously published data obtained with standing cells with Si3N4 membrane windows. The thickness of the first liquid sheet is found to vary between 1.4-3??m, depending on the transverse and longitudinal position in the liquid sheet. We observe that the derived thickness is of similar magnitude under 1 bar and under vacuum conditions. A catcher unit facilitates the recycling of the solutions, allowing measurements on small sample volumes (?10?ml). We demonstrate the applicability of this approach by presenting measurements on the N K-edge of aqueous NH4 (+). Our results suggest the high potential of using liquid flatjets in steady-state and time-resolved studies in the soft-x-ray regime. PMID:26798824

  7. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    SciTech Connect

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  8. Next generation of pnCCDs for X-ray spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Andritschke, Robert; Hlker, Olaf; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Kimmel, Nils; Schaller, Gerhard; Schnecke, Martina; Schopper, Florian; Soltau, Heike; Strder, Lothar

    2006-11-01

    A special type of charge-coupled device, the pnCCD, has been developed in the nineties as focal-plane detector for the X-ray astronomy mission XMM-Newton of the European Space Agency. The pnCCD detector has been in operation since the satellite launch in 1999. It is performing up to date spectroscopy of X-rays in combination with imaging and high time resolution. The excellent performance of the flight camera is still maintained; in particular, the energy resolution has been nearly constant since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. The frame store pnCCD shows various optimizations in device design and fabrication process. Devices with up to 256512 pixels have been fabricated in 2004 and recently tested. Simultaneously, a programmable analog signal processor for the readout of the CCD signals, the DUO CAMEX, has been developed. The readout noise of the new detector has a value of 2 electrons ENC which is less than half of the figure of the XMM-Newton pnCCD. We measured an energy resolution that is close to the theoretical limit given by the Fano noise. In particular the low-energy response of the new devices was substantially improved. The quantum efficiency for X-rays is at least 90% in the entire energy band from 0.3 keV up to 11 keV. This is due to the ultra-thin photon entrance window as well as the full depletion of the 450 ?m thick back-illuminated pnCCD. The position resolution is better than the pixel sizes of 75 ?m75 ?m or 51 ?m51 ?m because the signal charge is spread over up to four pixels which allows a more accurate event position determination. Out of time events are substantially reduced to the order of 0.1% by operating the pnCCD in frame store mode. Higher operating temperatures, e.g. -20 C, are possible due to the smaller thermally generated dark-current level of the new devices and the operation at higher frame rates. Low power consumption applications like for the ROSITA X-ray astronomy mission with low frame rates of, e.g. 20 images/s, as well as high frame rate applications, e.g. 200 images/s, are possible with the same device.

  9. Chromium Environment within Cr-Doped BaAl2O4: Correlation of X-ray Diffraction and X-ray Absorption Spectroscopy Investigations.

    PubMed

    Vranki?, Martina; Greta, Biserka; Ltzenkirchen-Hecht, Dirk; Bosnar, Sanja; ari?, Ankica

    2015-12-01

    Powder BaAl2O4 samples doped with 0 and 1.76 atom % Cr in relation to Al were hydrothermally prepared. Both samples were characterized by X-ray diffraction and synchrotron based X-ray absorption spectroscopy at the Cr K- and the Ba L3-edge. Diffraction patterns indicated that samples were nanocrystalline with a hexagonal crystal structure, space group P63. Chromium doping of barium aluminate caused an increase of the unit-cell volume and diffraction line broadening. The doped sample contained a small amount of an impurity phase, namely, BaCrO4. Analyzed Cr K-edge X-ray absorption near edge structure for the doped sample showed the presence of chromium in 6+ and 3+ oxidation states: Cr(6+) was characteristic for chromium in the impurity phase BaCrO4, while Cr(3+) participated in the formation of the doped phase BaAl2O4:Cr. Extended X-ray absorption fine structure suggested an unusual tetrahedral coordination of Cr(3+) ions within the BaAl2O4 host phase. The structure of samples was refined by the Rietveld method, simultaneously with the analysis of diffraction line broadening. Rietveld structure refinement showed that in doping the Cr(3+) ions likely substituted for Al(3+) ions on Al1 tetrahedral sites of barium aluminate crystal lattice. Crystallite sizes in the samples decreased with chromium doping, from 32 nm for pure BaAl2O4 to 24 nm for Cr-doped BaAl2O4. The dopant Cr(3+) cations acted as defects in the barium aluminate structure that increased lattice strain from 0.02% for pure BaAl2O4 to 0.14% for doped BaAl2O4 and disturbed the crystallites to grow. PMID:26588707

  10. Calorimetric Low-Temperature Detectors for X-Ray Spectroscopy on Trapped Highly-Charged Heavy Ions

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline; Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Ilieva, S.; Kilbourne, C.; McCammon, D.

    2012-01-01

    The application of Calorimetric Low-Temperature Detectors (CLTDs) has been proposed at the Heavy-Ion TRAP facility HITRAP which is currently being installed at the Helmholtz Research Center for Heavy Ion Research GSI. This cold ion trap setup will allow the investigation of X-rays from ions practically at rest, for which the excellent energy resolution of CLTDs can be used to its full advantage. However, the relatively low intensities at HITRAP demand larger solid angles and an optimized cryogenic setup. The influence of external magnetic fields has to be taken into account. CLTDs will also be a substantial part of the instrumental equipment at the future Facility for Antiproton and Heavy Ion Research (FAIR), for which a wide variety of high-precision X-ray spectroscopy experiments has been proposed. This contribution will give an overview on the chances and challenges for the application of CLTDs at HITRAP as well as perspectives for future experiments at the FAIR facility.

  11. Development of intelligent control system for X-ray streak camera in diagnostic instrument manipulator

    NASA Astrophysics Data System (ADS)

    Pei, Chengquan; Wu, Shengli; Tian, Jinshou; Liu, Zhen; Fang, Yuman; Gao, Guilong; Liang, Lingliang; Wen, Wenlong

    2015-11-01

    An intelligent control system for an X ray streak camera in a diagnostic instrument manipulator (DIM) is proposed and implemented, which can control time delay, electric focusing, image gain adjustment, switch of sweep voltage, acquiring environment parameters etc. The system consists of 16 A/D converters and 16 D/A converters, a 32-channel general purpose input/output (GPIO) and two sensors. An isolated DC/DC converter with multi-outputs and a single mode fiber were adopted to reduce the interference generated by the common ground among the A/D, D/A and I/O. The software was designed using graphical programming language and can remotely access the corresponding instrument from a website. The entire intelligent control system can acquire the desirable data at a speed of 30 Mb/s and store it for later analysis. The intelligent system was implemented on a streak camera in a DIM and it shows a temporal resolution of 11.25 ps, spatial distortion of less than 10% and dynamic range of 279:1. The intelligent control system has been successfully used in a streak camera to verify the synchronization of multi-channel laser on the Inertial Confinement Fusion Facility.

  12. Compton Gamma Ray Observatory Phase 4 Guest Investigator Program: Solar Flare Hard X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schwartz, Richard

    1996-05-01

    During the Compton Gamma-Ray Observatory's (CGRO) Cycle 4 Guest Investigator Program we proposed three mutually supporting efforts to support the analysis of BATSE solar flare data with a particular emphasis on hard X-ray spectroscopy-building upon our Cycle 2 and 3 efforts. The efforts included: (1) the continued improvement of a software and database environment capable of supporting all users of BATSE solar data as well as providing scientific expertise and effort to the BATSE solar GI community; (2) the continued participation with the PI team and other Guest Investigators in the detailed analysis of the BATSE detectors' response at low energies; and (3) the first systematic study of the Super Hot Component of solar flares using late phase hard X-ray spectra from 10-40 keV. We successfully completed our first two goals in the Cycle 4 period, providing essential scientific analysis, software, and data support to several investigations using BATSE Data (especially studies using electron time-of-flight differentials), and providing expertise in calibrating the BATSE low-energy Spectroscopy Detectors. It was discovered during the attempt to understand BATSE Spectroscopy Detector (SPEC) measurements at low energies, that studies of the Super Hot Component would be suspect until more was known about the response and calibration of the SPEC detectors. Our efforts have resulted in the publication of several papers using electron time-of-flight measurements to suggest a cusp sight for particle acceleration in solar flares, the impending release of the SPEX Spectroscopy Analysis package onto the SolarSoft collaborative solar software library, a better understanding of the response of the BATSE Spectroscopy Detectors as well as groundwork for future calibration efforts, and the publication of several research papers supported by Dr. Schwartz's work under the Cycle 4 program.

  13. Atmospheric Electron-induced X-Ray Spectrometer (AEXS) Instrument Development

    NASA Technical Reports Server (NTRS)

    Urgiles, E.; Wilcox, J. Z.; Toda, R.; Crisp, J.; George, T.

    2005-01-01

    Introduction: This paper describes the progress in data acquisition and establishing the observational capability of the AEXS instrument. The AEXS is a miniature instrument[1-4] based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam which enables nondestructive evaluation of sample surfaces in planetary ambient atmospheres. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum of the AEXS source from the outside ambient atmosphere. Thus eliminating the need for a vacuum pumped sample chamber as is common in all laboratory SEM s. The transmitted electrons impinge on the sample exciting XRF spectra from the irradiated spot on in-situ or collected samples with sub-mm to cm-scale spatial resolution at Mars atmospheric pressure. The AEXS system (Fig 1) consists of a high-energy (>10keV) electron gun encapsulated by the isolation membrane, an XRF detection and analyzer system, and a high voltage power supply. The XRF data are analyzed to determine the elemental abundance for the irradiated spots. The approach to demonstrating a proof of concept of the AEXS has been through 1) demonstrating the viability of microfabricated membranes, 2) assembling AEXS setups with increasingly integrated functional components, and 3) simulating the AEXS observational capabilities. The development of the instrument is described in detail in the poster paper[4] at this conference. This paper focuses on describing the progress of the AEXS instrument to acquire XRF data and using commercially available software to analyze the data streams and determine the accuracy, precision and resolution of the analysis compared to the certified elemental abundance.

  14. X-ray absorption spectroscopy on magnetic nanoscale systems for modern applications.

    PubMed

    Schmitz-Antoniak, Carolin

    2015-06-01

    X-ray absorption spectroscopy facilitated by state-of-the-art synchrotron radiation technology is presented as a powerful tool to study nanoscale systems, in particular revealing their static element-specific magnetic and electronic properties on a microscopic level. A survey is given on the properties of nanoparticles, nanocomposites and thin films covering a broad range of possible applications. It ranges from the ageing effects of iron oxide nanoparticles in dispersion for biomedical applications to the characterisation on a microscopic level of nanoscale systems for data storage devices. In this respect, new concepts for electrically addressable magnetic data storage devices are highlighted by characterising the coupling in a BaTiO(3)/CoFe(2)O(4) nanocomposite as prototypical model system. But classical magnetically addressable devices are also discussed on the basis of tailoring the magnetic properties of self-assembled ensembles of FePt nanoparticles for data storage and the high-moment material Fe/Cr/Gd for write heads. For the latter cases, the importance is emphasised of combining experimental approaches in x-ray absorption spectroscopy with density functional theory to gain a more fundamental understanding. PMID:26029938

  15. Status and perspectives of high-resolution spectroscopy in the soft x-ray range (invited)

    SciTech Connect

    Kaindl, G.; Domke, M.; Laubschat, C.; Weschke, E.; Xue, C. )

    1992-01-01

    The present status in high-resolution photoabsorption and photoemission spectroscopy using synchrotron radiation in the soft x-ray range (40 eV{le}{ital h}{nu}{le}1000 eV) is described. With the SX700/II monochromator, operated by the Freie Universitaet Berlin at the Berliner Elektronenspeicherring fuer Synchrotronstrahlung (BESSY), a resolving power of up to {ge}10 000 has been achieved. A practical feature of this monochromator is given by the fact that excellent energy resolution is achieved with a single 1221-lines/mm grating in the whole soft x-ray range considered. This opens up new opportunities in core-level photoabsorption spectroscopy of atoms, molecules, adsorbed species, and solids. A combination of the SX700/II beam line with a high-resolution electron spectrometer ({Delta}{ital E}{congruent}15 meV) enables resonant photoemission studies of rare-earth materials in the 4{ital d}{r arrow}4{ital f} giant-resonance region with unprecedented resolution and also at the 3{ital d}{r arrow}4{ital f} absorption thresholds. This spectroscopic progress provides new insight into the correlated electronic structure of Ce systems.

  16. Evolution of Silver Nanoparticles in the Rat Lung Investigated by X-ray Absorption Spectroscopy

    PubMed Central

    2015-01-01

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurements taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. We found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period. PMID:25517690

  17. Near-Edge X-Ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect

    Willey, T.M.; Fabbri, J.D.; Lee, J.R.I.; Schreiner, P.R.; Fokin, A.A.; Tkachenko, B.A.; Fokina, N.A.; Dahl, J.E.P.; Carlson, R.M.K.; Vance, A.L.; Yang, W.; Terminello, L.J.; Buuren, T.van; Melosh, N.A.

    2009-05-26

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 and 0.16 {+-} 0.04 eV, respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different degrees of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond nanoparticles.

  18. XPS: A multi-channel preamplifier shaper IC for X-ray spectroscopy

    SciTech Connect

    Krieger, B.; Kipnis, I.; Ludewigt, B.A.

    1997-11-01

    An integrated circuit featuring 48 channels of charge-sensitive preamplifiers followed by variable-gain pulse shaping amplifiers is being developed as part of an x-ray spectrometer with a highly segmented detector to handle high fluxes in synchrotron experiments. Such detector systems can provide excellent energy resolution combined with one-dimensional spatial information. The IC combines many basic spectroscopy amplifier functions with a low-noise preamplifier section to produce a unique circuit capable of driving conventional ADC modules directly. An important feature of the design is the novel CR-RC{sup 2} pulse shaper. In this section, high-linearity transconductor circuits are required in order to provide a broad range of continuously variable peaking times while still maintaining the linearity and noise performance necessary for x-ray spectroscopy. Reported here are first measurements made on the performance of a 16-channel prototype integrated circuit. At present, the preamplifier-shaper circuit achieves an equivalent input noise of 26 electrons rms at 2 {micro}s peaking time with a 0.2 pF external capacitor, which is similar to the capacitance of a single detector element. The design was fabricated in standard 1.2 {micro}m CMOS technology.

  19. XPS: A multi-channel preamplifier-shaper IC for X-ray spectroscopy

    SciTech Connect

    Krieger, B.; Ludewigt, B.A.; Kipnis, I.

    1998-06-01

    An integrated circuit featuring 48 channels of charge-sensitive preamplifiers followed by variable-gain pulse shaping amplifiers is being developed as part of an x-ray spectrometer with a highly segmented detector to handle high fluxes in synchrotron experiments. Such detector systems can provide excellent energy resolution combined with one-dimensional spatial information. The IC combines many basic spectroscopy amplifier functions with a low-noise preamplifier section to produce a unique circuit capable of driving conventional ADC modules directly. An important feature of the design is the novel CR-RC{sup 2} pulse shaper. In this section, high-linearity transconductor circuits are required in order to provide a broad range of continuously variable peaking times while still maintaining the linearity and noise performance necessary for x-ray spectroscopy. Reported here are first measurements made on the performance of a 16-channel prototype integrated circuit. At present, the preamplifier-shaper circuit achieves an equivalent input noise of 26 electrons rms at 2 {micro}s peaking time with a 0.2 pF external capacitor, which is similar to the capacitance of a single detector element. The design was fabricated in standard 1.2 {micro}m CMOS technology.

  20. New setup for in situ x-ray photoelectron spectroscopy from ultrahigh vacuum to 1 mbar

    NASA Astrophysics Data System (ADS)

    Pantfrder, J.; Pllmann, S.; Zhu, J. F.; Borgmann, D.; Denecke, R.; Steinrck, H.-P.

    2005-01-01

    In an effort to extend the pressure range for electron-based spectroscopies from ultrahigh vacuum into the so-called pressure gap region, we have built a new apparatus for in situ x-ray photoelectron spectroscopy up to 1mbar. The principle of the experimental setup is based on a modified hemispherical electron energy analyzer, a modified twin anode x-ray source, and several differential-pumping stages between sample region and electron detection. The reaction gas is provided in situ either by background dosing or, as a new feature, by beam dosing, using a directed gas beam from a small tube. The latter allows for higher local pressures. The performance of the new setup is discussed, deriving normalization procedures from the analysis of the attenuation of the substrate photoemission intensity by the increasing gas phase pressure. In addition, the change of the work function due to changes in surface composition can be evaluated in situ by analyzing the binding energy shift of the gas phase core-level peaks. As a first study, measurements for the pressure dependence of CO adsorption on Pd(111) between 510-8 and 1mbar are presented.

  1. X-ray absorption spectroscopy on magnetic nanoscale systems for modern applications

    NASA Astrophysics Data System (ADS)

    Schmitz-Antoniak, Carolin

    2015-06-01

    X-ray absorption spectroscopy facilitated by state-of-the-art synchrotron radiation technology is presented as a powerful tool to study nanoscale systems, in particular revealing their static element-specific magnetic and electronic properties on a microscopic level. A survey is given on the properties of nanoparticles, nanocomposites and thin films covering a broad range of possible applications. It ranges from the ageing effects of iron oxide nanoparticles in dispersion for biomedical applications to the characterisation on a microscopic level of nanoscale systems for data storage devices. In this respect, new concepts for electrically addressable magnetic data storage devices are highlighted by characterising the coupling in a BaTiO3/CoFe2O4 nanocomposite as prototypical model system. But classical magnetically addressable devices are also discussed on the basis of tailoring the magnetic properties of self-assembled ensembles of FePt nanoparticles for data storage and the high-moment material Fe/Cr/Gd for write heads. For the latter cases, the importance is emphasised of combining experimental approaches in x-ray absorption spectroscopy with density functional theory to gain a more fundamental understanding.

  2. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  3. Raman and Mossbauer spectroscopy and X-ray diffractometry studies on quenched copper-ferri-aluminates.

    PubMed

    Modi, Kunal B; Raval, Pooja Y; Shah, Suraj J; Kathad, Chetan R; Dulera, Sonal V; Popat, Mansi V; Zankat, Kiritsinh B; Saija, Kiran G; Pathak, Tushar K; Vasoya, Nimish H; Lakhani, Vinay K; Chandra, Usha; Jha, Prafulla K

    2015-02-16

    Four spinel ferrite compositions of the CuAl(x)Fe(2-x)O4, x = 0.0, 0.2, 0.4, 0.6, system prepared by usual double-sintering ceramic route and quenched (rapid thermal cooling) from final sintering temperature (1373 K) to liquid nitrogen temperature (80 K) were investigated by employing X-ray powder diffractometry, (57)Fe Mossbauer spectroscopy, and micro-Raman spectroscopy at 300 K. The Raman spectra collected in the wavenumber range of 100-1000 cm(-1) were analyzed in a systematic manner and showed five predicted modes for the spinel structure and splitting of A1g Raman mode into two/three energy values, attributed to peaks belonging to each ion (Cu(2+), Fe(3+), and Al(3+)) in the tetrahedral positions. The suppression of lower-frequency peaks was explained on the basis of weakening in magnetic coupling and reduction in ferrimagnetic behavior as well as increase in stress induced by square bond formation on Al(3+) substitution. The enhancement in intensity, random variation of line width, and blue shift for highest frequency peak corresponding to A1g mode were observed. The ferric ion (Fe(3+)) concentration for different compositions determined from Raman spectral analysis agrees well with that deduced by means of X-ray diffraction line-intensity calculations and Mossbauer spectral analysis. An attempt was made to determine elastic and thermodynamic properties from Raman spectral analysis and elastic constants from cation distribution. PMID:25594232

  4. X-ray photoelectron spectroscopy characterization of the {omega} phase in water quenched Ti-5553 alloy

    SciTech Connect

    Qin, Dongyang; Northwest Institute for Non-ferrous Metal Research, Xi'an 710016 ; Lu, Yafeng; Zhang, Kong; Liu, Qian; Zhou, Lian

    2012-11-15

    X-ray photoelectron spectroscopy was used to investigate the {omega} phase in water quenched Ti-5553 alloy with a nominal composition of Ti-5Al-5V-5Mo-3Cr (wt.%), and the {omega} and the {beta} phase were distinguished by deconvoluting the XPS spectra of Al2p, V2p and Cr2p core level regions. In addition, it is found that the binding energy of core level electron of alloying elements shifts comparing with that of pure metals, and the fact was interpreted by charge redistribution model. X-ray photoelectron spectroscopy technique could be used to characterize the nano-scale {omega} phase in {beta} alloys. - Highlights: Black-Right-Pointing-Pointer We characterize the {omega} phase in Ti-5553 alloy by XPS. Black-Right-Pointing-Pointer Binding energy of Al2p, V2p and Cr2p electron are different in the {omega} and {beta} phase. Black-Right-Pointing-Pointer Structural difference leads to the binding energy gap.

  5. Core and Valence Excitations in Resonant X-ray Spectroscopy using Restricted Excitation Window Time-dependent Density Functional Theory

    SciTech Connect

    Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

    2012-11-21

    We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen and sulfur K and L2,3 edges. The simulated XANES signals from the restricted window time-dependent density functional theory (REW-TDDFT) and the static exchange (STEX) method are compared with experiments, showing that REW-TDDFT is more accurate and computationally less expensive than STEX. Simulated RIXS and 1D SXRS signals from REW-TDDFT give some insights on the correlation of different excitations in the molecule.

  6. Core and valence excitations in resonant X-ray spectroscopy using restricted excitation window time-dependent density functional theory

    PubMed Central

    Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

    2012-01-01

    We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen, and sulfur K and \\documentclass[12pt]{minimal}\\begin{document}$\\textrm {L}_{2,3}$\\end{document}L2,3 edges. Comparison of the simulated XANES signals with experiment shows that the restricted window time-dependent density functional theory is more accurate and computationally less expensive than the static exchange method. Simulated RIXS and 1D SXRS signals give some insights into the correlation of different excitations in the molecule. PMID:23181305

  7. First results from the high-brightness x-ray spectroscopy beamline 9. 3.1 at ALS

    SciTech Connect

    Ng, W.; Jones, G.; Perera, R.C.C.

    1995-10-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range. This beamline is designed to achieve the goal of high brightness at the sample for use in the X-ray Atomic and Molecular Spectroscopy (XAMS) science, surface and interface science, biology, and x-ray optical development programs at ALS. X-ray absorption and time of flight photoemission measurements in 2 - 5 keV photon energy along with the flux, resolution, spot size and stability of the beamline will be discussed. Prospects for future XAMS measurements will also be presented.

  8. Distinct local structure of nanoparticles and nanowires of V2O5 probed by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Joseph, B.; Iadecola, A.; Maugeri, L.; Bendele, M.; Okubo, M.; Li, H.; Zhou, H.; Mizokawa, T.; Saini, N. L.

    2013-12-01

    We have used V K-edge x-ray absorption spectroscopy to study local structures of bulk, nanoparticles and nanowires of V2O5. The extended x-ray absorption fine structure measurements show different local displacements in the three morphologically different V2O5 samples. It is found that the nanowires have a significantly ordered chain structure in comparison to the V2O5 bulk. In contrast, nanoparticles have larger interlayer disorder. The x-ray absorption near-edge structure spectra show different electronic structure that appears to be related with the local atomic disorder in the three V2O5 samples.

  9. State-of-the-art X-ray photoelectron spectroscopy (XPS): Conventional and synchrotron x-ray sources for micro-XPS

    SciTech Connect

    Principe, E.L.; Odom, R.W.; Johnson, A.L.; Ackermann, G.D.; Hussain, Z.; Padmore, H.

    1998-12-31

    This paper presents preliminary data on analyses of selected materials using two state-of-the-art XPS systems: the Physical Electronics Inc. (PHI, Eden Prairie, MN) Quantum 2000 instrument and the microXPS beamline (7.3.2.1) at the Advanced Light Source (ALS). This research compares and contrasts relevant performance characteristics of the two systems including elemental and chemical state detection sensitivity, imaging capabilities including lateral resolution and useful image fields, role of X-ray dose damage to surface, analysis speed as well as analytical throughput.

  10. Electronic structure measurements of metal-organic solar cell dyes using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.

    The focus of this thesis is twofold: to report the results of X-ray absorption studies of metal-organic dye molecules for dye-sensitized solar cells and to provide a basic training manual on X-ray absorption spectroscopy techniques and data analysis. The purpose of our research on solar cell dyes is to work toward an understanding of the factors influencing the electronic structure of the dye: the choice of the metal, its oxidation state, ligands, and cage structure. First we study the effect of replacing Ru in several common dye structures by Fe. First-principles calculations and X-ray absorption spectroscopy at the C 1s and N 1s edges are combined to investigate transition metal dyes in octahedral and square planar N cages. Octahedral molecules are found to have a downward shift in the N 1s-to-pi* transition energy and an upward shift in C 1s-to-pi* transition energy when Ru is replaced by Fe, explained by an extra transfer of negative charge from Fe to the N ligands compared to Ru. For the square planar molecules, the behavior is more complex because of the influence of axial ligands and oxidation state. Next the crystal field parameters for a series of phthalocyanine and porphyrins dyes are systematically determined using density functional calculations and atomic multiplet calculations with polarization-dependent X-ray absorption spectra. The polarization dependence of the spectra provides information on orbital symmetries which ensures the determination of the crystal field parameters is unique. A uniform downward scaling of the calculated crystal field parameters by 5-30% is found to be necessary to best fit the spectra. This work is a part of the ongoing effort to design and test new solar cell dyes. Replacing the rare metal Ru with abundant metals like Fe would be a significant advance for dye-sensitized solar cells. Understanding the effects of changing the metal centers in these dyes in terms of optical absorption, charge transfer, and electronic structure enables the systematic design of new dyes using less expensive materials.

  11. Lunar sample analysis. [X-ray photoemission and Auger spectroscopy of lunar glass

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.; Cirlin, E. H.

    1979-01-01

    The surface composition of two samples from the highly shocked, glass-coated lunar basalt (12054) and from four glass-coated fragments from the 1-2 mm (14161) fines were examined by X-ray photoemission spectroscopy to determine whether the agglutination process itself is responsible for the difference between their surface and bulk compositions. Auger electron spectroscopy of glass balls from the 15425 and 74001 fines were analyzed to understand the nature, extent, and behavior of volatile phases associated with lunar volcanism. Initial results indicate that (1) volatiles, in the outer few atomic layers sampled, vary considerably from ball to ball; (2) variability over the surface of individual balls is smaller; (3) the dominant volatiles on the balls are S and Zn; and (4) other volatiles commonly observed are P, Cl, and K.

  12. In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania.

    PubMed

    Weindorf, David C; Paulette, Laura; Man, Titus

    2013-11-01

    Zlatna, Romania is the site of longtime mining/smelting operations which have resulted in widespread metal pollution of the entire area. Previous studies have documented the contamination using traditional methods involving soil sample collection, digestion, and quantification via inductively coupled plasma atomic emission spectroscopy or atomic absorption. However, field portable X-ray fluorescence spectroscopy (PXRF) can accurately quantify contamination in-situ, in seconds. A PXRF spectrometer was used to scan 69 soil samples in Zlatna across multiple land use types. Each site was georeferenced with data inputted into a geographic information system for high resolution spatial interpolations. These models were laid over contemporary aerial imagery to evaluate the extent of pollution on an individual elemental basis. Pb, As, Co, Cu, and Cd exceeded governmental action limits in >50% of the sites scanned. The use of georeferenced PXRF data offers a powerful new tool for in-situ assessment of contaminated soils. PMID:23906556

  13. In situ Raman and X-ray spectroscopies to monitor microbial activities under high hydrostatic pressure.

    PubMed

    Oger, Phil M; Daniel, Isabelle; Picard, Aude

    2010-02-01

    Until recently, monitoring of cells and cellular activities at high hydrostatic pressure (HHP) was mainly limited to ex situ observations. Samples were analyzed prior to and following the depressurization step to evaluate the effect of the pressure treatment. Such ex situ measurements have several drawbacks: (i) it does not allow for kinetic measurements and (ii) the depressurization step often leads to artifactual measurements. Here, we describe recent advances in diamond anvil cell (DAC) technology to adapt it to the monitoring of microbial processes in situ. The modified DAC is asymmetrical, with a single anvil and a diamond window to improve imaging quality and signal collection. Using this novel DAC combined to Raman and X-ray spectroscopy, we monitored the metabolism of glucose by baker's yeast and the reduction of selenite by Agrobacterium tumefaciens in situ under HHP. In situ spectroscopy is also a promising tool to study piezophilic microorganisms. PMID:20233376

  14. An XPS /ESCA/ study of lunar surface alteration profiles. [X ray Photoemission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.

    1977-01-01

    We describe several important potential applications of surface analyses in planetology, and discuss some fundamental questions pertinent to the use of X-ray photoemission spectroscopy XPS or Auger electron spectroscopy AES to study complex powder samples. It appears that in addition to specific studies of surface chemistry, XPS may be able to provide useful major element analyses for all elements except hydrogen and perhaps helium and lithium. We provide data on the chemical changes associated with sputtering of a synthetic lunar glass. The surface is depleted in Si and enriched in Ca and Ti with Fe remaining nearly constant in parallel with changes observed during thermal volatilization. No Fe reduction was observed. Composition profiles obtained by sputtering 15301 fines suggest that surface alterations and reduced Fe are confined largely to depths of a few 100 A.

  15. Uses of Auger and x ray photoelectron spectroscopy in the study of adhesion and friction

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1990-01-01

    Three studies are described characterizing the possible contributions of surface science to tribology. These include surface contamination formed by the interaction of a surface with the environment, contaminants obtained with diffusion of compounds, and surface chemical changes resulting from selective thermal evaporation. Surface analytical tools such as Auger electron spectroscopy (AES) and x ray photoelectron spectroscopy (XPS) incorporated directly into adhesion and friction systems are primarily used to define the nature of tribological surfaces before and after tribological experimentation and to characterize the mechanism of solid-to-solid interaction. Emphasis is on fundamental studies involving the role of surfaces in controlling the adhesion and friction properties of materials emerging as a result of the surface analyses. The materials which were studied include metals and ceramics such as elemental metals, amorphous alloys (metallic glasses), and silicon-based ceramics.

  16. X-ray spectroscopy on size-selected clusters in an ion trap: from the molecular limit to bulk properties

    NASA Astrophysics Data System (ADS)

    Hirsch, K.; Lau, J. T.; Klar, Ph; Langenberg, A.; Probst, J.; Rittmann, J.; Vogel, M.; Zamudio-Bayer, V.; Mller, T.; von Issendorff, B.

    2009-08-01

    An experiment was designed to perform x-ray and VUV spectroscopy on size-selected clusters in the gas phase. Using a radio frequency ion trap and a quadrupole mass filter combined with an intense magnetron sputter source made it possible to record x-ray absorption spectra of mass-selected clusters in ion yield mode. These measurements clearly reveal the development from richly structured atomic spectra to bulk-like line shapes in transition metal clusters.

  17. SIXS: X-Ray and Particle Instrument on BepiColombo

    NASA Astrophysics Data System (ADS)

    Huovelin, J.; Schmidt, W.; Genzer, M.; Lehti, J.; Vaijrvi, S.

    2013-09-01

    The Solar Intensity X-ray and particle Spectrometer (SIXS) from the University of Helsinki, Finland [1] will fly on board the ESA's BepiColombo mission to determine the solar impact on the Hermean surface in the form of direct X-rays and energetic particles, which induce observable X-ray emission via interaction with the surface of the planet. Particles of concern here are highly energetic solar protons (1-30 MeV) and electrons (0.1 - 3 MeV), and the energy range of measured X-ray spectrum is 1-20 keV. The resulting fluorescence, measured by the Mercury Imaging X-ray Spectrometer (MIXS) from the University of Leicester, UK, [2] will provide detailed information about the elemental composition on the Mercury's surface. This article presents some design highlights of the SIXS sensor unit.

  18. The design and application of an in-laboratory diffraction-enhanced x-ray imaging instrument

    SciTech Connect

    Nesch, Ivan; Fogarty, Daniel P.; Tzvetkov, Tochko; Reinhart, Benjamin; Walus, A. Charles; Khelashvili, Gocha; Muehleman, Carol; Chapman, Dean

    2009-09-15

    We describe the design and application of a new in-laboratory diffraction-enhanced x-ray imaging (DEXI) instrument that uses a nonsynchrotron, conventional x-ray source to image the internal structure of an object. In the work presented here, a human cadaveric thumb is used as a test-sample to demonstrate the imaging capability of our instrument. A 22 keV monochromatic x-ray beam is prepared using a mismatched, two-crystal monochromator; a silicon analyzer crystal is placed in a parallel crystal geometry with the monochromator allowing both diffraction-enhanced imaging and multiple-imaging radiography to be performed. The DEXI instrument was found to have an experimentally determined spatial resolution of 160{+-}7 {mu}m in the horizontal direction and 153{+-}7 {mu}m in the vertical direction. As applied to biomedical imaging, the DEXI instrument can detect soft tissues, such as tendons and other connective tissues, that are normally difficult or impossible to image via conventional x-ray techniques.

  19. Micro-x-ray fluorescence, micro-x-ray absorption spectroscopy, and micro-x-ray diffraction investigation of lead speciation after the addition of different phosphorus amendments to a smelter-contaminated soil.

    PubMed

    Baker, Lucas R; Pierzynski, Gary M; Hettiarachchi, Ganga M; Scheckel, Kirk G; Newville, Matthew

    2014-03-01

    The stabilization of Pb on additions of P to contaminated soils and mine spoil materials has been well documented. It is clear from the literature that different P sources result in different efficacies of Pb stabilization in the same contaminated material. We hypothesized that the differences in the efficacy of Pb stabilization in contaminated soils on fluid or granular P amendment addition is due to different P reaction processes in and around fertilizer granules and fluid droplets. We used a combination of several synchrotron-based techniques (i.e., spatially resolved micro-X-ray fluorescence, micro-X-ray absorption near-edge structure spectroscopy, and micro-X-ray diffraction) to speciate Pb at two incubation times in a smelter-contaminated soil on addition of several fluid and granular P amendments. The results indicated that the Pb phosphate mineral plumbogummite was an intermediate phase of pyromorphite formation. Additionally, all fluid and granular P sources were able to induce Pb phosphate formation, but fluid phosphoric acid (PA) was the most effective with time and distance from the treatment. Granular phosphate rock and triple super phosphate (TSP) amendments reacted to generate Pb phosphate minerals, with TSP being more effective at greater distances from the point of application. As a result, PA and TSP were the most effective P amendments at inducing Pb phosphate formation, but caution needs to be exercised when adding large amounts of soluble P to the environment. PMID:25602650

  20. Characterization of Metalloproteins by High-throughput X-ray Absorption Spectroscopy

    SciTech Connect

    W Shi; M Punta; J Bohon; J Sauder; R DMello; M Sullivan; J Toomey; D Abel; M Lippi; et al.

    2011-12-31

    High-throughput X-ray absorption spectroscopy was used to measure transition metal content based on quantitative detection of X-ray fluorescence signals for 3879 purified proteins from several hundred different protein families generated by the New York SGX Research Center for Structural Genomics. Approximately 9% of the proteins analyzed showed the presence of transition metal atoms (Zn, Cu, Ni, Co, Fe, or Mn) in stoichiometric amounts. The method is highly automated and highly reliable based on comparison of the results to crystal structure data derived from the same protein set. To leverage the experimental metalloprotein annotations, we used a sequence-based de novo prediction method, MetalDetector, to identify Cys and His residues that bind to transition metals for the redundancy reduced subset of 2411 sequences sharing <70% sequence identity and having at least one His or Cys. As the HT-XAS identifies metal type and protein binding, while the bioinformatics analysis identifies metal-binding residues, the results were combined to identify putative metal-binding sites in the proteins and their associated families. We explored the combination of this data with homology models to generate detailed structure models of metal-binding sites for representative proteins. Finally, we used extended X-ray absorption fine structure data from two of the purified Zn metalloproteins to validate predicted metalloprotein binding site structures. This combination of experimental and bioinformatics approaches provides comprehensive active site analysis on the genome scale for metalloproteins as a class, revealing new insights into metalloprotein structure and function.