Science.gov

Sample records for xenon dioxide molecule

  1. Photoionization of atoms and molecules. [of hydrogen, helium, and xenon

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed.

  2. Migration of defect clusters and xenon-vacancy clusters in uranium dioxide

    SciTech Connect

    Chen, Dong; Gao, Fei; Deng, Huiqiu; Hu, Wangyu; Sun, Xin

    2014-07-01

    The possible transition states, minimum energy paths and migration mechanisms of defect clusters and xenon-vacancy defect clusters in uranium dioxide have been investigated using the dimer and the nudged elastic-band methods. The nearby O atom can easily hop into the oxygen vacancy position by overcoming a small energy barrier, which is much lower than that for the migration of a uranium vacancy. A simulation for a vacancy cluster consisting of two oxygen vacancies reveals that the energy barrier of the divacancy migration tends to decrease with increasing the separation distance of divacancy. For an oxygen interstitial, the migration barrier for the hopping mechanism is almost three times larger than that for the exchange mechanism. Xe moving between two interstitial sites is unlikely a dominant migration mechanism considering the higher energy barrier. A net migration process of a Xe-vacancy pair containing an oxygen vacancy and a xenon interstitial is identified by the NEB method. We expect the oxygen vacancy-assisted migration mechanism to possibly lead to a long distance migration of the Xe interstitials in UO2. The migration of defect clusters involving Xe substitution indicates that Xe atom migrating away from the uranium vacancy site is difficult.

  3. Carbon dioxide coordination and activation by niobium oxide molecules.

    PubMed

    Zhou, Mingfei; Zhou, Zijian; Zhuang, Jia; Li, Zhen Hua; Fan, Kangnian; Zhao, Yanying; Zheng, Xuming

    2011-12-22

    Carbon dioxide coordination and activation by niobium oxide molecules were studied by matrix isolation infrared spectroscopy. It was found that the niobium monoxide molecule reacted with carbon dioxide to form the niobium dioxide carbonyl complex NbO(2)(?(1)-CO) spontaneously on annealing in solid neon. The observation of the spontaneous reaction is consistent with theoretical predictions that this carbon dioxide activation process is both thermodynamically exothermic and kinetically facile. In contrast, four niobium dioxide-carbon dioxide complexes exhibiting three different coordination modes of CO(2) were formed from the reactions between niobium dioxide and carbon dioxide, which proceeded with the initial formation of the ?(1)-O bound NbO(2)(?(1)-OCO) and NbO(2)(?(1)-OCO)(2) complexes on annealing. The NbO(2)(?(1)-OCO) complex rearranged to the ?(2)-O,O bound NbO(2)(?(2)-O(2)C) isomer under visible light irradiation, while the NbO(2)(?(1)-OCO)(2) complex isomerized to the NbO(2)(?(1)-OCO)(?(2)-OC)O structure involving an ?(2)-C,O ligand under IR excitation. In these niobium dioxide carbon dioxide complexes, the ?(1)-O coordinated CO(2) ligand serves as an electron donor, whereas both the ?(2)-C,O and ?(2)-O,O coordinated CO(2) ligands act as electron acceptors. PMID:22059436

  4. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    NASA Astrophysics Data System (ADS)

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-12-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10‑3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10‑7, nO2/nN = 5.39 × 10‑5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  5. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.

    PubMed

    Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957

  6. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    PubMed Central

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10−3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10−7, nO2/nN = 5.39 × 10−5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957

  7. From carbon dioxide to C{sub 2} organic molecules

    SciTech Connect

    Gong, J.K.; Wright, C.A.; Thorn, M.

    1996-12-31

    Research on the conversion of carbon dioxide into C{sub 2} or higher organic molecules has received much attention in recent years. The key to the success of this research is carbon-carbon coupling. This paper reports the modified synthesis of a nickel carbon dioxide complex, (Cy{sub 3}P){sub 2}NiCO{sub 2}, (Cy = cyclohexane) and the {open_quotes}Wittig Reaction{close_quotes} of this coordinated nickel carbon dioxide complex. The formed nickel ketene complex, (Cy{sub 3}P){sub 2}Ni[{eta}{sup 2}- (C,O)-CH{sub 2}=C=O], has an unusual {eta}{sub 2}-C,O bonding mode instead of the normal {eta}{sup 2}-C,C for the later transition metals. The pathway of this {open_quotes}Witting Reaction{close_quotes} is an unprecedented example for a transition metal carbon dioxide complex.

  8. Low energy decomposition of carbon dioxide and other molecules

    NASA Astrophysics Data System (ADS)

    Pamfiloff, Eugene

    2013-05-01

    Since the observation of elevating quantities of atmospheric greenhouse gases, finding a practical method other than the capture-and-sequestration scheme for the reduction and disposal of carbon dioxide (CO2) has been an important objective. Recently, an efficient low-energy process has been developed allowing the selective molecular decomposition of CO2, CO, and other molecules. Thus, CO2 can be broken down into C + O + O. This permits the O2 molecules to be stored or released while the clean carbon atoms can be bagged and utilized in various industries. For the control of carbon dioxide or other gas emissions at their source, it can be scaled up for power plants or down for smaller facilities. The process also allows the production of a beam of exclusively positive ions or exclusively negative ions and contrary to other devices, excludes the probability of beam contamination by plasma or neutral particles, making it ideal for electronic thin-films manufacturing and spectroscopy systems. Because the system allows the simultaneous production of ion beams containing selectable ratios of positive to negative ions, it simplifies construction of favored or complex molecules through varied ionic bonds. Also discussed are several methods to apply the new technology as an upgrade to spectrometers and other devices. For further information contact the author: epamfiloff@mattertech.com.

  9. Direct photo-deposition of silicon dioxide films using a xenon excimer lamp

    NASA Astrophysics Data System (ADS)

    Bergonzo, P.; Kogelschatz, U.; Boyd, I. W.

    1993-05-01

    Recently excimer lamps have opened up the field of intense vacuum ultra-violet (VUV) light generation. With theoretical efficiencies reaching 40%, the power available from such lamps based on dielectric barrier discharge generation can be superior to those of typical low pressure mercury lamps with shorter UV wavelengths generated. Here we present, for the first time, the use of these lamps for the direct photo-deposition of silicon dioxide from silane and nitrous oxide mixtures. Deposition rates achieved on our unoptimised system are comparable with those obtained with low pressure mercury lamps. The results indicate promising further applications of such lamps towards semiconductor and optoelectronic materials processing.

  10. Radiochemical Reactions Between Tritium Molecule and Carbon Dioxide

    SciTech Connect

    Shu, W.M.; O'Hira, S.; Suzuki, T.; Nishi, M. F.

    2005-07-15

    To have better understanding of radiochemical reactions among oxygen baking products in a fusion reactor, reactions in equimolar tritium molecule (T{sub 2}) and carbon dioxide (CO{sub 2}) were examined by laser Raman spectroscopy and mass spectrometry. After mixing them at room temperature, T{sub 2} and CO{sub 2} decreased rapidly in the first 30 minutes and then the reactions between them became much slower. As the predominant products of the reactions, carbon monoxide (CO) and tritiated water (T{sub 2}O) were found in gaseous phase and condensed phase, respectively. However, there likely existed also some solid products that were thermally decomposed into CO, CO{sub 2}, T{sub 2}, T{sub 2}O, etc. during baking up to 523 K.

  11. Microwave enhanced polarization in a carbon dioxide molecule.

    PubMed

    Dahiya, Jai N; Roberts, James A; Anand, Aman

    2007-01-01

    This paper presents the results of the dielectric response of carbon dioxide measured using a loaded microwave cavity operating in the TE011, mode of a cylindrical cavity near the frequencies 8.8, 9.7 and 10.2 GHz. The temperature dependence of the dielectric response of gas phase CO2 over the range of 160 to 213 degrees K (-113 to -60 degrees C) was measured. Slater perturbation equations for loaded resonant cavities were used to relate the macroscopic parameters deltaf and delta(1/Q) to the real and imaginary parts, epsilon' and epsilon", respectively, hence to calculate the dielectric parameters at each temperature and frequency. Selected peaks in the dielectric response were identified to indicate the frequencies at which strong coupling between the microwave field and the CO2 molecules can be achieved. PMID:18161417

  12. Sulfur dioxide molecule sensors based on zigzag graphene nanoribbons with and without Cr dopant

    NASA Astrophysics Data System (ADS)

    Shao, Li; Chen, Guangde; Ye, Honggang; Niu, Haibo; Wu, Yelong; Zhu, Youzhang; Ding, Bingjun

    2014-01-01

    Structure, electronic, and transport properties of sulfur dioxide (SO2) molecule adsorbed on pure and Cr doped zigzag graphene nanoribbons (ZGNRs) are investigated by means of first principle density functional theory and nonequilibrium Green's function computations. It is found that Cr doped ZGNR is more sensitive to SO2 molecule than pure ZGNR. The pure ZGNRs with and without SO2 molecule show similar I-V curves, but the current of Cr doped ZGNR will significant increase after SO2 molecule adsorption.

  13. Development of a functionalized Xenon biosensor

    SciTech Connect

    Spence, Megan M.; Ruiz, E. Janette; Rubin, Seth M.; Lowery, Thomas J.; Winssinger, Nicolas; Schultz, Peter G.; Wemmer, David E.; Pines, Alexander

    2004-03-25

    NMR-based biosensors that utilize laser-polarized xenon offer potential advantages beyond current sensing technologies. These advantages include the capacity to simultaneously detect multiple analytes, the applicability to in vivo spectroscopy and imaging, and the possibility of remote amplified detection. Here we present a detailed NMR characterization of the binding of a biotin-derivatized caged-xenon sensor to avidin. Binding of functionalized xenon to avidin leads to a change in the chemical shift of the encapsulated xenon in addition to a broadening of the resonance, both of which serve as NMR markers of ligand-target interaction. A control experiment in which the biotin-binding site of avidin was blocked with native biotin showed no such spectral changes, confirming that only specific binding, rather than nonspecific contact, between avidin and functionalized xenon leads to the effects on the xenon NMR spectrum. The exchange rate of xenon (between solution and cage) and the xenon spin-lattice relaxation rate were not changed significantly upon binding. We describe two methods for enhancing the signal from functionalized xenon by exploiting the laser-polarized xenon magnetization reservoir. We also show that the xenon chemical shifts are distinct for xenon encapsulated in different diastereomeric cage molecules. This demonstrates the potential for tuning the encapsulated xenon chemical shift, which is a key requirement for being able to multiplex the biosensor.

  14. Matrix isolation spectroscopic and theoretical study of dihydrogen activation by group V metal dioxide molecules.

    PubMed

    Zhou, Mingfei; Wang, Caixia; Zhuang, Jia; Zhao, Yanying; Zheng, Xuming

    2011-01-13

    The reactions of group V metal dioxide molecules with dihydrogen have been studied by matrix isolation infrared spectroscopy. The ground state VO(2) molecule is able to cleave dihydrogen heterolytically and spontaneously in forming the HVO(OH) molecule in solid argon. In contrast, the reaction of VO(2) with dideuterium to form DVO(OD) proceeds only under UV-visible excitation via a weakly bound VO(2)(?(2)-D(2)) complex. Theoretical calculations predict that the dihydrogen cleavage process is thermodynamically exothermic with a small barrier. The niobium and tantalum dioxide molecules react with dihydrogen to give primarily the side-on bonded metal dioxide bis-dihydrogen complexes, NbO(2)(?(2)-H(2))(2) and TaO(2)(?(2)-H(2))(2), which are further transferred to the HNbO(OH) and HTaO(OH) molecules via photoisomerization in combination with H(2) elimination under UV-visible light excitation. PMID:21142134

  15. Carbon Dioxide Influence on the Thermal Formation of Complex Organic Molecules in Interstellar Ice Analogs

    NASA Astrophysics Data System (ADS)

    Vinogradoff, V.; Duvernay, F.; Fray, N.; Bouilloud, M.; Chiavassa, T.; Cottin, H.

    2015-08-01

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H2O, NH3, CO2, H2CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  16. Systematization of published spectral data on sulfur dioxide molecule and its isotopologues

    NASA Astrophysics Data System (ADS)

    Voronina, S. S.; Akhlestin, A. Yu.; Kozodoev, A. V.; Lavrentiev, N. A.; Privezentsev, A. I.; Fazliev, A. Z.; Naumenko, O. V.

    2014-11-01

    The paper presents a description of properties of published spectral data on spectral lines' parameters of sulfur dioxide molecule and its isotopologues. These data were acquired from more than 150 publications for a period of 50 years. Data properties as well as data sources classification according to validity and trust criteria are presented in a form of an ontological knowledge base on information resources. Data source properties values are computed during the assessment of validity and trust1. Published ro-vibrational transitions, energy levels, spectral lines' parameters, knowledge base on information resources of sulfur dioxide molecule and its isotopologues are available in the Internet accessible information system W@DIS (http://wadis.saga.iao.ru/).

  17. Core localization and sigma* delocalization in the O 1s core-excited sulfur dioxide molecule.

    PubMed

    Lindgren, Andreas; Kosugi, Nobuhiro; Gisselbrecht, Mathieu; Kivimki, Antti; Burmeister, Florian; Naves de Brito, Arnaldo; Sorensen, Stacey L

    2008-03-21

    Electron-ion-ion coincidence measurements of sulfur dioxide at discrete resonances near the O 1s ionization edge are reported. The spectra are analyzed using a model based upon molecular symmetry and on the geometry of the molecule. We find clear evidence for molecular alignment that can be ascribed to symmetry properties of the ground and core-excited states. Configuration interaction (CI) calculations indicate geometry changes in accord with the measured spectra. For the SO(2) molecule, however, we find that the localized core hole does not produce measurable evidence for valence localization, since the transition dipole moment is not parallel to a breaking sigma* O-S bond, in contrast to the case of ozone. The dissociation behavior based upon the CI calculations using symmetry-broken orbitals while fixing a localized core-hole site is found to be nearly equivalent to that using symmetry-adapted orbitals. This implies that the core-localization effect is not strong enough to localize the sigma* valence orbital. PMID:18361575

  18. Core localization and {sigma}* delocalization in the O 1s core-excited sulfur dioxide molecule

    SciTech Connect

    Lindgren, Andreas; Kivimaeki, Antti; Sorensen, Stacey L.; Kosugi, Nobuhiro; Gisselbrecht, Mathieu; Burmeister, Florian; Naves de Brito, Arnaldo

    2008-03-21

    Electron-ion-ion coincidence measurements of sulfur dioxide at discrete resonances near the O 1s ionization edge are reported. The spectra are analyzed using a model based upon molecular symmetry and on the geometry of the molecule. We find clear evidence for molecular alignment that can be ascribed to symmetry properties of the ground and core-excited states. Configuration interaction (CI) calculations indicate geometry changes in accord with the measured spectra. For the SO{sub 2} molecule, however, we find that the localized core hole does not produce measurable evidence for valence localization, since the transition dipole moment is not parallel to a breaking {sigma}* O-S bond, in contrast to the case of ozone. The dissociation behavior based upon the CI calculations using symmetry-broken orbitals while fixing a localized core-hole site is found to be nearly equivalent to that using symmetry-adapted orbitals. This implies that the core-localization effect is not strong enough to localize the {sigma}* valence orbital.

  19. Comparison of xenon and radon metal halides

    NASA Astrophysics Data System (ADS)

    Lovallo, Christopher C.; Klobukowski, Mariusz

    2015-10-01

    Molecules of the type NgMX (Ng = Xe, Rn; M = Cu-Au; X = F, Cl) were studied at correlated levels of theory with extended polarized basis sets. Atomic charges, populations, and orbitals were calculated with the natural population analysis method. The calculated values for the xenon compounds agree very well with experimental data. Trends going from xenon to radon are discussed. The bonding in the radon compounds is found to be very similar to that in the xenon compounds. A small increase in bond lengths and interaction energies are consistent with the expected periodic trends in the noble gases.

  20. Chemically-bound xenon in fibrous silica.

    PubMed

    Kalinowski, Jaroslaw; Rsnen, Markku; Gerber, R Benny

    2014-06-21

    High-level quantum chemical calculations reported here predict the existence and remarkable stability, of chemically-bound xenon atoms in fibrous silica. The results may support the suggestion of Sanloup and coworkers that chemically-bound xenon and silica account for the problem of "missing xenon" (by a factor of 20!) from the atmospheres of Earth and Mars. So far, the host silica was assumed to be quartz, which is in contradiction with theory. The xenon-fibrous silica molecule is computed to be stable well beyond room temperature. The calculated Raman spectra of the species agree well with the main features of the experiments by Sanloup et al. The results predict computationally the existence of a new family of noble-gas containing materials. The fibrous silica species are finite molecules, their laboratory preparation should be feasible, and potential applications are possible. PMID:24807740

  1. HXeOBr in a xenon matrix

    SciTech Connect

    Khriachtchev, Leonid; Tapio, Salla; Domanskaya, Alexandra V.; Raesaenen, Markku; Isokoski, Karoliina; Lundell, Jan

    2011-03-28

    We report on a new noble-gas molecule HXeOBr prepared in a low-temperature xenon matrix from the HBr and N{sub 2}O precursors by UV photolysis and thermal annealing. This molecule is assigned with the help of deuteration experiments and ab initio calculations including anharmonic methods. The H-Xe stretching frequency of HXeOBr is observed at 1634 cm{sup -1}, which is larger by 56 cm{sup -1} than the frequency of HXeOH identified previously. The experiments show a higher thermal stability of HXeOBr molecules in a xenon matrix compared to HXeOH.

  2. High fidelity equation of state for xenon

    NASA Astrophysics Data System (ADS)

    Carpenter, J. H.; Flicker, D. G.; Root, S.; Magyar, R. J.; Hanson, D. L.; Mattsson, T. R.

    The noble gas xenon is a particularly interesting element. At standard pressure xenon is an fcc solid which melts at 161 K and then boils at 165 K, thus displaying a rather narrow liquid range on the phase diagram. On the other hand, under pressure the melting point is significantly higher: 3000 K at 30 GPa [1]. Under shock compression, electronic excitations become important at 40 GPa [2]. Finally, xenon forms stable molecules with fluorine (XeF2) suggesting that the electronic structure is significantly more complex than expected for a noble gas. With these reasons in mind, we studied the xenon Hugoniot using DFT/QMD [3] and validated the simulations with multi-Mbar shock compression experiments. The results show that existing equation of state models lack fidelity and so we developed a wide-range free-energy based equation of state using experimental data and results from first-principles simulations.

  3. Is xenon eldest?

    NASA Astrophysics Data System (ADS)

    Zahnle, K.

    It is well known that the solubility of noble gases in magmas decreases with increasing atomic weight. Xenon, the weightiest of the stable noble gases, is the least soluble atmospheric gas in magma. It is not unreasonable to suppose that the noble gases should have degassed from (or equilibrated with) a bubbling mantle in order of increasing solubility, such that xenon was the most rapidly degassed and helium the least. The apparent relative ages of the famous radiogenic noble gas isotopes agrees, at least qualitatively, with this premise. When atmospheric loss processes are assigned their proper place, several long-standing xenonological puzzles become added evidence for xenon's relative antiquity. Xenon being the afore-mentioned sense the oldest atmospheric gas, will have been most greatly subject to escape, be it impact-driven or EUV-driven. Nonradiogenic xenon's pronounced isotopic fractionation has already been attributed to escape; why it should be more fractionated than krypton would be assigned to xenon's greater atmospheric age. The small atmospheric inventory of xenon relative to the other nonradiogenic noblegases, known as the 'missing xenon' problem, could easily be explained by differential escape. The relatively tiny atmospheric inventories of the radiogenic daughter products of 129 Iodine and 244 Plutonium, both much smaller than would be expected from the inferred abundances of the parents in meteorites, offer a third and fourth data to support the hypothesis that Earth has lost most of its xenon.

  4. Is xenon eldest?

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1994-01-01

    It is well known that the solubility of noble gases in magmas decreases with increasing atomic weight. Xenon, the weightiest of the stable noble gases, is the least soluble atmospheric gas in magma. It is not unreasonable to suppose that the noble gases should have degassed from (or equilibrated with) a bubbling mantle in order of increasing solubility, such that xenon was the most rapidly degassed and helium the least. The apparent relative ages of the famous radiogenic noble gas isotopes agrees, at least qualitatively, with this premise. When atmospheric loss processes are assigned their proper place, several long-standing xenonological puzzles become added evidence for xenon's relative antiquity. Xenon being the afore-mentioned sense the oldest atmospheric gas, will have been most greatly subject to escape, be it impact-driven or EUV-driven. Nonradiogenic xenon's pronounced isotopic fractionation has already been attributed to escape; why it should be more fractionated than krypton would be assigned to xenon's greater atmospheric age. The small atmospheric inventory of xenon relative to the other nonradiogenic noblegases, known as the 'missing xenon' problem, could easily be explained by differential escape. The relatively tiny atmospheric inventories of the radiogenic daughter products of 129 Iodine and 244 Plutonium, both much smaller than would be expected from the inferred abundances of the parents in meteorites, offer a third and fourth data to support the hypothesis that Earth has lost most of its xenon.

  5. Carbon Dioxide Activation by Scandium Atoms and Scandium Monoxide Molecules: Formation and Spectroscopic Characterization of ScCO3 and OCScCO3 in Solid Neon.

    PubMed

    Zhang, Qingnan; Qu, Hui; Chen, Mohua; Zhou, Mingfei

    2016-01-28

    The reactions of carbon dioxide with scandium monoxide molecules and scandium atoms are investigated using matrix isolation infrared spectroscopy in solid neon. The species formed are identified by the effects of isotopic substitution on their infrared spectra as well as density functional calculations. The results show that the ground state ScO molecule reacts with carbon dioxide to form the carbonate complex ScCO3 spontaneously on annealing. The ground state Sc atom reacts with two carbon dioxide molecules to give the carbonate carbonyl complex OCScCO3 via the previously reported OScCO insertion intermediate on annealing. The observation of these spontaneous reactions is consistent with theoretical predictions that both the Sc + 2CO2 → OCScCO3 and ScO + CO2 → ScCO3 reactions are thermodynamically exothermic and are kinetically facile, requiring little or no activation energy. PMID:26738558

  6. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The sample cell at the heart of CVX-2 will sit inside a thermostat providing three layers of insulation. The cell itself comprises a copper body that conducts heat efficiently and smoothes out thermal variations that that would destroy the xenon's uniformity. Inside the cell, the oscillating screen viscometer element is supported between two pairs of electrodes that deflect the screen and then measure screen motion.

  7. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Because xenon near the critical point will collapse under its own weight, experiments on Earth (green line) are limited as they get closer (toward the left) to the critical point. CVX in the microgravity of space (red line) moved into unmeasured territory that scientists had not been able to reach.

  8. Solid xenon radiation detectors

    NASA Astrophysics Data System (ADS)

    Dolinski, Michelle J.

    2014-03-01

    Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of the liquid xenon detector technology is in the combination of the ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a unique anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers, under development at Drexel University, are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. Supported by a grant from the Charles E. Kaufman Foundation.

  9. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of liquid xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Resembling a tiny bit of window screen, the oscillator at the heart of CVX-2 will vibrate between two pairs of paddle-like electrodes. The slight bend in the shape of the mesh has no effect on the data. What counts are the mesh's displacement in the xenon fluid and the rate at which the displacement dampens. The unit shown here is encased in a small test cell and capped with a sapphire windown to contain the xenon at high pressure.

  10. Nanoporosity of an organo-clay shown by hyperpolarized xenon and 2D NMR spectroscopy.

    PubMed

    Sozzani, Piero; Bracco, Silvia; Comotti, Angiolina; Mauri, Michele; Simonutti, Roberto; Valsesia, Patrizia

    2006-05-14

    Interlayer nanoporosity of hectorite pillared by tetraethylammonium ions is explored by hyperpolarized xenon NMR and relevant gases such as carbon dioxide revealing the adsorption capacity of the open galleries. PMID:16767236

  11. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  12. Antiapoptotic activity of argon and xenon

    PubMed Central

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-01-01

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115

  13. Aggregation of amphiphilic molecules in supercritical carbon dioxide: A small angle X-ray scattering study

    SciTech Connect

    Fulton, J.L.; Pfund, D.M.; McClain, J.B.; Romack, T.J.; Maury, E.E.; Combes, J.R.; Samulski, E.T.; DeSimone, J.M.; Capel, M.

    1995-11-01

    Highly soluble amphiphilic materials are shown to form aggregates in supercritical CO{sub 2}. The strategy for synthesis of these amphiphilic molecules involves incorporating CO{sub 2}-philic segments that, for this study, are perfluorinated alkyl chains. These CO{sub 2} -philic regions function like the hydrocarbon tails of conventional surfactant molecules used in liquid organic solvents. Synthesis and characterization of three different CO{sub 2} amphiphiles are reported. Subsequent small angle X-ray scattering (SAXS) measurements were used to characterize the aggregation of these materials in supercritical CO{sub 2}. Each of the three amphiphiles studied showed a different type of aggregation behavior. A graft copolymer consisting of a CO{sub 2}-philic backbone and CO{sub 2}-phobic grafts associated into a micellar structure in the presence of water to promote hydrogen bonding. These aggregates contain approximately 600 grafts in the core. The commercially available surfactant perfluoroalkylpoly( ethylene oxide), or F(CF{sub 2}){sub 6-10}CH{sub 2} CH{sub 2}O(CH{sub 2}CH{sub 2}O){sub 3-8}H, forms classic reverse micelle structures having radii of about 84 A under the conditions of high pressure required to solubilize the material. A third amphiphile, the semifluorinated alkane diblock molecule F(CF{sub 2}){sub 10}(CH{sub 2}){sub 10}H, may form small aggregates of at most 4 unimers per aggregate. 41 refs., 10 figs., 1 tab.

  14. A Molecular Dynamics Study on the Confinement of Carbon Dioxide Molecules in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Lazor, Meagan; Rende, Deniz; Baysal, Nihat; Ozisik, Rahmi

    2012-02-01

    The influence of atmospheric carbon dioxide (CO2) concentration on global warming is considered as one of the primary environmental issues of the past two decades. The main source of CO2 emission is human activity, such as the use of fossil fuels in transportation and industrial plants. Following the release of Kyoto Protocol in 1997, effective ways of controlling CO2 emissions received much attention. As a result, various materials such as activated carbon, zeolites, and carbon nanotubes (CNTs) were investigated for their CO2 adsorbing properties. CNTs were reported to have CO2 adsorption capability twice that of activated carbon, hence they received the most attention. In the current study, single walled carbon nanotubes (SWNTs) were used as one dimensional nanoporous materials and their CO2 adsorption capacity was analyzed with Molecular Dynamics simulations. Results indicated that SWNTs are excellent CO2 adsorbers and their effectiveness increase at low CO2 concentrations. In addition, we showed that by varying temperature, CO2 can be removed from the SWNTs, providing a simple method to reuse SWNTs.

  15. Analysis of polyatomic molecules using high resolution coherent two-dimensional spectroscopy: Application to nitrogen dioxide.

    PubMed

    Chen, Peter C; Mitchell, Kamilah

    2008-11-21

    The peak-sorting capabilities of high resolution coherent two-dimensional (2D) spectroscopy provide a new way of dealing with severe rotational congestion. This paper describes the application of this technique to the polyatomic molecule, NO(2). NO(2) is a primary component of photochemical smog and has a notoriously complex and congested spectrum that extends from the infrared to the ultraviolet regions. This spectrum is infamous for having an unusually high density of peaks and very few regular patterns. However, the coherent 2D spectrum of NO(2) shows a network consisting of numerous X-shaped patterns that mark the locations of vibronic origins. This paper describes how peak sorting leads to the formation of such patterns and how peak coupling can be used to conduct a rotational analysis of congested areas in the visible spectrum of NO(2). PMID:19026054

  16. Strong anisotropy in the proton emission following fragmentation of H2O molecules by impact with slow, highly charged Xenon ions

    NASA Astrophysics Data System (ADS)

    Pei?, Z. D.; Hellhammer, R.; Sulik, B.; Stolterfoht, N.

    2009-12-01

    We measured the energy and angular distribution of ionic fragments produced by the interaction of 1-220 keV Xe22+ ions with water molecules. The measured distributions strongly depend on the projectile charge state and energy, as seen from the comparison of the results with previously published data for 5 keV He2+, and 2 and 90 keV Ne(3-9)+ ions. A significant forward-backward asymmetry of the energy and intensity of the H+ fragments is observed. The interpretation of the experimental results is guided by means of classical trajectory simulations based on a Coulomb explosion model. The experimental finding of a strong enhancement of the H+ yield at 90 is attributed to an alignment of the molecular axis during the collision and the momentum transfer from the slow projectile.

  17. Scalability study of solid xenon

    NASA Astrophysics Data System (ADS)

    Yoo, J.; Cease, H.; Jaskierny, W. F.; Markley, D.; Pahlka, R. B.; Balakishiyeva, D.; Saab, T.; Filipenko, M.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified Bridgeman's technique reproduces a large scale optically transparent solid xenon.

  18. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2001 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure that is placed inside a pressure canister. A similar canister holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (not shown) of the National Institutes of Standards and Technology, Gaithersburg, MD. This is a detail view of MSFC 0100143.

  19. Electrochemical reduction of carbon dioxide on pyrite as a pathway for abiogenic formation of organic molecules.

    PubMed

    Vladimirov, M G; Ryzhkov, Y F; Alekseev, V A; Bogdanovskaya, V A; Otroshchenko, V A; Kritsky, M S

    2004-08-01

    A wide spectrum of electrode potentials of minerals that compose sulfide ores enables the latter, when in contact with hydrothermal solutions, to form galvanic pairs with cathode potentials sufficient for electrochemical reduction of CO2. The experiments performed demonstrated the increase of cathode current on the rotating pyrite disc electrode in a range of potentials more negative than -800 mV in presence of CO2. In high-pressure experiments performed in a specially designed electrochemical cell equipped with a pyrite cathode and placed into autoclave, accumulation of formate was demonstrated after 24 hr passing of CO2 (50 atm, room temperature) through electrolyte solution. The formation of this product started on increasing the cathode potential to -800 mV (with respect to saturated silver chloride electrode). The yield grew exponentially upon cathode potential increase up to -1200 mV. The maximum current efficiency (0.12%) was registered at cathode potentials of about -1000 mV. No formate production was registered under normal atmospheric pressure and in the absence of imposed cathode potential. Neither in experiments, nor in control was formaldehyde found. It is proposed that the electrochemical reduction of CO2 takes part in the formation of organic molecules in hydrothermal solutions accompanying sulfide ore deposits and in 'black smokers' on the ocean floor. PMID:15279170

  20. Molecular interaction between DNA molecules and nanoscale modifications of titanium dioxide with the structures of anatase and ?-TiO2

    NASA Astrophysics Data System (ADS)

    Kutsev, M. G.; Kuz'micheva, G. M.; Obolenskaya, L. N.; Savinkina, E. V.

    2012-11-01

    The interaction of linear DNA molecules (hydrolysis products of Lambda phage DNA) with nanoscale modifications of titanium dioxide with anatase and ?-TiO2 structures is studied. The photosensitization of adsorption and degradation processes of DNA under the effects of visible light is revealed. It is established that the anatase exhibits increased activity towards DNA in a low salt buffer, while ?-TiO2 has a higher adsorption capacity in a buffer with high ionic strength. Recommendations on the practical application of nanoscale modifications of titanium dioxide with the structures of anatase and ?-TiO2 are given.

  1. Requirements for Xenon International

    SciTech Connect

    Hayes, James C.; Ely, James H.

    2013-09-26

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  2. Vibrational Relaxation of Ground-State Oxygen Molecules With Atomic Oxygen and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Saran, D. V.; Pejakovic, D. A.; Copeland, R. A.

    2008-12-01

    Vertical water vapor profiles are key to understanding the composition and energy budget in the mesosphere and lower thermosphere (MLT). The SABER instrument onboard NASA's TIMED satellite measures such profiles by detecting H2O(ν2) emission in the 6.8 μm region. Collisional deactivation of vibrationally excited O2, O2(X3Σ-g, υ = 1) + H2O ↔ O2(X3Σ-g, υ = 0) + H2O(ν2), is an important source of H2O(ν2). A recent study has identified two other processes involving excited O2 that control H2O(ν2) population in the MLT: (1) the vibrational-translational (V-T) relaxation of O2(X3Σ-g, υ = 1) level by atomic oxygen and (2) the V-V exchange between CO2 and excited O2 molecules [1]. Over the past few years SRI researchers have measured the atomic oxygen removal process mentioned above at room temperature [2] and 240 K [3]. These measurements have been incorporated into the models for H2O(ν2) emission [1]. Here we report laboratory studies of the collisional removal of O2(X3Σ-g, υ = 1) by O(3P) at room temperature and below, reaching temperatures relevant to mesopause and polar summer MLT (~150 K). Instead of directly detecting the O2(X3Σ-g, υ = 1) population, a technically simpler approach is used in which the υ = 1 level of the O2(a1Δg) state is monitored. A two-laser method is employed, in which the pulsed output of the first laser near 285 nm photodissociates ozone to produce atomic oxygen and O2(a1Δg, υ = 1), and the pulsed output of the second laser detects O2(a1Δg, υ = 1) via resonance-enhanced multiphoton ionization. With ground-state O2 present, owing to the rapid equilibration of the O2(X3Σ-g, υ = 1) and O2(a1Δg, υ = 1) populations via the processes O2(a1Δg, υ = 1) + O2(X3Σ-g, υ = 0) ↔ O2(a1Δg, υ = 0) + O2(X3Σ-g, υ = 1), the information on the O2(X3Σ-g, υ = 1) kinetics is extracted from the O2(a1Δg, υ = 1) temporal evolution. In addition, measurements of the removal of O2(X3Σ-g, υ = 1) by CO2 at room temperature will also be presented. This work is supported by the Johns Hopkins University, Applied Physics Laboratory, under grant 939991 (under NASA grant NAG5-13002). [1] Feofilov, A., Kutepov, A. A., Garcí­a-Comas, M., López-Puertas, M., Marshall, B. T., Gordley, L. L., Manuilova, R. O., Yankovsky, V. A., Pesnell, W. D., Goldberg, R. A., Petelina, S. V., and Russell III., J. M. 'SABER/TIMED Observations of Water Vapor in the Mesosphere: Retrieval Methodology and First Results'. Submitted to J. of Atmos. and Terrest. Phys., (2008). [2] Kalogerakis, K. S., Copeland, R. A., and Slanger, T. G., J. of Chem. Phys., 123, 194303, (2005). [3] Pejakovic, D. A., Campbell, Z., Kalogerakis, K. S., Copeland, R. A., and Slanger, T. G., Eos. Trans. AGU 85(47), Fall Meet. Suppl., Abstract SA41A-1032, (2004).

  3. Infrared spectra of water clusters in krypton and xenon matrices.

    PubMed

    Hirabayashi, Shinichi; Yamada, Koichi M T

    2005-06-22

    The infrared absorption spectra of the water molecules and small water clusters, (H(2)O)(n) with n = 2-6, trapped in solid argon, krypton, and xenon matrices have been investigated. The infrared bands of the water clusters with n = 5 and 6 in krypton and n = 3, 4, 5, and 6 in xenon matrices have been identified for the first time in the bonded OH stretching region. The frequency shifts in the bonded OH stretching band of the water dimer and trimer in xenon matrices show fairly large deviations to the red from the empirical correlation between the matrix shifts and the square root of the critical temperatures of the matrix material. The observed anomalous shifts suggest that the water dimer and trimer in solid xenon are trapped in multiple sites, and that the structures of the preferential trapping sites are different from those in argon and krypton matrices. PMID:16035776

  4. Hyperpolarized xenon-129 production and applications

    NASA Astrophysics Data System (ADS)

    Ruset, Iulian C.

    Hyperpolarized 3He and 129Xe were initially developed and used in the nuclear physics community. Lately they are primarily used in Medical Resonance Imaging (MRI). Although first MRI polarized gas images were acquired using 129Xe, the research community has focused mostly on 3He, due to the well-known polarizing methods and higher polarization numbers achieved. The main purpose of this thesis is to present a novel design of a large-scale SEOP polarizer for producing large quantities of highly polarized 129Xe. High Rb-Xe spin-exchange rates through long-lived van de Waals molecules at low total pressure, implemented in a novel counterflow polarizer design, resulted in xenon polarization as high as 50% for 1.2 liters/hour, with a maximum of 64% for 0.3 l/h. We characterized and improved the polarization process by finding the optimum operating parameters of the polarizer. Two new methods to efficiently use high-power diode lasers are described: a new optical arrangement for a better beam shaping of fiber coupled lasers and the first external-cavity spectrum narrowing of a stack of laser diode arrays. A new accumulation technique for the hyperpolarized xenon was developed and full recovery of polarization after a freeze-thaw cycle was demonstrated for the first time. Two approaches for xenon delivery, frozen and gas states, were developed. Hyperpolarized xenon transportation to Brigham and Women's Hospital was successfully accomplished for collaborative research. First MRI images using hyperpolarized xenon acquired at BWH are presented. Final chapter is focused on describing a low field human MRI scanner using hyperpolarized 3He. We built a human scale imager with open access for orientational studies of the lung functionality. Horizontal and vertical human lung images were acquired as a first stage of this project.

  5. Lanthanide Complexes with Multidentate Oxime Ligands as Single-Molecule Magnets and Atmospheric Carbon Dioxide Fixation Systems.

    PubMed

    Ho?y?ska, Ma?gorzata; Clrac, Rodolphe; Rouzires, Mathieu

    2015-09-14

    The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 (1: [La2 (pop)2 (acac)4 (CH3 OH)], 2: [Dy2 (pop)(acac)5 ]) are synthesized from the 2-hydroxyimino-N-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3, 4, and 5 (3: [Dy2 (naphthsaoH)2 (acac)4 H(OH)]?0.85?CH3 CN?1.58?H2 O; 4: [Tb2 (naphthsaoH)2 (acac)4 H(OH)]?0.52?CH3 CN?1.71?H2 O; 5: [La6 (CO3 )2 (naphthsao)5 (naphthsaoH)0.5 (acac)8 (CO3 )0.5 (CH3 OH)2.76 H5.5 (H2 O)1.24 ]?2.39?CH3 CN?0.12?H2 O) contain 1-(1-hydroxynaphthalen-2-yl)-ethanone oxime (naphthsaoH2 ). In 1-4, dinuclear [Ln2 ] complexes crystallize, whereas hexanuclear La(III) complex 5 is formed after fixation of atmospheric carbon dioxide. Dy(III) -based complexes 2 and 3 display single-molecule-magnet properties with energy barriers of 27 and 98?K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy(3+) ions. PMID:26230414

  6. Solid Xenon Project

    NASA Astrophysics Data System (ADS)

    Balakishiyeva, Durdana N.; Mahapatra, Rupak; Saab, Tarek; Yoo, Jonghee

    2010-08-01

    Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

  7. Solid Xenon Project

    SciTech Connect

    Balakishiyeva, Durdana N.; Saab, Tarek; Mahapatra, Rupak; Yoo, Jonghee

    2010-08-30

    Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

  8. Shear Thinning in Xenon

    NASA Technical Reports Server (NTRS)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  9. Xenon Suboxides Stable under Pressure.

    PubMed

    Hermann, Andreas; Schwerdtfeger, Peter

    2014-12-18

    We present results from first-principles calculations on solid xenon-oxygen compounds under pressure. We find that the xenon suboxide Xe3O2 is the first compound to become more stable than the elements, at around P = 75 GPa. Other, even more xenon-rich compounds follow at higher pressures, while no region of enthalpic stability is found for the monoxide XeO. We establish the spectroscopic fingerprints of a variety of structural candidates for a recently synthesized xenon-oxygen compound at atmospheric pressure and, on the basis of the proposed stoichiometry XeO2, suggest an orthorhombic structure that comprises extended sheets of square-planar-coordinated xenon atoms connected through bent Xe-O-Xe linkages. PMID:26273984

  10. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  11. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  12. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with the chondrites, with Earth, or with none of the above. Modern spacecraft mass spectrometers are at least 100-fold more sensitive to noble gases. Sending such an instrument to Venus may be the last best hope for decrypting what Earth's noble gases have been trying to tell us.

  13. Critical Viscosity of Xenon investigators

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Dr. Robert F. Berg (right), principal investigator and Dr. Micheal R. Moldover (left), co-investigator, for the Critical Viscosity of Xenon (CVX/CVX-2) experiment. They are with the National Institutes of Standards and Technology, Gaithersburg, MD. The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of chemicals.

  14. Liquid xenon purification, de-radonation (and de-kryptonation)

    NASA Astrophysics Data System (ADS)

    Pocar, Andrea

    2015-08-01

    Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes (85Kr,39,42Ar,220,222Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon are addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.

  15. Study of xenon binding in cryptophane-A using laser-induced NMR polarization enhancement

    SciTech Connect

    Luhmer, M.; Goodson, B.M.; Song, Y.Q.; Laws, D.D.; Kaiser, L.; Pines, A.

    1999-04-14

    Xenon is chemically inert, yet exhibits NMR parameters that are highly sensitive to its chemical environment. Considerable work has therefore capitalized on the utility of {sup 129}Xe (I = 1/2) as a magnetic resonance probe of molecules, materials, and biological systems. In solution, spin-polarization transfer between laser-polarized xenon and the hydrogen nuclei of nearby molecules leads to signal enhancements in the resolved {sup 1}H NMR spectrum, offering new opportunities for probing the chemical environment of xenon atoms. Following binding of laser-polarized xenon to molecules of cryptophane-A, selective enhancements of the {sup 1}H NMR signals were observed. A theoretical framework for the interpretation of such experimental results is provided, and the spin polarization-induced nuclear Overhauser effects are shown to yield information about the molecular environment of xenon. The observed selective {sup 1}H enhancements allowed xenon-proton internuclear distances to be estimated. These distances reveal structural characteristics of the complex, including the preferred molecular conformations adopted by cryptophane-A upon binding of xenon.

  16. Solubilized xenon 133 lung scintigraphy

    SciTech Connect

    Oates, E.; Sarno, R.C.

    1988-11-01

    Lung scanning using solubilized xenon 133 can provide important information concerning both pulmonary perfusion and ventilation. This technique proved valuable in establishing the diagnosis of congenital lobar emphysema in a 7-month-old baby.

  17. A Decade of Xenon Chemistry

    ERIC Educational Resources Information Center

    Moody, G. J.

    1974-01-01

    Presents reactions for the formation of xenon compounds and compounds of the other inert gases. Provides bonding and structure theories for noble gas compounds and speculates on possible applications. (GS)

  18. The XENON1T Demonstrator

    NASA Astrophysics Data System (ADS)

    Budnik, Ran; Aprile, Elena; Choi, Bin; Contreras, Hugo; Goetzke, Luke; Lim, Kyungeun; Lang, Rafael; Melgarejo, Antonio; Persiani, Rino; Plante, Guillaume; Rizzo, Alfio; Shagin, Peter

    2012-03-01

    We present the results from a facility called the XENON1T Demonstrator at Columbia University, that has been designed and built as a prototype for the XENON1T cryogenic system and TPC. Its primary goal is to demonstrate that the high LXe purity (<1 part per billion O2 equivalent) required for electrons to drift freely over a distance of 1 meter, as in the XENON1T TPC, can be achieved and on a time scale of weeks. The approach adopted in all XENON detectors thus far is that of gas purification with continuous circulation with a diaphragm pump through a heated getter. We show results for high speed recirculation, above 100 slpm, the development of a high voltage feedthrough which is radio pure and the design and application of a prototype TPC to test the purity.

  19. Direct WIMP searches with XENON100 and XENON1T

    NASA Astrophysics Data System (ADS)

    Alfredo Davide, Ferella

    2015-05-01

    The XENON100 experiment is the second phase of the XENON direct Dark Matter search program. It consists of an ultra-low background double phase (liquid-gas) xenon filled time projection chamber with a total mass of 161 kg (62 in the target region and 99 in the active shield), installed at the Laboratori Nazionali del Gran Sasso (LNGS). Here the results from the 224.6 live days of data taken between March 2011 and April 2012 are reported. The experiment set one of the most stringent limits on the WIMP-nucleon spin-independent cross section to date (2 × 10-45 cm2 for a 55 Gev/c2 WIMP mass at 90 % confidence level) and the most stringent on the spin-dependent WIMP-neutron interaction (3.5 × 10-40 for a 45 GeV/c2 WIMP mass). With the same dataset, XENON100 excludes also solar axion coupling to electrons at gAe > 7.7 × 10-12 for a mass of mAxion <1 keV/c2 and galactic axion couplings by gAe > 1 × 10-12 at a mass range of mAxion = 5-10 keV/c2 (both 90 % C.L.). Moreover an absolute spectral comparison between simulated and measured nuclear recoil distributions of light and charge signals from a 241AmBe source demonstrates a high level of detector and systematics understanding. Finally, the third generation of the XENON experiments, XENON1T, is the first tonne scale direct WIMP search experiment currently under construction. The commissioning phase of XENON1T is expected to start in early 2015 followed, a few months after, by the first science run. The experiment will reach sensitivities on the WIMP-nucleon spin-independent cross section down to 2 ×10-47 cm2 after two years of data taking.

  20. Design and comparison of exchange spectroscopy approaches to cryptophane-xenon host-guest kinetics

    NASA Astrophysics Data System (ADS)

    Korchak, Sergey; Kilian, Wolfgang; Schröder, Leif; Mitschang, Lorenz

    2016-04-01

    Exchange spectroscopy is used in combination with a variation of xenon concentration to disentangle the kinetics of the reversible binding of xenon to cryptophane-A. The signal intensity of either free or crytophane-bound xenon decays in a manner characteristic of the underlying exchange reactions when the spins in the other pool are perturbed. Three experimental approaches, including the well-known Hyper-CEST method, are shown to effectively entail a simple linear dependence of the signal depletion rate, or of a related quantity, on free xenon concentration. This occurs when using spin pool saturation or inversion followed by free exchange. The identification and quantification of contributions to the binding kinetics is then straightforward: in the depletion rate plot, the intercept at the vanishing free xenon concentration represents the kinetic rate coefficient for xenon detachment from the host by dissociative processes while the slope is indicative of the kinetic rate coefficient for degenerate exchange reactions. Comparing quantified kinetic rates for hyperpolarized xenon in aqueous solution reveals the high accuracy of each approach but also shows differences in the precision of the numerical results and in the requirements for prior knowledge. Because of their broad range of applicability the proposed exchange spectroscopy experiments can be readily used to unravel the kinetics of complex formation of xenon with host molecules in the various situations appearing in practice.

  1. Creation of Defects and Interactions Between Defects and Small Molecules on Titanium DIOXIDE(110 Surfaces: Comparative Shg and XPS Studies

    NASA Astrophysics Data System (ADS)

    Shultz, Ashley Nicholle

    Rutile TiO_2 surfaces, which have broad applications in photocatalysis, have been extensively studied for over two decades. Despite this research effort, large gaps exist in the basic understanding of surface structure, methods by which surface defects can be created, and interactions between small molecules and these surfaces. In this thesis, Second Harmonic Generation (SHG) is used to probe the structure of TiO_2 (110) surfaces. These experiments show that above band-gap UV photons create oxygen-vacancy defects on single -crystal surfaces, a process previously considered unlikely. This defect-creation saturates after only 360 J/cm^2 total UV fluence. Further understanding of UV defect creation is gained through parallel X-ray Photoelectron Spectroscopy (XPS) experiments. Some Ultraviolet Photoelectron Spectroscopy (UPS) studies are also presented here, but this technique is rapidly abandoned due to difficulties in interpreting the UPS spectra without ambiguity. These studies rule out contaminant-driven interactions and allow quantification of the defects produced by UV illumination. The number of defects produced by UV at saturation is consistent with oxygen vacancies at 1/6 of the total oxygen sites present on the surface. In addition, both SHG and XPS are used to examine interactions between these defects and small molecules (interactions between defects and rm O_2, H_2O, HCOOH, and N_2 O are presented here). The results of these experiments are then compared to previous studies present in the literature on other molecules. In compiling experiments done with many different molecules, it becomes clear that the observed defect-molecule interactions correlate with the electron affinity of the molecule used. If the molecule has an electron affinity it will interact with surface defects, resulting in removal of the defect signature. It is unclear however, that removal of the defect signature in this way necessarily implies that the surface has been physically healed to become stoichiometric. XPS indicates that this is the case, but detailed study of the SHG experiments suggests that it is possible that healing may sometimes occur through the formation of rm Ti^ {4+}{:}X^- complexes from a rm Ti^{3+} defect and an electronegative molecule X. Indeed it appears that rm Ti^{4+}{:}O _sp{2}{-} complexes are present on all TiO_2(110) surfaces.

  2. Calculation of the characteristics of xenon excilamps using a one-dimensional hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Avtaeva, S. V.; Skornyakov, A. V.

    2010-08-01

    The characteristics of xenon barrier-discharge excilamps have been calculated with the use of a one-dimensional hydrodynamic model in the approximation of a nonlocal electric field. It has been shown that a two-peak mode of operation of the barrier discharge is realized in xenon excilamps. The 172-nm radiation of molecules prevails in the radiation of excilamps; the 147-nm resonance radiation makes no more than 1% of the overall radiation. The radiation intensity of xenon excilamps and their optical efficiency vary inversely on varying the parameters: the radiation intensity of a lamp falls, whereas its optical efficiency increases.

  3. Stability of xenon oxides at high pressures

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Jung, Daniel Y.; Oganov, Artem R.; Glass, Colin W.; Gatti, Carlo; Lyakhov, Andriy O.

    2013-01-01

    Xenon, which is quite inert under ambient conditions, may become reactive under pressure. The possibility of the formation of stable xenon oxides and silicates in the interior of the Earth could explain the atmospheric missing xenon paradox. Using an ab initio evolutionary algorithm, we predict the existence of thermodynamically stable Xe-O compounds at high pressures (XeO, XeO2 and XeO3 become stable at pressures above 83, 102 and 114 GPa, respectively). Our calculations indicate large charge transfer in these oxides, suggesting that large electronegativity difference and high pressure are the key factors favouring the formation of xenon compounds. However, xenon compounds cannot exist in the Earth's mantle: xenon oxides are unstable in equilibrium with the metallic iron occurring in the lower mantle, and xenon silicates are predicted to decompose spontaneously at all mantle pressures (<136 GPa). However, it is possible that xenon atoms may be retained at defects in mantle silicates and oxides.

  4. Superheating of liquid xenon in metal tubes

    NASA Astrophysics Data System (ADS)

    Baidakov, V. G.; Kaverin, A. M.

    2009-08-01

    The method of measuring the lifetime has been used to investigate the kinetics of spontaneous boiling-up of superheated xenon in copper tubes. In experiments the temperature dependence of the mean lifetime has been determined at pressures of 1.48 and 1.98 MPa. The data obtained have been compared with homogeneous nucleation theory. It has been found that experimental values of the attainable superheating temperature and the derivative (∂ ln J/∂T)p are systematically lower than their theoretical values. A description of experimental data in the framework of heterogeneous nucleation theory has shown that for the agreement of theory and experiment with the use of a macroscopic model of nucleation on a smooth surface it is necessary to take the value of the equilibrium contact angle θ0 equal to 70°, which is not a characteristic for a xenon-metal system. Taking into account the contribution of the energy of the three-phase contact solid wall-liquid-gas in a microscopic nucleation model makes it possible to reconcile heterogeneous nucleation theory and experimental data at a contact angle θ0 close to zero, with the linear tension taken equal to -6×10-12 J/m and the microscopic contact angle θ∗≃57°. The number of weakened sites, on which bubbles may form, is always smaller than the number of molecules adjacent to the solid wall.

  5. Xenon Filled Silicon Germanium Thermoelectric Generators

    NASA Technical Reports Server (NTRS)

    Dewinter, F.

    1972-01-01

    An analysis is presented that shows the desirability and feasibility of using a xenon fill in the initial stages of operation of a silicon-germanium radioisotope thermoelectric generator to be used in outer-planetary exploration. The xenon cover gas offers protection against oxidation and against material sublimation, and allows the generator to deliver required power throughout the prelaunch and launch phases. The protective mechanisms afforded by the xenon cover gas and the mechanization of a xenon supply system are also discussed.

  6. Barium tagging in solid xenon for the EXO experiment

    NASA Astrophysics Data System (ADS)

    Mong, Brian

    2011-07-01

    Neutrinoless double beta decay experiments are searching for rare decay modes never before observed to uncover the absolute mass of the neutrino, as well as to discover if it is a Majorana fermion. Detection of the daughter nucleus can help provide positive identification of this event over most radioactive backgrounds. The goal of the Enriched Xenon Observatory (EXO) is to measure the rate of 0nubetabeta decay in 136Xe, incorporating 136Ba daughter identification by laser induced fluorescence spectroscopy. Here, we investigate a technique in which the 136Ba daughter is grabbed with a cryogenic probe by freezing it in solid xenon ice, and detected directly in the solid xenon. The absorption and fluorescence spectra of barium in solid xenon were observed for the first time in this work. Identification of the 6s 2 1S0 ? 6s6p 1P 1 transition in both absorption (558 nm) and emission spectra (594 nm) were made. Additional blue absorption and emission lines were observed, but their transitions were not identified. Saturation of the 6s2 1S0 ? 6s6p 1P1 transition was not observed with increased excitation rates using resonance excitation at 558nm. From this a limit on the metastable decay rate was deduced to be greater than 104 s-1. Finally a fluorescence spectrum was obtained from a sample with only 20,000 atoms in the laser beam. With potential improvements of 107 in detection efficiency, single barium atom detection seems possible in solid xenon. A fiber probe detector based on a bare single mode fiber was also constructed and tested with fluorescing dye molecules. Successful detection of a few dye molecules in solution at the probe tip was demonstrated.

  7. Critical Viscosity of Xenon team

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure (at left) that is placed inside a pressure canister. A similar canister (right) holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (left) of the National Institutes of Standards and Technology, Gaithersburg, MD.

  8. Critical Viscosity of Xenon team

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure (at left) that is placed inside a pressure canister. A similar canister (right) holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (not shown) of the National Institutes of Standards and Technology, Gaithersburg, MD.

  9. Substituent effects on xenon binding affinity and solution behavior of water-soluble cryptophanes.

    PubMed

    Hill, P Aru; Wei, Qian; Troxler, Thomas; Dmochowski, Ivan J

    2009-03-01

    A water-soluble triacetic acid cryptophane-A derivative (TAAC) was synthesized and determined by isothermal titration calorimetry and fluorescence quenching assay to have a xenon association constant of 33,000 M(-1) at 293 K, which is the largest value measured for any host molecule to date. Fluorescence lifetime measurements of TAAC in the presence of varying amounts of xenon indicated static quenching by the encapsulated xenon and the presence of a second non-xenon-binding conformer in solution. Acid-base titrations and aqueous NMR spectroscopy of TAAC and a previously synthesized tris(triazole propionic acid) cryptophane-A derivative (TTPC) showed how solvation of the carboxylate anions can affect the aqueous behavior of the large, nonpolar cryptophane. Specifically, whereas only the crown-crown conformer of TTPC was observed, a crown-saddle conformer of TAAC was also assigned in aqueous solution. PMID:19239271

  10. Conversion of Carbon Dioxide by Methane Reforming under Visible-Light Irradiation: Surface-Plasmon-Mediated Nonpolar Molecule Activation.

    PubMed

    Liu, Huimin; Meng, Xianguang; Dao, Thang Duy; Zhang, Huabin; Li, Peng; Chang, Kun; Wang, Tao; Li, Mu; Nagao, Tadaaki; Ye, Jinhua

    2015-09-21

    A novel CO2 photoreduction method, CO2 conversion through methane reforming into syngas (DRM) was adopted as an efficient approach to not only reduce the environmental concentration of the greenhouse gas CO2 but also realize the net energy storage from solar energy to chemical energy. For the first time it is reported that gold, which was generally regarded to be inactive in improving the performance of a catalyst in DRM under thermal conditions, enhanced the catalytic performance of Rh/SBA-15 in DRM under visible-light irradiation (1.7 times, CO2 conversion increased from 2100 to 3600 μmol g(-1) s(-1)). UV/Vis spectra and electromagnetic field simulation results revealed that the highly energetic electrons excited by local surface plasmon resonances of Au facilitated the polarization and activation of CO2 and CH4 with thermal assistance. This work provides a new route for CO2 photoreduction and offers a distinctive method to photocatalytically activate nonpolar molecules. PMID:26271348

  11. Light emission spectra of molecules in negative and positive back discharges in nitrogen with carbon dioxide mixture at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Czech, Tadeusz; Sobczyk, Arkadiusz Tomasz; Jaworek, Anatol

    2015-10-01

    Results of spectroscopic investigations and current-voltage characteristics of back discharge generated in point-plane electrode geometry with plate covered fly ash layer in a mixture of N2 + CO2 at atmospheric pressure, for positive and negative polarity of the discharge electrode are presented in this paper. Point-plane electrode configuration was chosen in these studies in order to simulate the physical processes occurring in electrostatic precipitator. Three forms of back discharge for both polarities were investigated: glow, streamers and low-current back-arc. Diatomic reactions and dissociation products of N2 and CO2 (OH, NO, CN), atoms from fly ash layer (N, Ti, Na), free radicals, molecules or ions, which have unpaired valence electrons, and other active species, e.g., N2 (in C,B,A-state), N 2 + (B) were identified in the discharges by the method of optical emission spectroscopy (OES). The measurements shown that atomic and molecular optical emission spectral lines from back discharge depend on the forms of discharge and the discharge current. In normal electrical discharges, the emission spectra are dominated by gaseous components, but in the case of back discharge, atomic lines belonging to chemical compounds of fly ash were also recorded and identified.

  12. Single molecule magnets with protective ligand shells on gold and titanium dioxide surfaces: In situ electrospray deposition and x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Handrup, Karsten; Richards, Victoria J.; Weston, Matthew; Champness, Neil R.; O'Shea, James N.

    2013-10-01

    Two single molecule magnets based on the dodecamanganese (III, IV) cluster with either benzoate or terphenyl-4-carboxylate ligands, have been studied on the Au(111) and rutile TiO2(110) surfaces. We have used in situ electrospray deposition to produce a series of surface coverages from a fraction of a monolayer to multilayer films in both cases. X-ray absorption spectroscopy measured at the Mn L-edge (Mn 2p) has been used to study the effect of adsorption on the oxidation states of the manganese atoms in the core. In the case of the benzoate-functionalised complex reduction of the manganese metal centres is observed due to the interaction of the manganese core with the underlying surface. In the case of terphenyl-4-carboxylate, the presence of this much larger ligand prevents the magnetic core from interacting with either the gold or the titanium dioxide surfaces and the characteristic Mn3+ and Mn4+ oxidation states necessary for magnetic behaviour are preserved.

  13. Viscosity of Xenon Examined in Microgravity

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.

    1999-01-01

    Why does water flow faster than honey? The short answer, that honey has a greater viscosity, merely rephrases the question. The fundamental answer is that viscosity originates in the interactions between a fluid s molecules. These interactions are so complicated that, except for low-density gases, the viscosity of a fluid cannot be accurately predicted. Progress in understanding viscosity has been made by studying moderately dense gases and, more recently, fluids near the critical point. Modern theories predict a universal behavior for all pure fluids near the liquid-vapor critical point, and they relate the increase in viscosity to spontaneous fluctuations in density near this point. The Critical Viscosity of Xenon (CVX) experiment tested these theories with unprecedented precision when it flew aboard the Space Shuttle Discovery (STS-85) in August 1997. Near the critical point, xenon is a billion times more compressible than water, yet it has about the same density. Because the fluid is so "soft," it collapses under its own weight when exposed to the force of Earth s gravity - much like a very soft spring. Because the CVX experiment is conducted in microgravity, it achieves a very uniform fluid density even very close to the critical point. At the heart of the CVX experiment is a novel viscometer built around a small nickel screen. An oscillating electric field forces the screen to oscillate between pairs of electrodes. Viscosity, which dampens the oscillations, can be calculated by measuring the screen motion and the force applied to the screen. So that the fluid s delicate state near the critical point will not be disrupted, the screen oscillations are set to be both slow and small.

  14. Xenon Fractionation and Archean Hydrogen Escape

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  15. Xenon fluoride solutions effective as fluorinating agents

    NASA Technical Reports Server (NTRS)

    Hyman, H. H.; Quarterman, L. A.; Sheft, I.

    1967-01-01

    Solutions of xenon fluorides in anhydrous hydrogen fluoride have few disruptive effects and leave a residue consisting of gaseous xenon, which can be recovered and refluorinated. This mild agent can be used with materials which normally must be fluorinated with fluorine alone at high temperatures.

  16. High pressure xenon ionization detector

    DOEpatents

    Markey, John K. (New Haven, CT)

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  17. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  18. Xenon Gamma Detector Project Support

    SciTech Connect

    Vanier,P.E.; Forman, L.

    2008-04-01

    This project provided funding of $48,500 for part of one year to support the development of compressed xenon spectrometers at BNL. This report describes upgrades that were made to the existing detector system electronics during that period, as well as subsequent testing with check sources and Special Nuclear Materials. Previous testing of the equipment extended only up to the energy of 1.3 MeV, and did not include a spectrum of Pu-239. The new electronics allowed one-button activation of the high voltage ramp that was previously controlled by manual adjustments. Mechanical relays of the charging circuit were replaced by a tera-ohm resistor chain and an optical switch. The preamplifier and shaping amplifier were replaced by more modern custom designs. We found that the xenon purity had not been degraded since the chamber was filled 10 years earlier. The resulting spectra showed significantly better resolution than sodium iodide spectra, and could be analyzed quite effectively by methods using peak area templates.

  19. Optical and electron spin resonance studies of xenon-nitrogen-helium condensates containing nitrogen and oxygen atoms.

    PubMed

    Boltnev, Roman E; Bykhalo, Igor B; Krushinskaya, Irina N; Pelmenev, Alexander A; Khmelenko, Vladimir V; Mao, Shun; Meraki, Adil; Wilde, Scott C; McColgan, Patrick T; Lee, David M

    2015-03-19

    We present the first observations of excimer XeO* molecules in molecular nitrogen films surrounding xenon cores of nanoclusters. Multishell nanoclusters form upon the fast cooling of a helium jet containing small admixtures of nitrogen and xenon by cold helium vapor (T = 1.5 K). Such nanoclusters injected into superfluid helium aggregate into porous impurity-helium condensates. Passage of helium gas with admixtures through a radio frequency discharge allows the storage of high densities of radicals stabilized in impurity-helium condensates. Intense recombination of the radicals occurs during destruction of such condensates and generates excited species observable because of optical emission. Rich spectra of xenon-oxygen complexes have been detected upon destruction of xenon-nitrogen-helium condensates. A xenon environment quenches metastable N((2)D) atoms but has a much weaker effect on the luminescence of N((2)P) atoms. Electron spin resonance spectra of N((4)S) atoms trapped in xenon-nitrogen-helium condensates have been studied. High local concentrations of nitrogen atoms (up to 10(21) cm(-3)) stabilized in xenon-nitrogen nanoclusters have been revealed. PMID:25353614

  20. Pure xenon hexafluoride prepared for thermal properties studies

    NASA Technical Reports Server (NTRS)

    Malm, J. G.; Osborne, D. W.; Schreiner, F.

    1967-01-01

    Preparation of a xenon hexafluoride and sodium fluoride salt yields a sample of the highest possible purity for use in thermal measurements. The desired hexafluoride can easily be freed from the common contaminants, xenon tetra-fluoride, xenon difluoride, and xenon oxide tetrafluoride, because none of these compounds reacts with sodium fluoride.

  1. The atmosphere of Mars - Detection of krypton and xenon

    NASA Technical Reports Server (NTRS)

    Owen, T.; Biemann, K.; Biller, J. E.; Lafleur, A. L.; Rushneck, D. R.; Howarth, D. W.

    1976-01-01

    Krypton and xenon have been discovered in the Martian atmosphere with the mass spectrometer on the second Viking lander. Krypton is more abundant than xenon. The relative abundances of the krypton isotopes appear normal, but the ratio of xenon-129 to xenon-132 is enhanced on Mars relative to the terrestrial value for this ratio. Some possible implications of these findings are discussed.

  2. Structures of xenon oxides at high pressures

    NASA Astrophysics Data System (ADS)

    Worth, Nicholas; Pickard, Chris; Needs, Richard; Dewaele, Agnes; Loubeyre, Paul; Mezouar, Mohamed

    2014-03-01

    For many years, it was believed that noble gases such as xenon were entirely inert. It was only in 1962 that Bartlett first synthesized a compound of xenon. Since then, a number of other xenon compounds, including oxides, have been synthesized. Xenon oxides are unstable under ambient conditions but have been predicted to stabilize under high pressure. Here we present the results of a combined theoretical and experimental study of xenon oxides at pressures of 80-100 GPa. We have synthesized new xenon oxides at these pressures and they have been characterized with X-ray diffraction and Raman spectroscopy. Calculations were performed with a density-functional theory framework. We have used the ab-initio random structure searching (AIRSS) method together with a data-mining technique to determine the stable compounds in the xenon-oxygen system in this pressure range. We have calculated structural and optical properties of these phases, and a good match between theoretical and experimental results has been obtained. Funding for computational research provided by the engineering and physical sciences research council (EPSRC; UK). Computing resources provided by Cambridge HPC and HECToR. X-ray diffraction experiments performed at ESRF.

  3. Hyperpolarized Xenon for NMR and MRI Applications

    PubMed Central

    Witte, Christopher; Kunth, Martin; Döpfert, Jörg; Rossella, Federica; Schröder, Leif

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from intrinsic low sensitivity because even strong external magnetic fields of ~10 T generate only a small detectable net-magnetization of the sample at room temperature 1. Hence, most NMR and MRI applications rely on the detection of molecules at relative high concentration (e.g., water for imaging of biological tissue) or require excessive acquisition times. This limits our ability to exploit the very useful molecular specificity of NMR signals for many biochemical and medical applications. However, novel approaches have emerged in the past few years: Manipulation of the detected spin species prior to detection inside the NMR/MRI magnet can dramatically increase the magnetization and therefore allows detection of molecules at much lower concentration 2. Here, we present a method for polarization of a xenon gas mixture (2-5% Xe, 10% N2, He balance) in a compact setup with a ca. 16000-fold signal enhancement. Modern line-narrowed diode lasers allow efficient polarization 7 and immediate use of gas mixture even if the noble gas is not separated from the other components. The SEOP apparatus is explained and determination of the achieved spin polarization is demonstrated for performance control of the method. The hyperpolarized gas can be used for void space imaging, including gas flow imaging or diffusion studies at the interfaces with other materials 8,9. Moreover, the Xe NMR signal is extremely sensitive to its molecular environment 6. This enables the option to use it as an NMR/MRI contrast agent when dissolved in aqueous solution with functionalized molecular hosts that temporarily trap the gas 10,11. Direct detection and high-sensitivity indirect detection of such constructs is demonstrated in both spectroscopic and imaging mode. PMID:22986346

  4. Electrical conductivity of shock compressed xenon

    NASA Astrophysics Data System (ADS)

    Mintsev, Victor B.; Ternovoi, Vladimir Ya.; Gryaznov, Victor K.; Pyalling, Alexei A.; Fortov, Vladimir E.; Iosilevskii, Igor L.

    2000-04-01

    The results on measurements of electrical conductivity of shock compressed gaseous and liquid xenon are discussed. Thermodynamical parameters of xenon are calculated in frames of plasma chemical model. To estimate electrical conductivity modified Ziman theory is used. A reasonable agreement between experimental and theoretical data on equation of state and transport properties is shown in a wide range of parameters from gas to liquid densities, pressures 10-140 GPa and temperatures >5000 K. New experimental data on measurements of equation of state and conductivity of xenon under multiple shock compression are presented.

  5. Electrical Conductivity of Shock Compressed Xenon

    NASA Astrophysics Data System (ADS)

    Mintsev, V. B.; Ternovoi, V. Ya.; Gryaznov, V. K.; Pyalling, A. A.; Fortov, V. E.

    1999-06-01

    The results on measurements of electrical conductivity of shock compressed gaseous and liquid xenon are discussed. Thermodynamic parameters of xenon are calculated in the frame of plasma chemical model. Semi-empirical equation of state was constructed for the liquid range of densities. To estimate the electrical conductivity the modified Ziman theory was used. A reasonable agreement between experimental and theoretical data on equation of state and transport properties is shown in a wide range of parameters: from gas to liquid densities, pressures 10-140 GPa and temperatures >5000K. New experimental data on measurements of equation of state and electrical conductivity of xenon under multiple shock compression are presented.

  6. Extreme confinement of xenon by cryptophane-111 in the solid state.

    PubMed

    Joseph, Akil I; Lapidus, Saul H; Kane, Christopher M; Holman, K Travis

    2015-01-26

    Solids that sorb, capture and/or store the heavier noble gases are of interest because of their potential for transformative rare gas separation/production, storage, or recovery technologies. Herein, we report the isolation, crystal structures, and thermal stabilities of a series of xenon and krypton clathrates of (±)-cryptophane-111 (111). One trigonal crystal form, Xe@111⋅y(solvent), is exceptionally stable, retaining xenon at temperatures of up to about 300 °C. The high kinetic stability is attributable not only to the high xenon affinity and cage-like nature of the host, but also to the crystal packing of the clathrate, wherein each window of the molecular container is blocked by the bridges of adjacent containers, effectively imprisoning the noble gas in the solid state. The results highlight the potential of discrete molecule materials exhibiting intrinsic microcavities or zero-dimensional pores. PMID:25504739

  7. Xenon Blocks Neuronal Injury Associated with Decompression

    PubMed Central

    Blatteau, Jean-Eric; David, Hélène N.; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H.

    2015-01-01

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS. PMID:26469983

  8. Cryogenic xenon droplets for advanced lithography

    SciTech Connect

    Gouge, M.J.; Fisher, P.W.

    1996-04-01

    A cryogenic xenon droplet production system for use in anadvanced laser plasma source for x-ray lithography has been designed, fabricated, and tested at ORNL. The droplet generator is based on proven (ink jet printer) drop-on-demand.

  9. Xenon Blocks Neuronal Injury Associated with Decompression.

    PubMed

    Blatteau, Jean-Eric; David, Hlne N; Valle, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H

    2015-01-01

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS. PMID:26469983

  10. Transportable Xenon Laboratory (TXL-1) Operations Manual

    SciTech Connect

    Thompson, Robert C.; Stewart, Timothy L.; Willett, Jesse A.; Woods, Vincent T.

    2011-03-07

    The Transportable Xenon Laboratory Operations Manual is a guide to set up and shut down TXL, a fully contained laboratory made up of instruments to identify and measure concentrations of the radioactive isotopes of xenon by taking air samples and analyzing them. The TXL is housed in a standard-sized shipping container. TXL can be shipped to and function in any country in the world.

  11. XENON dark matter searches: Results and the future

    SciTech Connect

    Brown, Andrew; Collaboration: XENON Collaboration

    2014-06-24

    XENON100 is a dark matter search experiment looking for elastic WIMP scattering using a 62 kg liquid target. WIMP search data from XENON100 published in 2012 has set the world's strongest limits on WIMP-nucleus spinindependent, elastic scattering. It has also set the strongest limits on WIMP-nucleus spin-dependent scattering considering neutron scattering only, and competitive limits considering proton scattering only. The successor experiment to XENON100, XENON1T, is currently under construction, with commissioning scheduled to begin in 2014. XENON1T's design goal is a 100 fold increase in sensitivity for elastic WIMP searches over XENON100.

  12. Xenon lighting adjusted to plant requirements

    NASA Technical Reports Server (NTRS)

    Koefferlein, M.; Doehring, T.; Payer, Hans D.; Seidlitz, H. K.

    1994-01-01

    Xenon lamps are available as low and high power lamps with relatively high efficiency and a relatively long lifetime up to several thousand hours. Different construction types of short-arc and long-arc lamps permit a good adaptation to various applications in projection and illumination techniques without substantial changes of the spectral quality. Hence, the xenon lamp was the best choice for professional technical purposes where high power at simultaneously good spectral quality of the light was required. However, technical development does not stand still. Between the luminous efficacy of xenon lamps of 25-50 lm/W and the theoretical limit for 'white light' of 250 lm/W is still much room for improvement. The present development mainly favors other lamp types, like metal halide lamps and fluorescent lamps for commercial lighting purposes. The enclosed sections deal with some of the properties of xenon lamps relevant to plant illumination; particularly the spectral aspects, the temporal characteristics of the emission, and finally the economy of xenon lamps will be addressed. Due to radiation exceeding the natural global radiation in both the ultraviolet (UV) and the infrared (IR) regions, filter techniques have to be included into the discussion referring to the requirements of plant illumination. Most of the presented results were obtained by investigations in the GSF phytotron or in the closed Phytocell chambers of the University of Erlangen. As our experiences are restricted to area plant illumination rather than spot lights our discussion will concentrate on low pressure long-arc xenon lamps which are commonly used for such plant illuminations. As the spectral properties of short-arc lamps do not differ much from those of long-arc lamps most of our conclusions will be valid for high pressure xenon lamps too. These lamps often serve as light sources for small sun simulators and for monochromators which are used for action spectroscopy of plant responses.

  13. Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.; Motil, Susan M. (Technical Monitor)

    2002-01-01

    Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.

  14. Cosmogenic activation of xenon and copper

    NASA Astrophysics Data System (ADS)

    Baudis, Laura; Kish, Alexander; Piastra, Francesco; Schumann, Marc

    2015-10-01

    Rare event search experiments using liquid xenon as target and detection medium require ultra-low background levels to fully exploit their physics potential. Cosmic ray induced activation of the detector components and, even more importantly, of the xenon itself during production, transportation and storage at the Earth's surface, might result in the production of radioactive isotopes with long half-lives, with a possible impact on the expected background. We present the first dedicated study on the cosmogenic activation of xenon after 345 days of exposure to cosmic rays at the Jungfraujoch research station at 3470 m above sea level, complemented by a study of copper which has been activated simultaneously. We have directly observed the production of ^7Be, ^{101}Rh, ^{125}Sb, ^{126}I and ^{127}Xe in xenon, out of which only ^{125}Sb could potentially lead to background for a multi-ton scale dark matter search. The production rates for five out of eight studied radioactive isotopes in copper are in agreement with the only existing dedicated activation measurement, while we observe lower rates for the remaining ones. The specific saturation activities for both samples are also compared to predictions obtained with commonly used software packages, where we observe some underpredictions, especially for xenon activation.

  15. Reflectance of polytetrafluoroethylene for xenon scintillation light

    SciTech Connect

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-15

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region ({lambda}{approx_equal}175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  16. Electron-impact excitation of xenon

    NASA Astrophysics Data System (ADS)

    Boffard, John B.; Jung, R. O.; Anderson, L. W.; Lin, Chun C.

    2014-05-01

    Xenon electron-impact cross sections are used in the analysis of non-invasive optical emission spectroscopy diagnostics of many xenon plasmas including Hall thrusters. We present measurements of optical emission cross sections as a function of incident electron energy (0-200 eV) for a large number of emission lines in the 250-900 nm wavelength range using a mono-energetic electron beam along with monchromator/PMT detector. The selection of measured cross sections include both excitation into higher neutral levels, and simultaneous ionization/excitation into Xe+, Xe2+, and Xe3+ levels. Measurements were performed at a low pressure to minimize pressure effects often observed in xenon measurements due to radiation trapping of resonant emission lines. This work was supported by the National Science Foundation.

  17. Spatial xenon oscillation control with expert systems

    SciTech Connect

    Alten, S. ); Danofsky, R.A. )

    1993-01-01

    Spatial power oscillations were attributed to the xenon transients in a reactor core in 1958 by Randall and St. John. These transients are usually initiated by a local reactivity insertion and lead to divergent axial flux oscillations in the core at constant power. Several heuristic manual control strategies and automatic control methods were developed to damp the xenon oscillations at constant power operations. However, after the load-follow operation of the reactors became a necessity of life, a need for better control strategies arose. Even though various advanced control strategies were applied to solve the xenon oscillation control problem for the load-follow operation, the complexity of the system created difficulties in modeling. The strong nonlinearity of the problem requires highly sophisticated analytical approaches that are quite inept for numerical solutions. On the other hand, the complexity of a system and heuristic nature of the solutions are the basic reasons for using artificial intelligence techniques such as expert systems.

  18. Reflectance of polytetrafluoroethylene for xenon scintillation light

    NASA Astrophysics Data System (ADS)

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-01

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region (? ?175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  19. Bisphosphine dioxides

    DOEpatents

    Moloy, K.G.

    1990-02-20

    A process is described for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  20. Bisphosphine dioxides

    DOEpatents

    Moloy, Kenneth G. (Charleston, WV)

    1990-01-01

    A process for the production of organic bisphosphine dioxides from organic bisphosphonates. The organic bisphosphonate is reacted with a Grignard reagent to give relatively high yields of the organic bisphosphine dioxide.

  1. Xenon does not prolong neuromuscular block of rocuronium.

    PubMed

    Kunitz, Oliver; Baumert, Jan-Hinrich; Hecker, Klaus; Beeker, Thorben; Coburn, Mark; Zhlsdorff, Andr; Rossaint, Rolf

    2004-11-01

    With the exception of xenon, the interaction between muscle relaxants and inhaled anesthetics is known. We therefore compared the pharmacodynamics of rocuronium during xenon anesthesia versus a total IV anesthesia with propofol. Anesthesia was induced with propofol and remifentanil in both the xenon and propofol groups (each n = 20). The xenon group received xenon via face mask until an end-expiratory concentration of 60% was maintained for 1 min. Meanwhile, the acceleromyograph (TOF-Watch SX(R)) was calibrated and a frequent train-of-four stimulation of the musculus adductor pollicis was started. After stabilization of the signal for 5 min, a single bolus of 0.6 mg/kg rocuronium was injected. Anesthesia was maintained with xenon and remifentanil (xenon group) or with propofol and remifentanil (propofol group). There were no significant differences between the groups concerning the onset time (xenon group 125 +/- 33 and propofol group 144 +/- 43 s), duration (xenon group 33.2 +/- 10.8 and propofol group 32.6 +/- 8.4 min), recovery index (xenon group 9.4 +/- 6.6 and propofol group 8.4 +/- 5.3 min), and clinical recovery (xenon group 18.0 +/- 10.2 and propofol group 17.1 +/- 8.5 min). We conclude that the neuromuscular blocking effects of rocuronium are not different when given during propofol versus xenon anesthesia. PMID:15502037

  2. Hyperpolarized xenon in NMR and MRI.

    PubMed

    Oros, Ana-Maria; Shah, N Jon

    2004-10-21

    Hyperpolarized gases have found a steadily increasing range of applications in nuclear magnetic resonance (NMR) and NMR imaging (MRI). They can be regarded as a new class of MR contrast agent or as a way of greatly enhancing the temporal resolution of the measurement of processes relevant to areas as diverse as materials science and biomedicine. We concentrate on the properties and applications of hyperpolarized xenon. This review discusses the physics of producing hyperpolarization, the NMR-relevant properties of 129Xe, specific MRI methods for hyperpolarized gases, applications of xenon to biology and medicine, polarization transfer to other nuclear species and low-field imaging. PMID:15566166

  3. Online monitoring of intelligent polymers for drug release with hyperpolarized xenon.

    PubMed

    Glggler, Stefan; Raue, Markus; Colell, Johannes; Trschmann, Pierre; Liebisch, Alexander; Mang, Thomas; Blmich, Bernhard; Appelt, Stephan

    2012-12-21

    Welcome to the guest zone: By combining hyperpolarized xenon and simple low-field NMR devices it is possible to obtain more control over hydrogels that show potential as drug delivery systems. An alternative way of polymer swelling-degree determination is demonstrated with real-time NMR analysis. An ideal region for solvent uptake can be defined in which the absorbed solvent molecules are completely confined in the nano-porous network of the hydrogel. PMID:23161842

  4. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    SciTech Connect

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. M.; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-31

    Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

  5. Energy of the quasi-free electron in xenon

    NASA Astrophysics Data System (ADS)

    Shi, Xianbo; Li, Luxi; Evans, C. M.; Findley, G. L.

    2006-12-01

    Field ionization of trimethylamine and of N, N-dimethylaniline doped into xenon is presented as a function of xenon number density up to the density of the triple point liquid, both at noncritical temperatures and along the critical isotherm. These data exhibit a decrease in the xenon induced shift of the dopant ionization energy near the xenon critical point. The energy of the quasi-free electron, arising from dopant field ionization, in xenon is calculated within a local Wigner-Seitz model to within 0.3% of experiment at noncritical temperatures and for the critical isotherm.

  6. Transdermal diffusion of xenon in vitro using diffusion cells

    NASA Astrophysics Data System (ADS)

    Verkhovsky, A.; Petrov, E.

    2015-11-01

    The aim of this research was to study the diffusion rate of xenon through guinea pig skin and how viscosity of cosmetic component capryl/capric triglyceride (CCT) facilitates to deliver xenon to surface of skin patches. They were placed in Franz cell for 24 hours and diffusion rate and permeability of xenon were calculated. Thus diffusion rate was 0.031 mg/hour*cm2 and permeability was 0.003 cm/hour. Using Brookfield viscometer it was shown that viscosity of CCT decreased upon increasing xenon concentration. Obtained results can be utilized in developing of new xenon containing drugs for topical administration.

  7. DFT-MD simulations of shocked Xenon

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph J.; Mattsson, Thomas R.

    2009-03-01

    Xenon is not only a technologically important element used in laser technologies, jet propulsion and dental anesthesia, but it is also arguably the simplest material in which to study the metal-insulator transition at high pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. The relative importance of the van der Waals interaction compared to other Coulomb interactions is considered, and estimates of the relative accuracy of various density functionals are quantified. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Anticipatory control of xenon in a pressurized water reactor

    SciTech Connect

    Impink, A.J. Jr.

    1987-02-10

    A method is described for automatically dampening xenon-135 spatial transients in the core of a pressurized water reactor having control rods which regulate reactor power level, comprising the steps of: measuring the neutron flu in the reactor core at a plurality of axially spaced locations on a real-time, on-line basis; repetitively generating from the neutron flux measurements, on a point-by-point basis, signals representative of the current axial distribution of xenon-135, and signals representative of the current rate of change of the axial distribution of xenon-135; generating from the xenon-135 distribution signals and the rate of change of xenon distribution signals, control signals for reducing the xenon transients; and positioning the control rods as a function of the control signals to dampen the xenon-135 spatial transients.

  9. Preliminary Measurements of the Xenon Triple Point

    NASA Astrophysics Data System (ADS)

    Steur, P. P. M.; Giraudi, D.

    2014-04-01

    Ever since the construction and definition of the highly successful International Temperature Scale of 1990 (ITS-90), one severe deficiency of the scale has been recognized, without a reliable remedy. The problem is the fact that the only then available high-quality fixed point between the argon triple point and the water triple point was the mercury triple point, which unfortunately is situated rather closely to the water triple point, thus having an extremely strong influence on the interpolation function of SPRTs in the range. Already before 1990, measurements on possible fixed points better placed in this temperature range have been investigated, such as the triple points of krypton and xenon. However, results have been rather elusive, mainly regarding the rather large melting range of their transition. A turning point was the 2005 paper from the National Research Council (NRC, Canada), where it was established that the relatively high content of krypton was the culprit for the large melting range of the xenon transitions published previously. Indeed, measurements on a xenon sample with very low krypton content produced a very high-quality plateau, of the same level as other ITS-90 fixed points. However, no follow-up measurements have been reported, and thus neither have comparison measurements been reported. Shortly, after the appearance of the NRC paper, Istituto Nazionale di Ricerca Metrologica (INRIM, Italy) acquired a batch of the same high-purity xenon as used by NRC with the aim of preparing a few sealed cells with it and trying to reproduce the NRC results. However, with the start of the Neon Project (Euromet Project 770), the realization of these intentions had to be postponed until now. Last December, three cells of different design have been filled with this high-quality xenon and preliminary results of the measurements on the triple point are reported.

  10. An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air.

    PubMed

    Larson, Tuula; stman, Conny; Colmsj, Anders

    2011-04-01

    The monitoring of radioactive xenon isotopes is one of the principal methods for the detection of nuclear explosions in order to identify clandestine nuclear testing. In this work, a miniaturized, multiple-oven, six-column, preparative gas chromatograph was constructed in order to isolate trace quantities of radioactive xenon isotopes from ambient air, utilizing nitrogen as the carrier gas. The multidimensional chromatograph comprised preparative stainless steel columns packed with molecular sieves, activated carbon, and synthetic carbon adsorbents (e.g., Anasorb-747 and Carbosphere). A combination of purification techniques--ambient adsorption, thermal desorption, back-flushing, thermal focusing, and heart cutting--was selectively optimized to produce a well-defined xenon peak that facilitated reproducible heart cutting and accurate quantification. The chromatographic purification of a sample requires approximately 4 h and provides complete separation of xenon from potentially interfering components (such as water vapor, methane, carbon dioxide, and radon) with recovery and accuracy close to 100%. The preparative enrichment process isolates and concentrates a highly purified xenon gas fraction that is suitable for subsequent ultra-low-level ?-, /?-spectroscopic or high-resolution mass spectrometric measurement (e.g., to monitor the gaseous fission products of nuclear explosions at remote locations). The Xenon Processing Unit is a free-standing, relatively lightweight, and transportable system that can be interfaced to a variety of sampling and detection systems. It has a relatively inexpensive, rugged, and compact modular (19-inch rack) design that provides easy access to all parts for maintenance and has a low power requirement. PMID:21347675

  11. XENON100 Dark Matter Search: Scintillation Response of Liquid Xenon to Electronic Recoils

    NASA Astrophysics Data System (ADS)

    Lim, Kyungeun Elizabeth

    Dark matter is one of the missing pieces necessary to complete the puzzle of the universe. Numerous astrophysical observations at all scales suggest that 23 % of the universe is made of nonluminous, cold, collisionless, nonbaryonic, yet undiscovered dark matter. Weakly Interacting Massive Particles (WIMPs) are the most well-motivated dark matter candidates and significant efforts have been made to search for WIMPs. The XENON100 dark matter experiment is currently the most sensitive experiment in the global race for the first direct detection of WIMP dark matter. XENON100 is a dual-phase (liquid-gas) time projection chamber containing a total of 161 kg of liquid xenon (LXe) with a 62kg WIMP target mass. It has been built with radiopure materials to achieve an ultra-low electromagnetic background and operated at the Laboratori Nazionali del Gran Sasso in Italy. WIMPs are expected to scatter off xenon nuclei in the target volume. Simultaneous measurement of ionization and scintillation produced by nuclear recoils allows for the detection of WIMPs in XENON100. Data from the XENON100 experiment have resulted in the most stringent limits on the spin-independent elastic WIMP-nucleon scattering cross sections for most of the significant WIMP masses. As the experimental precision increases, a better understanding of the scintillation and ionization response of LXe to low energy (< 10 keV) particles is crucial for the interpretation of data from LXe based WIMP searches. A setup has been built and operated at Columbia University to measure the scintillation response of LXe to both electronic and nuclear recoils down to energies of a few keV, in particular for the XENON100 experiment. In this thesis, I present the research carried out in the context of the XENON100 dark matter search experiment. For the theoretical foundation of the XENON100 experiment, the first two chapters are dedicated to the motivation for and detection medium choice of the XENON100 experiment, respectively. A general review about dark matter focusing on WIMPs and their direct detection with liquid noble gas detectors is presented in Chap. 1. LXe as an attractive WIMP detection medium is explained in Chap. 2. The XENON100 detector design, the detector, and its subsystems are detailed in Chap. 3. The calibration of the detector and the characterized detector response used for the discrimination of a WIMP-like signal against background are explained in Chap. 4. In an effort to understand the background, anomalous electronic recoils were studied extensively and are described in Chap. 5. In order to obtain a better understanding of the electronic recoil background of XENON100, including an estimation of the electronic recoil background contribution, as well as to interpret dark matter results such as annual modulation, measurement of the scintillation yield of low-energy electrons in LXe was performed in 2011, with the dedicated setup mentioned above. The results from this measurement are discussed in Chap. 6. Finally, the results for the latest science data from XENON100 to search for WIMPs, comprising 225 live-days taken over 13 months during 2011 and 2012 are explained in Chap. 7.

  12. Xenon and iodine reveal multiple distinct exotic xenon components in Efremovka "nanodiamonds"

    NASA Astrophysics Data System (ADS)

    Gilmour, J. D.; Holland, G.; Verchovsky, A. B.; Fisenko, A. V.; Crowther, S. A.; Turner, G.

    2016-03-01

    We identify new xenon components in a nanodiamond-rich residue from the reduced CV3 chondrite Efremovka. We demonstrate for the first time that these, and the previously identified xenon components Xe-P3 and Xe-P6, are associated with elevated I/Xe ratios. The 129I/127I ratio associated with xenon loss from these presolar compositions during processing on planetesimals in the early solar system was (0.369 ± 0.019) × 10-4, a factor of 3-4 lower than the canonical value. This suggests either incorporation of iodine into carbonaceous grains before the last input of freshly synthesized 129I to the solar system's precursor material, or loss of noble gases during processing of planetesimals around 30 Myr after solar system formation. The xenon/iodine ratios and model closure ages were revealed by laser step pyrolysis analysis of a neutron-irradiated, coarse-grained nanodiamond separate. Three distinct low temperature compositions are identified by characteristic I/Xe ratios and 136Xe/132Xe ratios. There is some evidence of multiple compositions with distinct I/Xe ratios in the higher temperature releases associated with Xe-P6. The presence of iodine alongside Q-Xe and these components in nanodiamonds constrains the pathway by which extreme volatiles entered the solid phase and may facilitate the identification of their carriers. There is no detectable iodine contribution to the presolar Xe-HL component, which is released at intermediate temperatures; this suggests a distinct trapping process. Releases associated with the other components all include significant contributions of 128Xe produced from iodine by neutron capture during reactor irradiation. We propose a revised model relating the origin of Xe-P3 (which exhibits an s-process deficit) through a "Q-process" to the Q component (which makes the dominant contribution to the heavy noble gas budget of primitive material). The Q-process incorporates noble gases and iodine into specific carbonaceous phases with mass dependent fractionation relative to the ambient composition. Q-Xe is dominated by the products of this "Q-process" occurring shortly before or during solar system formation. Carriers that trapped xenon by earlier Q-process events were altered, perhaps by supernova shocks, converting some Q carriers into P3 carriers. Unlike Q carriers, these carriers preserve the isotopic signature of the xenon they trapped through oxidation of samples in the laboratory. P3 carriers thus disproportionately sample xenon that was incorporated before galactic chemical evolution had produced the solar xenon signature by enriching ambient xenon with s-process material.

  13. Spectroscopy of Ba and Ba+ deposits in solid xenon for barium tagging in nEXO

    NASA Astrophysics Data System (ADS)

    Mong, B.; Cook, S.; Walton, T.; Chambers, C.; Craycraft, A.; Benitez-Medina, C.; Hall, K.; Fairbank, W.; Albert, J. B.; Auty, D. J.; Barbeau, P. S.; Basque, V.; Beck, D.; Breidenbach, M.; Brunner, T.; Cao, G. F.; Cleveland, B.; Coon, M.; Daniels, T.; Daugherty, S. J.; DeVoe, R.; Didberidze, T.; Dilling, J.; Dolinski, M. J.; Dunford, M.; Fabris, L.; Farine, J.; Feldmeier, W.; Fierlinger, P.; Fudenberg, D.; Giroux, G.; Gornea, R.; Graham, K.; Gratta, G.; Heffner, M.; Hughes, M.; Jiang, X. S.; Johnson, T. N.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Killick, R.; Koffas, T.; Kravitz, S.; Krcken, R.; Kuchenkov, A.; Kumar, K. S.; Leonard, D. S.; Licciardi, C.; Lin, Y. H.; Ling, J.; MacLellan, R.; Marino, M. G.; Moore, D.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Retiere, F.; Rowson, P. C.; Rozo, M. P.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Twelker, K.; Vuilleumier, J.-L.; Walton, J.; Weber, M.; Wen, L. J.; Wichoski, U.; Yang, L.; Yen, Y.-R.; Zhao, Y. B.; nEXO Collaboration

    2015-02-01

    Progress on a method of barium tagging for the nEXO double beta decay experiment is reported. Absorption and emission spectra for deposits of barium atoms and ions in solid xenon matrices are presented. Excitation spectra for prominent emission lines, temperature dependence, and bleaching of the fluorescence reveal the existence of different matrix sites. A regular series of sharp lines observed in Ba+ deposits is identified with some type of barium hydride molecule. Lower limits for the fluorescence quantum efficiency of the principal Ba emission transition are reported. Under current conditions, an image of fewer than or equal to 104 Ba atoms can be obtained. Prospects for imaging single Ba atoms in solid xenon are discussed.

  14. Secondary scintillation yield in pure xenon

    NASA Astrophysics Data System (ADS)

    Monteiro, C. M. B.; Fernandes, L. M. P.; Lopes, J. A. M.; Coelho, L. C. C.; Veloso, J. F. C. A.; dos Santos, J. M. F.; Giboni, K.; Aprile, E.

    2007-05-01

    The xenon secondary scintillation yield was studied as a function of the electric field in the scintillation region, in a gas proportional scintillation counter operated at room temperature. A large area avalanche photodiode was used for the readout of the VUV secondary scintillation produced in the gas, together with the 5.9 keV x-rays directly absorbed in the photodiode. The latter was used as a reference for the determination of the number of charge carriers produced by the scintillation pulse and, thus, the number of VUV photons impinging the photodiode. A value of 140 photons/kV was obtained for the scintillation amplification parameter. The attained results are in good agreement with those predicted, for room temperature, by Monte Carlo simulation and Boltzmann calculations, as well as with those obtained for saturated xenon vapour, at cryogenic temperatures, and are about a factor of two higher than former results measured at room temperature.

  15. Xenon ion propulsion for orbit transfer

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Patterson, M. J.; Gruber, R. P.

    1990-01-01

    The status of critical ion propulsion system elements is reviewed. Electron bombardment ion thrusters for primary propulsion have evolved to operate on xenon in the 5-10 kW power range. Thruster efficiencies of 0.7 and specific impulse values of 4000 s have been documented. The baseline thruster currently under development by NASA LeRC includes ring-cusp magnetic field plasma containment and dished two-grid ion optics. Based on past experience and demonstrated simplifications, power processors for these thrusters should have approximately 500 parts, a mass of 40 kg, and an efficiency near 0.94. Thrust vector control, via individual thruster gimbals, is a mature technology. High pressure, gaseous xenon propellant storage and control schemes, using flight qualified hardware, result in propellant tankage fractions between 0.1 and 0.2. In-space and ground integration testing has demonstrated that ion propulsion systems can be successfully integrated with their host spacecraft.

  16. Optimal xenon control in heterogeneous reactors

    SciTech Connect

    Gondal, I.A.; Axford, R.A.

    1986-12-01

    A two-group diffusion-theory heterogeneous reactor model in two-dimensional plane geometry is developed for optimal control analysis with xenon and samarium feedback. The resulting system equations are linearized around an equilibrium operating point, which is determined with the steady-state form of the original nonlinear system equations. A poisonless criticality analysis is also carried out to determine the optimal spacing between the fuel rods and to see the effect of including the control rods. The problem of optimally controlling xenon-induced spatial flux oscillations is then formulated as a linear-regulator problem of optimal control theory. A numerical example for a graphite-moderated reactor illustrates the theoretical analysis.

  17. Low temperature Raman spectrum of xenon diatoms

    NASA Astrophysics Data System (ADS)

    Le Duff, Y.; Ouillon, R.; Chandrasekharan, V.; Silvi, B.

    The depolarized Raman spectrum of xenon at low temperature of 193K is reported. The contributions of the bound dimers in the pure rotation and vibration rotation region are enhanced at this low temperature. The experimental profile is compared with the quantum mechanical calculation using different models of the interaction polarizability anisotropy. The BWLSL X2 potential and DID with hyperpolarizability correction gives extremely good agreement with experiment.

  18. Port and harbor patrol car loaded Xenon search light

    NASA Astrophysics Data System (ADS)

    Amoh, Hiroshi; Takenami, Takashi

    2005-05-01

    The container ship yard is brighten by the lighting, but after Sunset of the sea side is dark during a crescent. On the sea side lighting, we propose to use to patrol car loaded Xenon search light. Generally, the Pacific Ocean of a surface of the sea swimming fishes such as Samma (Mackerel pike) likes strong visible light as a Xenon search light beam. In the feeling of the human eyes and brains with a strong visible light beam such as Xenon search light, the reaction is divided two kind of types, to avoid reaction's humans have a feeling that bad conscience, and no reaction's humans tend to have a feeling of good mind. For the black painted unmanned objects of visible watching is needed as possible as strong visible light beam of the Xenon search light. The optical system of the Xenon search light consists of a Xenon lamp, a parabolic mirror and the filters.

  19. Optimization of Xenon Biosensors for Detection of ProteinInteractions

    SciTech Connect

    Lowery, Thomas J.; Garcia, Sandra; Chavez, Lana; Ruiz, E.Janette; Wu, Tom; Brotin, Thierry; Dutasta, Jean-Pierre; King, David S.; Schultz, Peter G.; Pines, Alex; Wemmer, David E..

    2005-08-03

    Hyperpolarized 129Xe NMR can detect the presence of specific low-concentration biomolecular analytes by means of the xenon biosensor, which consists of a water-soluble, targeted cryptophane-A cage that encapsulates xenon. In this work we use the prototypical biotinylated xenon biosensor to determine the relationship between the molecular composition of the xenon biosensor and the characteristics of protein-bound resonances. The effects of diastereomer overlap, dipole-dipole coupling, chemical shift anisotropy, xenon exchange, and biosensor conformational exchange on protein-bound biosensor signal were assessed. It was found that optimal protein-bound biosensor signal can be obtained by minimizing the number of biosensor diastereomers and using a flexible linker of appropriate length. Both the linewidth and sensitivity of chemical shift to protein binding of the xenon biosensor were found to be inversely proportional to linker length.

  20. Relaxation channels of multi-photon excited xenon clusters

    NASA Astrophysics Data System (ADS)

    Serdobintsev, P. Yu.; Rakcheeva, L. P.; Murashov, S. V.; Melnikov, A. S.; Lyubchik, S.; Timofeev, N. A.; Pastor, A. A.; Khodorkovskii, M. A.

    2015-09-01

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  1. Relaxation channels of multi-photon excited xenon clusters.

    PubMed

    Serdobintsev, P Yu; Rakcheeva, L P; Murashov, S V; Melnikov, A S; Lyubchik, S; Timofeev, N A; Pastor, A A; Khodorkovskii, M A

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified. PMID:26395700

  2. Liquid-xenon detector under the intensive pulse irradiation conditions

    NASA Astrophysics Data System (ADS)

    Kirsanov, M. A.

    2016-02-01

    The effect of intense pulsed irradiation on the operation of the liquid xenon spectrometer was studied. The ionization chamber filled with liquid xenon was irradiated by bremsstrahlung pulses of the microtron. The pulse repetition rate was 400 Hz. The absorbed dose ranged from 10-7 to 0.1 Gy per pulse. Stable operation of the liquid xenon spectrometer in the intervals between the pulses of the accelerator was shown for a long time.

  3. Recovering Residual Xenon Propellant for an Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani; Skakkottai, P.; wu, Jiunn Jeng

    2006-01-01

    Future nuclear-powered Ion-Propulsion- System-propelled spacecraft such as Jupiter Icy Moon Orbiter (JIMO) will carry more than 10,000 kg of xenon propellant. Typically, a small percentage of this propellant cannot be used towards the end of the mission because of the pressure drop requirements for maintaining flow. For large missions such as JIMO, this could easily translate to over 250 kg of unusable xenon. A proposed system, the Xenon Recovery System (XRS), for recovering almost all of the xenon remaining in the tank, would include a cryopump in the form of a condenser/evaporator that would be alternatively cooled by a radiator, then heated electrically. When the pressure of the xenon in the tank falls below 0.7 MPa (100 psia), the previously isolated XRS will be brought online and the gas from the tank would enter the cryopump that is initially cooled to a temperature below saturation temperature of xenon. This causes xenon liquefaction and further cryopumping from the tank till the cryopump is full of liquid xenon. At this point, the cryopump is heated electrically by small heaters (70 to 80 W) to evaporate the liquid that is collected as high-pressure gas (<7 MPa; 1,000 psia) in an intermediate accumulator. Check valves between the tank and the XRS prevent the reverse flow of xenon during the heating cycle. The accumulator serves as the high-pressure source of xenon gas to the Xenon Feed System (XFS) downstream of the XRS. This cycle is repeated till almost all the xenon is recovered. Currently, this system is being baselined for JIMO.

  4. Magnetic resonance imaging of convection in laser-polarized xenon

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Tseng, C. H.; Wong, G. P.; Cory, D. G.; Walsworth, R. L.

    2000-01-01

    We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.

  5. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats.

    PubMed

    Ma, Daqing; Hossain, Mahmuda; Pettet, Garry K J; Luo, Yan; Lim, Ta; Akimov, Stanislav; Sanders, Robert D; Franks, Nicholas P; Maze, Mervyn

    2006-02-01

    Xenon attenuates on-going neuronal injury in both in vitro and in vivo models of hypoxic-ischaemic injury when administered during and after the insult. In the present study, we sought to investigate whether the neuroprotective efficacy of xenon can be observed when administered before an insult, referred to as 'preconditioning'. In a neuronal-glial cell coculture, preexposure to xenon for 2 h caused a concentration-dependent reduction of lactate dehydrogenase release from cells deprived of oxygen and glucose 24 h later; xenon's preconditioning effect was abolished by cycloheximide, a protein synthesis inhibitor. Preconditioning with xenon decreased propidium iodide staining in a hippocampal slice culture model subjected to oxygen and glucose deprivation. In an in vivo model of neonatal asphyxia involving hypoxic-ischaemic injury to 7-day-old rats, preconditioning with xenon reduced infarction size when assessed 7 days after injury. Furthermore, a sustained improvement in neurologic function was also evident 30 days after injury. Phosphorylated cAMP (cyclic adenosine 3',5'-monophosphate)-response element binding protein (pCREB) was increased by xenon exposure. Also, the prosurvival proteins Bcl-2 and brain-derived neurotrophic factor were upregulated by xenon treatment. These studies provide evidence for xenon's preconditioning effect, which might be caused by a pCREB-regulated synthesis of proteins that promote survival against neuronal injury. PMID:16034370

  6. Method for the simultaneous preparation of Radon-211, Xenon-125, Xenon-123, Astatine-211, Iodine-125 and Iodine-123

    DOEpatents

    Mirzadeh, Saed; Lambrecht, Richard M.

    1987-01-01

    A method for simultaneously preparing Radon-211, Astatine-211, Xenon-125, Xenon-123, Iodine-125 and Iodine-123 in a process that includes irradiating a fertile metal material then using a one-step chemical procedure to collect a first mixture of about equal amounts of Radon-211 and Xenon-125, and a separate second mixture of about equal amounts of Iodine-123 and Astatine-211.

  7. Distillation purification and radon assay of liquid xenon

    SciTech Connect

    Takeuchi, Yasuo

    2005-09-08

    We succeeded to reduce the Kr contamination in liquid xenon by a factor of 1/1000 with a distillation system in Kamioka mine. Then, the remaining radioactivities (Radon and Kr) in purified liquid xenon were measured with the XMASS prototype detector. In this talk, the distillation system and the remaining internal radioactivity levels are reported.

  8. Measurement of attenuation length of drifting electrons in liquid xenon

    NASA Astrophysics Data System (ADS)

    Ichige, Masayuki; Aprile, Elena; Doke, Tadayoshi; Hasuike, Katsuhito; Itoh, Ken; Kikuchi, Jun; Masuda, Kimiaki

    1993-09-01

    To realize a long attenuation length of drifting electrons in liquid xenon, a purification system which consists of Oxisorb, molecular sieves and a Zr-V-Fe alloy getter has been constructed. A dual type gridded ionization chamber is used for the measurement of the attenuation length. An attenuation length longer than 2 m is achieved in the purified liquid xenon.

  9. Ab initio calculation of shocked xenon reflectivity.

    PubMed

    Norman, G; Saitov, I; Stegailov, V; Zhilyaev, P

    2015-02-01

    Reflectivity of shocked compressed xenon plasma is calculated within the framework of the density functional theory approach. Dependencies on the frequency of incident radiation and on the plasma density are analyzed. The Fresnel formula for the reflectivity is used. The longitudinal expression in the long-wavelength limit is applied for the calculation of the imaginary part of the dielectric function. The real part of the dielectric function is calculated by means of the Kramers-Kronig transformation. The results are compared with experimental data. The approach for the calculation of plasma frequency is developed. PMID:25768616

  10. Ab initio calculation of shocked xenon reflectivity

    NASA Astrophysics Data System (ADS)

    Norman, G.; Saitov, I.; Stegailov, V.; Zhilyaev, P.

    2015-02-01

    Reflectivity of shocked compressed xenon plasma is calculated within the framework of the density functional theory approach. Dependencies on the frequency of incident radiation and on the plasma density are analyzed. The Fresnel formula for the reflectivity is used. The longitudinal expression in the long-wavelength limit is applied for the calculation of the imaginary part of the dielectric function. The real part of the dielectric function is calculated by means of the Kramers-Kronig transformation. The results are compared with experimental data. The approach for the calculation of plasma frequency is developed.

  11. Etching Silicon Films With Xenon Difluoride

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.

    1986-01-01

    Microscopic circuit structures prepared for probing. Xenon difluoride removes relatively large amounts of silicon from integratedcircuit or solar-cell structures while leaving SiO2, Si3N4, Al2O3, and other compounds intact. In Etching Apparatus, solid XeF2 sublimated in vacuum, then allowed to flow over sample at controlled rate and pressure. Wafer etched from back to expose SiO2 and Al layers for spectroscopic analysis of SiO2/Al interface. Using XeF2 technique, silicon wafer with oxide layer reduced in thickness from standard 300 micrometer to as little as 10 nanometer without adversely affecting oxide.

  12. Xenon-Ion Drilling of Tungsten Films

    NASA Technical Reports Server (NTRS)

    Garner, C. E.

    1986-01-01

    High-velocity xenon ions used to drill holes of controlled size and distribution through tungsten layer that sheaths surface of controlled-porosity dispenser cathode of traveling wave-tube electron emitter. Controlled-porosity dispenser cathode employs barium/calcium/ aluminum oxide mixture that migrates through pores in cathode surface, thus coating it and reducing its work function. Rapid, precise drilling technique applied to films of other metals and used in other applications where micron-scale holes required. Method requires only few hours, as opposed to tens of hours by prior methods.

  13. Electron drift in a large scale solid xenon

    NASA Astrophysics Data System (ADS)

    Yoo, J.; Jaskierny, W. F.

    2015-08-01

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 0.003 cm/?s while the drift speed in the solid phase (157 K) is 0.397 0.006 cm/?s at 900 V/cm over 8.0 cm of uniform electric fields. Therefore, it is demonstrated that a factor two faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.

  14. A Temperature-driven Liquid Xenon Recirculation and Purification System

    NASA Astrophysics Data System (ADS)

    Benitez-Medina, Julio Cesar; Hall, Kendy

    2006-10-01

    We have built a liquid xenon recirculation and purification system in order to address the problem of inconsistencies in our Ba^+ fluorescence spectra. In our previous work our liquid xenon purity system did not include recirculation, and the liquid xenon contained ppm of electronegative impurities. By continuous recirculation through a getter purifier, ppb purity is expected. Our recirculation system is driven thermally, by applying heat to the evaporation region, instead of by the pump method used by others. The advantage of thermal driven recirculation is that there are no pressure surges. Therefore, the liquid is calm as it evaporates and condenses. This gives excellent optical quality for Ba^+ spectroscopy in liquid xenon. The goal of this work is to detect fluorescence from single Ba^+ daughter ions in the Enriched Xenon Observatory (EXO) double beta decay experiment.

  15. Perovskites with the Framework-Forming Xenon.

    PubMed

    Britvin, Sergey N; Kashtanov, Sergei A; Krzhizhanovskaya, Maria G; Gurinov, Andrey A; Glumov, Oleg V; Strekopytov, Stanislav; Kretser, Yury L; Zaitsev, Anatoly N; Chukanov, Nikita V; Krivovichev, Sergey V

    2015-11-23

    The Group?18 elements (noble gases) were the last ones in the periodic system to have not been encountered in perovskite structures. We herein report the synthesis of a new group of double perovskites KM(XeNaO6 ) (M=Ca, Sr, Ba) containing framework-forming xenon. The structures of the new compounds, like other double perovskites, are built up of the alternating sequence of corner-sharing (XeO6 ) and (NaO6 ) octahedra arranged in a three-dimensional rocksalt order. The fact that xenon can be incorporated into the perovskite structure provides new insights into the problem of Xe depletion in the atmosphere. Since octahedrally coordinated Xe(VIII) and Si(IV) exhibit close values of ionic radii (0.48 and 0.40?, respectively), one could assume that Xe(VIII) can be incorporated into hyperbaric frameworks such as MgSiO3 perovskite. The ability of Xe to form stable inorganic frameworks can further extend the rich and still enigmatic chemistry of this noble gas. PMID:26429762

  16. Space-independent xenon oscillations revisited

    SciTech Connect

    Rizwan-uddin )

    1989-01-01

    Recently, various branches of engineering and science have seen a rapid increase in the number of dynamical analyses undertaken. This modern phenomenon often obscures the fact that such analyses were sometimes carried out even before the current trend began. Moreover, these earlier analyses, which even now seem very ingenuous, were carried out at a time when the available information about dynamical systems was not as well disseminated as it is today. One such analysis, carried out in the early 1960s, showed the existence of stable limit cycles in a simple model for space-independent xenon dynamics in nuclear reactors. The authors, apparently unaware of the now well-known bifurcation theorem by Hopf, could not numerically discover unstable limit cycles, though they did find regions in parameter space where the fixed points are stable for small perturbations but unstable for very large perturbations. The analysis was carried out both analytically and numerically. As a tribute to these early nonlinear dynamicists in the field of nuclear engineering, in this paper, the Hopf theorem and its conclusions are briefly described, and then the solution of the space-independent xenon oscillation problem is presented, which was obtained using the bifurcation analysis BIFDD code. These solutions are presented along with a discussion of the earlier results.

  17. Xenon ion propulsion for orbit transfer

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Patterson, M. J.; Gruber, R. P.

    1990-01-01

    For more than 30 years, NASA has conducted an ion propulsion program which has resulted in several experimental space flight demonstrations and the development of many supporting technologies. Technologies appropriate for geosynchronous stationkeeping, earth-orbit transfer missions, and interplanetary missions are defined and evaluated. The status of critical ion propulsion system elements is reviewed. Electron bombardment ion thrusters for primary propulsion have evolved to operate on xenon in the 5 to 10 kW power range. Thruster efficiencies of 0.7 and specific impulse values of 4000 s were documented. The baseline thruster currently under development by NASA LeRC includes ring-cusp magnetic field plasma containment and dished two-grid ion optics. Based on past experience and demonstrated simplifications, power processors for these thrusters should have approximately 500 parts, a mass of 40 kg, and an efficiency near 0.94. Thrust vector control, via individual thruster gimbals, is a mature technology. High pressure, gaseous xenon propellant storage and control schemes, using flight qualified hardware, result in propellant tankage fractions between 0.1 and 0.2. In-space and ground integration testing has demonstrated that ion propulsion systems can be successfully integrated with their host spacecraft. Ion propulsion system technologies are mature and can significantly enhance and/or enable a variety of missions in the nation's space propulsion program.

  18. The XENON1T Dark Matter Search Experiment

    NASA Astrophysics Data System (ADS)

    Ghag, Chamkaur

    2012-03-01

    The worldwide race towards direct dark matter detection in the form of WIMPs has been dramatically accelerated by the remarkable progress and evolution of liquid xenon time projection chambers (LXeTPCs). With a realistic discovery potential, XENON100 has already reached a sensitivity of 7E-45 cm^2, and continues to accrue data at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy towards its ultimate sensitivity reach at the 2E-45 cm^2 level for the spin-independent WIMP-nucleon cross-section. To fully explore the favored parameter space for WIMP dark matter in search of a first robust and statistically significant discovery, or to confirm any hint of a signal from XENON100, the next phase of the XENON program will be a detector at the ton scale - XENON1T. The XENON1T detector, based on 2.2 ton of LXe viewed by low radioactivity photomultiplier tubes and housed in a water Cherenkov muon veto at LNGS, is presented. The detector design is advancing and construction of major systems will begin in 2012, with data taking beginning in 2015. Capable of probing WIMP interaction cross-sections to 2E-47cm^2 within 2 years of operation, XENON1T will provide the sensitivity to probe a particularly favorable region of electroweak physics.

  19. PIXeY - Liquid Xenon R&D at Yale

    NASA Astrophysics Data System (ADS)

    Edwards, Blair; Bernard, Ethan; Cahn, Sidney; Larsen, Nicole; Lyashenko, Alexey; McKinsey, Daniel; Nikkel, James; Shin, Yunchang; Tennyson, Brian; Wahl, Christopher; Destefano, Nicholas; Gai, Moshe

    2013-04-01

    In recent years xenon has risen as a medium for particle detection, exhibiting a number of desirable qualities that make it well-suited for applications such as medical imaging, imaging of nuclear materials, and fundamental physics research. Xenon is a bright scintillator, with a fast (45 ns) response time, a large charge yield and high electron mobility. The high density (3 g/mL) and high atomic number (Z = 54) of liquid xenon make it ideal for detecting gamma rays with high efficiency over large energy ranges. PIXeY (Particle Identification in Xenon at Yale) is a compact, liquid-xenon-based TPC that operates in either single or two-phase (liquid/gas) mode and detects both charge and light signals produced by particle interactions within the detector. The initial goal of the experiment is to study xenon physics with implications for the operation and design for future large scale experiments (for dark matter or double beta decay), including energy resolution and event discrimination. This presentation will provide an overview of the experiment and discuss the xenon physics studies planned, the results so far and a brief overview of future plans.

  20. Measurement of cosmogenic radioactive products in xenon and copper

    NASA Astrophysics Data System (ADS)

    Piastra, Francesco

    2016-02-01

    Rare events searches, such as direct dark matter detection or neutrinoless double beta decay (0vββ) observation, using liquid xenon as target and detection medium require ultralow background to fully exploit the physics potential. Cosmogenic activation of the detector components, and even more importantly, of the xenon itself might have undesired impact on the background and the final sensitivity of the experiment. Since no measurement of cosmogenic activation of xenon was present in literature so far, we performed such a measurement exposing of a natural xenon sample to the cosmic radiation at the Jungfraujoch research station at an altitude of 3470 m above sea level for 245 days. This study was complemented with a ultra pure copper sample that was activated together with the xenon. We directly observed, with gamma-ray spectrometry, the production of 7Be, 101Rh, 125Sb, 126I and 127Xe in xenon, out of which only 125 Sb could potentially lead to a background relevant for multi-ton scale direct dark matter search. The production rates for five out of eight radioactive isotopes in copper are in good agreement with the only dedicated measurement present in literature. The production rates measured for both samples were compared with the predictions obtained with commonly used software packages. The latter showed a systematic under-estimation, especially for xenon.

  1. Nitrogen dioxide

    Integrated Risk Information System (IRIS)

    Nitrogen dioxide ; CASRN 10102 - 44 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  2. Chlorine dioxide

    Integrated Risk Information System (IRIS)

    Chlorine dioxide ; CASRN 10049 - 04 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  3. Chlorine dioxide

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 00 / 007 TOXICOLOGICAL REVIEW OF CHLORINE DIOXIDE AND CHLORITE ( CAS Nos . 10049 - 04 - 4 and 7758 - 19 - 2 ) In Support of Summary Information on the ( IRIS ) Integrated Risk Information System September 2000 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This docu

  4. Ionization and scintillation of nuclear recoils in gaseous xenon

    NASA Astrophysics Data System (ADS)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Matis, H. S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C. A. B.; Shuman, D.; Álvarez, V.; Borges, F. I. G.; Cárcel, S.; Castel, J.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Dias, T. H. V. T.; Díaz, J.; Esteve, R.; Evtoukhovitch, P.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gil, A.; Gómez, H.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Jinete, M. A.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopes, J. A. M.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez, A.; Moiseenko, A.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Natal da Luz, H.; Navarro, G.; Nebot-Guinot, M.; Palma, R.; Pérez, J.; Pérez Aparicio, J. L.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Seguí, L.; Serra, L.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Tomás, A.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R. C.; White, J.; Yahlali, N.

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  5. Thermal neutrons registration by xenon gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Shustov, A. E.; Chernysheva, I. V.; Dmitrenko, V. V.; Dukhvalov, A. G.; Krivova, K. V.; Novikov, A. S.; Petrenko, D. V.; Vlasik, K. F.; Ulin, S. E.; Uteshev, Z. M.

    2016-02-01

    Experimental results of thermal neutrons detection by high pressure xenon gamma- ray spectrometers are presented. The study was performed with two devices with sensitive volumes of 0.2 and 2 litters filled with compressed mixture of xenon and hydrogen without neutron-capture additives. Spectra from Pu-Be neutron source were acquired using both detectors. Count rates of the most intensive prompt neutron-capture gamma-ray lines of xenon isotopes were calculated in order to estimate thermal neutrons efficiency registration for each spectrometer.

  6. The Significance of the Bond Angle in Sulfur Dioxide.

    ERIC Educational Resources Information Center

    Purser, Gordon H.

    1989-01-01

    Examined are the illustrations and descriptions of the molecular structure of sulfur dioxide found in selected chemistry textbooks. Inconsistencies and incorrect information are indicated. It is suggested that molecules other than sulfur dioxide be used as examples of molecules for which resonance is important. (CW)

  7. Thermal Conductivity Measurement of Xe-Implanted Uranium Dioxide Thick Films using Multilayer Laser Flash Analysis

    SciTech Connect

    Nelson, Andrew T.

    2012-08-30

    The Fuel Cycle Research and Development program's Advanced Fuels campaign is currently pursuing use of ion beam assisted deposition to produce uranium dioxide thick films containing xenon in various morphologies. To date, this technique has provided materials of interest for validation of predictive fuel performance codes and to provide insight into the behavior of xenon and other fission gasses under extreme conditions. In addition to the structural data provided by such thick films, it may be possible to couple these materials with multilayer laser flash analysis in order to measure the impact of xenon on thermal transport in uranium dioxide. A number of substrate materials (single crystal silicon carbide, molybdenum, and quartz) containing uranium dioxide films ranging from one to eight microns in thickness were evaluated using multilayer laser flash analysis in order to provide recommendations on the most promising substrates and geometries for further investigation. In general, the uranium dioxide films grown to date using ion beam assisted deposition were all found too thin for accurate measurement. Of the substrates tested, molybdenum performed the best and looks to be the best candidate for further development. Results obtained within this study suggest that the technique does possess the necessary resolution for measurement of uranium dioxide thick films, provided the films are grown in excess of fifty microns. This requirement is congruent with the material needs when viewed from a fundamental standpoint, as this length scale of material is required to adequately sample grain boundaries and possible second phases present in ceramic nuclear fuel.

  8. Gated xenon scans for right ventricular function

    SciTech Connect

    Martin, W.; Tweddel, A.C.; McGhie, I.; Hutton, I.

    1986-05-01

    The complex geometry of the right ventricle makes the use of radionuclides an attractive method for assessing right ventricular function. The use of the gated 133Xe technique for this purpose offers several advantages. A short i.v. infusion over 20 sec of 133Xe permits scans to be obtained, gated to the electrocardiogram at rest and during maximal exercise using a standard gamma camera. The method is both reproducible (3.5%) and repeatable (2.8%), and because of the short half-life within the patient with most of the radioisotope being excreted by the lungs, scans may be repeated within a few minutes and the radiation dose to the patient is small. Right ventricular ejection fraction obtained from gated xenon scans is shown to correlate well with measurements obtained from both standard gated technetium scans and first-pass studies.

  9. Viscoelasticity of Xenon near the Critical Point

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    Using a novel, overdamped, oscillator flown aboard the Space Shuttle, we measured the viscosity of xenon near the liquid-vapor critical point in the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz. The measured viscosity divergence is characterized by the exponent z(sub eta) = 0.0690 +/- 0.0006, in agreement with the value z(sub eta) = 0.067 +/- 0.002 calculated from a two-loop perturbation expansion. Viscoelastic behavior was evident when t = (T - T(sub c))/T(sub c) less than 10(exp -5) and dominant when t less than 10(exp -6), further from T(sub c) than predicted. Viscoelastic behavior scales as Af(tau) where tau is the fluctuation decay time. The measured value of A is 2.0 +/- 0.3 times the result of a one-loop calculation. (Uncertainties stated are one standard uncertainty.)

  10. The cooling of Xenon in LIFE chamber

    NASA Astrophysics Data System (ADS)

    Klapisch, Marcel; Busquet, Michel

    2013-10-01

    In the Inertial Fusion Energy project LIFE, the chamber will be filled with Xenon gas, in order to protect the walls from debris, radiation, and particles. The frequency of laser shots is estimated to be 5 - 10 Hz. It is crucial that the gas has time to cool down between shots, otherwise the walls would overheat and get damaged. Recently described ``Anomalous'' photo-ionization of the 4d electron shell, plays an important role in that process. Time history of Te,Tr, and Ne from a new algorithm implemented in a time dependent version of HULLAC will be presented. with partial support from CRASH, under contract DE-FC52-08NA28616.

  11. Nuclear magnetic resonance parameters of atomic xenon dissolved in Gay-Berne model liquid crystal

    NASA Astrophysics Data System (ADS)

    Lintuvuori, Juho; Straka, Michal; Vaara, Juha

    2007-03-01

    We present constant-pressure Monte Carlo simulations of nuclear magnetic resonance (NMR) spectral parameters, nuclear magnetic shielding relative to the free atom as well as nuclear quadrupole coupling, for atomic xenon dissolved in a model thermotropic liquid crystal. The solvent is described by Gay-Berne (GB) molecules with parametrization ?=4.4 , ?'=20.0 , and ?=?=1 . The reduced pressure of P?=2.0 is used. Previous simulations of a pure GB system with this parametrization have shown that upon lowering the temperature, the model exhibits isotropic, nematic, smectic- A , and smectic- B /molecular crystal phases. We introduce spherical xenon solutes and adjust the energy and length scales of the GB-Xe interaction to those of the GB-GB interaction. This is done through first principles quantum chemical calculations carried out for a dimer of model mesogens as well as the mesogen-xenon complex. We preparametrize quantum chemically the Xe nuclear shielding and quadrupole coupling tensors when interacting with the model mesogen, and use the parametrization in a pairwise additive fashion in the analysis of the simulation. We present the temperature evolution of Xe129/131 shielding and Xe131 quadrupole coupling in the different phases of the GB model. From the simulations, separate isotropic and anisotropic contributions to the experimentally available total shielding can be obtained. At the experimentally relevant concentration, the presence of the xenon atoms does not significantly affect the phase behavior as compared to the pure GB model. The simulations reproduce many of the characteristic experimental features of Xe NMR in real thermotropic LCs: Discontinuity in the value or trends of the shielding and quadrupole coupling at the nematic-isotropic and smectic- A -nematic phase transitions, nonlinear shift evolution in the nematic phase reflecting the behavior of the orientational order parameter, and decreasing shift in the smectic- A phase. The last observation is due to the preference of the xenon solutes to occupy the interlayer space where the density of the medium is reduced as compared to the layers. There are systematic deviations, however, in the magnitude of the shielding and its discontinuities, as well as the distribution of the solutes in the translationally ordered smectic- A phase, between the simulation and experiment. These deficiencies are believed to result from the lack of flexibility of the GB model.

  12. High-intensity xenon pulse light source for fluorescence excitation

    NASA Astrophysics Data System (ADS)

    Miyamoto, Makoto; Ueno, Kazuo

    1997-05-01

    A newly developed 60W xenon flash lamp, L6604 and L6605, achieves the goals of longer operating life, higher output, and improved light stability. It operates at 2 Joules per flash input energy with approximately a 4 microsecond flash duration. The stability achieved is 2-3 percent peak-to-peak during a lifetime of 5 X 10e7 flashes, which is almost double that of conventional xenon flash lamps. This newly developed xenon flashlamp should serve as an excellent light source for analytical cytology and other fluorescence instruments. It can function as a high output, stable excitation light source for conventional fluorescence or delayed luminescence with a CCD. Besides providing powerful and stable illumination for absorption analysis of cells on slides, this lamp eliminates the optical artifacts associated with vibration of the stage which often limit throughput. This paper will describe in detail performance improvements obtained from this newly developed xenon flash lamp.

  13. Purging means and method for Xenon arc lamps

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1973-01-01

    High pressure Xenon short-arc lamp with two reservoirs which are selectively connectable to the lamp's envelope is described. One reservoir contains an absorbent which will absorb both Xenon and contaminant gases such as CO2 and O2. The absorbent temperature is controlled to evacuate the envelope of both the Xenon and the contaminant gases. The temperature of the absorbent is then raised to desorb only clean Xenon while retaining the contaminant gases, thereby clearing the envelope of the contaminant gases. The second reservoir contains a gas whose specific purpose is, to remove the objectional metal film which deposits gradually on the interior surface of the lamp envelope during normal arc operation. The origin of the film is metal transferred from the cathode of the arc lamp by sputtering or other gas transfer processes.

  14. Fission xenon from extinct Pu-244 in 14,301.

    NASA Technical Reports Server (NTRS)

    Drozd, R.; Hohenberg, C. M.; Ragan, D.

    1972-01-01

    Xenon extracted in step-wise heating of lunar breccia 14,301 contains a fission-like component in excess of that attributable to uranium decay during the age of the solar system. There seems to be no adequate source for this component other than Pu-244. Verification that this component is in fact due to the spontaneous fission of extinct Pu-244 comes from the derived spectrum which is similar to that observed from artificially produced Pu-244. It thus appears that Pu-244 was extant at the time lunar crustal material cooled sufficiently to arrest the thermal diffusion of xenon. Subsequent history has apparently maintained the isotopic integrity of plutonium fission xenon. Of major importance are details of the storage itself. Either the fission component is the result of in situ fission of Pu-244 and subsequent storage in 14,301 material, or the fission xenon was stored in an intermediate reservoir before incorporation into 14,301.

  15. The unbearable lightness of being: CDMS versus XENON

    SciTech Connect

    Frandsen, Mads T.; Kahlhoefer, Felix; Sarkar, Subir; McCabe, Christopher; Schmidt-Hoberg, Kai E-mail: felix.kahlhoefer@physics.ox.ac.uk E-mail: s.sarkar@physics.ox.ac.uk

    2013-07-01

    The CDMS-II collaboration has reported 3 events in a Si detector, which are consistent with being nuclear recoils due to scattering of Galactic dark matter particles with a mass of ? 8.6 GeV and a cross-section on neutrons of ? 2 10{sup ?41} cm{sup 2}. While a previous result from the XENON10 experiment has supposedly ruled out such particles as dark matter, we find by reanalysing the XENON10 data that this is not the case. Some tension remains however with the upper limit placed by the XENON100 experiment, independently of astrophysical uncertainties concerning the Galactic dark matter distribution. We explore possible ways of ameliorating this tension by altering the properties of dark matter interactions. Nevertheless, even with standard couplings, light dark matter is consistent with both CDMS and XENON10/100.

  16. Time-resolved xenon flash-lamp opacity measurements.

    PubMed

    Linford, G J

    1994-12-20

    A laser-aided technique has been used for measuring time-resolved optical transmissions of xenon flash lamps at numerous visible and infrared wavelengths, flash-lamp current densities, lamp diameters, pulse durations, and xenon pressures. Long-pulse ( 600-s) and short-pulse ( 10-s) cases specific for optically pumping solid-state, dye, and atomic iodine lasers were studied. Opacity measurements were made for flash-lamp current densities up to 30 kA/cm(2) . Flash lamps having fused silica envelope diameters between 0.8 and 4.5 cm and xenon pressures between 2 and 450 Torr were investigated in these experiments. Xenon temperatures between 6000 and 25,000 K were estimated from the frequencies of observed arc-acoustic oscillations. Important applications for increasing the pumping efficiencies of large Nd:glass and photolytic iodine laser amplifiers are discussed. PMID:20963067

  17. A gamma-ray imaging telescope based on liquid xenon

    NASA Astrophysics Data System (ADS)

    Aprile, Elena; Mukherjee, Reshmi; Suzuki, Masayo

    1990-08-01

    A liquid-xenon time projection chamber (TPC) is discussed in terms of its utility as an imaging telescope for high energy astrophysics. The concept exploits the efficiency of xenon as an ionization and scintillation medium for imaging astrophysical gamma-ray sources. The design fundamentally follows the approach of an ionization calorimeter functioning as a TPC dedicated to 3D tracking. A schematic diagram of the instrument is presented, and the device measures the ionization signals - resulting from gamma-ray interactions with xenon - on collection electrodes. The liquid xenon instrument permits the identification of the direction of the Compton electron and thereby determines the location of the source. The energy region of 1-30 MeV is covered by the instrument, and source localization is possible for the entire range.

  18. Radon removal from gaseous xenon with activated charcoal

    NASA Astrophysics Data System (ADS)

    Abe, K.; Hieda, K.; Hiraide, K.; Hirano, S.; Kishimoto, Y.; Kobayashi, K.; Koshio, Y.; Liu, J.; Martens, K.; Moriyama, S.; Nakahata, M.; Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A.; Suzuki, Y.; Takachio, O.; Takeda, A.; Ueshima, K.; Umemoto, D.; Yamashita, M.; Hosokawa, K.; Murata, A.; Otsuka, K.; Takeuchi, Y.; Kusaba, F.; Motoki, D.; Nishijima, K.; Tasaka, S.; Fujii, K.; Murayama, I.; Nakamura, S.; Fukuda, Y.; Itow, Y.; Masuda, K.; Nishitani, Y.; Takiya, H.; Uchida, H.; Kim, Y. D.; Kim, Y. H.; Lee, K. B.; Lee, M. K.; Lee, J. S.; Xmass Collaboration

    2012-01-01

    Many low background experiments using xenon need to remove radioactive radon to improve their sensitivities. However, no method of continually removing radon from xenon has been described in the literature. We studied a method to remove radon from xenon gas through an activated charcoal trap. From our measurements we infer a linear relationship between the mean propagation velocity vRn of radon and vXe of xenon in the trap with vRn/vXe=(0.960.10)10-3 at -85 C. As the mechanism for radon removal in this charcoal trap is its decay, knowledge of this parameter allows us to design an efficient radon removal system for the XMASS experiment. The verification of this system found that it reduces radon by a factor of 0.07, which is in line with its expected average retention time of 14.8 days for radon.

  19. A gamma-ray imaging telescope based on liquid xenon

    NASA Technical Reports Server (NTRS)

    Aprile, Elena; Mukherjee, Reshmi; Suzuki, Masayo

    1990-01-01

    A liquid-xenon time projection chamber (TPC) is discussed in terms of its utility as an imaging telescope for high energy astrophysics. The concept exploits the efficiency of xenon as an ionization and scintillation medium for imaging astrophysical gamma-ray sources. The design fundamentally follows the approach of an ionization calorimeter functioning as a TPC dedicated to 3D tracking. A schematic diagram of the instrument is presented, and the device measures the ionization signals - resulting from gamma-ray interactions with xenon - on collection electrodes. The liquid xenon instrument permits the identification of the direction of the Compton electron and thereby determines the location of the source. The energy region of 1-30 MeV is covered by the instrument, and source localization is possible for the entire range.

  20. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  1. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B. (Haifa, IL)

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  2. Factors affecting the adsorption of xenon on activated carbon

    SciTech Connect

    Underhill, D.W.; DiCello, D.C.; Scaglia, L.A.; Watson, J.A.

    1986-08-01

    The presence of water vapor was found to interfere strongly with the dynamic adsorption of /sup 133/Xe on coconut-base activated charcoal. The percent loss in the xenon adsorption coefficient was similar to values reported earlier for the adsorption of krypton on humidified charcoal. Attempts to increase the adsorption of xenon by (a) using a petroleum-based adsorbent with an extremely high surface area and (b) by impregnation of the adsorbent with iodine were not successful.

  3. Software tool for xenon gamma-ray spectrometer control

    NASA Astrophysics Data System (ADS)

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  4. Effect of relativity on the ionization spectra of the xenon fluorides XeFn (n=2, 4, 6).

    PubMed

    Pernpointner, Markus; Cederbaum, Lorenz S

    2005-06-01

    Noble gas compounds exhibit special chemical bonding situations and have been investigated by various spectroscopic and theoretical techniques. In this work we calculate the ionization spectra of the xenon fluorides (XeF2,XeF4, and XeF6) in the valence and subvalence (down to Xe 4d) areas by application of the recently developed Dirac-Hartree-Fock one-particle propagator technique. In this technique, the relativistic (four-component) and electron correlation effects are computed simultaneously. The xenon compounds show considerable spin-orbit splitting strongly influencing the photoelectron spectrum not reproducible in prior calculations. Comparison to one-component methods is made and the occurring satellite structures are interpreted. The satellite structures can be attributed either to the breakdown of the one-particle picture or to a reflection of intra-atomic and interatomic Auger decay processes within the molecule. PMID:15974733

  5. Relativistic Calculations of Electron Ionization of Xenon

    NASA Astrophysics Data System (ADS)

    Stauffer, Allan

    2012-10-01

    We are interested in the ionization of heavy atoms by electrons of intermediate energy. Since the incident particles do not have relativistic energies, the question arises as to why a relativistic treatment of this process is preferable. The answer lies both in the treatment of the target as well as the incident particle. In our case, a relativistic treatment of the target system is done within the j-j coupling scheme where the spin and angular momenta of each electron are coupled to a total angular momentum j. Thus the valence p shell of xenon is split into two subshells, one with j = 3/2 and one with j = 1/2. Calculations of the target wave functions can be readily carried out using an available program [1]. There is a fine structure splitting of 1.31 eV between these two subshells. Thus the energy required to ionize these two subshells is sufficiently different that they can be distinguished experimentally. The Dirac equations which describe the free electrons in a distorted-wave approximation with non-local exchange explicitly contain the spin of the electron. Thus the treatment of spin-polarized scattering is straightforward and does not require any recoupling of angular momenta as in a non-relativistic scheme. Recent experiments [2,3] have measured the ionization of the j = 3/2 valence electrons of xenon when the incident electron makes an arbitrary angle with the plane containing the outgoing electron which have identical energies. We will present calculations for this process to compare with the measurements and discuss the results in terms of the models proposed for the scattering mechanisms giving rise to these non-coplanar events.[4pt] [1] P. Jonsson, X. He, C. Froese Fischer and I. P. Grant, Comput. Phys. Commun. 177, 597-622 (2007).[0pt] [2] K. L. Nixon, A. J. Murray and C. Kaiser, J. Phys. B 43, 085202 (2010).[0pt] [3] K. L. Nixon and A. J. Murray, Phys. Rev. A 85, 022716 (2012).

  6. Cerebral blood flow tomography with xenon-133

    SciTech Connect

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.

  7. Stable xenon nitride at high pressures

    NASA Astrophysics Data System (ADS)

    Peng, Feng; Wang, Yanchao; Wang, Hui; Zhang, Yunwei; Ma, Yanming

    2015-09-01

    Nitrides in many ways are fascinating since they often appear as superconductors, high-energy density, and hard materials. Though there exist a large variety of nitrides, noble gas nitrides are missing in nature. Pursuit of noble gas nitrides has therefore become the subject of topical interests, but remains as a great challenge since molecular nitrogen (N2, a major form of nitrogen) and noble gases are both inert systems and do not interact at normal conditions. We show through a first-principles swarm-structure search that high pressure enables a direct interaction of N2 and xenon (Xe) above 146 GPa. The resultant Xe nitride has a peculiar stoichiometry of XeN6, possessing a high-energy density of approximately 2.4 kJg -1, rivaling that of the modern explosives. Structurally, XeN6 is intriguing with the appearance of chaired N6 hexagons and unusually high 12-coordination of Xe bonded with N. Our work opens up the possibility of achieving Xe nitride with superior high-energy density whose formation is long sought as impossible.

  8. Ethane-xenon mixtures under shock conditions

    NASA Astrophysics Data System (ADS)

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas

    2015-06-01

    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  9. Ethane-xenon mixtures under shock conditions

    DOE PAGESBeta

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; Cochrane, Kyle Robert; Flicker, Dawn G.

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, themore » DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.« less

  10. Ethane-xenon mixtures under shock conditions

    SciTech Connect

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; Cochrane, Kyle Robert; Flicker, Dawn G.

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, the DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.

  11. Optimization of Xenon Difluoride Vapor Delivery

    SciTech Connect

    Sweeney, Joseph; Marganski, Paul; Kaim, Robert; Wodjenski, Mike; Gregg, John; Yedave, Sharad; Sergi, Steve; Bishop, Steve; Eldridge, David; Zou Peng

    2008-11-03

    Xenon difluoride (XeF{sub 2}) has been shown to provide many process benefits when used as a daily maintenance recipe for ion implant. Regularly flowing XeF{sub 2} into the ion source cleans the deposits generated by ion source operation. As a result, significant increases in productivity have been demonstrated. However, XeF{sub 2} is a toxic oxidizer that must be handled appropriately. Furthermore, it is a low vapor pressure solid under standard conditions ({approx}4.5 torr at 25 deg. C). These aspects present unique challenges for designing a package for delivering the chemistry to an ion implanter. To address these challenges, ATMI designed a high-performance, re-usable cylinder for dispensing XeF{sub 2} in an efficient and reliable manner. Data are presented showing specific attributes of the cylinder, such as the importance of internal heat transfer media and the cylinder valve size. The impact of mass flow controller (MFC) selection and ion source tube design on the flow rate of XeF{sub 2} are also discussed. Finally, cylinder release rate data are provided.

  12. Prospects for Barium Tagging in Gaseous Xenon

    SciTech Connect

    Sinclair, D.; Rollin, E.; Smith, J.; Mommers, A.; Ackerman, N.; Aharmim, B.; Auger, M.; Barbeau, P.S.; Benitez-Medina, C.; Breidenbach, M.; Burenkov, A.; Cook, S.; Coppens, A.; Daniels, T.; DeVoe, R.; Dobi, A.; Dolinski, M.J.; Donato, K.; Fairbank, W., Jr.; Farine, J.; Giroux, G.; /Bern U., LHEP /Carleton U. /Stanford U., Phys. Dept. /Carleton U. /Laurentian U. /Carleton U. /SLAC /Indiana U. /Indiana U., CEEM /Korea U. /Stanford U., Phys. Dept. /SLAC /Alabama U. /Colorado State U. /Stanford U., Phys. Dept. /Alabama U. /SLAC /Stanford U., Phys. Dept. /Alabama U. /Massachusetts U., Amherst /SLAC /Alabama U. /SLAC /Maryland U. /Moscow, ITEP /Stanford U., Phys. Dept. /Maryland U. /Bern U., LHEP /Laurentian U. /SLAC /Maryland U.

    2012-05-03

    Tagging events with the coincident detection of a barium ion would greatly reduce the background for a neutrino-less double beta decay search in xenon. This paper describes progress towards realizing this goal. It outlines a source that can produce large quantities of Ba++ in gas, shows that this can be extracted to vacuum, and demonstrates a mechanism by which the Ba++ can be efficiently converted to Ba+ as required for laser identification. It is clear from this study that electrospray is a convenient mechanism for producing Ba++ is gas at atmospheric pressure. It is likely that the source will perform just as effectively at higher pressures. Even though the source region has water vapour and methanol vapour at the 0.3% level, there is no evidence for molecular formation. The use of TEA offers an effective method to achieve the charge state conversion. The overall design of the ion extraction from high pressure to vacuum is very similar to the scheme proposed for the final detector and this appears to work well although the efficiency is not yet determined.

  13. Breakdown characteristics of xenon HID Lamps

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  14. Xenon-enhanced CT imaging of local pulmonary ventilation

    NASA Astrophysics Data System (ADS)

    Tajik, Jehangir K.; Tran, Binh Q.; Hoffman, Eric A.

    1996-04-01

    We are using the unique features of electron beam CT (EBCT) in conjunction with respiratory and cardiac gating to explore the use of non-radioactive xenon gas as a pulmonary ventilation contrast agent. The goal is to construct accurate and quantitative high-resolution maps of local pulmonary ventilation in humans. We are evaluating xenon-enhanced computed tomography in the pig model with dynamic tracer washout/dilution and single breath inhalation imaging protocols. Scanning is done via an EBCT scanner which offers 50 msec scan aperture speeds. CT attenuation coefficients (image gray scale value) show a linear increase with xenon concentration (r equals 0.99). We measure a 1.55 Hounsfield Unit (HU) enhancement (kV equals 130, mA equals 623) per percentage increase in xenon gas concentration giving an approximately 155 HU enhancement with 100% xenon gas concentration as measured in a plexiglass super-syringe. Early results indicate that a single breath (from functional residual capacity to total lung capacity) of 100% xenon gas provides an average 32 +/- 1.85 (SE) HU enhancement in the lung parenchyma (maximum 50 HU) and should not encounter unwanted xenon side effects. However, changes in lung density occurring during even short breath holds (as short as 10 seconds) may limit using a single breath technique to synchronous volumetric scanning, currently possible only with EBCT. Preliminary results indicate close agreement between measured regional xenon concentration-time curves and theoretical predictions for the same sample. More than 10 breaths with inspirations to as high as 25 cmH2O airway pressure were needed to clear tracer from all lung regions and some regions had nearly linear rather than mono-exponential clearance curves. When regional parenchymal xenon concentration-time curves were analyzed, vertical gradients in ventilation and redistribution of ventilation at higher inspiratory flow rates were consistent with known pulmonary physiology. We present here a works in progress, showing results from two pigs illustrating the high resolution and detailed regional information obtainable with careful attention to cardiac and respiratory gating during a multi-breath washout period.

  15. The krypton and xenon markets up to the year 2000

    NASA Astrophysics Data System (ADS)

    Hammarlund, Nils

    1992-05-01

    Krypton and xenon are rare gases which are found in air in concentrations of about 1.14 and 0.087 ppm, respectively. They are produced in specially equipped, very large air separation units by adding a special raw gas extraction unit. Then this raw gas is purified and the krypton and xenon are separated by cryogenic methods. These rare gases are used in the lamp industry, for medical applications and in laser and research applications. The market for krypton and xenon is growing. The production capacity for these gases is limited and this results in a cyclic behavior of availability and market price. In the next few years, 10-20 million liters of krypton and one to two million liters of xenon will become available on the market due to new investments in the USA, South Africa and the AGA AB joint venture in the USSR. The total world production capacity of krypton and xenon will increase to 60-80 million liters. To influence the availability of these gases it is important to have close partnership between user and producer, which will realize bright and unorthodox ideas for the supply and use of these rare gases.

  16. Influence of radiation damage on xenon diffusion in silicon carbide

    NASA Astrophysics Data System (ADS)

    Friedland, E.; Grtner, K.; Hlatshwayo, T. T.; van der Berg, N. G.; Thabethe, T. T.

    2014-08-01

    Diffusion of xenon in poly and single crystalline silicon carbide and the possible influence of radiation damage on it are investigated. For this purpose 360 keV xenon ions were implanted in commercial 6H-SiC and CVD-SiC wafers at room temperature, 350 C and 600 C. Width broadening of the implantation profiles and xenon retention during isochronal and isothermal annealing up to temperatures of 1500 C was determined by RBS-analysis, whilst in the case of 6H-SiC damage profiles were simultaneously obtained by ?-particle channelling. No diffusion or xenon loss was detected in the initially amorphized and eventually recrystallized surface layer of cold implanted 6H-SiC during annealing up to 1200 C. Above that temperature serious erosion of the implanted surface occurred, which made any analysis impossible. No diffusion or xenon loss is detected in the hot implanted 6H-SiC samples during annealing up to 1400 C. Radiation damage dependent grain boundary diffusion is observed at 1300 C in CVD-SiC.

  17. Xenon improves recovery from myocardial stunning in chronically instrumented dogs.

    PubMed

    Hartlage, Maike A Grosse; Berendes, Elmar; Van Aken, Hugo; Fobker, Manfred; Theisen, Marc; Weber, Thomas P

    2004-09-01

    In this study we tested the hypothesis that inhalational administration of xenon improves recovery from myocardial stunning. Ten dogs were chronically instrumented for measurement of heart rate; left atrial, aortic, and left ventricular pressure; coronary blood-flow velocity; and myocardial wall-thickening fraction. Regional myocardial blood flow was determined with fluorescent microspheres. Catecholamine plasma levels were measured by high-performance liquid chromatography. An occluder around the left anterior descending artery (LAD) allowed the induction of a reversible LAD ischemia. Animals underwent 2 experimental conditions in a randomized crossover fashion on separate days: (a) 10 min of LAD occlusion under fentanyl (25 microg. kg(-1). h(-1)) and midazolam (0.6 mg. kg(-1). h(-1)) (control) and (b) a second ischemic episode under the same basal anesthesia with concomitant inhalational administration of 75 +/- 1 vol% xenon (intervention). Anesthesia was induced 35 min before LAD occlusion and was discontinued after 20 min of reperfusion. Dogs receiving xenon showed a significantly better recovery of wall-thickening fraction up to 12 h after ischemia. The increase in plasma epinephrine during emergence from anesthesia and in the early reperfusion period was significantly attenuated in the xenon group. There were no differences between groups concerning global hemodynamics, blood-flow velocity, or regional myocardial blood flow. In conclusion, inhalational administration of 75 vol% xenon improves recovery from myocardial stunning in chronically instrumented dogs under fentanyl/midazolam anesthesia. PMID:15333388

  18. Converging xenon shock waves driven by megagauss magnetic fields

    SciTech Connect

    Shearer, J.W.; Steinberg, D.J.

    1986-07-01

    We attempted to implode a conducting metal linear at high velocity, and our failure to do so led to switching, or rapidly transferring the field from pushing an aluminum conductor to snow-plowing a half-atmosphere of xenon gas. We successfully initiated convergent xenon gas shocks with the use of a magnetohydrodynamic switch and coaxial high-explosive, flux-compression generators. Principal diagnostics used to study the imploding xenon gas were /sup 133/Xe radioactive tracers, continuous x-ray absorption, and neutron output. We compressed the xenon gas about five to sixfold at a velocity of 10 cm/..mu..s at a radius of 4 cm. The snowplow efficiency was good; going from 13- to 4-cm radius, we lost only about 20% of the mass. The temperature of the imploded sheath was determined by mixing deuterium with the xenon and measuring the neutron output. Using reasonable assumptions about the amount, density, and uniformity of the compressed gas, we estimate that we reached temperatures as high as 155 eV. Energy-loss mechanisms that we encountered included wall ablation and Taylor instabilities of the back surface.

  19. Spectrally Resolved Magnetic Resonance Imaging of the XenonBiosensor

    SciTech Connect

    Hilty, Christian; Lowery, Thomas; Wemmer, David; Pines, Alexander

    2005-07-15

    Due to its ability to non-invasively record images, as well as elucidate molecular structure, nuclear magnetic resonance is the method of choice for applications as widespread as chemical analysis and medical diagnostics. Its detection threshold is, however, limited by the small polarization of nuclear spins in even the highest available magnetic fields. This limitation can, under certain circumstances, be alleviated by using hyper-polarized substances. Xenon biosensors make use of the sensitivity gain of hyperpolarized xenon to provide magnetic resonance detection capability for a specific low-concentration target. They consist of a cryptophane cage, which binds one xenon atom, and which has been connected via a linker to a targeting moiety such as a ligand or antibody. Recent work has shown the possibility of using the xenon biosensor to detect small amounts of a substance in a heterogeneous environment by NMR. Here, we demonstrate that magnetic resonance (MR) provides the capability to obtain spectrally and spatially resolved images of the distribution of immobilized biosensor, opening the possibility for using the xenon biosensor for targeted imaging.

  20. Modeling Xenon Purification Systems in a Laser Inertial Fusion Engine

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Gentile, Charles

    2011-10-01

    A Laser Inertial Fusion Engine (LIFE) is a proposed method to employ fusion energy to produce electricity for consumers. However, before it can be built and used as such, each aspect of a LIFE power plant must first be meticulously planned. We are in the process of developing and perfecting models for an exhaust processing and fuel recovery system. Such a system is especially essential because it must be able to recapture and purify expensive materials involved in the reaction so they may be reused. One such material is xenon, which is to be used as an intervention gas in the target chamber. Using Aspen HYSYS, we have modeled several subsystems for exhaust processing, including a subsystem for xenon recovery and purification. After removing hydrogen isotopes using lithium bubblers, we propose to use cryogenic distillation to purify the xenon from remaining contaminants. Aspen HYSYS allows us to analyze predicted flow rates, temperatures, pressures, and compositions within almost all areas of the xenon purification system. Through use of Aspen models, we hope to establish that we can use xenon in LIFE efficiently and in a practical manner.

  1. XEMIS: A liquid xenon detector for medical imaging

    NASA Astrophysics Data System (ADS)

    Gallego Manzano, L.; Bassetto, S.; Beaupere, N.; Briend, P.; Carlier, T.; Cherel, M.; Cussonneau, J.-P.; Donnard, J.; Gorski, M.; Hamanishi, R.; Kraeber Bodéré, F.; Le Ray, P.; Lemaire, O.; Masbou, J.; Mihara, S.; Morteau, E.; Scotto Lavina, L.; Stutzmann, J.-S.; Tauchi, T.; Thers, D.

    2015-07-01

    A new medical imaging technique based on the precise 3D location of a radioactive source by the simultaneous detection of 3γ rays has been proposed by Subatech laboratory. To take advantage of this novel technique a detection device based on a liquid xenon Compton telescope and a specific (β+, γ) emitter radionuclide, 44Sc, are required. A first prototype of a liquid xenon time projection chamber called XEMIS1 has been successfully developed showing very promising results for the energy and spatial resolutions for the ionization signal in liquid xenon, thanks to an advanced cryogenics system, which has contributed to a high liquid xenon purity with a very good stability and an ultra-low noise front-end electronics (below 100 electrons) operating at liquid xenon temperature. The very positive results obtained with XEMIS1 have led to the development of a second prototype for small animal imaging, XEMIS2, which is now under development. To study the feasibility of the 3γ imaging technique and optimize the characteristics of the device, a complete Monte Carlo simulation has been also carried out. A preliminary study shows very positive results for the sensitivity, energy and spatial resolutions of XEMIS2.

  2. Hugoniot measurements of double-shocked precompressed dense xenon plasmas.

    PubMed

    Zheng, J; Chen, Q F; Gu, Y J; Chen, Z Y

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ?6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures. PMID:23368058

  3. Studies of xenon gas purity for next generation detectors

    NASA Astrophysics Data System (ADS)

    Dobi, Attila

    2010-02-01

    The next generation of neutrino and dark matter detectors will require large quantities of extremely pure liquid argon and xenon. These types of experiments measure purity using dedicated devices which are capable of detecting electronegative impurities at concentrations less than one part per billion in the liquid phase. On the other hand, the purifiers used by these experiments often operate solely on the gas phase. Gas phase purity has been more difficult to monitor, because the analysis technology (Atmospheric Pressure Ionization Mass Spectroscopy) is out of reach for most researchers. We describe here our development of a new, inexpensive technique for monitoring the purity of xenon in the gas phase. Using this method we have reached sensitivities of better than one part per billion. We have begun using our device to study the performance of a common xenon gas purifier, the SAES Monotorr zirconium getter. To date gaseous xenon purification data for the SAES noble gas purifier does not exist. Our method of purity measurement is promising and would be a cost effective option for experiments using ultra high purity xenon. )

  4. Primitive Terrestrial Xenon: A Relation to Refined Composition of Solar Wind

    NASA Astrophysics Data System (ADS)

    Meshik, A. P.; Pravdivtseva, O. V.; Burnett, D. S.; Hohenberg, C. M.

    2015-07-01

    Refined xenon isotopic analyses of solar wind delivered by Genesis Mission and experiments demonstrating modification of apparent fission yields due to chemical fractionating of Xe precursors are probably two essential ingredients to understand primordial terrestrial xenon.

  5. Low-Energy Sputtering Studies of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    Sputtering of boron nitride with xenon ions was investigated using secondary ion (SIMS) and secondary neutral (SNMS) mass spectrometry. The ions generated from the ion gun were incident on the target at an angle of 50' with respect to the surface'normal. The energy of ions ranged from 100 eV to 3 keV. A flood electron gun was used to neutralize the positive charge build-up on the target surface. The intensities of sputtered neutral and charged particles, including single atoms, molecules, and clusters, were measured as a function of ion energy. Positive SIMS spectra were dominated by the two boron isotopes whereas BN- and B- were the two major constituents of the negative SIMS spectra. Nitrogen could be detected only in the SNMS spectra. The intensity-energy curves of the sputtered particles were similar in shape. The knees in P-SIMS and SNMS intensity-energy curves appear at around I keV which is significantly higher that 100 to 200 eV energy range at which knees appear in the sputtering of medium and heavy elements by ions of argon and xenon. This difference in the position of the sputter yield knee between boron nitride and heavier targets is due to the reduced ion energy differences. The isotopic composition of secondary ions of boron were measured by bombarding boron nitride with xenon ions at energies ranging from 100 eV to 1.5 keV using a quadrupole mass spectrometer. An ion gun was used to generate the ion beam. A flood electron gun was used to neutralize the positive charge buildup on the target surface. The secondary ion flux was found to be enriched in heavy isotopes at lower incident ion energies. The heavy isotope enrichment was observed to decrease with increasing primary ion energy. Beyond 350 eV, light isotopes were sputtered preferentially with the enrichment increasing to an asymptotic value of 1.27 at 1.5 keV. The trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  6. Hypersatellite and satellite transitions in xenon atoms

    NASA Astrophysics Data System (ADS)

    Ilakovac, K.; Veskovi?, M.; Horvat, V.; Kaui?, S.

    1990-10-01

    Decay of double-K-shell-vacancy states in xenon atoms, created in the decay of 131Cs, was investigated. The measurements were performed with a pair of germanium detectors, a fast-slow coincidence system, and a three-parameter pulse-height analyzer. In the analysis of the two-dimensional E1-E2 spectrum, improved least-squares routines were applied. The following results were derived: the probability of creation of a double K-shell vacancy per 131Cs decay, PKK=(1.48+/-0.35)10-5 the hypersatellite energy shifts ?h(K?)=(653+/-20) eV, ?h(K?1)=(834+/-39) eV, and ?h(K?2)=(903+/-81) eV; the average values of the satellite energy shifts due to the presence of an L3- or L2-shell spectator vacancy ?s(K?L-1)=(80+/-15) eV, ?s(K?1L-1)=(169+/-34) eV, and ?s(K?2L-1)=(261+/-81) eV; the intensity ratios of the hypersatellite transitions, I(K?h2)/I(K?h1)=0.94+/-0.18, I(K?h1)/I(K?h1)=0.36+/-0.06, and I(K?h2)/ I(K?h1)=0.09+/-0.04 the intensity ratios of the satellite transitions I(K?2L-1)/I(K?1L-1)=0.44+/-0.10 and 0.44+/-0.09 for an L3 and L2 spectator vacancy, respectively; and the intensity ratios of some other satellite transitions.

  7. Cold Ion-Molecule Chemistry with a Stark Decelerator Beamline

    NASA Astrophysics Data System (ADS)

    Oldham, James M.; Bell, Martin T.; Harper, Lee D.; Softley, Timothy P.

    2012-06-01

    We describe an experimental method for studying ion-molecule reactive collisions at very low energies. Building on our previous work using an electrostatic quadrupole guide as a source of cold neutral molecules, we discuss a proof of principle study of the charge-exchange reaction between cold xenon ions and Stark decelerated ammonia molecules. Ammonia molecules from a pulsed supersonic expansion are produced at low velocities using the Stark deceleration technique of Meijer and co-workers. The decelerated molecules are focussed using pulsed electrostatic hexapoles into the centre of a radiofrequency ion trap where they collide with cold xenon ions. A fast-opening vacuum-compatible mechanical shutter installed in the beamline is used to prevent transmission of the undecelerated molecules and carrier gas into the ion trap chamber. To prepare the target ions, the ion trap is loaded with calcium ions, which are Doppler laser cooled to form a low-temperature ordered ``Coulomb crystal'' phase. Xenon ions formed by resonant multiphoton ionisation are subsequently loaded and sympathetically cooled through their Coulomb interaction with the laser-cooled ions. The spatial distribution of fluorescence emitted by the laser-cooled ions in the multicomponent crystal is imaged; reactive collisions of Xe^+ with ND_3 are observed and quantified through changes in this distribution. By varying the high voltage switching sequence applied to the decelerator, the velocity of the ammonia molecules can be tuned from around 250 m/s to 35 m/s. For collisions with trapped xenon ions, this corresponds to collision energies (expressed in temperature units) from 65 K down to close to 1 K.

  8. High-pressure xenon detector development at Constellation Technology Corporation

    NASA Astrophysics Data System (ADS)

    Austin, Robert A.; Bastian, Lloyd F.

    2006-08-01

    Xenon-filled ionization detectors, due to their high atomic number fill gas (Z=54), moderate densities (~0.3 g/cm 3-0.5 g/cm 3) and good energy resolution (2%-4% at 662 keV), fill an important niche between more familiar technologies such as NaI(Tl) scintillators and Germanium detectors. Until recently, difficulties with obtaining sufficient Xenon purity, reducing microphonic sensitivity, and developing low-noise electronics compatible with small ionization signals have hampered the development of this nuclear detection field. Constellation Technology Corporation, whose experience with xenon detectors goes back to the mid 1990's, has made significant progress in these areas and has developed a commercial line of detectors with active volumes ranging from small (35 g Xe) to large (1400 g Xe). Here we will discuss our development of a mobile, large area, spectroscopic array.

  9. Liquid Hole Multipliers: bubble-assisted electroluminescence in liquid xenon

    NASA Astrophysics Data System (ADS)

    Arazi, L.; Erdal, E.; Coimbra, A. E. C.; Rappaport, M. L.; Vartsky, D.; Chepel, V.; Breskin, A.

    2015-08-01

    In this work we discuss the mechanism behind the large electroluminescence signals observed at relatively low electric fields in the holes of a Thick Gas Electron Multiplier (THGEM) electrode immersed in liquid xenon. We present strong evidence that the scintillation light is generated in xenon bubbles trapped below the THGEM holes. The process is shown to be remarkably stable over months of operation, providingunder specific thermodynamic conditionsenergy resolution similar to that of present dual-phase liquid xenon experiments. The observed mechanism may serve as the basis for the development of Liquid Hole Multipliers (LHMs), capable of producing local charge-induced electroluminescence signals in large-volume single-phase noble-liquid detectors for dark matter and neutrino physics experiments.

  10. Estimation of Anomalous Single Scatter Events in XENON100 Data

    NASA Astrophysics Data System (ADS)

    Lim, Kyungeun; Xenon100 Collaboration

    2011-04-01

    Anomalous single scatter events in XENON100 are events that have only one scintillation pulse (S1) and one ionization pulse (S2), but are multiple scatters in nature. Only one scatter takes place inside the detector's charge and light sensitive volume, resulting in a S2/S1 ratio that is lower than that of true single scatter events and typical of that expected from a WIMP interaction. The identification and suppression of these anomalous events is therefore essential for a sensitive dark matter search. I present results from a Monte Carlo (MC) study that was carried out to estimate the expected number of anomalous single scatter events in the XENON100 WIMP search data. The MC was validated with a comparison with Co-60 gamma-calibration data. We gratefully acknowledge support from NSF, DOE, SNF, the Volkswagen Foundation, FCT, and STCSM. We are grateful to the LNGS for hosting and supporting the XENON program.

  11. Xenon bubble chambers for direct dark matter detection

    NASA Astrophysics Data System (ADS)

    Levy, C.; Fallon, S.; Genovesi, J.; Khaitan, D.; Klimov, K.; Mock, J.; Szydagis, M.

    2016-03-01

    The search for dark matter is one of today's most exciting fields. As bigger detectors are being built to increase their sensitivity, background reduction is an ever more challenging issue. To this end, a new type of dark matter detector is proposed, a xenon bubble chamber, which would combine the strengths of liquid xenon TPCs, namely event by event energy resolution, with those of a bubble chamber, namely insensitivity to electronic recoils. In addition, it would be the first time ever that a dark matter detector is active on all three detection channels, ionization and scintillation characteristic of xenon detectors, and heat through bubble formation in superheated fluids. Preliminary simulations show that, depending on threshold, a discrimination of 99.99% to 99.9999+% can be achieved, which is on par or better than many current experiments. A prototype is being built at the University at Albany, SUNY. The prototype is currently undergoing seals, thermal, and compression testing.

  12. Single Ion Trapping for the Enriched Xenon Observatory

    SciTech Connect

    Waldman, Samuel J.; ,

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  13. Xenon stability analysis using the generalized nyquist criterion

    SciTech Connect

    Choi, Yoocho; Park, Gooncherl; Chung, Changhyun ); Park, Jongkyun

    1990-06-01

    Xenon-induced spatial power oscillations caused by control rod movement may cause control problems in nuclear power plant operation. Many studies have been performed to assess the xenon stability analysis using the time-domain technique or the frequency-domain technique for the single-input/single-output (SISO) system. However, those methods are too complicated and thus too time consuming, or too simple to provide results according to control rod movement in a certain position. This study analyzes xenon axial stability using the modal expansion technique in the frequency domain with the generalized Nyquist criterion, which is suitable for a multi-input/multi-output (MIMO) system. To examine this model, an axial stability analysis has been performed for the pressurized water reactor core of YGN-1 in Korea. The studied design parameters are power level, control rod position, and core average burnup.

  14. Direct observation of bubble-assisted electroluminescence in liquid xenon

    NASA Astrophysics Data System (ADS)

    Erdal, E.; Arazi, L.; Chepel, V.; Rappaport, M. L.; Vartsky, D.; Breskin, A.

    2015-11-01

    Bubble formation in liquid xenon underneath a Thick Gaseous Electron Multiplier (THGEM) electrode immersed in liquid xenon was observed with a CCD camera. With voltage across the THGEM, the appearance of bubbles was correlated with that of electroluminescence signals induced by ionization electrons from alpha-particle tracks. This confirms recent indirect evidence that the observed photons are due to electroluminescence within a xenon vapor layer trapped under the electrode. The bubbles seem to emerge spontaneously due to heat flow from 300 K into the liquid, or in a controlled manner by locally boiling the liquid with resistive wires. Controlled bubble formation resulted in energy resolution of σ/E ≈ 7.5% for ~ 6000 ionization electrons. The phenomenon could pave ways towards the conception of large-volume `local dual-phase' noble-liquid TPCs.

  15. Xenon recirculation-purification with a heat exchanger

    NASA Astrophysics Data System (ADS)

    Giboni, K. L.; Aprile, E.; Choi, B.; Haruyama, T.; Lang, R. F.; Lim, K. E.; Melgarejo, A. J.; Plante, G.

    2011-03-01

    Liquid-xenon based particle detectors have been dramatically growing in size during the last years, and are now exceeding the one-ton scale. The required high xenon purity is usually achieved by continuous recirculation of xenon gas through a high-temperature getter. This challenges the traditional way of cooling these large detectors, since in a thermally well insulated detector, most of the cooling power is spent to compensate losses from recirculation. The phase change during recondensing requires five times more cooling power than cooling the gas from ambient temperature to -100C (173 K). Thus, to reduce the cooling power requirements for large detectors, we propose to use the heat from the purified incoming gas to evaporate the outgoing xenon gas, by means of a heat exchanger. Generally, a heat exchanger would appear to be only of very limited use, since evaporation and liquefaction occur at zero temperature difference. However, the use of a recirculation pump reduces the pressure of the extracted liquid, forces it to evaporate, and thus cools it down. We show that this temperature difference can be used for an efficient heat exchange process. We investigate the use of a commercial parallel plate heat exchanger with a small liquid xenon detector. Although we expected to be limited by the available cooling power to flow rates of about 2 SLPM, rates in excess of 12 SLPM can easily be sustained, limited only by the pump speed and the impedance of the flow loop. The heat exchanger operates with an efficiency of (96.80.5)%. This opens the possibility for fast xenon gas recirculation in large-scale experiments, while minimizing thermal losses.

  16. Xenon Gamma-detector Applicability for Identification and Characterization of Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Pyae, S. N.; Grachev, V. M.; Dmitrenko, V. V.; Ulin, S. E.; Vlasik, K. F.; Uteshev, Z. M.; Shustov, A. E.; Novikov, A. S.; Petrenko, D. V.; Chernysheva, I. V.

    In this paper described applicability of xenon gamma detector for identification and characterization of radioactive waste was researched. Standard calibration gamma ray sources were used to determine real physical and technical characteristics of xenon gamma spectrometer. Samples of radioactive waste were measured by xenon gamma detector for identification and characterization.

  17. Preparation of xenon-133 in a lipid emulsion for tissue perfusion studies.

    PubMed

    Hoff, B; Johnston, G; Moorman, R; Matjasko, J; Sorandes, T; Hoff, S

    1990-06-01

    A simple, inexpensive technique for concentrating xenon-133 in a medium suitable for intravenous use is reported. The method uses a 20% lipid emulsion, standard syringes, an oscillating motor, and xenon-133, which is available commercially. Typically, 43% of the xenon-133 combines with the lipid emulsion and remains stable for more than 24 hours in vitro. PMID:2354937

  18. The LUX Two-Phase-Xenon Dark Matter Search Experiment

    NASA Astrophysics Data System (ADS)

    Stiegler, Tyana; Camp, Charlie; Marquez, Zach; Rodinov, Andrew; White, James

    2007-10-01

    The race to be the first experiment to detect collisions between atoms and a new type of weakly interacting massive particle (WIMP) that is conjectured to explain dark matter is heating up. The Large Underground Xenon (LUX) detector is a second-generation WIMP dark matter search experiment that employs a liquid xenon target and provides background discrimination based on the ratio of ionization to scintillation produced in subatomic particle interactions. This experiment is designed to reach the heart of the favored parameter space for supersymmetric WIMPs and has a genuine chance to be the discovery experiment. The concept, design, schedule and reach of the experiment will be discussed.

  19. Monitoring radioactive xenon gas in room air using activated charcoal

    SciTech Connect

    Langford, J.; Thompson, G. Sir Charles Gairdner Hospital, Perth )

    1990-03-01

    A method for monitoring room air for radioactive xenon gas is described. It uses activated charcoal vials, a vacuum source and a well-type scintillation counter. The method may be adapted for detection and identification of any radioactive gas excluding those with ultra-short half-lives. Sampling room air during xenon-133 ({sup 133}Xe) ventilation lung studies was performed using this technique. The results show that low concentrations of {sup 133}Xe in room air can be reliably detected and that staff exposure to {sup 133}Xe at this institution was within ICRP recommendations.

  20. Computer simulations of the Adsorption of Xenon onto a C60 monolayer on Ag (111)

    NASA Astrophysics Data System (ADS)

    Gatica, Silvina; Cole, Milton; Diehl, Renee

    2007-03-01

    We performed Grand Canonical Monte Carlo simulations to study the adsorption of Xenon on a substrate composed of C60 molecules placed on top of a Ag(111) surface. The C60 molecules form a commensurate structure at a distance of 0.227 nm above the Ag surface. The interaction potential between the Xe atoms and the substrate has two contributions: from the C60 molecules and from the Ag atoms. In the simulations, the interaction with the Ag surface was computed using an ab initio van der Waals potential, varying as 1/d^3. The interaction between the Xe atoms and each C60 molecule was computed using a potential previously developed by Hernandez et.al. (E. S. Hernandez, M. W. Cole and M. Boninsegni, ``Wetting of spherical surfaces by quantum fluids'', J. Low Temp. Phys. 134, 309-314 (2004)), who integrated the Lennard Jones interaction over the surface of a spherical buckyball. The total potential has especially attractive 3-fold sites, positioned 0.4 nm above the point between each three buckyballs. The low coverage uptake populates those sites, and then continues forming a monolayer. The adsorption isotherms show several steps, typical of substrates that have distinct adsorption sites. We compare the results with the experimental data.

  1. Ultraviolet Pretreatment of Titanium Dioxide and Tin-Doped Indium Oxide Surfaces as a Promoter of the Adsorption of Organic Molecules in Dry Deposition Processes: Light Patterning of Organic Nanowires.

    PubMed

    Oulad-Zian, Youssef; Sanchez-Valencia, Juan R; Parra-Barranco, Julian; Hamad, Said; Espinos, Juan P; Barranco, Angel; Ferrer, Javier; Coll, Mariona; Borras, Ana

    2015-08-01

    In this article we present the preactivation of TiO2 and ITO by UV irradiation under ambient conditions as a tool to enhance the incorporation of organic molecules on these oxides by evaporation at low pressures. The deposition of π-stacked molecules on TiO2 and ITO at controlled substrate temperature and in the presence of Ar is thoroughly followed by SEM, UV-vis, XRD, RBS, and photoluminescence spectroscopy, and the effect is exploited for the patterning formation of small-molecule organic nanowires (ONWs). X-ray photoelectron spectroscopy (XPS) in situ experiments and molecular dynamics simulations add critical information to fully elucidate the mechanism behind the increase in the number of adsorption centers for the organic molecules. Finally, the formation of hybrid organic/inorganic semiconductors is also explored as a result of the controlled vacuum sublimation of organic molecules on the open thin film microstructure of mesoporous TiO2. PMID:26168350

  2. [Intracranial pressure changes during xenon anesthesia in neurosurgical patients without intracranial hypertention].

    PubMed

    Rylova, A V; Lubnin, A Iu

    2011-01-01

    Xenon assures rapid awakening and stable hemodynamics, it also has some neuroprotective effect. This is the reason why it may become an anesthetic of choice in neurosurgery. Still there is little and controversial data on its impact upon ICP. This is the first study of xenon effect upon intracranial pressure, cerebral perfusion pressure and cerebrovascular reactivity during xenon anesthesia in neurosurgical patients without intracranial hypertension. We report a slight increase in intracranial and a slight decrease in cerebral perfusion pressure during xenon anesthesia and show that cerebrovascular reactivity is preserved. Thus we conclude that xenon anesthesia is safe for neurosurgical patients without intracranial hypertension. PMID:21957614

  3. Dynamics of Xenon Plasma Streams Generated by Magnetoplasma Compressor

    SciTech Connect

    Garkusha, I. E.; Chebotarev, V. V.; Ladygina, M. S.; Marchenko, A. K.; Petrov, Yu. V.; Solyakov, D. G.; Tereshin, V. I.; Trubchaninov, S. A.; Byrka, O. V.; Hassanein, A.

    2008-03-19

    The paper presents the investigations of parameters of xenon plasma streams generated by magnetoplasma compressor (MPC) of compact geometry with conical-shaped electrodes and pulsed gas supply. Discharge characteristics and dynamics of the plasma streams, generated by MPC in different operation modes are analyzed. First results of Xe plasma radiation measurements in EUV wave range, obtained with AXUV diodes are presented.

  4. Density Functional Theory (dft) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-12-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as xenon is known to form compounds under normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. We present DFT-MD simulations of shocked liquid xenon with the goal of developing an improved equation of state. The calculated Hugoniot to 2 MPa compares well with available experimental shock data. Sandia is a mul-tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Density Functional Theory (DFT) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-06-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Pulsed xenon flashlamp device for the treatment of psoriasis

    NASA Astrophysics Data System (ADS)

    Baumgardner, Jonathan M.; Hennings, David R.; Johnston, Thomas F., Jr.; Taylor, Eric

    2003-06-01

    We present our research into a pulsed xenon lamp source for the treatment of psoriasis and other skin disorders. Various filtering techniques, lamp configurations, power supply configurations and delivery systems are discussed. Comparisons are made to existing treatment modalities. Cryogen cooling of the treatment site is discussed.

  7. On the spin-dependent sensitivity of XENON100

    NASA Astrophysics Data System (ADS)

    Garny, Mathias; Ibarra, Alejandro; Pato, Miguel; Vogl, Stefan

    2013-03-01

    The latest XENON100 data severely constrain dark matter elastic scattering off nuclei, leading to impressive upper limits on the spin-independent cross section. The main goal of this paper is to stress that the same data set has also an excellent spin-dependent sensitivity, which is of utmost importance in probing dark matter models. We show in particular that the constraints set by XENON100 on the spin-dependent neutron cross section are by far the best at present, whereas the corresponding spin-dependent proton limits lag behind other direct detection results. The effect of nuclear uncertainties on the structure functions of xenon isotopes is analyzed in detail and found to lessen the robustness of the constraints, especially for spin-dependent proton couplings. Notwithstanding, the spin-dependent neutron prospects for XENON1T and DARWIN are very encouraging. We apply our constraints to well-motivated dark matter models and demonstrate that in both mass-degenerate scenarios and the minimal supersymmetric standard model the spin-dependent neutron limits can actually override the spin-independent limits. This opens the possibility of probing additional unexplored regions of the dark matter parameter space with the next generation of ton-scale direct detection experiments.

  8. The effect of nitrogen on xenon ion engine erosion

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Brophy, John R.; Pless, L. C.; Barnett, John W.

    1990-01-01

    Erosion studies were performed on a 30-cm diameter J-series ion engine modified for operation on xenon propellant. The erosion rates of molybdenum and tantalum badges placed at different locations within the discharge chamber were measured as a function of the percentage of nitrogen (by mass) added to the xenon propellant. Reductions in the erosion rates of these badges of a factor of 8 to 50 were observed at nitrogen addition fractions between 0.5 to 2.0 percent. Reductions in cathode-side baffle erosion were achieved by adding nitrogen to the xenon propellant or by increasing the cathode orifice diameter. Analyses show that no significant degradation in ion engine performance should be expected at these nitrogen mass fractions. XRD, XPS and Auger analyses indicate the existence of nitrogen and nitrides in the surface of some but not all of the badges used in the tests where nitrogen was added to the xenon. Difficulty in identifying surface nitrides in the samples may be due to the existence of surface oxides and contaminants, or to the small thicknesses of the nitride layers.

  9. Discovery of palladium, antimony, tellurium, iodine, and xenon isotopes

    SciTech Connect

    Kathawa, J.; Fry, C.; Thoennessen, M.

    2013-01-15

    Currently, thirty-eight palladium, thirty-eight antimony, thirty-nine tellurium, thirty-eight iodine, and forty xenon isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  10. NASA's Evolutionary Xenon Thruster (NEXT) Ion Propulsion System Information Summary

    NASA Technical Reports Server (NTRS)

    Pencil, Eirc S.; Benson, Scott W.

    2008-01-01

    This document is a guide to New Frontiers mission proposal teams. The document describes the development and status of the NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system (IPS) technology, its application to planetary missions, and the process anticipated to transition NEXT to the first flight mission.

  11. Spectroscopic measurements on xenon plasma in a hollow cathode

    NASA Astrophysics Data System (ADS)

    Malik, A. K.; Montarde, P.; Haines, M. G.

    2000-08-01

    Optical emission from xenon plasma in a hollow cathode has been recorded over a wide range of wavelengths extending from vacuum ultraviolet to the visible band 100-590 nm. The cathode was operated in direct current discharge mode with a continuous flow of xenon ~13 cc min -1 at 70 Torr. A column of neutral xenon gas (~21.2 cm long) existed in-between the active plasma column (~1 cm long) source and the detector. The observed spectra show that strong Xe II and impurity (Ba, Al and Ca) lines are superimposed on a weak continuum. Xenon I lines have not been observed. A subsidiary broadened continuum band within the far vacuum ultraviolet range 100-200 nm supports the evidence that the emission due to the transitions by the excited molecular dimer/excimer species is also involved. In the present work, bremsstrahlung emission has been used to estimate the plasma electron temperature Te = 1.1 eV. The resulting electron density ne = 1014 cm-3 is then obtained using the Saha formulation for the ratio of the discrete lines. The radiative properties and the validity of the various plasma equilibrium models within the hollow cathode have also been discussed.

  12. Xe-129 NMR of xenon dissolved in biological media.

    NASA Astrophysics Data System (ADS)

    Mazitov, R. K.; Kuzma, N. N.; Happer, W.; Driehuys, B.; Merrill, G. F.

    2002-03-01

    The high solubility and large chemical shift of ^129Xe in various tissues makes it an ideal, non-invasive probe for pathological conditions such as cancer or atherosclerosis. To this end, we report NMR measurements of lineshapes, chemical shifts, and relaxation times of ^129Xe dissolved in the following biological tissues in vitro: heart, muscle, sinew, stomach(R.K. Mazitov, K. M. Enikeev, et al., Dokl. Akad. Nauk) 365, 396 (1999)., and the white and yolk of egg. NMR measurements of xenon dissolved in olive and sunflower oils are also reported. Tissues weighing 160--250 mg, not exposed to freezing, were studied in a 11.75 T field at the ^129Xe resonance frequency of 138.4 MHz; the pressure of xenon in the sealed-sample ampoules was ~20 bar. The influence of drugs and water content on tissues was studied. No xenon-water clathrates(J.A. Ripmeester and D.W. Davidson, J. Mol. Struct. ) 75, 67 (1981). were observed in the tissues, even at the high pressures used. The aim of this study is to establish possible correlations between the NMR parameters of dissolved xenon and the state of the tissue.

  13. On the behavior of solutions of xenon in liquid n-alkanes: solubility of xenon in n-pentane and n-hexane.

    PubMed

    Bonifácio, Rui P M F; Martins, Luís F G; McCabe, Clare; Filipe, Eduardo J M

    2010-12-01

    The solubility of xenon in liquid n-pentane and n-hexane has been studied experimentally, theoretically, and by computer simulation. Measurements of the solubility are reported for xenon + n-pentane as a function of temperature from 254 to 305 K. The uncertainty in the experimental data is less than 0.15%. The thermodynamic functions of solvation such as the standard Gibbs energy, enthalpy, and entropy of solvation have been calculated from Henry's law coefficients for xenon + n-pentane solutions and also for xenon + n-hexane, which were reported in previous work. The results provide a further example of the similarity between the xenon + n-alkane interaction and the n-alkane + n-alkane interactions. Using the SAFT-VR approach we were able to quantitatively predict the experimental solubility for xenon in n-pentane and semiquantitatively that of xenon in n-hexane using simple Lorentz-Berthelot combining rules to describe the unlikely interaction. Henry's constants at infinite dilution for xenon + n-pentane and xenon + n-hexane were also calculated by Monte Carlo simulation using a united atom force field to describe the n-alkane and the Widom test particle insertion method. PMID:21067166

  14. XENON in medical area: emphasis on neuroprotection in hypoxia and anesthesia

    PubMed Central

    2013-01-01

    Xenon is a medical gas capable of establishing neuroprotection, inducing anesthesia as well as serving in modern laser technology and nuclear medicine as a contrast agent. In spite of its high cost, its lack of side effects, safe cardiovascular and organoprotective profile and effective neuroprotective role after hypoxic-ischemic injury (HI) favor its applications in clinics. Xenon performs its anesthetic and neuroprotective functions through binding to glycine site of glutamatergic N-methyl-D-aspartate (NMDA) receptor competitively and blocking it. This blockage inhibits the overstimulation of NMDA receptors, thus preventing their following downstream calcium accumulating cascades. Xenon is also used in combination therapies together with hypothermia or sevoflurane. The neuroprotective effects of xenon and hypothermia cooperate synergistically whether they are applied synchronously or asynchronously. Distinguishing properties of Xenon promise for innovations in medical gas field once further studies are fulfilled and Xenons high cost is overcome. PMID:23369273

  15. Applications of highly spin-polarized xenon in NMR

    SciTech Connect

    Long, H.W. |

    1993-09-01

    The main goal of the work presented in this thesis is produce highly spin-polarized xenon to create much greater signal intensities (up to 54,000 times greater) so as to allow studies to be made on systems with low surface area and long spin-lattice relaxation times. The spin-exchange optical pumping technique used to create high nuclear spin polarization is described in detail in chapter two. This technique is initially applied to some multiple-pulse optically detected NMR experiments in low magnetic field (50G) that allow the study of quadrupoler interactions with a surface of only a few square centimeters. In chapter three the apparatus used to allow high field {sup 129}Xe NMR studies to be performed with extremely high sensitivity is described and applied to experiments on diamagnetic susceptibility effects in thin ({approximately}2000 layers) films of frozen xenon. Preliminary surface investigations of laser polarized {sup 129}Xe adsorbed an a variety of materials (salts, molecular crystals, amorphous carbon, graphite) are then discussed. A full detailed study of the surface of a particular polymer, poly(acrylic acid), is presented in chapter four which shows the kind of detailed information that can be obtained from this technique. Along with preliminary results for several similar polymers, a summary is given of xenon studies of a novel ultra-high surface area polymer, poly(triarylcarbinol). Finally in chapter five the exciting possibility of transferring the high spin order of the laser polarized xenon has been used to transfer nuclear spin order to {sup 13}CO{sub 2} in a xenon matrix and to protons on poly(triarylcarbinol).

  16. Segregation of xenon to dislocations and grain boundaries in uranium dioxide

    SciTech Connect

    Nerikar, P. V.; Casillas Trujillo, L. A.; Andersson, D. A.; Unal, C.; Uberuaga, B. P.; Stanek, C. R.; Parfitt, D. C.; Grimes, R. W.; Sinnott, S. B.

    2011-11-01

    It is well known that Xe, being insoluble in UO{sub 2}, segregates to dislocations and grain boundaries (GBs), where bubbles may form resulting in fuel swelling. Less well known is how sensitive this segregation is to the structure of the dislocation or GB. In this work we employ pair potential calculations to examine Xe segregation to dislocations (edge and screw) and several representative grain boundaries ({Sigma}5 tilt, {Sigma}5 twist, and random). Our calculations predict that the segregation trend depends significantly on the type of dislocation or GB. In particular we find that Xe prefers to segregate strongly to the random boundary as compared to the other two boundaries and to the screw dislocation rather than the edge. Furthermore, we observe that neither the volumetric strain nor the electrostatic potential of a site can be used to predict its segregation characteristics. These differences in segregation characteristics are expected to have important consequences for the retention and release of Xe in nuclear fuels. Finally, our results offer general insights into how atomic structure of extended defects influence species segregation.

  17. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  18. The Light Response of the XENON100 Time Projection Chamber and the Measurements of the Optical Parameters with the Xenon Scintillation Light

    NASA Astrophysics Data System (ADS)

    Choi, Bin

    The XENON program is a phased project using liquid xenon as a sensitive detector medium in search for weakly interacting massive particles (WIMPs). These particles are the leading candidates to explain the non-baryonic, cold dark matter in our Universe. XENON100, the successor experiment of XENON10, has increased the target liquid xenon mass to 61 kg with a 100 times reduction in background rate enabling a large increase in sensitivity to WIMP-nucleon interaction cross-section. To-date, the most stringent limit on this cross-section over a wide range of WIMP masses have been obtained with XENON100. XENON100 is a detector responding to the scintillation of xenon and the work of this thesis will mainly focus on the light response of the detector. Chapter 1 describes the evidences for dark matter and some of the detection methods, roughly divided by the indirect and the direct detection. In the section 1.2.2 for direct detection, a treatment of interaction rate of WIMPs is introduced. Chapter 2 is a description of the XENON100 detector, some of the main characteristics of liquid xenon, followed by the detector design. In Chapter 3, the light response of the XENON100 time projection chamber (TPC) is explained, including the Monte Carlo simulation work that was carried out prior to the main data taking. The Monte Carlo provided the basic idea of understanding the detector in the early stage of design and calibration, but the actual corrections of the light signals were determined later with the real data. Several optical parameters are critical in explaining the light response, such as the quantum efficiency (QE) of the photomultipliers (PMTs) used in the detector and the reflectivity of the teflon (Polytetrafluoroethylene, PTFE) material that surrounds the liquid xenon target volume and defines the TPC. Since the few existing measurements of reflectivity of PTFE in liquid xenon were performed in different conditions and thus could not be applied, the XENON collaboration put some effort in setting up a reliable and an independent measurement for these parameters. The QE of the Hamamatsu R8520 PMTs at liquid xenon temperature was measured at the Columbia Nevis Laboratory, as described in Chapter 4. A similar but a revised setup was built later at the University of Muenster in Germany for measuring the reflectivity of the PTFE (Chapter 5). These measurements are important for a deeper understanding of XENON100 and the next phase of the program with a XENON1T as well as for other liquid xenon experiments. Chapter 6 explains the details of the energy scale derived from the measurement of the light signals in XENON100 and the cuts used for the analysis, which has led to the most recent scientific results from this experiments. In 2012, the XENON100 dark matter results from 225 live days set the most stringent limit on the spin-independent elastic WIMP- nucleon interaction cross section for WIMP masses above 8 GeV/c2, with a minimum of 2 x 10-45 cm2 at 55 GeV/c2 and 90% confidence level. With this result XENON100 continues to be the leading experiment in the direct search for dark matter.

  19. Assessing the depth of hypnosis of xenon anaesthesia with the EEG.

    PubMed

    Stuttmann, Ralph; Schultz, Arthur; Kneif, Thomas; Krauss, Terence; Schultz, Barbara

    2010-04-01

    Xenon was approved as an inhaled anaesthetic in Germany in 2005 and in other countries of the European Union in 2007. Owing to its low blood/gas partition coefficient, xenons effects on the central nervous system show a fast onset and offset and, even after long xenon anaesthetics, the wake-up times are very short. The aim of this study was to examine which electroencephalogram (EEG) stages are reached during xenon application and whether these stages can be identified by an automatic EEG classification. Therefore, EEG recordings were performed during xenon anaesthetics (EEG monitor: Narcotrend). A total of 300 EEG epochs were assessed visually with regard to the EEG stages. These epochs were also classified automatically by the EEG monitor Narcotrend using multivariate algorithms. There was a high correlation between visual and automatic classification (Spearman's rank correlation coefficient r=0.957, prediction probability Pk=0.949). Furthermore, it was observed that very deep stages of hypnosis were reached which are characterised by EEG activity in the low frequency range (delta waves). The burst suppression pattern was not seen. In deep hypnosis, in contrast to the xenon EEG, the propofol EEG was characterised by a marked superimposed higher frequency activity. To ensure an optimised dosage for the single patient, anaesthetic machines for xenon should be combined with EEG monitoring. To date, only a few anaesthetic machines for xenon are available. Because of the high price of xenon, new and further developments of machines focus on optimizing xenon consumption. PMID:20180643

  20. Transient Xenon Effect on Plant Control in MSRs - Validation of Simulation Model -

    SciTech Connect

    Katsumi, Suzuki; Yoichiro, Shimazu

    2004-07-01

    Molten Salt Reactors (MSRs) are fluid fuel-type thermal reactors moderated by graphite. MSRs have been expected as the generation IV nuclear power plants for many advantages such as high potential in safety and so on. On the other hand, as the MSRs are thermal reactors the poison behavior of xenon during operation can't be ignored due to large thermal neutron absorption cross-section of xenon. In the Molten Salt Breeder Reactor (MSBR) studied by ORNL, it is designed to continuously extract xenon using helium bubble injection system. However there are few researches of transient xenon behavior with relation to reactor control, especially during power changes. From this point of view, the authors developed a digital simulator based on the analog simulator for MSBR used for analysis of control system by ORNL. We have added the program for transient xenon calculation model to it and have studied of the influence of xenon on reactivity control during various transient. It takes into account of xenon behavior to migrate into the graphite moderator and the extraction from the fuel salt. As the results of analysis, it was shown that remodeled simulator was valid. Also it was suggested that the xenon extraction would be increased to reduce transient xenon swing or the reactivity worth of control rods would be increased to override the xenon buildup reactivity. (authors)

  1. Mesoscale Backtracking by Means of Atmospheric Transport Modeling of Xenon Plumes Measured by Radionuclide Gas Stations

    NASA Astrophysics Data System (ADS)

    Armand, P. P.; Achim, P.; Taffary, T.

    2006-12-01

    The monitoring of atmospheric radioactive xenon concentration is performed for nuclear safety regulatory requirements. It is also planned to be used for the detection of hypothetical nuclear tests in the framework of the Comprehensive nuclear-Test-Ban Treaty (CTBT). In this context, the French Atomic Energy Commission designed a high sensitive and automated fieldable station, named SPALAX, to measure the activity concentrations of xenon isotopes in the atmosphere. SPALAX stations were set up in Western Europe and have been operated quite continuously for three years or more, detecting principally xenon-133 and more scarcely xenon-135, xenon-133m and xenon-131m. There are around 150 nuclear power plants in the European Union, research reactors, reprocessing plants, medical production and application facilities releasing radioactive xenon in normal or incidental operations. A numerical study was carried out aiming to explain the SPALAX measurements. The mesoscale Atmospheric Transport Modelling involves the MM5 suite (PSU- NCAR) to predict the wind fields on nested domains, and FLEXPART, a 3D Lagrangian particle dispersion code, used to simulate the backward transport of xenon plumes detected by the SPALAX. For every event of detection, at least one potential xenon source has a significant efficiency of emission. The identified likely sources are located quite close to the SPALAX stations (some tens of kilometres), or situated farther (a few hundreds of kilometres). A base line of some mBq per cubic meter in xenon-133 is generated by the nuclear power plants. Peaks of xenon-133 ranging from tens to hundreds of mBq per cubic meter originate from a radioisotope production facility. The calculated xenon source terms required to obtain the SPALAX measurements are discussed and seem consistent with realistic emissions from the xenon sources in Western Europe.

  2. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    NASA Astrophysics Data System (ADS)

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. Mark; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-01

    The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by definition, have identical size and shape, and their separation can be challenging. Here we show that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon. The selectivity arises from a precise size match between the rare gas and the organic cage cavity, as predicted by molecular simulations. Breakthrough experiments demonstrate real practical potential for the separation of krypton, xenon and radon from air at concentrations of only a few parts per million. We also demonstrate selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation.

  3. Separation of rare gases and chiral molecules by selective binding in porous organic cages.

    PubMed

    Chen, Linjiang; Reiss, Paul S; Chong, Samantha Y; Holden, Daniel; Jelfs, Kim E; Hasell, Tom; Little, Marc A; Kewley, Adam; Briggs, Michael E; Stephenson, Andrew; Thomas, K Mark; Armstrong, Jayne A; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M; Thallapally, Praveen K; Cooper, Andrew I

    2014-10-01

    The separation of molecules with similar size and shape is an important technological challenge. For example, rare gases can pose either an economic opportunity or an environmental hazard and there is a need to separate these spherical molecules selectively at low concentrations in air. Likewise, chiral molecules are important building blocks for pharmaceuticals, but chiral enantiomers, by definition, have identical size and shape, and their separation can be challenging. Here we show that a porous organic cage molecule has unprecedented performance in the solid state for the separation of rare gases, such as krypton and xenon. The selectivity arises from a precise size match between the rare gas and the organic cage cavity, as predicted by molecular simulations. Breakthrough experiments demonstrate real practical potential for the separation of krypton, xenon and radon from air at concentrations of only a few parts per million. We also demonstrate selective binding of chiral organic molecules such as 1-phenylethanol, suggesting applications in enantioselective separation. PMID:25038731

  4. Nitrogen dioxide detection

    DOEpatents

    Sinha, Dipen N. (Los Alamos, NM); Agnew, Stephen F. (Los Alamos, NM); Christensen, William H. (Buena Park, CA)

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  5. A portable gamma-ray spectrometer using compressed xenon

    SciTech Connect

    Mahler, G.J.; Yu, B.; Smith, G.C.; Kane, W.R.; Lemley, J.R.

    1997-10-01

    An ionization chamber using compressed xenon has been designed and built for gamma-ray spectrometry. The device is based on signal measurement from a parallel plate detector, with the gas enclosure constructed specifically for packaging into a portable instrument; thus, appropriate engineering practices comprises two small containers that can be setup for operation in just a few minutes. Its sensitivity is 100 keV to over 1 MeV, with a resolution at 662 keV of 2.5% FWHM for uniform irradiation, and 2% FWHM for collimated irradiation, comparable to the best ever with compressed xenon. It also exhibits greater specificity that most scintillators, such as NaI. The device is insensitive to neutron damage and has a low power requirement.

  6. Development of liquid xenon detectors for gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Aprile, Elena; Suzuki, Masayo

    1989-01-01

    The application of liquid xenon in high-resolution detectors for gamma-ray astronomy is being investigated. Initial results from a pulse-shape analysis of ionization signals in a liquid-xenon gridded chamber indicate that it is possible to achieve the necessary liquid purity for the transport of free electrons with simple techniques. The energy resolution has been measured as a function of applied electric field, using electrons and gamma-rays from a 207Bi source. At a field of 12 kV/cm the noise-substracted energy resolution of the dominant 569-keV gamma-ray line is 34 keV FWHM (full width at half maximum). This value is mostly determined by recombination of electron-ion pairs on delta-electron tracks.

  7. Brewster angle of shock-compressed xenon plasmas

    NASA Astrophysics Data System (ADS)

    Norman, G. E.; Saitov, I. M.

    2015-11-01

    Experimental results for Brewster angle measurements are used to estimate the width of the shock front in xenon. The possible influence of the shock front width on the dense xenon reflectivity is discussed. The calculated values of the Brewster angle are shifted with respect to the experimental values. It may be partially related to the nonzero width of the wave front. The estimated values of the widths are 161, 154, and 145 nm for the wavelengths 1064, 694, and 532 nm respectively. These values are obtained within the framework of the Drude theory of reflection in the optically nonuniform media. The density functional theory (DFT) is applied to calculate values of the dielectric function and refraction. The effect is discussed if the widths found could influence the normal reflectivity obtained in the framework of the DFT.

  8. Gamma background discrimination in the XENON100 experiment

    NASA Astrophysics Data System (ADS)

    Melgarejo, Antonio; Xenon100 Collaboration

    2011-04-01

    Direct dark matter detection experiments rely on the ability to have an expected background close to 0 in order to be able to identify possible WIMP signals. Among the multiple strategies to achieve this goal, most of the experiments use background reduction techniques which exploit the difference between electron-like signal (most radioactive backgrounds) and neutron-like signals (neutrons and WIMPs). In this talk we will show the studies and measurements within the XENON100 experiment to distinguish signals from electrons and neutrons by comparing their light to signal ratio. A straightforward prediction of this work is the amount of events expected in the dark matter region in this experiment. We gratefully acknowledge support from NSF, DOE, SNF, the Volkswagen Foundation, FCT and STCSM. We are grateful to the LNGS for hosting and supporting the XENON program.

  9. A Study of Radon Background in the XENON100 Experiment

    SciTech Connect

    Weber, Marc

    2011-04-27

    The XENON100 Dark Matter experiment has recently published first results from an analysis of 11.2 live days of data, setting an upper limit on the spin-independent WIMP-nucleon elastic scattering cross section of 3.4x10{sup -44} cm{sup 2} at 55 GeV/c{sup 2} and 90% confidence level. This article focuses on one specific background component of the XENON100 detector by presenting two independent methods of measuring the {sup 222}Rn concentration during operation phase. A first estimate of radon activity is derived for the 11.2 days analysis, proving the feasibility of on-line radon monitoring. Remaining systematic uncertainties are discussed.

  10. Excited state population dynamics of a xenon ac discharge

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, A.; Young, C. V.; Cappelli, M. A.

    2015-10-01

    We measure the time evolution of the 6{{s}\\prime}{{?ft[1/2\\right]}1} -6{{p}\\prime}{{?ft[3/2\\right]}2} (834.68?nm, air) excited neutral xenon transition lineshape in a xenon 60 Hz oscillatory discharge by applying time-synchronized laser induced fluorescence (LIF) spectroscopy. Two different time-synchronized LIF techniques are demonstrated, yielding consistent results and revealing distinct features: a reduction of peak fluorescence intensity (representative of the 6{{s}\\prime}{{?ft[1/2\\right]}1} state density) is observed at high values of the discharge current, the maximum fluorescence intensity occurs at low values of the discharge current, and the excited state populations quench as the alternating current passes through zero. This behavior is reproduced and explained by collisional-radiative modeling, which highlights the role of collisional and radiative mixing between excited energy states throughout the current cycle.

  11. Xenon plasma sustained by pulse-periodic laser radiation

    NASA Astrophysics Data System (ADS)

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-01

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10-20 bar in a focused 1.07-?m Yb3+ laser beam with a pulse repetition rate of f rep ? 2 kHz, pulse duration of ? ? 200 ?s, and power of P = 200-300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5 p 56 s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  12. Dark matter sensitivity of multi-ton liquid xenon detectors

    NASA Astrophysics Data System (ADS)

    Schumann, Marc; Baudis, Laura; Btikofer, Lukas; Kish, Alexander; Selvi, Marco

    2015-10-01

    We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5 10-49 cm2 can be probed for WIMP masses around 40 GeV/c2. Additional improvements in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.

  13. The uses of helium and xenon in current clinical practice.

    PubMed

    Harris, P D; Barnes, R

    2008-03-01

    The noble gases have always been an enigma. Discovered late in the history of chemistry and in seemingly small quantities in our atmosphere, they are some of the most unreactive elements known. However, despite being extremely inert, the noble gases (helium, neon, argon, krypton, xenon and radon) have found diverse and ever expanding applications in medicine. Of all of them, the gases that have found the greatest number of uses in the field of anaesthesia and related specialties are helium and xenon. This review focuses on the history of the discovery of both gases, their unique physicochemical properties and describes their uses in clinical practice with particular emphasis on those applicable to anaesthesia. PMID:18289236

  14. Constraints on inelastic dark matter from XENON10

    SciTech Connect

    Angle, J; Aprile, E; Arneodo, F; Baudis, L; Bernstein, A; Bolozdynya, A; Coelho, L C; Dahl, C E; DeViveiros, L; Ferella, A D; Fernandes, L P; Fiorucci, S; Gaitskell, R J; Giboni, K L; Gomez, R; Hasty, R; Kastens, L; Kwong, J; Lopes, J M; Madden, N; Manalaysay, A; Manzur, A; McKinsey, D N; Monzani, M E; Ni, K; Oberlack, U; Orboeck, J; Plante, G; Santorelli, R; dos Santos, J; Shagin, P; Shutt, T; Sorensen, P; Schulte, S; Winant, C; Yamashita, M

    2009-11-23

    It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results from CDMS-II and XENON10. Among the predictions of inelastically interacting dark matter are a suppression of low-energy events, and a population of nuclear recoil events at higher nuclear recoil equivalent energies. This is in stark contrast to the well-known expectation of a falling exponential spectrum for the case of elastic interactions. We present a new analysis of XENON10 dark matter search data extending to E{sub nr} = 75 keV nuclear recoil equivalent energy. Our results exclude a significant region of previously allowed parameter space in the model of inelastically interacting dark matter. In particular, it is found that dark matter particle masses m{sub x} {approx}> 150 GeV are disfavored.

  15. Driving Rabi oscillations at the giant dipole resonance in xenon

    NASA Astrophysics Data System (ADS)

    Pabst, Stefan; Wang, Daochen; Santra, Robin

    2015-11-01

    Free-electron lasers (FELs) produce short and very intense light pulses in the XUV and x-ray regimes. We investigate the possibility to drive Rabi oscillations in xenon with an intense FEL pulse by using the unusually large dipole strength of the giant dipole resonance (GDR). The GDR decays within less than 30 as due to its position, which is above the 4 d ionization threshold. We find that intensities around 1018W /cm2 are required to induce Rabi oscillations with a period comparable to the lifetime. The pulse duration should not exceed 100 as because xenon will be fully ionized within a few lifetimes. Rabi oscillations reveal themselves also in the photoelectron spectrum in the form of Autler-Townes splittings extending over several tens of electronvolts.

  16. Searching for Double Beta Decay with the Enriched Xenon Observatory

    SciTech Connect

    Hall, C.; /SLAC

    2007-03-16

    The Enriched Xenon Observatory (EXO) Collaboration is building a series of experiments to search for the neutrinoless double beta decay of {sup 136}Xe. The first experiment, known as EXO-200, will utilize 200 kg of xenon enriched to 80% in the isotope of interest, making it the largest double beta decay experiment to date by one order of magnitude. This experiment is rapidly being constructed, and will begin data taking in 2007. The EXO collaboration is also developing a technique to identify on an event-by-event basis the daughter barium ion of the double beta decay. If successful, this method would eliminate all conventional radioactive backgrounds to the decay, resulting in an ideal experiment. We summarize here the current status of EXO-200 construction and the barium tag R&D program.

  17. A hemispherical high-pressure xenon gamma radiation spectrometer

    NASA Astrophysics Data System (ADS)

    Kessick, Royal; Tepper, Gary

    2002-09-01

    A prototype hemispherical high-pressure xenon gamma radiation spectrometer was designed, constructed and tested. The detector consists of a pair of concentric hemispherical electrodes contained inside a thin-walled stainless steel pressure dome. Detector performance parameters such as energy resolution, linearity and vibration sensitivity were determined and compared to previous cylindrical and planar designs. Without a Frisch grid, the hemispherical detector provides a total room temperature energy resolution of 6% @ 662 keV and is relatively insensitive to acoustic interference.

  18. Ultranarrow linewidth, magnetically switched, long pulse, xenon chloride laser

    SciTech Connect

    Pacala, T.J.; McDermid, I.S.; Laudenslager, J.B.

    1984-04-01

    A spectral linewidth of <7 x 10/sup -4/ A and diffraction-limited beam divergence has been obtained from a long pulse, electric discharge xenon chloride laser with intracavity Fabry--Perot etalons. A gain duration of 100 ns provided for multipass operation of the etalons, significantly improving both contrast and finesse. The electrical discharge circuit required to produce this long gain duration was comprised of a pulse forming network, saturable inductor magnetic switch, and a tapered, constant impedance, interface transmission line.

  19. Excimer emission from high pressure microhollow cathode discharges in xenon

    SciTech Connect

    El-Habachi, A.; Schoenbach, K.H.

    1998-12-31

    By reducing the diameter of the cathode opening in hollow cathode discharge geometry to values on the order of 100 micrometers the authors were able to operate the discharged in argon and xenon in a direct current mode at atmospheric pressure. The micro-discharges have been shown to emit excimer radiation peaking at wavelengths of 130 nm and 170 nm, respectively. They have in this study particularly concentrated on the xenon VUV radiation. The emission from a 100 micrometers microhollow cathode discharge in xenon at pressures between 40 and 760 Torr was measured over the spectral range from 130 nm to 400 nm. At 40 Torr, the 147 nm Xenon resonance line dominates the emission spectra. There are some indications of the first continuum which extends from the resonance line towards longer wavelength. The second excimer continuum peaking at 170 nm appears at higher pressures. At pressures greater than 300 Torr, it dominates the emission spectra up to the longest recorded wavelength of 400 nm. In order to determine the absolute values of the excimer radiation the emission was compared to that of calibrated UV sources: a Hg lamp and a Deuterium lamp. The results gave them a value of the efficiency defined as the ratio of the optical power of the excimer emitter to the input electrical power, of 5.3% and 6.3%, respectively. A single discharge, which was in this experiment run with a current of 3 mA at a forward voltage of 200 to 250 V, emits therefore {approximately}40 mW of VUV radiation concentrated in the spectral range from 150 to 190 nm. The possibility to operate the discharges in parallel opens the possibility to fabricate scalable flat panel excimer lamps.

  20. Cryogenic Technology Development For The MEG Liquid Xenon Calorimeter

    SciTech Connect

    Haruyama, Tomiyoshi

    2008-02-21

    Cryogenic key technologies have been developed for the muon rare decay experiment (MEG) at the Paul Scherrer Institute, Switzerland. These technologies are the high power pulse tube cryocooler for precise temperature and pressure control of liquid xenon in the calorimeter, a purification system with a cryogenic liquid pump and a cryogenic dewar with 1000 L storage capacity. The paper describes the general concepts and the first test results of each technology. All the results imply a promising performance for the coming MEG experiment.

  1. Xenon gamma-ray spectrometer for radioactive waste controlling complex

    NASA Astrophysics Data System (ADS)

    Ulin, S.; Novikov, A.; Dmitrenko, V.; Vlasik, K.; Krivova, K.; Petrenko, D.; Uteshev, Z.; Shustov, A.; Petkovich, E.

    2016-02-01

    Xenon detector based gamma-ray spectrometer for a radioactive waste sorting complex and its characteristics are described. It has been shown that the “thin-wall” modification of the detector allows better registration of low-energy gamma rays (tens of keV). The spectrometer is capable of operation in unfavorable field conditions and can identify radionuclides of interest in less than 1 second.

  2. Quench gases for xenon- (and krypton-) filled proportional counters

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Agrawal, P. C.

    1988-01-01

    Xenon-filled proportional counters are used extensively in astronomy, particularly in the hard X-ray region. The choice of quench gas can have a significant effect on the operating characteristics of the instrument although the data necessary to make the choice are not easily obtainable. Results which detail the performance obtained from both cylindrical and parallel field geometries for a wide variety of readily available, ultrahigh or research grade purity, quench gases are presented.

  3. A coherent understanding of low-energy nuclear recoils in liquid xenon

    SciTech Connect

    Sorensen, Peter

    2010-09-01

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (?<10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

  4. A Comprehensive Study of the Large Underground Xenon Detector

    NASA Astrophysics Data System (ADS)

    Woods, Michael Austin

    The Large Underground Xenon (LUX) dark matter search experiment operates a time projection chamber constructed of 370 kg of xenon, currently installed in the Homestake gold mine. The goal of the experiment is to detect Weakly Interacting Massive Particles (WIMPs). Novel calibration methods for this uniquely large detector are discussed. Background events due to standard model physics processes including cosmogenically activated xenon, alpha emission, and neutron production are shown to be negligible in recent 85 day WIMP search data. The LUX Monte Carlo simulation includes a new physical model, the Nobel Element Simulation Technique (NEST), for scintillation and ionization. NEST describes energy-, particle-, field- and medium-dependent behavior of a charge recombination model. A simulated data acquisition chain that bridges the gap between simulation and data has been developed to permit full testing of the analysis tools employed by LUX. Signal generation by cumulative photon responses are described algorithmically. Computational optimization has been performed to decrease processing time by a factor of fifty. A new technique for event depth estimation using machine learning and image analysis is introduced. Variable length waveforms are converted to fixed dimension field maps for use in machine learning. A support vector machine trained against pulse shapes with known depth successfully regressed depth without direct measurement of highly variable pulse widths. The world's most stringent limits on spin-independent WIMP-nucleon scattering cross section are presented.

  5. Highly ionized xenon and volumetric weighting in restricted focal geometries

    NASA Astrophysics Data System (ADS)

    Strohaber, J.; Kolomenskii, A. A.; Schuessler, H. A.

    2015-08-01

    The ionization of xenon atoms subjected to 42 fs, 800 nm pulses of radiation from a Ti:Sapphire laser was investigated. In our experiments, a maximum laser intensity of ˜ 2 × 10 15 W / cm 2 was used. Xenon ions were measured using a time-of-flight ion mass spectrometer having an entrance slit with dimensions of 12 μ m × 400 μ m . The observed yields Xe n + ( n = 1 - 7 ) were partially free of spatial averaging. The ion yields showed sequential and nonsequential multiple ionization and dip structures following saturation. To investigate the dip structures and to perform a comparison between experimental and simulated data, with the goal of clarifying the effects of residual spatial averaging, we derived a hybrid analytical-numerical solution for the integration kernel in restricted focal geometries. We simulated xenon ionization using Ammosov-Delone-Krainov and Perelomov-Popov-Terent'ev theories and obtained agreement with the results of observations. Since a large number of experiments suffer from spatial averaging, the results presented are important to correctly interpret experimental data by taking into account spatial averaging.

  6. High-pressure xenon detector development at Constellation Technology Corporation

    NASA Astrophysics Data System (ADS)

    Austin, Robert A.

    2007-08-01

    Xenon-filled ionization detectors, due to their high atomic number fill gas ( Z=54), moderate densities (˜0.3-0.5 g/cm 3) and good energy resolution (2-4% at 662 keV), fill an important niche between more familiar technologies such as NaI(Tl) scintillators and germanium detectors. Until recently, difficulties with obtaining sufficient xenon purity, reducing microphonic sensitivity, and developing low-noise electronics compatible with small ionization signals have hampered the development of this nuclear detection field. Constellation Technology Corporation, whose experience with xenon detectors goes back to the mid 1990s, has made significant progress in these areas and has developed a commercial line of detectors with active volumes ranging from small (35 g Xe) to large (1400 g Xe). Current applications for Constellation's detectors are principally in the area of defense (Unmanned Aerial Vehicles and Advanced Spectroscopic Portals), but as awareness of this technology grows, it will surely find applications in a much expanded range of fields.

  7. Very-low-field MRI of laser polarized xenon-129.

    PubMed

    Zheng, Yuan; Cates, Gordon D; Tobias, William A; Mugler, John P; Miller, G Wilson

    2014-10-17

    We describe a homebuilt MRI system for imaging laser-polarized xenon-129 at a very low holding field of 2.2mT. A unique feature of this system was the use of Maxwell coils oriented at so-called "magic angles" to generate the transverse magnetic field gradients, which provided a simple alternative to Golay coils. We used this system to image a laser-polarized xenon-129 phantom with both a conventional gradient-echo and a fully phase-encoded pulse sequence. In other contexts, a fully phase-encoded acquisition, also known as single-point or constant-time imaging, has been used to enable distortion-free imaging of short-T2(?) species. Here we used this technique to overcome imperfections associated with our homebuilt MRI system while also taking full advantage of the long T2(?) available at very low field. Our results demonstrate that xenon-129 image quality can be dramatically improved at low field by combining a fully phase-encoded k-space acquisition with auxiliary measurements of system imperfections including B0 field drift and gradient infidelity. PMID:25462954

  8. Very-low-field MRI of laser polarized xenon-129

    NASA Astrophysics Data System (ADS)

    Zheng, Yuan; Cates, Gordon D.; Tobias, William A.; Mugler, John P.; Miller, G. Wilson

    2014-12-01

    We describe a homebuilt MRI system for imaging laser-polarized xenon-129 at a very low holding field of 2.2 mT. A unique feature of this system was the use of Maxwell coils oriented at so-called 'magic angles' to generate the transverse magnetic field gradients, which provided a simple alternative to Golay coils. We used this system to image a laser-polarized xenon-129 phantom with both a conventional gradient-echo and a fully phase-encoded pulse sequence. In other contexts, a fully phase-encoded acquisition, also known as single-point or constant-time imaging, has been used to enable distortion-free imaging of short-T2?species. Here we used this technique to overcome imperfections associated with our homebuilt MRI system while also taking full advantage of the long T2?available at very low field. Our results demonstrate that xenon-129 image quality can be dramatically improved at low field by combining a fully phase-encoded k-space acquisition with auxiliary measurements of system imperfections including B0 field drift and gradient infidelity.

  9. Allende meteorite: Isotopically anomalous xenon is accompanied by normal osmium

    PubMed Central

    Takahashi, H.; Higuchi, H.; Gros, Jacques; Morgan, John W.; Anders, Edward

    1976-01-01

    The 184Os/190Os ratio of six Allende meteorite samples was determined by neutron activation analysis. Four chromite concentrates gave a ratio differing from the terrestrial ratio by only -0.1 ± 0.4%, although they contained highly anomalous xenon enriched by up to 67% in 124Xe and 93% in 136Xe. In view of this result and the normal isotopic composition of carbon and oxygen in these fractions, it seems very unlikely that the xenon anomalies were produced in a supernova by the p and r processes. More probably, the xenon anomalies were established in the early solar system, by mass fractionation during trapping of noble gases in solids and by spontaneous fission of a superheavy element. Two other samples, containing osmium from the calcium,aluminum-rich inclusions, also gave an 184Os/190Os ratio within -0.1 ± 0.5% of the terrestrial value, although these inclusions show well-established anomalies in the light elements oxygen and magnesium, which appear to be due to pre-solar dust grains of distinctive nuclear history. Apparently the stellar source of the anomalous oxygen and magnesium did not synthesize heavier elements. PMID:16592365

  10. NMR investigations of surfaces and interfaces using spin-polarized xenon

    SciTech Connect

    Gaede, H C

    1995-07-01

    {sup 129}Xe NMR is potentially useful for the investigation of material surfaces, but has been limited to high surface area samples in which sufficient xenon can be loaded to achieve acceptable signal to noise ratios. In Chapter 2 conventional {sup 129}Xe NMR is used to study a high surface area polymer, a catalyst, and a confined liquid crystal to determine the topology of these systems. Further information about the spatial proximity of different sites of the catalyst and liquid crystal systems is determined through two dimensional exchange NMR in Chapter 3. Lower surface area systems may be investigated with spin-polarized xenon, which may be achieved through optical pumping and spin exchange. Optically polarized xenon can be up to 10{sup 5} times more sensitive than thermally polarized xenon. In Chapter 4 highly polarized xenon is used to examine the surface of poly(acrylonitrile) and the formation of xenon clathrate hydrates. An attractive use of polarized xenon is as a magnetization source in cross polarization experiments. Cross polarization from adsorbed polarized xenon may allow detection of surface nuclei with drastic enhancements. A non-selective low field thermal mixing technique is used to enhance the {sup 13}C signal of CO{sub 2} of xenon occluded in solid CO{sub 2} by a factor of 200. High-field cross polarization from xenon to proton on the surface of high surface area polymers has enabled signal enhancements of {approximately}1,000. These studies, together with investigations of the efficiency of the cross polarization process from polarized xenon, are discussed in Chapter 5. Another use of polarized xenon is as an imaging contrast agent in systems that are not compatible with traditional contrast agents. The resolution attainable with this method is determined through images of structured phantoms in Chapter 6.

  11. Gamma detectors based on high-pressure xenon: their development and application

    NASA Astrophysics Data System (ADS)

    Ulin, Sergey E.; Dmitrenko, Valery V.; Grachev, V. M.; Uteshev, Z. M.; Vlasik, K. F.; Chernysheva, I. V.; Dukhvalov, A. G.; Kotler, F. G.; Pushkin, K. N.

    2004-10-01

    Various modifications of xenon detectors and their parameters in comparison with gamma-detectors of other types are considered. Prospects of xenon detectors' applicatins in gamma-spectroscopy based on experimental results are discussed including detection and control of radioactive and fissile materials displacement, definition of uranium enrichment rate, and measurements of nuclear reactor radioactive gas waste concentration. Possibilities for xenon detector use for environmental control and measurement of cosmic gamma radiation on orbital stations are considered.

  12. Gamma detectors based on high pressure xenon: their development and application

    NASA Astrophysics Data System (ADS)

    Ulin, Sergey E.; Dmitrenko, Valery V.; Grachev, V. M.; Uteshev, Z. M.; Vlasic, K. F.; Chernysheva, I. V.; Duhvalov, A. G.; Kotler, F. G.; Pushkin, K. N.

    2004-01-01

    Various modifications of xenon detectors and their parameters in comparison with gamma-detectors of other types are considered. Prospects of xenon detectors' applications in gamma-spectroscopy based on experimental results are discussed including detection and control of radioactive and fissile materials displacement, definition of uranium enrichment rate, and measurements of nuclear reactor radioactive gas waste concentration. Possibilities for xenon detector use for environmental control and measurement of cosmic gamma radiation on orbital stations are considered.

  13. Shock compression of a fifth period element: liquid xenon to 840 GPa.

    PubMed

    Root, Seth; Magyar, Rudolph J; Carpenter, John H; Hanson, David L; Mattsson, Thomas R

    2010-08-20

    Current equation of state (EOS) models for xenon show substantial differences in the Hugoniot above 100 GPa, prompting the need for an improved understanding of xenon's behavior at extreme conditions. We performed shock compression experiments on liquid xenon to determine the Hugoniot up to 840 GPa, using these results to validate density functional theory (DFT) simulations. Despite the nearly fivefold compression, we find that the limiting Thomas-Fermi theory, exact in the high density limit, does not accurately describe the system. Combining the experimental data and DFT calculations, we developed a free-energy-based, multiphase EOS capable of describing xenon over a wide range of pressures and temperatures. PMID:20868109

  14. Early outgassing of Mars supported by differential water solubility of iodine and xenon

    NASA Technical Reports Server (NTRS)

    Musselwhite, Donald S.; Drake, Michael J.; Swindle, Timothy D.

    1991-01-01

    The Martian atmosphere has a high X-129/Xe-132 ratio compared to the Martian mantle. As Xe-129 is the daughter product of the extinct nuclide I-129, a means of fractionating iodine from xenon early in Martian history appears necessary to account for the X-129/Xe-132 ratios of its known reservoirs. A model is presented here to account for the Marian xenon data which relies on the very different solubilities of xenon and iodine in water to fractionate them after outgassing. Atmospheric xenon is lost by impact erosion during heavy bombardment, followed by release of Xe-129 produced from I-129 decay in the crust.

  15. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  16. Reactive quenching of two-photon excited xenon atoms by Cl/sub 2/. [Xenon chloride laser

    SciTech Connect

    Bruce, M.R.; Layne, W.B.; Meyer, E.; Keto, J.W.

    1987-01-01

    Total binary and tertiary quench rates have been measured for the reaction Xe (5p/sup 5/6p) + Cl/sub 2/ at thermal temperatures. Xenon atoms are excited by state-selective, two-photon absorption with a uv laser. The time dependent fluorescence from the excited atom in the IR and from XeCl* (B) product near 308 nm have been measured with subnanosecond time resolution. The decay rates are measured as a function of Cl/sub 2/ pressure to 20 Torr and Xe pressure to 400 Torr. The measured reaction rates (k/sub 2/ approx. 10/sup -9/ cm/sup 3/sec/sup -1/) are consistent with a harpoon model described in a separate paper. We also measure large termolecular reaction rates for collisions with xenon atoms (k/sub 3/ approx. 10/sup -28/ cm/sup 6/sec/sup -1/). Total product fluorescence has been examined using a gated optical multichannel analyzer. We measure unit branching fractions for high vibrational levels of XeCl* (B) with very little C state fluorescence observed. The measured termolecular rates suggest similar processes will dominate at the high buffer-gas pressures used in XeCl lasers. The effect of these large reactive cross sections for neutral xenon atoms on models of the XeCl laser will be discussed.

  17. Mobius Molecules

    ERIC Educational Resources Information Center

    Eckert, J. M.

    1973-01-01

    Discusses formation of chemical molecules via Mobius strip intermediates, and concludes that many special physics-chemical properties of the fully closed circular form (1) of polyoma DNA are explainable by this topological feature. (CC)

  18. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  19. The carbon dioxide cycle

    USGS Publications Warehouse

    James, P.B.; Hansen, G.B.; Titus, T.N.

    2005-01-01

    The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor. ?? 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  20. Neutral compounds with xenon-germanium bonds: a theoretical investigation on FXeGeF and FXeGeF?.

    PubMed

    Borocci, Stefano; Giordani, Maria; Grandinetti, Felice

    2014-05-01

    The structure and stability of FXeGeF and FXeGeF3 were investigated by MP2, CCSD(T), and B3LYP calculations, and their bonding situation was examined by NBO and AIM analysis. These molecules are thermochemically stable with respect to dissociation into F + Xe + GeF(n) (n = 1, 3), and kinetically stable with respect to dissociation into Xe + GeF(n+1), thus suggesting their conceivable existence as metastable species. FXeGeF and FXeGeF3 are best described by the resonance structures F(-)(Xe-GeF(+)) and F(-)(Xe-GeF3(+)), and feature essentially ionic xenon-fluorine interactions. The xenon-germanium bonds have instead a significant contribution of covalency. The comparison with XeGeF(+) and XeGeF3(+) suggests that the stability of FXeGeF and FXeGeF3 arises from the F(-)-induced stabilization of these ionic moieties. This structural motif resembles that encountered in other noble-gas neutral and ionic species. PMID:24720441

  1. Heat capacity of xenon adsorbed on nanobundle grooves

    NASA Astrophysics Data System (ADS)

    Chishko, K. A.; Sokolova, E. S.

    2016-02-01

    A model of a one-dimensional nonideal gas in an external transverse force field is used to interpret the experimentally observed thermodynamic properties of xenon deposited in grooves on the surface of carbon nanobundles. A nonideal gas model with pairwise interactions is not entirely adequate for describing dense adsorbates (at low temperatures), but makes it easy to account for the exchange of particles between the 1D adsorbate and the 3D atmosphere, which is an important factor at intermediate (on the order of 35 K for xenon) and, especially, high (˜100 K) temperatures. In this paper, we examine a 1D real gas taking only the one-dimensional Lennard-Jones interaction into account, but under exact equilibrium with respect to the number of particles between the 1D adsorbate and the 3D atmosphere of the measurement cell. The low-temperature branch of the specific heat is fitted independently by an elastic chain model so as to obtain the best agreement between theory and experiment over the widest possible region, beginning at zero temperature. The gas approximation sets in after temperatures for which the phonon specific heat of the chain essentially transforms to a one-dimensional equipartition law. Here the basic parameters of both models can be chosen so that the heat capacity C(T) of the chain transforms essentially continuously into the corresponding curve for the gas approximation. Thus, it can be expected that an adequate interpretation of the real temperature dependences of the specific heat of low-dimensionality atomic adsorbates can be obtained through a reasonable combination of the phonon and gas approximations. The main parameters of the gas approximation (such as the desorption energy) obtained by fitting the theory to experiments on the specific heat of xenon correlate well with published data.

  2. Xenon Sputter Yield Measurements for Ion Thruster Materials

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Gardner, Michael M.; Johnson, Mark L.; Wilbur, Paul J.

    2003-01-01

    In this paper, we describe a technique that was used to measure total and differential sputter yields of materials important to high specific impulse ion thrusters. The heart of the technique is a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. Differential sputtering yields were generally measured over a full 180 deg arc in a plane that included the beam centerline and the normal vector to the target surface. Sputter yield results are presented for a xenon ion energy range from 0.5 to 10 keV and an angle of incidence range from 0 deg to 70 deg from the target surface normal direction for targets consisting of molybdenum, titanium, solid (Poco) graphite, and flexible graphite (grafoil). Total sputter yields are calculated using a simple integration procedure and comparisons are made to sputter yields obtained from the literature. In general, the agreement between the available data is good. As expected for heavy xenon ions, the differential and total sputter yields are found to be strong functions of angle of incidence. Significant under- and over-cosine behavior is observed at low- and high-ion energies, respectively. In addition, strong differences in differential yield behavior are observed between low-Z targets (C and Ti) and high-Z targets (Mo). Curve fits to the differential sputter yield data are provided. They should prove useful to analysts interested in predicting the erosion profiles of ion thruster components and determining where the erosion products re-deposit.

  3. Advantages of using high-pressure short-arc xenon lamps for display systems

    NASA Astrophysics Data System (ADS)

    Yeralan, Serdar; Doughty, Douglas; Blondia, Rudi; Hamburger, Rick

    2005-04-01

    Xenon produces a brilliant white flash of light when it is excited electrically. The characteristics Xenon brings to short arc, high-pressure xenon lamps are substantial, particularly in display systems. The broadband and relatively flat profile of the xenon emission in the visible spectrum generates superior metameric matching to life-like colors, whereby the visible spectrums of other lamps generally contain spikes requiring additional adjustment. Xenon-powered lamps generate a native color point of 5900K to 6200K - very near the optimal D65 point - increasing efficiency and minimizing the need for filtering. Filtering often results in an undesirable loss of luminous efficacy. Instant turn-on/turn-off is possible since the xenon is in its gaseous state at the operating pressures of the lamp. This is an improvement over most ultra-high pressure mercury lamps requiring warm-up times. The DC drive of the lamp provides a compact arc near one of the electrodes that produces a very small volume of light that is ideal for coupling to elliptical reflectors. The light output can be dimmed by controlling the applied electrical power. Xenon-powered short arc, high-pressure lamps operate safely within the specified parameters, and incorporating a reflector within the lamp body provides alignment-free replacement. The xenon lamps also eliminate the use of mercury, an important benefit in today's environmentally-conscious industry.

  4. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study

    NASA Astrophysics Data System (ADS)

    Dawid, A.; Grny, K.; Wojcieszyk, D.; Dendzik, Z.; Gburski, Z.

    2014-08-01

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found.

  5. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  6. XENON-133 IN CALIFORNIA, NEVADA, AND UTAH FROM THE CHERNOBYL ACCIDENT (JOURNAL VERSION)

    EPA Science Inventory

    The accident at the Chernobyl nuclear reactor in the USSR introduced numerous radioactive nuclides into the atmosphere, including the noble gas xenon-133. EPA's Environmental Monitoring Systems Laboratory, Las Vegas, NV, detected xenon-133 from the Chernobyl accident in air sampl...

  7. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats.

    PubMed

    Zhao, Hailin; Luo, Xianghong; Zhou, Zhaowei; Liu, Juying; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2014-01-01

    Chronic allograft nephropathy (CAN) is a common finding in kidney grafts with functional impairment. Prolonged hypothermic storage-induced ischemia-reperfusion injury is associated with the early onset of CAN. As the noble gas xenon is clinically used as an anesthetic and has renoprotective properties in a rodent model of ischemia-reperfusion injury, we studied whether early treatment with xenon could attenuate CAN associated with prolonged hypothermic storage. Exposure to xenon enhanced the expression of insulin growth factor-1 (IGF-1) and its receptor in human proximal tubular (HK-2) cells, which, in turn, increased cell proliferation. Xenon treatment before or after hypothermia-hypoxia decreased cell apoptosis and cell inflammation after reoxygenation. The xenon-induced HK-2 cell proliferation was abolished by blocking the IGF-1 receptor, mTOR, and HIF-1? individually. In the Fischer-to-Lewis rat allogeneic renal transplantation model, xenon exposure of donors before graft retrieval or recipients after engraftment enhanced tubular cell proliferation and decreased tubular cell death and cell inflammation associated with ischemia-reperfusion injury. Compared with control allografts, xenon treatment significantly suppressed T-cell infiltration and fibrosis, prevented the development of CAN, and improved renal function. Thus, xenon treatment promoted recovery from ischemia-reperfusion injury and reduced susceptibility to the subsequent development of CAN in allografts. PMID:24025645

  8. Influence of digital processing on the noise levels of spectrometric system for xenon gamma-spectrometer

    NASA Astrophysics Data System (ADS)

    Petrenko, D.; Uteshev, Z.; Novikov, A.; Shustov, A.; Vlasik, K.; Chernysheva, I.; Smirnova, M.; Krivova, K.; Dmitrenko, V.; Ulin, S.

    2016-02-01

    Shaping and digital processing of xenon gamma-spectrometer signals were considered. Digital processing influence on the energy resolution of the spectrometric system of xenon gamma-spectrometer was shown. The analysis of contributions to the energy resolution showed that the limit of improvement of the resolution by using of digital processing is reached almost.

  9. Xenon Fractionation, Hydrogen Escape, and the Oxidation of the Earth

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.; Catling, D. C.

    2014-12-01

    Xenon in Earth's atmosphere is severely mass fractionated and depleted compared to any plausible solar system source material, yet Kr is unfractionated. These observations seem to imply that Xe has escaped from Earth. Vigorous hydrodynamic hydrogen escape can produce mass fractionation in heavy gases. The required hydrogen flux is very high but within the range permitted by solar EUV heating when Earth was 100 Myrs old or younger. However this model cannot explain why Xe escapes but Kr does not. Recently, what appears to be ancient atmospheric xenon has been recovered from several very ancient (3-3.5 Ga) terrestrial hydrothermal barites and cherts (Pujol 2011, 2013). What is eye-catching about this ancient Xe is that it is less fractionated that Xe in modern air. In other words, it appears that a process was active on Earth some 3 to 3.5 billion years ago that caused xenon to fractionate. By this time the Sun was no longer the EUV source that it used to be. If xenon was being fractionated by escape currently the only viable hypothesis it had to be in Earth's Archean atmosphere and under rather modest levels of EUV forcing. It should be possible for Xe, but not Kr, to escape from Earth as an ion. In a hydrodynamically escaping hydrogen wind the hydrogen is partially ionized. The key concepts are that ions are much more strongly coupled to the escaping flow than are neutrals (so that a relatively modest flow of H and H+ to space could carry Xe+ along with it, the flux can be small enough to be consistent with diffusion-limited flux), and that Xe alone among the noble gases is more easily ionized than hydrogen. This sort of escape is possible along the polar field lines, although a weak or absent magnetic field would likely work as well. The extended history of hydrogen escape implicit in Xe escape in the Archean is consistent with other suggestions that hydrogen escape in the Archean was considerable. Hydrogen escape plausibly played the key role in creating oxidizing conditions at the surface of the Earth and setting the stage for the creation of an O2 atmosphere (Urey 1951, Catling et al 2001, Zahnle et al 2013). Catling, McKay, Zahnle (2001) Science 293, 839. Pujol, Marty, Burnard, Phillipot (2009) GCA 73, 6834. Pujol, Marty, Burgess (2011) EPSL 308, 298. Urey, H.C. (1952) PNAS 38, 351. Zahnle, Catling, Claire (2013) Ch. Geol. 362, 26.

  10. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated the engine over the entire NSTAR throttle range over a series of tests. Flow rates were very stable with variations of at most 0.2%, and transition times between throttle levels were typically 90 seconds or less with a maximum of 200 seconds, both significant improvements over the Dawn bang-bang feed system.

  11. Mission Advantages of NEXT: Nasa's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Benson, Scott; Patterson, Michael; Noca, Muriel; Sims, Jon

    2002-01-01

    With the demonstration of the NSTAR propulsion system on the Deep Space One mission, the range of the Discovery class of NASA missions can now be expanded. NSTAR lacks, however, sufficient performance for many of the more challenging Office of Space Science (OSS) missions. Recent studies have shown that NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system is the best choice for many exciting potential OSS missions including outer planet exploration and inner solar system sample returns. The NEXT system provides the higher power, higher specific impulse, and higher throughput required by these science missions.

  12. Prediction of a linear polymer made of xenon and carbon.

    PubMed

    Brown, Eric C; Cohen, Arik; Gerber, R Benny

    2005-05-01

    Electronic structure calculations predict the existence of a novel type of a chemically bound noble gas compound. The predicted species is an extended linear and periodic polymer, made of the repeat unit -(XeCC)-, where CC is the acetylenic group. The polymer has a strong partly ionic nature, with positive partial charge on the xenon atoms and a negative one on the CC groups. High energy barriers are found for the removal of a Xe atom from the chain, indicating high stability. This is the first polymer with a noble-gas-containing building block. PMID:15910015

  13. Evaluation of carrier agents for hyperpolarized xenon MRI

    NASA Technical Reports Server (NTRS)

    Venkatesh, A. K.; Zhao, L.; Balamore, D.; Jolesz, F. A.; Albert, M. S.

    2000-01-01

    Several biocompatible carrier agents, in which xenon is highly soluble and has a long T(1), were tested, and injected in living rats. These included saline, Intralipid suspension, perfluorocarbon emulsion and (129)Xe gas-filled liposomes. The T(1) of (129)Xe in these compounds ranged from 47 to 116 s. Vascular injection of these carrier agents was tolerated well, encouraging their use for further experiments in live animals. In vivo spectra, obtained from gas-filled liposomes and perfluorocarbon solutions, suggest that these carrier agents have potential for use in angiography and perfusion imaging. Copyright 2000 John Wiley & Sons, Ltd.

  14. Ultranarrow linewidth, magnetically switched, long pulse, xenon chloride laser

    NASA Technical Reports Server (NTRS)

    Pacala, T. J.; Mcdermid, I. S.; Laudenslager, J. B.

    1984-01-01

    A spectral linewidth of less than 70 fm and diffraction-limited beam divergence have been obtained from a long-pulse, electric-discharge xenon chloride laser with intracavity Fabry-Perot etalons. A gain duration of 100 ns provided for multipass operation of the etalons, significantly improving both contrast and finesse. The electrical-discharge circuit required to produce this long gain duration was comprised of a pulse-forming network, a saturable-inductor magnetic switch, and a tapered constant-impedance interface transmission line.

  15. Xenon ion beam characterization in a helicon double layer thruster

    SciTech Connect

    Charles, C.; Boswell, R. W.; Lieberman, M. A.

    2006-12-25

    A current-free electric double layer is created in a helicon double layer thruster operating with xenon and compared to a recently developed theory. The Xe{sup +} ion beam formed by acceleration through the potential drop of the double layer is characterized radially using an electrostatic ion energy analyzer. For operating conditions of 500 W rf power, 0.07 mTorr gas pressure, and a maximum magnetic field of 125 G, the measured beam velocity is about 6 km s{sup -1}, the beam area is about 150 cm{sup 2}, and the measured beam divergence is less than 6 deg.

  16. Direct two-XUV-photon double ionization in xenon

    NASA Astrophysics Data System (ADS)

    Tzallas, P.; Skantzakis, E.; Charalambidis, D.

    2012-04-01

    We report the observation of the direct two-XUV-photon double ionization of xenon by energetic coherent XUV continuum radiation. The spectrum of the XUV continuum spans from 15 to 23 eV, for which the two-photon sequential double ionization channel is partially open. The two-XUV-photon process is exploited in a second-order autocorrelation measurement of the temporal width of the continuum radiation, revealing energetic XUV pulses at the border between the atto- and femto-second scales.

  17. Frequency-Dependent Viscosity of Xenon Near the Critical Point

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    We used a novel, overdamped oscillator aboard the Space Shuttle to measure the viscosity eta of xenon near its critical density rho(sub c), and temperature T(sub c). In microgravity, useful data were obtained within 0.1 mK of T(sub c), corresponding to a reduced temperature t = (T -T(sub c))/T(sub c) = 3 x 10(exp -7). The data extend two decades closer to T(sub c) than the best ground measurements, and they directly reveal the expected power-law behavior eta proportional to t(sup -(nu)z(sub eta)). Here nu is the correlation length exponent, and our result for the small viscosity exponent is z(sub eta) = 0.0690 +/- 0.0006. (All uncertainties are one standard uncertainty.) Our value for z(sub eta) depends only weakly on the form of the viscosity crossover function, and it agrees with the value 0.067 +/- 0.002 obtained from a recent two-loop perturbation expansion. The measurements spanned the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz and revealed viscoelasticity when t less than or equal to 10(exp -1), further from T(sub c) than predicted. The viscoelasticity scales as Af(tau), where tau is the fluctuation-decay time. The fitted value of the viscoelastic time-scale parameter A is 2.0 +/- 0.3 times the result of a one-loop perturbation calculation. Near T(sub c), the xenon's calculated time constant for thermal diffusion exceeded days. Nevertheless, the viscosity results were independent of the xenon's temperature history, indicating that the density was kept near rho(sub c), by judicious choices of the temperature vs. time program. Deliberately bad choices led to large density inhomogeneities. At t greater than 10(exp -5), the xenon approached equilibrium much faster than expected, suggesting that convection driven by microgravity and by electric fields slowly stirred the sample.

  18. Xenon (e,2e) triple differential cross sections

    NASA Astrophysics Data System (ADS)

    Mydlowski, Robert D.; Walters, H. R. J.; Whelan, Colm T.

    2015-05-01

    Recently there have been published some interesting experiments on the outer shell of xenon performed in doubly symmetric energy sharing arrangements. These experiments present a substantial challenge to theory, not only have we an extremely complex target but the kinematics are such that the key few body effects of exchange, distortion and post collisional electron-electron interaction (pci) and target polarization are likely to be at their strongest and the TDCS will be sensitive to them and their interference. Theoretical results will be presented and compared with experiment

  19. Shear thinning near the critical point of xenon.

    PubMed

    Berg, Robert F; Moldover, Michael R; Yao, Minwu; Zimmerli, Gregory A

    2008-04-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids, near the critical point of xenon. The data span a wide range of reduced shear rate: 10(-3)xenon at amplitudes 3 micromgamma tau , C gamma depends also on both x 0 and omega . The data were compared with numerical calculations based on the Carreau-Yasuda relation for complex fluids: eta(gamma)/eta(0)=[1+A gamma|gamma tau|]-x eta/(3+x eta) , where x eta=0.069 is the critical exponent for viscosity and mode-coupling theory predicts A gamma=0.121 . For xenon we find A gamma=0.137+/-0.029 , in agreement with the mode coupling value. Remarkably, the xenon data close to the critical temperature Tc were independent of the cooling rate (both above and below Tc ) and these data were symmetric about Tc to within a temperature scale factor. The scale factors for the magnitude of the oscillator's response differed from those for the oscillator's phase; this suggests that the surface tension of the two-phase domains affected the drag on the screen below Tc . PMID:18517587

  20. The adsorption of argon, krypton and xenon on activated charcoal

    SciTech Connect

    Underhill, D.W.

    1996-08-01

    Charcoal adsorption beds are commonly used to remove radioactive noble gases from contaminated gas streams. The design of such beds requires the adsorption coefficient for the noble gas. Here an extension of the Dubinin-Radushkevich theory of adsorption is developed to correlate the effects of temperature, pressure, concentration, and carrier gas on the adsorption coefficients of krypton, xenon, and argon on activated carbon. This model is validated with previously published adsorption measurements. It accurately predicts the equilibrium adsorption coefficient at any temperature and pressure if the potential energies of adsorption, the micropore volume, and the van der Waals constants of the gases are known. 18 refs., 4 figs.

  1. Mechanism for transient migration of xenon in UO2

    NASA Astrophysics Data System (ADS)

    Liu, X.-Y.; Uberuaga, B. P.; Andersson, D. A.; Stanek, C. R.; Sickafus, K. E.

    2011-04-01

    In this letter, we report recent work on atomistic modeling of diffusion migration events of the fission gas product xenon in UO2 nuclear fuel. Under nonequilibrium conditions, Xe atoms can occupy the octahedral interstitial site, in contrast to the thermodynamically most stable uranium substitutional site. A transient migration mechanism involving Xe and two oxygen atoms is identified using basin constrained molecular dynamics employing a Buckingham type interatomic potential. This mechanism is then validated using density functional theory calculations using the nudged elastic band method. An overall reduction in the migration barrier of 1.6-2.7 eV is obtained compared to vacancy-mediated diffusion on the uranium sublattice.

  2. A 5-kW xenon ion thruster lifetest

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Verhey, Timothy R.

    1990-01-01

    The results of the first life test of a high power ring-cusp ion thruster are presented. A 30-cm laboratory model thruster was operated steady-state at a nominal beam power of 5 kW on xenon propellant for approximately 900 hours. This test was conducted to identify life-timing erosion modifications, and to demonstrate operation using simplified power processing. The results from this test are described including the conclusions derived from extensive post-test analyses of the thruster. Modifications to the thruster and ground support equipment, which were incorporated to solve problems identified by the lifetest, are also described.

  3. Microdischarges of xenon sustained by microwaves: Determination of scaling laws

    SciTech Connect

    Lacoste, A.; Maulat, O.; Latrasse, L.; Arnal, Y.; Pelletier, J.

    2005-04-04

    The threshold conditions to maintain millimeter and submillimeter-size discharges of xenon with microwaves are experimentally determined. The threshold electric field required to sustain the plasma is reported as a function of gas pressure. The influence of the size of the dielectric cell in which the discharge is produced is also shown. The scaling laws are deduced from the threshold electric field measurements, assuming a few additional simplifying assumptions. The results are compared with data obtained with argon discharges sustained by surface waves in capillary tubes and the hypotheses assumed for the calculations are discussed.

  4. Xenon gamma-ray detector for ecological applications

    NASA Astrophysics Data System (ADS)

    Novikov, Alexander S.; Ulin, Sergey E.; Chernysheva, Irina V.; Dmitrenko, Valery V.; Grachev, Victor M.; Petrenko, Denis V.; Shustov, Alexander E.; Uteshev, Ziyaetdin M.; Vlasik, Konstantin F.

    2015-01-01

    A description of the xenon detector (XD) for ecological applications is presented. The detector provides high energy resolution and is able to operate under extreme environmental conditions (wide temperature range and unfavorable acoustic action). Resistance to acoustic noise as well as improvement in energy resolution has been achieved by means of real-time digital pulse processing. Another important XD feature is the ionization chamber's thin wall with composite housing, which significantly decreases the mass of the device and expands its energy range, especially at low energies.

  5. Interstellar Diamond Xenon and Timescales of Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Ott, Ulrich

    1996-05-01

    The composition of isotopically anomalous Xe-H carried by interstellar diamonds in meteorites can be quantitatively explained by standard r-process nucleosynthesis, if a separation of xenon from iodine and tellurium precursors is accomplished on a timescale of a few hours after termination of the process. Such a separation process would also qualitatively account for features of Xe-L and Kr-H, and the low abundance of non-noble gas trace elements. Possible mechanisms include precondensation, loss from the diamonds upon ?-decay of precursors, and charge state separation. Whether one of these mechanisms is a viable option in supernova environments on the required timescale remains to be investigated.

  6. Experimental evidence on interaction between xenon and bovine serum albumin.

    PubMed

    Wo?oszyn, ?ukasz; Ilczyszyn, Marek; Ilczyszyn, Maria M

    2014-05-01

    Xenon gas interacts with bovine serum albumin (BSA) dissolved in a physiological buffer solution. The fluorescence quenching related to the Trp emission is reversible and depends linearly on the time of saturation by Xe. The most probable site of this interaction is Trp212. The common emission of all BSA fluorophores is also influenced by Xe but this quenching is more complex and suggests: (i) at least two sites occupied by Xe and related to the Tyr and Trp residues; (ii) structural variations of BSA induced by the Xe guest atoms. PMID:24613623

  7. The polarization sensitivity of the liquid xenon imaging telescope

    NASA Technical Reports Server (NTRS)

    Aprile, Elena; Bolotnikov, A.; Chen, D.; Mukherjee, R.

    1993-01-01

    The properties and the expected performance of a liquid xenon (LXe) gamma ray imaging telescope, optimized for the MeV energy region, are presented. The unique potential of this telescope as a Compton polarimeter is particularly emphasized. Based on Monte Carlo simulations we show that the modulation factor is as high as 40 percent at 1 MeV with a detection efficiency close to 20 percent. These figures of merit combined with the excellent background suppression capability of the three dimensional position sensitive LXe detector yield sensitivity at the three sigma level to polarization fractions as small as a few percent for strong sources, even in a balloon flight.

  8. Krypton and xenon in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hoffman, J. H.; Hodges, R. R., Jr.

    1981-01-01

    The paper reports a determination by the Pioneer Venus large probe neutral mass spectrometer of upper limits to the concentration of krypton and xenon along with most of their isotopes in the atmosphere of Venus. The upper limit to the krypton mixing ratio is estimated at 47 ppb, with a very conservative estimate at 69 ppb. The probable upper limit to the sum of the mixing ratios of the isotopes Xe-128, Xe-129, Xe-130, Xe-131, and Xe-132 is 40 ppb by volume, with a very conservative upper limit three times this large.

  9. Shear Thinning Near the Critical Point of Xenon

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.; Yao, Minwu

    2008-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids, near the critical point of xenon. The data span a wide range of reduced shear rate: 10(exp -3) < gamma-dot tau < 700, where gamma-dot tau is the shear rate scaled by the relaxation time tau of critical fluctuations. The measurements had a temperature resolution of 0.01 mK and were conducted in microgravity aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity. The viscometer measured the drag on a delicate nickel screen as it oscillated in the xenon at amplitudes 3 mu,m < chi (sub 0) >430 mu, and frequencies 1 Hz < omega/2 pi < 5 Hz. To separate shear thinning from other nonlinearities, we computed the ratio of the viscous force on the screen at gamma-dot tau to the force at gamma-dot tau approximates 0: C(sub gamma) is identical with F(chi(sub 0), omega tau, gamma-dot tau )/F)(chi(sub 0, omega tau, 0). At low frequencies, (omega tau)(exp 2) < gamma-dot tau, C(sub gamma) depends only on gamma-dot tau, as predicted by dynamic critical scaling. At high frequencies, (omega tau)(exp 2) > gamma-dot tau, C(sub gamma) depends also on both x(sub 0) and omega. The data were compared with numerical calculations based on the Carreau-Yasuda relation for complex fluids: eta(gamma-dot)/eta(0)=[1+A(sub gamma)|gamma-dot tau|](exp - chi(sub eta)/3+chi(sub eta)), where chi(sub eta) =0.069 is the critical exponent for viscosity and mode-coupling theory predicts A(sub gamma) =0.121. For xenon we find A(sub gamma) =0.137 +/- 0.029, in agreement with the mode coupling value. Remarkably, the xenon data close to the critical temperature T(sub c) were independent of the cooling rate (both above and below T(sub c) and these data were symmetric about T(sub c) to within a temperature scale factor. The scale factors for the magnitude of the oscillator s response differed from those for the oscillator's phase; this suggests that the surface tension of the two-phase domains affected the drag on the screen below T(sub c).

  10. Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR

    NASA Astrophysics Data System (ADS)

    Witte, C.; Kunth, M.; Rossella, F.; Schrder, L.

    2014-02-01

    Xenon is well known to undergo host-guest interactions with proteins and synthetic molecules. As xenon can also be hyperpolarized by spin exchange optical pumping, allowing the investigation of highly dilute systems, it makes an ideal nuclear magnetic resonance probe for such host molecules. The utility of xenon as a probe can be further improved using Chemical Exchange Saturation Transfer using hyperpolarized nuclei (Hyper-CEST), but for highly accurate experiments requires a polarizer and xenon infusion system optimized for such measurements. We present the design of a hyperpolarizer and xenon infusion system specifically designed to meet the requirements of Hyper-CEST measurements. One key element of this design is preventing rubidium runaway, a chain reaction induced by laser heating that prevents efficient utilization of high photon densities. Using thermocouples positioned along the pumping cell we identify the sources of heating and conditions for rubidium runaway to occur. We then demonstrate the effectiveness of actively cooling the optical cell to prevent rubidium runaway in a compact setup. This results in a 2-3-fold higher polarization than without cooling, allowing us to achieve a polarization of 25% at continuous flow rates of 9 ml/min of 129Xe. The simplicity of this design also allows it to be retrofitted to many existing polarizers. Combined with a direction infusion system that reduces shot-to-shot noise down to 0.56% we have captured Hyper-CEST spectra in unprecedented detail, allowing us to completely resolve peaks separated by just 1.62 ppm. Due to its high polarization and excellent stability, our design allows the comparison of underlying theories of host-guest systems with experiment at low concentrations, something extremely difficult with previous polarizers.

  11. Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR

    SciTech Connect

    Witte, C.; Kunth, M.; Rossella, F.; Schrder, L.

    2014-02-28

    Xenon is well known to undergo host-guest interactions with proteins and synthetic molecules. As xenon can also be hyperpolarized by spin exchange optical pumping, allowing the investigation of highly dilute systems, it makes an ideal nuclear magnetic resonance probe for such host molecules. The utility of xenon as a probe can be further improved using Chemical Exchange Saturation Transfer using hyperpolarized nuclei (Hyper-CEST), but for highly accurate experiments requires a polarizer and xenon infusion system optimized for such measurements. We present the design of a hyperpolarizer and xenon infusion system specifically designed to meet the requirements of Hyper-CEST measurements. One key element of this design is preventing rubidium runaway, a chain reaction induced by laser heating that prevents efficient utilization of high photon densities. Using thermocouples positioned along the pumping cell we identify the sources of heating and conditions for rubidium runaway to occur. We then demonstrate the effectiveness of actively cooling the optical cell to prevent rubidium runaway in a compact setup. This results in a 23-fold higher polarization than without cooling, allowing us to achieve a polarization of 25% at continuous flow rates of 9 ml/min of {sup 129}Xe. The simplicity of this design also allows it to be retrofitted to many existing polarizers. Combined with a direction infusion system that reduces shot-to-shot noise down to 0.56% we have captured Hyper-CEST spectra in unprecedented detail, allowing us to completely resolve peaks separated by just 1.62 ppm. Due to its high polarization and excellent stability, our design allows the comparison of underlying theories of host-guest systems with experiment at low concentrations, something extremely difficult with previous polarizers.

  12. Sensitivity Enhancement by Exchange Mediated MagnetizationTransfer of the Xenon Biosensor Signal

    SciTech Connect

    Garcia, Sandra; Chavez, Lana; Lowery, Thomas J.; Han, Song-I.; Wemmer, David E.; Pines, Alexander

    2006-08-31

    Hyperpolarized xenon associated with ligand derivitized cryptophane-A cages has been developed as a NMR based biosensor. To optimize the detection sensitivity we describe use of xenon exchange between the caged and bulk dissolved xenon as an effective signal amplifier. This approach, somewhat analogous to 'remote detection' described recently, uses the chemical exchange to repeatedly transfer spectroscopic information from caged to bulk xenon, effectively integrating the caged signal. After an optimized integration period, the signal is read out by observation of the bulk magnetization. The spectrum of the caged xenon is reconstructed through use of a variable evolution period before transfer and Fourier analysis of the bulk signal as a function of the evolution time.

  13. Sensitivity enhancement by exchange mediated magnetization transfer of the xenon biosensor signal.

    PubMed

    Garcia, Sandra; Chavez, Lana; Lowery, Thomas J; Han, Song-I; Wemmer, David E; Pines, Alexander

    2007-01-01

    Hyperpolarized xenon associated with ligand derivatized cryptophane-A cages has been developed as a NMR based biosensor. To optimize the detection sensitivity we describe use of xenon exchange between the caged and bulk dissolved xenon as an effective signal amplifier. This approach, somewhat analogous to 'remote detection' described recently, uses the chemical exchange to repeatedly transfer spectroscopic information from caged to bulk xenon, effectively integrating the caged signal. After an optimized integration period, the signal is read out by observation of the bulk magnetization. The spectrum of the caged xenon is reconstructed through use of a variable evolution period before transfer and Fourier analysis of the bulk signal as a function of the evolution time. PMID:17046295

  14. Sensitivity enhancement by exchange mediated magnetization transfer of the xenon biosensor signal

    NASA Astrophysics Data System (ADS)

    Garcia, Sandra; Chavez, Lana; Lowery, Thomas J.; Han, Song-I.; Wemmer, David E.; Pines, Alexander

    2007-01-01

    Hyperpolarized xenon associated with ligand derivatized cryptophane-A cages has been developed as a NMR based biosensor. To optimize the detection sensitivity we describe use of xenon exchange between the caged and bulk dissolved xenon as an effective signal amplifier. This approach, somewhat analogous to 'remote detection' described recently, uses the chemical exchange to repeatedly transfer spectroscopic information from caged to bulk xenon, effectively integrating the caged signal. After an optimized integration period, the signal is read out by observation of the bulk magnetization. The spectrum of the caged xenon is reconstructed through use of a variable evolution period before transfer and Fourier analysis of the bulk signal as a function of the evolution time.

  15. Application of scintillating properties of liquid xenon and silicon photomultiplier technology to medical imaging

    NASA Astrophysics Data System (ADS)

    Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, Paola

    2016-04-01

    We describe a new positron emission time-of-flight apparatus using liquid xenon. The detector is based in a liquid xenon scintillating cell. The cell shape and dimensions can be optimized depending on the intended application. In its simplest form, the liquid xenon scintillating cell is a box in which two faces are covered by silicon photomultipliers and the others by a reflecting material such as Teflon. It is a compact, homogenous and highly efficient detector which shares many of the desirable properties of monolithic crystals, with the added advantage of high yield and fast scintillation offered by liquid xenon. Our initial studies suggest that good energy and spatial resolution comparable with that achieved by lutetium oxyorthosilicate crystals can be obtained with a detector based in liquid xenon scintillating cells. In addition, the system can potentially achieve an excellent coincidence resolving time of better than 100 ps.

  16. Xenon in And at the End of the Tunnel of Bifunctional Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase

    SciTech Connect

    Doukov, T.I.; Blasiak, L.C.; Seravalli, J.; Ragsdale, S.W.; Drennan, C.L.; /MIT /SLAC, SSRL /Nebraska U.

    2009-05-11

    A fascinating feature of some bifunctional enzymes is the presence of an internal channel or tunnel to connect the multiple active sites. A channel can allow for a reaction intermediate generated at one active site to be used as a substrate at a second active site, without the need for the intermediate to leave the safety of the protein matrix. One such bifunctional enzyme is carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica (mtCODH/ACS). A key player in the global carbon cycle, CODH/ACS uses a Ni-Fe-S center called the C-cluster to reduce carbon dioxide to carbon monoxide and uses a second Ni-Fe-S center, called the A-cluster, to assemble acetyl-CoA from a methyl group, coenzyme A, and C-cluster-generated CO. mtCODH/ACS has been proposed to contain one of the longest enzyme channels (138 A long) to allow for intermolecular CO transport. Here, we report a 2.5 A resolution structure of xenon-pressurized mtCODH/ACS and examine the nature of gaseous cavities within this enzyme. We find that the cavity calculation program CAVENV accurately predicts the channels connecting the C- and A-clusters, with 17 of 19 xenon binding sites within the predicted regions. Using this X-ray data, we analyze the amino acid composition surrounding the 19 Xe sites and consider how the protein fold is utilized to carve out such an impressive interior passageway. Finally, structural comparisons of Xe-pressurized mtCODH/ACS with related enzyme structures allow us to study channel design principles, as well as consider the conformational flexibility of an enzyme that contains a cavity through its center.

  17. Carbon Dioxide Fountain

    ERIC Educational Resources Information Center

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)

  18. Carbon Dioxide and Climate.

    ERIC Educational Resources Information Center

    Brewer, Peter G.

    1978-01-01

    The amount of carbon dioxide in the atmosphere is increasing at a rate that could cause significant warming of the Earth's climate in the not too distant future. Oceanographers are studying the role of the ocean as a source of carbon dioxide and as a sink for the gas. (Author/BB)

  19. Carbon Dioxide Fountain

    ERIC Educational Resources Information Center

    Kang, Seong-Joo; Ryu, Eun-Hee

    2007-01-01

    This article presents the development of a carbon dioxide fountain. The advantages of the carbon dioxide fountain are that it is odorless and uses consumer chemicals. This experiment also is a nice visual experiment that allows students to see evidence of a gaseous reagent being consumed when a pressure sensor is available. (Contains 3 figures.)…

  20. Control of spatial xenon oscillations in large power reactors

    SciTech Connect

    Doshi, J. B.; Obaidurrahman

    2006-07-01

    Phenomenon of xenon induced power density oscillations in large thermal reactors has been considered as an important problem of fission product poisoning. Major difficulty associated with this neutronic instability is that poison concentration cannot be measured directly. Existing techniques to handle this instability are approximate. The Indian pressurised heavy water reactor (540 MWe) has fourteen zone independent monitoring system for spatial control. Thus xenon instability, which is a spatial phenomenon, is controlled by local treatment. This requires detailed computer logic and rigorous control effort. In the present work, one spatial parameter, power tilt has been introduced, which is the normalized difference of power level in two halves of the reactor core. This parameter has been chosen as basic control parameter for controlling spatial oscillations. Linear control theory has been adopted and linear models are used for extrapolation of power and power tilt for subsequent time steps. Control law aims to limit power tilt within safe limits. Thus problem of fourteen zones monitoring now has been simplified to monitoring of power tilts in x, y and z direction, only three parameters instead of fourteen. This scheme has been found to be simple and accurate. Two-group diffusion theory has been used for solutions of neutron diffusion equation. Space-time kinetics computations have been done by flux factorization technique. (authors)

  1. Study of a zirconium getter for purification of xenon gas

    NASA Astrophysics Data System (ADS)

    Dobi, A.; Leonard, D. S.; Hall, C.; Kaufman, L. J.; Langford, T.; Slutsky, S.; Yen, Y.-R.

    2010-08-01

    Oxygen, nitrogen and methane purification efficiencies for a common zirconium getter are measured in 1050 Torr of xenon gas. Starting with impurity concentrations near 10 -6 g/g, the outlet impurity level is found to be less than 120 10 -12 g/g for O 2 and less than 95010 -12 g/g for N 2. For methane we find residual contamination of the purified gas at concentrations varying over three orders of magnitude, depending on the purifier temperature and the gas flow rate. A slight reduction in the purifier's methane efficiency is observed after 13 mg of this impurity has been absorbed, which we attribute to partial exhaustion of the purifier's capacity for this species. We also find that the purifier's ability to absorb N 2 and methane can be extinguished long before any decrease in O 2 performance is observed, and slower flow rates should be employed for xenon purification due to the cooling effect that the heavy gas has on the getter.

  2. Xenon improves neurological outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury

    PubMed Central

    Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert

    2015-01-01

    Objectives To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury, and to determine whether application of xenon has a clinically relevant therapeutic time window. Design Controlled animal study. Setting University research laboratory. Subjects Male C57BL/6N mice (n=196) Interventions 75% xenon, 50% xenon or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Measurements & Main Results Outcome following trauma was measured using: 1) functional neurological outcome score, 2) histological measurement of contusion volume, 3) analysis of locomotor function and gait. Our study shows that xenon-treatment improves outcome following traumatic brain injury. Neurological outcome scores were significantly (p<0.05) better in xenon-treated groups in the early phase (24 hours) and up to 4 days after injury. Contusion volume was significantly (p<0.05) reduced in the xenon-treated groups. Xenon treatment significantly (p<0.05) reduced contusion volume when xenon was given 15 minutes after injury or when treatment was delayed 1 hour or 3 hours after injury. Neurological outcome was significantly (p<0.05) improved when xenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (p<0.05) were observed in the xenon-treated group, 1 month after trauma. Conclusions These results show for the first time that xenon improves neurological outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in brain trauma patients. PMID:25188549

  3. Stratospheric nitrogen dioxide in the vicinity of Soufriere, St. Vincent

    NASA Technical Reports Server (NTRS)

    Romick, G. J.; Murcray, D. G.; Williams, W. J.

    1982-01-01

    In April 1979, measurements of nitrogen dioxide in the upper atmosphere were made near Soufriere Volcano by twilight optical-absorption techniques. The derived value of 5 x 10 to the 15th molecules per square centimeter column implies an enhancement of 25 percent over earlier abundances measured in the same latitudinal regions. This enhancement may represent the normal stratospheric variability of nitrogen dioxide in the equatorial region, but in any case may be considered an upper limit to the volcano's effect on the total nitrogen dioxide abundance.

  4. Modelling the behaviour of microbulk Micromegas in xenon/trimethylamine gas

    NASA Astrophysics Data System (ADS)

    Ruiz-Choliz, E.; Gonzlez-Daz, D.; Diago, A.; Castel, J.; Dafni, T.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Luzn, G.; Mirallas, H.; ?ahin, .; Veenhof, R.

    2015-11-01

    We model the response of a state of the art micro-hole single-stage charge amplification device ('microbulk' Micromegas) in a gaseous atmosphere consisting of xenon/trimethylamine at various concentrations and pressures. The amplifying structure, made with photo-lithographic techniques similar to those followed in the fabrication of gas electron multipliers (GEMs), consisted of a 100 ?m-side equilateral-triangle pattern with 50 ?m-diameter holes placed at its vertexes. Once the primary electrons are guided into the holes by virtue of an optimized field configuration, avalanches develop along the 50 ?m-height channels etched out of the original doubly copper-clad polyimide foil. In order to properly account for the strong field gradients at the holes' entrance as well as for the fluctuations of the avalanche process (that ultimately determine the achievable energy resolution), we abandoned the hydrodynamic framework, resorting to a purely microscopic description of the electron trajectories as obtained from elementary cross-sections. We show that achieving a satisfactory description needs additional assumptions about atom-molecule (Penning) transfer reactions and charge recombination to be made.

  5. A study of the xenon effect in type-II clathrate hydrate synthesis; Commencing with hydrogen, argon and xenon uptake into a propane clathrate hydrate

    NASA Astrophysics Data System (ADS)

    Abbondondola, Joanne Angela

    It has been proposed that clathrate hydrates can be a possible storage medium for alternative fuels, such as hydrogen. The type-II propane gas hydrate is a viable choice because there are twice as many small cages as large cages and the small cavities are available for hydrogen storage. However, propane hydrate formation is a kinetically slow process which makes it commercially unattractive. Our objectives were twofold; (1) to quantify hydrogen, argon and xenon sorption into a preformed type-II propane hydrate at near-ambient conditions and (2) to investigate the effect of xenon on the rate of type-II propane hydrate formation. The propane hydrate is synthesized from 250 mum ice grains, and is estimated to have a porosity of 65 %. Hydrogen is rapidly absorbed by the hydrate sample and approaches the equilibrium vapor pressure in an hour before a very slow residual absorption process ensues. For an initial hydrogen pressure of 1.5 MPa, about 4.5 % of the available 512 cages are occupied by hydrogen after one hour, and 4.9 % after 18 hours. In contrast, for both argon and xenon significantly more gas is absorbed by the hydrate, but at a much slower rate: about 5% as fast for xenon and 1% as fast for argon. We conclude that hydrogen readily diffuses through the propane hydrate microcrystal structure, while argon and xenon are probably absorbed by growing new double hydrate while consuming the propane hydrate. Thus, although considerably higher pressures would be required to store significant quantities of hydrogen in propane hydrate, it appears that the crystal can be loaded and emptied in relatively short amounts of time. Experimental results show that propane is incorporated into clathrate hydrate cages more rapidly using propane-xenon mixtures than for pure propane gas. For a 0.92 xenon: propane mix, 60% of the theoretical yield of propane enclathration is achieved in 20 minutes, versus several days for pure propane. It appears that xenon serves to nucleate the dodecahedral 512 cages, and that the presence of propane results in type-II structure growth rather than the native xenon type-I structure. The type-II xenon-propane structure is more thermodynamically stable than either pure hydrate.

  6. Modeling total reduced sulfur and sulfur dioxide emissions from a kraft recovery boiler using an artificial neural network, and, Investigating volatile organic compounds in an urban intermountain valley using a TD/GC/MS methodology and intrinsic tracer molecules

    NASA Astrophysics Data System (ADS)

    Wrobel, Christopher Louis

    2000-11-01

    Back-propagation neural networks were trained to predict total reduced sulfur (TRS) and SO2 emissions from kraft recovery boiler operational data. A 0.721 coefficient of correlation was achieved between actual and predicted sulfur emissions on test data withheld from network training. The artificial neural network (ANN) models found an inverse, linear relationship between TRS/SO2 emissions and percent opacity. A number of relationships among operating parameters and sulfur emissions were identified by the ANN models. These relationships were used to formulate strategies for reducing sulfur emissions. Disagreement between ANN model predictions on a subsequent data set revealed an additional scenario for sulfur release not present in the training data. ANN modeling was demonstrated to be an effective tool for analyzing process variables when balancing productivity and environmental concerns. Five receptor sites distributed in the Missoula Valley, Montana, were employed to investigate possible VOC (benzene, 2,3,4-trimethylpentane, toluene, ethylbenzene, m-/p-xylene, o-xylene, naphthalene, acetone, chloroform, ?-pinene, ?-pinene, p-cymene and limonene) sources. The most dominant source of VOCs was found to be vehicle emissions. Furthermore, anthropogenic sources of terpenoids overwhelmed biogenic emissions, on a local scale. Difficulties correlating wind direction and pollutant levels could be explained by wind direction variability, low wind speed and seasonally dependent meteorological factors. Significant evidence was compiled to support the use of p-cymene as a tracer molecule for pulp mill VOC emissions. Apportionment techniques using o-xylene and p-cymene as tracers for automobile and pulp mill emissions, respectively, were employed to estimate each source's VOC contribution. Motor vehicles were estimated to contribute between 56 and 100 percent of the aromatic pollutants in the Missoula Valley airshed, depending upon the sampling location. Pulp mill emissions were estimated to account from 1 to 34 percent of the aromatic chemicals in the airshed. Measured ambient chloroform levels were attributable to the pulp mill (12-70%) and non-point source urban emissions (7.5-30%).

  7. Response of liquid xenon to low-energy ionizing radiation and its use in the XENON10 dark matter search

    NASA Astrophysics Data System (ADS)

    Manalaysay, Aaron Gosta

    This dissertation focuses on developments aimed at improving the effectiveness and understanding of liquid xenon particle detectors in their use in the field of dark matter direct detection. Chapter 3 covers the XENON10 experiment, which searches for evidence of direct interactions between Weakly Interacting Massive Particles (WIMPs) and Xe nuclei. The 3-D position sensitive liquid xenon time projection chamber acquired 58.6 live days of WIMP search data from October, 2006 through February, 2007. The results of these data set new limits on both spin-independent and spin-dependent interactions. The spin-independent WIMP-nucleon cross section is constrained to be less than 4.5 x 10-44 cm2 for WIMPs of mass 30 GeV/ c2 and less than 8.8 x 10-44 cm2 for WIMPs of mass 100 GeV/c2 at the 90% confidence level. The spin-dependent WIMP-neutron and WIMP-proton cross sections are constrained to be less than 10-39 cm 2 and 10-36 cm2, respectively. Finally, the mass of the heavy Majorana neutrino, in the context of a dark matter candidate, is excluded for masses in the range 10 GeV/c2 to 2.2TeV/c2. Chapter 4 discusses the study of the relative scintillation efficiency of nuclear recoils in liquid xenon. The two existing measurements of the relative scintillation efficiency of nuclear recoils below 20 keV lead to inconsistent extrapolations at lower energies. This results in a different energy scale and thus sensitivity reach of liquid xenon dark matter detectors. A new measurement of the relative scintillation efficiency below 10 keV, performed with a liquid xenon scintillation detector and optimized for maximum light collection is discussed. Greater than 95% of the interior surface of this detector was instrumented with photomultiplier tubes, giving a scintillation yield of 19.6 photoelectrons/keV electron equivalent for 122 keV gamma rays. The relative scintillation efficiency for nuclear recoils of 5 keV is found to be 0.14, staying constant around this value up to 10 keV. For higher energy recoils we measure a value of 0.21, consistent with previously reported data. In light of this new measurement, the XENON10 experiment's upper limits on spin-independent WIMP-nucleon cross section, which were calculated assuming a constant 0.19 relative scintillation efficiency, change from 8.8 x 10-44 cm2 to 9.9 x 10-44 cm2 for WIMPs of mass 100 GeV/c2, and from 4.5 x 10-44 cm2 to 5.6 x 10-44 cm2 for WIMPs of mass 30 GeV/ c2. In Chapter 6, I highlight the fact that a difficult task with many particle detectors focusing on interactions below 100 keV is to perform a calibration in the appropriate energy range that adequately probes all regions of the detector. Because detector response can vary greatly in various locations within the device, a spatially uniform calibration is important. A new method for calibration of liquid xenon (LXe) detectors is presented, using the short-lived 83mKr. This source has transitions at 9.4 and 32.1 keV, and as a noble gas like Xe, it disperses uniformly in all regions of the detector. Even for low source activities, the existence of the two transitions provides a method of identifying the decays that is free of background. At decreasing energies, the LXe light yield increases, while the amount of electric field quenching is diminished. Additionally, if any long-lived radioactive backgrounds are introduced by this method, it is shown that they will present less than 67x10 -6 events kg-1 day-1 keV-1 of background in the next generation of LXe dark matter direct detection searches. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  8. GraXe, graphene and xenon for neutrinoless double beta decay searches

    SciTech Connect

    Gmez-Cadenas, J.J.; Martn-Albo, J.; Monrabal, F.; Vidal, J. Muoz; Guinea, F.; Fogler, M.M.; Katsnelson, M.I. E-mail: paco.guinea@icmm.csic.es E-mail: katsnel@sci.kun.nl E-mail: francesc.monrabal@ific.uv.es

    2012-02-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in {sup 136}XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the {sup 136}XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to the xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope {sup 136}XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.

  9. Revisiting XENON100's constraints (and signals?) for low-mass dark matter

    SciTech Connect

    Hooper, Dan

    2013-09-01

    Although observations made with the CoGeNT and CDMS experiments have been interpreted as possible signals of low-mass ( ? 710 GeV) dark matter particles, constraints from the XENON100 collaboration appear to be incompatible with this hypothesis, at least at face value. In this paper, we revisit XENON100's constraint on dark matter in this mass range, and consider how various uncertainties and assumptions made might alter this conclusion. We also note that while XENON100's two nuclear recoil candidates each exhibit very low ratios of ionization-to-scintillation signals, making them difficult to attribute to known electronic or neutron backgrounds, they are consistent with originating from dark matter particles in the mass range favored by CoGeNT and CDMS. We argue that with lower, but not implausible, values for the relative scintillation efficiency of liquid xenon (L{sub eff}), and the suppression of the scintillation signal in liquid xenon at XENON100's electric field (S{sub nr}), these two events could consistently arise from dark matter particles with a mass and cross section in the range favored by CoGeNT and CDMS. If this interpretation is correct, we predict that the LUX experiment, with a significantly higher light yield than XENON100, should observe dark matter induced events at an observable rate of ? 324 per month.

  10. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  11. Carbon dioxide concentrator

    NASA Technical Reports Server (NTRS)

    Williams, C. F.; Huebscher, R. G.

    1972-01-01

    Passed exhaled air through electrochemical cell containing alkali metal carbonate aqueous solution, and utilizes platinized electrodes causing reaction of oxygen at cathode with water in electrolyte, producing hydroxyl ions which react with carbon dioxide to form carbonate ions.

  12. Chemical shift imaging with continuously flowing hyperpolarized xenon for the characterization of materials.

    PubMed

    Moudrakovski, I L; Lang, S; Ratcliffe, C I; Simard, B; Santyr, G; Ripmeester, J A

    2000-06-01

    In this contribution we report new approaches to the MRI of materials using continuously produced laser-polarized (129)Xe gas. This leads to vastly improved sensitivity and makes new kinds of information available. The hyperpolarized xenon is produced in a continuous flow system that conveniently delivers the xenon at low partial pressure to probes for NMR and MRI experiments. We illustrate applications to the study of micropore and other kinds of void space and show for the first time that with flowing hyperpolarized xenon it is possible to obtain chemical-shift-resolved images in a relatively short time. PMID:10828205

  13. Study on active radon purification in the XENON100 dark matter detector

    NASA Astrophysics Data System (ADS)

    Weber, Marc; Xenon Collaboration

    2015-04-01

    The radioactive decay of the noble gas element radon presents a substantial background component to current and next generation noble liquid dark matter experiments, which aim at ultra-low background levels to discover interactions of weakly interacting massive particles (WIMPs) in their target. We present first results on an experimental study of active radon removal in the XENON100 detector, using a similar cryogenic distillation technique which has already proven successful in the reduction of krypton in xenon. We are thankful to the National Science Foundation for the continuing support of the XENON dark matter programme.

  14. Carbon dioxide removal process

    DOEpatents

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  15. Multiple-ionization of xenon atoms by positron impact

    NASA Technical Reports Server (NTRS)

    Kruse, Georg; Quermann, Andreas; Raith, Wilhelm; Sinapius, Guenther

    1990-01-01

    Previously the cross sections were measured for positronium formation and single ionization by positron impact for He and H2. With the same apparatus, slightly modified, the single and multiple ionization of xenon is now investigated. The principle of the method is the detection of ion and positron in time correlation which allows the discrimination of positronium formation (whereby the positron vanishes) and the destinction of single, double and triple impact ionization (which lead to different ion flight times from the gas target to the ion detector). By using secondary electrons from the positron moderator, similar measurements were performed on electron impact ionization. By comparing with literature values for electron multiple ionization cross sections, the detection-probability ratios were determined for the differently charged ions.

  16. Investigation of many-body forces in krypton and xenon

    SciTech Connect

    Salacuse, J.J.; Egelstaff, P.A.

    1988-10-15

    The simplicity of the state dependence at relatively high temperatures ofthe many-body potential contribution to the pressure and energy has been pointed out previously (J. Ram and P. A. Egelstaff, J. Phys. Chem. Liq. 14, 29 (1984); A. Teitsima and P. A. Egelstaff, Phys. Rev. A 21, 367 (1980)). In this paper, we investigate how far these many-body potential terms may be represented by simple models in the case of krypton on the 423-, 273-, 190-, and 150-K isotherms, and xenon on the 170-, 210-, and 270-K isotherms. At the higher temperatures the best agreement is found for the mean-field type of theory, and some consequences are pointed out. On the lower isotherms a state point is found where the many-body energy vanishes, and large departures from mean-field behavior are observed. This is attributed to the influence of short-ranged many-body forces.

  17. Deep Space Mission Applications for NEXT: NASA's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oh, David; Benson, Scott; Witzberger, Kevin; Cupples, Michael

    2004-01-01

    NASA's Evolutionary Xenon Thruster (NEXT) is designed to address a need for advanced ion propulsion systems on certain future NASA deep space missions. This paper surveys seven potential missions that have been identified as being able to take advantage of the unique capabilities of NEXT. Two conceptual missions to Titan and Neptune are analyzed, and it is shown that ion thrusters could decrease launch mass and shorten trip time, to Titan compared to chemical propulsion. A potential Mars Sample return mission is described, and compassion made between a chemical mission and a NEXT based mission. Four possible near term applications to New Frontiers and Discovery class missions are described, and comparisons are made to chemical systems or existing NSTAR ion propulsion system performance. The results show that NEXT has potential performance and cost benefits for missions in the Discovery, New Frontiers, and larger mission classes.

  18. Increasing the Life of a Xenon-Ion Spacecraft Thruster

    NASA Technical Reports Server (NTRS)

    Goebel, Dan; Polk, James; Sengupta, Anita; Wirz, Richard

    2007-01-01

    A short document summarizes the redesign of a xenon-ion spacecraft thruster to increase its operational lifetime beyond a limit heretofore imposed by nonuniform ion-impact erosion of an accelerator electrode grid. A peak in the ion current density on the centerline of the thruster causes increased erosion in the center of the grid. The ion-current density in the NSTAR thruster that was the subject of this investigation was characterized by peak-to-average ratio of 2:1 and a peak-to-edge ratio of greater than 10:1. The redesign was directed toward distributing the same beam current more evenly over the entire grid andinvolved several modifications of the magnetic- field topography in the thruster to obtain more nearly uniform ionization. The net result of the redesign was to reduce the peak ion current density by nearly a factor of two, thereby halving the peak erosion rate and doubling the life of the thruster.

  19. Vertebrobasilar insufficiency revealed by xenon-133 inhalation SPECT

    SciTech Connect

    Delecluse, F.; Voordecker, P.; Raftopoulos, C.

    1989-07-01

    A study of cerebral and cerebellar blood flow reactivity to acetazolamide by xenon-133-inhalation single photon emission computed tomography (/sup 133/Xe SPECT) was carried out in a patient with bouts of transient basilar ischemia, whose neurological examination, computed tomographic scan, and auditory evoked potentials were normal. Though the patient was symptom-free at the time of the study, /sup 133/Xe SPECT demonstrated vertebrobasilar insufficiency by showing an impaired vasodilatory response in both the occipital lobes and the right cerebellar hemisphere. Three weeks later, the patient suffered an extensive stroke in these same areas. We therefore suggest that this method could be of great value in the assessment of vertebrobasilar insufficiency.

  20. A New Electrostatically-focused UV HPD for Liquid Xenon

    SciTech Connect

    Cushman, Priscilla Brooks

    2013-07-10

    Appropriate photodetectors are a major challenge for liquid xenon technology as proposed by the next generation of double beta decay, solar neutrino, and dark matter searches. The primary photon signal is tiny and in the hard ultraviolet, the installation is cryogenic, and the sensors themselves must not introduce background. Hybrid photodiodes (HPDs) provide an easy substitute for a conventional PMT with the added advantages of low radioactivity, better area coverage, and single photoelectron counting. A computer-controlled test setup capable of characterizing optical properties of ultraviolet photodetectors was installed. It was used to compare photomultiplier tubes, silicon photomultipliers, avalanche photodiodes, and a novel-design custom HPD developed by the DEP company under this proposal.

  1. A relativistic treatment of electron ionization of xenon

    NASA Astrophysics Data System (ADS)

    Stauffer, Allan; Illarionov, Alexey

    2011-10-01

    Xenon is a heavy atom with a 5p6 valence shell. This outer shell is split into two subshells with an energy difference of 1.3 eV. Experimental measurements exist for the ionization of this atom which resolve these two subshells. Moreover, ionization experiments have been carried out with spin-polarized electrons. A relativistic treatment of these processes based on the Dirac equations has two particular advantages. By providing distinct orbitals for the two valence subshells with different ionization thresholds, we have a more realistic description of the target atom than is available in a standard Schroedinger approximation. Since the Dirac equations explicitly contain the spin of the electrons, we have a natural way of treating spin-polarized processes. We will present results based on a simple plane and coulomb representation of the scattered and ejected electron as well as a more elaborate distorted-wave approach.

  2. Gamma-ray spectrometer utilizing xenon at high pressure

    SciTech Connect

    Smith, G.C.; Mahler, G.J.; Yu, B.; Kane, W.R.; Markey, J.K.

    1994-08-01

    A prototype gamma-ray spectrometer utilizing xenon gas near the critical point (166{degrees}C, 58 atm) is under development. The spectrometer will function as a room-temperature ionization chamber detecting gamma rays in the energy range 100 keV2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. The energy resolution is superior to that of a NaI scintillation spectrometer by a substantial margin (approximately a factor 5), and accordingly, much more information can be extracted from a given gamma-ray spectrum. Unlike germanium detectors, the spectrometer possesses the capability for sustained operation under ambient temperature conditions without a requirement for liquid nitrogen.

  3. Performance of 10-kW class xenon ion thrusters

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Rawlin, Vincent K.

    1988-01-01

    Presented are performance data for laboratory and engineering model 30 cm-diameter ion thrusters operated with xenon propellant over a range of input power levels from approximately 2 to 20 kW. Also presented are preliminary performance results obtained from laboratory model 50 cm-diameter cusp- and divergent-field ion thrusters operating with both 30 cm- amd 50 cm-diameter ion optics up to a 20 kW input power. These data include values of discharge chamber propellant and power efficiencies, as well as values of specific impulse, thruster efficiency, thrust and power. The operation of the 30 cm- and 50 cm-diameter ion optics are also discussed.

  4. Power Processing Unit of Xenon Ion Propulsion System

    NASA Astrophysics Data System (ADS)

    Tiemin, C.

    2002-01-01

    The structure and optimizing of designing, selecting of parameter was described in this paper, according to the character and desiring of 20cm Xenon ion propulsion system. The Impulse Specific of 20cm XIPS is 3000s,and its thrust is 40mN.The power processing unit (PPU) consists in some modules, they are main hollow cathode heating supply, its igniting one, the contact one, the neutralize heating supply, its igniting one, the contact one, the screen supply, the accelerating supply, and anode supply. Also, the power supply of Xenon storage and feed unit and digital interface and control unit were introduced here. The power supply works with technique of pulse width modulating (PWM) controlled by voltage or current, according to the desiring of the thruster, their stability of output is about 3%. The protecting measure was used as overvoltage, overcurrent and fold back current limiting. For the screen supply, which is higher voltage output, three transformers and three bridges were used to ensure its reliability. The parameter of these modules, showes as following, the igniting supplies outputs1500V/100mA,with protecting of fold back current limiting. The hollow cathode heating supply outputs 0~6V,which is alternate, voltage programmable output and the frequency is 20KHz.The screen is 1000V/0.79A,with stabililizing voltage and protecting of over current output. The anode is 5~7.5A stabililizing current output. The accelerator is -200V/10mA with protecting of over current output. The total power consumptions of PPU are 1100W,and efficient of transfer is more than 80%.

  5. An ultra-low background PMT for liquid xenon detectors

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Bai, X.; Bernard, E.; Bernstein, A.; Bradley, A.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Carr, D.; Chapman, J. J.; Clark, K.; Coffey, T.; Edwards, B.; de Viveiros, L.; Dragowsky, M.; Druszkiewicz, E.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gibson, K. R.; Hall, C.; Hanhardt, M.; Holbrook, B.; Ihm, M.; Jacobsen, R. G.; Kastens, L.; Kazkaz, K.; Larsen, N.; Lee, C.; Lindote, A.; Lopes, M. I.; Lyashenko, A.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Morii, M.; Nelson, H.; Neves, F.; Nikkel, J. A.; Pangilinan, M.; Phelps, P.; Shutt, T.; Silva, C.; Skulski, W.; Solovov, V. N.; Sorensen, P.; Spaans, J.; Stiegler, T.; Sweany, M.; Szydagis, M.; Taylor, D.; Thomson, J.; Tripathi, M.; Uvarov, S.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; Wlasenko, M.; Wolfs, F. L. H.; Woods, M.; Zhang, C.

    2013-03-01

    Results are presented from radioactivity screening of two models of photomultiplier tubes designed for use in current and future liquid xenon experiments. The Hamamatsu 5.6 cm diameter R8778 PMT, used in the LUX dark matter experiment, has yielded a positive detection of four common radioactive isotopes: 238U, 232Th, 40K, and 60Co. Screening of LUX materials has rendered backgrounds from other detector materials subdominant to the R8778 contribution. A prototype Hamamatsu 7.6 cm diameter R11410 MOD PMT has also been screened, with benchmark isotope counts measured at <0.4238U/<0.3232Th/<8.340K/2.00.2 60Co mBq/PMT. This represents a large reduction, equal to a change of {1}/{24}238U/{1}/{9}232Th/{1}/{8}40K per PMT, between R8778 and R11410 MOD, concurrent with a doubling of the photocathode surface area (4.5-6.4 cm diameter). 60Co measurements are comparable between the PMTs, but can be significantly reduced in future R11410 MOD units through further material selection. Assuming PMT activity equal to the measured 90% upper limits, Monte Carlo estimates indicate that replacement of R8778 PMTs with R11410 MOD PMTs will change LUX PMT electron recoil background contributions by a factor of {1}/{25} after further material selection for 60Co reduction, and nuclear recoil backgrounds by a factor of {1}/{36}. The strong reduction in backgrounds below the measured R8778 levels makes the R11410 MOD a very competitive technology for use in large-scale liquid xenon detectors.

  6. A study of xenon isotopes in a martian meteorite using the RELAX ultrasensitive mass spectrometer

    SciTech Connect

    Whitby, J A; Gilmour, J D; Turner, G

    1997-01-15

    The Refrigerator Enhanced Analyser for Xenon (RELAX), an ultrasensitive resonance ionization time-of-flight mass spectrometer, has been used with a laser microprobe to investigate the isotopic composition of xenon trapped in the martian meteorite ALH84001. The laser microprobe has a spatial resolution of the order of 100{mu}m thus allowing the in situ analysis of individual mineral grains in a polished section when combined with ultrasensitive, low blank sample analysis. We present results showing that the mineral orthopyroxene in ALH84001 contains a trapped xenon component consistent with a martian origin. Additionally, a cosmic ray exposure age of 15Ma for ALH84001 is obtained from spallation derived xenon trapped within an apatite grain.

  7. Large scale xenon purification using cryogenic distillation for dark matter detectors

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Bao, L.; Hao, X. H.; Ju, Y. L.; Pushkin, K.; He, M.

    2014-11-01

    A high efficiency cryogenic distillation system for removal of radioactive krypton-85 (85Kr) from commercially available xenon (Xe) has been designed, developed and assessed to meet the requirements of high sensitivity, low background dark matter detection experiments. The concentration of krypton (Kr) in a commercial xenon product can be decreased from 10-9 to 10-12 mol/mol based on the theoretical design and simulation. The experimental measurements showed that the concentration of krypton was decreased to 10-11 mol/mol with 99% xenon collection efficiency at maximum flow rate of 5 kg/h. Over 500 kg of xenon has been purified using this system, which has been used as the detection medium in project Panda X, the first dark matter detector developed in China.

  8. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Seoung, D.; Lee, Y.; Cynn, H.; Park, C.; Choi, K. Y.; Blom, D.; Evans, W.; Kao, C. C.; Vogt, T.

    2014-12-01

    Pressure drastically alters chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained at ambient conditions. Particularly exciting is the high-pressure chemistry of Xenon, which is known to react with hydrogen and ice at high pressures, and form stable compounds under pressure. Here we show that Ag16Al16Si24O80·16H2O irreversibly inserts Xe into its micropores at 1.7 GPa and 250 °C while Ag+ reduces to metallic Ag and possibly oxidizes to Ag2+. In contrast to Krypton, Xenon is retained within the pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of Xenon in Ag-natrolite at moderate conditions sheds new light on chemical reactions that could account for a Xenon deficiency relative to Argon observed in terrestrial and Martian atmospheres.

  9. Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI

    PubMed Central

    Branca, Rosa Tamara; He, Ting; Zhang, Le; Floyd, Carlos S.; Freeman, Matthew; White, Christian; Burant, Alex

    2014-01-01

    The study of brown adipose tissue (BAT) in human weight regulation has been constrained by the lack of a noninvasive tool for measuring this tissue and its function in vivo. Existing imaging modalities are nonspecific and intrinsically insensitive to the less active, lipid-rich BAT of obese subjects, the target population for BAT studies. We demonstrate noninvasive imaging of BAT in mice by hyperpolarized xenon gas MRI. We detect a greater than 15-fold increase in xenon uptake by BAT during stimulation of BAT thermogenesis, which enables us to acquire background-free maps of the tissue in both lean and obese mouse phenotypes. We also demonstrate in vivo MR thermometry of BAT by hyperpolarized xenon gas. Finally, we use the linear temperature dependence of the chemical shift of xenon dissolved in adipose tissue to directly measure BAT temperature and to track thermogenic activity in vivo. PMID:25453088

  10. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Agostini, F.; Alfonsi, M.; Arazi, L.; Arisaka, K.; Arneodo, F.; Auger, M.; Balan, C.; Barrow, P.; Baudis, L.; Bauermeister, B.; Behrens, A.; Beltrame, P.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Btikofer, L.; Cardoso, J. M. R.; Coderre, D.; Colijn, A. P.; Contreras, H.; Cussonneau, J. P.; Decowski, M. P.; Giovanni, A. Di; Duchovni, E.; Fattori, S.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Galloway, M.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grignon, C.; Gross, E.; Hampel, W.; Itay, R.; Kaether, F.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Calloch, M. Le; Lellouch, D.; Levinson, L.; Levy, C.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Lyashenko, A.; Macmullin, S.; Undagoitia, T. Marrodn; Masbou, J.; Massoli, F. V.; Mayani, D.; Fernandez, A. J. Melgarejo; Meng, Y.; Messina, M.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pantic, E.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; dos Santos, J. M. F.; Sartorelli, G.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Simgen, H.; Teymourian, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vitells, O.; Wall, R.; Wang, H.; Weber, M.; Weinheimer, C.; Laubenstein, M.

    2015-11-01

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.

  11. Differences between bispectral index and spectral entropy during xenon anaesthesia: a comparison with propofol anaesthesia.

    PubMed

    Hcker, J; Raitschew, B; Meybohm, P; Broch, O; Stapelfeldt, C; Gruenewald, M; Cavus, E; Steinfath, M; Bein, B

    2010-06-01

    We enrolled 114 patients, aged 65-83 years, undergoing elective surgery (duration > 2h) into a randomised, controlled study to evaluate the performance of bispectral index and spectral entropy for monitoring depth of xenon versus propofol anaesthesia. In the propofol group, bispectral index and state entropy values were comparable. In the xenon group, bispectral index values resembled those in the propofol group, but spectral entropy levels were significantly lower. Mean arterial blood pressure was higher and heart rate was lower in the xenon group than in the propofol group. Bispectral index and spectral entropy considerably diverged during xenon but not during propofol anaesthesia. We therefore conclude that these measures are not interchangeable for the assessment of depth of hypnosis and that bispectral index is likely to reflect actual depth of anaesthesia more precisely compared with spectral entropy. PMID:20412149

  12. Progress on Acoustic Measurements of the Bulk Viscosity of Near-Critical Xenon (BVX)

    NASA Technical Reports Server (NTRS)

    Gillis, Keith A.; Shinder, Iosif I.; Moldover, Michael R.; Zimmerli, Gregory A.

    2004-01-01

    We plan to determine the bulk viscosity of xenon 10 times closer [in reduced temperature tau = (T-Tc)/Tc] to its liquid-vapor critical point than ever before. (Tc is the critical temperature.) To do so, we must measure the dispersion and attenuation of sound at frequencies 1/100 of those used previously. In general, sound attenuation has contributions from the bulk viscosity acting throughout the volume of the xenon as well as contributions from the thermal conductivity and the shear viscosity acting within thin thermoacoustic boundary layers at the interface between the xenon and the solid walls of the resonator. Thus, we can determine the bulk viscosity only when the boundary layer attenuation is small and well understood. We present a comparison of calculations and measurements of sound attenuation in the acoustic boundary layer of xenon near its liquid-vapor critical point.

  13. Optimization of Dual-Energy Xenon-CT for Quantitative Assessment of Regional Pulmonary Ventilation

    PubMed Central

    Fuld, Matthew K.; Halaweish, Ahmed; Newell, John D.; Krauss, Bernhard; Hoffman, Eric A.

    2013-01-01

    Objective Dual-energy X-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study we seek to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. Materials and Methods The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon-oxygen gas mixtures (0, 20, 25, 33, 50, 66, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved three-material decomposition calibration parameters. Additionally, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine in order to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Results Attenuation curves for xenon were obtained from the syringe test objects and were used to develop improved three-material decomposition parameters (HU enhancement per percent xenon: Within the chest phantom: 2.25 at 80kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; In open air: 2.5 at 80kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally non-dependent portion of the airway tree test-object, while not affecting quantitation of xenon in the three-material decomposition DECT. 40%Xe/40%He/20%O2 provided good signal-to-noise, greater than the Rose Criterion (SNR > 5), while avoiding gravitational effects of similar concentrations of xenon in a 60%O2 mixture. 80/140-kVp (tin-filtered) provided improved SNR compared with 100/140-kVp in a swine with an equivalent thoracic transverse density to a human subject with body mass index of 33. Airways were brighter in the 80/140 kVp scan (80/140Sn, 31.6%; 100/140Sn, 25.1%) with considerably lower noise (80/140Sn, CV of 0.140; 100/140Sn, CV of 0.216). Conclusion In order to provide a truly quantitative measure of regional lung function with xenon-DECT, the basic protocols and parameter calibrations needed to be better understood and quantified. It is critically important to understand the fundamentals of new techniques in order to allow for proper implementation and interpretation of their results prior to wide spread usage. With the use of an in house derived xenon calibration curve for three-material decomposition rather than the scanner supplied calibration and a xenon/helium/oxygen mixture we demonstrate highly accurate quantitation of xenon gas volumes and avoid gravitational effects on gas distribution. This study provides a foundation for other researchers to use and test these methods with the goal of clinical translation. PMID:23571834

  14. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children

    SciTech Connect

    Kern, F.H.; Ungerleider, R.M.; Quill, T.J.; Baldwin, B.; White, W.D.; Reves, J.G.; Greeley, W.J. )

    1991-04-01

    We examined the relationship of changes in partial pressure of carbon dioxide on cerebral blood flow responsiveness in 20 pediatric patients undergoing hypothermic cardiopulmonary bypass. Cerebral blood flow was measured during steady-state hypothermic cardiopulmonary bypass with the use of xenon 133 clearance methodology at two different arterial carbon dioxide tensions. During these measurements there was no significant change in mean arterial pressure, nasopharyngeal temperature, pump flow rate, or hematocrit value. Cerebral blood flow was found to be significantly greater at higher arterial carbon dioxide tensions (p less than 0.01), so that for every millimeter of mercury rise in arterial carbon dioxide tension there was a 1.2 ml.100 gm-1.min-1 increase in cerebral blood flow. Two factors, deep hypothermia (18 degrees to 22 degrees C) and reduced age (less than 1 year), diminished the effect carbon dioxide had on cerebral blood flow responsiveness but did not eliminate it. We conclude that cerebral blood flow remains responsive to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in infants and children; that is, increasing arterial carbon dioxide tension will independently increase cerebral blood flow.

  15. A cylindrical xenon ionization chamber detector for high resolution, room temperature gamma radiation spectroscopy

    NASA Astrophysics Data System (ADS)

    Tepper, Gary; Losee, Jon; Palmer, Robert

    A 0.75 l gridded cylindrical ionization chamber gamma radiation detector using highly purified xenon near the critical point as the detection medium is described. The detector operates at room temperature with a noise subtracted intrinsic energy resolution of 1.8% at 662 keV. The detector design and performance variables are discussed in comparison to previous planar and cylindrical xenon detectors.

  16. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    PubMed

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. PMID:25681301

  17. Xenon Pretreatment May Prevent Early Memory Decline after Isoflurane Anesthesia and Surgery in Mice

    PubMed Central

    Vizcaychipi, Marcela P.; Lloyd, Dafydd G.; Wan, Yanjie; Palazzo, Mark G.; Maze, Mervyn; Ma, Daqing

    2011-01-01

    Postoperative cognitive decline (POCD) is a common complication following surgery, but its aetiology remains unclear. We hypothesized that xenon pretreatment prevents POCD by suppressing the systemic inflammatory response or through an associated protective signaling pathway involving heat shock protein 72 (Hsp72) and PI3-kinase. Twenty-four hours after establishing long-term memory using fear conditioning training, C57BL/6 adult male mice (n?=?12/group) received one of the following treatments: 1) no treatment group (control); 2) 1.8% isoflurane anesthesia; 3) 70% xenon anesthesia; 4) 1.8% isoflurane anesthesia with surgery of the right hind leg tibia that was pinned and fractured; or 5) pretreatment with 70% xenon for 20 minutes followed immediately by 1.8% isoflurane anesthesia with the surgery described above. Assessments of hippocampal-dependent memory were performed on days 1 and 7 after treatment. Hsp72 and PI3-kinase in hippocampus, and plasma IL-1?, were measured using western blotting and ELISA respectively, from different cohorts on day 1 after surgery. Isoflurane induced memory deficit after surgery was attenuated by xenon pretreatment. Xenon pretreatment prevented the memory deficit typically seen on day 1 (P?=?0.04) but not on day 7 (P?=?0.69) after surgery under isoflurane anesthesia, when compared with animals that underwent surgery without pretreatment. Xenon pretreatment modulated the expression of Hsp72 (P?=?0.054) but had no significant effect on PI3-kinase (P?=?0.54), when compared to control. Xenon pretreatment also reduced the plasma level increase of IL-1? induced by surgery (P?=?0.028). Our data indicated that surgery and/or Isoflurane induced memory deficit was attenuated by xenon pretreatment. This was associated with a reduction in the plasma level of IL-1? and an upregulation of Hsp72 in the hippocampus. PMID:22073162

  18. Purification of liquid xenon and impurity monitoring for a PET detector

    NASA Astrophysics Data System (ADS)

    Chepel, V. Y.; Lopes, M. I.; Ferreira Marques, R.; Policarpo, A. J. P. L.

    1994-10-01

    The purification system and the method of impurity monitoring developed for a positron emission tomography (PET) scanner based on liquid xenon position sensitive detectors are described. The present results show that an attenuation length of the scintillation photons in the liquid of the order of 50 cm can be reached by using only commercial purifiers. Although our preliminary measurements show that a strong electron attachment exists in liquid xenon, the electron attenuation length of 2 cm achieved is sufficient for the PET detectors.

  19. Determination of the Relative Two-photon Absorption Cross-section Between Xenon and Hydrogen

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Scime, Earl; McCarren, Dustin; Vandervort, Robert; Soderholm, Mark

    2014-10-01

    Two-photon Absorption Laser Induced Fluorescence (TALIF) is a non-perturbative method for measuring the density and temperature of neutral hydrogen in a fusion plasma. Calibration of a TALIF system, for absolute density measurements, requires a measurement of a known density of particles under controlled conditions. Since hydrogen is diatomic, hydrogen TALIF system calibration requires measurements of target cold monatomic gas with a two-photon transition from the ground state and fluorescence decay at accessible energies. Here we present single-sided TALIF (angular momentum change of 2) measurements of a new transition in xenon with absorption and emission wavelengths nearly identical to those of the hydrogen TALIF sequence (the n = 3 to n = 2 emission in hydrogen is at 656.27 nm whereas it is at 655.99 nm in xenon). The xenon calibration approach provides the first opportunity for absolute calibration of Doppler-free (angular momentum change of 0) hydrogen TALIF. We first measure the relative TALIF absorption cross section between xenon and krypton and then use the known cross section ratio between the krypton and hydrogen transitions to calculate the relative xenon-hydrogen cross section. Single isotope xenon samples are used to remove the confounding factors of isotopic and hyperfine splitting.

  20. Abatement of xenon and iodine emissions from medical isotope production facilities.

    PubMed

    Doll, Charles G; Sorensen, Christina M; Bowyer, Theodore W; Friese, Judah I; Hayes, James C; Hoffmann, Emmy; Kephart, Rosara

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunities to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes. PMID:24418952

  1. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel

    PubMed Central

    Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie

    2016-01-01

    GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and “locally-closed” (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels. PMID:26910105

  2. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel.

    PubMed

    Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie

    2016-01-01

    GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and "locally-closed" (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels. PMID:26910105

  3. MiX: a position sensitive dual-phase liquid xenon detector

    NASA Astrophysics Data System (ADS)

    Stephenson, S.; Haefner, J.; Lin, Q.; Ni, K.; Pushkin, K.; Raymond, R.; Schubnell, M.; Shutty, N.; Tarlé, G.; Weaverdyck, C.; Lorenzon, W.

    2015-10-01

    The need for precise characterization of dual-phase xenon detectors has grown as the technology has matured into a state of high efficacy for rare event searches. The Michigan Xenon detector was constructed to study the microphysics of particle interactions in liquid xenon across a large energy range in an effort to probe aspects of radiation detection in liquid xenon. We report the design and performance of a small 3D position sensitive dual-phase liquid xenon time projection chamber with high light yield (Ly122=15.2 pe/keV at zero field), long electron lifetime (τ > 200 μs), and excellent energy resolution (σ/E = 1% for 1,333 keV gamma rays in a drift field of 200 V/cm). Liquid xenon time projection chambers with such high energy resolution may find applications not only in dark matter direct detection searches, but also in neutrinoless double beta decay experiments and other applications.

  4. Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities

    SciTech Connect

    Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.; Friese, Judah I.; Hayes, James C.; Hoffman, Emma L.; Kephart, Rosara F.

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunities to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.

  5. A continuum theory of solvation for supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Chitanvis, Shirish

    1997-03-01

    We have derived a generalization of Poison's equation, a fourth-order partial differential equation, to describe the electrostatic behavior of polarizable, quadrupolar fluids such as supercritical carbon dioxide. We have solved this equation for the case of multipoles of arbitrary order placed at the center of a spherical cavity representing a molecule, and immersed in supercritical carbon dioxide. Such a model, with internal field corrections and internal field gradient corrections, adequately describes experimental data on the dielectric constant of supercritical carbon dioxide. This model has also been utilized to understand successfully the solvability of ions and dipoles in supercritical carbon dioxide. Ways to enhance agreement with experiment will be pointed out. We will compare our approach with the conventional continuum solvation theories of dipolar solvents.

  6. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors.

    PubMed

    Wang, Zhou; Bao, Lei; Hao, Xihuan; Ju, Yonglin

    2014-01-01

    Liquid xenon (Xe) is one of the commendable detecting media for the dark matter detections. However, the small content of radioactive krypton-85 ((85)Kr) always exists in the commercial xenon products. An efficient cryogenic distillation system to remove this krypton (Kr) from commercial xenon products has been specifically designed, developed, and constructed in order to meet the requirements of the dark matter experiments with high- sensitivity and low-background. The content of krypton in regular commercial xenon products can be reduced from 10(-9) to 10(-12), with 99% xenon collection efficiency at maximum flow rate of 5 kg/h (15SLPM). The purified xenon gases produced by this distillation system can be used as the detecting media in the project of Panda X, which is the first dark matter detector developed in China. PMID:24517821

  7. Environmental carbon dioxide control

    NASA Technical Reports Server (NTRS)

    Onischak, M.; Baker, B.; Gidaspow, D.

    1974-01-01

    A study of environmental carbon dioxide control for NASA EVA missions found solid potassium carbonate to be an effective regenerable absorbent in maintaining low carbon dioxide levels. The supported sorbent was capable of repeated regeneration below 150 C without appreciable degradation. Optimum structures in the form of thin pliable sheets of carbonate, inert support and binder were developed. Interpretation of a new solid-gas pore closing model helped predict the optimum sorbent and analysis of individual sorbent sheet performance in a thin rectangular channel sorber can predict packed bed performance.

  8. Recombination in liquid xenon for low-energy recoils

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming; Cubed Collaboration

    2014-09-01

    Detector response to low-energy recoils in sub-keV region is critical to detection of low-mass dark matter particles-WIMPS (Weakly interacting massive particles). The role of electron-ion recombination is important to the interpretation of the relation between ionization yield and scintillation yield, which are in general anti-correlated. Recent experimental results show that ionization yield increases down to keV range. This phenomenon contradicts general understanding for low energy recoils in the keV range in which direct excitation dominates. The explanation is that recombination becomes much less efficient when the track length is smaller than the thermalization distance of electrons. However, recombination rate is also proportional to ionization density, which is very high for keV recoils. To understand how recombination rate behaves for keV recoils, we calculated both initial recombination rate and volume recombination rate for keV recoils in liquid xenon. In this paper, we show the results of the calculated recombination rate as a function of recoil energy for both electronic recoils and nuclear recoils. Detector response to low-energy recoils in sub-keV region is critical to detection of low-mass dark matter particles-WIMPS (Weakly interacting massive particles). The role of electron-ion recombination is important to the interpretation of the relation between ionization yield and scintillation yield, which are in general anti-correlated. Recent experimental results show that ionization yield increases down to keV range. This phenomenon contradicts general understanding for low energy recoils in the keV range in which direct excitation dominates. The explanation is that recombination becomes much less efficient when the track length is smaller than the thermalization distance of electrons. However, recombination rate is also proportional to ionization density, which is very high for keV recoils. To understand how recombination rate behaves for keV recoils, we calculated both initial recombination rate and volume recombination rate for keV recoils in liquid xenon. In this paper, we show the results of the calculated recombination rate as a function of recoil energy for both electronic recoils and nuclear recoils. DE-FG02-10ER46709 and the state of South Dakota.

  9. Particle discrimination using a high-pressure xenon gas scintillation detector

    NASA Astrophysics Data System (ADS)

    Barton, David Alan

    This work presents results on the study of the scintillation of high-pressure Xenon gas irradiated by various sources. Noble gases such as Xenon give off characteristic scintillation light when irradiated. The goal of the study was to develop a characteristic based on the scintillation time response of Xenon gas that would reliably discriminate between events from different types of primary radiation (neutron or gamma). A reliable discrimination characteristic would enable the development of room temperature, gas phase detectors for use in the search for Galactic Dark Matter. The surprising result of the present work was that a reliable discrimination characteristic existed for distinguishing x-ray, gamma ray, and alpha particle events. Results for neutrons were negative. This was due to several factors: Ionization tracks in xenon generally form two roughly cylindrical regions. A region near the center of the track, called the core, has very dense ionization. An outer region, called the penumbra, has sparse ionization. In Xenon, recombination of ions and the subsequent scintillation from the penumbra region happens slowly and can be easily distinguished from scintillation that happens in the core region. Nuclear recoils resulting from neutron collisions that give recoil energies in the same range as that predicted for WIMP-nuclear collisions are of such low energy that they do not produce a significant penumbra region in Xenon gas. As such, the scintillation time response for these events is similar to that of high-energy gamma rays. Other results of the present work include: The amount of energy deposited in the gas needed to produce a scintillation photon was measured for gamma rays and was found to be in agreement with results from other experiments. Low-energy gamma rays appeared to produce more scintillation photons for an equal amount of energy deposited than high-energy gamma rays. The decay of the singlet and triplet molecular states of xenon was observed and the lifetimes of these states were measured. The singlet state lifetime was found to be independent of pressure while the triplet state lifetime was dependent on pressure. The lifetimes were measured and compared to previous results. A better understanding of the ionization, recombination, and scintillation processes of gaseous Xenon was achieved. Argon gas has been proposed as an alternative to Xenon gas for use in a high-pressure gas scintillation detector due to its lower mass and its property of forming a core ionization region that is much less dense than the core region of xenon. This substitution may allow for a reliable discrimination characteristic to be developed.

  10. Mind Molecules

    PubMed Central

    Snyder, Solomon H.

    2011-01-01

    Scientific styles vary tremendously. For me, research is largely about the unfettered pursuit of novel ideas and experiments that can test multiple ideas in a day, not a year, an approach that I learned from my mentor Julius Julie Axelrod. This focus on creative conceptualizations has been my mtier since working in the summers during medical school at the National Institutes of Health, during my two years in the Axelrod laboratory, and throughout my forty-five years at Johns Hopkins University School of Medicine. Equally important has been the high that emerges from brainstorming with my students. Nothing can compare with the eureka moments when, together, we sense new insights and, better yet, when high-risk, high-payoff experiments succeed. Although I have studied many different questions over the years, a common theme emerges: simple biochemical approaches to understanding molecular messengers, usually small molecules. Equally important has been identifying, purifying, and cloning the messengers' relevant biosynthetic, degradative, or target proteins, at all times seeking potential therapeutic relevance in the form of drugs. In the interests of brevity, this Reflections article is highly selective, and, with a few exceptions, literature citations are only of findings of our laboratory that illustrate notable themes. PMID:21543333

  11. Extended testing of xenon ion thruster hollow cathodes

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1992-01-01

    A hollow cathode wear-test of 508 hours was successfully completed at an emission current of 23.0 A and a xenon flow rate of 10 Pa-L/s. This test was the continuation of a hollow cathode contamination investigation. Discharge voltage was stable at 16.7 V. The cathode temperature averaged 1050 C with a 7 percent drop during the wear-test. Discharge ignition voltage was found to be approximately 20 V and was repeatable over four starts. Post-test analyses of the hollow cathode found a much improved internal cathode condition with respect to earlier wear-test cathodes. Negligible tungsten movement occurred and no formation of mono-barium tungstate was observed. These results correlated with an order-of-magnitude reduction in propellant feed-system leakage rate. Ba2CaWO6 and extensive calcium crystal formation occurred on the upstream end of the insert. Ba-Ca compound depositions were found on the Mo insert collar, on the Re electrical leads, and in the gap between the insert and cathode wall. This wear-test cathode was found to be in the best internal condition and had the most stable operating performance of any hollow cathode tested during this contamination investigation.

  12. Extended-testing of xenon ion thruster hollow cathodes

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1992-01-01

    A hollow cathode wear-test of 508 hours was successfully completed at an emission current of 23.0 A and a xenon flow rate of 10 Pa-L/s. This test was the continuation of a hollow cathode contamination investigation. Discharge voltage was stable at 16.7 V. The cathode temperature averaged 1050 C with a 7 percent drop during the wear-test. Discharge ignition voltage was found to be approximately 20 V and was repeatable over four starts. Post-test analyses of the hollow cathode found a much improved internal cathode condition with respect to earlier wear-test cathodes. Negligible tungsten movement occurred and no formation of mono-barium tungsten was observed. These results correlated with an order-of-magnitude reduction in propellant feed-system leakage rate. Ba2CaWO6 and extensive calcium crystal formation occurred on the upstream end of the insert. Ba-Ca compound depositions were found on the Mo insert collar, on the Re electrical leads, and in the gap between the insert and cathode wall. This wear-test cathode was found to be in the best internal condition and had the most stable operating performance of any hollow cathode tested during this contamination investigation.

  13. The self-associating behavior of pyrrole in liquid xenon

    NASA Astrophysics Data System (ADS)

    De Beuckeleer, Liene I.; Herrebout, Wouter A.

    2016-03-01

    The self-associating behavior of pyrrole in liquid xenon was investigated by analyzing a data set of 185-113 infrared spectra obtained for different concentrations recorded at a constant temperature of 203 K. Analysis of the data using a recently developed least-squares approach allows the vibrational spectra of the monomer and of the different oligomers to be isolated. Apart from the monomer transitions, intense absorption bands originating from pyrrole trimers are observed in almost every spectral region including regions for which no data have yet been reported. Apart from these bands, weak features proving the presence of pyrrole dimer and pyrrole tetramer in the solutions are also reported. The weak character of the dimer bands observed and the low concentrations of these species deduced are explained by the fact that the cryosolutions studied are in chemical equilibrium and by the fact that due to strong cooperative effect present in the trimer, the complexation equilibria are strongly shifted towards the latter species, thereby strongly reducing the equilibrium concentrations of dimer and tetramer.

  14. Excimer emission from pulsed microhollow cathode discharges in xenon

    SciTech Connect

    Lee, B.-J.; Nam, S. H.; Rahaman, H.; Iberler, M.; Jacoby, J.; Frank, K.

    2013-12-15

    Direct current (dc) microhollow cathode discharge (MHCD) is an intense source for excimer radiation in vacuum ultraviolet at a wavelength of 172 nm in a high pressure xenon (Xe) gas. The concentration of precursors for the excimer formation, i.e., excited and ionized gas atoms, increases significantly by applying high voltage pulse onto the dc MHCD over the pulse duration range from 20 to 100 ns. The intensity of the excimer emission for the voltage pulse of 20 ns duration exceeds that of the emission intensity obtained from the same MHCD operated only in the dc mode, by one order of magnitude. In addition, the emission intensity increases by one order of magnitude over the pulse duration range from 20 to 100 ns. It can be assumed that the emission intensity of the MHCD source increases as long as the duration of the high voltage pulse is shorter than the electron relaxation time. For the high voltage pulse of 100 ns duration, the emission intensity has been found to be further enhanced by a factor of three when the gas pressure is increased from 200 to 800 mbar.

  15. Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS)

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeff; Polk, Jay; Randolph, Tom

    2004-01-01

    In support of the NEXIS program, Aerojet-Redmond Operations, with review and input from the JPL and Boeing, has completed the design for a development model (DM) discharge chamber assembly and main discharge cathode assembly. These efforts along with the work by JPL to develop the carbon-carbon-composite ion optics assembly have resulted in a complete ion engine design. The goal of the NEXIS program is to significantly advance the current state of the art by developing an ion engine capable of operating at an input power of 20kW, an Isp of 7500 sec and have a total xenon through put capability of 2000 kg. In this paper we will describe the methodology used to design the discharge chamber and cathode assemblies and describe the resulting final design. Specifics will include the concepts used for the mounting of the ion optics along with the concepts used for the gimbal mounts. In addition, we will present results of a vibrational analysis showing how the engine will respond to a typical Delta IV heavy vibration spectrum.

  16. Thrust Stand Characterization of the NASA Evolutionary Xenon Thruster (NEXT)

    NASA Technical Reports Server (NTRS)

    Diamant, Kevin D.; Pollard, James E.; Crofton, Mark W.; Patterson, Michael J.; Soulas, George C.

    2010-01-01

    Direct thrust measurements have been made on the NASA Evolutionary Xenon Thruster (NEXT) ion engine using a standard pendulum style thrust stand constructed specifically for this application. Values have been obtained for the full 40-level throttle table, as well as for a few off-nominal operating conditions. Measurements differ from the nominal NASA throttle table 10 (TT10) values by 3.1 percent at most, while at 30 throttle levels (TLs) the difference is less than 2.0 percent. When measurements are compared to TT10 values that have been corrected using ion beam current density and charge state data obtained at The Aerospace Corporation, they differ by 1.2 percent at most, and by 1.0 percent or less at 37 TLs. Thrust correction factors calculated from direct thrust measurements and from The Aerospace Corporation s plume data agree to within measurement error for all but one TL. Thrust due to cold flow and "discharge only" operation has been measured, and analytical expressions are presented which accurately predict thrust based on thermal thrust generation mechanisms.

  17. First Detection of Krypton and Xenon in a White Dwarf

    NASA Astrophysics Data System (ADS)

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-07-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 Kr VI- VII and Xe VI- VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 0.5 and log Xe = -4.2 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and that the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell flash or a binary white dwarf merger.

  18. An homeopathic cure to pure Xenon large diffusion

    NASA Astrophysics Data System (ADS)

    Azevedo, C. D. R.; Fernandes, L. M. P.; Freitas, E. D. C.; Gonzalez-Diaz, D.; Monrabal, F.; Monteiro, C. M. B.; Dos Santos, J. M. F.; Veloso, J. F. C. A.; Gomez-Cadenas, J. J.

    2016-02-01

    The NEXT neutrinoless double beta decay (ββ0ν) experiment will use a high-pressure gas electroluminescence-based TPC to search for the decay of Xe-136. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qββ. The rejection potential associated to the topology reconstruction is limited by our capacity to properly reconstruct the original path of the electrons in the gas. This reconstruction is limited by different factors that include the geometry of the detector, the density of the sensors in the tracking plane and the separation among them, etc. Ultimately, the resolution is limited by the physics of electron diffusion in the gas. In this paper we present a series of molecular additives that can be used in Xenon gas at very low partial pressure to reduce both longitudinal and transverse diffusion. We will show the results of different Monte-Carlo simulations of electron transport in the gas mixtures from wich we have extracted the value of some important parameters like diffusion, drift velocity and light yields. These results show that there is a series of candidates that can reduce diffusion without affecting the energy resolution of the detector and they should be studied experimentally. A comparison with preliminary results from such an ongoing experimental effort is given.

  19. First Detection of Krypton and Xenon in a White Dwarf

    NASA Technical Reports Server (NTRS)

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-01-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 KrVI-VII and Xe VI-VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 plus or minus 0.5 and log Xe = -4.2 plus or minus 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the-precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and thaI the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell nash or a binary white dwarf merger.

  20. Shock Compression of Cryogenic Noble Gas Mixtures: Xenon - Krypton

    NASA Astrophysics Data System (ADS)

    Root, Seth; Magyar, Rudolph; Lemke, Raymond; Mattsson, Thomas

    2013-06-01

    In past work, we have examined the multi-Mbar response of cryogenically cooled liquid xenon and liquid krypton measuring their Hugoniots to 8 Mbar. These results were utilized in the development of new EOS models for Xe and Kr to use in high energy density physics applications. The previous work demonstrated the usefulness of integrating high accuracy shock compression experiments with DFT to generate the basis for equation of state (EOS) models. In many physics applications, such as Z-pinch experiments, gas mixtures are used instead. However, we do not have reliable experimental data on these mixtures to provide informed decisions about the EOS models or mixture rules. To improve our understanding of mixtures at extreme conditions, we performed dynamic compression experiments using Sandia's Z - facility on a 70/30 molar ratio Kr/Xe cryogenically cooled liquid mixture. We measured the Hugoniot state and reshock state of the liquid mixture to several Mbar. The experimental data validated the DFT simulations for identical molar ratio mixtures. The combined experimental and DFT results are used to assess the EOS models and test the mixture rules. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.

  1. Reactivity of xenon with ice at planetary conditions.

    PubMed

    Sanloup, Chrystèle; Bonev, Stanimir A; Hochlaf, Majdi; Maynard-Casely, Helen E

    2013-06-28

    We report results from high pressure and temperature experiments that provide evidence for the reactivity of xenon with water ice at pressures above 50 GPa and a temperature of 1500 K-conditions that are found in the interiors of Uranus and Neptune. The x-ray data are sufficient to determine a hexagonal lattice with four Xe atoms per unit cell and several possible distributions of O atoms. The measurements are supplemented with ab initio calculations, on the basis of which a crystallographic structure with a Xe4O12H12 primitive cell is proposed. The newly discovered compound is formed in the stability fields of superionic ice and η-O2, and has the same oxygen subnetwork as the latter. Furthermore, it has a weakly metallic character and likely undergoes sublattice melting of the H subsystem. Our findings indicate that Xe is expected to be depleted in the atmospheres of the giant planets as a result of sequestration at depth. PMID:23848893

  2. Human Regional Pulmonary Gas Exchange with Xenon Polarization Transfer (XTC)

    NASA Astrophysics Data System (ADS)

    Muradian, Iga; Butler, James; Hrovat, Mirko; Topulos, George; Hersman, Elizabeth; Ruset, Iulian; Covrig, Silviu; Frederick, Eric; Ketel, Stephen; Hersman, F. W.; Patz, Samuel

    2007-03-01

    Xenon Transfer Contrast (XTC) is an existing imaging method (Ruppert et al, Magn Reson Med, 51:676-687, 2004) that measures the fraction F of ^129Xe magnetization that diffuses from alveolar gas spaces to septal parenchymal tissue in lungs in a specified exchange time. As previously implemented, XTC is a 2-breath method and has been demonstrated in anesthetized animals. To use XTC in humans and to avoid issues associated with obtaining identical gas volumes on subsequent breath-hold experiments as well as precise image registration in post-processing, a single breath XTC method was developed that acquires three consecutive gradient echo images in an 8s acquisition. We report here initial measurements of the mean and variance of F for 5 normal healthy subjects as well as 7 asymptomatic smokers. The experiments were performed at two lung volumes (45 and 65% of TLC). We found that both the mean and variance of F increased with smoking history. In comparison, standard pulmonary function tests such as DLCO FEV1 showed no correlation with smoking history.

  3. FIRST DETECTION OF KRYPTON AND XENON IN A WHITE DWARF

    SciTech Connect

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-07-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 Kr VI- VII and Xe VI- VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 {+-} 0.5 and log Xe = -4.2 {+-} 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and that the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell flash or a binary white dwarf merger.

  4. s-process studies - Xenon and krypton isotopic abundances

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Ward, R. A.

    1978-01-01

    We propose an analysis of the s-process contributions to the isotopes of xenon and krypton. The object is to aid studies of the possibility that meteorites may contain gas that was carried in presolar grains that were grown in stellar ejecta and that were not degassed prior to incorporation into parent bodies. That model suggests routine interstellar fractionation of s-isotopes from r-isotopes owing to differential incorporation into dust. We show that a deficiency of s-process nuclei cannot yield details of Xe-X, but the gross similarities are strong enough to lead one to think that such a deficiency may play a role in a more complicated explanation. We predict the existence of an s-rich complement somewhere if fractional separation of this type has played a role in Xe-X. We show that the analogous decomposition of krypton is more uncertain, and we call for measurements of neutron-capture cross sections to alleviate these uncertainties.

  5. PERSONAL MONITOR FOR NITROGEN DIOXIDE

    EPA Science Inventory

    An attempt was made to develop a personal monitor to measure nitrogen dioxide. Sampling of nitrogen dioxide is accomplished by permeation through a silicone membrane into a alkaline thymol blue solution. The nitrogen dioxide is converted to nitrite and is then quantitated by colo...

  6. Bench Remarks: Carbon Dioxide.

    ERIC Educational Resources Information Center

    Bent, Henry A.

    1987-01-01

    Discusses the properties of carbon dioxide in its solid "dry ice" stage. Suggests several demonstrations and experiments that use dry ice to illustrate Avogadro's Law, Boyle's Law, Kinetic-Molecular Theory, and the effects of dry ice in basic solution, in limewater, and in acetone. (TW)

  7. Carbon dioxide sensor

    DOEpatents

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  8. Chlorine Dioxide (Gas)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorine dioxide (ClO2) gas is registered by the U.S. Environmental Protection Agency (EPA) as a sterilant for use in manufacturing, laboratory equipment, medical devices, environmental surfaces, tools and clean rooms. Aqueous ClO2 is registered by the EPA as a surface disinfectant and sanitizer fo...

  9. Carbon Dioxide Laser Guidelines

    PubMed Central

    Krupa Shankar, DS; Chakravarthi, M; Shilpakar, Rachana

    2009-01-01

    The carbon dioxide (CO2) laser is a versatile tool that has applications in ablative lasing and caters to the needs of routine dermatological practice as well as the aesthetic, cosmetic and rejuvenation segments. This article details the basics of the laser physics as applicable to the CO2 laser and offers guidelines for use in many of the above indications. PMID:20808594

  10. Sulfur Dioxide Pollution Monitor.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    The sulfur dioxide pollution monitor described in this document is a government-owed invention that is available for licensing. The background of the invention is outlined, and drawings of the monitor together with a detailed description of its function are provided. A sample stream of air, smokestack gas or the like is flowed through a

  11. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the “Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  12. Carbon dioxide recycling

    EPA Science Inventory

    The recycling of carbon dioxide to methanol and dimethyl ether is seen to offer a substantial route to renewable and environmentally carbon neutral fuels. One of the authors has championed the Methanol Economy" in articles and a book. By recycling ambient CO2, the authors argue ...

  13. Xenon-nitrogen chemistry: gas-phase generation and theoretical investigation of the xenon-difluoronitrenium ion F2N-Xe+.

    PubMed

    Operti, Lorenza; Rabezzana, Roberto; Turco, Francesca; Borocci, Stefano; Giordani, Maria; Grandinetti, Felice

    2011-09-12

    The xenon-difluoronitrenium ion F(2)N-Xe(+) , a novel xenon-nitrogen species, was obtained in the gas phase by the nucleophilic displacement of HF from protonated NF(3) by Xe. According to Mller-Plesset (MP2) and CCSD(T) theoretical calculations, the enthalpy and Gibbs energy changes (?H and ?G) of this process are predicted to be -3 kcal mol(-1) . The conceivable alternative formation of the inserted isomers FN-XeF(+) is instead endothermic by approximately 40-60 kcal mol(-1) and is not attainable under the employed ion-trap mass spectrometric conditions. F(2)N-Xe(+) is theoretically characterized as a weak electrostatic complex between NF(2)(+) and Xe, with a Xe-N bond length of 2.4-2.5 , and a dissociation enthalpy and free energy into its constituting fragments of 15 and 8 kcal mol(-1), respectively. F(2)N-Xe(+) is more fragile than the xenon-nitrenium ions (FO(2)S)(2)NXe(+), F(5)SN(H)Xe(+), and F(5)TeN(H)Xe(+) observed in the condensed phase, but it is still stable enough to be observed in the gas phase. Other otherwise elusive xenon-nitrogen species could be obtained under these experimental conditions. PMID:21826753

  14. Carbon dioxide dangers demonstration model

    USGS Publications Warehouse

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  15. Method for the simultaneous preparation of radon-211, xenon-125, xenon-123, astatine-211, iodine-125 and iodine-123

    DOEpatents

    Mirzadeh, S.; Lambrecht, R.M.

    1985-07-01

    The invention relates to a practical method for commercially producing radiopharmaceutical activities and, more particularly, relates to a method for the preparation of about equal amount of Radon-211 (/sup 211/Rn) and Xenon-125 (/sup 125/Xe) including a one-step chemical procedure following an irradiation procedure in which a selected target of Thorium (/sup 232/Th) or Uranium (/sup 238/U) is irradiated. The disclosed method is also effective for the preparation in a one-step chemical procedure of substantially equal amounts of high purity /sup 123/I and /sup 211/At. In one preferred arrangement of the invention almost equal quantities of /sup 211/Rn and /sup 125/Xe are prepared using a onestep chemical procedure in which a suitably irradiated fertile target material, such as thorium-232 or uranium-238, is treated to extract those radionuclides from it. In the same one-step chemical procedure about equal quantities of /sup 211/At and /sup 123/I are prepared and stored for subsequent use. In a modified arrangement of the method of the invention, it is practiced to separate and store about equal amounts of only /sup 211/Rn and /sup 125/Xe, while preventing the extraction or storage of the radionuclides /sup 211/At and /sup 123/I.

  16. Decrease in xenon clearance during response to cold, dry air: Problems of interpretation

    SciTech Connect

    Naclerio, R.M.; Fisher, C.; Civelek, C.A.; Bartenfelder, D.; Koller, D.; La France, N.D. )

    1990-02-01

    In order to increase our understanding of the nasal response to cold, dry air (CDA), we studied changes in xenon clearance as an indicator of nasal blood flow. Eight individuals previously shown to respond to CDA had measurements of xenon clearance made in the left inferior turbinate before, during, and after a 15-minute exposure to either CDA (-7 degrees C to 0 degrees C, less than 10% relative humidity) or room air. The half-life in seconds for xenon clearance on the day when CDA was inhaled was 56 +/- 6, 41 +/- 5, and 110 +/- 31, before, during, and 10 minutes after challenge, respectively. On the control day, with subjects breathing room air, the equivalent measurements of half-life in seconds were 54 +/- 8, 41 +/- 6, and 42 +/- 4, respectively. Xenon clearance was prolonged significantly (p less than .01) after exposure to CDA during the clinical response. The interpretation of the change in xenon clearance as an indicator of nasal blood flow is discussed.

  17. Detection of residual krypton in xenon gas for WIMP dark matter searches

    NASA Astrophysics Data System (ADS)

    Dobi, Attila

    2011-04-01

    The next generation of WIMP dark matter searches using liquid xenon as a target medium will require unprecedented rejection of residual krypton contamination. Krypton contains the beta emitting isotope 85 Kr, with a relative abundance of about 10-11 (85 Kr /nat Kr), and this beta decay can be an important source of background for these experiments. Krypton is typically present in commercially produced xenon at the level of tens of parts-per-billion, about four orders of magnitude too large for present day dark matter experiments such as XENON, LUX, and XMASS. Additional processing via gas chromatography and distillation are used to separate krypton from xenon, but measuring the remaining krypton level at the part-per-trillion (ppt) level is challenging. Recently we have developed a highly sensitive and simple technique to measure residual krypton contamination in xenon gas using an RGA mass spectrometer and a liquid nitrogen cold trap. We describe here the results of our calibration experiments to determine the ultimate limit of detection of the method, and we discuss the implications for the next generation of WIMP dark matter experiments. Supported by the National Science Foundation.

  18. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Seoung, Donghoon; Lee, Yongmoon; Cynn, Hyunchae; Park, Changyong; Choi, Kwang-Yong; Blom, Douglas A.; Evans, William J.; Kao, Chi-Chang; Vogt, Thomas; Lee, Yongjae

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8·16H2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag+ is reduced to metallic Ag and possibly oxidized to Ag2+. In contrast to krypton, xenon is retained within the pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.

  19. Modeling the Removal of Xenon from Lithium Hydrate with Aspen HYSYS

    NASA Astrophysics Data System (ADS)

    Efthimion, Phillip; Gentile, Charles

    2011-10-01

    The Laser Inertial Fusion Engine (LIFE) project mission is to provide a long-term, carbon-free source of sustainable energy, in the form of electricity. A conceptual xenon removal system has been modeled with the aid of Aspen HYSYS, a chemical process simulator. Aspen HYSYS provides excellent capability to model chemical flow processes, which generates outputs which includes specific variables such as temperature, pressure, and molar flow. The system is designed to strip out hydrogen isotopes deuterium and tritium. The base design bubbles plasma exhaust laden with x filled with liquid helium. The system separates the xenon from the hydrogen, deuterium, and tritium with a lithium hydrate and a lithium bubbler. After the removal of the hydrogen and its isotopes, the xenon is then purified by way of the process of cryogenic distillation. The pure hydrogen, deuterium, and tritium are then sent to the isotope separation system (ISS). The removal of xenon is an integral part of the laser inertial fusion engine and Aspen HYSYS is an excellent tool to calculate how to create pure xenon.

  20. Internal plasma potential measurements of a Hall thruster using xenon and krypton propellant

    SciTech Connect

    Linnell, Jesse A.; Gallimore, Alec D.

    2006-09-15

    For krypton to become a realistic option for Hall thruster operation, it is necessary to understand the performance gap between xenon and krypton and what can be done to reduce it. A floating emissive probe is used with the Plasmadynamics and Electric Propulsion Laboratory's High-speed Axial Reciprocating Probe system to map the internal plasma potential structure of the NASA-173Mv1 Hall thruster [R. R. Hofer, R. S. Jankovsky, and A. D. Gallimore, J. Propulsion Power 22, 721 (2006); and ibid.22, 732 (2006)] using xenon and krypton propellant. Measurements are taken for both propellants at discharge voltages of 500 and 600 V. Electron temperatures and electric fields are also reported. The acceleration zone and equipotential lines are found to be strongly linked to the magnetic-field lines. The electrostatic plasma lens of the NASA-173Mv1 Hall thruster strongly focuses the xenon ions toward the center of the discharge channel, whereas the krypton ions are defocused. Krypton is also found to have a longer acceleration zone than the xenon cases. These results explain the large beam divergence observed with krypton operation. Krypton and xenon have similar maximum electron temperatures and similar lengths of the high electron temperature zone, although the high electron temperature zone is located farther downstream in the krypton case.

  1. Evaluation of pulmonary perfusion in lung regions showing isolated xenon-133 ventilation washout defects

    SciTech Connect

    Bushnell, D.L.; Sood, K.B.; Shirazi, P.; Pal, I. )

    1990-08-01

    Xenon-133 washout phase imaging is often used to help determine whether the etiology of a perfusion defect is embolic or due to pulmonary parenchymal pathology, such as chronic obstructive pulmonary disease. This study was designed to evaluate the pulmonary blood flow patterns associated with isolated defects on xenon washout images. Scintigraphic lung studies were reviewed until 100 cases with abnormal ventilation results were obtained. Ventilation abnormalities were compared with the corresponding perfusion scan results at the same anatomic site. Of the 208 individual lung regions with xenon abnormalities, 111 showed isolated washout defects (that is, with normal washin). Ninety-four of these 111 sites showed either normal perfusion or a small, nonsegmental corresponding perfusion defect. Three segmental perfusion defects were noted in association with isolated xenon retention. In each of these cases, however, the patient was felt actually to have pulmonary embolism. Thus, it is recommended that, for interpretation of scintigraphic images in the assessment of pulmonary embolism, lung pathology associated with isolated xenon retention not be considered a potential cause for large or segmental perfusion defects.

  2. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures.

    PubMed

    Seoung, Donghoon; Lee, Yongmoon; Cynn, Hyunchae; Park, Changyong; Choi, Kwang-Yong; Blom, Douglas A; Evans, William J; Kao, Chi-Chang; Vogt, Thomas; Lee, Yongjae

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag16Al16Si24O8·16H2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag(+) is reduced to metallic Ag and possibly oxidized to Ag(2+). In contrast to krypton, xenon is retained within the pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres. PMID:25143221

  3. [XeOXeOXe](2+), the Missing Oxide of Xenon(II); Synthesis, Raman Spectrum, and X-ray Crystal Structure of [XeOXeOXe][?-F(ReO2F3)2]2.

    PubMed

    Ivanova, Maria V; Mercier, Hlne P A; Schrobilgen, Gary J

    2015-10-21

    The [XeOXeOXe](2+) cation provides an unprecedented example of a xenon(II) oxide and a noble-gas oxocation as well as a rare example of a noble-gas dication. The [XeOXeOXe](2+) cation was synthesized as its [?-F(ReO2F3)2](-) salt by reaction of ReO3F with XeF2 in anhydrous HF at -30 C. Red-orange [XeOXeOXe][?-F(ReO2F3)2]2 rapidly decomposes to XeF2, ReO2F3, Xe, and O2 when the solid or its HF solutions are warmed above -20 C. The crystal structure of [XeOXeOXe][?-F(ReO2F3)2]2 consists of a planar, zigzag-shaped [XeOXeOXe](2+) cation (C2h symmetry) that is fluorine bridged through its terminal xenon atoms to two [?-F(ReO2F3)2](-) anions. The Raman spectra of the natural abundance and (18)O-enriched [XeOXeOXe](2+) salts are consistent with a centrosymmetric (C2h) cation geometry. A proposed reaction pathway leading to [XeOXeOXe][?-F(ReO2F3)2]2 consists of a series of oxygen/fluorine metathesis reactions that are presumably mediated by the transient HOXeF molecule. Quantum-chemical calculations were used to aid in the vibrational assignments of [Xe(16/18)OXe(16/18)OXe][?-F(Re(16/18)O2F3)2]2 and to assess the bonding in [XeOXeOXe](2+) by NBO, QTAIM, ELF, and MEPS analyses. Ion pair interactions occur through Re-F?---Xe bridges, which are predominantly electrostatic in nature and result from polarization of the F?-atom electron densities by the exposed core charges of the terminal xenon atoms. Each xenon(II) atom is surrounded by a torus of xenon valence electron density comprised of the three valence electron lone pairs. The positive regions of the terminal xenon atoms and associated fluorine bridge bonds correspond to the positive ?-holes and donor interactions that are associated with "halogen bonding". PMID:26394189

  4. Pretreatment for cellulose hydrolysis by carbon dioxide explosion

    SciTech Connect

    Zheng, Y.; Lin, H.M.; Tsao, G.T.

    1998-11-01

    Cellulosic materials were treated with supercritical carbon dioxide to increase the reactivity of cellulose, thereby to enhance the rate and the extent of cellulose hydrolysis. In this pretreatment process, the cellulosic materials such as Avicel, recycled paper mix, sugarcane bagasse and the repulping waste of recycled paper are placed in a reactor under pressurized carbon dioxide at 35 C for a controlled time period. Upon an explosive release of the carbon dioxide pressure, the disruption of the cellulosic structure increases the accessible surface area of the cellulosic substrate to enzymatic hydrolysis. Results indicate that supercritical carbon dioxide is effective for pretreatment of cellulose. An increase in pressure facilitates the faster penetration of carbon dioxide molecules into the crystalline structures, thus more glucose is produced from cellulosic materials after the explosion as compared to those without the pretreatment. This explosion pretreatment enhances the rate of cellulosic material hydrolysis as well as increases glucose yield by as much as 50%. Results from the simultaneous saccharification and fermentation tests also show the increase in the available carbon source from the cellulosic materials for fermentation to produce ethanol. As an alternative method, this supercritical carbon dioxide explosion has a possibility to reduce expense compared with ammonia explosion, and since it is operated at the low temperature, it will not cause degradation of sugars such as those treated with steam explosion due to the high-temperature involved.

  5. NASA's Evolutionary Xenon Thruster (NEXT) Component Verification Testing

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Pinero, Luis R.; Sovey, James S.

    2009-01-01

    Component testing is a critical facet of the comprehensive thruster life validation strategy devised by the NASA s Evolutionary Xenon Thruster (NEXT) program. Component testing to-date has consisted of long-duration high voltage propellant isolator and high-cycle heater life validation testing. The high voltage propellant isolator, a heritage design, will be operated under different environmental condition in the NEXT ion thruster requiring verification testing. The life test of two NEXT isolators was initiated with comparable voltage and pressure conditions with a higher temperature than measured for the NEXT prototype-model thruster. To date the NEXT isolators have accumulated 18,300 h of operation. Measurements indicate a negligible increase in leakage current over the testing duration to date. NEXT 1/2 in. heaters, whose manufacturing and control processes have heritage, were selected for verification testing based upon the change in physical dimensions resulting in a higher operating voltage as well as potential differences in thermal environment. The heater fabrication processes, developed for the International Space Station (ISS) plasma contactor hollow cathode assembly, were utilized with modification of heater dimensions to accommodate a larger cathode. Cyclic testing of five 1/22 in. diameter heaters was initiated to validate these modified fabrication processes while retaining high reliability heaters. To date two of the heaters have been cycled to 10,000 cycles and suspended to preserve hardware. Three of the heaters have been cycled to failure giving a B10 life of 12,615 cycles, approximately 6,000 more cycles than the established qualification B10 life of the ISS plasma contactor heaters.

  6. Iodine-xenon studies and the relax mass spectrometer

    NASA Astrophysics Data System (ADS)

    Gilmour, J. D.; Ash, R. D.; Lyon, I. C.; Johnston, W. A.; Hutchison, R.; Bridges, J. C.; Turner, G.

    1994-07-01

    RELAX combines a resonance ionization ion source with a cryogenic sample concentrator to achieve ultrasensitivity. Gas is extracted from samples using either a continuous wave laser microprobe based on an argon-ion laser or a filament microfurnace. Recent refinements in the operating procedure have resulted in optimum sensitivities such that detection rates of 1 cps are achieved from fewer than 500 atoms. A Xe-128 spike reservoir has also been added and characterized, allowing accurate determinations of absolute amounts of gas. We have completed a preliminary study of the iodine-xenon system in samples from the Bjurbole and Parnallee meteorites. Bjurbole chondrules ranging in mass from 5.45 mg to 260 micrograms were analyzed by laser microprobe. The results from these samples are consistent with an effectively uniform formation age, suggesting that the use of Bjurbole chondrules for calibration of this chronometer can be extended to samples in this size range. Samples from two chondrules from the Parnallee meteorite have been analyzed to date. An alpha-cristobalite-bearing chondrule (designated CB1) was found to have a formation age 4.62 +/- 0.44 Ma after Bjurboele, while a porphyritic olivine macrochondrule appears to have been reset after the decay of I-129(t1/2 17 Ma). Consideration of these results alongside Ar-Ar data from the macrochondrule and whole rock samples suggests that Parnallee has a complex history: The macrochondrule underwent an early postcrystallization degassing event but appears to have been essentially unaffected by the later (1.9 Ga) partial resetting of the bulk meteorite.

  7. Momentum Transfer in a Spinning Fuel Tank Filled with Xenon

    NASA Technical Reports Server (NTRS)

    Peugeot, John W.; Dorney, Daniel J.

    2006-01-01

    Transient spin-up and spin-down flows inside of spacecraft fuel tanks need to be analyzed in order to properly design spacecraft control systems. Knowledge of the characteristics of angular momentum transfer to and from the fuel is used to size the de-spin mechanism that places the spacecraft in a controllable in-orbit state. In previous studies, several analytical models of the spin-up process were developed. However, none have accurately predicted all of the flow dynamics. Several studies have also been conducted using Navier-Stokes based methods. These approaches have been much more successful at simulating the dynamic processes in a cylindrical container, but have not addressed the issue of momentum transfer. In the current study, the spin-up and spin-down of a fuel tank filled with gaseous xenon has been investigated using a three-dimensional unsteady Navier-Stokes code. Primary interests have been concentrated on the spin-up/spin-down time constants and the initial torque imparted on the system. Additional focus was given to the relationship between the dominant flow dynamics and the trends in momentum transfer. Through the simulation of both a cylindrical and a spherical tank, it was revealed that the transfer of angular momentum is nonlinear at early times and tends toward a linear pattern at later times. Further investigation suggests that the nonlinear spin up is controlled by the turbulent transport of momentum, while the linear phase is controlled by a Coriolis driven (Ekman) flow along the outer wall. These results indicate that the spinup and spin-down processes occur more quickly in tanks with curved surfaces than those with defined top, bottom, and side walls. The results also provide insights for the design of spacecraft de-spin mechanisms.

  8. Collectivity in the light xenon isotopes: A shell model study

    SciTech Connect

    Caurier, E.; Nowacki, F.; Sieja, K.; Poves, A.

    2010-12-15

    The lightest xenon isotopes are studied in the shell model framework, within a valence space that comprises all the orbits lying between the magic closures N=Z=50 and N=Z=82. The calculations produce collective deformed structures of triaxial nature that encompass nicely the known experimental data. Predictions are made for the (still unknown) N=Z nucleus {sup 108}Xe. The results are interpreted in terms of the competition between the quadrupole correlations enhanced by the pseudo-SU(3) structure of the positive parity orbits and the pairing correlations brought in by the 0h{sub 11/2} orbit. We also have studied the effect of the excitations from the {sup 100}Sn core on our predictions. We show that the backbending in this region is due to the alignment of two particles in the 0h{sub 11/2} orbit. In the N=Z case, one neutron and one proton align to J=11 and T=0. In {sup 110,112}Xe the alignment begins in the J=10, T=1 channel and it is dominantly of neutron-neutron type. Approaching the band termination the alignment of a neutron-proton pair to J=11 and T=0 takes over. In a more academic mood, we have studied the role of the isovector and isoscalar pairing correlations on the structure on the yrast bands of {sup 108,110}Xe and examined the possible existence of isovector and isoscalar pairing condensates in these N{approx}{approx}Z nuclei.

  9. Carbon Dioxide Landscape

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a view of some of the widely-varied terrain of the martian south polar residual cap. The landforms here are composed mainly of frozen carbon dioxide. Each year since MGS arrived in 1997, the scarps that bound each butte and mesa, or line the edges of each pit, in the south polar region, have changed a little bit as carbon dioxide is sublimed away. The scarps retreat at a rate of about 3 meters (3 yards) per martian year. Most of the change occurs during each southern summer.

    Location near: 86.7oS, 9.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  10. CARBON DIOXIDE FIXATION.

    SciTech Connect

    FUJITA,E.

    2000-01-12

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  11. Carbon dioxide pellet blasting augmented xenon flashlamp coatings removal design and prototype demonstration project; Pram project. Final report

    SciTech Connect

    1993-03-30

    Air Force aircraft exterior coatings are removed every 4 to 8 years to facilitate various maintenance functions. One of the largest generators of hazardous waste in the Air Force has typically been the paint removal operations. Historically, the Air Force has used extremely harsh chemicals to remove the advanced coatings used on modern aircraft. Large volumes of hazardous waste (e.g., approximately 10,000 gallons for the F-15 aircraft) are produced with each aircraft that is stripped. In addition, the chemicals are not compatible with composite substrates.

  12. Carbon Dioxide Landforms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    19 March 2004 The martian south polar residual ice cap is mostly made of frozen carbon dioxide. There is no place on Earth that a person can go to see the landforms that would be produced by erosion and sublimation of hundreds or thousands of cubic kilometers of carbon dioxide. Thus, the south polar cap of Mars is as alien as alien can get. This image, acquired in February 2004 by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), shows how the cap appears in summer as carbon dioxide is subliming away, creating a wild pattern of pits, mesas, and buttes. Darker surfaces may be areas where the ice contains impurities, such as dust, or where the surface has been roughened by the removal of ice. This image is located near 86.3oS, 0.8oW. This picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the top/upper left.

  13. Frozen Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    1 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a south polar residual cap landscape, formed in frozen carbon dioxide. There is no place on Earth that one can go to visit a landscape covering thousands of square kilometers with frozen carbon dioxide, so mesas, pits, and other landforms of the martian south polar region are as alien as they are beautiful. The scarps of the south polar region are known from thousands of other MGS MOC images to retreat at a rate of about 3 meters (3 yards) per martian year, indiating that slowly, over the course of the MGS mission, the amount of carbon dioxide in the martian atmosphere has probably been increasing.

    Location near: 86.9oS, 25.5oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  14. Chlorine dioxide and hemodialysis

    SciTech Connect

    Smith, R.P. . Dept. of Pharmacology and Toxicology)

    1989-05-01

    Because it has little or no tendency to generate carcinogenic trihalomethanes such as chloroform, chlorine dioxide is an attractive alternative to chlorine for drinking water disinfection. There are, however, concerns about its acute toxicity, and the toxic effects of its by-products, chlorite and chlorate. The human experience with chlorine dioxide in both controlled, prospective studies and in actual use situations in community water supplies have as yet failed to reveal adverse health effects. The EPA has recommended standards of 0.06 mg/L for chlorine dioxide and standards of 0.007 mg/L for chlorite and chlorate in drinking water. Among groups who may be at special risk from oxychlorines in drinking water are patients who must undergro chronic extracorporeal hemodialysis. Although even units for home hemodialysis are supposed to be equipped with devices which effectively remove oxychlorines, there is a always a possibility of operator error or equipment failure. When the equipment is adequately maintained, it is likely that dialysis patients will have more intensive exposures from drinking water than from dialysis fluids despite the much larger volumes of water that are involved in dialysis. This paper discusses a hemodialysis and the standards and effects of oxychlorines. 90 refs., 2 tabs.

  15. Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal

    SciTech Connect

    Thallapally, Praveen K.; Grate, Jay W.; Motkuri, Radha K.

    2012-01-11

    Two well known Metal organic frameworks (MOF-5, NiDOBDC) were synthesized and studied for facile xenon capture and separation. Our results indicate the NiDOBDC adsorbs significantly more xenon than MOF-5, releases it more readily than activated carbon, and is more selective for Xe over Kr than activated carbon.

  16. Liquid xenon time projection chamber for gamma rays in the MeV region: Development status

    NASA Technical Reports Server (NTRS)

    Aprile, E.; Bolotnikov, A.; Chen, D.; Mukherjee, R.

    1992-01-01

    The feasibility of a large volume Liquid Xenon Time Projection Chamber (LXe-TPC) for three dimensional imaging and spectroscopy of cosmic gamma ray sources, was tested with a 3.5 liter prototype. The observation of induction signals produced by MeV gamma rays in liquid xenon is reported, with a good signal-to-noise ratio. The results represent the first experimental demonstration with a liquid xenon ionization chamber of a nondestructive readout of the electron image produced by point-like charges, using a sense wire configuration of the type originally proposed in 1970 by Gatti et al. An energy resolution as good as that previously measured by the millimeter size chambers, was achieved with the large prototype of 4.4 cm drift gap.

  17. Calibration of a liquid xenon detector with {sup 83}Kr{sup m}

    SciTech Connect

    Kastens, L. W.; Cahn, S. B.; Manzur, A.; McKinsey, D. N.

    2009-10-15

    We report the preparation of a {sup 83}Kr{sup m} source and its use in calibrating a liquid xenon detector. {sup 83}Kr{sup m} atoms were produced through the decay of {sup 83}Rb and introduced into liquid xenon. Decaying {sup 83}Kr{sup m} nuclei were detected through liquid xenon scintillation. Conversion electrons with energies of 9.4 and 32.1 keV from the decay of {sup 83}Kr{sup m} were observed. This calibration source will allow the characterization of the response of noble liquid detectors at low energies. {sup 83}Kr{sup m} may also be useful for measuring fluid flow dynamics, both to understand purification in noble liquid-based particle detectors, as well as for studies of classical and quantum turbulence in superfluid helium.

  18. Thermodynamics, compressibility, and phase diagram: Shock compression of supercritical fluid xenon

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.; Li, C. J.

    2014-09-01

    Supercritical fluids have intriguing behaviors at extreme pressure and temperature conditions, prompting the need for thermodynamic properties of supercritical fluid xenon (SCF) under shock compression. Double-shock experimental data on SCF xenon in the 140 GPa pressure range were directly measured by means of a multi-channel pyrometer and a Doppler-pins-system. It entered the so-called warm dense region. We found that the shock compressed SCF Xe had higher dynamic compression and higher number density than that of liquid Xe at same shock pressure. The larger compressibility of SCF Xe in our experiments could be explained that the increase of electronic excitations and ionizations leaded to a large drop of thermal pressure and a softening of Hugoniot. The high pressure phase diagram of xenon was depicted with the aid of the degeneracy, coupling parameter, and current available experiments on the pressure-temperature plane.

  19. Low-energy recoils and energy scale in liquid xenon detector for direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Mei, Dongming; Cubed Collaboration

    2015-04-01

    Liquid xenon has been proven to be a great detector medium for the direct search of dark matter. However, in the energy region of below 10 keV, the light yield and charge production are not fully understood due to the convolution of excitation, recombination and quenching. We have already studied a recombination model to explain the physics processes involved in liquid xenon. Work is continued on the average energy expended per electron-ion pair as a function of energy based on the cross sections for different type of scattering processes. In this paper, the results will be discussed in comparison with available experimental data using Birk's Law to understand how scintillation quenching contributes to the non-linear light yield for electron recoils with energy below 10 keV in liquid xenon. This work is supported by DOE Grant DE-FG02-10ER46709 and the state of South Dakota.

  20. Liquid xenon as an ideal probe for many-body effects in impulsive Raman scattering

    NASA Astrophysics Data System (ADS)

    Boeijenga, Nienke H.; Pugzlys, Audrius; Jansen, Thomas l. C.; Snijders, Jaap G.; Duppen, Koos

    2002-07-01

    The collision induced effects in the third-order Raman response of liquid xenon have been studied both experimentally and theoretically. The effect of electron cloud overlap on the polarizability of xenon dimers was studied using accurate time-dependent density functional theory calculations. The dimer polarizabilities were used to fit parameters in a direct reaction field model that can be generalized to condensed phase systems. This model was employed in molecular dynamics simulations in order to calculate the impulsive Raman response of liquid xenon. Excellent agreement is found between the shape of the calculated and the measured anisotropic part of the response. The shape of this response is little affected by the electron overlap effects, but the intensity is strongly influenced by it. The shape of the isotropic response is predicted to be strongly dependent on electron overlap effects.

  1. High-field NMR of adsorbed xenon polarized by laser pumping

    SciTech Connect

    Raftery, D.; Long, H.; Meersmann, T.; Grandinetti, P.J.; Reven, L.; Pines, A. Department of Chemistry, University of California, Berkeley, CA )

    1991-02-04

    Optical pumping has been used to enhance the pulsed NMR signal of {sup 129}Xe, allowing the detecting of low-pressure xenon gas and of xenon adsorbed on powdered solids. We observe an increase in sensitivity of more than 2 orders of magnitude over conventional NMR, the current limitation being the laser power. Adsorbed xenon is observed at 298 K on graphitized carbon (about 10 m{sup 2}g) and on powdered benzanthracene ({similar to}0.5 m{sup 2}g) below 170 K. The increased sensitivity of this technique allows the study of a large class of amorphous materials with surface areas below 10 m{sup 2}/g including semiconductors, polymers, metal oxides, and catalysts.

  2. Thermodynamics, compressibility, and phase diagram: shock compression of supercritical fluid xenon.

    PubMed

    Zheng, J; Chen, Q F; Gu, Y J; Chen, Z Y; Li, C J

    2014-09-28

    Supercritical fluids have intriguing behaviors at extreme pressure and temperature conditions, prompting the need for thermodynamic properties of supercritical fluid xenon (SCF) under shock compression. Double-shock experimental data on SCF xenon in the 140 GPa pressure range were directly measured by means of a multi-channel pyrometer and a Doppler-pins-system. It entered the so-called warm dense region. We found that the shock compressed SCF Xe had higher dynamic compression and higher number density than that of liquid Xe at same shock pressure. The larger compressibility of SCF Xe in our experiments could be explained that the increase of electronic excitations and ionizations leaded to a large drop of thermal pressure and a softening of Hugoniot. The high pressure phase diagram of xenon was depicted with the aid of the degeneracy, coupling parameter, and current available experiments on the pressure-temperature plane. PMID:25273430

  3. Thermal excitation in a spatially modulated monolayer solid: Incommensurate xenon/graphite

    NASA Astrophysics Data System (ADS)

    Novaco, A. D.; Bruch, L. W.

    2014-03-01

    Calculations of the properties of monolayer xenon/graphite for temperatures up to its triple point at 100 K are reported. The average lattice constant and orientational epitaxy angle for the monolayer solid are evaluated along its (two-dimensional) sublimation curve. The incommensurate rotated lattice approaches the incommensurate aligned configuration as the melting temperature is approached, as in experiments. The calculated temperature, latent heat of melting, and solid-liquid density difference at the triple point agree with experiment. The methods include molecular dynamics simulations for large submonolayer patches of xenon and both self-consistent-phonon and perturbation-variation approximations. An overall quantitative agreement between the simulations, calculations, and experimental data is achieved with an interaction model that includes the spatially periodic xenon-graphite corrugation energy.

  4. Performance of a cryogenic system prototype for the XENON1T detector

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Budnik, R.; Choi, B.; Contreras, H. A.; Giboni, K. L.; Goetzke, L. W.; Lang, R. F.; Lim, K. E.; Melgarejo, A. J.; Plante, G.; Rizzo, A.; Shagin, P.

    2012-10-01

    We have developed an efficient cryogenic system with heat exchange and associated gas purification system as a prototype for the XENON1T experiment. The XENON1T detector will use about 3 tons of liquid xenon (LXe) at a temperature of 175K as target and detection medium for a dark matter search. In this paper we report results on the cryogenic system performance focusing on the dynamics of the gas circulation-purification through a heated getter, at flow rates above 50 Standard Liter per Minute (SLPM). A maximum flow of 114 SLPM has been achieved, and using two heat exchangers in series, a heat exchange efficiency better than 96% has been measured.

  5. Progress on the Characterization of the Yale ``PIXeY'' Two-Phase Xenon Detector

    NASA Astrophysics Data System (ADS)

    Destefano, Nicholas; Gai, Moshe; McKinsey, Daniel; Bernard, Ethan; Cahn, Sidney; Curioni, Alessandro; Edwards, Blair; Kachulis, Christopher; Larsen, Nicole; Lyashenko, Alexey; Nikkel, James; Skin, Yunchang; Wahl, Christopher; Young, Alexander

    2012-10-01

    PIXeY (Particle Identification in Xenon at Yale) is a two-phase (liquid/gas) xenon prototype detector with 3-kg active mass. The two-phase xenon technology has many applications that include gamma-ray imaging, neutrinoless double beta decay searches, and dark matter searches. PIXeY was built to optimize energy resolution and gamma/neutron discrimination, with a number of technological improvements over previous work. Parallel-wire grids, which control the drift and proportional-scintillation fields, are optimized both for light collection efficiency and field uniformity. High quantum efficiency Hamamatsu R8778 PMTs, high-reflectivity Teflon walls, and charge-light anti-correlation techniques are also incorporated. PIXeY will serve as a platform for future improvements, including multiple optical volumes and single wire readout for R&D on gamma-ray imaging and track-imaging studies. The latest progress on the detector will be presented.

  6. Xenon behavior in TiN: A coupled XAS/TEM study

    NASA Astrophysics Data System (ADS)

    Bs, R.; Gaillard, C.; Millard-Pinard, N.; Gavarini, S.; Martin, P.; Cardinal, S.; Esnouf, C.; Malchre, A.; Perrat-Mabilon, A.

    2013-03-01

    Titanium nitride is a refractory material that is being considered as an inert matrix in future Generation IV nuclear reactors, in particular in relation to the Gas-cooled Fast Reactor. The main role of this matrix would be to act as a barrier against the release of fission products, in particular gaseous ones like xenon. This release phenomenon will be enhanced by high temperatures expected in the fuel vicinity: 1200 C under normal conditions, and up to 1800 C under accidental conditions. It is therefore necessary to investigate the behavior of volatile fission products in TiN under high temperature and irradiation. Indeed, these basic data are very useful to predict the volatile fission products released under these extreme conditions. Our previous work has shown that Xe introduced by ion implantation in sintered TiN tends to be released as a result of annealing, due to a transport mechanism towards the sample surface. The aim of the present work is to determine under which physical state Xe is in TiN. Xenon was first introduced using ion implantation at 800 keV in TiN samples obtained by hot pressing at several concentrations ranging from 0.4 to 8 at.%. Secondly, samples were annealed at high temperature, from 1000 C to 1500 C. Xe was then characterized by X-ray Absorption Spectroscopy and Transmission Electron Microscopy. The formation of intragranular xenon bubbles was demonstrated, and the xenon concentration which is sufficient to form bubbles is found to be lower than 0.4 at.% under our experimental conditions. These bubbles were found unpressurised at 15 K. Their size increases with the temperature and the local xenon concentration. For the highest xenon concentrations, a mechanism involving the formation of a Xe interconnected bubble network is proposed to explain Xe massive release observed by Rutherford Backscattering Spectrometry experiments.

  7. Results from the XENON10 and the Race to Detect Dark Matter with Noble Liquids

    ScienceCinema

    Shutt, Tom [Case Western Reserve, Cleveland, Ohio, United States

    2009-09-01

    Detectors based on liquid noble gases have the potential to revolutionize the direct search for WIMP dark matter. The XENON10 experiment, of which I am a member, has recently announced the results from it's first data run and is now the leading WIMP search experiment. This and other experiments using xenon, argon and neon have the potential to rapidly move from the current kg-scale target mass to the ton scale and well beyond. This should allow a (nearly) definitive test or discovery of dark matter if it is in the form of weakly interacting massive particles.

  8. Results from the XENON10 and the Race to Detect Dark Matter with Noble Liquids

    SciTech Connect

    Shutt, Tom

    2007-06-13

    Detectors based on liquid noble gases have the potential to revolutionize the direct search for WIMP dark matter. The XENON10 experiment, of which I am a member, has recently announced the results from it's first data run and is now the leading WIMP search experiment. This and other experiments using xenon, argon and neon have the potential to rapidly move from the current kg-scale target mass to the ton scale and well beyond. This should allow a (nearly) definitive test or discovery of dark matter if it is in the form of weakly interacting massive particles.

  9. Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon

    NASA Astrophysics Data System (ADS)

    Charles, C.; Boswell, R.; Takahashi, K.

    2013-06-01

    A low pressure (0.5 mTorr in xenon and 1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon.

  10. First-principles calculation of the reflectance of shock-compressed xenon

    NASA Astrophysics Data System (ADS)

    Norman, G. E.; Saitov, I. M.; Stegailov, V. V.

    2015-05-01

    Within electron density functional theory (DFT), the reflectance of radiation from shock-compressed xenon plasma is calculated. The dependence of the reflectance on the frequency of the incident radiation and on the plasma density is considered. The Fresnel formula is used. The expression for the longitudinal dielectric tensor in the long-wavelength limit is used to calculate the imaginary part of the dielectric function (DF). The real part of the DF is determined by the Kramers-Kronig transformation. The results are compared with experimental data. An approach is proposed to estimate the plasma frequency in shock-compressed xenon.

  11. A high pressure xenon gamma-ray spectrometer using a coplanar anode configuration

    NASA Astrophysics Data System (ADS)

    Sullivan, C. J.; He, Z.; Knoll, G. F.; Tepper, G.; Wehe, D. K.

    2003-06-01

    A new design of a high pressure xenon ionization chamber has been fabricated in an attempt to eliminate the problems associated with acoustical vibrations of the Frisch grid. The function of the traditional Frisch grid has been accomplished by employing a coplanar anode system capable of single polarity charge sensing. Two different detector designs have been fabricated using both cylindrical and parallel plate geometries. Each is filled with highly purified xenon gas at a pressure of approximately 57 atm. The designs of these new spectrometers and their measured characteristics will be presented.

  12. Cluster-assisted multiple ionization of xenon and krypton by a nanosecond laser

    SciTech Connect

    Luo Xiaolin; Li Haiyang; Niu Dongmei; Wen Lihua; Liang Feng; Wang Bin; Xiao Xue

    2005-07-15

    Multicharged xenon and krypton ions with charge states up to Xe{sup 11+} and Kr{sup 11+} have been observed in laser ionization of a pulsed xenon or krypton beam by a 25 ns Nd-YAG laser with laser intensity of 10{sup 10}-10{sup 11} W cm{sup -2} at 532 nm. There is strong evidence to support that those multicharged ions come from cluster-assisted electron recolliding ionizations inside the cluster after multiphoton ionization of atoms in the cluster, the electron can gain its kinetic energy by inverse bremsstrahlung absorption from a laser field quickly.

  13. Incipient triple point for adsorbed xenon monolayers: Pt(111) versus graphite substrates

    NASA Astrophysics Data System (ADS)

    Novaco, Anthony D.; Bruch, L. W.; Bavaresco, Jessica

    2015-04-01

    Simulation evidence of an incipient triple point is reported for xenon submonolayers adsorbed on the (111) surface of platinum. This is in stark contrast to the "normal" triple point found in simulations and experiments for xenon on the basal plane surface of graphite. The motions of the atoms in the surface plane are treated with standard 2D "NVE" molecular dynamics simulations using modern interactions. The simulation evidence strongly suggests an incipient triple point in the 120 -150 K range for adsorption on the Pt (111) surface while the adsorption on graphite shows a normal triple point at about 100 K.

  14. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    SciTech Connect

    Sorensen, P; Dahl, C E

    2011-02-14

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  15. Diagnosing on plasma plume from xenon Hall thruster with collisional-radiative model

    SciTech Connect

    Yang Juan; Yokota, Shigeru; Kaneko, Ryotaro; Komurasaki, Kimiya

    2010-10-15

    The collisional-radiative model for xenon is used to calculate the electron density and temperature, and the atom population distribution in the plasma plume from a xenon Hall thruster. In the calculation, 173 levels of atom population are considered; only the processes of electron induced excitation and deexcitation, and spontaneous decay are simulated. The plasma plume is assumed to be optically thin. Consequently, the reasonable parameters of plasma plume along the outside center line of the thruster channel are obtained by making the calculated emission spectrum corresponding to measured ones and based on the atomic data available on site and by codes.

  16. Long term spectral irradiance measurements of a 1000-watt xenon arc lamp

    NASA Technical Reports Server (NTRS)

    Schneider, W. E.

    1974-01-01

    Spectral irradiance measurements over the range of 200 to 1060 nm were made on a 1000-watt xenon arc lamp over a period of 1500 hours. Four sets of measurements were made after periods of 70, 525, 1000, and 1500 hours of operation. The lamp (Hanovia Compact Xenon Arc Lamp) was mounted in the NASA Solar Irradiation System. When used in the System, the lamp is used as the radiating source for six test stations. Measurements were made of both the longterm stability (or variation of spectral irradiance as a function of time) and the actual spectral irradiance incident on the test specimen.

  17. Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon

    SciTech Connect

    Charles, C.; Boswell, R.; Takahashi, K.; Department of Electrical Engineering, Tohoku University, Sendai 980-9579

    2013-06-03

    A low pressure ({approx}0.5 mTorr in xenon and {approx}1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon.

  18. Measurement of Xenon Viscosity as a Function of Low Temperature and Pressure

    NASA Technical Reports Server (NTRS)

    Grisnik, Stanley P.

    1998-01-01

    The measurement of xenon gas viscosity at low temperatures (175-298 K) and low pressures (350 torr-760 torr) has been performed in support of Hall Thruster testing at NASA Lewis Research Center. The measurements were taken using the capillary flow technique. Viscosity measurements were repeatable to within 3%. The results in this paper are in agreement with data from Hanley and Childs and suggest that the data from Clarke and Smith is approximately 2% low. There are no noticeable pressure effects on xenon absolute viscosity for the pressure range from 350 torr to 760 torr.

  19. Differential Sputtering Behavior of Pyrolytic Graphite and Carbon-Carbon Composite Under Xenon Bombardment

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Johnson, Mark L.; Williams, Desiree D.

    2003-01-01

    A differential sputter yield measurement technique is described, which consists of a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. This apparatus has been used to characterize the sputtering behavior of various forms of carbon including polycrystalline graphite, pyrolytic graphite, and PVD-infiltrated and pyrolized carbon-carbon composites. Sputter yield data are presented for pyrolytic graphite and carbon-carbon composite over a range of xenon ion energies from 200 eV to 1 keV and angles of incidence from 0 deg (normal incidence) to 60 deg .

  20. Initial observations of GeSe-xenon transport experiments performed on the D1 space flight

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.; Trivedi, S. B.

    1986-01-01

    GeSe-xenon experiments performed aboard the D1 mission at xenon pressures of 2 and 6 atm confirm the crystal growth pattern, sizes, and surface morphology of crystals previously grown aboard STS-7 for different pressures. Besides the deposition and growth of GeSe crystals on the ampoule wall, several large single-crystalline GeSe platelets with lateral dimensions much greater than those of crystals on the wall and obtained on the ground are found. The present results reemphasize the question concerning the nucleation phenomena in microgravity.

  1. Carbon dioxide elimination and regeneration of resources in a microwave plasma torch.

    PubMed

    Uhm, Han S; Kwak, Hyoung S; Hong, Yong C

    2016-04-01

    Carbon dioxide gas as a working gas produces a stable plasma-torch by making use of 2.45 GHz microwaves. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a bluish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species where an analytical investigation indicates dissociation of a substantial fraction of carbon dioxide molecules, forming carbon monoxides and oxygen atoms. The emission profiles of the oxygen atoms and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. Various hydrocarbon materials may be introduced into the carbon dioxide torch, regenerating new resources and reducing carbon dioxide concentration in the torch. As an example, coal powders in the carbon dioxide torch are converted into carbon monoxide according to the reaction of CO2 + C → 2CO, reducing a substantial amount of carbon dioxide concentration in the torch. In this regards, the microwave plasma torch may be one of the best ways of converting the carbon dioxides into useful new materials. PMID:26774765

  2. Ultrafast measurements of chlorine dioxide photochemistry

    SciTech Connect

    Ludowise, P.D.

    1997-08-01

    Time-resolved mass spectrometry and time-resolved photoelectron spectroscopy are used to study the ultrafast photodissociation dynamics of chlorine dioxide, an important constituent in stratospheric ozone depletion. Chapter 1 introduces these pump/probe techniques, in which a femtosecond pump pulse excites a molecule to a dissociative state. At a later time, a second femtosecond probe pulse ionizes the molecule. The resulting mass and photoelectron spectra are acquired as a function of the delay between the pump and probe pulses, which follows the evolution of the molecule on the excited state. A comparison to other techniques used to study reaction dynamics is discussed. Chapter 2 includes a detailed description of the design and construction of the experimental apparatus, which consists of a femtosecond laser system, a molecular beam time-of-flight spectrometer, and a data acquisition system. The time-of-flight spectrometer is specifically designed to have a short flight distance to maximize the photoelectron collection efficiency without degrading the resolution, which is limited by the bandwidth of the femtosecond laser system. Typical performance of the apparatus is demonstrated in a study of the time-resolved photoelectron spectroscopy of nitric oxide. The results of the time-resolved mass spectrometry experiments of chlorine dioxide are presented in Chapter 3. Upon excitation to the A {sup 2}A{sub 2} state near 3.2 eV, the molecule dissociates through an indirect two-step mechanism. The direct dissociation channel has been predicted to be open, but is not observed. A quantum beat is observed in the OClO{sup +} species, which is described as a vibrational coherence of the optically prepared A {sup 2}A{sub 2} state. Chapter 4 presents the results of the time-resolved photoelectron experiments of chlorine dioxide. At short delay time, the quantum beat of the OClO{sup +} species is observed in the X {sup 1}A{sub 1} state of the ion. At infinite delay, the signal is dominated by the ClO{sup +} ion, observed in a variety of electronic states. The photoelectron data is shown to support the indirect two-step dissociation mechanism derived from the mass results. Conclusions of the mass and photoelectron results are discussed in context of the stratospheric ozone depletion problem.

  3. Hyperpolarized Xenon-129 Magnetic Resonance Imaging of Functional Lung Microstructure

    NASA Astrophysics Data System (ADS)

    Dregely, Isabel

    Hyperpolarized 129Xe (HXe) is a non-invasive contrast agent for lung magnetic resonance imaging (MRI), which upon inhalation follows the functional pathway of oxygen in the lung by dissolving into lung tissue structures and entering the blood stream. HXe MRI therefore provides unique opportunities for functional lung imaging of gas exchange which occurs from alveolar air spaces across the air-blood boundary into parenchymal tissue. However challenges in acquisition speed and signal-to-noise ratio have limited the development of a HXe imaging biomarker to diagnose lung disease. This thesis addresses these challenges by introducing parallel imaging to HXe MRI. Parallel imaging requires dedicated hardware. This work describes design, implementation, and characterization of a 32-channel phased-array chest receive coil with an integrated asymmetric birdcage transmit coil tuned to the HXe resonance on a 3 Tesla MRI system. Using the newly developed human chest coil, a functional HXe imaging method, multiple exchange time xenon magnetization transfer contrast (MXTC) is implemented. MXTC dynamically encodes HXe gas exchange into the image contrast. This permits two parameters to be derived regionally which are related to gas-exchange functionality by characterizing tissue-to-alveolar-volume ratio and alveolar wall thickness in the lung parenchyma. Initial results in healthy subjects demonstrate the sensitivity of MXTC by quantifying the subtle changes in lung microstructure in response to orientation and lung inflation. Our results in subjects with lung disease show that the MXTC-derived functional tissue density parameter exhibits excellent agreement with established imaging techniques. The newly developed dynamic parameter, which characterizes the alveolar wall, was elevated in subjects with lung disease, most likely indicating parenchymal inflammation. In light of these observations we believe that MXTC has potential as a biomarker for the regional quantification of 1) emphysematous tissue destruction in chronic obstructive pulmonary disease (using the tissue density parameter) and 2) parenchymal inflammation or thickening (using the wall thickness parameter). By simultaneously quantifying two lung function parameters, MXTC provides a more comprehensive picture of lung microstructure than existing lung imaging techniques and could become an important non-invasive and quantitative tool to characterize pulmonary disease.

  4. Can Silicon Carbide Nanotubes Sense Carbon Dioxide?

    PubMed

    Zhao, Jing-Xiang; Ding, Yi-Hong

    2009-04-14

    Detection of carbon dioxide (CO2) is very important in environmental, biological, and industrial processes. Recent experiment showed that carbon nanotubes can act as chemical sensors for detecting certain gaseous molecules such as NH3, NO2, and O2. Unfortunately, the intrinsic stability of CO2 makes its sensing by CNTs unsuccessful due to the rather weak adsorption energy on the tube surface. In the present Article, we study the CO2 adsorption on various zigzag (n,0) (n = 6, 8, 10, 12, and 18) single-walled SiC nanotubes to explore the possibility of the SiC tube as potential gas sensors for CO2-detection by density functional theory (DFT) calculations. It is found that tube diameter and CO2 coverage play important roles in the tube-CO2 interaction. A single CO2 can be chemisorbed to the Si-C bonds of SiCNT with appreciable adsorption energy and can draw significant charge transfer from the SiCNT. The adsorption energy decreases gradually with increased tube diameter. The addition of more CO2 molecules in different patterns has been considered for the exemplified (8,0) tube, and CO2 molecules prefer to be as far from each other as possible. With the increase of CO2 coverage, the interaction between CO2 molecules and tube becomes weaker, and up to eight CO2 molecules can be adsorbed on the tube. In addition, we find that the band gap is lowered to a different degree due to the different adsorption. Because of the sufficient charge transfer and high concentration of CO2, SiCNT could be a perfect material for efficiently detecting the CO2 molecule. PMID:26609620

  5. Exploring Surfaces and Cavities in Lipoxygenase and Other Proteins by Hyperpolarized Xenon-129 NMR

    PubMed Central

    Storhaug, V.; Webster, C. E.; Bharatam, J.; Cottone, A.; Gianna, R.; Betsey, K.; Gaffney, B. J.

    2005-01-01

    This paper presents an exploratory study of the binding interactions of xenon with the surface of several different proteins in the solution and solid states using both conventional and hyperpolarized 129Xe NMR. The generation of hyperpolarized 129Xe by spin exchange optical pumping affords an enhancement by 3–4 orders of magnitude of its NMR signal. As a result, it is possible to observe Xe directly bound to the surface of micromolar quantities of lyophilized protein. The highly sensitive nature of the 129Xe line shape and chemical shift are used as indicators for the conditions most likely to yield maximal dipolar contact between 129Xe nuclei and nuclear spins situated on the protein. This is an intermediate step toward achieving the ultimate goal of NMR enhancement of the binding-site nuclei by polarization transfer from hyperpolarized 129Xe. The hyperpolarized 129Xe spectra resulting from exposure of four different proteins in the lyophilized, powdered form have been examined for evidence of binding. Each of the proteins, namely, metmyoglobin, methemoglobin, hen egg white lysozyme, and soybean lipoxygenase, yielded a distinctly different NMR line shape. With the exception of lysozyme, the proteins all possess a paramagnetic iron center which can be expected to rapidly relax the 129Xe and produce a net shift in its resonance position if the noble gas atom occupies specific binding sites near the iron. At temperatures from 223 to 183 K, NMR signals were observed in the 0–40 ppm chemical shift range, relative to Xe in the gas phase. The signals broadened and shifted downfield as the temperature was reduced, indicating that Xe is exchanging between the gas phase and internal or external binding sites of the proteins. Additionally, conventional 129Xe NMR studies of metmyoglobin and lipoxygenase in the solution state are presented. The temperature dependence of the chemical shift and line shape indicate exchange of Xe between adsorption sites on lipoxygenase and Xe in the solvent on the slow to intermediate exchange time scale. The NMR results are compared with N2, Xe, and CH4 gas adsorption isotherms. It is found that lipoxygenase is unique among the proteins studied in possessing a relatively high affinity for gas molecules, and in addition, demonstrating the most clearly resolved adsorbed 129Xe NMR peak in the lyophilized state. PMID:16429610

  6. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    SciTech Connect

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  7. Process for sequestering carbon dioxide and sulfur dioxide

    DOEpatents

    Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

    2009-10-20

    A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

  8. Analysis of Substrate Access to Active Sites in Bacterial Multicomponent Monooxygenase Hydroxylases: X-ray Crystal Structure of Xenon-Pressurized Phenol Hydroxylase from Pseudomonas sp. OX1,

    PubMed Central

    McCormick, Michael S.; Lippard, Stephen J.

    2011-01-01

    In all structurally characterized bacterial multicomponent monooxygenase (BMM) hydroxylase proteins, a series of hydrophobic cavities in the ?-subunit trace a conserved path from the protein exterior to the carboxylate-bridged diiron active site. The present study examines these cavities as a potential route for dioxygen transport to the active site by crystallographic characterization of a xenon-pressurized sample of the hydroxylase component of phenol hydroxylase from Pseudomonas sp. OX1. Computational analyses of the hydrophobic cavities in the hydroxylase ?-subunits of phenol hydroxylase (PHH), toluene/o-xylene monooxygenase (ToMOH), and soluble methane monooxygenase (sMMOH) are also presented. The results, together with previous findings from crystallographic studies of xenon-pressurized sMMO hydroxylase, clearly identify the propensity for these cavities to bind hydrophobic gas molecules in the protein interior. This proposed functional role is supported by recent stopped flow kinetic studies of ToMOH variants (Song, et al., 2011). In addition to information about the Xe sites, the structure determination revealed significantly reduced regulatory protein binding to the hydroxylase in comparison to the previously reported structure of PHH, as well as the presence of a newly identified metal binding site in the ?-subunit that adopts a linear coordination environment consistent with Cu(I), and a glycerol molecule bound to Fe1 in a fashion that is unique among hydrocarbon-diiron site adducts reported to date in BMM hydroxylase structures. Finally, a comparative analysis of the ?-subunit structures of MMOH, ToMOH, and PHH details proposed routes for the other three BMM substrates, the hydrocarbon, electrons, and protons, comprising cavities, channels, hydrogen-bonding networks, and pores in the structures of their ?-subunits. PMID:22136180

  9. A Liquid Xenon Ionization Chamber in an All-fluoropolymer Vessel

    SciTech Connect

    LePort, F.; Pocar, A.; Bartoszek, L.; DeVoe, R.; Fierlinger, P.; Flatt, B.; Gratta, G.; Green, M.; Montero Diez, M.; Neilson, R.; O'Sullivan, K.; Wodin, J.; Woisard, D.; Baussan, E.; Breidenbach, M.; Conley, R.; Fairbank, W., Jr.; Farine, J.; Hall, K.; Hallman, D.; Hargrove, C.; ,

    2007-02-26

    A novel technique has been developed to build vessels for liquid xenon ionization detectors entirely out of ultra-clean fluoropolymer. We describe the advantages in terms of low radioactivity contamination, provide some details of the construction techniques, and show the energy resolution achieved with a prototype all-fluoropolymer ionization detector.

  10. Chemiluminescence in the oxidation of uranium (IV) by xenon trioxide and its analytical possibilities

    SciTech Connect

    Khamidullina, L.A.; Lotnik, S.V.; Gusev, Yu.K.; Kazakov, V.P.

    1988-09-01

    This work is devoted to an investigation of the previously detected chemiluminescence in the oxidation of uranium (IV) by xenone trioxide and to evaluating the possibility of using it in determining nanogram quantities of U/sup (IV)/ in solution, including solutions containing a large excess of U/sup (VI)/.

  11. Characterisation of NEXT-DEMO using xenon Kα X-rays

    NASA Astrophysics Data System (ADS)

    Lorca, D.; Martín-Albo, J.; Laing, A.; Ferrario, P.; Gómez-Cadenas, J. J.; Álvarez, V.; Borges, F. I. G.; Camargo, M.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Díaz, J.; Esteve, R.; Fernandes, L. M. P.; Ferreira, A. L.; Freitas, E. D. C.; Gehman, V. M.; Goldschmidt, A.; Gómez, H.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Irastorza, I. G.; Labarga, L.; Liubarsky, I.; Losada, M.; Luzón, G.; Marí, A.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Nygren, D.; Oliveira, C. A. B.; Pérez, J.; Pérez Aparicio, J. L.; Renner, J.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Seguí, L.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2014-10-01

    The NEXT experiment aims to observe the neutrinoless double beta decay of 136Xe in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. Understanding the response of the detector is imperative in achieving a consistent and well understood energy measurement. The abundance of xenon K-shell X-ray emission during data taking has been identified as a multitool for the characterisation of the fundamental parameters of the gas as well as the equalisation of the response of the detector. The NEXT-DEMO prototype is a ~ 1.5 kg volume TPC filled with natural xenon. It employs an array of 19 PMTs as an energy plane and of 256 SiPMs as a tracking plane with the TPC light tube and SiPM surfaces being coated with tetraphenyl butadiene (TPB) which acts as a wavelength shifter for the VUV scintillation light produced by xenon. This paper presents the measurement of the properties of the drift of electrons in the TPC, the effects of the EL production region, and the extraction of position dependent correction constants using Kα X-ray deposits. These constants were used to equalise the response of the detector to deposits left by gammas from 22Na.

  12. Measurement of Radon concentration by Xenon gamma-ray spectrometer for seismic monitoring of the Earth

    NASA Astrophysics Data System (ADS)

    Novikov, A.; Ulin, S.; Dmitrenko, V.; Vlasik, K.; Bychkova, O.; Petrenko, D.; Uteshev, Z.; Shustov, A.

    2016-02-01

    A method for earthquake precursors search based on variations of 222Rn concentration determined via intensity measurement of 222Rn daughter nuclei gamma ray emission lines by means of xenon gamma-ray spectrometer is discussed. The equipment description as well as the first experimental data are presented.

  13. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    PubMed

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation. PMID:23514495

  14. Pulse Rise Time Characterization of a High Pressure Xenon Gamma Detector for use in Resolution Enhancement

    SciTech Connect

    TROYER, G.L.

    2000-08-25

    High pressure xenon ionization chamber detectors are possible alternatives to traditional thallium doped sodium iodide (NaI(Tl)) and hyperpure germanium as gamma spectrometers in certain applications. Xenon detectors incorporating a Frisch grid exhibit energy resolutions comparable to cadmium/zinc/telluride (CZT) (e.g. 2% {at} 662keV) but with far greater sensitive volumes. The Frisch grid reduces the position dependence of the anode pulse risetimes, but it also increases the detector vibration sensitivity, anode capacitance, voltage requirements and mechanical complexity. We have been investigating the possibility of eliminating the grid electrode in high-pressure xenon detectors and preserving the high energy resolution using electronic risetime compensation methods. A two-electrode cylindrical high pressure xenon gamma detector coupled to time-to-amplitude conversion electronics was used to characterize the pulse rise time of deposited gamma photons. Time discrimination was used to characterize the pulse rise time versus photo peak position and resolution. These data were collected to investigate the effect of pulse rise time compensation on resolution and efficiency.

  15. Penile xenon (/sup 133/Xe) washout: a rapid method of screening for vasculogenic impotence

    SciTech Connect

    Nseyo, U.O.; Wilbur, H.J.; Kang, S.A.; Flesh, L.; Bennett, A.H.

    1984-01-01

    The radioactive inert gas xenon (/sup 133/Xe) is a well-established isotopic indicator used to assess vascular status in many organ systems. Xenon-133 was used to evaluate male impotence. Xenon-133 was injected subcutaneously at the level of the coronal sulcus in the detumescent state. Using the gamma camera, sequential images were obtained and computer-generated curves calculated. The clearance time for 50 per cent washout of the injected /sup 133/Xe (T1/2) was then calculated for each patient, as well as a control group. Preliminary findings indicate a correlation with such established techniques of evaluating erectile impotence as history, physical examination, penile pulse Doppler tracings, and brachial-penile blood pressure index. The xenon-133 washout study was a rapid, minimally invasive, reproducible, and cost-effective method of screening those impotent patients for vasculogenic etiology of their erectile impotence. We recommend the addition of this method to the surgeon engaged in the care of impotent males.

  16. Effects of xenon irradiation of the stellate ganglion region on fibromyalgia.

    PubMed

    Nakajima, Fukami; Komoda, Akihiro; Aratani, Satoko; Fujita, Hidetoshi; Kawate, Mariko; Nakatani, Kou; Akiyama, Masako; Makita, Koshi; Nakajima, Toshihiro

    2015-01-01

    [Purpose] The aim of the study was to determine the effect of xenon irradiation of the stellate ganglion region on fibromyalgia. [Subjects] The study included 5 men and 22 women (age, 56.4 16.3?years [range, 25-84?years]) who were diagnosed with fibromyalgia according to the modified 2010 criteria of the American College of Rheumatology between July and August 2013. [Methods] Bilateral xenon light irradiation (0.38-1.1 ?m) around the stellate ganglion was performed in the supine position by physical therapists using a xenon phototherapy device. We evaluated pain before and after irradiation using the visual analogue scale. [Results] We did not observe a relationship between the change in the visual analogue scale score and duration of fibromyalgia. However, we observed a relationship between the change in the visual analogue scale score and the score for the Japanese version of the Fibromyalgia Impact Questionnaire using the Cochran-Armitage test for trend. [Conclusion] Xenon light irradiation of the stellate ganglion significantly decreased the visual analogue scale score in patients with fibromyalgia having a higher score in the Fibromyalgia Impact Questionnaire, suggesting that a stronger effect could be obtained in patients with more severe fibromyalgia. PMID:25642075

  17. Extreme ultraviolet spectra of highly charged xenon observed with an electron beam ion trap

    NASA Astrophysics Data System (ADS)

    Osin, D.; Reader, J.; Gillaspy, J. D.; Ralchenko, Yu

    2012-12-01

    Extreme ultraviolet spectra of highly charged xenon atoms were produced with an electron beam ion trap (EBIT) at the National Institute of Standards and Technology and recorded with a flat-field grazing-incidence spectrometer. The spectra were measured in the wavelength range 4.5-19.5 nm as the beam energy was varied between 1.5 and 5.9 keV. Different ionization stages were enhanced at the various beam energies. Wavelength calibration was provided by spectra of highly charged neon, argon and iron, as well as previously measured lines of highly charged xenon. Identifications of strong n = 3-n = 3 transitions from Ni-like xenon (26+) to Na-like xenon (43+) were determined with the aid of collisional-radiative modelling of the EBIT plasma, which provided good quantitative agreement between simulated and measured spectra. About 50 lines were identified, 30 of which are new. Seven of these lines represent magnetic-dipole transitions within the 3s23pn ground configurations, and one is an electric-quadrupole transition within the 3s23p2 ground configuration of the Si-like ion. A list of adopted wavelengths used as calibration standards is given in the appendix.

  18. Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping

    NASA Astrophysics Data System (ADS)

    Wahl, C. G.; Bernard, E. P.; Lippincott, W. H.; Nikkel, J. A.; Shin, Y.; McKinsey, D. N.

    2014-06-01

    Liquid-argon scintillation detectors are used in fundamental physics experiments and are being considered for security applications. Previous studies have suggested that the addition of small amounts of xenon dopant improves performance in light or signal yield, energy resolution, and particle discrimination. In this study, we investigate the detector response for xenon dopant concentrations from 9 5 ppm to 1100 500 ppm xenon (by weight) in 6 steps. The 3.14-liter detector uses tetraphenyl butadiene (TPB) wavelength shifter with dual photomultiplier tubes and is operated in single-phase mode. Gamma-ray-interaction signal yield of 4.0 0.1 photoelectrons/keV improved to 5.0 0.1 photoelectrons/keV with dopant. Energy resolution at 662 keV improved from (4.4 0.2)% (?) to (3.5 0.2)% (?) with dopant. Pulse-shape discrimination performance degraded greatly at the first addition of dopant, slightly improved with additional additions, then rapidly improved near the end of our dopant range, with performance becoming slightly better than pure argon at the highest tested dopant concentration. Some evidence of reduced neutron scintillation efficiency with increasing dopant concentration was observed. Finally, the waveform shape outside the TPB region is discussed, suggesting that the contribution to the waveform from xenon-produced light is primarily in the last portion of the slow component.

  19. Resonance ionization spectroscopy of argon, krypton, and xenon using vacuum ultraviolet light

    SciTech Connect

    Kramer, S.D.

    1984-04-01

    Resonant, single-photon excitation of ground state inert gases requires light in the vacuum ultraviolet spectral region. This paper discusses methods for generating this light. Efficient schemes for ionizing argon, krypton, and xenon using resonant, stepwise single-photon excitation are presented.

  20. A cryogenic facility for testing the PMTs of the MEG liquid xenon calorimeter

    NASA Astrophysics Data System (ADS)

    Baldini, A. M.; Bemporad, C.; Cei, F.; Gallucci, G.; Grassi, M.; Nicol, D.; Papa, A.; Pazzi, R.; Sergiampietri, F.; Signorelli, G.

    2006-10-01

    We built and operated a cryogenic facility for testing in liquid xenon the photomultipliers (PMTs) to be used in the electromagnetic calorimeter of the MEG experiment. In this paper we describe the working principle of the facility and we report on the characteristics measured for some PMTs.

  1. Pressure-induced bonding and compound formation in xenon?hydrogen solids

    SciTech Connect

    Somayazulu, Maddury; Dera, Przemyslaw; Goncharov, Alexander F.; Gramsch, Stephen A.; Liermann, Peter; Yang, Wenge; Liu, Zhenxian; Mao, Ho-kwang; Hemley, Russell J.

    2010-11-03

    Closed electron shell systems, such as hydrogen, nitrogen or group 18 elements, can form weakly bound stoichiometric compounds at high pressures. An understanding of the stability of these van der Waals compounds is lacking, as is information on the nature of their interatomic interactions. We describe the formation of a stable compound in the Xe-H{sub 2} binary system, revealed by a suite of X-ray diffraction and optical spectroscopy measurements. At 4.8 GPa, a unique hydrogen-rich structure forms that can be viewed as a tripled solid hydrogen lattice modulated by layers of xenon, consisting of xenon dimers. Varying the applied pressure tunes the Xe-Xe distances in the solid over a broad range from that of an expanded xenon lattice to the distances observed in metallic xenon at megabar pressures. Infrared and Raman spectra indicate a weakening of the intramolecular covalent bond as well as persistence of semiconducting behaviour in the compound to at least 255 GPa.

  2. High-voltage power supply with improved thermostability for Xenon gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Petrenko, D.; Uteshev, Z.; Novikov, A.; Shustov, A.; Vlasik, K.; Chernysheva, I.; Smirnova, M.; Krivova, K.; Dmitrenko, V.; Ulin, S.

    2016-02-01

    In this article the high voltage power supply for xenon spectrometer is described. Result of time simulation for output voltage at different temperatures was shown. The experimental data is confirming results of the time simulations. The experimental data showed breadboard model provides a stability of voltage better than 1% of the generated voltage at different temperatures

  3. Isotopically anomalous xenon in meteorites - A new clue to its origin

    NASA Astrophysics Data System (ADS)

    Lewis, R. S.; Anders, E.

    1981-08-01

    The CCF xenon component in primitive meteorites, which has been attributed either to fission of a superheavy element or to nucleosynthesis in a supernova, does not show the large enrichment in Xe-129 (from decay of 16 Myr I-129) expected for supernova ejecta. Although this problem can be circumvented by ad hoc assumptions, a fission origin of CCFXe seems more likely.

  4. Effects of xenon cover gas in CO/sub 2/ laser welding

    SciTech Connect

    Hendrix, T.L.

    1980-07-01

    Weld spatter in CO/sub 2/ laser welding is detrimental to miniature components. The effects of using xenon gas as an inert laser welding atmosphere to reduce weld spatter are discussed. The laser plume characteristics, weld penetration, and weld spatter are evaluated.

  5. XENON100 exclusion limit without considering Leff as a nuisance parameter

    NASA Astrophysics Data System (ADS)

    Davis, Jonathan H.; Bœhm, Céline; Oppermann, Niels; Ensslin, Torsten; Lacroix, Thomas

    2012-07-01

    In 2011, the XENON100 experiment has set unprecedented constraints on dark matter-nucleon interactions, excluding dark matter candidates with masses down to 6 GeV if the corresponding cross section is larger than 10-39cm2. The dependence of the exclusion limit in terms of the scintillation efficiency (Leff) has been debated at length. To overcome possible criticisms XENON100 performed an analysis in which Leff was considered as a nuisance parameter and its uncertainties were profiled out by using a Gaussian likelihood in which the mean value corresponds to the best fit Leff value (smoothly extrapolated to 0 below 3 keVnr). Although such a method seems fairly robust, it does not account for more extreme types of extrapolation nor does it enable us to anticipate how much the exclusion limit would vary if new data were to support a flat behavior for Leff below 3 keVnr, for example. Yet, such a question is crucial for light dark matter models which are close to the published XENON100 limit. To answer this issue, we use a maximum likelihood ratio analysis, as done by the XENON100 Collaboration, but do not consider Leff as a nuisance parameter. Instead, Leff is obtained directly from the fits to the data. This enables us to define frequentist confidence intervals by marginalizing over Leff.

  6. Carbon dioxide and climate

    SciTech Connect

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  7. Ion-Molecule Reactions in Gas Phase Radiation Chemistry.

    ERIC Educational Resources Information Center

    Willis, Clive

    1981-01-01

    Discusses some aspects of the radiation chemistry of gases, focusing on the ion-molecule and charge neutralization reactions which set study of the gas phase apart. Uses three examples that illustrate radiolysis, describing the radiolysis of (1) oxygen, (2) carbon dioxide, and (3) acetylene. (CS)

  8. Electrochemical cell for obtaining oxygen from carbon dioxide atmospheres

    NASA Technical Reports Server (NTRS)

    Hooker, M. W.; Rast, H. E.; Rogers, D. K.

    1989-01-01

    For manned missions to Mars to become a reality, an efficient and reliable means of obtaining oxygen from the carbon dioxide-rich atmosphere will be required. Otherwise, the high cost of transporting the oxygen needed to sustain the astronauts will severely restrict the expedition to the martian surface. Recently, the use of electrochemical devices has been explored as a means of obtaining oxygen from the carbon dioxide-rich atmosphere. In these devices, oxygen ions diffuse through solid oxide membranes, thus, separating oxygen from the other gases presented. This phenomenon has only recently been explored as a means of obtaining large quantities of oxygen from toxic atmospheres, although first observed by Walter nernst in 1899. Nernst observed that stabilized zirconia will conduct oxygen ions when an electrical potential is applied across metallic electrodes applied to the ceramic membrane. Diatomic oxygen molecules are dissociated at the positive electrode/electrolyte interface. The oxygen ions enter the ceramic body due to the ion density gradient which is produced by the electrical potential across the electrolytic membrane. Once the ions have diffused through the membrane, they reform diatomic oxygen molecules at the anode. The separation of oxygen from carbon dioxide is achieved by the combination of thermal and electrochemical processes. The thermal decomposition of carbon dioxide (at 1000 C) results in the production of carbon monoxide and oxygen by the reaction.

  9. Coral reefs and carbon dioxide

    SciTech Connect

    Buddemeier, R.W.

    1996-03-01

    This commentary argues the conclusion from a previous article, which investigates diurnal changes in carbon dioxide partial pressure and community metabolism on coral reefs, that coral `reefs might serve as a sink, not a source, for atmospheric carbon dioxide.` Commentaries from two groups are given along with the response by the original authors, Kayanne et al. 27 refs.

  10. Physics of Molecules

    NASA Astrophysics Data System (ADS)

    Williams, D.; Murdin, P.

    2000-11-01

    Many varieties of molecule have been detected in the Milky Way and in other galaxies. The processes by which these molecules are formed and destroyed are now broadly understood (see INTERSTELLAR CHEMISTRY). These molecules are important components of galaxies in two ways. Firstly, radiation emitted by molecules enables us to trace the presence of diffuse gas, to infer its physical properties and ...

  11. Phase behavior of mixed submonolayer films of krypton and xenon on graphite.

    PubMed

    Patrykiejew, A; Soko?owski, S

    2012-04-14

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (?3?3)R30 phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point). PMID:22502538

  12. Simultaneous measurement of ionization and scintillation from nuclear recoils in liquid xenon for a dark matter experiment.

    PubMed

    Aprile, E; Dahl, C E; de Viveiros, L; Gaitskell, R J; Giboni, K L; Kwong, J; Majewski, P; Ni, K; Shutt, T; Yamashita, M

    2006-08-25

    We report the first measurements of the absolute ionization yield of nuclear recoils in liquid xenon, as a function of energy and electric field. Independent experiments were carried out with two dual-phase time-projection chamber prototypes, developed for the XENON dark matter project. We find that the charge yield increases with decreasing recoil energy, and exhibits only a weak field dependence. These results are the first unambiguous demonstration of the capability of dual-phase xenon detectors to discriminate between electron and nuclear recoils down to 20 keV, a key requirement for a sensitive dark matter search. PMID:17026288

  13. Sol-gel method for encapsulating molecules

    DOEpatents

    Brinker, C. Jeffrey (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Bhatia, Rimple (Albuquerque, NM); Singh, Anup K. (San Francisco, CA)

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  14. Novel nuclear magnetic resonance techniques for studying biological molecules

    SciTech Connect

    Laws, David D.

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone ({phi}/{psi}) dihedral angles by comparing experimentally determined {sup 13}C{sub a}, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of {alpha}-helical and {beta}-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly {beta}-sheet.

  15. Uranium dioxide electrolysis

    DOEpatents

    Willit, James L. (Batavia, IL); Ackerman, John P. (Prescott, AZ); Williamson, Mark A. (Naperville, IL)

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  16. Carbon Dioxide Landscape

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 July 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a mid-summer view of the south polar residual cap at full MOC resolution, 1.5 m (5 ft) per pixel. During each of the three summers since the start of the MGS mapping mission in March 1999, the scarps that form mesas and pits in the 'Swiss cheese'-like south polar terrain have retreated an average of about 3 meters (1 yard). The material is frozen carbon dioxide; another 3 meters or so of each scarp is expected to be removed during the next summer, in late 2005. This image is located near 86.0oS, 350.8oW, and covers an area about 1.5 km (0.9 mi) wide. Sunlight illuminates the scene from the top/upper left.

  17. Dynamics of pluotinum dioxide

    NASA Astrophysics Data System (ADS)

    Goel, Prabhatasree; Mittal, R.; Chaplot, S. L.

    2012-06-01

    We report lattice and molecular dynamics studies on the vibrational and thermodynamic properties of PuO2. We have used a transferable interatomic model to understand the properties of the compound. Our computed elastic data, structure and specific heat are in good agreement with reported experimental and first principles results. We observe that plutonium dioxide exhibits fast ion conduction at around 2500 K. The mean square displacements of the oxygen atoms are an order of magnitude greater than that of Pu. The greater amplitude and smaller size of the oxygen ion facilitates its easy diffusion. This behavior is in sync with similar fast ion conduction in other nuclear oxides like UO2 and ThO2.

  18. Forecasting carbon dioxide emissions.

    PubMed

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. PMID:26081307

  19. Geologic Sequestration of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Benson, S. M.

    2003-04-01

    Geologic sequestration of carbon dioxide has emerged as one of the most promising options for making deep cuts in carbon dioxide emissions. Geologic sequestration involves the two-step process of first capturing carbon dioxide by separating it from stack emissions, followed by injection and long term storage in deep geologic formations. Sedimentary basins, including depleted oil and gas reservoirs, deep unminable coal seams, and brine-filled formations, provide the most attractive storage reservoirs. Over the past few years significant advances have been made in this technology, including development of simulation models and monitoring systems, implementation of commercial scale demonstration projects, and investigation of natural and industrial analogues for geologic storage of carbon dioxide. While much has been accomplished in a short time, there are many questions that must be answered before this technology can be employed on the scale needed to make significant reductions in carbon dioxide emissions. Questions such as how long must the carbon dioxide remain underground, to what extent will geochemical reactions completely immobilize the carbon dioxide, what can be done in the event that a storage site begins to leak at an unacceptable rate, what is the appropriate risk assessment, regulatory and legal framework, and will the public view this option favorably? This paper will present recent advances in the scientific and technological underpinnings of geologic sequestration and identify areas where additional information is needed.

  20. Enhanced carbon dioxide adsorption through carbon nanoscrolls.

    PubMed

    Mantzalis, Dimitrios; Asproulis, Nikolaos; Drikakis, Dimitris

    2011-12-01

    Over the last few years, significant efforts have been devoted to exploring the capabilities of carbon based structures for gas separation and filtration. In the present study the layering behavior of carbon dioxide transported through carbon nanoscrolls is examined through molecular dynamics simulations. The layering arrangements are investigated for carbon nanoscrolls with intralayer distances spanning from 4.2 to 8.3 Å at temperature of 300 K and pressures ranging from 5 to 20 bars. Characteristic layering structures are developed around the internal and external surfaces of the nanoscroll for all the examined cases. It is shown that the number of layers, their relative strength, and the starting point of bifurcation phenomena vary as a function of the nanoscrolls' intralayer distance, scroll's core radius, CO2 density, and gas structure interactions. It is also shown that the number of carbon dioxide molecules adsorbed per scroll's carbon particles is a function of the scroll's surface-to-volume ratio and is maximized under certain structural configurations. PMID:22304187

  1. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  2. Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures

    SciTech Connect

    Baksht, E Kh; Lomaev, Mikhail I; Rybka, D V; Tarasenko, Viktor F

    2006-06-30

    The emission properties of a volume nanosecond discharge plasma produced in xenon, krypton and argon at high pressures in a discharge gap with a cathode having a small radius of curvature are studied. Spectra in the range 120-850 nm and amplitude-time characteristics of xenon emission at different regimes and excitation techniques are recorded and analysed. It is shown that upon excitation of the volume discharge initiated by a beam of avalanche electrons, at least 90% of the energy in the spectral range 120-850 nm is emitted by xenon dimers. For xenon at a pressure of 1.2 atm, {approx}45 mJ of the spontaneous emission energy was obtained in the full solid angle in a pulse with the full width at half-maximum {approx}130 ns. (laser applications and other topics in quantum electronics)

  3. Studies of K-Ar dating and xenon from extinct radioactivities in breccia 14318; implications for early lunar history

    NASA Technical Reports Server (NTRS)

    Reynolds, J. H.; Alexander, E. C., Jr.; Davis, P. K.; Srinivasan, B.

    1974-01-01

    The lunar breccia 14318 is one of three Apollo-14 breccias containing substantial amounts of parentless xenon from the spontaneous fission of extinct Pu-244. The argon and xenon contained in this breccia were studied by stepwise heating of pristine and neutron-irradiated samples. The isotopic composition of xenon from fission, determined by an improved method, is shown to be from Pu-244. Concentrations of this fissiogenic xenon are in substantial excess (15-fold) of what could be produced by spontaneous fission of U-238. The breccia is found to contain abundant trapped argon with an Ar-40/Ar-36 ratio of roughly 14. Otherwise, the argon is radiogenic and gives a convincing K-Ar age of 3.69 plus or minus 0.09 b.y. by the stepwise Ar-40/Ar-39 method, nearly in agreement with ages for other Apollo-14 breccias.

  4. The Development of the improved equipment for the measurement radionuclides of xenon in atmospheric air

    NASA Astrophysics Data System (ADS)

    Pakhomov, S. A.; Dubasov, Y. V.

    2009-04-01

    The Radium Khlopin Institute have developed the mobile (vehicle based) equipment attended for the providing of the monitoring of radioactive xenon isotopes in atmospheric air on territories, neighboring with NPP. This equipment comprises the improved sampling installation with sample-processing unit and specialized spectrometer of ?-?-coincidences. The principal specificity of sampling installation is the using of the gas-cooling machine attended for the reaching of the cryogenic temperatures, which works without helium, using for cooling the processed air itself. The capacity of sampling reaches 20 cubic meters per hour with the xenon extraction factor of 75%. The duration of the sampling cycle forms 3 - 7 hours depending of the xenon volume requirements. The sample-processing unit is designed on preparative gas chromatograph scheme. Duration of sample-processing procedure does not exceed one and half hour. The volume of the prepared sample is around half liter, it contains 3 - 7 cubic centimeters of the xenon, depending of sampling cycle time. For measurements of xenon radioisotopes containing in obtained sample, was developed a ?-?-coincidences spectrometer on the base of the "ORTEC" HP Ge detector equipped with scintillation ?-detector designed as Marinelli chamber of 700 cm3 volume. This spectrometer allows to reduce the ambient background more than in 20 times, with ?-channel efficiency reduction not more than in 1.5 times. The minimum detectable activity of 133?? (MDA), evaluated by Currie formula for probability 95 % is 0.05 Bq at the exposition of 20 hours. Spectrometer is also intended for determination of the stable krypton and xenon concentrations in ?-chamber by X-ray-fluorescent method. Therefore, in a shield of the spectrometer collimating pinhole is made and 241Am source is installed. To improve the sensitivity of the analysis beryllium window is made in ?-chamber wall, adjoining to the HPGe detector. X-ray-fluorescent analysis allows to surely define Xe volumetric concentration of 0.05% in ?-cell, that is equivalent less then 0,5 cm3 of Xe. The first approbation of described equipment was fulfilled in St. Petersburg at autumn of 2007 year and have shown that the spectrometer allows to measure 133Xe concentration at the level of 2 mBq/m3, and this value is in a good agreement with the results of other measurements. Described equipment was practically approbated in field conditions on 2008 year during the expeditionary work carryout in Sosnovyi Bor, Udomlya and Polyarnie Zori - the cities of North-West of Russia, which are located in close neighboring with acting NPP.

  5. The microporous structure of coals and a microporous carbon studied using xenon-129 NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Anderson, Stasia A.

    sp{129}Xe nuclear magnetic resonance spectroscopy of xenon gas adsorbed in coal is used to describe coal microporous structure. Emphasis is on establishing micropore diameter, whether pores are open, the type of connectivity, and changes associated with coal rank. Pressure dependent sp{129}Xe NMR spectra were acquired for a rank-varied set of coals. Micropore diameters calculated from the spectra range from 5.6 to 7.5 A and are related to coal rank. Signal linewidths decrease with increasing coal rank. The packing density of powdered coal affected the spectral appearance. Micropore diameters were also calculated for a microporous carbon before and after pore-size alteration. Selective low power presaturation of the adsorbed xenon signal for four coals produces a hole-burning effect in the spectra indicating that the signal is composed of a series of overlapped chemical shifts. Saturation transfer to the external gas signal, (which most likely originates from xenon in large pores) is observed as presaturation time is increased. Saturation transfer occurs significantly faster in two low-rank than in two higher-rank coals. The process of xenon adsorption was monitored by acquisition of sp{129}Xe NMR during adsorption. Equilibrium is achieved faster in smaller particle size anthracite than in larger, and for either, the time is slower than for the microporous carbon. The external xenon is observed only in the larger particle size and loses intensity as the internally-adsorbed xenon increases. No intermediate signal location is indicated prior to equilibrium. These experiments indicate coal porosity is open and that it constitutes a constricted network. The degree of constriction is higher in coals over ˜89% carbon. Microporosity in low-rank coals is consistent with a dendritic pore structure. For higher rank coals over 89% carbon, the microporosity is more isolated and is open via constricted micropores but lacks a route through larger pores. Smaller particle size anthracite has less constriction in its porosity than larger particle size, and may also have less larger porosity or fracture.

  6. Molecular dynamics simulations of carbon dioxide and water at an ionic liquid interface.

    PubMed

    Perez-Blanco, Marcos E; Maginn, Edward J

    2011-09-01

    The ionic liquid-carbon dioxide system is of interest because ionic liquids (ILs) have potential to be used for carbon dioxide capture. Because water will be present in a real carbon dioxide capture operation, the interaction between water and the IL is also of interest. Classical molecular dynamics simulations have been used to study the IL 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (bmim-Tf(2)N) at the interface with vacuum as well as with carbon dioxide, water, or both present in the system. Density and orientational ordering of the ionic liquid molecules at the interface was not significantly altered by the presence of either carbon dioxide or water. The structure of the liquid solutions in the pseudobulk region in the center of the slab was studied using metrics of pairwise association such as radial distribution functions. At the interface, there is an increased density of cation-anion association. When carbon dioxide is present, it forms a dense layer on the surface, and the cation-anion associations at the interface are disrupted, with a corresponding decrease in surface tension. Water slows down the diffusion of the ions as well as carbon dioxide in the bulk. Water has little effect, however, on the interfacial transport dynamics of carbon dioxide. PMID:21800915

  7. Xenon migration in UO2 under irradiation studied by SIMS profilometry

    NASA Astrophysics Data System (ADS)

    Marchand, B.; Moncoffre, N.; Pipon, Y.; Brerd, N.; Garnier, C.; Raimbault, L.; Sainsot, P.; Epicier, T.; Delafoy, C.; Fraczkiewicz, M.; Gaillard, C.; Toulhoat, N.; Perrat-Mabilon, A.; Peaucelle, C.

    2013-09-01

    During Pressurized Water Reactor operation, around 25% of the created Fission Products (FP) are Xenon and Krypton. They have a low solubility in the nuclear fuel and can either (i) agglomerate into bubbles which induce mechanical stress in the fuel pellets or (ii) be released from the pellets, increasing the pressure within the cladding and decreasing the thermal conductivity of the gap between pellets and cladding. After fifty years of studies on the nuclear fuel, all mechanisms of Fission Gas Release (FGR) are still not fully understood. This paper aims at studying the FGR mechanisms by decoupling thermal and irradiation effects and by assessing the Xenon behavior for the first time by profilometry. Samples are first implanted with 136Xe at 800 keV corresponding to a projected range of 140 nm. They are then either annealed in the temperature range 1400-1600 C, or irradiated with heavy energy ions (182 MeV Iodine) at Room Temperature (RT), 600 C or 1000 C. Depth profiles of implanted Xenon in UO2 are determined by Secondary Ion Mass Spectrometry (SIMS). It is shown that Xenon is mobile during irradiation at 1000 C. In contrast, thermal treatments do not induce any Xenon migration process: these results are correlated to the formation of Xenon bubbles observed by Transmission Electron Microscopy. At depths lower than about 40 nm (zone 1), no bubbles are observed, At depths in between 40 nm and 110 nm (zone 2), a large number of small bubbles (around 2 nm in diameter) can be observed. By comparing with the SRIM profile, it appears that this area corresponds to the maximum of the defect profile, The third zone displays two bubble populations. The first population has the same size than the bubbles present in zone 2. The bubble size of the second population is significantly larger (up to around 10 nm). A STEM micrograph is presented in Fig. 4. It highlights the Xenon bubbles more clearly. It appears that the largest bubbles are located mainly near dislocations which are predominantly in zone 3. TEM micrographs obtained on the samples annealed at 1400 C (not shown here) show only small sized bubbles (around 2 nm). The presence of these bubbles could explain that no Xenon migration occurs even after annealing at 1600 C during 16 h. Moreover, concerning Xe thermal resolution, this can only occur if the bubble is overpressurized [21]. It was shown by Martin et al. [22] that at high temperature (over 1400 C) non pressurized aggregates are observed. So in our experiments, Xe thermal resolution is unlikely.The bubble sizes measured after 1400 C and 1600 C annealing are in agreement with literature data, in particular, with those of Michel et al. [23] obtained in Xenon implanted UO2 samples. Indeed they observed 1 nm sized bubbles at 600 C, which could reach 3 nm at 1400 C. Either conditions of the Neumann type for which the surface is impermeable which means that the Xenon flux is equal to zero and can be expressed by Eq. (2). {dC}/{dx}|surface=0 Or conditions of the Dirichlet type with a constant Xenon concentration at the surface expressed by Eq. (3). C(0,t)=constant We chose Neumann conditions since we observed a slight increase of Xenon concentration at the surface for the profiles of the samples irradiated at 600 C and at 1000 C. In order to simulate the evolution of the Xenon concentration profiles, as-implanted profiles were first fitted with Gaussian shaped curves. The evolution of these curves was then simulated by using the one dimensional finite difference method. Therefore, the total depth profile was discretized into 1.5 nm slices. D, v, k parameters were thus deduced from successive iterations until the final profile is correctly fitted. It is important to keep in mind that each migration mechanism induces a particular modification of the profile shape: a broadening is characteristic of a diffusion process, a profile shift is significant of a transport process and an area decrease means a release mechanism. Consequently, only one set of parameters can allow a correct fit of the final profile

  8. Development of a high-resolution room-temperature compressed-xenon cylindrical ionization-chamber gamma radiation detector

    NASA Astrophysics Data System (ADS)

    Tepper, Gary C.; Losee, Jon R.; Palmer, Robert L.

    1998-07-01

    Highly compressed and purified xenon is emerging as an important detection medium for high resolution, room temperature gamma radiation spectroscopy. Detectors based on compressed xenon offer a unique combination of thermal stability, high energy resolution and large volume. Furthermore, fluid based detectors are not susceptible to radiation damage, and can be constructed in a variety of geometries. However, some important factors have delayed the development of practical xenon detectors for widespread use. These factors include the relatively high operational pressures and voltages and the need to maintain extremely high xenon purity. We have recently developed a 0.7 liter gridded ionization chamber xenon gamma radiation detector in a cylindrical geometry. The detector operates at room temperature and provides an intrinsic energy resolution of 1.8% at 662 keV which is five times greater than scintillation based spectrometers. The detector design and performance variables are discussed in comparison to a previous detector constructed in a planar geometry. Our results indicate that practical xenon detectors can now be developed for a wide variety of applications.

  9. Reducing carbon dioxide to products

    DOEpatents

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  10. Tunable pulsed carbon dioxide laser

    NASA Technical Reports Server (NTRS)

    Megie, G. J.; Menzies, R. T.

    1981-01-01

    Transverse electrically-excited-atmosphere (TEA) laser is continuously tunable over several hundred megahertz about centers of spectral lines of carbon dioxide. It is operated in single longitudinal mode (SLM) by injection of beam from continuous-wave, tunable-waveguide carbon dioxide laser, which serves as master frequency-control oscillator. Device measures absorption line of ozone; with adjustments, it is applicable to monitoring of atmospheric trace species.

  11. Recuperative supercritical carbon dioxide cycle

    SciTech Connect

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  12. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    SciTech Connect

    Gulati, P.; Prakash, R.; Pal, U. N.; Kumar, M.; Vyas, V.

    2014-07-07

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308?nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl{sub 2} deteriorates the performance of the developed source and around 2% Cl{sub 2} in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  13. A liquid xenon imaging telescope for 1-30 MeV gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Aprile, Elena; Mukherjee, Reshmi; Suzuki, Masayo

    1989-01-01

    A study of the primary scintillation light in liquid xenon excited by 241 Am alpha particles and 207 Bi internal conversion electrons are discussed. The time dependence and the intensity of the light at different field strengths have been measured with a specifically designed chamber, equipped with a CaF sub 2 light transmitting window coupled to a UV sensitive PMT. The time correlation between the fast light signal and the charge signal shows that the scintillation signals produced in liquid xenon by ionizing particles provides an ideal trigger in a Time Projection type LXe detector aiming at full imaging of complex gamma-ray events. Researchers also started Monte Carlo calculations to establish the performance of a LXe imaging telescope for high energy gamma-rays.

  14. Xenon gamma-ray spectrometer in the experiment Signal on board the spacecraft Interhelioprobe

    NASA Astrophysics Data System (ADS)

    Novikov, Alexander S.; Ulin, Sergey E.; Dmitrenko, Valery V.; Grachev, Victor M.; Stekhanov, Viktor N.; Vlasik, Konstantin F.; Uteshev, Ziyaetdin M.; Chernysheva, Irina V.; Shustov, Alexander E.; Petrenko, Denis V.

    2015-08-01

    In the experiment SIGNAL, which is planned to take place on board spacecraft INTERHELIOPROBE, a xenon gammaray spectrometer is to be used. The gamma-ray spectrometer in question has been chosen because of its characteristics permitting detailed study of solar gamma-radiation under rough experimental conditions. The equipment is able to provide: high energy resolution (5-6-fold better than that of scintillation detectors), performance at high temperatures, steady operation under significant vibroacoustic load, and high radiation resistance of the working medium. The aforesaid properties of the xenon gamma-ray spectrometer meet goals and objectives of the experiment SIGNAL. The description of ballistics scenario and operation orbit of the INTERHELIOPROBE spacecraft (SC) are presented.

  15. Xenon and halogenated alkanes track putative substrate binding cavities in the soluble methane monooxygenase hydroxylase.

    PubMed

    Whittington, D A; Rosenzweig, A C; Frederick, C A; Lippard, S J

    2001-03-27

    To investigate the role of protein cavities in facilitating movement of the substrates, methane and dioxygen, in the soluble methane monooxygenase hydroxylase (MMOH), we determined the X-ray structures of MMOH from Methylococcus capsulatus (Bath) cocrystallized with dibromomethane or iodoethane, or by using crystals pressurized with xenon gas. The halogenated alkanes bind in two cavities within the alpha-subunit that extend from one surface of the protein to the buried dinuclear iron active site. Two additional binding sites were located in the beta-subunit. Pressurization of two crystal forms of MMOH with xenon resulted in the identification of six binding sites located exclusively in the alpha-subunit. These results indicate that hydrophobic species bind preferentially in preexisting cavities in MMOH and support the hypothesis that such cavities may play a functional role in sequestering and enhancing the availability of the physiological substrates for reaction at the active site. PMID:11297413

  16. Melting transition of submonolayer xenon, krypton, and argon films on graphite: A computer simulation study

    NASA Astrophysics Data System (ADS)

    Abraham, Farid F.

    1983-12-01

    Using the molecular dynamics simulation technique, I have studied the melting of submonolayer xenon, krypton, and argon films on graphite. I observe first-order melting of xenon which mimics the melting of an idealized two-dimensional film, first-order melting of krypton with the existence of an "incipient triple point," and continuous melting of argon over a temperature interval of approximately 7 K. The role of the graphite lateral substrate structure on the melting of these various rare-gas films is emphasized. The simulation experiments are consistent with a recent high-resolution x-ray experiment of melting by McTague et al.

    [Phys. Rev. B 25, 7765 (1982)].

  17. a Study of Collisional Deactivation of Two-Photon Laser Excited Xenon Atoms

    NASA Astrophysics Data System (ADS)

    Bowering, Norbert Rudolf

    Xenon atoms and collision pairs of the 6p manifold are excited selectively by two-photon excitation using a computer-controlled frequency doubled narrow-band dye laser. The laser-induced fluorescence of the excited states is analyzed with spectral and temporal resolution. The deactivation characteristics of directly excited states and of states populated by cascade is studied by measuring the lifetimes and total quench rates. State-to-state reaction rates are obtained by combining these results with time -integrated data. The line shapes are analyzed in detail to study the half-collision dynamics. Selective quenching due to potential crossings is observed as xenon pairs are excited during a collision.

  18. The missing modes of self-organization in cathode boundary layer discharge in xenon

    NASA Astrophysics Data System (ADS)

    Zhu, WeiDong; Niraula, Prajwal

    2014-10-01

    Self-organized pattern formation has been previously observed in cathode boundary layer discharges (CBLDs) in high-purity xenon gas at pressures ranging from about 60 Torr to atmospheric pressure. However, certain modes predicted by the COMSOL multiphysics simulation were never observed. In this paper, using the same reactor design, we managed to fine tune the discharge current into regions that were not fully explored before. Two new self-organized patterns were observed, at the verge of the extinguishing of the self-organization. One pattern was a perfect ring that was detached from the dielectric walls. The other pattern was a series elongated spots arranged along a circle. Both patterns were preferably observed at pressures ranging from 60 to 120 Torr. The observation of these patterns may open up new discussions to the self-organized pattern formation in CBLD in xenon.

  19. Laser-induced optical activity in range of Rydberg autoionizing states of xenon

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Magunov, A. I.; Strakhova, S. I.

    2010-07-01

    Optical activity of xenon atoms in the vacuum UV range induced by circularly polarized laser light is studied theoretically. The optical activity arises in the vicinity of the autoionizing state 5 p 5(2 P 1/2)8 s' left[ {frac{1} {2}} right]_1 as a result of its coupling via the laser field with the discrete state 5 p 5(2 P 3/2)7 p left[ {frac{1} {2}} right]_1 . Polarization variations of the vacuum UV radiation upon its propagation through the atomic medium are calculated, and the possibility of controlling this polarization is discussed. Manifestations of nonresonant coupling of the discrete state with the broad autoionizing state 5 p 5(2 P 1/2)6 d' left[ {frac{1} {2}} right]_1 induced by the overlap of the Rydberg autoionizing series in xenon are studied.

  20. PERFORMANCE OF A LIQUID XENON CALORIMETER CRYOGENIC SYSTEM FOR THE MEG EXPERIMENT

    SciTech Connect

    Haruyama, T.; Kasami, K.; Hisamitsu, Y.; Iwamoto, T.; Mihara, S.; Mori, T.; Nishiguchi, H.; Otani, W.; Sawada, R.; Uchiyama, Y.; Nishitani, T.

    2008-03-16

    The {mu}-particle rare decay physics experiment, the MU-E-GAMMA (MEG) experiment, will soon be operational at the Paul Scherrer Institute in Zurich. To achieve the extremely high sensitivity required to detect gamma rays, 800 L of liquid xenon is used as the medium in the calorimeter, viewed by 830 photomultiplier tubes (PMT) immersed in it. The required liquid xenon purity is of the order of ppb of water, and is obtained by using a cryogenic centrifugal pump and cold molecular sieves. The heat load of the calorimeter at 165 K is to be approximately 120 W, which is removed by a pulse-tube cryocooler developed at KEK and built by Iwatani Industrial Gas Corp., with a cooling power of about 200 W at 165 K. The cryogenic system is also equipped with a 1000-L dewar. This paper describes the results of an initial performance test of each cryogenic component.

  1. Radiogenic Xenon-129 in Silicate Inclusions in the Campo Del Cielo Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Meshik, A.; Kurat, G.; Pravdivtseva, O.; Hohenberg, C. M.

    2004-01-01

    Iron meteorites present a challenge for the I-Xe dating technique because it is usually the inclusions, not metal, that contain radiogenic xenon and iodine. Silicate inclusions are frequent in only types IAB and IIE, and earlier studies of irons have demonstrated that I-Xe system can survive intact in these inclusions preserving valuable age information. Our previous studies of the I-Xe record in pyroxene grains from Toluca iron suggested an intriguing relationship between apparent I-Xe ages and (Mg+Fe)/Fe ratios. The I-Xe system in K-feldspar inclusions from Colomera (IIE) had the fingerprint of slow cooling, with an indicated cooling rate of 2-4 C/Ma. Here we present studies of the iodine-xenon system in a silicate-graphite-metal (SiGrMet) inclusion of the IA Campo del Cielo iron meteorite from the collection of the Museum of Natural History in Vienna.

  2. SAUNAa system for automatic sampling, processing, and analysis of radioactive xenon

    NASA Astrophysics Data System (ADS)

    Ringbom, A.; Larson, T.; Axelsson, A.; Elmgren, K.; Johansson, C.

    2003-08-01

    A system for automatic sampling, processing, and analysis of atmospheric radioxenon has been developed. From an air sample of about 7 m3 collected during 12 h, 0.5 cm3 of xenon is extracted, and the atmospheric activities from the four xenon isotopes 133Xe, 135Xe, 131mXe, and 133mXe are determined with a beta-gamma coincidence technique. The collection is performed using activated charcoal and molecular sieves at ambient temperature. The sample preparation and quantification are performed using preparative gas chromatography. The system was tested under routine conditions for a 5-month period, with average minimum detectable concentrations below 1 mBq/ m3 for all four isotopes.

  3. Absorption of scintillation light in a 100 l liquid xenon ?-ray detector and expected detector performance

    NASA Astrophysics Data System (ADS)

    Baldini, A.; Bemporad, C.; Cei, F.; Doke, T.; Grassi, M.; Grebenuk, A. A.; Grigoriev, D. N.; Haruyama, T.; Kasami, K.; Kikuchi, J.; Maki, A.; Mashimo, T.; Mihara, S.; Mitsuhashi, T.; Mori, T.; Nicol, D.; Nishiguchi, H.; Ootani, W.; Ozone, K.; Papa, A.; Pazzi, R.; Ritt, S.; Sawada, R.; Sergiampietri, F.; Signorelli, G.; Suzuki, S.; Terasawa, K.; Yamashita, M.; Yamashita, S.; Yoshimura, T.; Yuri, Yu.

    2005-06-01

    An 800 l liquid xenon scintillation ?-ray detector is being developed for the MEG experiment which will search for ?+?e+? decay at the Paul Scherrer Institut. Absorption of scintillation light of xenon by impurities might possibly limit the performance of such a detector. We used a 100 l prototype with an active volume of 372372496 mm3 to study the scintillation light absorption. We have developed a method to evaluate the light absorption, separately from elastic scattering of light, by measuring cosmic rays and ? sources. By using a suitable purification technique, an absorption length longer than 100 cm has been achieved. The effects of the light absorption on the energy resolution are estimated by Monte Carlo simulation.

  4. Radiolytic generation of radical cations in xenon matrices. Tetramethylcyclopropane radical cation and its transformations

    SciTech Connect

    Qin, X.Z.; Trifunac, A.D. )

    1990-04-05

    Radiolytic generation of radical cations in xenon matrices containing electron scavengers is illustrated by studying the 1,1,2,2-tetramethylcyclopropane radical cation. Dilute and concentrated solutions of tetramethylcyclopropane in xenon without electron scavengers and neat tetramethylcyclopropane yielded neutral radicals upon {gamma}-irradiation. Speculation on the mechanisms of radical formation is presented. The radical species observed in the {gamma}-irradiation of neat tetramethylcyclopropane appears to be identical with the paramagnetic species observed in CF{sub 2}ClCFCl{sub 2} above 120 K, suggesting that a neutral radical rather than the ring-opened distonic radical cation is observed in the CF{sub 2}ClCFCl{sub 2} matrix.

  5. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    NASA Astrophysics Data System (ADS)

    Gulati, P.; Prakash, R.; Pal, U. N.; Kumar, M.; Vyas, V.

    2014-07-01

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl2 deteriorates the performance of the developed source and around 2% Cl2 in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  6. Development and characterization of a multi-APD xenon electroluminescence TPC

    NASA Astrophysics Data System (ADS)

    Lux, T.; Garcia Soto, A.; Ballester, O.; Bordoni, S.; Gil-Botella, I.; Hamer, N.; Illa, J.; Jover Mañas, G.; Martín-Marí, C.; Palomares, C.; Rico, J.; Sanchez, F.; Santorelli, R.; Verdugo, A.

    2015-03-01

    The performance of an electroluminescence (EL) Time Projection Chamber (TPC) with a multi avalanche photodiode (APD) readout was studied in pure xenon at 3.8 bar. Intercalibration and reconstruction methods were developed and applied to the data yielding energy resolutions as good as 5.3± 0.1% FWHM for 59.5 keV gammas from 241Am. This result was reproduced with a Monte Carlo (MC) based on Geant4 and Penelope which predicted 5.2% FWHM for the used setup. Point resolutions of ≈ 0.5 mm were obtained with a pitch of 15 mm between the APDs. These results show that multi-APD readout is a competitive technology for EL detectors filled with pure xenon.

  7. Numerical simulation of the Zeeman effect in neutral xenon from NIR diode-laser spectroscopy

    SciTech Connect

    Ngom, Baielo B.; Smith, Timothy B.; Huang Wensheng; Gallimore, Alec D.

    2008-07-15

    We present a numerical method for simulating neutral xenon absorption spectra from diode-laser spectroscopy of the Zeeman-split 6S{sup '}[1/2]{yields}6P{sup '}[1/2] line at 834.682 nm-air in a galvatron's plasma. To simulate the spectrum, we apply a Voigt profile to a spectrum of {sigma}-transition lines of even- and odd-numbered isotopes computed from anomalous Zeeman and nonlinear Zeeman hyperfine structure theories, respectively. Simulated spectra agree well with Zeeman-split spectra measured from 30 to 300 G. A commercial nonlinear least-squares solver (LSQNONLIN) returns field strengths and translational plasma kinetic temperatures that minimize the error between simulated and experimental spectra. This work is a preamble to computing magnetic field topology and the speed distribution of neutral xenon particles in the plume of a Hall thruster from diode laser-induced fluorescence.

  8. A field-deployable gamma-ray spectrometer utilizing high pressure xenon

    SciTech Connect

    Smith, G.C.; Mahler, G.J.; Yu, Bo; Kane, W.R.; Lemley, J.R.

    1997-05-01

    Most nuclear materials in the nuclear energy, safeguards, arms control, and nonproliferation regimes emit gamma rays with a unique signature. Currently, two categories of spectrometers are available to evaluate these materials: (1) Semiconductors, with excellent energy resolution, which operate at cryogenic temperatures. (2) Scintillation detectors, which function at ambient temperature, but with poor energy resolution. A detector which functions for extended periods in a range of environments, with an energy resolution superior to that of a scintillation spectrometer, would have evident utility. Recently, in the research community, such a device has evolved, an ionization chamber utilizing xenon gas at very high pressure (60 atm). Its energy resolution, typically, is 20 keV for the 661 keV gamma ray of {sup 137}Cs. With high xenon density and its high atomic number (Z=54), and superior energy resolution, its sensitivity is comparable to that of a scintillator.

  9. Process for manufacturing uranium dioxide powder

    SciTech Connect

    Hasegawa, Sh.I.; Sekine, M.; Takano, E.

    1985-03-19

    A process is described for manufacturing uranium dioxide powder which comprises forming fine uranium dioxide powder having a high sinterability and coarse uranium dioxide powder having a low sinterability continuously in one process by changing periodically the precipitation condition of the ammonium diuranate under the same condition of calcining and reducing of the ammonium diuranate. The thus obtained mixture of these uranium dioxide powders is suitable for uranium dioxide pellets which are a fuel of nuclear power reactor.

  10. Bubble dynamics and sonoluminescence from helium or xenon in mercury and water

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Kato, Kazumi

    2012-09-01

    Numerical simulations of bubble pulsation and sonoluminescence (SL) have been performed for helium or xenon bubbles in mercury and water under the experimental conditions of Futakawa [M. Futakawa, T. Naoe, and M. Kawai, in Nonlinear AcousticsFundamentals and Applications: 18th International Symposium on Nonlinear Acoustics (ISNA 18), AIP Conf. Proc. No. 1022, edited by B. O. Enflo, C. M. Hedberg, and L. Kari (AIP, New York, 2008), p. 197]. The results of the numerical simulations have revealed that the bubble expansion is much larger in water than in mercury mainly because the density of water is one order of magnitude smaller than that of mercury. The SL intensity is higher in water than that in mercury although the maximum bubble temperature is lower. This is caused by the much larger amount of vapor inside a bubble as the saturated vapor pressure of water is four orders of magnitude larger than that of mercury at room temperature. The SL intensity from xenon is much larger than that from helium due both to lower ionization potential and higher bubble temperature due to lower thermal conductivity. The instantaneous SL power may be as large as 200 W from xenon in water. The maximum temperature inside a xenon bubble in mercury may be as high as about 80 000 K. It is suggested that the maximum pressure in mercury due to shock waves emitted from bubbles increases as the SL intensity increases, although they are not simply correlated in water because the amount of water vapor trapped inside a bubble influences the SL intensity in a complex way.

  11. Xenon flash lamp pumped self-frequency doubling NYAB pulsed laser

    NASA Astrophysics Data System (ADS)

    Luo, Zundu; Jiang, Aidong; Huang, Yichuan; Qiu, Minwang

    1989-10-01

    Neodymium doped yttrium aluminum borate (NYAB) crystals with sizes up to 45mm have been grown successfully. NYAB rod of phiv4 12mm was pumped by xenon flash lamp, and several mJ of 0.53?m green laser output was obtained. The oscillation threshold, the pulse duration, the laser beam polarization, and the laser beam divergence were measured to be 78mJ, 100ns, 90% and 2mrad, respectively.

  12. XUV-driven Rabi oscillations with the giant resonance in xenon

    NASA Astrophysics Data System (ADS)

    Pabst, Stefan; Wang, Daochen; Santra, Robin

    2015-05-01

    We look into the possibility of driving Rabi oscillations in the XUV regime. To do so, we exploit the unusually large dipole transition strength in xenon around 100 eV, which is also responsible for the well-known giant dipole resonance. We show what kind of (FEL) pulses are required to achieve a Rabi period shorter than the lifetime of the giant resonance states. Ways how to detect these fast Rabi oscillations in experiment are discussed.

  13. Evaluation of hemodynamic effects of xenon in dogs undergoing hemorrhagic shock

    PubMed Central

    Franceschi, Ruben C.; Malbouisson, Luiz; Yoshinaga, Eduardo; Auler, Jos Otavio Costa; de Figueiredo (in memoriam), Luiz Francisco Poli; Carmona, Maria Jos C.

    2013-01-01

    OBJECTIVES: The anesthetic gas xenon is reported to preserve hemodynamic stability during general anesthesia. However, the effects of the gas during shock are unclear. The objective of this study was to evaluate the effect of Xe on hemodynamic stability and tissue perfusion in a canine model of hemorrhagic shock. METHOD: Twenty-six dogs, mechanically ventilated with a fraction of inspired oxygen of 21% and anesthetized with etomidate and vecuronium, were randomized into Xenon (Xe; n?=?13) or Control (C; n?=?13) groups. Following hemodynamic monitoring, a pressure-driven shock was induced to reach an arterial pressure of 40 mmHg. Hemodynamic data and blood samples were collected prior to bleeding, immediately after bleeding and 5, 20 and 40 minutes following shock. The Xe group was treated with 79% Xe diluted in ambient air, inhaled for 20 minutes after shock. RESULT: The mean bleeding volume was 44 mL.kg?1 in the C group and 40 mL.kg?1 in the Xe group. Hemorrhage promoted a decrease in both the cardiac index (p<0.001) and mean arterial pressure (p<0.001). These changes were associated with an increase in lactate levels and worsening of oxygen transport variables in both groups (p<0.05). Inhalation of xenon did not cause further worsening of hemodynamics or tissue perfusion markers. CONCLUSIONS: Xenon did not alter hemodynamic stability or tissue perfusion in an experimentally controlled hemorrhagic shock model. However, further studies are necessary to validate this drug in other contexts. PMID:23525321

  14. Physiological response of rats to delivery of helium and xenon: implications for hyperpolarized noble gas imaging

    NASA Technical Reports Server (NTRS)

    Ramirez, M. P.; Sigaloff, K. C.; Kubatina, L. V.; Donahue, M. A.; Venkatesh, A. K.; Albert, M. S.; ALbert, M. S. (Principal Investigator)

    2000-01-01

    The physiological effects of various hyperpolarized helium and xenon MRI-compatible breathing protocols were investigated in 17 Sprague-Dawley rats, by continuous monitoring of blood oxygen saturation, heart rate, EKG, temperature and endotracheal pressure. The protocols included alternating breaths of pure noble gas and oxygen, continuous breaths of pure noble gas, breath-holds of pure noble gas for varying durations, and helium breath-holds preceded by two helium rinses. Alternate-breath protocols up to 128 breaths caused a decrease in oxygen saturation level of less than 5% for either helium or xenon, whereas 16 continuous-breaths caused a 31.5% +/- 2.3% decrease in oxygen saturation for helium and a 30.7% +/- 1. 3% decrease for xenon. Breath-hold protocols up to 25 s did not cause the oxygen saturation to fall below 90% for either of the noble gases. Oxygen saturation values below 90% are considered pathological. At 30 s of breath-hold, the blood oxygen saturation dropped precipitously to 82% +/- 0.6% for helium, and to 76.5% +/- 7. 4% for xenon. Breath-holds longer than 10 s preceded by pre-rinses caused oxygen saturation to drop below 90%. These findings demonstrate the need for standardized noble gas inhalation procedures that have been carefully tested, and for continuous physiological monitoring to ensure the safety of the subject. We find short breath-hold and alternate-breath protocols to be safe procedures for use in hyperpolarized noble gas MRI experiments. Copyright 2000 John Wiley & Sons, Ltd.

  15. Multiple-pulse nuclear magnetic resonance of optically pumped xenon in a low magnetic field

    SciTech Connect

    Raftery, D.; Long, H.W.; Shykind, D.; Grandinetti, P.J.; Pines, A. )

    1994-07-01

    Multiple-pulse coherent averaging methods are used to increase the resolution and frequency range of optically pumped xenon NMR in nutation and point-by-point precession experiments. We observe quadrupolar splittings in [sup 131]Xe spectra due to the macroscopic asymmetry of pumping cells similar to those reported previously, but with reduced demands on magnetic-field homogeneity. Cell treatment with hydrogen gas increases the quadrupolar splittings by a factor of 3 over bare Pyrex cells.

  16. An improved measurement of electron-ion recombination in high-pressure xenon gas

    NASA Astrophysics Data System (ADS)

    Serra, L.; Sorel, M.; Álvarez, V.; Borges, F. I. G.; Camargo, M.; Cárcel, S.; Cebrián, S.; Cervera, A.; Conde, C. A. N.; Dafni, T.; Díaz, J.; Esteve, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Gehman, V. M.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Hernando Morata, J. A.; Herrera, D. C.; Irastorza, I. G.; Labarga, L.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Lorca, D.; Losada, M.; Luzón, G.; Marí, A.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Miller, T.; Monrabal, F.; Monserrate, M.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Nebot-Guinot, M.; Nygren, D.; Oliveira, C. A. B.; Pérez, J.; Pérez Aparicio, J. L.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, A.; Rodríguez, J.; Santos, F. P.; dos Santos, J. M. F.; Shuman, D.; Simón, A.; Sofka, C.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Villar, J. A.; Webb, R.; White, J. T.; Yahlali, N.

    2015-03-01

    We report on results obtained with the NEXT-DEMO prototype of the NEXT-100 high-pressure xenon gas time projection chamber (TPC), filled with pure xenon gas at 10 bar pressure and exposed to an alpha decay calibration source. Compared to our previous measurements with alpha particles, an upgraded detector and improved analysis techniques have been used. We measure event-by-event correlated fluctuations between ionization and scintillation due to electron-ion recombination in the gas, with correlation coefficients between -0.80 and -0.56 depending on the drift field conditions. By combining the two signals, we obtain a 2.8% FWHM energy resolution for 5.49 MeV alpha particles and a measurement of the optical gain of the electroluminescent TPC. The improved energy resolution also allows us to measure the specific activity of the radon in the gas due to natural impurities. Finally, we measure the average ratio of excited to ionized atoms produced in the xenon gas by alpha particles to be 0.561± 0.045, translating into an average energy to produce a primary scintillation photon of Wex=(39.2± 3.2) eV.

  17. Xenon purity measurements via mass spectroscopy for the EXO-200 double beta decay experiment

    NASA Astrophysics Data System (ADS)

    Yen, Yung-Ruey; EXO Collaboration

    2011-04-01

    We report on the construction and operation of a gas sampling and measurement system for the EXO-200 double beta decay experiment. In order to observe ionization charge and scintillation light from the double beta decay event, EXO requires the concentration of electronegative impurities such as oxygen to be less than one part per billion. We have constructed a dedicated gas sampling and measurement apparatus to monitor for the presence of these impurities and to determine their source. Half-liter samples of xenon gas are collected at various points in the EXO-200 gas handling system, and their composition is analyzed using a RGA mass spectrometer. In order to achieve the required sensitivity, the apparatus includes a cold trap which removes most of the bulk xenon from the sample before it reaches the RGA. This system has allowed us to certify the purity of the commercial xenon source cylinders before detector filling and to monitor the effectiveness of the gas purifiers. Work supported by the National Science Foundation. Beginning APS data extraction...17:51:38

  18. A Search for Dark Matter with the Large Underground Xenon Detector

    NASA Astrophysics Data System (ADS)

    Mock, Jeremy Allen

    The Weakly Interacting Massive Particles (WIMP) has been postulated as a candidate that constitutes dark matter, which dominates the matter density in the universe. The Large Underground Xenon (LUX) detector is a 370 kg (112 kg fiducial) dual-phase xenon time projection chamber operating 4,850 feet underground at the Sanford Underground Research Facility in Lead, South Dakota with the goal of detecting WIMPs. A refined understanding of detector response is required in order to make such searches more sophisticated. The LUX simulation includes a new physics model, the Noble Element Simulation Technique, which accurately predicts the scintillation and ionization yields as well as the prompt and electroluminescence pulse shapes in xenon. These models, combined with a new technique for in-situ, low-energy neutron calibration, allow for the extension of the WIMP detection regime into a lower-energy region. A novel analysis technique for the removal of spurious, high-rate background events facilitates the reduction of conservative analysis thresholds. Both of these improvements, which lead to an increased sensitivity of LUX to low-mass WIMPs, are described in this thesis. While no discovery is reported, this work establishes the most stringent 90% confidence level upper limit on the WIMP-nucleon cross-section of 7.43 x 10-46 cm2 for a WIMP with mass 33 GeV/c2.

  19. Isotopic Enrichment of Boron in the Sputtering of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1998-01-01

    An experimental study is described to measure the isotopic enrichment of boron. Xenon ions from 100 eV to 1.5 keV were used to sputter a boron nitride target. An ion gun was used to generate the ion beam. The ion current density at the target surface was approximately 30 microA/sq cm. Xenon ions impinged on the target surface at 50 deg angle to the surface normal. Since boron nitride is an insulator, a flood electron gun was used in our experiments to neutralize the positive charge buildup on the target surface. The sputtered secondary ions of boron were detected by a quadrupole mass spectrometer. The spectrometer entrance aperture was located perpendicular to the ion beam direction and 10 mm away from the target surface. The secondary ion flux was observed to be enriched in the heavy isotopes at lower ion energies. The proportion of heavy isotopes in the sputtered secondary ion flux was found to decrease with increasing primary ion energy from 100 to 350 eV. Beyond 350 eV, light isotopes were sputtered preferentially. The light isotope enrichment factor was observed to reach an asymptotic value of 1.27 at 1.5 keV. This trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy range.

  20. Depth of cure and marginal adaptation to dentin of xenon lamp polymerized resin composites.

    PubMed

    Hasegawa, T; Itoh, K; Yukitani, W; Wakumoto, S; Hisamitsu, H

    2001-01-01

    Marginal adaptation of four resin composites (Clearfil APX, Estelite, Silux Plus and Z-100) cured with two xenon lamp units (Plasma Arc Curing System or Apollo 95E) or a halogen lamp unit (Witelite) were evaluated by measuring the wall-to-wall contraction gap width. A cylindrical dentin cavity (3 mm x 1.5 mm) prepared in an extracted human molar was treated with the Megabond system or an experimental bonding system consisting of 0.5 M EDTA, 35% GM and Clearfil Photo Bond prior to composite filling and was irradiated for three seconds (xenon lamp) or 40 seconds (halogen lamp). The contraction gap was measured with a light microscope. In addition, the curing capability of these three light sources was evaluated by measuring the curing depth of the composites filled in a split Teflon mold (4 mm x 8 mm). There was no marginal gap formation for Clearfil APX, Estelite and Silux Plus treated with the experimental bonding system regardless of the type of light sources. The curing depth of the xenon lamp was significantly higher than the halogen lamp, while marginal adaptation did not suffer any significant deterioration. PMID:11699182