Science.gov

Sample records for xlpe cable insulation

  1. The influence of water in XLPE cable conductor on XLPE insulation breakdown voltage and partial discharge

    SciTech Connect

    Nikolajevic, S.V.; Stojanovic, B.B.

    1996-12-31

    This paper presents the results of a continuing investigation into degradation of the crosslinked polyethylene (XLPE) cable insulation. The paper deals with the changing of water absorption of various types of XLPE cable insulations: steam and nitrogen-dry cured crosslinked polyethylene (XL) and steam and nitrogen-dry cured water tree retardant crosslinked polyethylene (WTR-XL). The results of the study into effect of water absorption on breakdown stress (AC BDS) and partial discharge for different XLPE cable insulations are also given. During the aging tests, the cable conductor was poured with the tap water and the cable ends were properly closed.

  2. Analysis of electrical tree propagation in XLPE power cable insulation

    NASA Astrophysics Data System (ADS)

    Bao, Minghui; Yin, Xiaogen; He, Junjia

    2011-04-01

    Electrical treeing is one of the major breakdown mechanisms for solid dielectrics subjected to high electrical stress. In this paper, the characteristics of electrical tree growth in XLPE samples have been investigated. XLPE samples are obtained from a commercial XLPE power cable, in which electrical trees have been grown from pin to plane in the frequency range of 4000-10,000 Hz, voltage range of 4-10 kV, and the distances between electrodes of 1 and 2 mm. Images of trees and their growing processes were taken by a CCD camera. The fractal dimensions of electric trees were obtained by using a simple box-counting technique. The results show that the tree growth rate and fractal dimension was bigger when the frequency or voltage was higher, or the distance between electrodes was smaller. Contrary to our expectation, it has been found that when the distance between electrodes changed from 1 to 2 mm, the required voltage of the similar electrical trees decreased only 1or 2 kV. In order to evaluate the difficulties of electrical tree propagation in different conditions, a simple energy threshold analysis method has been proposed. The threshold energy, which presents the minimum energy that a charge carrier in the well at the top of the tree should have to make the tree grow, has been computed considering the length of electrical tree, the fractal dimension, and the growth time. The computed results indicate that when one of the three parameters of voltage, frequency, and local electric field increase, the trends of energy threshold can be split into 3 regions.

  3. Understanding Electrical Treeing Phenomena in XLPE Cable Insulation Adopting UHF Technique

    NASA Astrophysics Data System (ADS)

    Sarathi, Ramanujam; Nandini, Arya; Danikas, Michael G.

    2011-03-01

    A major cause for failure of underground cables is due to formation of electrical trees in the cable insulation. A variety of tree structure can form from a defect site in cable insulation viz bush-type trees, tree-like trees, fibrillar type trees, intrinsic type, depending on the applied voltage. Weibull studies indicate that a higher applied voltage enhances the rate of tree propagation thereby reducing the life of cable insulation. Measurements of injected current during tree propagation indicates that the rise time and fall time of the signal is of few nano seconds. In the present study, an attempt has been made to identify the partial discharges caused due to inception and propagation of electrical trees adopting UHF technique. It is realized that UHF signal generated during tree growth have signal bandwidth in the range of 0.5-2.0 GHz. The formation of streamer type discharge and Townsend type discharges during tree inception and propagation alters the shape of the tree formed. The UHF signal generated due to partial discharges formed during tree growth were analyzed adopting Ternary plot, which can allow one to classify the shape of tree structure formed.

  4. Long term pre-qualification testing program on a 230kV XLPE cable system

    SciTech Connect

    Champion, T.C.; Agostinelli, F.M.; Rosevear, R.D.

    1994-12-31

    this paper describes the installation, testing, and results of a long term, full scale laboratory evaluation of a 230kV XLPE insulated cable system. System components included two innovative, pre-molded splices a 128 meter (420 foot) cable run, and two silicone oil filled, porcelain cable terminations. Load cycle aging was performed on the cable system over a four year period. After successfully completing the outdoor aging program, the system was exposed to a final impulses breakdown test. Results demonstrated the importance of considering thermomechanical bending in aluminum conductor, XLPE insulated designs. The influence on cable ampacity of solar heating at riser transitions was also demonstrated.

  5. Long term pre-qualification testing program on a 230kV XLPE cable system

    SciTech Connect

    Champion, T.C.; Agostinelli, F.M.; Rosevear, R.D.

    1995-01-01

    This paper describes the installation, testing, and results of a long term, full scale laboratory evaluation of a 230kV XLPE insulated cable system. System components included two innovative, pre-molded splices, a 128 meter (420 foot) cable run, and two silicone oil filled, porcelain cable terminations. Load cycle aging was performed on the cable system over a four year period. After successfully completing the outdoor aging program, the system was exposed to a final impulse breakdown test. Results demonstrated the importance or considering thermomechanical bending in aluminum conductor, XLPE insulated designs. The influence on cable ampacity of solar beating at riser transitions was also demonstrated.

  6. Approach for Wide Use of Diagnostic Method for XLPE Cables Using Harmonics in AC Loss Current

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Tomiyuki; Nakade, Masahiko; Yagi, Yukihiro; Ishii, Noboru

    Water tree is one of the degradation aspects of XLPE cables used for under-ground distribution or transmission lines. We have developed the loss current method using 3rd harmonic in AC loss current for cable diagnosis. Harmonic components in loss current arise as a result of the non-linear voltage-current characteristics of water trees. We confirmed that the 3rd harmonic in AC loss current had good correlation with water tree growth and break down strength. After that, we have applied this method to the actual 66kV XLPE cable lines. Up to now, the number of the application results is more than 130 lines. In case of cable lines terminated at gas-insulated switchgear (GIS), we have to remove the lightning arrestor (LA) and the potential transformer (PT) out of the test circuit. The reason is that we are afraid that each of LA and PT disturbs the degradation signal from cable lines. It takes extra time (1 or 2 days) and costs more to remove LA and PT in GIS out of a circuit. In order to achieve easy and reasonable diagnosis, we have developed a new method for cable lines terminated at GIS, by utilizing a technique, which enables to reduce signal of LA and PT from disturbed signal of cable lines. We confirmed the effect of the new method by experiments with actual cables.

  7. Analysis of the XLPE Insulation of Distribution Covered Conductors in Brazil

    NASA Astrophysics Data System (ADS)

    Nóbrega, A. M.; Martinez, M. L. B.; de Queiroz, Alvaro Antonio Alencar

    2014-03-01

    Cross-linked polyethylene (XLPE) has been the most common insulation applied to medium voltage covered conductors (MVCCs) in Brazil. The results of accelerated aging tests carried out at high voltage laboratory of UNIFEI (LAT-EFEI), combining the stresses of heat and voltage to ground aiming at enhancing surface corona activity assays, have identified the early failures in XLPE insulations of the Brazilian MVCCs. The observed failures indicate that complementary studies should be performed to better understand the degradation mechanisms of the MVCCs insulations manufactured in Brazil. In this paper, x-ray photoelectron spectroscopy (XPS), contact angle analysis (CA), photoacoustic spectroscopy (PAS), x-ray diffraction (XRD), and atomic force microscopy (AFM) measurements on samples of five Brazilian national/regional MVCCs are reported. XPS, CA, and PAS analysis indicated that a large variety of oxygen-containing groups associated to the oxidation of the XLPE insulations appear to be related to the manufacturing conditions. AFM analysis indicated that the average surface roughness and topography of the XLPE insulation changed significantly and depend on the selected manufacturer. XRD analysis indicates a strong heterogeneity of crystals nucleation that results into different degrees of crystallinity of the Brazilian MVCCs cables. The results of this work indicate strong evidences of manufacturing defects in the XLPE insulation of Brazilian's MVCCs. The origin of these defects seems to be inherent to the technology used by manufacturers to the production of the MVCCs. The production-related defects are not detectable by the standard tests as partial discharges or even the standard routine—acceptance power frequency assays routinely used in dielectric compatibility tests at high voltage laboratories.

  8. Development of Techniques for Separating Waterproof Layer from XLPE Cable Sheath by Hot Water Heating

    NASA Astrophysics Data System (ADS)

    Okazaki, Masato; Nakade, Masahiko; Okashita, Minoru; Tanimoto, Mihoko

    Waterproof layer is used to prevent penetration of water which is one of the factors of dielectric breakdown in XLPE cables more than 66kV class. A XLPE cable sheath with waterproof layer is done landfill disposal as industrial waste because separation of waterproof layer is difficult for technology and cost. However, around 20 years passes after waterproof layer was introduced, and social consciousness for environment changes during these 20 years, and responsibility of company for environment of a society grows bigger. We report the result that examined techniques for separating waterproof layer.

  9. Performance of ethylene-propylene rubber insulation in medium and high voltage power cable

    SciTech Connect

    Brown, M.

    1983-02-01

    A new class of EPR insulations having significantly improved electrical loss properties is described. These elastomeric insulations are compared in a number of key properties vs. XLPE which are believed significant in certain failure modes of power cables. Laboratory studies have shown that this new class of EPR's is extremely resistant to the initiation and growth of water and electrical trees. Data from the AEIC Accelerated Water/Electrochemical Tree Test are presented for high molecular weight thermoplastic PE, XLPE and EPR. In this test EPR shows a significant improvement in performance vs. PE and XLPE which is particularly evident in the high temperature (high current load) test mode.

  10. Development of 66kV XLPE submarine cable using optical fiber as a mechanical-damage-detection-sensor

    SciTech Connect

    Nishimoto, Toshio; Miyahara, Tsutomu; Takehana, Hajime; Tateno, Fuminori

    1995-10-01

    Submarine cables are exposed to great risk of serious mechanical damage by ship anchors or equipment used for fishing. Detection of such damage in a submarine cable is a very useful technology for improving the reliability of a submarine cable transmission line. A mechanical-damage-detection-sensor using optical fiber was developed. A prototype 66kV XLPE submarine cable incorporating the sensor was manufactured for trial, and the ability of a sensor was confirmed by compression test. Actual 66kV XLPE submarine cable incorporating the sensor was manufactured for trial, and the ability of a sensor was confirmed by compression test. Actual 66kV XLPE submarine cable with the sensor was manufactured and installed as an operating transmission line in Japan.

  11. Determination of threshold and maximum operating electric stresses for selected high voltage insulations: Investigation of aged polymeric dielectric cable. Final report

    SciTech Connect

    Eager, G.S. Jr.; Seman, G.W.; Fryszczyn, B.

    1995-11-01

    Based on the successful completion of the extensive research project DOE/ET/29303-1 February 1982 to develop a new method for the determination of threshold voltage in XLPE and EPR insulated cables, tests were initiated to establish the maximum safe operating voltage stresses of crosslinked polyethylene insulated cables that become wet when they operate in a moist environment. The present report covers the measurement of the threshold voltage, the a.c. breakdown voltage and the impulse breakdown voltage of XLPE cable after undergoing accelerated laboratory aging in water. Model and 15 kV XLPE cables were manufactured in commercial equipment using state-of-the-art semiconducting shields and XLPE insulation. The threshold voltage, a.c. voltage breakdown and impulse voltage breakdown of the model cables were determined before aging, after aging one week and after aging 26 weeks. The model cable, following 26 weeks aging, was dried by passing dry gas through the conductor interstices which removed moisture from the cable. The threshold voltage, the a.c. voltage breakdown and the impulse voltage breakdown of the XLPE model cable after drying was measured.

  12. Flexible Ceramic-Insulated Cable

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.

    1988-01-01

    Cable withstands heat, radiation, and oxidation. Ceramic beads electrically insulate copper conductor from sheath of copper tape. Also suitable for furnaces, nuclear reactors, and robots operating in hot, radioactive environments.

  13. Fully synthetic taped insulation cables

    DOEpatents

    Forsyth, Eric B.; Muller, Albert C.

    1984-01-01

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  14. Fully synthetic taped insulation cables

    SciTech Connect

    Forsyth, E. B.; Muller, A. C.

    1984-12-11

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  15. 6.6kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor

    SciTech Connect

    Tayama, Hirohumi; Fukuda, Osamu; Yamamoto, Kenichi; Inoue, Yosimasa; Koike, Yohji

    1995-10-01

    The Kansai Electric Power Co., Inc. and Fujikura Ltd. have developed a 6.6kV XLPE submarine cable with optical fiber sensors to detect anchor damage and defacement of wire armor. The cable was installed between Kata and Tomogashima island in Wakayama prefecture, Japan. The ability to detect cable damage was confirmed by compression test, curved tensile test using CIGRE-recommended method, and loop tests. Also, in this power cable, the distributed optical fiber sensor was built-in to measure cable temperature. This report shows the results of these tests and the outline of the cable installation.

  16. Fully synthetic taped insulation cables

    DOEpatents

    Forsyth, E.B.; Muller, A.C.

    1983-07-15

    The present invention is a cable which, although constructed from inexpensive polyolefin tapes and using typical impregnating oils, furnishes high voltage capability up to 765 kV, and has such excellent dielectric characteristics and heat transfer properties that it is capable of operation at capacities equal to or higher than presently available cables at a given voltage. This is accomplished by using polyethylene, polybutene or polypropylene insulating tape which has been specially processed to attain properties which are not generally found in these materials, but are required for their use in impregnated electrical cables. Chief among these properties is compatibility with impregnating oil.

  17. Pulse Response Measurement Aiming for Locating Water Tree Degradation in XLPE Cables

    NASA Astrophysics Data System (ADS)

    Hiei, Susumu; Hozumi, Naohiro; Kurihara, Takashi; Okamoto, Tatsuki; Uchida, Katsumi; Tsuji, Taizo

    Water treeing is a degradation mode of power cable with polymeric insulation. A water tree is composed of small droplets filled with water. As the conductivity in water tree is very high, it leads to dielectric breakdown when it grows up. As inside of the water tree is filled with trap sites, it is polarized with a certain distribution of relaxation time when a DC poling voltage is applied. Although its depolarization process after removing the poling voltage is determined by ambient temperature, applying a “depolarizing voltage” with the opposite polarity can accelerate the process. If a short pulse propagating through the cable is employed as a depolarization voltage, we may locate the water tree through looking at the time-resolved pulse response. This would lead to a diagnosing method with spatial resolution. In order to retain 100 m of spatial resolution, the response should be as sharp as 1 μs. As a preliminary study, a coaxial communication cable was aged to form water trees. A DC poling voltage was applied followed by a pulse voltage with opposite polarity. The rising time of the pulse was several hundreds of microseconds. A sharp pulse current response with 50 μs in width was observed, suggesting that a rapid depolarization took place. No such response was seen when the cable specimen was not aged. We concluded that the technique is quite feasible. As the response was found to be as quick as several microseconds, an experiment using 405 m-long cable, with 5 m of degraded length in the middle, was performed. It was shown that the degraded point was successfully located.

  18. Installation of 66kV XLPE power-optical fiber composite submarine cable and water pipe for the Trans-Tokyo Bay Highway

    SciTech Connect

    Nakamura, Y.; Kuroshima, T.; Takeuchi, M.; Sanpei, T.; Suzuki, S.; Ishikura, S.; Inoue, H.; Uematsu, T.

    1995-07-01

    The manufacturing and the installation of the optical fiber composite submarine cable and water pipe for the Trans-Tokyo Bay Highway were completed in 1993. It was the Japanese longest 66kV XLPE power-optical fiber composite submarine cable and the first application of optical fiber composite submarine water pipe composed of two hollow galvanized steel armor wires inserted with optical fiber to monitor and control of construction sites. This paper describes the application and development of the hollow steel armor wire with optical fiber ribbon and the features of construction and installation of the optical fiber composite submarine cable and water pipe.

  19. The Application of Novel Polypropylene to the Insulation of Electric Power Cable (3)

    NASA Astrophysics Data System (ADS)

    Kurahashi, Kiyoshi; Matsuda, Yoshiji; Miyashita, Yoshitsugu; Demura, Tsuyoshi; Ueda, Asakiyo; Yoshino, Katsumi

    Having higher melting temperature than polyethylene, polypropylene has been expected as insulation material for power cable. But isotactic polypropylene used generally is unsuitable as cable insulation because it shows poor flexibility, low breakdown strength due to growing spherulites, and so on. But stereoregular syndiotactic polypropylene (s-PP) newly developed with metallocene catalyst shows quite different properties from i-PP. The authors had investigated the basic properties of s-PP and the initial properties as a cable which was manufactured using s-PP insulation, in the previous paper. As the results of this, it was revealed that s-PP had superior thermal and electrical properties to cross-linked polyethylene and the s-PP insulation cable showed satisfactory initial properties. However, in order to apply to an actual cable, the properties must be maintainable over 30 years after construction. In this paper, we estimated the long term and remaining properties for s-PP insulation cable. A series of experiments on long term properties gave following results. (1) S-PP cable shows longer life over 30 years. (2) The breakdown strength of s-PP cable after long term experiment equal to 30 years is slightly lower than initial breakdown strength, but it’s sufficient as remaining property. Furthermore, water-tree resistivity of s-PP was investigated and it was revealed that s-PP significantly suppressed the water tree propagation compared with XLPE. These results suggested that s-PP cable would be available as next generation cable.

  20. Tool for cutting insulation from electrical cables

    DOEpatents

    Harless, Charles E.; Taylor, Ward G.

    1978-01-01

    This invention is an efficient hand tool for precisely slitting the sheath of insulation on an electrical cable--e.g., a cable two inches in diameter--in a manner facilitating subsequent peeling or stripping of the insulation. The tool includes a rigid frame which is slidably fitted on an end section of the cable. The frame carries a rigidly affixed handle and an opposed, elongated blade-and-handle assembly. The blade-and-handle assembly is pivotally supported by a bracket which is slidably mounted on the frame for movement toward and away from the cable, thus providing an adjustment for the depth of cut. The blade-and-handle assembly is mountable to the bracket in two pivotable positions. With the assembly mounted in the first position, the tool is turned about the cable to slit the insulation circumferentially. With the assembly mounted in the second position, the tool is drawn along the cable to slit the insulation axially. When cut both circumferentially and axially, the insulation can easily be peeled from the cable.

  1. The Application of Novel Polypropylene to the Insulation of Electric Power Cable (2)

    NASA Astrophysics Data System (ADS)

    Miyashita, Yoshitsugu; Demura, Tsuyoshi; Ueda, Asakiyo; Someya, Akira; Kawahigashi, Masaki; Murakami, Tsuyoshi; Matsuda, Yoshiji; Kurahashi, Kiyoshi; Yoshino, Katsumi

    The authors had investigated the basic properties of newly developed stereoregular syndiotactic polypropylene (s-PP) which had been synthesized with homogeneous metallocene catalyst, in the previous paper. As the result of this, it was revealed that s-PP had superior thermal and electrical properties to cross-linked polyethylene (XLPE) which was adopted as conventional insulating material for high voltage power cable. In this paper, we estimated the possibility to apply s-PP to the actual power cable from the viewpoint of long-term thermal durability and processability. Consequently, it was found that the thermal stability of s-PP could be significantly improved by adding both hindered phenol and sulfur antioxidants, and wide molecular weight distribution of s-PP contributed to good processability during extrusion. On the basis of these results, 600V and 22kV class cables with insulation of s-PP were manufactured. Successfully manufactured cables proposed that s-PP could be available to electric power cable. Lightning Impulse and AC breakdown strength of both cables at the temperature range of RT to 120°C will be discussed.

  2. ESP cable insulation: Selection for performance

    SciTech Connect

    Schultz, R.E.; MacKenzie, B.T.; Marefai, K.

    1985-01-01

    Electrical cable for submersible pumping systems must be of high quality and reliability. Because of this, careful selection must be made of materials which will optimize performance in a wet electrically stressed environment. Polypropylene is the insulation used in lower temperature cables which is a major part of this cable market. Over the past eight years a major engineering effort has been placed on the evaluation of polypropylene resins and their wet electrical properties. Test methods were selected which distinguish between resins based on long term electrical stability. Properties of most extrusion grade resins available together with some experimental resins will be reviewed. Dielectric breakdown, insulation resistance, dielectric constant and power factor all versus time will be presented. The data will demonstrate the need for long term evaluations prior to the selection of a polypropylene insulation for ESP cable applications.

  3. Propylene based systems for high voltage cable insulation applications

    NASA Astrophysics Data System (ADS)

    Hosier, I. L.; Cozzarini, L.; Vaughan, A. S.; Swingler, S. G.

    2009-08-01

    Crosslinked polyethylene (XLPE) remains the material of choice for extruded high voltage cables, possessing excellent thermo-mechanical and electrical properties. However, it is not easily recyclable posing questions as to its long term sustainability. Whilst both polyethylene and polypropylene are widely recycled and provide excellent dielectric properties, polypropylene has significantly better mechanical integrity at high temperatures than polyethylene. However, while isotactic polypropylene is too stiff at room temperature for incorporation into a cable system, previous studies by the authors have indicated that this limitation can be overcome by using a propylene-ethylene copolymer. Whilst these previous studies considered unrelated systems, the current study aims to quantify the usefulness of a series of related random propylene-ethylene co-polymers and assesses their potential for replacing XLPE.

  4. Development of radiation resistant electrical cable insulations

    NASA Technical Reports Server (NTRS)

    Lee, B. S.; Soo, P.; Mackenzie, D. R.

    1994-01-01

    Two new polyethylene cable insulations have been formulated for nuclear applications and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb2O3 as additives. The test results show that the concept of using inorganic antioxidants to retard radiation initiated oxidation (RIO) is viable. PbO is more effective than Sb2O3 in minimizing RIO.

  5. Development of radiation resistant electrical cable insulations

    SciTech Connect

    Lee, B.S.; Soo, P.; MacKenzie, D.R.

    1993-12-31

    Two new polyethylene cable insulations have been formulated for nuclear applications, and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb{sub 2}O{sub 3} as additives. The test results show that the concept of using inorganic antioxidants to retard radiation initiated oxidation (RIO) is viable. PbO is more effective than Sb{sub 2}O{sub 3} in minimizing RIO.

  6. Improved cable insulation for superconducting magnets

    SciTech Connect

    Anerella, M.; Ghosh, A.K.; Kelly, E.; Schmalzle, J.; Willen, E.; Fraivillig, J.; Ochsner, J.; Parish, D.J.

    1993-09-01

    Several years ago, Brookhaven joined with DuPont in a cooperative effort to develop improved cable insulation for SSC superconducting dipole magnets. The effort was supported by the SSC Central Design Group and later the SSC Laboratory. It was undertaken because turn-to-turn and midplane shorts were routinely being experienced during the assembly of magnets with coils made of the existing Kapton/Fiberglass (K/FG) system of Kapton film overwrapped with epoxy-impregnated fiberglass tape. Dissection of failed magnets showed that insulation disruption and punch-through was occurring near the inner edges of turns close to the magnet midplane. Coil pressures of greater than 17 kpsi were sufficient to disrupt the insulation at local high spots where wires in neighboring turns crossed one another and where the cable had been strongly compacted in the keystoning operation during cable manufacture. In the joint development program, numerous combinations of polyimide films manufactured by DuPont with varying configurations and properties (including thickness) were subjected to tests at Brookhaven. Early tests were bench trials using wrapped cable samples. The most promising candidates were used in coils and many of these assembled and tested as magnets in both the SSC and RHIC magnet programs currently underway. The Kapton CI (CI) system that has been adopted represents a suitable compromise of numerous competing factors. It exhibits improved performance in the critical parameter of compressive punch-through resistance as well as other advantages over the K/FG system.

  7. Insulation system for high temperature superconductor cables

    NASA Astrophysics Data System (ADS)

    Michael, P. C.; Haight, A. E.; Bromberg, L.; Kano, K.

    2015-12-01

    Large-scale superconductor applications, like fusion magnets, require high-current capacity conductors to limit system inductance and peak operating voltage. Several cabling methods using high temperature superconductor (HTS) tapes are presently under development so that the unique high-field, high-current-density, high operating temperature characteristics of 2nd generation REBCO coated conductors can be utilized in next generation fusion devices. Large-scale magnets are generally epoxy impregnated to support and distribute electromagnetic stresses through the magnet volume. However, the present generation of REBCO coated conductors are prone to delamination when tensile stresses are applied to the broad surface of REBCO tapes; this can occur during epoxy cure, cooldown, or magnet energization. We present the development of an insulation system which effectively insulates HTS cabled conductors at high withstand voltage while simultaneously preventing the intrusion of the epoxy impregnant into the cable, eliminating degradation due to conductor delamination. We also describe a small-scale coil test program to demonstrate the cable insulation scheme and present preliminary test results.

  8. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2012-10-01 2012-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-21 Cable insulation tests. All cable...

  9. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2011-10-01 2011-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-21 Cable insulation tests. All cable...

  10. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2013-10-01 2013-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-21 Cable insulation tests. All cable...

  11. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-21 Cable insulation tests. All cable...

  12. 46 CFR 111.60-21 - Cable insulation tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2014-10-01 2014-10-01 false Cable insulation tests. 111.60-21 Section 111.60-21...-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-21 Cable insulation tests. All cable...

  13. Investigation of dielectric behavior of water and thermally aged of XLPE/BaTiO3 composites in the low-frequency range

    NASA Astrophysics Data System (ADS)

    Madani, Lakhdar; Belkhiat, Saad; Berrag, Amine; Nemdili, Saad

    2015-10-01

    Cross-Linked Polyethylene (XLPE) is widely used as insulation in electrical engineering, especially as cable insulation sheaths. In order to improve the dielectric properties susceptible to be modified under the effects of thermal aging and water in an absorption environment, polymers are mixed with ceramics. In this paper, the influence of barium titanate (BaTiO3), on the dielectric properties of XLPE has been studied. Dielectric parameters have been measured using an impedance analyzer RLC (WAYNE KERR 6420 type). Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy and X-ray diffraction were used as characterization techniques. The study has been carried out on two samples of XLPE. A pure sample of each were studied as a unloaded samples to be compared with samples of 5%wt, 10%wt, 15%wt and 20%wt. BaTiO3 loaded XLPE. Afterwards, the composites were subject to humidity and to thermal aging. The incorporation of BaTiO3 1∘C does not modify the crystallinity and morphology of the XLPE and 2∘C reduces the space charges therefore the dielectric losses. tgδ, ɛr and loss index are measured. Frequency response analysis has been followed in the frequency range (20-300 Hz). Experimental results show well that BaTiO3 as nano-filler improves the dielectric properties of XLPE but in excessive content can drive to the cracking and therefore to absorption of water.

  14. Problems of Automatic Test of Insulation in Cable Production

    NASA Astrophysics Data System (ADS)

    Red'ko, V. V.; Leonov, A. P.; Red'ko, L. A.; Bolgova, V. A.

    2016-01-01

    The article presents a qualitative and quantitative assessment of cable products insulation defects that can be reliably detected by means of the electrosparking control during the cable production process. The performance potential of technological control is evaluated: the limit of reliable detection of defective places in insulation taking into account the technical capabilities of modern control devices is marked.

  15. Basic study of transient breakdown voltage in solid dielectric cables

    NASA Astrophysics Data System (ADS)

    Bahder, G.; Sosnowski, M.; Katz, C.

    1980-09-01

    A comprehensive review of the technical and scientific publications relating to crosslinked polyethylene (XLPE) and ethylene propylene rubber (EPR) insulated cables revealed that there is very little known with respect to the life expectancy, the final factory voltage test background and the mechanism of voltage breakdown of these cables. A new methodology for the investigation of breakdown voltages of XLPE and EPR insulated cables was developed which is based on the investigation of breakdown voltages at various voltage transients such as unipolarity pulses and dual-polarity pulses, and a.c. voltage at power and high frequency. Also, a new approach to statistical testing was developed which allows one to establish a correlation among the breakdown voltages obtained with various voltage transients. Finally, a method for the determination of threshold voltage regardless of the magnitude of apparent charge was developed. A model of breakdown and electrical aging of XLPE and EPR insulated cables was developed as well as life expectancy characteristics for high voltage stress XLPE insulated cables operated in a dry environment at room temperature and at 900 C.

  16. Cable aging and condition monitoring of radiation resistant nano-dielectrics in advanced reactor applications

    SciTech Connect

    Duckworth, Robert C; Aytug, Tolga; Paranthaman, Mariappan Parans; Kidder, Michelle; Polyzos, Georgios; Leonard, Keith J

    2015-01-01

    Cross-linked polyethylene (XLPE) nanocomposites have been developed in an effort to improve cable insulation lifetime to serve in both instrument cables and auxiliary power systems in advanced reactor applications as well as to provide an alternative for new or retro-fit cable insulation installations. Nano-dielectrics composed of different weight percentages of MgO & SiO2 have been subjected to radiation at accumulated doses approaching 20 MRad and thermal aging temperatures exceeding 100 C. Depending on the composition, the performance of the nanodielectric insulation was influenced, both positively and negatively, when quantified with respect to its electrical and mechanical properties. For virgin unradiated or thermally aged samples, XLPE nanocomposites with 1wt.% SiO2 showed improvement in breakdown strength and reduction in its dissipation factor when compared to pure undoped XLPE, while XLPE 3wt.% SiO2 resulted in lower breakdown strength. When aged in air at 120 C, retention of electrical breakdown strength and dissipation factor was observed for XLPE 3wt.% MgO nanocomposites. Irrespective of the nanoparticle species, XLPE nanocomposites that were gamma irradiated up to the accumulated dose of 18 MRad showed a significant drop in breakdown strength especially for particle concentrations greater than 3 wt.%. Additional attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy measurements suggest changes in the structure of the XLPE SiO2 nanocomposites associated with the interaction of silicon and oxygen. Discussion on the relevance of property changes with respect to cable aging and condition monitoring is presented.

  17. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Insulation resistance tests, wires in trunking and... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables, except wires connected directly to track rails, shall be tested when wires, cables, and insulation...

  18. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Insulation resistance tests, wires in trunking and... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables, except wires connected directly to track rails, shall be tested when wires, cables, and insulation...

  19. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Insulation resistance tests, wires in trunking and... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables, except wires connected directly to track rails, shall be tested when wires, cables, and insulation...

  20. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Insulation resistance tests, wires in trunking and... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables, except wires connected directly to track rails, shall be tested when wires, cables, and insulation...

  1. 49 CFR 236.108 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Insulation resistance tests, wires in trunking and... Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance of wires and cables, except wires connected directly to track rails, shall be tested when wires, cables, and insulation...

  2. Dielectric insulation characteristics of liquid-nitrogen-impregnated laminated paper-insulated cable

    SciTech Connect

    Suzuki, H.; Ishihara, K.; Akita, S. )

    1992-10-01

    This paper reports that the electric characteristics and insulation design strength of a liquid-nitrogen-impregnated synthetic insulation was considered. It found to detect the impregnation of liquid nitrogen by measuring the electrostatic capacitance of the cable [epsilon] [center dot] tan [delta] an index of the dielectric loss, was 0.31% for cellulose paper and 0.18% for semisynthetic paper, PPLP and OPPL. It is found that the decline of the thickness dependence of the breakdown strength of the liquid-nitrogen-impregnated insulating cable is steeper than that of the OF cables. It is possible to design the insulation strength of the 66 kV cable to 10 kV/mm.

  3. Tester automatically checks insulation of individual conductors in multiple-strand cables

    NASA Technical Reports Server (NTRS)

    Shaw, J.; Vuckovich, M.

    1967-01-01

    Insulation tester checks multiple-strand electrical cables in nuclear rocket reactors. It has both manual and automatic capabilities and can check the insulation of a cable with 200 or more conductors in a few minutes.

  4. Evaluation of a glass insulated cable system

    NASA Astrophysics Data System (ADS)

    1982-04-01

    A cable system for underground power transmission at 230 to 345 kV was developed. This cable has the copper conductor bundles encased in glass tubes. Gas passes through the interior of the glass tubes to cool the conductors. Pressurized water cools the outside of glass tube clusters. The whole assembly is encased in a 10 in. OD coated steel pipe. This evaluation program was undertaken to determine the loss and breakdown characteristics of the borosilicate glass used for the cable tubes, to optimize methods for sealing tubing lengths, and to evaluate methods for fabricating and installing the cable tubing. The testing procedures are described. The results showed that the glass has good high-temperature electrical properties with especially high dc resistivity, but that the tubing seals were unacceptable electrically. It was concluded that the system as presently envisioned is not suitable as an underground cable because of the poor electrical performance of glass seals. The glass may have other applications such as entrance bushings to high-temperature test chambers.

  5. 30 CFR 75.517-1 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Power wires and cables; insulation and...-General § 75.517-1 Power wires and cables; insulation and protection. Power wires and cables installed on or after March 30, 1970, shall have insulation with a dielectric strength at least equal to...

  6. 30 CFR 75.517-1 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Power wires and cables; insulation and...-General § 75.517-1 Power wires and cables; insulation and protection. Power wires and cables installed on or after March 30, 1970, shall have insulation with a dielectric strength at least equal to...

  7. 30 CFR 75.517-1 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Power wires and cables; insulation and...-General § 75.517-1 Power wires and cables; insulation and protection. Power wires and cables installed on or after March 30, 1970, shall have insulation with a dielectric strength at least equal to...

  8. 30 CFR 75.517-1 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Power wires and cables; insulation and...-General § 75.517-1 Power wires and cables; insulation and protection. Power wires and cables installed on or after March 30, 1970, shall have insulation with a dielectric strength at least equal to...

  9. 30 CFR 75.517-1 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Power wires and cables; insulation and...-General § 75.517-1 Power wires and cables; insulation and protection. Power wires and cables installed on or after March 30, 1970, shall have insulation with a dielectric strength at least equal to...

  10. Radiation Resistance of XLPE Nano-dielectrics for Advanced Reactor Applications

    SciTech Connect

    Duckworth, Robert C; Polyzos, Georgios; Paranthaman, Mariappan Parans; Aytug, Tolga; Leonard, Keith J; Sauers, Isidor

    2014-01-01

    Recently there has been renewed interest in nuclear reactor safety, particularly as commercial reactors are approaching 40 years service and lifetime extensions are considered, as well as for new reactor building projects around the world. The materials that are currently used in cabling for instrumentation, reactor control, and communications include cross-linked polyethylene (XLPE), ethylene propylene rubber (EPR), polyvinyl chloride (PVC), neoprene, and chlorosulfonated polyethylene. While these materials show suitable radiation tolerance in laboratory tests, failures before their useful lifetime occur due to the combined environmental effects of radiation, temperature and moisture, or operation under abnormal conditions. In addition, the extended use of commercial reactors beyond their original service life places a greater demand on insulating materials to perform beyond their current ratings in these nuclear environments. Nanocomposite materials that are based on XLPE and other epoxy resins incorporating TiO2, MgO, SiO2, and Al2O3 nanoparticles are being fabricated using a novel in-situ method established at ORNL to demonstrate materials with increased resistance to radiation. As novel nanocomposite dielectric materials are developed, characterization of the non-irradiated and irradiated nanodielectrics will lead to a knowledge base that allow for dielectric materials to be engineered with specific nanoparticle additions for maximum benefit to wide-variety of radiation environments found in nuclear reactors. This paper presents the initial findings on the development of XLPE-based SiO2 nano-composite dielectrics in the context of electrical performance and radiation degradation.

  11. Flexible gas insulated cable for high power transmission

    NASA Astrophysics Data System (ADS)

    Artbauer, J.; Renftel, W.

    1982-07-01

    The dielectric losses which increase as the square of voltage and limit power transmission capacity of paper/oil impregnated isolated cables were studied. This limitation disappears by using gas insulation. Tube transmission lines isolated with SF6 gas were developed. Their conception was paired with a lot of inconveniences: short length, numerous connections, special curved sections and necessity of dilation joints. A test cable was fabricated from Al wire conductors, epoxy resin spacer insulators, and an external sheath of 3 mm thick Al-Mn alloy strip. A special high tension testing device was also constructed. The development of such a cable for 220 kV and of its components involved electric field computations, electrical, mechanical, and thermal measurements, elaboration of test and calculation methods, manufacture and testing of cable samples. Tests show that the transmission capacity of the cable in air surpasses 1000 MVA. Due to the limits set by the sheath diameter and the gas pressure, the 380 kV level cannot be attained with the design.

  12. He II heat transfer through superconducting cables electrical insulation

    NASA Astrophysics Data System (ADS)

    Baudouy, B.; François, M. X.; Juster, F.-P.; Meuris, C.

    2000-02-01

    For NbTi magnets cooled by superfluid helium (He II), the most severe heat barrier comes from the electrical insulation of the cables. Tests on electrical multi-layer insulations, made of Kapton ®, dry fiber and epoxy resin impregnated fiberglass tapes, indicate that heat transfer is influenced by He II contained in the insulation. Electrical insulation can be considered as a composite material made of a solid matrix with a complicated helium channels network. For several insulations, this network is characterized by steady-state heat transfer experiment through an elementary insulation pattern. Measurements in Landau regime for low temperature difference (10 -5-10 -3 K) and in Gorter-Mellink (GM) regime for higher temperature differences permit to determine an equivalent He II channel cross-section (10 -6 m 2) with an equivalent channel thickness (25 μm). We use the assumptions that He II heat transfer through the channels network and conduction in the insulation are decoupled and that the channels length is determined from the insulation overlap. It is observed that He II heat transfer is competing with conduction in the insulation. Furthermore, the measurements reveal an anomaly of heat transfer in the vicinity of the λ temperature which is associated to the phenomenon of λ-point depression.

  13. Optimization of electron beam crosslinking of wire and cable insulation

    NASA Astrophysics Data System (ADS)

    Zimek, Zbigniew; Przybytniak, Grażyna; Nowicki, Andrzej

    2012-09-01

    The computer simulations based on Monte Carlo (MC) method and the ModeCEB software were carried out in connection with electron beam (EB) radiation set-up for crosslinking of electric wire and cable insulation. The theoretical predictions for absorbed dose distribution in irradiated electric insulation induced by scanned EB were compared to the experimental results of irradiation that was carried out in the experimental set-up based on ILU 6 electron accelerator with electron energy 0.5-2.0 MeV. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for various process parameters, namely electric wire and cable geometry (thickness of insulation layers and copper wire diameter), type of polymer insulation, electron energy, energy spread and geometry of electron beam, electric wire and cable layout in irradiation zone. The geometry of electron beam distribution in the irradiation zone was measured using CTA and PVC foil dosimeters for available electron energy range. The temperature rise of the irradiated electric wire and irradiation homogeneity were evaluated for different experimental conditions to optimize technological process parameters. The results of computer simulation are consistent with the experimental data of dose distribution evaluated by gel-fraction measurements. Such conformity indicates that ModeCEB computer simulation is reliable and sufficient for optimization absorbed dose distribution in the multi-layer circular objects irradiated with scanned electron beams.

  14. Riser-cable development for ocean-thermal-energy conversion plants. Progress report

    SciTech Connect

    Not Available

    1982-12-01

    Developmental testing and analysis of OTEC riser cables and component materials has been undertaken. Two full-size riser cables have been manufactured and tested, one using cross-linked polyethylene (XLPE) insulation, the other using self-contained, oil filled (SCOF) insulation. These cables and their components have been subjected to testing which simulates handling and insulation prior to OTEC service, as well as the electrical and mechanical loads predicted in service. Results of testing and analyses to date indicate that the XLPE cable has significant potential in the OTEC riser application. The cable has performed well in mechanical and electrical testing. The results for the SCOF cable are mixed. The SCOF cable collapses due to pressure at depths typical of OTEC service; slippage may occur within the insulation or between the conductor and insulation which could result in early cable failure. Particular attention must be paid to alleviating these problems in future cable design efforts. Implications of these findings for cable and system development are presented for use by OTEC platform designers. These findings are subject to change as additional test data are obtained.

  15. 30 CFR 75.517 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Power wires and cables; insulation and protection. 75.517 Section 75.517 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...-General § 75.517 Power wires and cables; insulation and protection. Power wires and cables, except...

  16. 30 CFR 75.517 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Power wires and cables; insulation and protection. 75.517 Section 75.517 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...-General § 75.517 Power wires and cables; insulation and protection. Power wires and cables, except...

  17. 30 CFR 75.517 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Power wires and cables; insulation and protection. 75.517 Section 75.517 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...-General § 75.517 Power wires and cables; insulation and protection. Power wires and cables, except...

  18. 30 CFR 75.517 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Power wires and cables; insulation and protection. 75.517 Section 75.517 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...-General § 75.517 Power wires and cables; insulation and protection. Power wires and cables, except...

  19. 30 CFR 75.517 - Power wires and cables; insulation and protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Power wires and cables; insulation and protection. 75.517 Section 75.517 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...-General § 75.517 Power wires and cables; insulation and protection. Power wires and cables, except...

  20. Cost-Effective Cable Insulation: Nanoclay Reinforced Ethylene-Propylene-Rubber for Low-Cost HVDC Cabling

    SciTech Connect

    2012-02-24

    GENI Project: GE is developing new, low-cost insulation for high-voltage direct current (HVDC) electricity transmission cables. The current material used to insulate HVDC transmission cables is very expensive and can account for as much as 1/3 of the total cost of a high-voltage transmission system. GE is embedding nanomaterials into specialty rubber to create its insulation. Not only are these materials less expensive than those used in conventional HVDC insulation, but also they will help suppress excess charge accumulation. The excess charge left behind on a cable poses a major challenge for high-voltage insulation—if it’s not kept to a low level, it could ultimately lead the insulation to fail. GE’s low-cost insulation is compatible with existing U.S. cable manufacturing processes, further enhancing its cost effectiveness.

  1. 30 CFR 75.517-2 - Plans for insulation of existing bare power wires and cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Plans for insulation of existing bare power... Equipment-General § 75.517-2 Plans for insulation of existing bare power wires and cables. (a) On or before December 31, 1970, plans for the insulation of existing bare power wires and cables installed prior...

  2. 30 CFR 75.517-2 - Plans for insulation of existing bare power wires and cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Plans for insulation of existing bare power... Equipment-General § 75.517-2 Plans for insulation of existing bare power wires and cables. (a) On or before December 31, 1970, plans for the insulation of existing bare power wires and cables installed prior...

  3. 30 CFR 75.517-2 - Plans for insulation of existing bare power wires and cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Plans for insulation of existing bare power... Equipment-General § 75.517-2 Plans for insulation of existing bare power wires and cables. (a) On or before December 31, 1970, plans for the insulation of existing bare power wires and cables installed prior...

  4. 30 CFR 75.517-2 - Plans for insulation of existing bare power wires and cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Plans for insulation of existing bare power... Equipment-General § 75.517-2 Plans for insulation of existing bare power wires and cables. (a) On or before December 31, 1970, plans for the insulation of existing bare power wires and cables installed prior...

  5. 30 CFR 75.517-2 - Plans for insulation of existing bare power wires and cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Plans for insulation of existing bare power... Equipment-General § 75.517-2 Plans for insulation of existing bare power wires and cables. (a) On or before December 31, 1970, plans for the insulation of existing bare power wires and cables installed prior...

  6. Studies on electrical cable insulation for nuclear applications

    SciTech Connect

    Lee, B.S.; Soo, P.; MacKenzie, D.R.; Blackburn, P.

    1989-12-01

    Two new polyethylene cable insulations have been formulated for nuclear applications, and have been tested under gamma radiation. Both insulations are based on low density polyethylene, one with PbO and the other with Sb{sub 2}O{sub 3} as additives. The test results show that the concept of using inorganic anti-oxidants to retard radiation initiated oxidation is viable, and PbO is more effective than Sb{sub 2}O{sub 3} in slowing down radiation initiated oxidation (RIO). Also, radiation degradation data for polyethylene and polyvinyl chloride at 60{degrees}C have been generated, which will be used to understand radiation initiated oxidation process on these materials combined with the 25{degrees}C data that will be generated in the future. 14 refs., 41 figs., 3 tabs.

  7. 49 CFR 234.267 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Insulation resistance tests, wires in trunking and... Inspections and Tests § 234.267 Insulation resistance tests, wires in trunking and cables. (a) Insulation... thereafter. (b) Insulation resistance tests shall be made between all conductors and ground,...

  8. 49 CFR 234.267 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Insulation resistance tests, wires in trunking and... Inspections and Tests § 234.267 Insulation resistance tests, wires in trunking and cables. (a) Insulation... thereafter. (b) Insulation resistance tests shall be made between all conductors and ground,...

  9. 49 CFR 234.267 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Insulation resistance tests, wires in trunking and... Inspections and Tests § 234.267 Insulation resistance tests, wires in trunking and cables. (a) Insulation... thereafter. (b) Insulation resistance tests shall be made between all conductors and ground,...

  10. 30 CFR 56.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and...

  11. 30 CFR 56.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and...

  12. 30 CFR 56.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and...

  13. 30 CFR 56.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and...

  14. 30 CFR 56.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation and fittings for power wires and cables. 56.12008 Section 56.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... MINES Electricity § 56.12008 Insulation and fittings for power wires and cables. Power wires and...

  15. 30 CFR 75.818 - Use of insulated cable handling equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Use of insulated cable handling equipment. 75... Distribution High-Voltage Longwalls § 75.818 Use of insulated cable handling equipment. (a) Energized...

  16. 30 CFR 75.818 - Use of insulated cable handling equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Use of insulated cable handling equipment. 75... Distribution High-Voltage Longwalls § 75.818 Use of insulated cable handling equipment. (a) Energized...

  17. 30 CFR 75.818 - Use of insulated cable handling equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Use of insulated cable handling equipment. 75... Distribution High-Voltage Longwalls § 75.818 Use of insulated cable handling equipment. (a) Energized...

  18. 30 CFR 75.818 - Use of insulated cable handling equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Use of insulated cable handling equipment. 75... Distribution High-Voltage Longwalls § 75.818 Use of insulated cable handling equipment. (a) Energized...

  19. Research on insulation design method of a cold dielectric type superconducting cable

    NASA Astrophysics Data System (ADS)

    Kwag, D. S.; Choi, J. W.; Kim, H. J.; Cho, J. W.; Kim, S. H.

    2008-09-01

    It is important that study on cryogenic electrical insulation design to develop the cold dielectric (CD) type high temperature superconducting (HTS) cable because the cable is operated under the high-voltage environment in cryogenic temperature. Therefore, this paper describes a design method for the electrical insulation layer of the CD type HTS cable adopting the partial discharge (PD)-free design under ac stress, based on the experimental results such a partial discharge inception stress (PDIE) and V- t characteristics, and an impulse breakdown strength of liquid nitrogen (LN 2)/laminated polypropylene paper (LPP) composite insulation system in which the mini-model cable is immersed into pressurized LN 2.

  20. The insulation coordination and surge arrester design for HTS cable system in Icheon substation

    NASA Astrophysics Data System (ADS)

    Lee, Hansang; Yoon, Dong-Hee; Lee, Seung-Ryul; Yang, Byeong-Mo; Jang, Gilsoo

    2013-01-01

    This paper proposes an insulation coordination and surge arrester design for HTS (High-Temperature Superconducting) cable system in Icheon substation in Korea. In the aspect of the economic analysis, since the HTS cable is very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. Also, in the aspect of the power system reliability, since the HTS cable has much more capacity compared than conventional power cables and the ripple effect from the HTS cable failure may lead to the wide area blackout, an intensive study for insulation coordination from lightning surge is one of the most important considerations. In this paper, the insulation coordination for lightning surge is verified using HTS cable and power equipment models and the design of the proper surge arrester is proposed.

  1. 30 CFR 75.516-2 - Communication wires and cables; installation; insulation; support.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; insulation; support. 75.516-2 Section 75.516-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.516-2 Communication wires and cables; installation; insulation; support. (a) All... wires and trolley feeder wires. Additional insulation shall be provided for communication circuits...

  2. 30 CFR 75.516-2 - Communication wires and cables; installation; insulation; support.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; insulation; support. 75.516-2 Section 75.516-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.516-2 Communication wires and cables; installation; insulation; support. (a) All... wires and trolley feeder wires. Additional insulation shall be provided for communication circuits...

  3. 30 CFR 75.516-2 - Communication wires and cables; installation; insulation; support.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; insulation; support. 75.516-2 Section 75.516-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.516-2 Communication wires and cables; installation; insulation; support. (a) All... wires and trolley feeder wires. Additional insulation shall be provided for communication circuits...

  4. 30 CFR 75.516-2 - Communication wires and cables; installation; insulation; support.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; insulation; support. 75.516-2 Section 75.516-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.516-2 Communication wires and cables; installation; insulation; support. (a) All... wires and trolley feeder wires. Additional insulation shall be provided for communication circuits...

  5. 49 CFR 234.267 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Insulation resistance tests, wires in trunking and... STATE ACTION PLANS Maintenance, Inspection, and Testing Inspections and Tests § 234.267 Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance tests shall be made when wires...

  6. 30 CFR 75.516-2 - Communication wires and cables; installation; insulation; support.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; insulation; support. 75.516-2 Section 75.516-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... Equipment-General § 75.516-2 Communication wires and cables; installation; insulation; support. (a) All... wires and trolley feeder wires. Additional insulation shall be provided for communication circuits...

  7. 49 CFR 234.267 - Insulation resistance tests, wires in trunking and cables.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Insulation resistance tests, wires in trunking and... STATE ACTION PLANS Maintenance, Inspection, and Testing Inspections and Tests § 234.267 Insulation resistance tests, wires in trunking and cables. (a) Insulation resistance tests shall be made when wires...

  8. 30 CFR 57.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... NONMETAL MINES Electricity Surface and Underground § 57.12008 Insulation and fittings for power wires...

  9. 30 CFR 57.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... NONMETAL MINES Electricity Surface and Underground § 57.12008 Insulation and fittings for power wires...

  10. 30 CFR 57.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... NONMETAL MINES Electricity Surface and Underground § 57.12008 Insulation and fittings for power wires...

  11. 30 CFR 57.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... NONMETAL MINES Electricity Surface and Underground § 57.12008 Insulation and fittings for power wires...

  12. 30 CFR 57.12008 - Insulation and fittings for power wires and cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation and fittings for power wires and cables. 57.12008 Section 57.12008 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... NONMETAL MINES Electricity Surface and Underground § 57.12008 Insulation and fittings for power wires...

  13. Development of optimized PPP insulated pipe-cable systems in the commercial voltage range. Final report

    SciTech Connect

    Allam, E.M.; McKean, A.L.

    1992-05-01

    The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulated with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.

  14. Development of optimized PPP insulated pipe-cable systems in the commercial voltage range

    SciTech Connect

    Allam, E.M.; McKean, A.L. )

    1992-05-01

    The primary objectives of this project included the development of an alternate domestic source of Paper-Polypropylene-Paper (PPP) laminate and the development of optimized designs for PPP-insulated pipe-type cable systems in the commercial voltage range. The development of a domestic source of PPP laminate was successfully completed. This laminate was utilized throughout the program for fabrication of full-size prototype cables submitted for laboratory qualification tests. Selected cables at rated voltages of 138, 230 and 345kV have been designed, fabricated and subjected to the series of qualification tests leading to full laboratory qualification. An optimized design of 2000 kcmil, 345kV cable insulated with 600 mils of domestic PPP laminate was fabricated and successfully passed all laboratory qualification tests. This cable design was subsequently installed at Waltz Mill to undergo the series of field tests leading to full commercial qualification.

  15. A polytetrafluorethylene insulated cable for high temperature oxygen aerospace applications

    NASA Technical Reports Server (NTRS)

    Sheppard, A. T.; Webber, R. G.

    1983-01-01

    For electrical cables to function and survive in the severe high temperature oxygen environment that will be experienced in the external tanks of the space shuttle, extreme cleanliness and material purity is required. A flexible light weight cable has been developed for use in pure oxygen at worst case temperatures of -190 to +260 degrees Centigrade and pressures as high as 44 pounds per square inch absolute. A comprehensive series of tests were performed on cables manufactured to the best commercial practices in order to establish the basic guidelines for control of build configuration as well as each material used in construction of the cable.

  16. Improved conventional testing of power plant cables. Final report

    SciTech Connect

    Anadakumaran, K.; Braun, J.M.; DiPaul, J.A. |

    1995-09-01

    The objective of the project is to develop improved condition monitoring techniques to assess the condition of power plant cables, particularly the unshielded cables found in older thermal plants. The cables of interest were insulated with PVC, butyl rubber, SBR (styrene butadiene rubber), EPR (ethylene propylene rubber), PE and XLPE (crosslinked polyethylene) as either single conductor, twisted pair, shielded and unshielded. The cables were thermally aged to embrittlement and characterized by physical, chemical and electrical tests. Physical characterization included, in addition to reference tensile elongation, tests performed on microscopic samples for quasi-nondestructive examination. Different tests proved particularly suited to different types of insulation. The dielectric characterization underlined the value of performing tests at other than power frequency and/or dc. Electric field calculations were carried out to develop a field testing strategy for unshielded cables and notably to investigate the feasibility of providing a suitable ground plane by testing conductor to grounded conductors(s). Two major electrical diagnostic test techniques were investigated in detail, low frequency insulation analysis to probe the bulk condition of insulations and partial discharge (PD) testing to detect cracks and defects. PD testing is well established but more challenging to perform with unshielded cables. Because of the attenuation properties of typical plant cables, a dual ended detector configuration is necessary. Two novel techniques were developed to provide dual ended detection without need for a second cable as the return path from the far end detector.

  17. Development of 500-kV AC cable employing laminar insulation of other than conventional cellulosic paper. Final report

    SciTech Connect

    Bahder, G.; Eager, G.S. Jr.; Walker, J.J.; Dima, A.F.

    1980-09-01

    The results of an investigation to develop a 500 kV ac laminar dielectric power cable and joint having insulation with lower losses than conventional cellulosic paper insulation are presented. Background information is presented on proposed low-loss synthetic and composite synthetic/cellulosic paper insulations. From these studies, fibrous polypropylene paper tape and cellulosic paper-polypropylene film-cellulosic paper composite paper (PPP) were chosen. Extensive testing of hand-wrapped cable models fabricated with each type of tape served to eliminate the fibrous polypropylene paper tape from further consideration. Cable model tests indicate that the PPP tape is satisfactory for insulation in 500 kV ac cable, and that oil impregnants now used in conventional cellulosic paper insulated cables are unsuitable, but that silicone oil with an additive is satisfactory for PPP tapes. Laboratory data indicate that it may be necessary with the PPP tapes to use a significantly lower viscosity impregnating oil which has a greater tendency to drain from pipe-type cables than conventional oil. This may require a modification of the moisture seal. Four final pipe-type cables having a conventional moisture seal were manufactured for possible future field testing. The dielectric loss of the final cables is one-fifth that of conventional cellulosic paper insulated cables. The estimated installed cost per MVA-mile of the PPP insulated cable, neglecting losses, is higher than cellulosic insulated cables impregnated with conventional mineral oil. However, the capacitance of the cable insulated with PPP tape is 25% lower than conventional cable, and therefore, the reactance necessary to compensate for the cable charging current is significantly reduced.

  18. Adhesives for laminating polyimide insulated flat conductor cable

    NASA Technical Reports Server (NTRS)

    Montermoso, J. C.; Saxton, T. R.; Taylor, R. L.

    1967-01-01

    Polymer adhesive laminates polyimide-film flat conductor cable. It is obtained by reacting an appropriate diamine with a dianhydride. The adhesive has also been used in the lamination of copper to copper for the preparation of multilayer circuit boards.

  19. Thermal insulation performance of flexible piping for use in HTS power cables

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Demko, J. A.

    2002-05-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 kelvin (K) are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  20. Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  1. Development of 500 kV DC PPLP-insulated oil-filled submarine cable

    SciTech Connect

    Fujimori, A.; Tanaka, T.; Takashima, H.; Imajo, T.; Hata, R.; Tanabe, T.; Yoshida, S.; Kakihana, T.

    1996-01-01

    This paper outlines the development of a 500 kV DC oil-filled submarine cable capable of transmitting 2,800 MW with {+-} 500 kV 2800A bipole system. Polypropylene Laminated Paper (PPL) was employed as the insulation material, which is the worlds first application to DC cables. The conductor size is 3,000 mm{sup 2}, which is the largest size for submarine cables ever put into practical use. Through various fundamental and prototype tests, the cable proved to have excellent electrical characteristics for DC voltage as well as transient overvoltage. The cable and accessories are currently undergoing a long-term accelerated aging test as the final confirmation of their reliability and stability.

  2. Safety research of insulating materials of cable for nuclear power generating station

    NASA Technical Reports Server (NTRS)

    Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.

    1988-01-01

    The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.

  3. Economics of PPP-insulated pipe-type cable: Final report

    SciTech Connect

    Ernst, A.

    1987-10-01

    This study has been designed to establish the economic range of application and the potential cost advantage of PPP-insulated pipe-type cable compared with presently utilized paper-insulated designs. The study is in two parts. In the first part the electrical and thermal characteristics of a range of cable sizes are tabulated. This data can be utilized for planning and economic comparison purposes. In the second part 12 transmission load scenarios are studied to determine the relative cost of various designs considering materials, installation and the losses over a wide range of assumptions.

  4. Assessment of the insulation degradation of cables used in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Bartoníc̆ek, B.; Hnát, V.; Plac̆ek, V.

    1999-05-01

    Cable insulating materials are usually, during their operational lifetime, exposed to a high number of various deteriorative enviromental effects resulting in their degradation. In the case of cables used in the nuclear power plant (NPP) hermetic zone these factors consist predominantly of long-term irradiation (at rather low dose rates, in the presence of oxygen) and enhanced temperature. Hence, all cables assigned for use in NPP have to be qualified for use under such severe conditions. However, not only the initial qualification but also monitoring of the actual state of the installed cables in regular intervals is now recommended. Monitoring of the actual state of the cable insulation and the prediction of their residual service life (i.e., the on-going qualification) consist of the measurement of the properties that are directly proportional to the functionality of the cables (usually the elongation at break is used as the critical parameter). For the cables installed in the NPP hermetic zone a method based on the measurement of the thermo-oxidative stability by the differential scanning calorimetry has been developed.

  5. Effect of processing conditions on the reliability of cross-linked polyethylene cable insulation. First year report

    SciTech Connect

    Phillips, P J

    1980-01-01

    Progress is reported in crystallization and morphology, treed cables, and cable production on the reliability of cross-linked polyethylene cable insulation. Scanning electron microscopy of polished surfaces etched with carbon tetrachloride vapor, differential scanning calorimetry and x-ray diffraction were used for morphological investigations until recently when good results have been obtained using the technique of permanganic acid etching. (FS)

  6. On the use of doped polyethylene as an insulating material for HVDC cables

    SciTech Connect

    Khalil, M.S.

    1996-12-31

    The merits of HVDC cables with polymeric insulation are well recognized. However, the development of such cables is still hampered due to the problems resulting from the complicated dependence of the electrical conductivity of the polymer on the temperature and the dc electric field and the effects of space charge accumulation in this material. Different methods have been suggested to solve these problems yet none of these methods seem to give a conclusive solution. The present report provides, firstly a critical review of the previous works reported in the literature concerning the development of HVDC cables with polymeric insulation. Different aspects of those works are examined and discussed. Secondly, an account is given on an investigation using low density polyethylene (LDPE) doped with an inorganic additive as a candidate insulating material for HVDC cables. Preliminary results from measurements of dc breakdown strength and insulation resistivity of both the undoped and the doped materials are presented. It is shown that the incorporation of an inorganic additive into LDPE has improved the performance of the doped material under polarity reversal dc conditions at room temperature. Moreover, the dependency of the insulation resistivity on temperature for the doped material appears to be beneficially modified.

  7. TSDC study of XLPE recrystallization effects in the melting range of temperatures

    NASA Astrophysics Data System (ADS)

    Diego, J. A.; Belana, J.; Òrrit, J.; Sellarès, J.; Mudarra, M.; Cañadas, J. C.

    2006-05-01

    The electrical properties of crosslinked polyethylene (XLPE), employed in mid-voltage cable insulation are studied using thermally stimulated depolarization currents (TSDC), differential scanning calorimetry (DSC) and x-ray diffraction. A complex heteropolar peak appears by TSDC between 50 and 110 °C, with a maximum at 105 °C. These measurements reveal that there is an optimal polarization temperature (Tpo) around 90 °C. For this polarization temperature, the measured discharge peak area is maximum. Although the presence of a Tpo is common in the study of relaxations by TSDC, in this case one would expect a monotonic decrease in the TSDC response with increasing polarization temperatures due to the decrease in the total crystalline fraction. In this paper, TSDC curves obtained under several conditions are interpreted in terms of recrystallization processes in XLPE during the polarization stage, if the sample is polarized in the melting temperature range. In this case, the recrystallization of a fraction of the material molten at this temperature promotes the formation of more stable and defect-free crystals. The presence of recrystallization processes is detected by DSC and confirmed by x-ray diffractometry. TSDC measurements have been performed with samples polarized at several temperatures (Tp) cooling from the melt or heating from room temperature. Also, TSDC results are obtained with previous annealing or with several cooling rates. These results allow us to infer that crystalline material grown from recrystallization processes that take place in the polarization stage attains a particularly stable polarization. Possible microscopical causes of this effect are discussed.

  8. "Flexible aerogel as a superior thermal insulation for high temperature superconductor cable applications"

    SciTech Connect

    White, Shannon O.; Demko, Jonathan A; Tomich, A.

    2010-01-01

    High temperature superconducting (HTS) cables are an advanced technology that can both strengthen and improve the national electrical distribution infrastructure. HTS cables require sufficient cooling to overcome inherent low temperature heat loading. Heat loads are minimized by the use of cryogenic envelopes or cryostats. Cryostats require improvement in efficiency, reliability, and cost reduction to meet the demanding needs of HTS conductors (1G and 2G wires). Aspen Aerogels has developed a compression resistant aerogel thermal insulation package to replace compression sensitive multi-layer insulation (MLI), the incumbent thermal insulation, in flexible cryostats for HTS cables. Oak Ridge National Laboratory tested a prototype aerogel package in a lab-scale pipe apparatus to measure the rate of heat invasion. The lab-scale pipe test results of the aerogel solution will be presented and directly compared to MLI. A compatibility assessment of the aerogel material with HTS system components will also be presented. The aerogel thermal insulation solution presented will meet the demanding needs of HTS cables.

  9. On the Degradation Mechanism of Low-Voltage Underground Cable with Poly(Vinyl Chloride) Insulation

    NASA Astrophysics Data System (ADS)

    Tawancy, H. M.; Hassan, M.

    2016-06-01

    A study has been undertaken to determine the degradation mechanism leading to localized short-circuit failures of an underground low-voltage cable with PVC insulation. It is shown that that the insulation of outer sheath and conductor cores has been cracked by thermal degradation involving dehydrochlorination, oxidation, and loss of plasticizers leading to current leakage between the cores. Most evidence points out that overheating due to poor connection of copper wires as well as a chemically active soil has caused the observed degradation.

  10. Steady-state heat transfer in He II through porous superconducting cable insulation

    SciTech Connect

    Baudouy, B.J.P.; Juster, F.P.; Meuris, C.; Vieillard, L.

    1996-12-31

    The LHC program includes the study of thermal behavior of the superconducting cables wound in the dipole magnet cooled by superfluid helium (He II). Insulation of these superconducting cables forms the major thermal shield hindering the He II cooling. This is particularly a problem in magnets which are subjected to thermal loads. To investigate He II heat transfer processes an experimental model has been realized which creates a one-dimensional heat transfer in such media. Insulation is generally realized by wrapping around the superconducting cable a combination of different kind of Kapton{reg_sign} tapes, fiber-glass impregnated by epoxy resin or Kevlar{reg_sign} fiber tapes. Steady-state heat transfer in He II through these multi-layer porous slabs has been analyzed. Experimental results for a range of heat flux show the existence of different thermal regimes related to He II. It is shown that the parameters of importance are a global geometrical factor which could be considered as an equivalent {open_quotes}permeability{close_quotes} related to He II heat transfer, the transfer function f(T) of He II and the thermal conductivity of the slab. The authors present and analyze results for different insulations as a function of the temperature.

  11. Long-term aging and loss-of-coolant accident (LOCA) testing of electrical cables

    SciTech Connect

    Nelson, C.F.; Gauthier, G.; Carlin, F.

    1996-10-01

    Experiments were performed to assess the aging degradation and loss-of-coolant accident (LOCA) behavior of electrical cables subjected to long-term aging exposures. Four different cable types were tested in both the U.S. and France: (1) U.S. 2 conductor with ethylene propylene rubber (EPR) insulation and a Hypalon jacket. (2) U.S. 3 conductor with cross-linked polyethylene (XLPE) insulation and a Hypalon jacket. (3) French 3 conductor with EPR insulation and a Hypalon jacket. (4) French coaxial with polyethylene (PE) insulation and a PE jacket. The data represent up to 5 years of simultaneous aging where the cables were exposed to identical aging radiation doses at either 40{degrees}C or 70{degrees}C; however, the dose rate used for the aging irradiation was varied over a wide range (2-100 Gy/hr). Aging was followed by exposure to simulated French LOCA conditions. Several mechanical, electrical, and physical-chemical condition monitoring techniques were used to investigate the degradation behavior of the cables. All the cables, except for the French PE cable, performed acceptably during the aging and LOCA simulations. In general, cable degradation at a given dose was highest for the lowest dose rate, and the amount of degradation decreased as the dose rate was increased.

  12. Techniques for the protection of gas-insulated substation to cable interfaces

    SciTech Connect

    Fujimoto, N.; Croall, S.J.; Foty, S.M. )

    1988-10-01

    Line-to-ground faults in gas-insulated substations (GIS) generate fast nanosecond risetime transients which cause sparkovers across the insulated flange of high pressure oil filled cable/GIS interfaces. The ionized path formed by the sparkovers creates a low-impedance path for power frequency fault current, resulting in flange damage with potentially serious consequences. Various techniques for protecting the insulating flange from such damage are investigated and discussed, both in terms of new designs and in terms of retrofits for existing installations. In order to be effective, each protection scheme must adequately deal with the fast transients generated by breakdown in the GIS. As the frequencies of these transients are 1 to 2 orders of magnitude higher than for ''conventional'' power system transients, special considerations are necessary in the protection scheme chosen.

  13. Chlorine Release from Hypalon Cable Insulation During Severe Nuclear Reactor Accidents

    SciTech Connect

    Auvinen, Ari; Zilliacus, Riitta; Jokiniemi, Jorma

    2005-02-15

    Pyrolytic dehydrochlorination of the electrical cable insulation Hypalon was studied as a function of time and temperature. The chlorine evolution was determined separately by means of on-line activity measurements and by neutron activation analysis in the temperature range 200 deg. C to 300 deg. C, with one test conducted at 500 deg. C. The object of the research was to determine the chlorine release and the chlorine release fraction as a function of temperature. The data obtained were needed to formulate conclusions regarding the release mechanisms of chlorine. Estimates of the amount of hydrochloric acid released to the containment building in a severe reactor accident were also calculated. It can be concluded that the amount of chlorine release from the Hypalon cable is significant and will have an effect on iodine behavior in a severe accident.

  14. Theory of inception mechanism and growth of defect-induced damage in polyethylene cable insulation

    NASA Astrophysics Data System (ADS)

    Serra, S.; Montanari, G. C.; Mazzanti, G.

    2005-08-01

    We have investigated theoretically the inception mechanism and growth of the damage inside the insulation system of a polymeric cable under working conditions. We focused, in particular, our attention on damage originating from microscopic defects such as voids. In order to clarify the implications of these defects for cable failure, we have developed a theoretical model based on the theory of electrical avalanche solving numerically its basic equations. Calculations of the ionization rates of atmospheric gas filling the voids are done as a function of the applied electric stress and void dimensions. Estimates of the energy release and local damage in polyethylene produced by the resulting hot-electron discharge are given. The developed physical model of damage growth compares reasonably well with known experimental data.

  15. A Novel Electrical Insulating Material for 275 kV High-Voltage HTS Cable with Low Dielectric Loss

    NASA Astrophysics Data System (ADS)

    Hayakawa, N.; Nishimachi, S.; Maruyama, O.; Ohkuma, T.; Liu, J.; Yagi, M.

    2014-05-01

    In the case of high temperature superconducting (HTS) power transmission cables at high voltage operation, the electrical insulation technique in consideration of the dielectric loss reduction becomes crucial. In this paper, we focused on a Tyvek/polyethylene (PE) sheet, instead of the conventional polypropylene laminated paper (PPLP). We obtained the dielectric characteristics (epsilonr, tanδ) and partial discharge inception strength (PDIE) of PPLP, Tyvek and Tyvek/PE. We pointed out that the dielectric loss of 275 kV HTS cable with Tyvek/PE insulation will be reduced to 21 % of that with PPLP, and the total electrical loss including the AC loss will be reduced to 41 %.

  16. Induced Surge Characteristics on a Control Cable in a Gas-Insulated Substation due to Switching Operation

    NASA Astrophysics Data System (ADS)

    Ametani, Akihiro; Goto, Takahiro; Nagaoka, Naoto; Omura, Hiroshi

    This paper has investigated the basic characteristics of switching surges in a gas-insulated substation and induced surges to a control cable based on EMTP simulations. It has been found that a switching surge voltage on the core conductor of a gas-insulated bus (GIB) tends to increase and the oscillating frequency becomes lower as the number of spacers increases. The maximum switching overvoltages become greater at the nodes nearby an operating disconnector (DS)/circuit breaker (CB) and become smaller at the source side. An induced surge to a control cable tends to increase as the parallel length of the GIB and the control cable increases. However, in the case of an open-circuited GIB, there exists a length which gives the highest voltage. A transient current becomes very large if a voltage transformer (VT) or a spacer is installed right next to an operating CB or DS, although this current does not affect the induced and VT transferred surge to the control cable. Also it is observed that a ramp wave voltage causes polarity reversing of a transient voltage on the GIB tank and the control cable.

  17. Technologies for Improved Reliability of Shielded Power Cable and Characterization of Capacitor Film Energy Density

    NASA Astrophysics Data System (ADS)

    Shu, Wen

    Partial Discharge (PD), a partial breakdown of insulation between high voltage electrodes, reduces cable reliability. Understanding electromagnetic propagation of PD-induced pulses in shielded power cable, including attenuation and dispersion, is essential to the application of PD diagnostics and, especially, PD location. Dispersion is caused by the transition of cable semicon-ducting layers (between the cable conductors and dielectric) from "resistive" at low frequency to "capacitive" at high frequency. Methods are presented to compute dispersion as a function of semiconducting material properties and evaluate the effect of dispersion on pulse characteristics (amplitude, shape, and width, etc.) as a function of distance propagated, the results of which are applied to investigate the effects of dispersion for PD detection and location. The location error induced by dispersion can be compensated from calibration. Electrochemical degradation of cable dielectrics, known as "water treeing", is one of the leading cause of premature failures in underground shielded power cable. Silane-based fluid has been used successfully for decades to rejuvenate HMWPE and XLPE dielectric cables to "cure" existing water trees and extend cable life. However the ability of the treatment to inhibit future water tree initiation is not known. A method for silane fluid treatment of un-aged cable insulation and semicon was developed based on the use of GC/MS to determine curing of the fluid within the dielectric. A wet electrical aging test at 5 kV/mm (127 V/mil) based on a sample which includes semicon electrodes on both sides of the XLPE insulation with a water electrode in contact with one semicon layer was used to age untreated samples, samples treated prior to the test, and samples treated at the mid-time of the test (3500 hrs). The result of aging is analyzed by microscopic examination to determine the number, length and types of water trees. The mechanism by which the silane

  18. Influence of γ-irradiation and temperature on the mechanical properties of EPDM cable insulation

    NASA Astrophysics Data System (ADS)

    Šarac, T.; Quiévy, N.; Gusarov, A.; Konstantinović, M. J.

    2016-08-01

    The mechanical properties of EPDM polymers, degraded as a result of extensive thermal and radiochemical aging treatment, are studied. The focus is given to dose rate effects in polymer insulation materials extracted from industrial cables in use in Belgian nuclear power plants. All studied mechanical characteristics such as the ultimate tensile stress, the Young's modulus, and the total elongation (or elongation at break) are found to be strongly affected by the irradiation dose. The ultimate tensile stress and Young's modulus are clearly exhibiting the dose rate effect, which originated from oxidation mediated interplay of polymer cross-linking and chain scission processes. The change of crossover between these two processes is found to be gradual, without critical dose rate or temperature values. On the contrary, the total elongation is observed not to be sensitive neither to irradiation temperature nor to the dose rate. Both cross-linking and chain scission seem to affect the total elongation in a similar way by reducing the average polymers chain length. This idea is confirmed by the model which shows that all total elongation data as a function of irradiation time can be reproduced by varying a single parameter, the pre-exponential factor of the irradiation rate constant.

  19. Cable insulation development (1). Superconducting power transmission system development (2). Semiannual report, 1 April 1985-30 September 1985

    SciTech Connect

    Not Available

    1986-04-07

    Objective of the program is to develop an undergound superconducting power transmission system which is economical and technically attractive to the utility industry. The system would be capable of carrying very large blocks of electric power, thus enabling it to supplant overhead lines in urban and suburban areas and regions of natural beauty. the program consisted initially of work in the laboratory to develop suitable materials, cryostats and cable concepts. The materials work covers the development and testing of suitable superconductors and dielectric insulation. The laboratory work has now been extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. The facility allows cables several hundred feet long to be tested under realistic conditions. Six operating runs of two to four weeks duration each have been accomplished.

  20. The influence of macrofouling on two polymers used as insulation on submarine high voltage cables in Cozumel, Mexico

    SciTech Connect

    Ramirez-Delgado, R.; Valero-Huerta, M.A.

    1995-11-01

    Macrofouling is a major source of problems causing poor power plant availability and efficiency. A variety of macrofouling control technologies has been developed for use at power plants, however, only one control technology has been designed to protect submarine cables used for electric transmission. The selection of materials possessing antifouling properties is the method used to control the growth of marine fouling organisms. Such methodology is applied in this study with the purpose of evaluating the behavior of two polymers. This practice will permit choosing the polymer that presents the better antifouling properties. In this study are presented the results obtained from the tension and elongation tests accomplished on two kinds of plastic materials: high density polyethylene (PE) and polyvinyl chloride (PVC), both of which were exposed to bio-degradation during 106 and 162 days, at different depths in the Caribbean Sea. The proven materials will be used as electrical insulation in submarine cables of high voltage: 115 kV.

  1. Comparative gamma radiation and temperature effects on SiO/sub 2/, MgO and Al/sub 2/O/sub 3/ insulated nuclear instrument cable

    SciTech Connect

    Cannon, C.P.

    1981-05-01

    The relative merits of SiO/sub 2/, MgO and Al/sub 2/O/sub 3/ as insulation for nuclear instrument cables are investigated. Insulation resistance, voltage breakdown phenomena, capacitance, dissipation factors, and spurious voltage and current signals have been investigated on nuclear instrument cables under the combined effects of gamma irradiation (10/sup 5/ R/h) and temperature (to 450/sup 0/C). The SiO/sub 2/, MgO and Al/sub 2/O/sub 3/ cables tested were all fabricated to procedures that controlled insulation and backfill gas impurities. The SiO/sub 2/ cables possessed insulation resistances greater than 10/sup 10/ ..cap omega...ft at 450/sup 0/C and 10/sup 5/ R/h - nearly two decades higher than MgO or Al/sub 2/O/sub 3/ cables. Spontaneously generated currents as high as 250 nA dc were observed on some cables during thermal cycling tests.

  2. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    NASA Astrophysics Data System (ADS)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  3. Cable insulation development (1): Superconducting power transmission system development (2): Annual report for the period 1 October 1985-30 September 1986

    SciTech Connect

    Not Available

    1987-02-09

    Progress is reported for two projects, the development of a superconducting power transmission system and an ambient temperature high stress power cable. The objective of the superconducting power transmission cable program is to develop a system which is economical and technically attractive to the utility industry. Laboratory work in this project has extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. Ambient temperature high stress cable development has involved development of a fully synthetic polyethylene or polypropylene dielectric tape for use as electrical insulation. 12 figs., 5 tabs.

  4. Control of Cable Insulation Quality by Changing of Electrical Capacitance Per Unit During High Voltage Testing

    NASA Astrophysics Data System (ADS)

    Starikova, N. S.; Redko, V. V.; Vavilova, G. V.

    2016-01-01

    The paper describes the complex method of insulation quality control. It was found that electrical contact between bead chain electrodes and insulation surface can be provided by surface discharges along the entire length of the controlled zone. The pattern of electromagnetic field was developed by using Comsol Myltiphysics software.

  5. Effects of processing conditions on the reliability of cross-linked polyethylene cable insulation. Progress report

    SciTech Connect

    Phillips, P.J.

    1981-03-01

    Crystallization and morphology were investigated in cross-linked PE. /sup 13/C NMR was used to quantify the cross-links. Production of cable is being studied. Dielectric constant and loss of cross-linked PE are being measured. (DLC)

  6. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    SciTech Connect

    Teyssedre, G. Laurent, C.; Vu, T. T. N.

    2015-12-21

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  7. Prediction of [3-(14)C]phenyldodecane biodegradation in cable insulating oil-spiked soil using selected extraction techniques.

    PubMed

    Dew, Nadia M; Paton, Graeme I; Semple, Kirk T

    2005-11-01

    This study investigated the use of an aqueous hydroxypropyl-beta-cyclodextrin (HPCD) shake extraction in predicting microbial mineralisation and total loss of [3-(14)C]phenyldodecane associated activity in soils spiked with cable insulating oil; phenyldodecane represents a major constituent of cable insulating oil. Direct comparisons were made between freshly spiked and aged soils, and following composting. Soil was spiked with [3-(14)C]phenyldodecane (10mg kg(-1)) and stored in microcosms and aged for 1, 23, 44, 65, 90 and 153 d. At each sample time point, a variety of analyses were performed to assess the relationship between chemical and biological techniques in determining mineralisation and loss of (14)C-activity in soils under composting and non-composting conditions. Methods included determination of total (14)C-activity remaining, dichloromethane (DCM) and HPCD extractions. Mineralisation assays were also carried out to quantify the fraction of (14)C-phenyldodecane associated activity available for degradation in the soil at each time point. DCM and HPCD extractability were compared to contaminant mineralisation and to total loss of (14)C-phenyldodecane associated activity from the microcosms, after 153 d incubation. Poor relationships were found between (i) the amount of (14)C-activity mineralised and the fraction removed from the soils using DCM extraction and (ii) DCM extraction and total loss of [(14)C]phenyldodecane associated activity from the soil systems. Good relationships were observed between (i) the amount of (14)C-activity mineralised and the fraction removed from the soils using the HPCD extraction and (ii) HPCD extraction and total loss of [(14)C]phenyldodecane associated activity from the soil systems. The results of this study indicate that an aqueous HPCD extraction may be a useful tool in assessing the microbial availability of phenyldodecane in freshly and aged spiked soils. PMID:15949878

  8. Heat transfer through the flat surface of Rutherford superconducting cable samples with novel pattern of electrical insulation immersed in He II

    NASA Astrophysics Data System (ADS)

    Strychalski, M.; Chorowski, M.; Polinski, J.

    2014-05-01

    Future accelerator magnets will be exposed to heat loads that exceed even by an order of magnitude presently observed heat fluxes transferred to superconducting magnet coils. To avoid the resistive transition of the superconducting cables, the efficiency of heat transfer between the magnet structure and the helium must be significantly increased. This can be achieved through the use of novel concepts of the cable’s electrical insulation wrapping, characterized by an enhanced permeability to helium while retaining sufficient electrical resistivity. This paper presents measurement results of the heat transfer through Rutherford NbTi cable samples immersed in a He II bath and subjected to the pressure loads simulating the counteracting of the Lorentz forces observed in powered magnets. The Rutherford cable samples that were tested used different electrical insulation wrapping schemes, including the scheme that is presently used and the proposed scheme for future LHC magnets. A new porous polyimide cable insulation with enhanced helium permeability was proposed in order to improve the evacuation of heat form the NbTi coil to He II bath. These tests were performed in a dedicated Claudet-type cryostat in pressurized He II at 1.9 K and 1 bar.

  9. 30 CFR 75.818 - Use of insulated cable handling equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. ... personal protective equipment capable of providing protection against shock hazard must be used to prevent... ASTM F496-97, “Standard Specification for In-Service Care of Insulating Gloves and Sleeves” (1997)....

  10. Superconductor cable

    DOEpatents

    Allais, Arnaud; Schmidt, Frank (Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  11. Selected developments in laser wire stripping. [cutting insulation from aerospace-type wires and cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The operation of mechanical and thermal strippers and the early development of laser wire strippers are reviewed. NASA sponsored development of laser wire stripping for space shuttle includes bench-type strippers as well as an advanced portable hand-held stripper which incorporates a miniaturized carbon dioxide laser and a rotating optics unit with a gas-jet assist and debris exhaust. Drives and controls girdle the wire and slit the remaining slug without manual assistance. This unit can strip wire sizes 26 through 12 gage. A larger-capacity hand-held unit for wire sizes through 1/0 gage was built using a neodynium-doped yttrium aluminum garnet (Nd:YAG) laser. The hand-held units have a flexible umbilical cable to an accompanying cart that carries the power supply, gas supply, cooling unit, and the controls.

  12. Development of New-type Outdoor Termination using Composite Insulator with SF6 Gas

    NASA Astrophysics Data System (ADS)

    Kusuda, Yusuke; Fukuda, Kinya; Matsumura, Masao; Hagisawa, Kazuhisa; Okamoto, Gaku; Nakanishi, Tatsuo; Inoue, Yoshiyuki

    Recently, composite insulators have been increasingly employed mainly from the economic viewpoint. We have been developed new type outdoor termination with composite insulator, which can be installed horizontally on the steel tower, in order to reduce the construction cost. In this outdoor termination, SF6 gas is filled in the composite insulator and a cold shrinkable pre-molded rubber unit is applied instead of the combinational use of rubber-molded stress relief cone, epoxy resin insulator and spring unit. The application of composite insulator, SF6 gas and cold shrinkable pre-molded rubber unit lights the total weight and makes it possible to install horizontally on the tower. The composite insulator type outdoor termination for 77kV XLPE cable has already applied as commercial use and enabled to reduce the construction cost of power transmission lines. A 154kV new type outdoor termination has been developed and successfully completed the initial electrical test. This paper describes the design and performance of both 77kV and 154kV new type outdoor termination, and the follow-up survey of 77kV outdoor termination in the commercial power transmission line.

  13. Development of a method for evaluation of the life curve of the HV and EHV cable polymeric insulation: The first results and fields of application

    NASA Astrophysics Data System (ADS)

    Peshkov, I. B.; Ovsienko, V. L.; Shuvalov, M. Yu.

    2015-12-01

    A test procedure and an experimental setup are presented that enable derivation of the "life curve," i.e., the electrical tree induction period vs. applied voltage dependence for the low-density crosslinked polyethylene insulation. The developed equipment allows testing samples of materials both made in a laboratory and cut out from commercially manufactured cables at room temperature and at long-term permissible and overload temperatures. The fact of the electrical tree inception is established by light microscopy directly during simultaneous high-voltage test of ten samples. The optical system and the applied micromanipulation technique provide spatial resolution of approximately 1.5 μm, high-precision delivery of the microelectrode to the area of interest inside the sample, a permanent and reliable contact between the microelectrode and the material, and preservation of the residual mechanical stress field. The obtained results can be applied to development of new high-voltage cables with polymer insulation. The derived "life curve" enabled—using the corresponding mathematical model—calculation of the electric insulation thickness, which reaches 19-20 mm for the 220-kV cables.

  14. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable (trailing) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to... mounted component. Cable grips anchored to the cable may be used in lieu of insulated strain...

  15. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable (trailing) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to... mounted component. Cable grips anchored to the cable may be used in lieu of insulated strain...

  16. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable (trailing) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to... mounted component. Cable grips anchored to the cable may be used in lieu of insulated strain...

  17. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable (trailing) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to... mounted component. Cable grips anchored to the cable may be used in lieu of insulated strain...

  18. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  19. Molds for cable dielectrics

    DOEpatents

    Roose, Lars D.

    1996-01-01

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made.

  20. Electronically controlled cable wrapper

    DOEpatents

    Young, Thomas M.

    1984-01-01

    A spindle assembly engages and moves along a length of cable to be wrapped with insulating tape. Reels of insulating tape are mounted on a outer rotatable spindle which revolves around the cable to dispense insulating tape. The rate of movement of the spindle assembly along the length of the cable is controlled by a stepper motor which is programmably synchronized to the rate at which rotatable spindle wraps the cable. The stepper motor drives a roller which engages the cable and moves the spindle assembly along the length of the cable as it is being wrapped. The spindle assembly is mounted at the end of an articulated arm which allows free movement of the spindle assembly and allows the spindle assembly to follow lateral movement of the cable.

  1. Electronically controlled cable wrapper

    DOEpatents

    Young, T.M.

    1982-08-17

    A spindle assembly engages and moves along a length of cable to be wrapped with insulating tape. Reels of insulating tape are mounted on a outer rotatable spindle which revolves around the cable to dispense insulating tape. The rate of movement of the spindle assembly along the length of the cable is controlled by a stepper motor which is programmably synchronized to the rate at which rotatable spindle wraps the cable. The stepper motor drives a roller which engages the cable and moves the spindle assembly along the length of the cable as it is being wrapped. The spindle assembly is mounted at the end of an articulated arm which allows free movement of the spindle assembly and allows the spindle assembly to follow lateral movement of the cable.

  2. Comparison of currents predicted by NASCAP/LEO model simulations with elementary Langmuir-type bare probe models for an insulated cable containing a single pinhole

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel T.

    1990-01-01

    The behavior of a defect in the insulation of a short biased section of cable in a Low Earth Orbit (LEO) space environment was examined. Such studies are of the utmost importance for large space power systems where great quantities of cabling will be deployed. An insulated probe containing a pinhole was placed into a hypothetical high speed LEO plasma. The NASA Charging Analyzer Program (NASCAP/LEO) was used to explore sheath growth about the probe as a function of applied voltage and to predict I-V behavior. A set of independent current calculations using Langmuir's formulations for concentric spheres and coaxial cylinders were also performed. The case of concentric spheres was here extended to include the case of concentric hemispheres. Several simple Langmuir-type models were then constructed to bracket the current collected by the cable. The space-charge sheath radius and impact parameters were used to determine the proper current regime. I-V curves were plotted for the models and comparisons were made with NASCAP/LEO results. Finally, NASCAP/LEO potential contours and surface cell potential plots were examined to explain interesting features in the NASCAP/LEO I-V curve.

  3. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., insulated from such equipment, are used. When such energized cables are moved manually, insulated hooks... physically attached to the equipment by suitable mechanical devices, and the cable is insulated from...

  4. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., insulated from such equipment, are used. When such energized cables are moved manually, insulated hooks... physically attached to the equipment by suitable mechanical devices, and the cable is insulated from...

  5. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., insulated from such equipment, are used. When such energized cables are moved manually, insulated hooks... physically attached to the equipment by suitable mechanical devices, and the cable is insulated from...

  6. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., insulated from such equipment, are used. When such energized cables are moved manually, insulated hooks... physically attached to the equipment by suitable mechanical devices, and the cable is insulated from...

  7. End moldings for cable dielectrics

    DOEpatents

    Roose, Lars D.

    2000-01-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed is a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves.

  8. Submerged Medium Voltage Cable Systems at Nuclear Power Plants. A Review of Research Efforts Relevant to Aging Mechanisms and Condition Monitoring

    SciTech Connect

    Brown, Jason; Bernstein, Robert; White, II, Gregory Von; Glover, Steven F.; Neely, Jason C.; Pena, Gary; Williamson, Kenneth Martin; Zutavern, Fred J.; Gelbard, Fred

    2015-03-01

    In a submerged environment, power cables may experience accelerated insulation degradation due to water - related aging mechanisms . Direct contact with water or moisture intrusion in the cable insulation s ystem has been identified in the literature as a significant aging stressor that can affect performance and lifetime of electric cables . Progressive reduction of the dielectric strength is commonly a result of water treeing which involves the development of permanent hydrophilic structures in the insulation coinciding with the absorption of water into the cable . Water treeing is a phenomenon in which dendritic microvoids are formed in electric cable insulation due to electrochemic al reactions , electromechanical forces , and diffusion of contaminants over time . These reactions are caused by the combined effect s of water presence and high electrical stress es in the material . Water tree growth follow s a tree - like branching pattern , i ncreasing in volume and length over time . Although these cables can be "dried out," water tree degradation , specifically the growth of hydrophilic regions, is believed to be permanent and typically worsens over time. Based on established research , water treeing or water induced damage can occur in a variety of electric cables including XLPE, TR - XLPE and other insulating materials, such as EPR and butyl rubber . Once water trees or water induced damage form, the dielectric strength of an insulation materia l will decrease gradually with time as the water trees grow in length, which could eventually result in failure of the insulating material . Under wet conditions or i n submerged environments , several environmental and operational parameters can influence w ater tree initiation and affect water tree growth . These parameters include voltage cycling, field frequency, temperature, ion concentration and chemistry, type of insula tion material , and the characteristics of its defects. In this effort, a review of academic

  9. Initial Acceptance Criteria Concepts and Data for Assessing Longevity of Low-Voltage Cable Insulations and Jackets

    SciTech Connect

    Gary toman

    2005-03-30

    This report establishes a basis for acceptance criteria, provides a method for estimating remaining low-voltage cable life, and provides aging profiles under various thermal and radiation conditions for available cable polymer condition-monitoring techniques. This report is not meant to be the final comprehensive source of acceptance criteria, but rather is intended for trial usage so that it can be further refined for easier reference in the future.

  10. Insulation.

    ERIC Educational Resources Information Center

    Rhea, Dennis

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with insulation. Its objective is for the student to be able to determine insulation needs of new or existing structures, select type to use, use installation techniques, calculate costs, and apply safety factors. Some topics covered…

  11. 30 CFR 75.516-1 - Installed insulators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... insulators. Well-insulated insulators is interpreted to mean well-installed insulators. Insulated J-hooks may be used to suspend insulated power cables for temporary installation not exceeding 6 months and...

  12. 30 CFR 75.516-1 - Installed insulators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... insulators. Well-insulated insulators is interpreted to mean well-installed insulators. Insulated J-hooks may be used to suspend insulated power cables for temporary installation not exceeding 6 months and...

  13. 30 CFR 75.516-1 - Installed insulators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... insulators. Well-insulated insulators is interpreted to mean well-installed insulators. Insulated J-hooks may be used to suspend insulated power cables for temporary installation not exceeding 6 months and...

  14. 30 CFR 75.516-1 - Installed insulators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... insulators. Well-insulated insulators is interpreted to mean well-installed insulators. Insulated J-hooks may be used to suspend insulated power cables for temporary installation not exceeding 6 months and...

  15. 30 CFR 77.505 - Cable fittings; suitability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., splice boxes, and electric compartments only through proper fittings. When insulated wires, other than cables, pass through metal frames, the holes shall be substantially bushed with insulated bushings....

  16. 30 CFR 77.505 - Cable fittings; suitability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., splice boxes, and electric compartments only through proper fittings. When insulated wires, other than cables, pass through metal frames, the holes shall be substantially bushed with insulated bushings....

  17. 30 CFR 77.505 - Cable fittings; suitability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., splice boxes, and electric compartments only through proper fittings. When insulated wires, other than cables, pass through metal frames, the holes shall be substantially bushed with insulated bushings....

  18. 30 CFR 77.505 - Cable fittings; suitability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., splice boxes, and electric compartments only through proper fittings. When insulated wires, other than cables, pass through metal frames, the holes shall be substantially bushed with insulated bushings....

  19. 30 CFR 57.12014 - Handling energized power cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Handling energized power cables. 57.12014... Electricity Surface and Underground § 57.12014 Handling energized power cables. Power cables energized to..., insulated from such equipment, are used. When such energized cables are moved manually, insulated...

  20. Joints and terminations for pipe-type cable insulated with paper-polypropylene-paper tapes: Final report

    SciTech Connect

    Engelhardt, J.S.; Ernst, A.; Gear, R.B.

    1988-10-01

    This work developed optimized joint and terminal options for 138--550 kV paper-polypropylene-paper (PPP) cables using conventional materials. In the process, the state of the art of conventional jointing and terminating techniques worldwide was examined and a design process formulated and presented. Test data available on hand-taped joints suggested a maximum radial design stress level of 1750 V/mil at impulse for hand-taped PPP splices. Additional testing is recommended to confirm the maximum axial stress level, but available data indicate that levels much greater than present US practice are acceptable. 86 refs., 78 figs., 16 tabs.

  1. Cable Diagnostic Focused Initiative

    SciTech Connect

    Hartlein, R.A.; Hampton, R.N.

    2010-12-30

    This report summarizes an extensive effort made to understand how to effectively use the various diagnostic technologies to establish the condition of medium voltage underground cable circuits. These circuits make up an extensive portion of the electric delivery infrastructure in the United States. Much of this infrastructure is old and experiencing unacceptable failure rates. By deploying efficient diagnostic testing programs, electric utilities can replace or repair circuits that are about to fail, providing an optimal approach to improving electric system reliability. This is an intrinsically complex topic. Underground cable systems are not homogeneous. Cable circuits often contain multiple branches with different cable designs and a range of insulation materials. In addition, each insulation material ages differently as a function of time, temperature and operating environment. To complicate matters further, there are a wide variety of diagnostic technologies available for assessing the condition of cable circuits with a diversity of claims about the effectiveness of each approach. As a result, the benefits of deploying cable diagnostic testing programs have been difficult to establish, leading many utilities to avoid the their use altogether. This project was designed to help address these issues. The information provided is the result of a collaborative effort between Georgia Tech NEETRAC staff, Georgia Tech academic faculty, electric utility industry participants, as well as cable system diagnostic testing service providers and test equipment providers. Report topics include: •How cable systems age and fail, •The various technologies available for detecting potential failure sites, •The advantages and disadvantages of different diagnostic technologies, •Different approaches for utilities to employ cable system diagnostics. The primary deliverables of this project are this report, a Cable Diagnostic Handbook (a subset of this report) and an online

  2. Process of modifying a cable end

    DOEpatents

    Roose, L.D.

    1995-08-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed are a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves. 5 figs.

  3. Process of modifying a cable end

    DOEpatents

    Roose, Lars D.

    1995-01-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed are a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves.

  4. Effect on de-greasing solvents on conductive separable connector shields and semiconductive cable shields

    SciTech Connect

    Perry, D.D.; Bolcar, J.P. . Elastimold Div.)

    1990-04-01

    A study has been conducted to determine the effects of commercial degreasing solvents on the conductivity of an EPDM separable connector shield and two types of cable shields based on EPR and XLPE, respectively. Solvents tested included a chlorinated solvent based on 1,1,1-trichloroethane and several so-called citrus solvents consisting of the natural terpene, limonene, or blends of limonene with other hydrocarbons. All the solvents significantly degraded the conductivity of the EPR and EPDM materials, but had little effect on the XLPE cable shield. The solvents differed, however, in the extent of their effects, the rate of recovery of conductivity after removal of the solvent, and the degree to which the original conductivity of the material was restored. The consequences of these results in terms of appropriate field use of these types of solvents by utility personnel are discussed.

  5. Effect of water on the space charge formation in XLPE

    SciTech Connect

    Miyata, Hiroyuki; Yokoyama, Ayako; Takahashi, Tohru; Yamamaoto, Syuji

    1996-12-31

    In this paper, the authors describe the effect of water on the space charge in crosslinked polyethylene (XLPE). In order to study the effects of water and by-products of crosslinking, they prepared two types of samples. The water in the first one (Type A) is controlled by immersing in water after removing the by-products, and the water in the other type (Type B) of samples is controlled by the water from the decomposition of cumyl-alcohol by heating. The authors measured the space charge formation by pulsed electro-acoustic (PEA) method. A large difference was observed between Type A and Type B. In Type A samples (containing only water) the space charge distribution changes from homogeneous to heterogeneous as the water content increases, whereas in Type B (containing water and by-product) all samples exhibit heterogeneous space charge distribution. However, merely the effect of water for both types was almost the same, including peculiar space charge behavior near the water solubility limit.

  6. Polyethylene Nanocomposites for the Next Generation of Ultralow-Transmission-Loss HVDC Cables: Insulation Containing Moisture-Resistant MgO Nanoparticles.

    PubMed

    Pourrahimi, Amir Masoud; Pallon, Love K H; Liu, Dongming; Hoang, Tuan Anh; Gubanski, Stanislaw; Hedenqvist, Mikael S; Olsson, Richard T; Gedde, Ulf W

    2016-06-15

    The use of MgO nanoparticles in polyethylene for cable insulation has attracted considerable interest, although in humid media the surface regions of the nanoparticles undergo a conversion to a hydroxide phase. A facile method to obtain MgO nanoparticles with a large surface area and remarkable inertness to humidity is presented. The method involves (a) low temperature (400 °C) thermal decomposition of Mg(OH)2, (b) a silicone oxide coating to conceal the nanoparticles and prevent interparticle sintering upon exposure to high temperatures, and (c) heat treatment at 1000 °C. The formation of the hydroxide phase on these silicone oxide-coated MgO nanoparticles after extended exposure to humid air was assessed by thermogravimetry, infrared spectroscopy, and X-ray diffraction. The nanoparticles showed essentially no sign of any hydroxide phase compared to particles prepared by the conventional single-step thermal decomposition of Mg(OH)2. The moisture-resistant MgO nanoparticles showed improved dispersion and interfacial adhesion in the LDPE matrix with smaller nanosized particle clusters compared with conventionally prepared MgO. The addition of 1 wt % moisture-resistant MgO nanoparticles was sufficient to decrease the conductivity of polyethylene 30 times. The reduction in conductivity is discussed in terms of defect concentration on the surface of the moisture-resistant MgO nanoparticles at the polymer/nanoparticle interface. PMID:27203860

  7. Nuclear instrumentation cable end seal

    DOEpatents

    Cannon, Collins P.; Brown, Donald P.

    1979-01-01

    An improved coaxial end seal for hermetically sealed nuclear instrumentation cable exhibiting an improved breakdown pulse noise characteristic under high voltage, high temperature conditions. A tubular insulator body has metallized interior and exterior surface portions which are braze sealed to a center conductor and an outer conductive sheath. The end surface of the insulator body which is directed toward the coaxial cable to which it is sealed has a recessed surface portion within which the braze seal material terminates.

  8. Investigation Of Dielectric Behaviors Of Nanoclay Filled Epoxy And PP/NYLON66 Nanocomposites For Cable Insulation Application

    NASA Astrophysics Data System (ADS)

    Rashmi, Renukappa, N. M.; Siddaramaiah

    2010-10-01

    High performance polymer nanocomposites are emerging as a new class of materials for its demanding applications as insulating material. The outstanding properties of nanoclay make them an attractive candidate for preparing advanced composite materials with multi functional features for electrical and electronics applications. A series of nanoclay incorporated epoxy and polypropylene/nylon66 (50/50 blend) nanocomposites have been prepared via chemical and melt mixing methods respectively. The fabricated nanocomposites have been characterized for dielectric behaviors such as dielectric constant (ɛ r ) and dissipation factor (tan δ). The effect of filler content, frequency, temperature and sea water ageing on dielectric behavior of nanocomposites has been investigated. The variation in the diffusion coefficient (D) of the material aged in water at different temperature with different percentage of nanoclay loaded epoxy and PP/nylon66 nanocomposites were calculated. It is observed that at increase in ageing temperature relatively increases the diffusion coefficient of the material. The measured dielectric results of the nanocomposites reveals that a significant influence of frequency and sea water ageing and marginal change with temperature. Higher dielectric constant was noticed for epoxy nanocomposites as compared to PP/nylon66 composites

  9. COPPER CABLE RECYCLING TECHNOLOGY

    SciTech Connect

    Chelsea Hubbard

    2001-05-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D&D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D&D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness of separating

  10. Semiannual report for the period October 1, 1979-March 31, 1980 of work on: (1) superconducting power transmission system development; (2) cable insulation development. Power Transmission Project Technical Note No. 106

    SciTech Connect

    Not Available

    1980-07-07

    Progress is reported in a program whose objective is to develop an underground superconducting power transmission system which is economical and technically attractive to the utility industry. The system would be capable of carrying very large blocks of electric power, and would supplant overhead lines in urban and suburban areas and regions of natural beauty. The program consisted initially of work in the laboratory to develop suitable materials, cryostats, and cable concepts. The materials work covers the development and testing of suitable superconductors and dielectric insulation. The laboratory work has now been extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. The facility will allow cables several hundred feet long to be tested under realistic conditions. In addition, the refrigerator has been designed for optimum service for utility applications.

  11. Semiannual report for the period April 1-September 30, 1979 of work on: (1) Superconducting power transmission development; (2) Cable insulation development. Power Transmission Project Technical Note No. 99

    SciTech Connect

    Not Available

    1980-01-15

    The objective of the program is to develop an underground superconducting power transmission system which is economical and technically attractive to the utility industry. The system would be capable of carrying very large blocks of electric power, thus enabling it to supplant overhead lines in urban and suburban areas and regions of natural beauty. The program consisted initially of work in the laboratory to develop suitable materials, cryostats, and cable concepts. The materials work covers the development and testing of suitable superconductors and dielectric insulation. The laboratory work has now been extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. The facility will allow cables several hundred feet long to be tested under realistic conditions. In addition, the refrigerator has been designed for optimum service for utility applications.

  12. 30 CFR 77.505 - Cable fittings; suitability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Cable fittings; suitability. 77.505 Section 77... Electrical Equipment-General § 77.505 Cable fittings; suitability. Cables shall enter metal frames of motors... cables, pass through metal frames, the holes shall be substantially bushed with insulated bushings....

  13. Effect of Antioxidants on DC Tree and Grounded DC Tree in XLPE

    NASA Astrophysics Data System (ADS)

    Kawanami, Hiroshi; Komatsu, Isao; Sekii, Yasuo; Saito, Mitsugu; Sugi, Kazuyuki

    To study the effects of antioxidants on the initiation of the DC tree and the grounded DC tree, experiments were conducted using XLPE specimens containing phenolic and sulfur type antioxidants. Experimental results showed that sulfur type antioxidants in XLPE have the effect of increasing inception voltages of both the DC tree and the grounded DC tree. Based on results of those experiments, the mechanism of increase in the inception voltage of the DC tree and the grounded DC tree by antioxidants was examined along with the mechanism of polarity effects on those trees. Results showed a promotional effect of charge injection from a needle electrode by antioxidants, which are responsible for the increased inception voltages of the DC tree. Charge trapping by antioxidants explains the increase of inception voltages of the grounded DC tree.

  14. Cable Economics.

    ERIC Educational Resources Information Center

    Cable Television Information Center, Washington, DC.

    A guide to the economic factors that influence cable television systems is presented. Designed for local officials who must have some familiarity with cable operations in order to make optimum decisions, the guide analyzes the financial framework of a cable system, not only from the operators viewpoint, but also from the perspective of the…

  15. Cable Television.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The Federal Communications Commission (FCC) presents a brief description of cable television and explains some basic regulations pertaining to it. The history of cable regulation covers the initial jurisdiction, economic considerations of the regulation, court tests, and the holding of public hearings. The major provisions of new cable rules are…

  16. Superconductor cable

    DOEpatents

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  17. High conductance surge cable

    DOEpatents

    Murray, Matthew M.; Wilfong, Dennis H.; Lomax, Ralph E.

    1998-01-01

    An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.

  18. High conductance surge cable

    DOEpatents

    Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

    1998-12-08

    An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

  19. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  20. Modified Spot Welder Solders Flat Cables

    NASA Technical Reports Server (NTRS)

    Haehner, Carl L.

    1992-01-01

    Soldering device, essentially modified spot welder, melts high-melting-temperature solders without damaging plastic insulation on flat electrical cables. Solder preform rests on exposed conductor of cable, under connector pin. Electrodes press pin/preform/conductor sandwich together and supply pulse of current to melt preform, bonding pin to conductor. Anvil acts as support and heat sink. Device used to solder flexible ribbon cables to subminiature pin connectors.

  1. Electrically-Conductive Polyaramid Cable And Fabric

    NASA Technical Reports Server (NTRS)

    Orban, Ralph F.

    1988-01-01

    Tows coated with metal provide strength and conductance. Cable suitable for use underwater made of electrically conductive tows of metal-coated polyaramid filaments surrounded by electrically insulating jacket. Conductive tows used to make conductive fabrics. Tension borne by metal-coated filaments, so upon release, entire cable springs back to nearly original length without damage.

  2. Cable compliance

    NASA Technical Reports Server (NTRS)

    Kerley, J.; Eklund, W.; Burkhardt, R.; Rossoni, P.

    1992-01-01

    The object of the investigation was to solve mechanical problems using cable-in-bending and cable-in-torsion. These problems included robotic contacts, targets, and controls using cable compliance. Studies continued in the use of cable compliance for the handicapped and the elderly. These included work stations, walkers, prosthetic knee joints, elbow joints, and wrist joints. More than half of these objects were met, and models were made and studies completed on most of the others. It was concluded that the many different and versatile solutions obtained only opened the door to many future challenges.

  3. Cable compliance

    NASA Astrophysics Data System (ADS)

    Kerley, J.; Eklund, W.; Burkhardt, R.; Rossoni, P.

    1992-06-01

    The object of the investigation was to solve mechanical problems using cable-in-bending and cable-in-torsion. These problems included robotic contacts, targets, and controls using cable compliance. Studies continued in the use of cable compliance for the handicapped and the elderly. These included work stations, walkers, prosthetic knee joints, elbow joints, and wrist joints. More than half of these objects were met, and models were made and studies completed on most of the others. It was concluded that the many different and versatile solutions obtained only opened the door to many future challenges.

  4. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design...) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided to prevent strain on both ends of each cable or cord leading from a machine to a detached or...

  5. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than... tank, unless it supplies power to equipment in the tank; and (9) Have sheathing or wire insulation...) Cable and wire in power and lighting circuits must be #14 AWG or larger. Cable and wire in control...

  6. LOW-LOSS CABLE AND METHOD OF FABRICATION

    DOEpatents

    McCarthy, R.L. et al.

    1960-09-27

    A radiation-resistant coaxial electrical cable capable of carrying very small currents at high voltages with little leakage is described. The cable comprises an inner axial conductor separated from an outer coaxial tubular conductor by annular layer of fibrous silica insulation. The silica insulation is formed by leaching boron from spun horosilicate glass and then heat treating the silica at a high temperature.

  7. Cable manufacture

    NASA Technical Reports Server (NTRS)

    Gamble, P.

    1972-01-01

    A survey is presented of flat electrical cable manufacturing, with particular reference to patented processes. The economics of manufacture based on an analysis of material and operating costs is considered for the various methods. Attention is given to the competitive advantages of the several processes and their resulting products. The historical area of flat cable manufacture is presented to give a frame of reference for the survey.

  8. Cable aging phenomena under accelerated aging conditions

    SciTech Connect

    Behera, A.K.; Beck, C.E.; Alsammarae, A.

    1996-06-01

    A test program was conducted to determine the impact of accelerated (temperature and radiation) aging on the insulation of power cables. The intent was to develop a more realistic model for cable degradation mechanisms, and a more realistic technique for determining a cable`s qualified life. Samples of new cables and samples of cables obtained from an operating plant were subjected to a series of tests. The test showed that the order of imposing the harsh conditions, the presence of oxygen, and the use of a compressive measurement technique each had a significant impact on the results. This paper discusses the test methodology and test samples, the order of imposing artificial aging, and the results. Also presented are issues planned to be addressed in future testing.

  9. Curing system for high voltage cross linked cables

    DOEpatents

    Bahder, George; Katz, Carlos; Bopp, Louis A.

    1978-01-01

    This invention makes extruded, vulcanized, high voltage cables insulated with thermosetting compounds at much higher rates of production and with superior insulation of reduced thickness and with reduced cavities or voids in the insulation. As the cable comes from an extruder, it passes into a curing chamber with a heat booster that quickly raises the insulation to a temperature at which it is cured much more quickly than with steam heating of the prior art. A high temperature liquid in contact with the insulation maintains the high temperature; and because of the greater curing heat, the cable can travel through the curing chamber at a faster rate and into a cooling tube where it contacts with a cooling liquid under high pressure. The insulation compound is treated to reduce the size of cavities; and the high pressure maintained by the curing and cooling mediums prevent expansion of cavities before the insulation is set.

  10. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    SciTech Connect

    Villaran, M.; Lofaro, R.; na

    2009-11-30

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  11. Armored instrumentation cable for geothermal well logging

    SciTech Connect

    Dennis, B.R.; Johnson, J.; Todd, B.

    1981-01-01

    Multiconductor armored well-logging cable is used extensively by the oil and natural gas industry to lower various instruments used to measure the geological and geophysical parameters into deep wellbores. Advanced technology in oil-well drilling makes it possible to achieve borehole depths of 9 km (30,000 ft). The higher temperatures in these deeper boreholes demand advancements in the design and manufacturing of wireline cable and in the electrical insulating and armoring materials used as integral components. If geothermal energy is proved an abundant economic resource, drilling temperatures approaching and exceeding 300/sup 0/C will become commonplace. The adaptation of teflons as electrical insulating material permitted use of armored cable in geothermal wellbores where temperatures are slightly in excess of 200/sup 0/C, and where the concentrations of corrosive minerals and gases are high. Teflon materials presently used in wireline cables, however, are not capable of continuous operation at the anticipated higher temperatures.

  12. Cable Television.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This report provides information about cable television and the Federal Communications Commission's (FCC) responsibilities in regulating its operation. The initial jurisdiction and rules covered in this report pertain to the court test, public hearing, certificate of compliance, franchising, signal carriage, leapfrogging, access and origination…

  13. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  14. Analysis of Surveyor 3 television cable

    NASA Technical Reports Server (NTRS)

    Gross, F. C.; Park, J. J.

    1972-01-01

    A sample of cable described as four inches of TV cable, fabric wrapped, which had been exposed to the atmosphere for an unknown period of time, was subjected to extensive chemical analyses for the various components. The fabric was tested using attenuated total reflectance, chloroform extract, aqueous extraction, pyrolysis infrared, and reflectance spectroscopy. The wire insulation was tested using pyrolysis infrared, pyrolysis gas chromatography, differential thermal analysis, attenuated total reflectance subsurface, and tensile tests. Corrosion was also observed in parts of certain wires.

  15. Hot-blade stripper for polyester insulation on FCC

    NASA Technical Reports Server (NTRS)

    Angele, W.; Chambers, C. M.

    1971-01-01

    Stripper incorporates a blade which is electrically heated to a controlled temperature. Heated blade softens and strips insulation from cable while paper ribbon removes insulation material and keeps blade clean for next operation.

  16. Elements of a specification for superconducting cable and why they are important for magnet construction

    SciTech Connect

    Greene, A.F.; Scanlan, R.M.

    1989-01-01

    The purpose of this paper is to point out several features of the specification for SSC superconducting cable and its insulation that are important for fabrication of dipole magnet coils. Among these are the dimensions of the cable and insulation and their relevance for obtaining coils with appropriate overall dimensions, Other important cable properties are related to the twist direction of wire used to fabricate it and the opposite twist (or lay) direction of the cable. For some coils it is easier to work with cable of a particular lay direction. In conjunction with the ease of coil winding comes the requirement in the specification for superconducting cable which restricts the cable surface condition. The ease of winding coils is governed by the ability to bend and twist the cable at the coil ends without having wires come out of place, possibly later leading to insulation damage and a turn-to-turn short. 5 refs., 11 figs., 1 tab.

  17. Electrohydrodynamic pumping in cable pipes. Final report

    SciTech Connect

    Crowley, J.M.; Chato, J.C.

    1983-02-01

    Many oil-insulated electric power cables are limited by heat buildup caused in part by the low thermal conductivity of the oil. Circulation of the oil is known to reduce the cable temperature, but can lead to excessive pressure buildup on long cables when using conventional pumping methods. An alternate pumping method using distributed electric fields to avoid this pressure buildup is described. Electrohydrodynamic (EHD) pumping was studied both theoretically and experimentally for possible application in underground cable cooling. Theoretical studies included both analytical and finite-element analysis of the flow patterns driven by travelling electric fields. Experimentally, flow rates in a cable-pipe model were measured under a wide variety of operating conditions. Theory and experiment are in agreement for velocities below 10 cm/s, but higher velocities could not be reached in the experiment, due to increased electroconvection and, possibly, turbulence.

  18. System and method for sub-sea cable termination

    DOEpatents

    Chen, Qin; Yin, Weijun; Zhang, Lili

    2016-04-05

    An electrical connector includes a first cable termination chamber configured to receive a first power cable having at least a first conductor sheathed at least in part by a first insulating layer and a first insulation screen layer. Also, the electrical connector includes a first non-linear resistive layer configured to be coupled to a portion of the first conductor unsheathed by at least the first insulation screen layer and configured to control a direct current electric field generated in the first cable termination chamber. In addition, the electrical connector includes a first deflector configured to be coupled to the first power cable and control an alternating current electric field generated in the first cable termination chamber.

  19. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  20. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  1. Superconductor cable

    DOEpatents

    Smith, Jr., Darrell F.; Lake, Bill L.; Ballinger, Ronald G.

    1988-01-01

    A superconducting cable comprising an in-situ-formed type II superconductor, e.g. Nb.sub.3 Sn, in association with a stabilizing conductor both in heat transfer relationship with at least one passage adapted to carry liquified gaseous refrigerant. The conductor and said at least one passage are enclosed by a sheath comprising an alloy consisting essentially of about 49% nickel, about 4% chromium, about 3% niobium, about 1.4% titanium, about 1% aluminum, balance essentially iron.

  2. CABLE CONNECTOR

    DOEpatents

    Caller, J.M.

    1962-05-01

    An electrical connector is designed for utilization in connection with either round or flat coaxial cables. The connector comprises a bayonet-type coupling arrangement with a splined movable locking sleeve adapted to lock together components of the connector. A compression spring is attached to one of the connector components and functions to forcibly separate mating components when the locking sleeve is in an unlocked condition so as to minimize the possibility of leaving the conductors electrically coupled. (AEC)

  3. Overload characteristics of paper-polypropylene-paper cable

    SciTech Connect

    Ernst, A. )

    1990-09-01

    The short-time rating of PPP pipe-type cable may be lower than the equivalent paper cable sized to carry the same normal load. The ratings depend on the relative conductor sizes and the maximum allowable conductor temperatures of the insulation. The insulation thermal resistivity may be a significant parameter for overload times of approximately one hour and should be verified for PPP insulation. The thermal capacitance temperature characteristic of PPP insulation is not known. However, the overload ratings are not very sensitive to this parameter. Overload ratings are given for maximum conductor temperatures from 105 C to 130 C. Use of ratings based on temperatures greater than 105 C would require testing to determine the extent of degradation of the insulation at these higher temperatures. PPP-insulated cable will be thermally stable over a wider range of operating conditions (voltage and current) compared with paper-insulated cable. The short-circuit ratings of PPP- and paper-insulated cable systems and the positive/negative and zero sequence impedances are compared. 21 refs., 22 figs., 5 tabs.

  4. 46 CFR 183.340 - Cable and wiring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of ABYC E-8 and paragraph 15.h of ABYC E-9 (both incorporated by reference; see 46 CFR 175.600) are... reference; see 46 CFR 175.600) except that asbestos insulated cable and dry location cables may not be used... (incorporated by reference; see 46 CFR 175.600) or other standard specified by the Commandant. The use of...

  5. 46 CFR 183.340 - Cable and wiring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of ABYC E-8 and paragraph 15.h of ABYC E-9 (both incorporated by reference; see 46 CFR 175.600) are... reference; see 46 CFR 175.600) except that asbestos insulated cable and dry location cables may not be used... (incorporated by reference; see 46 CFR 175.600) or other standard specified by the Commandant. The use of...

  6. 46 CFR 183.340 - Cable and wiring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of ABYC E-8 and paragraph 15.h of ABYC E-9 (both incorporated by reference; see 46 CFR 175.600) are... reference; see 46 CFR 175.600) except that asbestos insulated cable and dry location cables may not be used... (incorporated by reference; see 46 CFR 175.600) or other standard specified by the Commandant. The use of...

  7. 46 CFR 183.340 - Cable and wiring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of ABYC E-8 and paragraph 15.h of ABYC E-9 (both incorporated by reference; see 46 CFR 175.600) are... reference; see 46 CFR 175.600) except that asbestos insulated cable and dry location cables may not be used... (incorporated by reference; see 46 CFR 175.600) or other standard specified by the Commandant. The use of...

  8. 46 CFR 183.340 - Cable and wiring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of ABYC E-8 and paragraph 15.h of ABYC E-9 (both incorporated by reference; see 46 CFR 175.600) are... reference; see 46 CFR 175.600) except that asbestos insulated cable and dry location cables may not be used... (incorporated by reference; see 46 CFR 175.600) or other standard specified by the Commandant. The use of...

  9. 46 CFR 120.340 - Cable and wiring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... INSTALLATION Power Sources and Distribution Systems § 120.340 Cable and wiring requirements. (a) If individual... compartments; (8) Not be located in a tank unless the cable provides power to equipment in the tank; and (9) Have sheathing or wire insulation compatible with the fluid in a tank when installed as allowed...

  10. 46 CFR 120.340 - Cable and wiring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... INSTALLATION Power Sources and Distribution Systems § 120.340 Cable and wiring requirements. (a) If individual... compartments; (8) Not be located in a tank unless the cable provides power to equipment in the tank; and (9) Have sheathing or wire insulation compatible with the fluid in a tank when installed as allowed...

  11. 46 CFR 120.340 - Cable and wiring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... INSTALLATION Power Sources and Distribution Systems § 120.340 Cable and wiring requirements. (a) If individual... compartments; (8) Not be located in a tank unless the cable provides power to equipment in the tank; and (9) Have sheathing or wire insulation compatible with the fluid in a tank when installed as allowed...

  12. 30 CFR 75.833 - Handling high-voltage trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... incorporation by reference in accordance with 5 U.S.C. 522(a) and 1 CFR part 51. ASTM F496-02a may be obtained... must not handle energized trailing cables unless they are wearing high-voltage insulating gloves, which include the rubber gloves and leather outer protector gloves, or are using insulated cable handling...

  13. 30 CFR 75.833 - Handling high-voltage trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... incorporation by reference in accordance with 5 U.S.C. 522(a) and 1 CFR part 51. ASTM F496-02a may be obtained... must not handle energized trailing cables unless they are wearing high-voltage insulating gloves, which include the rubber gloves and leather outer protector gloves, or are using insulated cable handling...

  14. 30 CFR 75.833 - Handling high-voltage trailing cables.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... incorporation by reference in accordance with 5 U.S.C. 522(a) and 1 CFR part 51. ASTM F496-02a may be obtained... must not handle energized trailing cables unless they are wearing high-voltage insulating gloves, which include the rubber gloves and leather outer protector gloves, or are using insulated cable handling...

  15. 30 CFR 75.833 - Handling high-voltage trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... incorporation by reference in accordance with 5 U.S.C. 522(a) and 1 CFR part 51. ASTM F496-02a may be obtained... must not handle energized trailing cables unless they are wearing high-voltage insulating gloves, which include the rubber gloves and leather outer protector gloves, or are using insulated cable handling...

  16. 30 CFR 75.833 - Handling high-voltage trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... incorporation by reference in accordance with 5 U.S.C. 522(a) and 1 CFR part 51. ASTM F496-02a may be obtained... must not handle energized trailing cables unless they are wearing high-voltage insulating gloves, which include the rubber gloves and leather outer protector gloves, or are using insulated cable handling...

  17. High power cable with internal water cooling 400 kV

    NASA Astrophysics Data System (ADS)

    Rasquin, W.; Harjes, B.

    1982-08-01

    Due to the concentration of electricity production in large power plants, the need of higher power transmissions, and the protection of environment, developement of a 400 kV water cooled cable in the power range of 1 to 5 GVA was undertaken. The fabrication and testing of equipment, engineering of cable components, fabrication of a test cable, development of cable terminal laboratory, testing of test cable, field testing of test cable, fabrication of industrial cable laboratory, testing of industrial cable, field testing of industrial cable, and system analysis for optimization were prepared. The field testing was impossible to realize. However, it is proved that a cable consisting of an internal stainless steel water cooled tube, covered by stranded copper profiles, insulated with heavy high quality paper, and protected by an aluminum cover can be produced, withstand tests accordingly to IEC/VDE recommendations, and is able to fulfill all exploitation conditions.

  18. An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2005-11-29

    A coaxial cable electrical connector more specifically an internal coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transfonner. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive care of the coaxial cable. A plurality of bulbous pliant tabs on the coaxial cable connector mechanically engage the inside diameter of the coaxial cable thus grounding the transformer to the coaxial cable. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string.

  19. Cable Television Service; Cable Television Relay Service.

    ERIC Educational Resources Information Center

    Federal Register, 1972

    1972-01-01

    The rules and regulations of the Federal Communications Commission (FCC) concerning cable television service and cable relay service are presented along with the comments of the National Cable Television Association, the National Association of Broadcasters, the Association of Maximum Service Telecasters, and a major group of program suppliers.…

  20. Screening of flexible cables by nonlinear resistance measurements

    NASA Astrophysics Data System (ADS)

    Stupian, G. W.

    1994-01-01

    Two traces in flexible cables used in the Milstar agile beam antenna system failed during acceptance testing. The cables, essentially printed circuit boards fabricated on flexible substrates, are composed of copper-foil conductors sandwiched between insulating Kapton layers. The cables carry current pulses used in the steering circuitry for the antenna beam. Upon sectioning and inspection of the suspect cables, substantial thinning of the copper foil conductors at feedthrough connections was noted. Other cables examined also exhibited thinning of metallization. Cables with degraded metallization develop anomalously high electrical resistances or can fail 'open'. The difficulties encountered with these cables resulted from poor workmanship, and the cable manufacturer subsequently lost certification from the Defense Electronics Supply Center. However, a large number of the cables had already been installed in satellites, and the reliability of the cables is critically important to mission success. A considerable effort was, therefore, mounted by the contractors, with the support of Aerospace, to assess the extent of the problem and determine whether a suitable screening procedure could be developed so that only selective, rather than total, replacement of the cables installed on the first Milstar satellite, DFS 1, might be necessary. In the course of this investigation, a screening test based on nonlinearities in cable resistance was developed. This test was originally intended to be applied to the cables in flight hardware. In fact, the application of this test to cables still in stores uncovered additional defective cables and led to a decision to replace all flexible cables with those from another manufacturer.

  1. Sound cable crossing brings inexpensive electric power to Long Island

    SciTech Connect

    Grzan, J. ); Goyette, R. )

    1992-01-01

    This paper reports that while many electric-utility customers in New York State benefit from inexpensive hydroelectric power from Canada and upstate New York, lack of sufficient transmission connections have prevented this electricity from reaching Long Island. However, a newly constructed underground/underwater link capable of carrying 700-MW now transmits low-cost electricity to the island, saving money for customers. The self-contained fluid-filled cable used for the underwater portion of the project is the largest underwater cable in the world. The use of high-pressure, fluid-filled pipe-type cable on the land portion represents the largest application of paper-polypropylene-paper (PPP) insulated cable in the United States. State-of-the-art technologies were implemented in the use of temperature monitoring and leak detection systems, SF{sub 6} gas-insulated substation, and underwater cable laying and embedment techniques.

  2. Seismic cable compass system

    SciTech Connect

    Burrage, E.C.

    1984-11-06

    An apparatus for determining the azimuthal direction of a marine streamer cable at selected points along the cable. The apparatus comprises a pod that is clamped to the cable and contains a gimbaled magnetic compass and mean for establishing two-way communication between the pod and the cable.

  3. Cable Tensiometer for Aircraft

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  4. Process for making RF shielded cable connector assemblies and the products formed thereby

    NASA Technical Reports Server (NTRS)

    Fisher, A.; Clatterbuck, C. H. (Inventor)

    1973-01-01

    A process for making RF shielded cable connector assemblies and the resulting structures is described. The process basically consists of potting wires of a shielded cable between the cable shield and a connector housing to fill in, support, regidize, and insulate the individual wires contained in the cable. The formed potting is coated with an electrically conductive material so as to form an entirely encompassing adhering conductive path between the cable shield and the metallic connector housing. A protective jacket is thereby formed over the conductive coating between the cable shield and the connector housing.

  5. Study on the Fault Location Method for Power Cables using the Time-frequency Analysis

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shin'ichi; Morimoto, Nozomi; Miyajima, Kazuhisa; Hozumi, Naohiro

    The pulse radar method is one of fault location methods for power cables. It locates the breakdown point by measuring the delay time of the echo or the discharge signal coming from the breakdown point. The equipment for the pulse radar method is more compact compared with the Murray loop bridge, and its operation is more simple because sensitive adjustments of proportion are not needed. However the signal propagating through the cable is distorted depending on the distance and frequency, leading to a poor accuracy for the location. In this report, signal processing in the time-frequency domain is proposed to solve this problem. The pulse waveforms received at two different terminals of the cable were extracted by a window function, and subsequently Fourier transformed in order to calculate the phase difference at an appropriate frequency. A special care was taken for un-wrapping the folded phase spectrum. The phase difference was interpreted as the time lag at an identical frequency. The technique was applied to the fault location for a full size XLPE cable line.

  6. Marine cable location system

    SciTech Connect

    Zachariadis, R.G.

    1984-05-01

    An acoustic positioning system locates a marine cable at an exploration site, such cable employing a plurality of hydrophones at spaced-apart positions along the cable. A marine vessel measures water depth to the cable as the vessel passes over the cable and interrogates the hydrophones with sonar pulses along a slant range as the vessel travels in a parallel and horizontally offset path to the cable. The location of the hydrophones is determined from the recordings of water depth and slant range.

  7. Dielectric and Insulating Technology 2006 : Review & Forecast

    NASA Astrophysics Data System (ADS)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was seen in the articles of 2005. Those are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  8. Dielectric and Insulating Technology 2005 : Reviews & Forecasts

    NASA Astrophysics Data System (ADS)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was done in the article of 2003. Thoese are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  9. Cable load sensing device

    DOEpatents

    Beus, Michael J.; McCoy, William G.

    1998-01-01

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  10. Cable load sensing device

    SciTech Connect

    Beus, M.J.; McCoy, W.G.

    1996-12-31

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable no-load condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  11. Cutting Edge Cable Management.

    ERIC Educational Resources Information Center

    Peach, Roger

    1997-01-01

    Describes how one school district was able to efficiently install fragile telecommunication cabling throughout its high school and save thousands of dollars. Discusses solutions to some common cable-management problems. (GR)

  12. Vertex Detector Cable Considerations

    SciTech Connect

    Cooper, William E.; /Fermilab

    2009-02-01

    Vertex detector cable requirements are considered within the context of the SiD concept. Cable material should be limited so that the number of radiation lengths represented is consistent with the material budget. In order to take advantage of the proposed accelerator beam structure and allow cooling by flow of dry gas, 'pulsed power' is assumed. Potential approaches to power distribution, cable paths, and cable design for operation in a 5 T magnetic field are described.

  13. Marine cable location system

    SciTech Connect

    Ottsen, H.; Barker, Th.

    1985-04-23

    An acoustic positioning system for locating a marine cable at an exploration site employs a plurality of acoustic transponders, each having a characteristic frequency, at spaced-apart positions along the cable. A marine vessel measures the depth to the transponders as the vessel passes over the cable and measures the slant range from the vessel to each of the acoustic transponders as the vessel travels in a parallel and horizontally offset path to the cable.

  14. Cable-fault locator

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J.; Heymann, A. P., Sr.

    1979-01-01

    Inexpensive system automatically indicates location of short-circuited section of power cable. Monitor does not require that cable be disconnected from its power source or that test signals be applied. Instead, ground-current sensors are installed in manholes or at other selected locations along cable run. When fault occurs, sensors transmit information about fault location to control center. Repair crew can be sent to location and cable can be returned to service with minimum of downtime.

  15. Colleges and Cable Franchising.

    ERIC Educational Resources Information Center

    Glenn, Neal D.

    After noting issues of audience appeal and financial and philosophical support for educational broadcasting, this paper urges community colleges to play an active role in the process of cable franchising. The paper first describes a cable franchise as a contract between a government unit and the cable television (CATV) company which specifies what…

  16. Cables and fire hazards

    NASA Technical Reports Server (NTRS)

    Zanelli, C.; Philbrick, S.; Beretta, G.

    1986-01-01

    Besides describing the experiments conducted to develop a nonflammable cable, this article discusses several considerations regarding other hazards which might result from cable fires, particularly the toxicity and opacity of the fumes emitted by the burning cable. In addition, this article examines the effects of using the Oxygen Index as a gauge of quality control during manufacture.

  17. Modeling vibration response and damping of cables and cabled structures

    NASA Astrophysics Data System (ADS)

    Spak, Kaitlin S.; Agnes, Gregory S.; Inman, Daniel J.

    2015-02-01

    In an effort to model the vibration response of cabled structures, the distributed transfer function method is developed to model cables and a simple cabled structure. The model includes shear effects, tension, and hysteretic damping for modeling of helical stranded cables, and includes a method for modeling cable attachment points using both linear and rotational damping and stiffness. The damped cable model shows agreement with experimental data for four types of stranded cables, and the damped cabled beam model shows agreement with experimental data for the cables attached to a beam structure, as well as improvement over the distributed mass method for cabled structure modeling.

  18. Cable Polymer Aging Database, Version 1.0

    SciTech Connect

    Thomas Hencey

    2002-12-24

    OAK B139 The database contains electrical-cable jacket and insulation aging data from nine U.S. and international research institutions. The institutions have provided condition monitoring results from numerous accelerated aging test programs for cable materials including neoprene, Hypalon, ethylene propylene rubber, cross-linked polyethylene, and polyvinyl chloride. The condition monitoring techniques include elongation at break, indenter modulus, oxygen induction time, density , swell/gel, and nuclear magnetic resonance in solution.

  19. Continuous On-Line Partial Discharge Monitor for Medium-Voltage Cable Feasibility Study

    SciTech Connect

    M. Fenger

    2005-11-30

    Partial discharge (PD) assessment is one method of detecting cable conditions that predict approaching failure. While not all PDs in cable systems lead to failure, PDs within the cable's insulation can lead to relatively rapid failure. Accordingly, on-line PD assessment may be more useful than periodic PD assessment because the period of partial discharging at the end of a cable's life may be quite short. The research described in this report studied the feasibility of developing an on-line PD monitor for assessing both shielded and unshielded MV cables.

  20. Aging, Loss-of-Coolant Accident (LOCA), and high potential testing of damaged cables

    SciTech Connect

    Vigil, R.A.; Jacobus, M.J.

    1994-04-01

    Experiments were conducted to assess the effects of high potential testing of cables and to assess the survivability of aged and damaged cables under Loss-of-Coolant Accident (LOCA) conditions. High potential testing at 240 Vdc/mil on undamaged cables suggested that no damage was incurred on the selected virgin cables. During aging and LOCA testing, Okonite ethylene propylene rubber (EPR) cables with a bonded jacket experienced unexpected failures. The failures appear to be primarily related to the level of thermal aging and the presence of a bonded jacket that ages more rapidly than the insulation. For Brand Rex crosslinked polyolefin (XLPO) cables, the results suggest that 7 mils of insulation remaining should give the cables a high probability of surviving accident exposure following aging. The voltage necessary to detect when 7 mils of insulation remain on unaged Brand Rex cables is approximately 35 kVdc. This voltage level would almost certainly be unacceptable to a utility for use as a damage assessment tool. However, additional tests indicated that a 35 kvdc voltage application would not damage virgin Brand Rex cables when tested in water. Although two damaged Rockbestos silicone rubber cables also failed during the accident test, no correlation between failures and level of damage was apparent.

  1. New MV cable design for wet environments in underground distribution systems

    SciTech Connect

    Teixeira, M.D.R. Jr. )

    1990-04-01

    This paper describes the development of new wet design MV power cables, up to 35 kV, using EPDM compound as insulation and longitudinal water tightness. The combination of the cable design and the type of insulation compound allow for reduction of the insulation thickness in such a way, as to have an electrical stress at the conductor of 4 kV/mm which is significantly greater than used in MV distribution cables. Following a methodology established, at the author's company, the reliability of this design, cable and EPDM's formulation, in wet location, without metallic water barriers, was well demonstrated. Mini-installation of model cables in service-like conditions, to estimate the ageing rate, are presented and discussed.

  2. Magnet cable manufacturing

    SciTech Connect

    Royet, J.

    1990-10-01

    The cable is the heart of a superconducting accelerator magnet. Since the initial development of the Rutherford Cable more than twenty years ago, many improvements in manufacturing techniques have increased the current carrying capacity. When the Tevatron cable was specified fifteen years ago the current carrying capacity was 1800 A/mm{sup 2} at a field of 5.3T. During the intervening years it has been increased to 3000 A/mm{sup 2}. These improvements were due to refinements in the fabrication of the strands and the formation of the cable from the strands. The metallurgists were able to impart significant gains in performance by improving the homogeneity of the conductor. The engineers and technicians who designed and built the modern cabling machines made an enormous contribution by significantly reducing the degradation of wire performance that occurs when the wire was cabled. The fact that these gains were made while increasing the speed of cabling is one of the technological advances that made accelerators like the SSC possible. This article describes the cabling machines that were built to manufacture the cable for the full scale SSC prototype magnets and the low beta quadrupoles for the Fermilab Tevatron. This article also presents a compendium of the knowledge that was gained in the struggle to make high performance cable to exacting dimensional standards and at the throughput needed for the SSC. The material is an important part of the technology transfer from the Department of energy Laboratories to Industry.

  3. HALAR fluoropolymer: A versatile insulation material

    NASA Technical Reports Server (NTRS)

    Robertson, A. B.

    1972-01-01

    Research directed toward developing materials for the wire and cable industry has resulted in a new product, E-CTFE copolymer, which has an outstanding combination of electrical, thermal, and mechanical properties. The properties of E-CTFE are discussed and compared with those of other commercial fluoropolymers. Particular attention is given to the utility of E-CTFE as a wire and cable insulation.

  4. Cable Tester Box

    NASA Technical Reports Server (NTRS)

    Lee, Jason H.

    2011-01-01

    Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.

  5. Dielectric and Insulating Technology 2004 : Review & Forecast

    NASA Astrophysics Data System (ADS)

    Okamoto, Tatsuki

    This article reports the state-of-art of DEIS activites. DEIS activiteis are basically based on the activites of 8-10 investigation committees’ under DEIS committee. Recent DEIS activites are categlized into three functions in this article and remarkable activity or trend of each category is mentioned. Those are activities on insulation diagnosis (AI application and asset management), activities on new insulation technology for power tansmission (high Tc super conducting cable insulation and all solid sinulated substation), and activities on new insulating materials (Nanocomposite).

  6. Design, development, fabrication and testing of high temperature Flat Conductor Cable (FCC)

    NASA Technical Reports Server (NTRS)

    Rigling, W. S.

    1974-01-01

    The results are presented of a development program for a flat, 25-conductor signal cable and a flat, 3-conductor power cable. Flat cables employ conductors made of strips or flattened round copper conductors insulated with polyimide films. It is shown that conductor thickness ranges from 0.003 to 0.010 inch, and begins to soften and loose mechanical strength at temperatures above 200 C.

  7. Testing of flat conductor cable to Underwriters Laboratory standards UL719 and UL83

    NASA Technical Reports Server (NTRS)

    Loggins, R. W.; Herndon, R. H.

    1974-01-01

    The flat conductor cable (FCC) which was tested consisted of three AWG No. 12 flat copper conductors laminated between two films of polyethylene terephthalate (Mylar) insulation with a self-extinguishing polyester adhesive. Results of the tests conducted on this cable, according to specifications, warrants the use of this FCC for electrical interconnections in a surface nonmetallic protective covering.

  8. Cable suspended windmill

    NASA Technical Reports Server (NTRS)

    Farmer, Moses G. (Inventor)

    1990-01-01

    A windmill is disclosed which includes an airframe having an upwind end and a downwind end. The first rotor is rotatably connected to the airframe, and a generator is supported by the airframe and driven by the rotor. The airframe is supported vertically in an elevated disposition by poles which extend vertically upwardly from the ground and support cables which extend between the vertical poles. Suspension cables suspend the airframe from the support cable.

  9. Cable fault locator research

    NASA Astrophysics Data System (ADS)

    Cole, C. A.; Honey, S. K.; Petro, J. P.; Phillips, A. C.

    1982-07-01

    Cable fault location and the construction of four field test units are discussed. Swept frequency sounding of mine cables with RF signals was the technique most thoroughly investigated. The swept frequency technique is supplemented with a form of moving target indication to provide a method for locating the position of a technician along a cable and relative to a suspected fault. Separate, more limited investigations involved high voltage time domain reflectometry and acoustical probing of mine cables. Particular areas of research included microprocessor-based control of the swept frequency system, a microprocessor based fast Fourier transform for spectral analysis, and RF synthesizers.

  10. Evaluation of flammability for cable-like polymers

    NASA Technical Reports Server (NTRS)

    Mikado, Tuneo; Akita, Kazuo

    1988-01-01

    A new test method is developed for the flammability of insulated electric cables as well as polymers formed in the cables. The rate of downward flame spread along the polymer surface is measured by a technique in which the flame is stopped at a particular position by winding up the cable at the same speed as the flame spreading rate, with external preheating by an electric furnace having oxidative gas flow. The polymer burns continuously without change of flame condition and the rate is obtained from the winding speed of the cable. A flame spread equation relates the flame spreading rate (V) of the cable-like polymer to O concentration (Yo) and the atmosphere, the preheating temperature, and the pyrolysis temperature for polymer burning. Plotting log V vs. log Yo for experimental results allows evaluation of the flammability of polymers, with discrimination between the effects of O concentration, heating temperature, and specimen shape. Results with various types of PVC electrical cable indicated the validity of the method. Application of the method to the cables in groups showed a flame retardation behavior different from the case of a single cable, in a atmosphere of high O concentration.

  11. Comparative evaluation by laboratory aging of 15 and 35 kV extruded dielectric cables

    SciTech Connect

    Katz, C.; Dyndul, J. ); Walker, M. )

    1990-04-01

    Utility engineers encounter a significant problem in discerning the accuracy of claims made of superior cable quality and in identifying cables which will provide reliable performance over their anticipated life. The authors in two independent investigations of 15 and 35 kV cables have compared the performance of a number of cables made with different compounds, by different manufacturers. They show that judging cables by their unaged voltage breakdown characteristics alone can be very misleading; that in the long run, dry cured cables, aged in moist environments, rapidly lose their original dielectric strength advantage; that certain ethylene propylene rubber formulations degrade as fast as crosslinked polyethylene; that the best overall results during aging are obtained with tree resistant polyethylene insulated cables and that from a voltage breakdown point of view water tree length is more influential than number of water trees.

  12. Assessment of NDE for key indicators of aging cables in nuclear power plants - Interim status

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Ramuhalli, P.; Fifield, L. S.; Prowant, M. S.; Dib, G.; Tedeschi, J. R.; Suter, J. D.; Jones, A. M.; Good, M. S.; Pardini, A. F.; Hartman, T. S.

    2016-02-01

    Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program to justify cable performance under normal operation as well as accident conditions. Currently the gold standard for determining cable insulation degradation is the elongation-at-break (EAB). This, however, is an ex-situ measurement and requires removal of a sample for laboratory investigation. A reliable nondestructive examination (NDE) in-situ approach is desirable to objectively determine the suitability of the cable for service. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none of these tests are suitable for all cable configurations nor does any single test confirm all features of interest. Nevertheless, the complete collection of test possibilities offers a powerful range of tools to assure the integrity of critical cables. Licensees and regulators have settled on a practical program to justify continued operation based on condition monitoring of a lead sample set of cables where test data is tracked in a database and the required test data are continually adjusted based on plant and fleet-wide experience. As part of the Light Water Reactor Sustainability program sponsored

  13. Cable Television and Education.

    ERIC Educational Resources Information Center

    Stern, Joseph L.

    Cable television can augment educational broadcast services and also provide a level of individualized educational services not possible with either broadcasting or classroom audiovisual aids. The extra channels provided by cable television allow the following extra services for education: 1) broadcast of a multitude of programs, including delayed…

  14. Multistrand superconductor cable

    DOEpatents

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  15. Submarine cable route survey

    SciTech Connect

    Herrouin, G.; Scuiller, T.

    1995-12-31

    The growth of telecommunication market is very significant. From the beginning of the nineties, more and more the use of optical fiber submarine cables is privileged to that of satellites. These submarine telecommunication highways require accurate surveys in order to select the optimum route and determine the cable characteristics. Advanced technology tools used for these surveys are presented along with their implementation.

  16. Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants – Interim Study FY13

    SciTech Connect

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.; Ramuhalli, Pradeep; Pardini, Allan F.; Tedeschi, Jonathan R.; Jones, Anthony M.

    2013-09-27

    The most important criterion for cable performance is its ability to withstand a design-basis accident. With nearly 1000 km of power, control, instrumentation, and other cables typically found in an NPP, it would be a significant undertaking to inspect all of the cables. Degradation of the cable jacket, electrical insulation, and other cable components is a key issue that is likely to affect the ability of the currently installed cables to operate safely and reliably for another 20 to 40 years beyond the initial operating life. The development of one or more nondestructive evaluation (NDE) techniques and supporting models that could assist in determining the remaining life expectancy of cables or their current degradation state would be of significant interest. The ability to nondestructively determine material and electrical properties of cable jackets and insulation without disturbing the cables or connections has been deemed essential. Currently, the only technique accepted by industry to measure cable elasticity (the gold standard for determining cable insulation degradation) is the indentation measurement. All other NDE techniques are used to find flaws in the cable and do not provide information to determine the current health or life expectancy. There is no single NDE technique that can satisfy all of the requirements needed for making a life-expectancy determination, but a wide range of methods have been evaluated for use in NPPs as part of a continuous evaluation program. The commonly used methods are indentation and visual inspection, but these are only suitable for easily accessible cables. Several NDE methodologies using electrical techniques are in use today for flaw detection but there are none that can predict the life of a cable. There are, however, several physical and chemical ptoperty changes in cable insulation as a result of thermal and radiation damage. In principle, these properties may be targets for advanced NDE methods to provide early

  17. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than... tank, unless it supplies power to equipment in the tank; and (9) Have sheathing or wire insulation compatible with the fluid in a tank, when installed to comply with paragraph (b)(8) of this section....

  18. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than... tank, unless it supplies power to equipment in the tank; and (9) Have sheathing or wire insulation compatible with the fluid in a tank, when installed to comply with paragraph (b)(8) of this section....

  19. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than... tank, unless it supplies power to equipment in the tank; and (9) Have sheathing or wire insulation compatible with the fluid in a tank, when installed to comply with paragraph (b)(8) of this section....

  20. Multistrand superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easil

  1. Lightning vulnerability of fiber-optic cables.

    SciTech Connect

    Martinez, Leonard E.; Caldwell, Michele

    2008-06-01

    One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a lightning strike representing an extreme but very important case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative lightning conditions at the Sandia Lightning Simulator (SLS). Simulated lightning currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated lightning tests performed at the Sandia Lightning Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative lightning conditions.

  2. Induced transients in substation cables: Measurements and models

    SciTech Connect

    Thomas, D.E.; Wiggins, C.M.; Salas, T.M.; Nickel, F.S. ); Wright, S.E. )

    1994-10-01

    An extensive set of switching transient EMI response measurements on several types of substation cables and internal cable wires in described in this paper. Measured and predicted cable/wire current and voltage transients at both air-insulated substations (AIS) and gas-insulated substations (GIS) are presented, for system voltages ranging from 115 kV to 500 kV.. The maximum peak-to-peak amplitudes of measured wire transients are found to vary from around 1 A to almost 20 A (current in amperes), and from 0.3 kV to almost 7 kV (voltage in kilovolts). Predictive models for field-driven coupling, as well as for direct-driven coupling via current transformers or capacitively-coupled voltage transformers (CT's/CCVT's), are presented. Model predictions are compared to and validated against measured wire transients.

  3. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... cable system must be designed so that there will be no hazardous change in cable tension throughout...

  4. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... cable system must be designed so that there will be no hazardous change in cable tension throughout...

  5. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... cable system must be designed so that there will be no hazardous change in cable tension throughout...

  6. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... cable system must be designed so that there will be no hazardous change in cable tension throughout...

  7. High ampacity, thin-wall, novel polymer cable. Final report

    SciTech Connect

    Jayaraj, K.

    1998-12-01

    Utilities are constantly faced with the challenge of providing higher ampacity cables that will fit into existing ducts in the cities. Therefore, a need exists to develop extruded cables that have a thinner insulation than conventional cables to provide the capability of installing higher ampacity cables into existing ducts. The goal of this project was to identify commercially available advanced polymers that are suitable for use in extruded distribution cables. The project consists of three tasks; this report describes the results of these tasks. In Task 1, a literature and vendor survey was conducted to identify candidate insulation materials. The mechanical and electrical properties of the candidates were measured in Task 2, yielding the following experimental results: all of the materials exhibited acceptable tensile strength values. LCP candidates, Vectra and HX6000, and Ultem exhibited very small elongation of less than 10%. Because of their high strength, cables with LCP insulation are too stiff to be bent or reeled at the required insulation thicknesses. This finding eliminated the LCP materials, Vectra and HX6000, from consideration. The dielectric constant of all of the materials was close to or below the benchmark of 3.5 at room temperature. However, the loss factors at 60 Hz of Ultem and PEEK exceeded the criterion of 0.001. Room temperature dielectric strengths of 20 mil thick specimens of Ultem and PEEK and 16 mil films of Aurum were 1600, 1100 and 1400 V/mil respectively. Based on these experimental results, Ultem, PEEK and Aurum, were selected for further evaluations. To reduce the costs and improve the ductility, Aurum and PEEK were blended with 50% and 30% Ultem respectively. The three neat materials and two blends were extruded onto single strand copper conductor at BICC. Three sets of extrusion trials were conducted to improve the quality of the extruded insulation. Although tremendous progress was achieved during the course of the project

  8. Insulated Honeycomb

    NASA Technical Reports Server (NTRS)

    Bhat, Balakrishna T.

    1989-01-01

    Proposed insulated honeycomb structure similar to reinforced honeycomb structure described in NPO-17538. Panels of insulated honeycomb used to make supports for solar-energy collectors and radar antennas.

  9. Cable and Line Inspection Mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  10. Cable and line inspection mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  11. Verification tests of a 66 kV HTSC cable system for practical use (first cooling tests)

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Kato, T.; Yumura, H.; Watanabe, M.; Ashibe, Y.; Ohkura, K.; Suzawa, C.; Hirose, M.; Isojima, S.; Matsuo, K.; Honjo, S.; Mimura, T.; Kuramochi, T.; Takahashi, Y.; Suzuki, H.; Okamoto, T.

    2002-10-01

    Tokyo Electric Power Company and Sumitomo Electric Industries, Ltd. have been jointly developing elementary technologies for an high temperature superconducting (HTSC) cable system, such as conductor wound with HTSC wires, thermal insulation pipes, terminations and so on. Verification tests of a 100 m HTSC cable system integrating these elementary technologies have been conducted in collaboration with Central Research Institute of Electric Power Industry (CRIEPI) to verify its long term electric and cryogenic properties. The cable conductor is composed of four layers of Bi-2223 wires wound spirally around a former. Polypropylene laminated paper impregnated with liquid nitrogen is adopted as cable insulation for its properties of high insulation strength and low dielectric loss. HTSC wires are also wound around the electrical insulation to form an electrical and magnetic shield. To reduce heat invasion from ambient temperature part, multi-layer insulation is wound between the co-axial stainless corrugated pipes where high vacuum is maintained. The cable was partially installed into a ∅ 150 mm duct and formed in a U-shape. Each end has a splitter box and three terminations. The cable and the terminations are cooled using two separate sets of a pressurized and sub-cooled liquid nitrogen cooling system. The cable has been developed and laid at CRIEPI's test site and long-term tests have been under way since June, 2001. This paper presents the design of the cable and some results of the first cooling tests.

  12. Cable-to-air terminations: The cable system's second weakest link

    SciTech Connect

    Reason, J.

    1994-12-01

    Transmission terminations available today are very reliable, but they need to be. In the field, they are continually exposed to pollution and extremes of ambient temperature. In many cases, they are in the rifle sights of vandals. In contrast, cable joints - often cited as the weakest links from an electrical viewpoint - are generally protected from physical damage underground and many of the short cable systems being installed in the US today can be built without joints. All cable systems need terminations - mostly to air-insulated equipment. At 69 through 138 kV, there is intense competition among manufacturers to supply terminations for solid-dielectric cable that are low in cost, reliable, and require a minimum of skill to install. Some utilities are looking also for terminations that fit a range of cable sizes; terminations that do not contain liquid that can leak out; and terminations that are shatter-proof. All of these improvements are available in the US up to 69 kV. For higher voltages, they are on the horizon, if not already in use, overseas. 16 figs.

  13. Status of 275 kV REBCO HTS Cable Development in the NEDO Project

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Yagi, Masashi; Okuma, Takeshi; Maruyama, Osamu; Shiohara, Yuu; Hayakawa, Naoki; Mizutani, Teruyoshi

    A 275 kV 3 kA high temperature superconducting cable (HTS cable), which could be used as a backbone power line in the future, was developed in the NEDO project called M-PACC. One of the most important developments of a high voltage HTS cable was the high voltage insulation technology. A design guideline and a test specification that was necessary to design, product and demonstrate of a 275 kV, 3 kA HTS cable have been studied by obtaining the various experimental data such as AC withstand voltage, impulse withstand voltage, partial discharge inception stress, and the V-t characteristics of the insulation, on the basis of the Japan Electrical Standards (JEC) and the International Electrotechnical Commission (IEC). Moreover, the 275 kV, 3 kA HTS cable with a length of 30 m was demonstrated under a long-term voltage and current loading test.

  14. Correction coil cable

    DOEpatents

    Wang, S.T.

    1994-11-01

    A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.

  15. Bringing Cable into the Classroom.

    ERIC Educational Resources Information Center

    Blubaugh, Donelle

    1999-01-01

    Cable TV may be an educationally and fiscally sound way to inspire active learning. Creative TV applications help teachers address potentially disabling social and emotional factors. The Cable in the Classroom program offers over 80,000 eligible schools free cable connections, free basic monthly cable service, and copyright clearances for off-air…

  16. Infiniband Based Cable Comparison

    SciTech Connect

    Minich, Makia

    2007-07-01

    As Infiniband continues to be more broadly adopted in High Performance Computing (HPC) and datacenter applications, one major challenge still plagues implementation: cabling. With the transition to DDR (double data rate) from SDR (single datarate), currently available Infiniband implementations such as standard CX4/IB4x style copper cables severely constrain system design (10m maximum length for DDR copper cables, thermal management due to poor airflow, etc.). This paper will examine some of the options available and compare performance with the newly released Intel Connects Cables. In addition, we will take a glance at Intel's dual-core and quad-core systems to see if core counts have noticeable effect on expected IO patterns.

  17. The Discrete Hanging Cable

    ERIC Educational Resources Information Center

    Peters, James V.

    2004-01-01

    Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.

  18. Robotic Arm Biobarrier Cable

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander on the 14th Martian day of the mission (June 7, 2008), shows the cable that held the Robotic Arm's biobarrier in place during flight has snapped. The cable's springs retracted to release the biobarrier right after landing.

    To the lower right of the image a spring is visible. Extending from that spring is a length of cable that snapped during the biobarrier's release. A second spring separated from the cable when it snapped and has been photographed on the ground under the lander near one of the legs.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Flat conductor cable survey

    NASA Technical Reports Server (NTRS)

    Swanson, C. R.; Walker, G. L.

    1973-01-01

    Design handbook contains data and illustrations concerned with commercial and Government flat-conductor-cable connecting and terminating hardware. Material was obtained from a NASA-sponsored industry-wide survey of approximately 150 companies and Government agencies.

  20. Reusable Hot-Wire Cable Cutter

    NASA Technical Reports Server (NTRS)

    Pauken, Michael T.; Steinkraus, Joel M.

    2010-01-01

    During the early development stage of balloon deployment systems for missions, nichrome wire cable cutters were often used in place of pyro-actuated cutters. Typically, a nichrome wire is wrapped around a bundle of polymer cables with a low melting point and connected to a relay-actuated electric circuit. The heat from the nichrome reduces the strength of the cable bundle, which quickly breaks under a mechanical load and can thus be used as a release mechanism for a deployment system. However, the use of hand-made heated nichrome wire for cutters is not very reliable. Often, the wrapped nichrome wire does not cut through the cable because it either pulls away from its power source or does not stay in contact with the cable being cut. Because nichrome is not readily soldered to copper wire, unreliable mechanical crimps are often made to connect the nichrome to an electric circuit. A self-contained device that is reusable and reliable was developed to sever cables for device release or deployment. The nichrome wire in this new device is housed within an enclosure to prevent it from being damaged by handling. The electric power leads are internally connected within the unit to the nichrome wire using a screw terminal connection. A bayonet plug, a quick and secure method of connecting the cutter to the power source, is used to connect the cutter to the power leads similar to those used in pyro-cutter devices. A small ceramic tube [0.25-in. wide 0.5-in. long (.6.4-mm wide 13-mm long)] houses a spiraled nichrome wire that is heated when a cable release action is required. The wire is formed into a spiral coil by wrapping it around a mandrel. It is then laid inside the ceramic tube so that it fits closely to the inner surface of the tube. The ceramic tube provides some thermal and electrical insulation so that most of the heat generated by the wire is directed toward the cable bundle in the center of the spiral. The ceramic tube is cemented into an aluminum block, which

  1. Magnet cable manufacturing

    SciTech Connect

    Royet, J.

    1985-07-01

    The superconducting magnets used in the construction of particle accelerators are mostly built from flat, multistrand cables with rectangular or keystoned cross sections. The superconducting strands are mostly circular but a design of a cable made of preflattened wires was proposed a few years ago under the name of Berkeley flat; such cable shows some interesting characteristics. Another design consists of a few smaller precabled wires (e.g. 6 around 1). This configuration allows smaller filaments and a better transposition of the current elements. The Superconducting Super Collider project involves the largest amount of superconducting cable ever envisaged for a single machine. Furthermore, the design calls for exceptional accuracy and improved characteristics of the cable. A part of the SSC research and development program is focused on these important questions. In this paper we emphasize the difference between the conventional cabling and wires with superconducting. A new concept for the tooling will be introduced as well as the necessary characteristics of a specialized cabler. 5 figs.

  2. Sizing of cables in randomly-filled trays with consideration for load diversity

    SciTech Connect

    Leake, H.C.

    1997-01-01

    Method for demonstrating increased ampacity of cables in trays with loading diversity. Ampacity tables for sizing cables in randomly-filled cable trays are provided in NEMA WC 51-1986 based on a model developed by J. Stolpe which ensures that the maximum cable temperature does not exceed the insulation rating (typically 90 C) under worst-case conditions. The Stolpe model intentionally disregards the reduced heating effect of deenergized or lightly-loaded cables to ensure that all possible hot spot conditions are enveloped. In recent years other methods have been proposed to credit loading diversity in order to justify increased ampacity. However, since they involve certain assumptions about the heat distribution within the cable mass, these methods may fail to identify individual overloaded conductors. This paper describes a simple method which considers the performance of individual conductors while providing a means of increasing ampacity as a result of loading diversity.

  3. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be...

  4. Thermal insulator

    SciTech Connect

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  5. SSME Electrical Harness and Cable Development and Evolution

    NASA Technical Reports Server (NTRS)

    Abrams, Russ; Heflin, Johnny; Burns, Bob; Camper, Scott J.; Hill, Arthur J.

    2010-01-01

    The Space Shuttle Main Engine (SSME) electrical harness and cable system consists of the various interconnecting devices necessary for operation of complex rocket engine functions. Thirty seven harnesses incorporate unique connectors, backshell adapters, conductors, insulation, shielding, and physical barriers for a long maintenance-free life while providing the means to satisfy performance requirements and to mitigate adverse environmental influences. The objective of this paper is to provide a description of the SSME electrical harness and cable designs as well as the development history and lessons learned.

  6. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable... or broken under load....

  7. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable... or broken under load....

  8. Cable-Dispensing Cart

    NASA Technical Reports Server (NTRS)

    Bredberg, Alan S.

    2003-01-01

    A versatile cable-dispensing cart can support as many as a few dozen reels of cable, wire, and/or rope. The cart can be adjusted to accommodate reels of various diameters and widths, and can be expanded, contracted, or otherwise reconfigured by use of easily installable and removable parts that can be carried onboard. Among these parts are dispensing rods and a cable guide that enables dispensing of cables without affecting the direction of pull. Individual reels can be mounted on or removed from the cart without affecting the other reels: this feature facilitates the replacement or reuse of partially depleted reels, thereby helping to reduce waste. Multiple cables, wires, or ropes can be dispensed simultaneously. For maneuverability, the cart is mounted on three wheels. Once it has been positioned, the cart is supported by rubber mounts for stability and for prevention of sliding or rolling during dispensing operations. The stability and safety of the cart are enhanced by a low-center-of-gravity design. The cart can readily be disassembled into smaller units for storage or shipping, then reassembled in the desired configuration at a job site.

  9. 103. CABLES ENTERING CABLE TRAY SHED AT EAST OF LSB; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. CABLES ENTERING CABLE TRAY SHED AT EAST OF LSB; OXIDIZER APRON AND LAUNCH PAD IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. 34. BARGE LOADING PIER, DETAIL SHOWING CABLE CAR TRACKS, CABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. BARGE LOADING PIER, DETAIL SHOWING CABLE CAR TRACKS, CABLE CARS AND WALKWAYS. LOOKING TOWARD THE EAST END FROM THE WEST END - Pennsylvania Railroad, Canton Coal Pier, Clinton Street at Keith Avenue (Canton area), Baltimore, Independent City, MD

  11. Report on full-scale horizontal cable tray fire tests, FY 1988

    SciTech Connect

    Riches, W.M.

    1988-09-01

    In recent years, there has been much discussion throughout industry and various governmental and fire protection agencies relative to the flammability and fire propagation characteristics of electrical cables in open cable trays. It has been acknowledged that under actual fire conditions, in the presence of other combustibles, electrical cable insulation can contribute to combustible fire loading and toxicity of smoke generation. Considerable research has been conducted on vertical cable tray fire propagation, mostly under small scale laboratory conditions. In July 1987, the Fermi National Accelerator Laboratory initiated a program of full scale, horizontal cable tray fire tests, in the absence of other building combustible loading, to determine the flammability and rate of horizontal fire propagation in cable tray configurations and cable mixes typical of those existing in underground tunnel enclosures and support buildings at the Laboratory. The series of tests addressed the effects of ventilation rates and cable tray fill, fire fighting techniques, and effectiveness and value of automatic sprinklers, smoke detection and cable coating fire barriers in detecting, controlling or extinguishing a cable tray fire. This report includes a description of the series of fire tests completed in June 1988, as well as conclusions reached from the test results.

  12. 14 CFR 23.689 - Cable systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must... in cable tension throughout the range of travel under operating conditions and temperature...

  13. 14 CFR 23.689 - Cable systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must... in cable tension throughout the range of travel under operating conditions and temperature...

  14. 14 CFR 23.689 - Cable systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must... in cable tension throughout the range of travel under operating conditions and temperature...

  15. 14 CFR 23.689 - Cable systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must... in cable tension throughout the range of travel under operating conditions and temperature...

  16. Improved Connector Shell for Cable Shields

    NASA Technical Reports Server (NTRS)

    Prisk, A. L.; Rotta, J. W., Jr.

    1983-01-01

    Cable connector shell improves electrostatic and electromagnetic shielding by electrically connecting cable braid around entire circumference. Connector cable braid is slipped over ferrule and sleeve is slipped over braid, clamping it tightly to shell. Connector shell completely shields cable conductors.

  17. Correction coil cable

    DOEpatents

    Wang, Sou-Tien

    1994-11-01

    A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).

  18. Design and Evaluation of 275 kV-3 kA HTS Power Cable

    NASA Astrophysics Data System (ADS)

    Yagi, M.; Mukoyama, S.; Mitsuhashi, T.; Jun, T.; Liu, J.; Nakayama, R.; Hayakawa, N.; Wang, X.; Ishiyama, A.; Amemiya, N.; Hasegawa, T.; Saitoh, T.; Ohkuma, T.; Maruyama, O.

    A 275 kV 3 kA high temperature superconducting (HTS) cable has been developed in the Materials & Power Applications of Coated Conductors (M-PACC) project. The cable is expected to be put to practical use as the backbone power line in the future because the capacity of 1.5 GW is about the same as overhead transmission lines. The 30 m cable has been designed on the basis of design values that had been obtained by various voltage tests, AC loss measurement tests, short circuit tests, and other elementary tests. Cable insulation was determined by the design stresses and test conditions based on IEC, JEC (Japan electrical standards), and other HTS demonstrations. This cable was also designed to withstand the short circuit test of 63 kA for 0.6 seconds and to have low losses, including AC loss and dielectric loss of 0.8 W/m at 3kA, 275 kV. Based on the design, a 30 m cable was manufactured, and short samples during this manufacturing process were confirmed to have the designed characteristics. Furukawa Electric prepared a demonstration of the 30 m cable with two terminations and a cable joint. The long-term test under a current of 3 kA, and test voltage determined from 30 years of insulation degradation has been conducted since November 2012 at Shenyang in China.

  19. An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2005-09-20

    A seal for a coaxial cable electrical connector more specifically an internal seal for a coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transformer. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive core of the coaxial cable. The electrically insulating material also doubles as a seal to safegaurd against penetration of fluid, thus protecting against shorting out of the electrical connection. The seal is a multi-component seal, which is pre-compressed to a desired pressure rating. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string. The internal coaxial cable connector and its attendant seal can be used in a plurality of downhole tools, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  20. Coaxial cable cutter

    DOEpatents

    Hall, Leslie C.; Hedges, Robert S.

    1990-04-10

    A cutting device is provided which is useful in trimming the jackets from semi-rigid coaxial cables and wire having a cutting bit and support attached to movable jaws. A thumbpiece is provided to actuate the opening of the jaws for receiving the cable to be trimmed, and a spring member is provided to actuate the closing of the jaws when thumbpiece is released. The cutting device utilizes one moving part during the cutting operation by using a rolling cut action. The nature of the jaws allows the cutting device to work in space having clearances less than 0.160 inches.

  1. Space Flight Cable Model Development

    NASA Technical Reports Server (NTRS)

    Spak, Kaitlin

    2013-01-01

    This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.

  2. Hypervelocity impact testing of cables

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Adkinson, A. B.; English, J. E.; Linebaugh, C. E.

    1973-01-01

    The physics and electrical results obtained from simulated micrometeoroid testing of certain Skylab cables are presented. The test procedure, electrical circuits, test equipment, and cable types utilized are also explained.

  3. High acceleration cable deployment system

    NASA Technical Reports Server (NTRS)

    Canning, T. N.; Barns, C. E.; Murphy, J. P.; Gin, B.; King, R. W. (Inventor)

    1981-01-01

    A deployment system that will safely pay one cable from a ballistic forebody when the forebody is separated from an afterbody (to which the cable is secured and when the separation is marked by high acceleration and velocity) is described.

  4. Pyrotechnic-actuated cable release

    NASA Technical Reports Server (NTRS)

    Hanson, R. W.

    1968-01-01

    Remote, unattended means has been designed and reduced to practice that retains and then releases an attached load by means of a restrained cable. The cable is released by an electrical impulse on signal.

  5. Cabling design for phased arrays

    NASA Technical Reports Server (NTRS)

    Kruger, I. D.; Turkiewicz, L.

    1972-01-01

    The ribbon-cabling system used for the AEGIS phased array which provides minimum cable bulk, complete EMI shielding, rugged mechanical design, repeatable electrical characteristics, and ease of assembly and maintenance is described. The ribbon cables are 0.040-inch thick, and in widths up to 2 1/2 inches. Their terminations are molded connectors that can be grouped in a three-tier arrangement, with cable branching accomplished by a matrix-welding technique.

  6. Automatic insulation resistance testing apparatus

    DOEpatents

    Wyant, Francis J.; Nowlen, Steven P.; Luker, Spencer M.

    2005-06-14

    An apparatus and method for automatic measurement of insulation resistances of a multi-conductor cable. In one embodiment of the invention, the apparatus comprises a power supply source, an input measuring means, an output measuring means, a plurality of input relay controlled contacts, a plurality of output relay controlled contacts, a relay controller and a computer. In another embodiment of the invention the apparatus comprises a power supply source, an input measuring means, an output measuring means, an input switching unit, an output switching unit and a control unit/data logger. Embodiments of the apparatus of the invention may also incorporate cable fire testing means. The apparatus and methods of the present invention use either voltage or current for input and output measured variables.

  7. Cables and connectors: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A technological compilation on devices and techniques for various types of electrical cables and connections is presented. Data are reported under three sections: flat conductor cable technology, newly developed electrical connectors, and miscellaneous articles and information on cables and connector techniques.

  8. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  9. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  10. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  11. Flexible gas-insulated metal-enclosed transmission-system design

    NASA Astrophysics Data System (ADS)

    Kroon, P. J.; Netzel, P. C.; Ponder, J. Z.; Spencer, E. M.

    1982-08-01

    A flexible gas insulated cable for power transmission applications from 138 to 345 kV is described. The use of corugated aluminum for the conductor and sheath permits a bend radius of 8.5 times the cable radius to allow reeling of the cable for shipment of long lengths by truck or rail. The successful installation and test of an earlier prototype cable is also described. A machine to continuously produce corrugated tubing was designed, fabricated and installed in its own building to serve as the basic tool with which to develop methods to permit continuous production of cable. A two piece injection molded insulating spacer was developed to permit continuous economical cable production. Numerous tests have demonstrated the outstanding dielectric properties of the basic material and the sinulator design. A series of tables and graphs is presented to facilitate determination of current carrying capacity under various conditions for above ground and underground installations.

  12. USING CONDITION MONITORING TO PREDICT REMAINING LIFE OF ELECTRIC CABLES.

    SciTech Connect

    LOFARO,R.; SOO,P.; VILLARAN,M.; GROVE,E.

    2001-03-29

    Electric cables are passive components used extensively throughout nuclear power stations to perform numerous safety and non-safety functions. It is known that the polymers commonly used to insulate the conductors on these cables can degrade with time; the rate of degradation being dependent on the severity of the conditions in which the cables operate. Cables do not receive routine maintenance and, since it can be very costly, they are not replaced on a regular basis. Therefore, to ensure their continued functional performance, it would be beneficial if condition monitoring techniques could be used to estimate the remaining useful life of these components. A great deal of research has been performed on various condition monitoring techniques for use on electric cables. In a research program sponsored by the U.S. Nuclear Regulatory Commission, several promising techniques were evaluated and found to provide trendable information on the condition of low-voltage electric cables. These techniques may be useful for predicting remaining life if well defined limiting values for the aging properties being measured can be determined. However, each technique has advantages and limitations that must be addressed in order to use it effectively, and the necessary limiting values are not always easy to obtain. This paper discusses how condition monitoring measurements can be used to predict the remaining useful life of electric cables. The attributes of an appropriate condition monitoring technique are presented, and the process to be used in estimating the remaining useful life of a cable is discussed along with the difficulties that must be addressed.

  13. Use of plain copper conductors in lieu of tinned-copper for internal cables

    NASA Astrophysics Data System (ADS)

    Deboer, R. T.; Mottram, K. G.

    In line with most Telephone Operating Administrations, Telecom Australia has specified and used tinned-copper conductors, with PVC insulation and sheathing, for most internal cabling within telephone exchanges and subscribers' buildings. Following some reported problems associated with solderability, an investigation showed that the current production tinned conductors in Australia were inadequately specified; however, the excellent performance of plain copper prompted a more detailed investigation which revealed that plain copper conductors (i.e., no tinning) were suitable for all current applications of internal cable. The study covered soldering, wire wrapping, and insulation displacement terminations. As a result of this work, Telecom Australia has adopted plain copper as the standard for internal cables. This decision has resulted in both an improved performance in comparison with the previous tinned conductors (particularly in relation to solderability) and a substantial cable cost reduction.

  14. Flat conductor cable applications

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1972-01-01

    Some of the numerous applications of flat conductor cable (FCC) systems are briefly described. Both government and commercial uses were considered, with applications designated as either aerospace, military, or commercial. The number and variety of ways in which FCC is being applied and considered for future designs are illustrated.

  15. Handbook for photovoltaic cabling

    SciTech Connect

    Klein, D. N.

    1980-08-01

    This volume, originally written as part of the Interim Performance Criteria Document Development Implementation Plan and Procedures for Photovoltaic Energy Systems, is an analysis of the several factors to be considered in selecting cabling for photovoltaic purposes. These factors, correspoonding to chapter titles, are electrical, structural, safety, durability/reliability, and installation. A glossary of terms used within the volume is included for reference.

  16. Urban Cable Systems.

    ERIC Educational Resources Information Center

    Mason, William F.; And Others

    Analysis of demographic, social, municipal and commercial characteristics of Washington, D.C., indicate that a sophisticated three-stage cable television (CATV) system could be economically viable. The first stage would provide one-way CATV service offering 30 video channels and local program origination at a monthly fee of $3.50. The second stage…

  17. Pediatrics and Cable Television.

    ERIC Educational Resources Information Center

    Wallerstein, Edward; And Others

    The Department of Community Medicine of the Mount Sinai School of Medicine (New York City), in cooperation with the TelePrompTer Corporation and with funding from the Health Services and Mental Health Administration of the Department of Health, Education, and Welfare, has developed a bidirectional television system using coaxial cable which links…

  18. Heat Transfer Study for HTS Power Transfer Cables

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S.; Fesmire, J.

    2002-01-01

    Thermal losses are a key factor in the successful application of high temperature superconducting (HTS) power cables. Existing concepts and prototypes rely on the use of multilayer insulation (MLI) systems that are subject to large variations in actual performance. The small space available for the thermal insulation materials makes the application even more difficult because of bending considerations, mechanical loading, and the arrangement between the inner and outer piping. Each of these mechanical variables affects the heat leak rate. These factors of bending and spacing are examined in this study. Furthermore, a maintenance-free insulation system (high vacuum level for 20 years or longer) is a practical requirement. A thermal insulation system simulating a section of a flexible FITS power cable was constructed for test and evaluation on a research cryostat. This paper gives experimental data for the comparison of ideal MLI, MLI on rigid piping, and MLI between flexible piping. A section of insulated flexible piping was tested under cryogenic vacuum conditions including simulated bending and spacers.

  19. Waltz Mill testing of 345-kV PPP cable

    SciTech Connect

    Burghardt, R.R. )

    1991-09-01

    A 345-kV PPP-insulated cable was subjected to a two-year accelerated life test program at the EPRI Waltz Mill Cable Test Facility. Testing started in November 1985 and was successfully completed in September 1988. The program included conductor temperatures ranging from 85{degrees}C to 105{degrees}C and line-to-line voltages from 362 kV to 474 kV. Cyclic testing was performed during 17 of the 24 months. Dissipation factor measurements were made throughout the program. The measurements indicated no deterioration of the cable or splices as a consequence of the high temperatures and voltages applied to them in this test program. 2 refs., 24 figs.

  20. Ceramic end seal design for high temperature high voltage nuclear instrumentation cables

    DOEpatents

    Meiss, James D.; Cannon, Collins P.

    1979-01-01

    A coaxial, hermetically sealed end structure is described for electrical instrumentation cables. A generally tubular ceramic body is hermetically sealed within a tubular sheath which is in turn sealed to the cable sheath. One end of the elongated tubular ceramic insulator is sealed to a metal end cap. The other end of the elongated tubular insulator has an end surface which is shaped concave relative to a central conductor which extends out of this end surface. When the end seal is hermetically sealed to an instrumentation cable device and the central conductor is maintained at a high positive potential relative to the tubular metal sheath, the electric field between the central conductor and the outer sheath tends to collect electrons from the concave end surface of the insulator. This minimizes breakdown pulse noise generation when instrumentation potentials are applied to the central conductor.

  1. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner...

  2. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner...

  3. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner...

  4. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner...

  5. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Breaking trailing cable and power cable... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections...

  6. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be made... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power...

  7. Automotive Insulation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between Boeing North America and BSR Products, Space Shuttle Thermal Protection System (TPS) materials are now used to insulate race cars. BSR has created special TPS blanket insulation kits for use on autos that take part in NASCAR events, and other race cars through its nationwide catalog distribution system. Temperatures inside a race car's cockpit can soar to a sweltering 140 to 160 degrees, with the extreme heat coming through the engine firewall, transmission tunnel, and floor. It is common for NASCAR drivers to endure blisters and burns due to the excessive heat. Tests on a car insulated with the TPS material showed a temperature drop of some 50 degrees in the driver's cockpit. BSR-TPS Products, Inc. now manufactures insulation kits for distribution to race car teams around the world.

  8. Flat conductor cable commercialization project

    NASA Technical Reports Server (NTRS)

    Hogarth, P.; Wadsworth, E.

    1977-01-01

    An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.

  9. Internal coaxial cable seal system

    DOEpatents

    Hall, David R.; Sneddon, Cameron; Dahlgren, Scott Steven; Briscoe, Michael A.

    2006-07-25

    The invention is a seal system for a coaxial cable and is placed within the coaxial cable and its constituent components. A series of seal stacks including load ring components and elastomeric rings are placed on load bearing members within the coaxial cable sealing the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. The seal system can be used in a variety of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  10. Disposable telemetry cable deployment system

    DOEpatents

    Holcomb, David Joseph

    2000-01-01

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  11. Cable Polymer Aging and Condition Monitoring Research at Sandia National Laboratores Under the Nuclear Energy Plant Optimization (NEPO) Program

    SciTech Connect

    K. Gillen; R. Assink; R. Bernstein

    2005-12-23

    This report describes cable polymer aging and condition monitoring research performed at Sandia National Laboratories under the Nuclear Energy Plant Optimization (NEPO) Program from 2000 to 2005. The research results apply to low-voltage cable insulation and Program from 2000 to 2005. The research results apply to low-voltage cable insulation and jacket materials that are commonly used in U.S. nuclear power plants. The research builds upon and is liked to research performed at Sandia from 1977 through 1986, sponsored by the U.S. Nuclear Regulatory Commission. Aged and unaged specimens from that research remained available and were subjected to further testing under the NEPO research effort.The documented results from the earlier research were complemented by subjecting the specimens to new condition monitoring tests. Additional aging regimens were applied to additional specimens to develop aging models for key cable jacket and insulation materials

  12. Thermal Insulation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Commercially known as Solimide, Temptronics, Inc.'s thermal insulation has application in such vehicles as aircraft, spacecraft and surface transportation systems (i.e. rapid transit cars, trains, buses, and ships) as acoustical treatment for door, wall, and ceiling panels, as a means of reducing vibrations, and as thermal insulation (also useful in industrial equipment). Product originated from research conducted by Johnson Space Center on advanced flame-resistant materials for minimizing fire hazard in the Shuttle and other flight vehicles.

  13. HVDC submarine power cables systems state of the art and future developments

    SciTech Connect

    Valenza, D.; Cipollini, G.

    1995-12-31

    The paper begins with an introduction on the reasons that lead to the use of HVDC submarine cable links. The main aspects for the choice of direct current are presented as well as the advantages deriving from the utilization of submarine cables. The second part is dedicated to a discussion on the various type of insulation that could be used in power cables and their possible application to HVDC submarine cables. In the following there is a description of the main characteristics and technical details of some particular project that at present time (1995) are in progress. Two projects are briefly presented: Spain-Morocco, a 26 km long interconnection for the transmission, in a first phase, of 700 MW from Spain to Morocco at 400 kV a.c. by means of three cables, plus one spare, of the fluid filled type. The cables are designed for a future change to d.c. 450 kV, allowing a transmission of 500 MW each (i.e., 2 GW total). One of the peculiarities of the link is the maximum water depth of 615 m (world record for submarine power cables at the time of installation). Italy-Greece, a 1km long interconnection for the transmission of 500 MW (bi-directional) by means of one paper insulated mass impregnated cable having 1,250 sq mm conductor size and insulated for a rated voltage of 400 kV. This link (the installation of which will be posterior to the Spain-Morocco) will attain the world record for the maximum water depth for submarine power cables: 1,000 m. The last part deals with the future developments expected in this field, in terms of conductor size and voltage, that means an increase in transmissible capacity.

  14. Development of low-loss 765-kV pipe-type cable. Final report

    SciTech Connect

    Allam, E.M.

    1982-01-01

    The successful laboratory development of a 765-kV low-loss high-pressure pipe-type transmission cable and splice, employing an oil-impregnated laminate insulation is described. The laminate is PPP (a polypropylene film sandwiched between two layers of cellulose paper) and the impregnating fluid is hydrogenated polybutene oil. Test results on this cable demonstrated excellent ac and transient electric strength, low dielectric loss and acceptable bending performance. This system appears economically attractive compared to cellulose paper cables at 765 kV.

  15. Development of a generator stator insulation system

    NASA Astrophysics Data System (ADS)

    Buritz, R. S.

    1983-04-01

    The insulation of stator windings in generators is an old technology, dating to the turn of the century with kraft paper insulated, oil filled cables. Recently, two new classes of machines requiring much more advanced techniques of insulation have emerged. These generators are designed for relatively short duty in situations where light weight and small size are crucial to the overall mission, and mobility is a must. One class of machines uses superconducting windings to achieve small size. The other class consists of conventional generators designed to have extremely high power densities and specific powers. These machines represent a considerable engineering achievement, being significantly smaller than any previous generator. In one of these generators, manufactured by Bendix, substantial problems have been encountered in the stator winding insulation, because of the high fields dictated by the extremely high power density. This report presents the Hughes Aircraft Company approach and solution to these problems.

  16. Development of Inspection Robots for Bridge Cables

    PubMed Central

    Kim, Se-Hoon; Lee, Jong-Jae

    2013-01-01

    This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented. PMID:24459453

  17. Literature review of environmental qualification of safety-related electric cables: Summary of past work. Volume 1

    SciTech Connect

    Subudhi, M.

    1996-04-01

    This report summarizes the findings from a review of published documents dealing with research on the environmental qualification of safety-related electric cables used in nuclear power plants. Simulations of accelerated aging and accident conditions are important considerations in qualifying the cables. Significant research in these two areas has been performed in the US and abroad. The results from studies in France, Germany, and Japan are described in this report. In recent years, the development of methods to monitor the condition of cables has received special attention. Tests involving chemical and physical examination of cable`s insulation and jacket materials, and electrical measurements of the insulation properties of cables are discussed. Although there have been significant advances in many areas, there is no single method which can provide the necessary information about the condition of a cable currently in service. However, it is possible that further research may identify a combination of several methods that can adequately characterize the cable`s condition.

  18. The 345 kV underground/underwater Long Island Sound cable project

    SciTech Connect

    Grzan, J.; Hahn, E.I. ); Casalaina, R.V.; Kansog, J.O.C. )

    1993-07-01

    A high voltage underground/underwater cable system was installed to increase the transmission capacity from the mainland of New York to Long Island. In terms of weight and diameter, the self-contained, fluid-filled (SCFF) cable used for the underwater portion of the project is the largest underwater cable in the world. The use of high-pressure, fluid-filled (HPFF) pipe-type cable on the land portion represents the largest application of paper-polypropylene-paper (PPP) insulated cable in the United States. State-of-the-art technologies were implemented in the use of fiber optic cables for relay protection and SCADA/RTU, temperature monitoring and leak detection systems, SF[sub 6] gas-insulated substations, and underwater cable laying and embedment techniques. This paper discusses the design and installation of a 750 MVA, 43 km (26.6 mi), 345 kV underground/underwater electric transmission system installed by the New York Power Authority (NYPA).

  19. Radiation Testing of a Low Voltage Silicone Nuclear Power Plant Cable.

    SciTech Connect

    White II, Gregory Von; Schroeder, John Lee.; Sawyer, Patricia Sue.; Wichhart, Derek; Mata, Guillermo Adrian; Zorrilla, Jorge; Bernstein, Robert

    2014-09-01

    This report summarizes the results generated in FY13 for cable insulation in support of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program, in collaboration with the US-Argentine Binational Energy Working Group (BEWG). A silicone (SiR) cable, which was stored in benign conditions for %7E30 years, was obtained from Comision Nacional de Energia Atomica (CNEA) in Argentina with the approval of NA-SA (Nucleoelectrica Argentina Sociedad Anonima). Physical property testing was performed on the as-received cable. This cable was artificially aged to assess behavior with additional analysis. SNL observed appreciable tensile elongation values for all cable insulations received, indicative of good mechanical performance. Of particular note, the work presented here provides correlations between measured tensile elongation and other physical properties that may be potentially leveraged as a form of condition monitoring (CM) for actual service cables. It is recognized at this point that the polymer aging community is still lacking the number and types of field returned materials that are desired, but Sandia National Laboratories (SNL) -- along with the help of others -- is continuing to work towards that goal. This work is an initial study that should be complimented with location-mapping of environmental conditions of Argentinean plant conditions (dose and temperature) as well as retrieval, analysis, and comparison with in- service cables.

  20. Radiation Testing of a Low Voltage Silicone Nuclear Power Plant Cable.

    SciTech Connect

    Bernstein, Robert

    2014-08-01

    This report summarizes the results generated in FY13 for cable insulation in support of DOE's Light Water Reactor Sustainability (LWRS) Program, in collaboration with the US- Argentine Binational Energy Working Group (BEWG). A silicone (SiR) cable, which was stored in benign conditions for %7E30 years, was obtained from Comision Nacional de Energia Atomica (CNEA) in Argentina. Physical property testing was performed on the as-received cable. This cable was artificially aged to assess behavior with additional analysis. SNL observed appreciable tensile elongation values for all cable insulations received, indicative of good mechanical performance. Of particular note, the work presented here provides correlations between measured tensile elongation and other physical properties that may be potentially leveraged as a form of condition monitoring (CM) for actual service cables. It is recognized at this point that the polymer aging community is still lacking the number and types of field returned materials that are desired, but SNL -- along with the help of others -- is continuing to work towards that goal. This work is an initial study that should be complimented with location- mapping of environmental conditions of CNEA plant conditions (dose and temperature) as well as retrieval, analysis, and comparison with in-service cables.

  1. Cable shield connecting device

    DOEpatents

    Silva, Frank A.

    1979-01-01

    A cable shield connecting device for installation on a high voltage cable of the type having a metallic shield, the device including a relatively conformable, looped metal bar for placement around a bared portion of the metallic shield to extend circumferentially around a major portion of the circumference of the metallic shield while being spaced radially therefrom, a plurality of relatively flexible metallic fingers affixed to the bar, projecting from the bar in an axial direction and spaced circumferentially along the bar, each finger being attached to the metallic shield at a portion located remote from the bar to make electrical contact with the metallic shield, and a connecting conductor integral with the bar.

  2. Method to improve superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  3. Cable coupling lightning transient qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of instrumentation cabling on the redesigned solid rocket motor was performed. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of instrumentation cable transients on cables within the system tunnel. The maximum short-circuit current induced onto a United Space Boosters, Inc., operational flight cable within the systems tunnel was 92 A, and the maximum induced open-circuit voltage was 316 V. These levels were extrapolated to the worst-case (200 kA) condition of NASA specification NSTS 07636 and were also scaled to full-scale redesigned solid rocket motor dimensions. Testing showed that voltage coupling to cables within the systems tunnel can be reduced 40 to 90 dB and that current coupling to cables within the systems tunnel can be reduced 30 to 70 dB with the use of braided metallic sock shields around cables that are external to the systems tunnel. Testing also showed that current and voltage levels induced onto cables within the systems tunnel are partially dependant on the cables' relative locations within the systems tunnel. Results of current injections to the systems tunnel indicate that the dominant coupling mode on cables within the systems tunnel is not from instrumentation cables but from coupling through the systems tunnel cover seam apertures. It is recommended that methods of improving the electrical bonding between individual sections of the systems tunnel covers be evaluated. Further testing to better characterize redesigned solid rocket motor cable coupling effects as an aid in developing methods to reduce coupling levels, particularly with respect to cable placement within the systems tunnel, is also recommended.

  4. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.

    2013-09-11

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for

  5. Radiation Insulation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Apollo and subsequent spacecraft have had highly effective radiation barriers; made of aluminized polymer film, they bar or let in heat to maintain consistent temperatures inside. Tech 2000, formerly Quantum International Corporation used the NASA technology in its insulating materials, Super "Q" Radiant Barrier, for home, industry and mobile applications. The insulation combines industrial aluminum foil overlaid around a core of another material, usually propylene or mylar. The outer layer reflects up to 97 percent of heat; the central layer creates a thermal break in the structure and thus allows low radiant energy emission. The Quantum Cool Wall, used in cars and trucks, takes up little space while providing superior insulation, thus reducing spoilage and costs. The panels can also dampen sound and engine, exhaust and solar heat.

  6. Tapping the television cable.

    PubMed

    Clarke, M; Findlay, A; Canac, J F; Vergez, A

    1996-01-01

    Immediate access to patient data is essential to support good clinical decision making and support. However, away from the surgery, the doctor is currently unable to have any access to the clinical database. Solutions exist to support remote access, such as modems or radio data networks, but these are slow, with typical speeds in the 2-10 kbaud region. We propose a novel solution, to use the TV cable already installed in many homes. Using this technology, a suitably equipped computer (RF modern) is capable of connecting at speeds in excess of 500 kbaud and will run applications in exactly the same way as if connected to a surgery network: the cable TV becomes a LAN, but on a metropolitan scale. Brunel University, in collaboration with the Cable Corporation, has been piloting such a network. Issues include not only levels of service, but also security on the network and access, since the data are being effectively received in every home. However, close scrutiny of channel use can create closed networks reserved for specific users. The technology involves use of an RF modem to transmit data on a reverse channel (based at 16 MHz) on each subnet to a router at the head end of the cable network. This frequency translates the packet and retransmits it to all the subnets on a forward channel (based at 178 MHz). Each channel occupies the bandwidth normally allocated to one TV channel. Access is based on a modified CSMA/CD protocol, so treating the cable network as single multiple access network. The modem comes as a standard card installed in a PC and appears much as an ethernet card, but at reduced speed. With an NDIS driver it is quite able to support almost any network software, and has successfully demonstrated Novell and TCP/IP. We describe the HomeWorker network and the results from a pilot study being undertaken to determine the performance of the system and its impact on working practice. PMID:9375105

  7. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  8. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  9. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  10. Insulation Material

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Manufactured by Hitco Materials Division of Armco, Inc. a ceramic fiber insulation material known as Refrasil has been used extensively as a heat-absorbing ablative reinforcement for such space systems as rocket motor nozzles, combustion chambers, and re-entry shields. Refrasil fibers are highly porous and do not melt or vaporize until fibers exceed 3,100 degrees Fahrenheit. Due to these and other properties, Refrasil has found utility in a number of industrial high temperature applications where glass, asbestos and other materials fail. Hitco used this insulation to assist Richardson Co., Inc. in the manufacturing of hard rubber and plastic molded battery cases.

  11. Non-Intrusive Cable Tester

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)

    1999-01-01

    A cable tester is described for low frequency testing of a cable for faults. The tester allows for testing a cable beyond a point where a signal conditioner is installed, minimizing the number of connections which have to be disconnected. A magnetic pickup coil is described for detecting a test signal injected into the cable. A narrow bandpass filter is described for increasing detection of the test signal. The bandpass filter reduces noise so that a high gain amplifier provided for detecting a test signal is not completely saturate by noise. To further increase the accuracy of the cable tester, processing gain is achieved by comparing the signal from the amplifier with at least one reference signal emulating the low frequency input signal injected into the cable. Different processing techniques are described evaluating a detected signal.

  12. Superconducting flat tape cable magnet

    DOEpatents

    Takayasu, Makoto

    2015-08-11

    A method for winding a coil magnet with the stacked tape cables, and a coil so wound. The winding process is controlled and various shape coils can be wound by twisting about the longitudinal axis of the cable and bending following the easy bend direction during winding, so that sharp local bending can be obtained by adjusting the twist pitch. Stack-tape cable is twisted while being wound, instead of being twisted in a straight configuration and then wound. In certain embodiments, the straight length should be half of the cable twist-pitch or a multiple of it.

  13. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections to junction boxes shall not be made or broken under load....

  14. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections to junction boxes shall not be made or broken under load....

  15. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections to junction boxes shall not be made or broken under load....

  16. Kondo insulators

    SciTech Connect

    Fisk, Z.; Sarrao, J.L.; Thompson, J.D.

    1994-10-01

    The Kondo insulating materials present a particularly simple limiting case of the strongly correlated electron lattice problem: one occupied f-state interacting with a single half-filled conduction band. Experiment shows that the solution to this problem has some remarkably simple aspects. Optical conductivity data display the strong coupling nature of this physics.

  17. Radiation Insulation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Radiation insulation technology from Apollo and subsequent spacecraft was used to develop superinsulators, used by makers of cold weather apparel, to make parkas, jackets, boots and outdoor gear such as sleeping bags. The radiant barrier technology offers warmth retention at minimal weight and bulk.

  18. Insulation Material

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Apex Mills Corporation's superinsulators are used by makers of cold weather apparel, parkas, jackets, boots and outdoor gear such as sleeping bags. Their attraction in such applications is that radiant barrier insulation offers excellent warmth retention at minimal weight and bulk.

  19. Conceptual design of 275 kV class high-Tc superconducting cable

    NASA Astrophysics Data System (ADS)

    Mukoyama, S.; Yagi, M.; Fujiwara, N.; Ichikawa, H.

    2010-11-01

    High-temperature superconducting (HTS) cables are expected to be next generation transmission line because of the compact, lightweight, large capacity, and low loss features. Especially, since the YBa 2Cu 3O x (YBCO) tape has a high critical current, high magnetic-field property, low AC loss, and low cost, using YBCO tapes for a HTS cable seems to be one of the most promising ways to make the HTS cable attractive. Therefore, YBCO HTS cables have been studied extensively in Japan, the United States, Korea, and many other countries. We now believe that 275 kV class HTS cables will be used for future large capacity lines based on the needs of Japanese transmission networks for bulk transmission power in overhead transmission lines or gas insulated transmission lines (GIL). We started to develop the 275 kV class HTS cable for the new energy and industrial technology development organization (NEDO) project at 2008, and we have studied the applicability and the environmental and economic advantages of the 275 kV cable. This paper will introduce advantages and a conceptual design of the 275 kV HTS cable.

  20. 4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM NORTH FACE OF LAUNCH OPERATIONS BUILDING. TOPS OF BUNKER PERISCOPE AND FLAGPOLE ON ROOF OF LAUNCH OPERATIONS BUILDING IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. 5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM SOUTH FACE OF LAUNCH OPERATIONS BUILDING. MICROWAVE DISH IN FOREGROUND. METEOROLOGICAL TOWER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. 52. View of sitdown cable car, cable way, and stream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View of sit-down cable car, cable way, and stream gaging station, looking southeast. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  3. 51. View of sitdown cable car and cable way for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of sit-down cable car and cable way for stream gaging, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  4. Microsphere insulation systems

    NASA Technical Reports Server (NTRS)

    Allen, Mark S. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2005-01-01

    A new insulation system is provided that contains microspheres. This insulation system can be used to provide insulated panels and clamshells, and to insulate annular spaces around objects used to transfer, store, or transport cryogens and other temperature-sensitive materials. This insulation system provides better performance with reduced maintenance than current insulation systems.

  5. The Future of Cable Communications in Libraries

    ERIC Educational Resources Information Center

    Kenney, Brigette L.

    1976-01-01

    Cable technology, the regulatory framework, and the cable industry's economic situation are examined. It is proposed that libraries engage in informational activities using the cable which are different from those presently undertaken. (Author)

  6. Put Your Cable Wiring to the Test.

    ERIC Educational Resources Information Center

    Day, C. William

    2001-01-01

    Discusses why schools and universities should use testing procedures in any wire bid specification for cable wiring and also know how experienced the installers are in testing and installing structured cabling systems. Key cabling terms are included. (GR)

  7. Brillouin distributed temperature sensing system for monitoring of submarine export cables of off-shore wind farms

    NASA Astrophysics Data System (ADS)

    Marx, Benjamin; Rath, Alexander; Kolm, Frederick; Schröder, Andreas; Buntebarth, Christian; Dreß, Albrecht; Hill, Wieland

    2016-05-01

    For high-voltage cables, the maximum temperature of the insulation must never be exceeded at any location and at any load condition. The local temperatures depend not only on the cable design and load history, but also on the local thermal environment of the cable. Therefore, distributed temperature monitoring of high-voltage cables is essential to ensure the integrity of the cable at high load. Especially, the load of the export cables of wind farms varies strongly in dependence on weather conditions. In this field study, we demonstrate the measurement performance of a new, robust Brillouin distributed temperature sensing system (Brillouin-DTS). The system is based on spontaneous Brillouin scattering and does not require a fibre loop. This is essential for long submarine high-voltage cables, where normally no loop can be formed in the seabed. It is completely passively cooled and does not contain any moving or wearing parts. The instrument is dedicated for use in industrial and other rough environments. With a measuring time below 10 min, the temperature resolution is better than 1 °C for distances up to 50 km. In the field study, the submarine export cable of an off-shore wind farm has been monitored. The temperature profile of the export cable shows several hot spots, mostly located at cable joints, and also several cold spots.

  8. Ionizing radiation effects on ISS ePTFE jacketed cable assembly

    NASA Astrophysics Data System (ADS)

    Koontz, S. L.; Golden, J. L.; Lorenz, M. J.; Pedley, M. D.

    2003-09-01

    Polytetrafluoroethylene (PTFE), which is susceptible to embrittlement by ionizing radiation, is used as a primary material in the Mobile Transporter's (MT) Trailing Umbilical System (TUS) cable on the International Space Station (ISS). The TUS cable provides power and data service between the ISS truss and the MT. The TUS cable is normally stowed in an uptake reel and is fed out to follow the MT as it moves along rails on the ISS truss structure. For reliable electrical and mechanical performance, TUS cable polymeric materials must be capable of >3.5% elongation without cracking or breaking. The MT TUS cable operating temperature on ISS is expected to range between -100°C and +130°C. The on-orbit functional life requirement for the MT TUS cable is 10 years. Analysis and testing were performed to verify that the MT TUS cable would be able to meet full-life mechanical and electrical performance requirements, despite progressive embrittlement by the natural ionizing radiation environment. Energetic radiation belt electrons (trapped electrons) are the principal contributor to TUS cable radiation dose. TUS cable specimens were irradiated, in vacuum, with both energetic electrons and gamma rays. Electron beam energy was chosen to minimize charging effects on the non-conductive ePTFE (expanded PTFE) targets. Tensile testing was then performed, over the expected range of operating temperatures, as a function of radiation dose. When compared to the expected in-flight radiation dose/depth profile, atomic oxygen (AO) erosion of the radiation damaged TUS cable jacket surfaces is more rapid than the development of radiation induced embrittlement of the same surfaces. Additionally, the layered construction of the jacket prevents crack growth propagation, leaving the inner layer material compliant with the design elongation requirements. As a result, the TUS cable insulation design was verified to meet performance life requirements.

  9. Tests of insulation systems for Nb3Sn wind and react coils

    SciTech Connect

    Bossert, R.; Ambrosio, G; Andreev, N.; Whitson, G.; Zlobin, A.; /Fermilab

    2007-07-01

    Tests were performed to assess the viability of several cable insulation systems for use in Nb{sub 3}Sn accelerator magnets. Insulated stacks of cables were subjected to reaction cycles commonly used for Nb{sub 3}Sn coils. After reaction and epoxy impregnation, current leakage between turns was measured at pressures up to 180 MPa and turn-to-turn potentials up to 500V. Systems consisting of S-2 glass, ceramic fiber, and E-glass were tested. Several methods of applying the insulation were incorporated, including sleeves and various spiral wrapped configurations. Methods of sample preparation and testing are described and results are reported.

  10. A Glossary of Cable Terms.

    ERIC Educational Resources Information Center

    Cable Television Information Center, Washington, DC.

    Prepared as part of the ongoing series of publications designed to assist local and state government policy makers with cable television planning and decision-making, this glossary updates the document originally published in 1972. It contains definitions of terms frequently encountered in matters concerning cable television. (DGC)

  11. Heart catheter cable and connector

    NASA Technical Reports Server (NTRS)

    Harrison, D. R.; Cota, F. L.; Sandler, H.

    1972-01-01

    Ultraminiature catheter cables that are stiff enough for intravenous insertion yet flexible at the tip, sterilizable, and economical are fabricated entirely from commercially available parts. Assembly includes air passageway for reference pressures and coaxial cable for transmission of signals from the tip of catheter.

  12. Cable Television and the University.

    ERIC Educational Resources Information Center

    Lyman, Richard

    Universities contain powerful blocs of resistance to new educational technology, perhaps especially to television. University attitudes and structures as well as faculty ignorance, apathy, and resistance affect the development of cable television. No one seems to speak with great confidence and precision about the educational potential of cable.…

  13. Rectangular configuration improves superconducting cable

    NASA Technical Reports Server (NTRS)

    Foss, M.; Laverick, C.; Lobell, G.

    1968-01-01

    Superconducting cable for a cryogenic electromagnet with improved mechanical and thermal properties consists of a rectangular cross-sectioned combination of superconductor and normal conductor. The conductor cable has superconductors embedded in a metallic coating with high electrical and mechanical conductivity at liquid helium temperatures.

  14. 30 CFR 57.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Electricity Surface and Underground § 57.12013 Splices and repairs of power cables. Permanent splices and... strong with electrical conductivity as near as possible to that of the original; (b) Insulated to a... damage protection as near as possible to that of the original, including good bonding to the outer jacket....

  15. 30 CFR 57.12013 - Splices and repairs of power cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Electricity Surface and Underground § 57.12013 Splices and repairs of power cables. Permanent splices and... strong with electrical conductivity as near as possible to that of the original; (b) Insulated to a... damage protection as near as possible to that of the original, including good bonding to the outer jacket....

  16. Photonic-powered cable assembly

    SciTech Connect

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  17. Photonic-powered cable assembly

    SciTech Connect

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  18. Electrical insulating material deterioration. (Latest citations from the EI Compendex plus database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning the changes in insulating properties of materials due to aging, contaminants, water, ozone, weathering, flashover, and general decomposition. Insulation applications range from use in high voltage cables to winding insulation of transformers and motors. Testing methods and standards are included along with test results and analyses. (Contains a minimum of 138 citations and includes a subject term index and title list.)

  19. Mechanical Separation of Metallic Copper from Polymer-Insulated Copper Wire

    SciTech Connect

    Yokoyama, Seiji; Takeuchi, Sakae; Hisyamudin Bin Muhd Nor, Nik

    2011-01-17

    It is very important to recycling of polymer-insulated copper wire to remove copper from the wire without any contamination. A rolling machine and a blender were used to separate and recover the copper wires from a polymer coated cable. In the experiment using a rolling machine, the recovery of copper was improved by an increase in the number of rolling times and by lowering the cable temperature. All of the copper was recovered from a cable of 115 K in temperature. In the other experiment using a blender, the weight of the recovery of copper was increased by shortening the cable length and by increasing the rotary speed of the blender and the treating time. All the copper in a cut cable of 3mm long was recovered from a cable.

  20. Development of semi-rigid coaxial cables for application to low temperature experiments

    NASA Astrophysics Data System (ADS)

    Kushino, Akihiro; Kasai, Soichi

    2011-03-01

    Fast signal readout with low noise is essential for spectrometric research. Superconducting spectrometers operating below ~ 1 K are promising with their high spectral resolution, detection efficiency and counting rate. Cables connecting these spectrometers and electronics at high temperature must be coaxial and have low thermal conductance in order to reduce heat into low temperature. We have developed thin semi-rigid coaxial cables using low thermal conductivity alloys, CuNi, SUS and NbTi, for both center and outer conductors. The outer conductor is seamless and separated from the center conductor by a PTFE electrical insulator. We have assembled an adiabatic demagnetization refrigerator (ADR) at the 2nd stage of a GM cryocooler, which enables to cool the coaxial cables below 1K, and have measured low thermal conductance and performance of the cables at high frequencies up to ~ 5 GHz.

  1. Cable Bacteria in Freshwater Sediments

    PubMed Central

    Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  2. Cable Bacteria in Freshwater Sediments.

    PubMed

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-09-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  3. An Apparatus for Monitoring the Health of Electrical Cables

    NASA Technical Reports Server (NTRS)

    Pai, Devdas M.; Tatum, Paul; Pace, Rachel

    2004-01-01

    As with most elements of infrastructure, electrical wiring is innocuous; usually hidden away and unnoticed until it fails. Failure of infrastructure, however, sometimes leads to serious health and safety hazards. Electrical wiring fails when the polymeric (usually rubber) insulation material that sheathes the conductor gets embrittled with age from exposure to pressure, temperature or radiation cycling or when the insulation gets removed by the chafing of wires against each other. Miles of such wiring can be found in typical aircraft, with significant lengths of the wiring immersed in aviation fuel - a recipe for an explosion if a spark were to occur. Diagnosing the health of wiring is thus an important aspect of monitoring the health of aging aircraft. Stress wave propagation through wiring affords a quick and non-invasive method for health monitoring. The extent to which a stress wave propagating through the cable core gets attenuated depends on the condition of the surrounding insulation. When the insulation is in good condition - supple and pliable, there is more damping or attenuation of the waveform. As the insulation gets embrittled and cracked, the attenuation is likely to reduce and the waveform of the propagating stress wave is likely to change. The monitoring of these changes provides a potential tool to evaluate wiring or cabling in service that is not accessible for visual inspection. This experiment has been designed for use in an introductory mechanical or materials engineering instrumentation lab. Initial setup (after procuring all the materials) should take the lab instructor about 4 hours. A single measurement can be initiated and saved to disk in less than 3 minutes, allowing for all the students in a typical lab section to take their own data rather than share a single set of data for the entire class.

  4. Robot cable-compliant devices

    NASA Technical Reports Server (NTRS)

    Kerley, James J., Jr. (Inventor)

    1990-01-01

    A cable compliant robotic joint includes two U configuration cross section brackets with their U cross sections lying in different planes, one of their brackets being connected to a robot arm and the other to a tool. Additional angle brackets are displaced from the other brackets at corners of the robotic joint. All the brackets are connected by cable segments which lie in one or more planes which are perpendicular to the direction of tool travel as it approaches a work object. The compliance of the joint is determined by the cable segment characteristics, such as their length, material, angle, stranding, pretwisting, and prestressing.

  5. Cohomological Insulators

    NASA Astrophysics Data System (ADS)

    Alexandradinata, A.; Wang, Zhijun; Bernevig, B. Andrei

    We present a cohomological classification of insulators, in which we extend crystal symmetries by Wilson loops. Such an extended group describes generalized symmetries that combine space-time transformations with quasimomentum translations. Our extension generalizes the construction of nonsymmorphic space groups, which extend point groups by real-space translations. Here, we further extend nonsymmorphic groups by reciprocal translations, thus placing real and quasimomentum space on equal footing. From a broader perspective, cohomology specifies not just the symmetry group, but also the quasimomentum manifold in which the symmetry acts - both data are needed to specify the band topology. In this sense, cohomology underlies band topology.

  6. Program for Space Shuttle Payload Cabling

    NASA Technical Reports Server (NTRS)

    Schultz, Roger D.; Saxon, C. Rogers

    1987-01-01

    EXCABL is expert-system computer program developed to route electrical cables in Space Shuttle Orbiter payload bay for each mission. Automates cable-routing process and provides data for cable-installation documents. Automation increased speed and accuracy of payload-integration process, and expert system codifies knowledge cabling experts have acquired. Written in ART.

  7. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  8. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  9. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  10. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  11. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  12. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cable systems. 25.689 Section 25.689 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a) Each cable, cable fitting,...

  13. Cable Modem Technology Implementation: Challenges and Prospects.

    ERIC Educational Resources Information Center

    Littman, Marlyn Kemper

    1998-01-01

    Describes cable modem technology (i.e., an external device that facilitates high-speed access to the Internet via the same network configuration employed for cable television). Examples of cable field trials carried out in collaboration with educational user communities are presented, and cable technical capabilities, advantages, and constraints…

  14. Cable Television: Citizen Participation in Planning.

    ERIC Educational Resources Information Center

    Yin, Robert K.

    The historical background of citizen participation in local affairs and its relevance at the onset of community concern about cable television are briefly discussed in this report. The participation of citizens, municipal officials, and cable operators in laying the groundwork for a cable system as well as the pros and cons of cable television as…

  15. Cable in Connecticut; a Citizen's Handbook.

    ERIC Educational Resources Information Center

    Cleland, Margaret

    This handbook for Connecticut cable television consumers addresses a variety of topics, including: (1) a definition of cable television services; (2) the public stake in cable television; (3) program variety; (4) pay cable service; (5) public satellites; (6) government regulation; (7) proposed regulation; (8) role of the Connecticut Public…

  16. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (a) This account shall include the original cost of underground cable installed in conduit and of... cable. This subsidiary record category shall include the original cost of optical fiber cable and other.... (2) Metallic cable. This subsidiary record category shall include the original cost of single...

  17. High-current dc power transmission in flexible RE-Ba2Cu3O7 - δ coated conductor cables

    NASA Astrophysics Data System (ADS)

    van der Laan, D. C.; Goodrich, L. F.; Haugan, T. J.

    2012-01-01

    Transmission cables made from high-temperature superconductors have been successfully demonstrated within the electric power grid. These cables carry an ac current of up to 3000 A in a much smaller cross-sectional area than conventional transmission lines, but they are not flexible enough for certain applications that involve very tight cable bends. Certain on-board Air Force applications require 5 MW of dc power transmission at 270 V and current of 18 500 A and would benefit from superconducting transmission in lightweight, flexible cables that would be cooled with helium gas down to about 55 K. To address these needs, we have constructed a 10 mm diameter RE-Ba2Cu3O7 - δ (RE = rare earth) coated conductor cable that is lighter and more flexible than the current generation of superconducting cables, and that has a critical current of 7561 A at 76 K. The cable is expected to have a critical current of more than 20 000 A at 55 K and therefore will likely exceed the requirements for 5 MW on-board power transmission. The cable consists of two electrically insulated phases that can be operated in different modes, which allows us to study the effect of self-field on the cable performance. Contribution of NIST, not subject to US copyright.

  18. 105. VIEW NORTH FROM SLC3W CABLE TUNNEL INTO CABLE VAULT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    105. VIEW NORTH FROM SLC-3W CABLE TUNNEL INTO CABLE VAULT AND SLC-3E CABLE TUNNEL. NOTE WOODEN PLANKING ON FLOOR OF TUNNEL AND CABLE TRAYS LINING TUNNEL WALLS. STAIRS ON EAST WALL OF CABLE VAULT LEAD INTO LANDLINE INSTRUMENTATION ROOM. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  19. Tank Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  20. Effects of shields on cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Aircraft wiring subjected to rapidly changing electromagnetic fields was considered. The ways in which shielded cables reduce surge voltages were studied along with the ways in which common practice regarding the use of shields may be at variance with the use required for the control of lightning effects. Courses in which this apparent conflict of use may be resolved were suggested. Noise currents flowing on shields of cables related to the noise signals coupled onto signal conductors were also investigated.

  1. Insulators for high voltages

    SciTech Connect

    Looms, J.S.T.

    1987-01-01

    This book describes electrical insulators for high voltage applications. Topics considered include the insulating materials, the manufacture of wet process porcelain, the manufacture of tempered glass, the glass-fibre core, the polymeric housing, the common problem - terminating an insulator, mechanical constraints, the physics of pollution flashover, the physics of contamination, testing of insulators, conclusions from testing, remedies for flashover, insulators for special cases, interference and noise, and the insulator of the future.

  2. Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

    SciTech Connect

    Pastouret, Alan; Gooijer, Frans; Overton, Bob; Jonker, Jan; Curley, Jim; Constantine, Walter; Waterman, Kendall Miller

    2015-11-13

    High Temperature insulated wire and optical fiber cable is a key enabling technology for the Geothermal Technologies Program (GTP). Without insulated electrical wires and optical fiber, downhole temperature and pressure sensors, flow meters and gauges cannot communicate with the surface. Unfortunately, there are currently no insulated electrical wire or fiber cable constructions capable of surviving for extended periods of deployment in a geothermal well (240-325°C) or supercritical (374°C) reservoir. This has severely hindered engineered reservoir creation, management and utilization, as hot zones and cool water intrusions cannot be understood over time. The lack of a insulated electrical wire and fiber cable solution is a fundamental limitation to the viability of this energy source. The High Temperature Downhole Tools target specification is development of tools and sensors for logging and monitoring wellbore conditions at depths of up to 10,000 meters and temperatures up to 374oC. It well recognized in the industry that no current electronic or fiber cable can be successfully deployed in a well and function successfully for more a few days at temperatures over 240oC. The goal of this project was to raise this performance level significantly. Prysmian Group’s objective in this project was to develop a complete, multi-purpose cable solution for long-term deployment in geothermal wells/reservoirs that can be used with the widest variety of sensors. In particular, the overall project objective was to produce a manufacturable cable design that can perform without serious degradation: • At temperatures up to 374°C; • At pressures up to 220 bar; • In a hydrogen-rich environment; and • For the life of the well (> 5 years). This cable incorporates: • Specialty optical fibers, with specific glass chemistry and high temperature and pressure protective coatings for data communication and distributed temperature and pressure sensing, and • High

  3. Electrical/mechanical evaluation of high voltage dielectrics for OTEC riser cables

    SciTech Connect

    Traut, R. T.; Kurt, J. P.; DiPietro, F. M.; Roberts, K. P.

    1980-01-01

    The unique design and test requirements for the cable dielectrics selected for evaluation for use in Ocean Thermal Energy Conversion plants are described. Specifically, the methodology of developing the test procedure is defined. The basic cable dielectrics selected for evaluation include taped/oil-impregnated insulation, and extruded solid cross-linked polyethylene insulation. These cables are designed to transmit 100 MW at 138 kV, and will be subjected to installation and operating conditions that are unprecedented for any power cable system. These conditions include ocean depths of 4000 to 5000 feet, long vertical suspension, and the motions and forces imparted by the plant and ocean. The developmental test program is designed primarily to determine the weak link in the components of the candidate cable with regard to the ability to successfully withstand the unusual OTEC conditions over a 10 to 30 year lifetime. Two basic areas of concern are the mechanical fatigue of metallic sheaths and strength members, and the electrical/mechanical ''fatigue'' of the dielectric and shielding components. The constraints and problems in such testing are addressed, and the engineering solutions are described. Finally, the scheduled plan for completion of the entire development test plan is defined.

  4. The effect of particulate debris on the insulation integrity of SSC coils during molding and collaring

    SciTech Connect

    Nehrlich, E.; Markley, F.; Rogers, D.

    1991-03-01

    In order to simulate the effect of accidentally introduced debris on SSC coil insulation integrity, models consisting of two pieces of insulated SSC cable have been loaded in an hydraulic press after introducing foreign particles between the layers. The tests were originally suggested by R. Palmer of the SSC Laboratory. A high voltage (2 Kv) was continually applied between the two cables and the load gradually increased until an electrical short occurred. The high voltage was used as an easy method of detecting insulation punctures and to continue the general type of testing begun at Brookhaven by J. Skaritka, now at the SSC Laboratory, and continued at Fermilab by F. Markley and presented at last year`s session of the Conference. A range of particles of different size, shape, and hardness were used, and both conducting and insulating particles were included. Fine wires were also used. When the data are normalized using the control (no particles added), data for each cable batch used, there is a slight correlation between pressure at breakdown and particle size for cables insulated with Kapton only. Adjustment must be made for soft particles that tend to deform and for particles with aspect ratios greater than one. Additional measurements have also been made where the opoxy-fiberglass layer was added to the Kapton insulation overwrap. These show a correlation between conductivity and breakdown pressure. 1 ref., 7 figs.

  5. Study on long-term irradiation aging of electrical cables (The VEILLE program)

    SciTech Connect

    Carlin, F.; Attal, M.; Gaussens, G.

    1995-04-01

    The VEILLE program (French acronym for study on long-term irradiation aging of electrical cables) was implemented in 1988 by the Institute of Protection and Nuclear Safety (IPSN) in collaboration with the US Nuclear Regulatory Commission (NRC) for a period of six years. It is intended to validate the assumptions put forward as regards aging of electrical cables and to develop criteria for early detection of degradation likely to lead to functional failures. The tests were carried out partly at the Sandia National Laboratories in the United States, partly in France in the CIS bio international Laboratories at the Saclay Nuclear Research Centre. The study focused on the radiation effects from cobalt 60 on electrical cables made up of various polymers for two temperatures and at various dose rates. Other tests were also performed using a device laid under water in the OSIRIS reactor pool at Saclay to test cables under irradiation and temperature conditions close to those found in nuclear power plant operation. Subsequently the aged cables were subjected to containment accident conditions (irradiation and thermodynamic profile) in order to show any degradation due to aging. The study showed the significant effect of radiation doses on EPR and EPDM cable insulations as well as synergy between radiation dose rates and temperature on the mechanical properties of the Hypalon sheath. Correlation between the mechanical properties and the function of cables is difficult to establish as electrical characteristics are preserved whatever the type of mechanical degradation observed. Finally, the performance of electrical cables after an accident remains a key criterion to define the materials likely to be used when manufacturing cables intended to ensure safety functions.

  6. The development of ShortWatch, a novel overtemperature or mechanical damage sensing technology for wires or cables. Final report

    SciTech Connect

    Watkins, Ken; Morris, Jack; Wong, C.P.; Luo, Shijian

    2001-09-07

    'ShortWatch' is a patented technology which for the first time offers electrical wire/cable products providing real-time, 'in-situ' (1) condition monitoring that warns of insulation damage before an electrical fault occurs, (2) assessment of the ability to perform in a Design Basis event, (3) distributed sensor warning of overtemperature, and (4) insulation leakage measurement capability providing arc sensing and a reliable tool for wire age prediction.

  7. Development of flexible joint for 500kV Al-sheathed O. F. cable

    SciTech Connect

    Komaba, T.; Kanai, K. ); Yoshida, S.; Shigetoshi, I.; Amano, K. )

    1992-10-01

    This paper reports on a flexible dimensionaly flush joint for 500kV aluminum-sheathed oil-filled cables capable of being assembled, pulled an installed in a similar manner to cables at site which has been developed. This joint is intended for use at intermediate points on long bridges or tunnels where local assembly and installation of conventional joints would be difficult. In developing the joint various novel and original techniques have been employed, including the flexible flush jointing of segmental conductors, the flexible jointing of paper insulation by a combination of wrapping-back and stepping methods, plus on-site aluminum sheath corrugating and sealing methods.

  8. Development of an Innovative Insulation for Nb3Sn Wind and React Coils

    NASA Astrophysics Data System (ADS)

    Puigsegur, A.; Rondeaux, F.; Prouzet, E.; Samoogabalan, K.

    2004-06-01

    At the present time, Nb3Sn is the best superconductor candidate for the realization of high field magnets (>10-11 teslas). However its implementation remains delicate because of the great brittleness of material after the heat treatment necessary to form the Nb3Sn compounds. The conventional insulation for Nb3Sn wind & react coils requires performing, after the heat treatment, a vacuum resin impregnation, which adds to the cost and raises failure risk. We propose a one-step innovating ceramic insulation deposited directly on the un-reacted conducting cable. The conducting cable is wound according to conventional techniques and, after the heat treatment necessary to the form the Nb3Sn, we obtain a coil having a mechanical cohesion, while maintaining a proper conductor positioning and a suitable electric insulation. We will have studied the electric properties of superconducting cable isolated at the room temperature and at 4.2 K.

  9. Flat conductor cable design, manufacture, and installation

    NASA Technical Reports Server (NTRS)

    Angele, W.; Hankins, J. D.

    1973-01-01

    Pertinent information for hardware selection, design, manufacture, and quality control necessary for flat conductor cable interconnecting harness application is presented. Comparisons are made between round wire cable and flat conductor cable. The flat conductor cable interconnecting harness systems show major cost, weight, and space savings, plus increased system performance and reliability. The design application section includes electrical characteristics, harness design and development, and a full treatise on EMC considerations. Manufacturing and quality control sections pertain primarily to the developed conductor-contact connector system and special flat conductor cable to round wire cable transitions.

  10. Charge-Dissipative Electrical Cables

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R.; Wollack, Edward J.

    2004-01-01

    Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.

  11. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  12. Multiple density layered insulator

    DOEpatents

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  13. Multiple density layered insulator

    DOEpatents

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  14. Probabilistic method to assess insulating link performance for protection of crane workers

    SciTech Connect

    Karady, G.G.; Shah, M.; Dumora, D.

    1996-01-01

    Contact between cranes and transmission lines is the most frequent cause of accidents, which may lead to electrocution of an operator or rigger. This accident can be prevented by inserting an insulating link in the crane`s cable. This paper analyzes currents during accidents and proposes a modified test method for contaminated insulating links. A new and better insulating link is also introduced. Flashover probability of contaminated insulator links is measured. The tests results are evaluated with a new probabilistic method which leads to better assessment of link efficiency. The paper concludes that the risk of link failure cannot be determined without the new flashover probability measurement.

  15. Arc Testing of a Mockup Cable in a Simulated Space Radiation Environment

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.; Schneider, T. A.; Vaughn, J. A.

    2007-01-01

    A mockup cable was irradiated with electrons of 25-100 keV energy in a vacuum chamber. The m'ockup cable consisted of insulated wires on a kapton substrate, overlaid with a metallized teonex shield. Voltages induced on the wires and shield by the electron beam during irradiation were monitored, and voltage changes were used, along with video, to detect arcs due to the charge built-up in the cable. The cable was also cooled with liquid nitrogen to very low temperatures, to simulate cables kept in the dark for long periods of time. Arcing was common at fluences typical of long space missions. Occasionally an arc would occur some time after the electron beam was turned off. The conductivity of the wires and shield was monitored as a function of temperature, and behaved as expected, with lower conductivities at lower temperatures. Arcs from the wires and shield to ground and from the wires to the shield were measured. Sympathetic arcs were also seen, wherein an arc from the shield to ground or from the wires to ground was followed in a short period of time by another arc of a different type. Implications of these results for real cables on long space missions will be discussed, and recommendations given for arc mitigation.

  16. Umbilical cable recovery load analysis

    NASA Astrophysics Data System (ADS)

    Yan, Shu-wang; Jia, Zhao-lin; Feng, Xiao-wei; Li, Shi-tao

    2013-06-01

    Umbilical cable is a kind of integrated subsea cable widely used in the exploration and exploitation of oil and gas field. The severe ocean environment makes great challenges to umbilical maintenance and repair work. Damaged umbilical is usually recovered for the regular operation of the offshore production system. Analysis on cables in essence is a two-point boundary problem. The tension load at the mudline must be known first, and then the recovery load and recovery angle on the vessel can be solved by use of catenary equation. The recovery analysis also involves umbilical-soil interaction and becomes more complicated. Calculation methods for recovery load of the exposed and buried umbilical are established and the relationship between the position of touch down point and the recovery load as well as the recovery angle and recovery load are analyzed. The analysis results provide a theoretical reference for offshore on-deck operation.

  17. CABLE DESIGN FOR FAST RAMPED SUPERCONDUCTING MAGNETS (COS-0 DESIGN).

    SciTech Connect

    GHOSH,A.

    2004-03-22

    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 300 T-m and 100 T-m. Fast ramp times are needed, which can cause significant problems for the magnets, particularly in the areas of ac loss and magnetic field distortion. The development of the low loss Rutherford cable that can be used is described, together with a novel insulation scheme designed to promote efficient cooling. Measurements of contact resistance in the cable are presented and the results of these measurements are used to predict the ac losses, in the magnets during fast ramp operation. For the high energy ring, a lm model dipole magnet was built, based on the RHIC dipole design. This magnet was tested under boiling liquid helium in a vertical cryostat. The quench current showed very little dependence on ramp rate. The ac losses, measured by an electrical method, were fitted to straight line plots of loss/cycle versus ramp rate, thereby separating the eddy current and hysteresis components. These results were compared with calculated values, using parameters which had previously been measured on short samples of cable. Reasonably good agreement between theory and experiment was found, although the measured hysteresis loss is higher than expected in ramps to the highest field levels.

  18. Evaluation of Cable Harness Post-Installation Testing. Part B

    NASA Technical Reports Server (NTRS)

    King, M. S.; Iannello, C. J.

    2011-01-01

    The Cable Harness Post-Installation Testing Report was written in response to an action issued by the Ares Project Control Board (PCB). The action for the Ares I Avionics & Software Chief Engineer and the Avionics Integration and Vehicle Systems Test Work Breakdown Structure (WBS) Manager in the Vehicle Integration Office was to develop a set of guidelines for electrical cable harnesses. Research showed that post-installation tests have been done since the Apollo era. For Ares I-X, the requirement for post-installation testing was removed to make it consistent with the avionics processes used on the Atlas V expendable launch vehicle. Further research for the report involved surveying government and private sector launch vehicle developers, military and commercial aircraft, spacecraft developers, and harness vendors. Responses indicated crewed launch vehicles and military aircraft perform post-installation tests. Key findings in the report were as follows: Test requirements identify damage, human-rated vehicles should be tested despite the identification of statistically few failures, data does not support the claim that post-installation testing damages the harness insulation system, and proper planning can reduce overhead associated with testing. The primary recommendation of the report is for the Ares projects to retain the practice of post-fabrication and post-installation cable harness testing.

  19. Online Cable Tester and Rerouter

    NASA Technical Reports Server (NTRS)

    Lewis, Mark; Medelius, Pedro

    2012-01-01

    Hardware and algorithms have been developed to transfer electrical power and data connectivity safely, efficiently, and automatically from an identified damaged/defective wire in a cable to an alternate wire path. The combination of online cable testing capabilities, along with intelligent signal rerouting algorithms, allows the user to overcome the inherent difficulty of maintaining system integrity and configuration control, while autonomously rerouting signals and functions without introducing new failure modes. The incorporation of this capability will increase the reliability of systems by ensuring system availability during operations.

  20. Equalization of data transmission cable

    NASA Technical Reports Server (NTRS)

    Zobrist, G. W.

    1975-01-01

    The paper describes an equalization approach utilizing a simple RLC network which can obtain a maximum slope of -12dB/octave for reshaping the frequency characteristics of a data transmission cable, so that data may be generated and detected at the receiver. An experimental procedure for determining equalizer design specifications using distortion analysis is presented. It was found that for lengths of 16 PEV-L cable of up to 5 miles and data transmission rates of up to 1 Mbs, the equalization scheme proposed here is sufficient for generation of the data with acceptable error rates.

  1. Debris protection cover assembly for cable connectors

    NASA Technical Reports Server (NTRS)

    Yovan, Roger D. (Inventor)

    1999-01-01

    A protective cover assembly for an end of a cable connector having a cable housing that encloses a plurality of connective pins or sockets and that satisfies all requirements for space applications. A connector body flange is formed at the extremity of a cable and is positioned so that it may register with a corresponding connector body flange on the end of a companion cable to which a connection is to be made, one cable end having cable lead pins and the companion cable end having lead sockets with which the pins register. A latch mechanism having a latch housing is received in the connector body flange and a crank connected to a manually rotatable cap actuates a spring-loaded latch element that is engageable with a connector body flange to secure or to release the cover assembly with the simple twisting motion of the cap, thereby simplifying the task of effecting coupling and decoupling of the cable ends.

  2. New sensitive seismic cable with imbedded geophones

    NASA Astrophysics Data System (ADS)

    Pakhomov, Alex; Pisano, Dan; Goldburt, Tim

    2005-10-01

    Seismic detection systems for homeland security applications are an important additional layer to perimeter and border protection and other security systems. General Sensing Systems has been developing low mass, low cost, highly sensitive geophones. These geophones are being incorporated within a seismic cable. This article reports on the concept of a seismic sensitive cable and seismic sensitive ribbon design. Unlike existing seismic cables with sensitivity distributed along their lengths, the GSS new cable and ribbon possesses high sensitivity distributed in several points along the cable/ribbon with spacing of about 8-12 to 100 meters between geophones. This cable/ribbon is highly suitable for design and installation in extended perimeter protection systems. It allows the use of a mechanical cable layer for high speed installation. We show that any installation mistakes in using the GSS seismic sensitive cable/ribbon have low impact on output seismic signal value and detection range of security systems.

  3. Data Base On Cables And Connectors

    NASA Technical Reports Server (NTRS)

    Bowen, Arlen R.; Oliver, John D.

    1995-01-01

    Report describes Connector Adapter Cable Information Data Base (CONNAID) computer program, managing data base containing necessary information concerning electrical connectors, breakout boxes, adapter cables, backshells, and pertinent torque specifications for engineering project.

  4. 30 CFR 18.45 - Cable reels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., hydraulically, or electrically driven reel upon which to wind the portable cable. (b) The enclosure for moving... of travel of a machine when receiving power through a portable (trailing) cable shall not exceed...

  5. 30 CFR 18.45 - Cable reels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., hydraulically, or electrically driven reel upon which to wind the portable cable. (b) The enclosure for moving... of travel of a machine when receiving power through a portable (trailing) cable shall not exceed...

  6. 30 CFR 18.45 - Cable reels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., hydraulically, or electrically driven reel upon which to wind the portable cable. (b) The enclosure for moving... of travel of a machine when receiving power through a portable (trailing) cable shall not exceed...

  7. Ames Lab 101: Reinventing the Power Cable

    ScienceCinema

    Russell, Alan

    2014-06-04

    Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

  8. Ames Lab 101: Reinventing the Power Cable

    SciTech Connect

    Russell, Alan

    2013-09-27

    Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

  9. Integrated Cable System Aging Management Guidance: Low-Voltage Cable

    SciTech Connect

    W.M.Denny

    2003-01-02

    The document provides insights into common aging issues and symptoms and includes pictures and descriptions of deterioration that is observable. The report provides a rapid review of the important information necessary to assess the aging of the low-voltage cable system used in nuclear power plants.

  10. Double copper sheath multiconductor instrumentation cable is durable and easily installed in high thermal or nuclear radiation area

    NASA Technical Reports Server (NTRS)

    Mc Crae, A. W., Jr.

    1967-01-01

    Multiconductor instrumentation cable in which the conducting wires are routed through two concentric copper tube sheaths, employing a compressed insulator between the conductors and between the inner and outer sheaths, is durable and easily installed in high thermal or nuclear radiation area. The double sheath is a barrier against moisture, abrasion, and vibration.

  11. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  12. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  13. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  14. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  15. 30 CFR 7.407 - Test for flame resistance of electric cables and cable splices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) at an ambient temperature of 104 °F (40 °C). (8) Monitor the electric current through the power... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test for flame resistance of electric cables... Electric Cables, Signaling Cables, and Cable Splice Kits § 7.407 Test for flame resistance of...

  16. Development of Pre-Preg Ceramic Insulation for Superconducting Magnets

    SciTech Connect

    Codell, D.E.; Fabian, P.E.

    2004-06-28

    A new pre-impregnated (pre-preg) ceramic-based electrical insulation system capable of surviving high superconductor reaction temperatures has been developed for use in superconducting magnets. The use of Nb3Sn superconductors holds great promise for increased magnet performance for high energy physics, fusion, and other applications. A robust, cost-effective manufacturing process is critical to the successful implementation of these coils. Due to its embrittlement after the high temperature reaction cycle, Nb3Sn cable is usually insulated and wound into the coil prior to heat treatment. An earlier ceramic-based insulation system, applied using wet-winding or vacuum impregnation, has been successfully used in the 'wind and react' fabrication process. Use of the new pre-preg system will further simplify the manufacturing process while improving control over the insulation properties. Pre-preg insulation offers several advantages including improved dimensional control of the insulation, controllable and uniform fiber to matrix ratio, and certainty that the insulation does not infiltrate the superconductor. This paper describes the pre-preg development process, processing properties, as well as insulation performance data at cryogenic temperatures.

  17. Development of Pre-Preg Ceramic Insulation for Superconducting Magnets

    NASA Astrophysics Data System (ADS)

    Codell, D. E.; Fabian, P. E.

    2004-06-01

    A new pre-impregnated (pre-preg) ceramic-based electrical insulation system capable of surviving high superconductor reaction temperatures has been developed for use in superconducting magnets. The use of Nb3Sn superconductors holds great promise for increased magnet performance for high energy physics, fusion, and other applications. A robust, cost-effective manufacturing process is critical to the successful implementation of these coils. Due to its embrittlement after the high temperature reaction cycle, Nb3Sn cable is usually insulated and wound into the coil prior to heat treatment. An earlier ceramic-based insulation system, applied using wet-winding or vacuum impregnation, has been successfully used in the "wind and react" fabrication process. Use of the new pre-preg system will further simplify the manufacturing process while improving control over the insulation properties. Pre-preg insulation offers several advantages including improved dimensional control of the insulation, controllable and uniform fiber to matrix ratio, and certainty that the insulation does not infiltrate the superconductor. This paper describes the pre-preg development process, processing properties, as well as insulation performance data at cryogenic temperatures.

  18. Insulation Characteristics of Bushing Shed at Cryogenic Temperature

    NASA Astrophysics Data System (ADS)

    Kim, W. J.; Kim, Y. J.; Kim, S. H.

    2014-05-01

    In the development of high-Tc superconducting(HTS) devices, the bushing for HTS devices (HTS bushing) is the core technology, the need to because of supply high voltage to the cable or the winding of the transformer. The lower part of the bushing is exposed to the liquid nitrogen (LN2), and it has many sheds. In particular, the insulation body with sheds and electrical insulation at cryogenic temperature have attracted a great deal of interest from the view point of the size, weight and efficiency of bushing. This study has mainly investigated the shed and insulation body by comparing glass fiber reinforced plastics (GFRP) in LN2. We investigated the surface discharge characteristics according to insulating materials, width and height of the shed.

  19. Performance Evaluation of K-DEMO Cable-in-conduit Conductors Using the Florida Electro-Mechanical Cable Model

    SciTech Connect

    Zhai, Yuhu

    2013-07-16

    The United States ITER Project Office (USIPO) is responsible for design of the Toroidal Field (TF) insert coil, which will allow validation of the performance of significant lengths of the conductors to be used in the full scale TF coils in relevant conditions of field, current density and mechanical strain. The Japan Atomic Energy Agency (JAEA) will build the TF insert which will be tested at the Central Solenoid Model Coil (CSMC) Test facility at JAEA, Naka, Japan. Three dimensional mathematical model of TF Insert was created based on the initial design geometry data, and included the following features: orthotropic material properties of superconductor material and insulation; external magnetic field from CSMC, temperature dependent properties of the materials; pre-compression and plastic deformation in lap joint. Major geometrical characteristics of the design were preserved including cable jacket and insulation shape, mandrel outline, and support clamps and spacers. The model is capable of performing coupled structural, thermal, and electromagnetic analysis using ANSYS. Numerical simulations were performed for room temperature conditions; cool down to 4K, and the operating regime with 68kA current at 11.8 Tesla background field. Numerical simulations led to the final design of the coil producing the required strain levels on the cable, while simultaneously satisfying the ITER magnet structural design criteria.

  20. Hawaii Deep Water Cable Program: Executive Summary

    SciTech Connect

    1990-09-01

    The Hawaii Deep Water Cable Program has succeeded unequivocally in determining the feasibility of deploying a submarine power cable system between the islands of Hawaii and Oahu. Major accomplishments of the program include designing, fabricating and testing an appropriate power cable, developing an integrated system to control all aspects of the cable laying operation, and testing all deployment systems at sea in the most challenging sections of the route.

  1. NEMA wire and cable standards development programs

    NASA Technical Reports Server (NTRS)

    Baird, Robert W.

    1994-01-01

    The National Electrical Manufacturers Association (NEMA) is the nation's largest trade association for manufacturers of electrical equipment. Its member companies produce components, end-use equipment and systems for the generation, transmission, distribution, control and use of electricity. The wire and cable division is presented in 6 sections: building wire and cable, fabricated conductors, flexible cords, high performance wire and cable, magnet wire, and power and control cable. Participating companies are listed.

  2. 47 CFR 76.990 - Small cable operators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Small cable operators. 76.990 Section 76.990... CABLE TELEVISION SERVICE Cable Rate Regulation § 76.990 Small cable operators. (a) Effective February 8, 1996, a small cable operator is exempt from rate regulation on its cable programming services tier,...

  3. 47 CFR 76.990 - Small cable operators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Small cable operators. 76.990 Section 76.990... CABLE TELEVISION SERVICE Cable Rate Regulation § 76.990 Small cable operators. (a) Effective February 8, 1996, a small cable operator is exempt from rate regulation on its cable programming services tier,...

  4. What Do We Know about the Audience for Cable Television? A Uses and Gratifications Analysis of Cable Decliners, Basic Cable Subscribers, and Pay Cable Subscribers.

    ERIC Educational Resources Information Center

    Bradbury, David E., Jr.; Felsenthal, Norman A.

    How do cable television subscribers differ from those who choose not to subscribe to cable? A study employed the uses and gratification paradigm to construct a questionnaire that solicited data from 600 television households in the Dayton, Ohio market. The sample was stratified to assure that one-third of the households had cable available but…

  5. 47 CFR 32.2423 - Buried cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Buried cable. 32.2423 Section 32.2423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a) This account shall include the original cost of buried cable as well as the cost of other material...

  6. 47 CFR 32.2423 - Buried cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Buried cable. 32.2423 Section 32.2423... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2423 Buried cable. (a) This account shall include the original cost of buried cable as well as the cost of other material...

  7. Relative stiffness of flat-conductor cable

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1977-01-01

    Bending moment data were taken on ten different cable samples and normalized to express all stiffness factors in terms of cable 5.1 cm in width. Relative stiffness data and nominal physical characteristics are tabulated and presented in graphical form for designers who may be interested in finding torques exerted on critical components by short lengths of cable.

  8. Cable: Report to the President, 1974.

    ERIC Educational Resources Information Center

    Office of Telecommunications Policy, Washington, DC.

    A comprehensive, new national policy for cable communications is recommended by the Cabinet Committee on Cable Communications. The goal of the policy is to achieve the orderly integration of cable with other existing communications media so that information may flow freely, protected from both private and governmental barriers. The first two…

  9. Your Personal Genie in the Cable.

    ERIC Educational Resources Information Center

    Schlafly, Hubert J.

    The technology necessary for the use of cable television (TV) has been invented; it simply must be put to use. By the 1970's, cable TV should be commonplace in this country. Its rapid growth was caused in part by its appearance at a time of explosive expansion of related technologies like data theory and computer design. The coaxial cable system…

  10. Insulated Foamy Viral Vectors.

    PubMed

    Browning, Diana L; Collins, Casey P; Hocum, Jonah D; Leap, David J; Rae, Dustin T; Trobridge, Grant D

    2016-03-01

    Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34(+) cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy. PMID:26715244

  11. Internally cooled cabled superconductors. I

    NASA Astrophysics Data System (ADS)

    Hoenig, M. O.

    1980-07-01

    A state of the art review and survey of work performed at the Massachusetts Institute of Technology in the area of internally cooled cabled superconductors (ICCS) is presented. Topics examined include original concepts, hollow concept, and heat transfer using supercritical helium. Attention is given to the ICCS conductor and coil design as well as experiments with niobium-titanium.

  12. ALOHA Cabled Observatory: Early Results

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lukas, R.; Duennebier, F. K.

    2011-12-01

    The ALOHA Cabled Observatory (ACO) was installed 6 June 2011, extending power, network communications and timing to a seafloor node and instruments at 4726 m water depth 100 km north of Oahu. The system was installed using ROV Jason operated from the R/V Kilo Moana. Station ALOHA is the field site of the Hawaii Ocean Time-series (HOT) program that has investigated temporal dynamics in biology, physics, and chemistry since 1988. HOT conducts near monthly ship-based sampling and makes continuous observations from moored instruments to document and study climate and ecosystem variability over semi-diurnal to decadal time scales. The cabled observatory system will provide the infrastructure for continuous, interactive ocean sampling enabling new measurements as well as a new mode of ocean observing that integrates ship and cabled observations. The ACO is a prototypical example of a deep observatory system that uses a retired first-generation fiber-optic telecommunications cable. Sensors provide live video, sound from local and distant sources, and measure currents, pressure, temperature, and salinity. Preliminary results will be presented and discussed.

  13. COUPLER FOR TOOL AND CABLE

    DOEpatents

    Cawley, W.E.; Frantz, C.E.

    1962-02-27

    A two-part device is designed for pulling a splitting tool through a fuel tube. The device can be readily disconnected by unthreading the parts by means of a movable head carrying a transverse key which fits into a slot in the threaded part attached to the cable. (AEC)

  14. Interactive Cable Television. Final Report.

    ERIC Educational Resources Information Center

    Active Learning Systems, Inc., Minneapolis, MN.

    This report describes an interactive video system developed by Active Learning Systems which utilizes a cable television (TV) network as its delivery system to transmit computer literacy lessons to high school and college students. The system consists of an IBM PC, Pioneer LDV 4000 videodisc player, and Whitney Supercircuit set up at the head end…

  15. Regulatory Developments in Cable Television.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This report summarizes major rule making actions since 1972, current rules and regulations, and guidelines for citizen participation in FCC (Federal Communications Commission) processes related to cable television regulation. A large portion of the report pertains to current rules and regulations in the areas of certificate of compliance,…

  16. Analysis of Surveyor 3 television cable after residence on the moon

    NASA Technical Reports Server (NTRS)

    Gross, F. C.; Park, J. J.

    1972-01-01

    The Apollo 12 astronauts brought the Surveyor III television camera back from the moon in November 1969. Chemical analyses of a portion of television cable revealed changes in the glass fabric sleeve and in the wire insulation as a result of exposure to the lunar environment. Loss of volatile constituents from the glass fabric and a discoloration of the glass occurred. The Teflon layer on the wire showed a slight discoloration and possibly a slight change in its infrared spectrum. Both the polyimide layer and the Teflon layer of the wire insulation showed changes in tensile strength and elongation.

  17. Waltz Mill testing of 765-kV paper-polypropylene-paper (PPP) cable. Final report

    SciTech Connect

    Burghardt, R.R.

    1992-06-01

    A 765-kV PPP-insulated cable was subjected to a 27-month accelerated life test program at the EPRI Waltz Mill Cable Test Facility. Testing started in August 1981 and was successfully completed in January 1985. The program included conductor temperatures ranging from 85{degree}C to 105{degree}C and line-to-line voltages from 800 kV to 1050 kV. Cyclic testing was performed during 20 of the 27 months. Dissipation factor measurements were made throughout the program. The measurements indicated no deterioration of the cable or splices as a consequence of the high temperatures and voltages applied to them in this test program.

  18. Waltz Mill testing of 765-kV paper-polypropylene-paper (PPP) cable

    SciTech Connect

    Burghardt, R.R. )

    1992-06-01

    A 765-kV PPP-insulated cable was subjected to a 27-month accelerated life test program at the EPRI Waltz Mill Cable Test Facility. Testing started in August 1981 and was successfully completed in January 1985. The program included conductor temperatures ranging from 85{degree}C to 105{degree}C and line-to-line voltages from 800 kV to 1050 kV. Cyclic testing was performed during 20 of the 27 months. Dissipation factor measurements were made throughout the program. The measurements indicated no deterioration of the cable or splices as a consequence of the high temperatures and voltages applied to them in this test program.

  19. Superheated-steam test of ethylene propylene rubber cables using a simultaneous aging and accident environment

    SciTech Connect

    Bennett, P.R.; St. Clair, S.D.; Gilmore, T.W.

    1986-06-01

    The superheated-steam test exposed different ethylene propylene rubber (EPR) cables and insulation specimens to simultaneous aging and a 21-day simultaneous accident environment. In addition, some insulation specimens were exposed to five different aging conditions prior to the 21-day simultaneous accident simulation. The purpose of this superheated-steam test (a follow-on to the saturated-steam tests (NUREG/CR-3538)) was to: (1) examine electrical degradation of different configurations of EPR cables; (2) investigate differences between using superheated-steam or saturated-steam at the start of an accident simulation; (3) determine whether the aging technique used in the saturated-steam test induced artificial degradation; and (4) identify the constituents in EPR that affect moisture absorption.

  20. Development of 230-kV high-pressure, gas-filled, pipe-type cable system: Model test program phase

    SciTech Connect

    Silver, D.A. )

    1990-09-01

    The objective of this project was the development of a 230 kV high-pressure gas-filled (HPGF) pipe-type cable employing paper or laminate of paper-polypropylene-paper (PPP) insulation pressurized with N{sub 2} gas or a blend of 15% SF{sub 6}/85% N{sub 2} gas. Heretofore, HPGF pipe-type cables have been restricted to 138 kV ratings due to technical difficulties in achieving higher voltage ratings. In view of the high cost of manufacturing and testing a large number of full size cables, cable models with 2 mm (80 mils) and 2.5 mm (100 mils) wall thicknesses of insulation enclosed in a test fixture capable of withstanding a test pressure of 2070 kPa (300 psig) and high electrical stresses were employed for dissipation factor versus voltage measurements and for ac and impulse breakdown tests at rated and emergency operating temperatures. In addition, a 36 cm (14 in) full wall cable model enclosed in a pressure vessel was utilized for transient pressure response tests. The results of this investigation attest tot he technical feasibility of the design and manufacture of a 230 kV HPGF pipe-type cable employing paper or PPP insulation pressurized with 100% N{sub 2} gas or a blend of 15% SF{sub 6}/85% N{sub 2} gas for operation under normal and 100 hour emergency conditions at conductor temperatures of 85{degree} and 105{degree}C, respectively. The manufacture of a full size PPP insulated cable pressurized with a blend of 15% SF{sub 6}/85% N{sub 2} gas employing pre-impregnated PPP insulating tapes and an annular conductor based on the design stresses defined in this report is recommended for laboratory evaluation and extended life tests. 11 refs., 45 figs., 11 tabs.

  1. Acoustic waveguide technique for sensing incipient faults in underground power-transmission cables: Including acousto-optic techniques

    NASA Astrophysics Data System (ADS)

    Harrold, R. T.

    1981-09-01

    Theoretical and practical studies were made of both the acoustic emission, spectrum signatures associated with underground cable incipient faults, and the attenuation of acoustic waves in waterfilled metal tubes used as waveguided. Based on critical data, it can be estimated that in favorable circumstances, the acoustic waveguide system would only be useful for sensing incipient faults in underground cables of approx. 800 meters of less in length. A system were investigated which acoustic emissions from cable incipient faults impinge on a fiber-optic lightguide and locally change its refractive index and modulate laser light transmitted along the light guide. Experiments based on this concept show that is is possible t sense acoustic emissions with energy levels below on micro-joule. A test of this system using a section of compressed gas-insulated cable with an internal flashover was successfully carried out.

  2. Aeolic vibration of aerial electricity transmission cables

    NASA Astrophysics Data System (ADS)

    Avila, A.; Rodriguez-Vera, Ramon; Rayas, Juan A.; Barrientos, Bernardino

    2005-02-01

    A feasibility study for amplitude and frequency vibration measurement in aerial electricity transmission cable has been made. This study was carried out incorporating a fringe projection method for the experimental part and horizontal taut string model for theoretical one. However, this kind of model ignores some inherent properties such as cable sag and cable inclination. Then, this work reports advances on aeolic vibration considering real cables. Catenary and sag are considered in our theoretical model in such a way that an optical theodolite for measuring has been used. Preliminary measurements of the catenary as well as numerical simulation of a sagged cable vibration are given.

  3. The GEOS-20 m Cable Boom Mechanism

    NASA Technical Reports Server (NTRS)

    Schmidt, G. K.; Suttner, K.

    1977-01-01

    The GEOS Cable Boom Mechanism which allows the controlled deployment of a 20 m long cable in a centrifugal force field is described. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface.

  4. GEOS-20 m cable boom mechanism

    NASA Technical Reports Server (NTRS)

    Schmidt, B. K.; Suttner, K.

    1977-01-01

    The GEOS cable boom mechanism allows the controlled deployment of a 20 m long cable in a centrifugal force field. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface.

  5. Self-healing cable apparatus and methods

    NASA Technical Reports Server (NTRS)

    Huston, Dryver (Inventor); Esser, Brian (Inventor)

    2007-01-01

    Self-healing cable apparatus and methods are disclosed. The cable has a central core surrounded by an adaptive cover that can extend over the entire length of the cable or just one or more portions of the cable. The adaptive cover includes a protective layer having an initial damage resistance, and a reactive layer. When the cable is subjected to a localized damaging force, the reactive layer responds by creating a corresponding localized self-healed region. The self-healed region provides the cable with enhanced damage resistance as compared to the cable's initial damage resistance. Embodiments of the invention utilize conventional epoxies or foaming materials in the reactive layer that are released to form the self-healed region when the damaging force reaches the reactive layer.

  6. Aging analyses of aircraft wire insulation

    SciTech Connect

    GILLEN,KENNETH T.; CLOUGH,ROGER LEE; CELINA,MATHIAS C.; AUBERT,JAMES H.; MALONE,G. MICHAEL

    2000-05-08

    Over the past two decades, Sandia has developed a variety of specialized analytical techniques for evaluating the long-term aging and stability of cable insulation and other related materials. These techniques have been applied to cable reliability studies involving numerous insulation types and environmental factors. This work has allowed the monitoring of the occurrence and progression of cable material deterioration in application environments, and has provided insights into material degradation mechanisms. It has also allowed development of more reliable lifetime prediction methodologies. As a part of the FAA program for intrusive inspection of aircraft wiring, they are beginning to apply a battery of techniques to assessing the condition of cable specimens removed from retired aircraft. It is anticipated that in a future part of this program, they may employ these techniques in conjunction with accelerated aging methodologies and models that the authros have developed and employed in the past to predict cable lifetimes. The types of materials to be assessed include 5 different wire types: polyimide, PVC/Glass/Nylon, extruded XL-polyalkene/PVDF, Poly-X, and XL-ETFE. This presentation provides a brief overview of the main techniques that will be employed in assessing the state of health of aircraft wire insulation. The discussion will be illustrated with data from their prior cable aging studies, highlighting the methods used and their important conclusions. A few of the techniques that they employ are widely used in aging studies on polymers, but others are unique to Sandia. All of their techniques are non-proprietary, and maybe of interest for use by others in terms of application to aircraft wiring analysis. At the end of this report is a list showing some leading references to papers that have been published in the open literature which provide more detailed information on the analytical techniques for elastomer aging studies. The first step in the

  7. Test plan and report for Space Shuttle launch environment testing of Bergen cable technology safety cable

    NASA Technical Reports Server (NTRS)

    Ralph, John

    1992-01-01

    Bergen Cable Technology (BCT) has introduced a new product they refer to as 'safety cable'. This product is intended as a replacement for lockwire when installed per Aerospace Standard (AS) 4536 (included in Appendix D of this document). Installation of safety cable is reportedly faster and more uniform than lockwire. NASA/GSFC proposes to use this safety cable in Shuttle Small Payloads Project (SSPP) applications on upcoming Shuttle missions. To assure that BCT safety cable will provide positive locking of fasteners equivalent to lockwire, the SSPP will conduct vibration and pull tests of the safety cable.

  8. Bidirectional fiber optic cable adapter

    NASA Astrophysics Data System (ADS)

    Linehan, M.; Gee, N. B.; Taylor, R.

    1983-02-01

    The technical objective of the BIFOCS program was to develop, build, and test a full-duplex single fiber, fiber optic link, operating in the 1.0 micron to 1.6 micron region, capable of transmitting 20 Mb/s data (10 to the -9th power BER) over a range of at least 10 km, with a goal of 15 km. The link MTBF goal was 5 X 10 to the 3rd power hours and operation over a temperature range of 0 to 50 C. The fiber optic cable consisted of sections not exceeding 2 km in length joined by commercially available dry fiber optic connectors. The system performed successfully at ambient temperature over 15 km of cable.

  9. Tubing and cable cutting tool

    NASA Technical Reports Server (NTRS)

    Mcsmith, D. D.; Richardson, J. I. (Inventor)

    1984-01-01

    A hand held hydraulic cutting tool was developed which is particularly useful in deactivating ejection seats in military aircraft rescue operations. The tool consists primarily of a hydraulic system composed of a fluid reservoir, a pumping piston, and an actuator piston. Mechanical cutting jaws are attached to the actuator piston rod. The hydraulic system is controlled by a pump handle. As the pump handle is operated the actuator piston rod is forced outward and thus the cutting jaws are forced together. The frame of the device is a flexible metal tubing which permits easy positioning of the tool cutting jaws in remote and normally inaccessible locations. Bifurcated cutting edges ensure removal of a section of the tubing or cable to thereby reduce the possibility of accidental reactivation of the tubing or cable being severed.

  10. Transient thermal analysis of a tri-axial HTS cable on fault current condition

    NASA Astrophysics Data System (ADS)

    Hu, N.; Cao, K.; Wang, D.; Song, M.; Miyagi, D.; Tsuda, M.; Hamajima, T.

    2013-11-01

    High-temperature superconducting (HTS) tri-axial cable, which consists of three concentric phases, was developed as a potential commercial solution for next generation distribution power network. In our previous research, we simulate the transient thermal behavior of the cable by solving the heat equation using one-dimension difference method. The result shows that it takes time to recover the cable temperature to the steady-state operation level due to a low thermal conductivity of the insulation layer after a fault. However for a long cable system, when middle phase in concentric structure is rated under an over current, accumulated heat from middle phase might continually warm up the liquid nitrogen (LN2) flow by heat transfer even the over current has been stopped. In this research, we improve the numerically calculation which includes the consideration of flowing liquid nitrogen and the heat transfer in both radius and longitudinal directions. A long tri-axial cable system thermal stability is discussed based on the calculation results.

  11. High Voltage Testing of a 5-meter Prototype Triaxial HTS Cable

    SciTech Connect

    Sauers, Isidor; James, David Randy; Ellis, Alvin R; Tuncer, Enis; Pace, Marshall O; Gouge, Michael J; Demko, Jonathan A; Lindsay, David T

    2007-01-01

    High voltage tests were performed on a 5-m long prototype triaxial HTS cable (supplied by Ultera) at ORNL in preparation for installation of a 200-m HTS cable of the same design at the AEP utility substation in Columbus, Ohio. The triaxial design comprises three concentric phases and shield around a common former with the phase to phase dielectric at cryogenic temperature. Advantages of this design include increased current density, a reduced amount of HTS tape needed, and reduced heat load. The phase to phase voltage will be 13.2 kVrms (7.6 kVrms to ground). Preliminary testing was done on half-scale and full-scale terminations which successfully passed AC withstand, partial discharge, and impulse tests. High voltage tests conducted on the 5-m cable with the cable straight and after bending 90 degrees were ac withstand to 39 kVrms, partial discharge inception, and a minimum of 10 positive and 10 negative lightning waveform impulses at 110 kV. Phase to phase insulation was tested by applying high voltage to each phase one at a time with all the other phases grounded. Partial discharge data will be presented. The 5-m prototype triaxial HTS cable passed all the HV tests performed, with a PD inception voltage significantly above the required voltage.

  12. Cable twisting due to atmospheric icing

    SciTech Connect

    McComber, P.; Druez, J.; Savadjiev, K.

    1995-12-31

    Samples of ice accretions collected on cables of overhead transmission lines have shown evidence of twisting of the cable during atmospheric icing. Previous work has attributed cable twisting to the torque created by the weight of an eccentric ice shape and by wind forces. However, testing of stranded cables and conductors has shown that such cables also twist when there is a change in tension in the cable span. This phenomenon is related to the interaction of the different strand layers under tension. When a cable is subjected to atmospheric icing, cable tension increases and this type of twisting should also be considered. In order to determine how the two types of twisting would compare on transmission lines, a numerical simulation was made using characteristics of a typical 35-mm stranded conductor. The twist angle was computed as a function of cable span, sag to span ratio and increasing ice loads. The simulation shows that for transmission lines, twisting due to varying tension will be significant. Since cable tension is influenced by wind speed and ambient temperature as well as ice load, this phenomenon, unless prevented, results in ice accretion more circular in shape and hence eventually in larger ice loads.

  13. New Life For The Cable Cars

    NASA Technical Reports Server (NTRS)

    1979-01-01

    NASA-Arnes' major recommendations involved ways of extending cable life in the interests of safety and economy. Other recommendations included redesign of the cablegripping device, substitution of modern braking mechanisms, improvements in cable pulleys and other components, and new inspection and repair procedures. Ames followed up by designing and installing new equipment to lengthen cable life, which averages only about two months. These cables-four of them for four different car routes--are endless belts, like ski lift cables, running from the downtown car barn to the end of each line. When a cable is installed, the loop is closed by splicing the ends together in a 72-footlong splice. The splice is the weakest part of the cable and a source of problems. When the car operator applies his grip while over a splice, the resulting friction sometimes causes the splice to "unbraid" and fail; this means shutting down the line until the splice can be repaired. Even when unbraiding does not occur, gripping a splice shortens cable life by friction wear. Worn cables are a safety hazard and must be replaced, which is expensive at $1.60 a foot for 10,000 to 20,000 feet of cable.

  14. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  15. Insulated solar storage tanks

    SciTech Connect

    Eldighidy, S.M. )

    1991-01-01

    This paper presents the theoretical and experimental investigation of an insulated parallelepiped, outdoor solar, water-filled storage tank of size 1 m {times} 0.5 m {times} 0.3 m, that is made from galvanized iron. The absorption coefficient of the insulating material has been determined. The effects of plastic covers and insulation thickness on the water temperature and the energy gained or lost by water are investigated. Moreover, the effects of insulation thickness on the temperature profiles of the insulating material are discussed. The results show that the absorption coefficient decreases as the insulation thickness increases. Also, it is found that the glass wool insulation of 2.5 cm thickness has the best results compared with the other thicknesses (5 cm, 7.5 cm, and 10 cm) as far as the water temperature and the energy gained by water are concerned.

  16. Initial tension loss in cerclage cables.

    PubMed

    Ménard, Jérémie; Émard, Maxime; Canet, Fanny; Brailovski, Vladimir; Petit, Yvan; Laflamme, George Y

    2013-10-01

    Cerclage cables, frequently used in the management of fractures and osteotomies, are associated with a high failure rate and significant loosening during surgery. This study compared the capacity to maintain tension of different types of orthopaedic cable systems. Multifilament Cobalt-Chrome (CoCr) cables with four different crimp/clamp devices (DePuy, Stryker, Zimmer and Smith&Nephew) and one non-metallic Nylon (Ny) cable from Kinamed were instrumented with a load cell to measure tension during insertion. Significant tension loss was observed with crimping for all cables (P<0.05). Removing the tensioner led to an additional unexpected tension loss (CoCr-DePuy: 18%, CoCr-Stryker: 29%, CoCr-Smith&Nephew: 33%, Ny: 46%, and CoCr-Zimmer: 52%). The simple CoCr (DePuy) cable system outperformed the more sophisticated locking devices due to its significantly better ability to prevent tension loss. PMID:23618753

  17. 30 CFR 75.603 - Temporary splice of trailing cable.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  18. 30 CFR 75.816 - Guarding of cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Guarding of cables. 75.816 Section 75.816... Longwalls § 75.816 Guarding of cables. (a) High-voltage cables must be guarded at the following locations: (1) Where persons regularly work or travel over or under the cables. (2) Where the cables leave...

  19. 30 CFR 75.603 - Temporary splice of trailing cable.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  20. 30 CFR 75.816 - Guarding of cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Guarding of cables. 75.816 Section 75.816... Longwalls § 75.816 Guarding of cables. (a) High-voltage cables must be guarded at the following locations: (1) Where persons regularly work or travel over or under the cables. (2) Where the cables leave...

  1. 47 CFR 76.956 - Cable operator response.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Cable operator response. 76.956 Section 76.956... CABLE TELEVISION SERVICE Cable Rate Regulation § 76.956 Cable operator response. (a) Unless otherwise directed by the local franchising authority, a cable operator must file with the local franchise...

  2. 30 CFR 75.603 - Temporary splice of trailing cable.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  3. 30 CFR 75.816 - Guarding of cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Guarding of cables. 75.816 Section 75.816... Longwalls § 75.816 Guarding of cables. (a) High-voltage cables must be guarded at the following locations: (1) Where persons regularly work or travel over or under the cables. (2) Where the cables leave...

  4. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall...

  5. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall...

  6. 30 CFR 75.816 - Guarding of cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Guarding of cables. 75.816 Section 75.816... Longwalls § 75.816 Guarding of cables. (a) High-voltage cables must be guarded at the following locations: (1) Where persons regularly work or travel over or under the cables. (2) Where the cables leave...

  7. 30 CFR 75.804 - Underground high-voltage cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground high-voltage cables. 75.804 Section... § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... cables shall be adequate for the intended current and voltage. Splices made in such cables shall...

  8. 30 CFR 75.603 - Temporary splice of trailing cable.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  9. Comparative Analysis of Thermography Studies and Electrical Measurement of Partial Discharges in Underground Power Cables

    NASA Astrophysics Data System (ADS)

    Gonzalez-Parada, A.; Guzman-Cabrera, R.; Torres-Cisneros, M.; Guzman-Sepulveda, J. R.

    2015-09-01

    The principal cause of damage in underground power cable installations is partial discharge (PD) activity. PD is a localized non-linear phenomenon of electrical breakdown that occurs in the insulating medium sitting between two conducting materials, which are at different potentials. The damage to the insulating material is induced by the AC voltage to which the insulator is subjected during the discharge process, and it can be directly or indirectly measured by the charge displacement across the insulation and the cavity defect. Non-invasive detection techniques that help in identifying the onset of the discharge process are required as PD is a major issue in terms of maintenance and performance of underground power installations. The main locations of failure are the accessories at points of connection such as terminals or splices. In this article, a study of electrical detection of PD and image processing of thermal pictures is presented. The study was carried out by controllably inducing specific failures in the accessories of the installation. The temporal evolution of the PD signals was supported with thermal images taken during the test in order to compare the PD activity and thermal increase due to failure. The analysis of thermographic images allows location of the failure by means of intensity-based texture segmentation algorithms. This novel technique was found to be suitable for non-invasive detection of the PD activity in underground power cable accessories.

  10. System for stabilizing cable phase delay utilizing a coaxial cable under pressure

    NASA Technical Reports Server (NTRS)

    Clements, P. A. (Inventor)

    1974-01-01

    Stabilizing the phase delay of signals passing through a pressurizable coaxial cable is disclosed. Signals from an appropriate source at a selected frequency, e.g., 100 MHz, are sent through the controlled cable from a first cable end to a second cable end which, electrically, is open or heavily mismatched at 100 MHz, thereby reflecting 100 MHz signals back to the first cable end. Thereat, the phase difference between the reflected-back signals and the signals from the source is detected by a phase detector. The output of the latter is used to control the flow of gas to or from the cable, thereby controlling the cable pressure, which in turn affects the cable phase delay.

  11. Cable force monitoring system of cable stayed bridges using accelerometers inside mobile smart phone

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Yu, Yan; Hu, Weitong; Jiao, Dong; Han, Ruicong; Mao, Xingquan; Li, Mingchu; Ou, Jinping

    2015-03-01

    Cable force is one of the most important parameters in structural health monitoring system integrated on cable stayed bridges for safety evaluation. In this paper, one kind of cable force monitoring system scheme was proposed. Accelerometers inside mobile smart phones were utilized for the acceleration monitoring of cable vibration. Firstly, comparative tests were conducted in the lab. The test results showed that the accelerometers inside smartphones can detect the cable vibration, and then the cable force can be obtained. Furthermore, there is good agreement between the monitoring results of different kinds of accelerometers. Finally, the proposed cable force monitoring system was applied on one cable strayed bridge structure, the monitoring result verified the feasibility of the monitoring system.

  12. 76 FR 77533 - Mandatory Electronic Filing for Cable Special Relief Petitions and Cable Show Cause Petitions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ...This document announces the implementation of electronic filing of Cable Special Relief (CSR) Petitions and Cable Show Cause (CSC) Petitions using the FCC Electronic Comment Filing System (ECFS). A description of procedures for filing is also...

  13. Long-life cable development. Cable-processing survey. Final report

    SciTech Connect

    Mangaraj, D.; Preston, J.R.

    1985-09-01

    A survey of cable manufacturers in North America, Europe, and Japan identified state-of-the-art techniques for processing extruded dielectric cables. The review highlights optimal approaches to such process operations as materials handling, extrusion, and vulcanization.

  14. MIC-Large Scale Magnetically Inflated Cable Structures for Space Power, Propulsion, Communications and Observational Applications

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light

  15. Protection of SF/sub 6/ gas insulated substations - Industry survey results

    SciTech Connect

    Akamine, J.K.; Baumgartner, E.A.; Emery, J.T.; Haas, R.W.; Murray, T.J.

    1987-10-01

    This paper summarizes the result of an industry survey of gas insulated equipment practices and develops recommendations where necessary. Tables are included to show the type of gas insulated equipment located at each substation (current transformers, voltage transformers, switches, bus bars, bushings, lightning arresters, and cable end terminations), the equipment configuration (single or three conductors), the type of gas monitoring equipment used (density or pressure), the use of gas monitoring equipment (alarm and/or trip), unique relaying protection applications, and unique operating procedures. Gas insulated circuit breakers are specifically excluded from this survey.

  16. A Study on the Body Insulators for the Bushing for HTS Devices at Cryogenic Temperature

    NASA Astrophysics Data System (ADS)

    Kim, W. J.; Shin, H. S.; Kim, S. H.

    A bushing for high temperature superconducting devices (HTS bushing) is important because of applying high voltage to the cable or the winding of the transformer. It is cooled with liquid nitrogen (LN2) and is insulated with various insulators. For the development of the HTS bushing, it is necessary to know the fundamental characteristics of various insulators at cryogenic temperature. The electrical characteristics of the breakdown were studied under AC and impulse voltages. Also, the mechanical characteristics such as tensile strength in air and LN2 were studied. It was confirmed that GFRP is excellent not only electrical characteristics but also mechanical characteristics in LN2.

  17. Capacitor discharge process for welding braided cable

    DOEpatents

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  18. Tension layer winding of cable-in-conduit conductor

    SciTech Connect

    Devernoe, A.; Ciancetta, G.; King, M.; Parizh, M.; Painter, T.; Miller, J.

    1996-07-01

    A 710 mm i.d. by 440 mm long, 6 layer Cable-in-Conduit (CIC) coil was precision tension layer wound with Incoloy 908 jacketed conductor to model winding technology that will be used for the Nb{sub 3}Sn outsert coils of the 45 Tesla Hybrid Magnet Project at the US National High Magnetic Field Laboratory. This paper reports on the set up of a new winding facility with unique capabilities for insulating and winding long length CIC conductor and on special procedures which were developed to wind and support layer to layer transitions and to safely form conductor into and out of the winding. Analytical methods used to predict conduit keystoning, springback and back tensioning requirements before winding are reported in comparison to results obtained during winding and actual winding build-up dimensions on a layer by layer basis in comparison to design requirements.

  19. Concept for the intrinsic dielectric strength of electrical insulation materials

    SciTech Connect

    Cuddihy, E.F.

    1985-04-15

    A concept is described for a possible definition of the intrinsic dielectric strength of insulating materials, which can be considered as a fundamental material property similar to other material properties, such as Young's modulus, index of refraction, and expansion coefficients. The events leading to the recognition of this property are reported, and the property is defined. This intrinsic dielectric strength concept should facilitate interpretation of results from accelerated and/or natural aging programs intended to predict electrical insulation service life of encapsulants in photovoltaic modules. As a practical application, this new concept enabled a possible explanation of the cause of failures in buried high-voltage cables with polyethylene insulation, and a possible explanation of the causes of electrical trees in polyethylene; these also are described.

  20. Nuclear power plant cable materials : review of qualification and currently available aging data for margin assessments in cable performance.

    SciTech Connect

    Celina, Mathias Christopher; Gillen, Kenneth Todd; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostlyinert' aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section - a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original