Science.gov

Sample records for yeast cytosine deaminase

  1. Role of Glutamate 64 in the Activation of the Prodrug 5-Fluorocytosine by Yeast Cytosine Deaminase

    E-print Network

    Sklenak, Stepan

    Role of Glutamate 64 in the Activation of the Prodrug 5-Fluorocytosine by Yeast Cytosine Deaminase, Dolejskova 3, 182 23 Prague, Czech Republic *S Supporting Information ABSTRACT: Yeast cytosine deaminase (y revealed trans-hydrogen bond D/H isotope effects on the hydrogen of the amide of Glu64, indicating

  2. Yeast Cytosine Deaminase Mutants with Increased Thermostability Impart Sensitivity to 5-Fluorocytosine

    PubMed Central

    Stolworthy, Tiffany S.; Korkegian, Aaron M.; Willmon, Candice L.; Ardiani, Andressa; Cundiff, Jennifer; Stoddard, Barry L.; Black, Margaret E.

    2008-01-01

    SUMMARY Prodrug gene therapy (PGT) is a treatment strategy in which tumor cells are transfected with a 'suicide' gene that encodes a metabolic enzyme capable of converting a nontoxic prodrug into a potent cytotoxin. One of the most promising PGT enzymes is cytosine deaminase (CD), a microbial salvage enzyme that converts cytosine to uracil. CD also converts 5-fluorocytosine (5FC) to 5-fluorouracil (5FU), an inhibitor of DNA synthesis and RNA function. Over 150 studies of cytosine deaminase-mediated PGT applications have been reported since 2000, all using wild-type enzymes. However, various forms of cytosine deaminase are limited by inefficient turnover of 5FC and/or limited thermostability. In a previous study we stabilized and extended the half-life of yeast cytosine deaminase (yCD) by repacking of its hydrophobic core at several positions distant from the active site. Here we report that random mutagenesis of residues selected based on alignment with similar enzymes, followed by selection for enhanced sensitization to 5FC, also produces an enzyme variant (yCD-D92E) with elevated Tm values and increased activity half-life. The new mutation is located at the enzyme's dimer interface, indicating that independent mutational pathways can lead to an increase in the temperature that induces protein unfolding and aggregation in thermal denaturation experiments measured by circular dichroism spectroscopy, and an increase in the half-life of enzyme activity at physiological temperature, as well as more subtle effect on enzyme kinetics. Each independently derived set of mutations significantly improves the enzyme's performance in PGT assays both in cell culture and in animal models. PMID:18291415

  3. Anti-Tumor Therapy Mediated by 5-Fluorocytosine and a Recombinant Fusion Protein Containing TSG-6 Hyaluronan Binding Domain and Yeast Cytosine Deaminase

    PubMed Central

    Park, Joshua I.; Cao, Limin; Platt, Virginia M.; Huang, Zhaohua; Stull, Robert A.; Dy, Edward E.; Sperinde, Jeffrey J.; Yokoyama, Jennifer S.; Szoka, Francis C.

    2009-01-01

    Matrix Attachment Therapy (MAT) is an enzyme prodrug strategy that targets hyaluronan in the tumor extracellular matrix to deliver a prodrug converting enzyme near the tumor cells. A recombinant fusion protein containing the hyaluronan binding domain of TSG-6 (Link) and yeast cytosine deaminase (CD) with an N-terminal His(×6) tag was constructed to test MAT on the C26 colon adenocarcinoma in Balb/c mice that were given 5-fluorocytosine (5-FC) in the drinking water. LinkCD was expressed in E.coli and purified by metal-chelation affinity chromatography. The purified LinkCD fusion protein exhibits a Km of 0.33 mM and Vmax of 15 ?M/min/?g for the conversion of 5-FC to 5-fluorouracil (5-FU). The duration of the enzyme activity for LinkCD was longer than that of CD enzyme at 37 °C: the fusion protein retained 20% of its initial enzyme activity after 24 hr, and 12% after 48 hr. The LinkCD fusion protein can bind to a hyaluronan oligomer (12-mer) at a KD of 55 ?M at pH 7.4 and a KD of 5.32 ?M at pH 6.0 measured using surface plasmon resonance (SPR). To evaluate the anti-tumor effect of LinkCD/5-FC combination therapy in vivo, mice received intratumoral injections of LinkCD on days 11 and 14 after C26 tumor implantation and the drinking water containing 10 mg/mL of 5-FC starting on day 11. To examine if the Link domain by itself was able to reduce tumor growth, we included treatment groups that received LinkCD without 5-FC and Link-mtCD (a functional mutant that lacks cytosine deaminase activity) with 5-FC. Animals that received LinkCD/5-FC treatment showed significant tumor size reduction and increased survival compared to the CD/5-FC treatment group. Treatment groups that were unable to produce 5-FU had no effect on the tumor growth despite receiving the fusion protein that contained the Link domain. The results indicate that a treatment regime consisting of a fusion protein containing the Link domain, the active CD enzyme, and the prodrug 5-FC are sufficient to produce an anti-tumor effect. Thus, the LinkCD fusion protein is an alternative to antibody-directed prodrug enzyme therapy (ADEPT) approaches for cancer treatment. PMID:19265397

  4. Three-Dimensional Structure and Catalytic Mechanism of Cytosine Deaminase

    SciTech Connect

    R Hall; A Fedorov; C Xu; E Fedorov; S Almo; F Raushel

    2011-12-31

    Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K{sub i} of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the divalent cations on activation of the hydrolytic water. Fe-CDA loses activity at low pH with a kinetic pKa of 6.0, and Zn-CDA has a kinetic pKa of 7.3. Mutation of Gln-156 decreased the catalytic activity by more than 5 orders of magnitude, supporting its role in substrate binding. Mutation of Glu-217, Asp-313, and His-246 significantly decreased catalytic activity supporting the role of these three residues in activation of the hydrolytic water molecule and facilitation of proton transfer reactions. A library of potential substrates was used to probe the structural determinants responsible for catalytic activity. CDA was able to catalyze the deamination of isocytosine and the hydrolysis of 3-oxauracil. Large inverse solvent isotope effects were obtained on k{sub cat} and k{sub cat}/K{sub m}, consistent with the formation of a low-barrier hydrogen bond during the conversion of cytosine to uracil. A chemical mechanism for substrate deamination by CDA was proposed.

  5. Combining the Optimized Yeast Cytosine Deaminase Protein Fragment Complementation Assay and an In Vitro Cdk1 Targeting Assay to Study the Regulation of the ?-Tubulin Complex.

    PubMed

    Ear, Po Hien; Kowarzyk, Jacqueline; Booth, Michael J; Abd-Rabbo, Diala; Shulist, Kristian; Hall, Conrad; Vogel, Jackie; Michnick, Stephen W

    2016-01-01

    Cdk1 is the essential cyclin-dependent kinase in the budding yeast Saccharomyces cerevisiae. Cdk1 orchestrates cell cycle control by phosphorylating target proteins with extraordinary temporal and spatial specificity by complexing with one of the nine cyclin regulatory subunits. The identification of the cyclin required for targeting Cdk1 to a substrate can help to place the regulation of that protein at a specific time point during the cell cycle and reveal information needed to elucidate the biological significance of the regulation. Here, we describe a combination of strategies to identify interaction partners of Cdk1, and associate these complexes to the appropriate cyclins using a cell-based protein-fragment complementation assay. Validation of the specific reliance of the OyCD interaction between Cdk1 and budding yeast ?-tubulin on the Clb3 cyclin, relative to the mitotic Clb2 cyclin, was performed by an in vitro kinase assay using the ?-tubulin complex as a substrate. PMID:26254928

  6. Cytosine Deaminase/5-Fluorocytosine Exposure Induces Bystander and Radiosensitization Effects in Hypoxic Glioblastoma Cells in vitro

    SciTech Connect

    Chen, Jennifer K.; Hu, Lily J.; Wang Dongfang; Lamborn, Kathleen R.; Deen, Dennis F. . E-mail: dennisdeen@juno.com

    2007-04-01

    Purpose: Treatment of glioblastoma (GBM) is limited by therapeutic ratio; therefore, successful therapy must be specifically cytotoxic to cancer cells. Hypoxic cells are ubiquitous in GBM, and resistant to radiation and chemotherapy, and, thus, are logical targets for gene therapy. In this study, we investigated whether cytosine deaminase (CD)/5-fluorocytosine (5-FC) enzyme/prodrug treatment induced a bystander effect (BE) and/or radiosensitization in hypoxic GBM cells. Methods and Materials: We stably transfected cells with a gene construct consisting of the SV40 minimal promoter, nine copies of a hypoxia-responsive element, and the yeast CD gene. During hypoxia, a hypoxia-responsive element regulates expression of the CD gene and facilitates the conversion of 5-FC to 5-fluorouracil, a highly toxic antimetabolite. We used colony-forming efficiency (CFE) and immunofluorescence assays to assess for BE in co-cultures of CD-expressing clone cells and parent, pNeo- or green fluorescent protein-stably transfected GBM cells. We also investigated the radiosensitivity of CD clone cells treated with 5-FC under hypoxic conditions, and we used flow cytometry to investigate treatment-induced cell cycle changes. Results: Both a large BE and radiosensitization occurred in GBM cells under hypoxic conditions. The magnitude of the BE depended on the number of transfected cells producing CD, the functionality of the CD, the administered concentration of 5-FC, and the sensitivity of cell type to 5-fluorouracil. Conclusion: Hypoxia-inducible CD/5-FC therapy in combination with radiation therapy shows both a pronounced BE and a radiosensitizing effect under hypoxic conditions.

  7. Reaction mechanism of zinc-dependent cytosine deaminase from Escherichia coli: a quantum-chemical study.

    PubMed

    Manta, Bianca; Raushel, Frank M; Himo, Fahmi

    2014-05-29

    The reaction mechanism of cytosine deaminase from Escherichia coli is studied using density functional theory. This zinc-dependent enzyme catalyzes the deamination of cytosine to form uracil and ammonia. The calculations give a detailed description of the catalytic mechanism and establish the role of important active-site residues. It is shown that Glu217 is essential for the initial deprotonation of the metal-bound water nucleophile and the subsequent protonation of the substrate. It is also demonstrated that His246 is unlikely to function as a proton shuttle in the nucleophile activation step, as previously proposed. The steps that follow are nucleophilic attack by the metal-bound hydroxide, protonation of the leaving group assisted by Asp313, and C-N bond cleavage. The calculated overall barrier is in good agreement with the experimental findings. Finally, the calculations reproduce the experimentally determined inverse solvent deuterium isotope effect, which further corroborates the suggested reaction mechanism. PMID:24833316

  8. Catalytic Mechanism of Yeast Cytosine Deaminase: An ONIOM Computational Study

    E-print Network

    Sklenak, Stepan

    for treating colorectal carcinoma. However, the drug has high gastrointestinal and hematological toxicities. Thus, by producing 5FU in the tumor, the CD/5FC system minimizes toxic effects of 5FU. The structure

  9. First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G

    SciTech Connect

    Li, Ming; Shandilya, Shivender M.D.; Carpenter, Michael A.; Rathore, Anurag; Brown, William L.; Perkins, Angela L.; Harki, Daniel A.; Solberg, Jonathan; Hook, Derek J.; Pandey, Krishan K.; Parniak, Michael A.; Johnson, Jeffrey R.; Krogan, Nevan J.; Somasundaran, Mohan; Ali, Akbar; Schiffer, Celia A.; Harris, Reuben S.

    2012-04-04

    APOBEC3G is a single-stranded DNA cytosine deaminase that comprises part of the innate immune response to viruses and transposons. Although APOBEC3G is the prototype for understanding the larger mammalian polynucleotide deaminase family, no specific chemical inhibitors exist to modulate its activity. High-throughput screening identified 34 compounds that inhibit APOBEC3G catalytic activity. Twenty of 34 small molecules contained catechol moieties, which are known to be sulfhydryl reactive following oxidation to the orthoquinone. Located proximal to the active site, C321 was identified as the binding site for the inhibitors by a combination of mutational screening, structural analysis, and mass spectrometry. Bulkier substitutions C321-to-L, F, Y, or W mimicked chemical inhibition. A strong specificity for APOBEC3G was evident, as most compounds failed to inhibit the related APOBEC3A enzyme or the unrelated enzymes E. coli uracil DNA glycosylase, HIV-1 RNase H, or HIV-1 integrase. Partial, but not complete, sensitivity could be conferred to APOBEC3A by introducing the entire C321 loop from APOBEC3G. Thus, a structural model is presented in which the mechanism of inhibition is both specific and competitive, by binding a pocket adjacent to the APOBEC3G active site, reacting with C321, and blocking access to substrate DNA cytosines.

  10. Specific CEA-producing colorectal carcinoma cell killing with recombinant adenoviral vector containing cytosine deaminase gene

    PubMed Central

    Shen, Li-Zong; Wu, Wen-Xi; Xu, De-Hua; Zheng, Zhong-Cheng; Liu, Xin-Yuan; Ding, Qiang; Hua, Yi-Bing; Yao, Kun

    2002-01-01

    AIM: To kill CEA positive colorectal carcinoma cells specifically using the E coli cytosine deaminase (CD) suicide gene, a new replication-deficient recombinant adenoviral vector was constructed in which CD gene was controlled under CEA promoter and its in vitro cytotoxic effects were evaluated. METHODS: Shuttle plasmid containing CD gene and regulatory sequence of the CEA gene was constructed and recombined with the right arm of adenovirus genome DNA in 293 cell strain. Dot blotting and PCR were used to identify positive plaques. The purification of adenovirus was performed with ultra-concentration in CsCl step gradients and the titration was measured with plaque formation assay. Cytotoxic effects were assayed with MTT method, The fifty percent inhibition concentration (IC50) of 5-FC was calculated using a curve-fitting parameter. The human colorectal carcinoma cell line, which was CEA-producing, and the CEA-nonproducing Hela cell line were applied in cytological tests. An established recombinant adenovirus vector AdCMVCD, in which the CD gene was controlled under CMV promoter, was used as virus control. Quantitative results were expressed as the mean ± SD of the mean. Statistical analysis was performed using ANOVA test. RESULTS: The desired recombinant adenovirus vector was named AdCEACD. The results of dot blotting and PCR showed that the recombinant adenovirus contained CEA promoter and CD gene. Virus titer was about 5.0 × 1014 pfu/L-1 after purification. The CEA-producing Lovo cells were sensitive to 5-FC and had the same cytotoxic effect after infection with AdCEACD and AdCMVCD (The IC50 values of 5-FC in parent Lovo cells, Lovo cells infected with 100 M.O.I AdCEACD and Lovo cells infected with 10 M.O.I AdCMVCD were > 15000, 216.5 ± 38.1 and 128.8 ± 25.4 ?mol•L?¹, P < 0.001, respectively), and the cytotoxicity of 5-FC increased accordingly when the M.O.I of adenoviruses were enhanced (The value of IC50 of 5-FC was reduced to 27.9 ± 4.2 ?mol•L-1 in 1000 M.O.I AdCEACD infected Lovo cells and 24.8 ± 7.1 ?mol•L?¹ in 100 M.O.I AdCMVCD infected Lovo cells, P < 0.05, P < 0.01, respectively). The CEA-nonproducing Hela cells had no effect after infection with AdCEACD, but Hela cells had the cytotoxic sensitivity to 5-FC after infection with AdCMVCD (The IC50 of 5-FC in parent Hele cells and Hela cells infected with AdCMVCD at 10 M.O.I was > 15000 and 214.5 ± 31.3 ?mol•L?¹, P < 0.001). AdCEACD/5-FC system also had bystander effect, and the viability was about 30% when the proportion of transfected cells was only 10 percent. CONCLUSION: The recombinant adenovirus vector AdCEACD has the character of cell type-specific gene delivery. The AdCEACD/5-FC system may become a new, potent and specific approach for the gene therapy of CEA-positive neoplasms, especially colon carcinoma. PMID:11925606

  11. Three-dimensional assessment of bystander effects of mesenchymal stem cells carrying a cytosine deaminase gene on glioma cells

    PubMed Central

    Jung, Jin Hwa; Kim, Andrew Aujin; Chang, Da-Young; Park, Yoo Ra; Suh-Kim, Haeyoung; Kim, Sung-Soo

    2015-01-01

    Stem cells carrying a suicide gene have emerged as therapeutic candidates for their cytotoxic bystander effects on neighboring cancers, while being non-toxic to other parts of the body. However, traditional cytotoxicity assays are unable to adequately assess the therapeutic effects of bystander cells. Here, we report a method to assess bystander effects of therapeutic stem cells against 3-dimensionally grown glioma cells in real time. U87 glioma cells were stably transduced to express a green fluorescence protein and co-cultivated with mesenchymal stem cells engineered to carry a bacterial cytosine deaminase gene (MSC/CD). Following addition of a 5-fluorocytine (5-FC) prodrug to the co-culture, fluorescence from U87 cells was obtained and analyzed in real time. Notably, the IC50 of 5-FC was higher when U87 cells were grown 3-dimensionally in soft agar medium for 3 weeks, as compared to those grown for one week in two-dimensional monolayer cultures. Additionally, more MSC/CD cells were required to maintain a similar level of efficacy. Since three-dimensional growth of glioma cells under our co-culture condition mimics the long-term expansion of cancer cells in vivo, our method can extend to an in vitro assay system to assess stem cell-mediated anti-cancer effects before advancing into preclinical animal studies. PMID:26609476

  12. Genome-Wide Mutation Avalanches Induced in Diploid Yeast Cells by a Base Analog or an APOBEC Deaminase

    PubMed Central

    Lada, Artem G.; Stepchenkova, Elena I.; Waisertreiger, Irina S. R.; Noskov, Vladimir N.; Dhar, Alok; Eudy, James D.; Boissy, Robert J.; Hirano, Masayuki; Rogozin, Igor B.; Pavlov, Youri I.

    2013-01-01

    Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP) or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis. PMID:24039593

  13. Enhanced EJ Cell Killing of 125I Radiation by Combining with Cytosine Deaminase Gene Therapy Regulated by Synthetic Radio-Responsive Promoter

    PubMed Central

    Li, Ling; Kang, Lei; Wang, Rong-Fu; Yan, Ping; Zhao, Qian; Yin, Lei; Guo, Feng-qin

    2015-01-01

    Abstract Aim: To investigate the enhancing effect of radionuclide therapy by the therapeutic gene placed under the control of radio-responsive promoter. Methods: The recombinant lentivirus E8-codA-GFP, including a synthetic radiation-sensitive promoter E8, cytosine deaminase (CD) gene, and green fluorescent protein gene, was constructed. The gene expression activated by 125I radiation was assessed by observation of green fluorescence. The ability of converting 5-fluorocytosine (5-FC) to 5-fluorourial (5-FU) by CD enzyme was assessed by high-performance liquid chromatography. The viability of the infected cells exposed to 125I in the presence of 5-FC was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the infected cells exposed to 125I alone served as negative control and 5-FU as positive control. Results: The recombinant lentiviral vector was constructed successfully. On exposure of infected cells to 125I, green fluorescence can be observed and 5-FU can be detected. MTT assay showed that the survival rate for infected cells treated with 125I was lower compared with the 125I control group, but higher than the positive control group. Conclusion: The synthetic promoter E8 can induce the expression of downstream CD gene under 125I radiation, and the tumor killing effect of 125I can be enhanced by combining CD gene therapy with radiosensitive promoter. PMID:26382009

  14. Apoptotic induction with bifunctional E.coli cytosine deaminase-uracil phosphoribosyltransferase mediated suicide gene therapy is synergized by curcumin treatment in vitro.

    PubMed

    Gopinath, P; Ghosh, Siddhartha Sankar

    2008-05-01

    Development of novel suicide gene therapy vector with potential application in cancer treatment has a great impact on human health. Investigation to understand molecular mechanism of cell death is necessary to evaluate the therapeutic application of suicide vectors. For example, the bifunctional E.coli cytosine deaminase & uracil phosphoribosyltransferase fusion (CD-UPRT) gene expression is known to sensitize a wide range of cells toward nontoxic prodrug 5-flurocytosine (5-FC) by converting it to toxic compounds, but the exact pathway of cell death is yet to be defined. Herein, we investigated the mechanism of cell death by 5-FC/CD-UPRT suicide system in both cancer and non-cancer cells and found that the optimum 5-FC concentration led to programmed cell death in vitro. The CD-UPRT expression of transfected cells was measured by the RT-PCR analysis. Biochemical assays, such as mitochondrial activity (MTS) and lactate dehydrogenase (LDH) measurements exhibited cell death. Microscopic experiments showed characteristic onset of apoptosis which was further supported by internucleosomal DNA cleavage of BrdU labeled cellular DNA, appearance of characteristic laddering of chromosomal DNA and involvement of caspase pathway. Furthermore, the 5-FC/CD-UPRT-mediated apoptosis was potentiated with addition of a known anticancer agent curcumin. Our in vitro studies confirmed synergistic induction of apoptotic pathway in the combination treatment. Therefore, combination of 5-FC/CD-UPRT with curcumin could be a potential chemosensitization strategy for cancer treatment. PMID:18092145

  15. Active RNAP pre-initiation sites are highly mutated by cytidine deaminases in yeast, with AID targeting small RNA genes

    PubMed Central

    Taylor, Benjamin JM; Wu, Yee Ling; Rada, Cristina

    2014-01-01

    Cytidine deaminases are single stranded DNA mutators diversifying antibodies and restricting viral infection. Improper access to the genome leads to translocations and mutations in B cells and contributes to the mutation landscape in cancer, such as kataegis. It remains unclear how deaminases access double stranded genomes and whether off-target mutations favor certain loci, although transcription and opportunistic access during DNA repair are thought to play a role. In yeast, AID and the catalytic domain of APOBEC3G preferentially mutate transcriptionally active genes within narrow regions, 110 base pairs in width, fixed at RNA polymerase initiation sites. Unlike APOBEC3G, AID shows enhanced mutational preference for small RNA genes (tRNAs, snoRNAs and snRNAs) suggesting a putative role for RNA in its recruitment. We uncover the high affinity of the deaminases for the single stranded DNA exposed by initiating RNA polymerases (a DNA configuration reproduced at stalled polymerases) without a requirement for specific cofactors. DOI: http://dx.doi.org/10.7554/eLife.03553.001 PMID:25237741

  16. Rescue of the Orphan Enzyme Isoguanine Deaminase

    SciTech Connect

    D Hitchcock; A Fedorov; E Fedorov; L Dangott; S Almo; F Raushel

    2011-12-31

    Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration, and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are as follows: k{sub cat} = 49 s{sup -1}, K{sub m} = 72 {micro}M, and k{sub cat}/K{sub m} = 6.7 x 10{sup 5} M{sup -1} s{sup -1}. The kinetic constants for the deamination of cytosine are as follows: k{sub cat} = 45 s{sup -1}, K{sub m} = 302 {micro}M, and k{sub cat}/K{sub m} = 1.5 x 10{sup 5} M{sup -1} s{sup -1}. Under these reaction conditions, isoguanine is the better substrate for cytosine deaminase. The three-dimensional structure of CDA was determined with isoguanine in the active site.

  17. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1

    PubMed Central

    Sharma, Sunny; Langhendries, Jean-Louis; Watzinger, Peter; Kötter, Peter; Entian, Karl-Dieter; Lafontaine, Denis L.J.

    2015-01-01

    The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor: yeast Tan1/human THUMPD1. In budding and fission yeasts, and in human cells, we found two acetylated cytosines on 18S rRNA, one in helix 34 important for translation accuracy and another in helix 45 near the decoding site. Efficient 18S rRNA acetylation in helix 45 involves, in human cells, the vertebrate-specific box C/D snoRNA U13, which, we suggest, exposes the substrate cytosine to modification through Watson–Crick base pairing with 18S rRNA precursors during small subunit biogenesis. Finally, while Kre33 and NAT10 are essential for pre-rRNA processing reactions leading to 18S rRNA synthesis, we demonstrate that rRNA acetylation is dispensable to yeast cells growth. The inactivation of NAT10 was suggested to suppress nuclear morphological defects observed in laminopathic patient cells through loss of microtubules modification and cytoskeleton reorganization. We rather propose the effects of NAT10 on laminopathic cells are due to reduced ribosome biogenesis or function. PMID:25653167

  18. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1.

    PubMed

    Sharma, Sunny; Langhendries, Jean-Louis; Watzinger, Peter; Kötter, Peter; Entian, Karl-Dieter; Lafontaine, Denis L J

    2015-02-27

    The function of RNA is subtly modulated by post-transcriptional modifications. Here, we report an important crosstalk in the covalent modification of two classes of RNAs. We demonstrate that yeast Kre33 and human NAT10 are RNA cytosine acetyltransferases with, surprisingly, specificity toward both 18S rRNA and tRNAs. tRNA acetylation requires the intervention of a specific and conserved adaptor: yeast Tan1/human THUMPD1. In budding and fission yeasts, and in human cells, we found two acetylated cytosines on 18S rRNA, one in helix 34 important for translation accuracy and another in helix 45 near the decoding site. Efficient 18S rRNA acetylation in helix 45 involves, in human cells, the vertebrate-specific box C/D snoRNA U13, which, we suggest, exposes the substrate cytosine to modification through Watson-Crick base pairing with 18S rRNA precursors during small subunit biogenesis. Finally, while Kre33 and NAT10 are essential for pre-rRNA processing reactions leading to 18S rRNA synthesis, we demonstrate that rRNA acetylation is dispensable to yeast cells growth. The inactivation of NAT10 was suggested to suppress nuclear morphological defects observed in laminopathic patient cells through loss of microtubules modification and cytoskeleton reorganization. We rather propose the effects of NAT10 on laminopathic cells are due to reduced ribosome biogenesis or function. PMID:25653167

  19. Discovery of a bacterial 5-methylcytosine deaminase.

    PubMed

    Hitchcock, Daniel S; Fedorov, Alexander A; Fedorov, Elena V; Almo, Steven C; Raushel, Frank M

    2014-12-01

    5-Methylcytosine is found in all domains of life, but the bacterial cytosine deaminase from Escherichia coli (CodA) will not accept 5-methylcytosine as a substrate. Since significant amounts of 5-methylcytosine are produced in both prokaryotes and eukaryotes, this compound must eventually be catabolized and the fragments recycled by enzymes that have yet to be identified. We therefore initiated a comprehensive phylogenetic screen for enzymes that may be capable of deaminating 5-methylcytosine to thymine. From a systematic analysis of sequence homologues of CodA from thousands of bacterial species, we identified putative cytosine deaminases where a "discriminating" residue in the active site, corresponding to Asp-314 in CodA from E. coli, was no longer conserved. Representative examples from Klebsiella pneumoniae (locus tag: Kpn00632), Rhodobacter sphaeroides (locus tag: Rsp0341), and Corynebacterium glutamicum (locus tag: NCgl0075) were demonstrated to efficiently deaminate 5-methylcytosine to thymine with values of kcat/Km of 1.4 × 10(5), 2.9 × 10(4), and 1.1 × 10(3) M(-1) s(-1), respectively. These three enzymes also catalyze the deamination of 5-fluorocytosine to 5-fluorouracil with values of kcat/Km of 1.2 × 10(5), 6.8 × 10(4), and 2.0 × 10(2) M(-1) s(-1), respectively. The three-dimensional structure of Kpn00632 was determined by X-ray diffraction methods with 5-methylcytosine (PDB id: 4R85 ), 5-fluorocytosine (PDB id: 4R88 ), and phosphonocytosine (PDB id: 4R7W ) bound in the active site. When thymine auxotrophs of E. coli express these enzymes, they are capable of growth in media lacking thymine when supplemented with 5-methylcytosine. Expression of these enzymes in E. coli is toxic in the presence of 5-fluorocytosine, due to the efficient transformation to 5-fluorouracil. PMID:25384249

  20. Assignment of the human cytidine deaminase (CDA) gene to chromosome 1 band p35-p36.2

    SciTech Connect

    Saccone, S.; Andreozzi, L.; Della Valle, G.

    1994-08-01

    The enzyme cytidine deaminase (EC 3.5.4.12; CDA) catalyzes the hydrolytic deamination of cytidine or deoxycytidine to uridine or deoxyuridine, respectively. It can also catalyze the deamination of cytosine nucleoside analogues such as cytosine arabinoside and 5-azacytidine, which results in a loss of their cytotoxic and antitumor activity. Cytosine arabinoside is used in the treatment of acute myeloid leukemia, and the antileukemic activity of the drug is dependent on phosphorylation by deoxycytidine kinase. The occurrence of clinical cytosine arabinoside resistance is one of the main problems in the successful treatment of acute myeloid leukemia. Resistance to the drug has been ascribed to functional deoxycytidine kinase deficiency and to increased expression of the CDA gene. In this study, we report on the isolation of a CDA genomic fragment and its use as a probe for the chromosomal localization of the human CDA gene by in situ hybridization. 9 refs., 1 fig.

  1. Genetics Home Reference: Adenosine deaminase deficiency

    MedlinePLUS

    ... providers. American Society of Gene and Cell Therapy: Gene Therapy for Genetic Disorders Baby's First Test: Severe Combined Immunodeficiency Gene Review: Adenosine Deaminase Deficiency Genetic Testing Registry: Severe ...

  2. Theoretical study of cytosine-Al, cytosine-Cu and cytosine-Ag (neutral, anionic and cationic).

    PubMed

    Vazquez, Marco-Vinicio; Martínez, Ana

    2008-02-01

    The binding of cytosine to Al, Cu and Ag has been analyzed using the hybrid B3LYP density functional theory method. The three metals all have open shell electronic configuration, with only one unpaired valence electron. Thus it is possible to study the influence of electronic configuration on the stability of these systems. Neutral, cationic and anionic systems were analyzed, in order to assess the influence of atomic charge on bond formation. We argue that in the case of anions, nonconventional hydrogen bonds are formed. It is generally accepted that the hydrogen bond A-H...B is formed by the union of a proton donor group A-H and a proton acceptor B, which contains lone-pair electrons. In this study, we found that in the case of (Cu-cytosine)(-1) and (Ag-cytosine)(-1), N-H...Cu and N-H...Ag bonds are geometrically described as nonconventional hydrogen bonds. Their binding energies fall within the range of -20.0 to -55.4 kcal/mol (depending on the scheme of the reaction) and thus they are classified as examples of strong (>10 kcal/mol) hydrogen bonds. PMID:18193849

  3. Bacillus halodurans Strain C125 Encodes and Synthesizes Enzymes from Both Known Pathways To Form dUMP Directly from Cytosine Deoxyribonucleotides.

    PubMed

    Oehlenschlæger, Christian Berg; Løvgreen, Monika Nøhr; Reinauer, Eva; Lehtinen, Emilia; Pind, Marie-Louise Lindberg; Harris, Pernille; Martinussen, Jan; Willemoës, Martin

    2015-05-15

    Analysis of the genome of Bacillus halodurans strain C125 indicated that two pathways leading from a cytosine deoxyribonucleotide to dUMP, used for dTMP synthesis, were encoded by the genome of the bacterium. The genes that were responsible, the comEB gene and the dcdB gene, encoding dCMP deaminase and the bifunctional dCTP deaminase:dUTPase (DCD:DUT), respectively, were both shown to be expressed in B. halodurans, and both genes were subject to repression by the nucleosides thymidine and deoxycytidine. The latter nucleoside presumably exerts its repression after deamination by cytidine deaminase. Both comEB and dcdB were cloned, overexpressed in Escherichia coli, and purified to homogeneity. Both enzymes were active and displayed the expected regulatory properties: activation by dCTP for dCMP deaminase and dTTP inhibition for both enzymes. Structurally, the B. halodurans enzyme resembled the Mycobacterium tuberculosis enzyme the most. An investigation of sequenced genomes from other species of the genus Bacillus revealed that not only the genome of B. halodurans but also the genomes of Bacillus pseudofirmus, Bacillus thuringiensis, Bacillus hemicellulosilyticus, Bacillus marmarensis, Bacillus cereus, and Bacillus megaterium encode both the dCMP deaminase and the DCD:DUT enzymes. In addition, eight dcdB homologs from Bacillus species within the genus for which the whole genome has not yet been sequenced were registered in the NCBI Entrez database. PMID:25746996

  4. Bacillus halodurans Strain C125 Encodes and Synthesizes Enzymes from Both Known Pathways To Form dUMP Directly from Cytosine Deoxyribonucleotides

    PubMed Central

    Oehlenschlæger, Christian Berg; Løvgreen, Monika Nøhr; Reinauer, Eva; Lehtinen, Emilia; Pind, Marie-Louise Lindberg; Martinussen, Jan

    2015-01-01

    Analysis of the genome of Bacillus halodurans strain C125 indicated that two pathways leading from a cytosine deoxyribonucleotide to dUMP, used for dTMP synthesis, were encoded by the genome of the bacterium. The genes that were responsible, the comEB gene and the dcdB gene, encoding dCMP deaminase and the bifunctional dCTP deaminase:dUTPase (DCD:DUT), respectively, were both shown to be expressed in B. halodurans, and both genes were subject to repression by the nucleosides thymidine and deoxycytidine. The latter nucleoside presumably exerts its repression after deamination by cytidine deaminase. Both comEB and dcdB were cloned, overexpressed in Escherichia coli, and purified to homogeneity. Both enzymes were active and displayed the expected regulatory properties: activation by dCTP for dCMP deaminase and dTTP inhibition for both enzymes. Structurally, the B. halodurans enzyme resembled the Mycobacterium tuberculosis enzyme the most. An investigation of sequenced genomes from other species of the genus Bacillus revealed that not only the genome of B. halodurans but also the genomes of Bacillus pseudofirmus, Bacillus thuringiensis, Bacillus hemicellulosilyticus, Bacillus marmarensis, Bacillus cereus, and Bacillus megaterium encode both the dCMP deaminase and the DCD:DUT enzymes. In addition, eight dcdB homologs from Bacillus species within the genus for which the whole genome has not yet been sequenced were registered in the NCBI Entrez database. PMID:25746996

  5. Specific and Modular Binding Code for Cytosine Recognition in Pumilio/FBF (PUF) RNA-binding Domains

    SciTech Connect

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb; Lu, Gang; Bigler, Rebecca; Jezyk, Mark R.; Li, Chunhua; Tanaka Hall, Traci M.; Wang, Zefeng

    2011-10-28

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.

  6. Discovery and Structure Determination of the Orphan Enzyme Isoxanthopterin Deaminase

    SciTech Connect

    Hall, R.S.; Swaminathan, S.; Agarwal, R.; Hitchcock, D.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2010-05-25

    Two previously uncharacterized proteins have been identified that efficiently catalyze the deamination of isoxanthopterin and pterin 6-carboxylate. The genes encoding these two enzymes, NYSGXRC-9339a (gi|44585104) and NYSGXRC-9236b (gi|44611670), were first identified from DNA isolated from the Sargasso Sea as part of the Global Ocean Sampling Project. The genes were synthesized, and the proteins were subsequently expressed and purified. The X-ray structure of Sgx9339a was determined at 2.7 {angstrom} resolution (Protein Data Bank entry 2PAJ). This protein folds as a distorted ({beta}/{alpha}){sub 8} barrel and contains a single zinc ion in the active site. These enzymes are members of the amidohydrolase superfamily and belong to cog0402 within the clusters of orthologous groups (COG). Enzymes in cog0402 have previously been shown to catalyze the deamination of guanine, cytosine, S-adenosylhomocysteine, and 8-oxoguanine. A small compound library of pteridines, purines, and pyrimidines was used to probe catalytic activity. The only substrates identified in this search were isoxanthopterin and pterin 6-carboxylate. The kinetic constants for the deamination of isoxanthopterin with Sgx9339a were determined to be 1.0 s{sup -1}, 8.0 {micro}M, and 1.3 x 10{sup 5} M{sup -1} s{sup -1} (k{sub cat}, K{sub m}, and k{sub cat}/K{sub m}, respectively). The active site of Sgx9339a most closely resembles the active site for 8-oxoguanine deaminase (Protein Data Bank entry 2UZ9). A model for substrate recognition of isoxanthopterin by Sgx9339a was proposed on the basis of the binding of guanine and xanthine in the active site of guanine deaminase. Residues critical for substrate binding appear to be conserved glutamine and tyrosine residues that form hydrogen bonds with the carbonyl oxygen at C4, a conserved threonine residue that forms hydrogen bonds with N5, and another conserved threonine residue that forms hydrogen bonds with the carbonyl group at C7. These conserved active site residues were used to identify 24 other genes which are predicted to deaminate isoxanthopterin.

  7. Discovery and structure determination of the orphan enzyme isoxanthopterin deaminase .

    PubMed

    Hall, Richard S; Agarwal, Rakhi; Hitchcock, Daniel; Sauder, J Michael; Burley, Stephen K; Swaminathan, Subramanyam; Raushel, Frank M

    2010-05-25

    Two previously uncharacterized proteins have been identified that efficiently catalyze the deamination of isoxanthopterin and pterin 6-carboxylate. The genes encoding these two enzymes, NYSGXRC-9339a ( gi|44585104 ) and NYSGXRC-9236b ( gi|44611670 ), were first identified from DNA isolated from the Sargasso Sea as part of the Global Ocean Sampling Project. The genes were synthesized, and the proteins were subsequently expressed and purified. The X-ray structure of Sgx9339a was determined at 2.7 A resolution (Protein Data Bank entry 2PAJ ). This protein folds as a distorted (beta/alpha)(8) barrel and contains a single zinc ion in the active site. These enzymes are members of the amidohydrolase superfamily and belong to cog0402 within the clusters of orthologous groups (COG). Enzymes in cog0402 have previously been shown to catalyze the deamination of guanine, cytosine, S-adenosylhomocysteine, and 8-oxoguanine. A small compound library of pteridines, purines, and pyrimidines was used to probe catalytic activity. The only substrates identified in this search were isoxanthopterin and pterin 6-carboxylate. The kinetic constants for the deamination of isoxanthopterin with Sgx9339a were determined to be 1.0 s(-1), 8.0 muM, and 1.3 x 10(5) M(-1) s(-1) (k(cat), K(m), and k(cat)/K(m), respectively). The active site of Sgx9339a most closely resembles the active site for 8-oxoguanine deaminase (Protein Data Bank entry 2UZ9 ). A model for substrate recognition of isoxanthopterin by Sgx9339a was proposed on the basis of the binding of guanine and xanthine in the active site of guanine deaminase. Residues critical for substrate binding appear to be conserved glutamine and tyrosine residues that form hydrogen bonds with the carbonyl oxygen at C4, a conserved threonine residue that forms hydrogen bonds with N5, and another conserved threonine residue that forms hydrogen bonds with the carbonyl group at C7. These conserved active site residues were used to identify 24 other genes which are predicted to deaminate isoxanthopterin. PMID:20415463

  8. Crystal Structure of the DNA Deaminase APOBEC3B Catalytic Domain.

    PubMed

    Shi, Ke; Carpenter, Michael A; Kurahashi, Kayo; Harris, Reuben S; Aihara, Hideki

    2015-11-20

    Functional and deep sequencing studies have combined to demonstrate the involvement of APOBEC3B in cancer mutagenesis. APOBEC3B is a single-stranded DNA cytosine deaminase that functions normally as a nuclear-localized restriction factor of DNA-based pathogens. However, it is overexpressed in cancer cells and elicits an intrinsic preference for 5'-TC motifs in single-stranded DNA, which is the most frequently mutated dinucleotide in breast, head/neck, lung, bladder, cervical, and several other tumor types. In many cases, APOBEC3B mutagenesis accounts for the majority of both dispersed and clustered (kataegis) cytosine mutations. Here, we report the first structures of the APOBEC3B catalytic domain in multiple crystal forms. These structures reveal a tightly closed active site conformation and suggest that substrate accessibility is regulated by adjacent flexible loops. Residues important for catalysis are identified by mutation analyses, and the results provide insights into the mechanism of target site selection. We also report a nucleotide (dCMP)-bound crystal structure that informs a multistep model for binding single-stranded DNA. Overall, these high resolution crystal structures provide a framework for further mechanistic studies and the development of novel anti-cancer drugs to inhibit this enzyme, dampen tumor evolution, and minimize adverse outcomes such as drug resistance and metastasis. PMID:26416889

  9. Single Molecule Investigation of Ag+ Interactions with Single Cytosine-, Methylcytosine- and Hydroxymethylcytosine-Cytosine Mismatches in a Nanopore

    PubMed Central

    Wang, Yong; Luan, Bin-Quan; Yang, Zhiyu; Zhang, Xinyue; Ritzo, Brandon; Gates, Kent; Gu, Li-Qun

    2014-01-01

    Both cytosine-Ag-cytosine interactions and cytosine modifications in a DNA duplex have attracted great interest for research. Cytosine (C) modifications such as methylcytosine (mC) and hydroxymethylcytosine (hmC) are associated with tumorigenesis. However, a method for directly discriminating C, mC and hmC bases without labeling, modification and amplification is still missing. Additionally, the nature of coordination of Ag+ with cytosine-cytosine (C-C) mismatches is not clearly understood. Utilizing the alpha-hemolysin nanopore, we show that in the presence of Ag+, duplex stability is most increased for the cytosine-cytosine (C-C) pair, followed by the cytosine-methylcytosine (C-mC) pair, and the cytosine-hydroxymethylcytosine (C-hmC) pair, which has no observable Ag+ induced stabilization. Molecular dynamics simulations reveal that the hydrogen-bond-mediated paring of a C-C mismatch results in a binding site for Ag+. Cytosine modifications (such as mC and hmC) disrupted the hydrogen bond, resulting in disruption of the Ag+ binding site. Our experimental method provides a novel platform to study the metal ion-DNA interactions and could also serve as a direct detection method for nucleobase modifications. PMID:25103463

  10. Crystal Structure of Staphylococcus aureus tRNA Adenosine Deaminase TadA in Complex with RNA

    SciTech Connect

    Losey,H.; Ruthenburg, A.; Verdine, G.

    2006-01-01

    Bacterial tRNA adenosine deaminases (TadAs) catalyze the hydrolytic deamination of adenosine to inosine at the wobble position of tRNA(Arg2), a process that enables this single tRNA to recognize three different arginine codons in mRNA. In addition, inosine is also introduced at the wobble position of multiple eukaryotic tRNAs. The genes encoding these deaminases are essential in bacteria and yeast, demonstrating the importance of their biological activity. Here we report the crystallization and structure determination to 2.0 A of Staphylococcus aureus TadA bound to the anticodon stem-loop of tRNA(Arg2) bearing nebularine, a non-hydrolyzable adenosine analog, at the wobble position. The cocrystal structure reveals the basis for both sequence and structure specificity in the interactions of TadA with RNA, and it additionally provides insight into the active site architecture that promotes efficient hydrolytic deamination.

  11. DNA cytosine and methylcytosine deamination by APOBEC3B: enhancing methylcytosine deamination by engineering APOBEC3B

    PubMed Central

    Fu, Yang; Ito, Fumiaki; Zhang, Gewen; Fernandez, Braulio; Yang, Hanjing; Chen, Xiaojiang S.

    2015-01-01

    APOBEC (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like) is a family of enzymes that deaminates cytosine (C) to uracil (U) on nucleic acid. APOBEC3B (A3B) functions in innate immunity against intrinsic and invading retroelements and viruses. A3B can also induce genomic DNA mutations to cause cancer. A3B contains two cytosine deaminase domains (CD1, CD2), and there are conflicting reports about whether both domains are active. Here we demonstrate that only CD2 of A3B (A3BCD2) has C deamination activity. We also reveal that both A3B and A3BCD2 can deaminate methylcytosine (mC). Guided by structural and functional analysis, we successfully engineered A3BCD2 to gain over two orders of magnitude higher activity for mC deamination. Important determinants that contribute to the activity and selectivity for mC deamination have been identified, which reveals that multiple elements, rather than single ones, contribute to the mC deamination activity and selectivity in A3BCD2 and possibly other APOBECs. PMID:26195824

  12. Differentiation of 1-aminocyclopropane-1-carboxylate (ACC) deaminase from its homologs is the key for identifying bacteria containing ACC deaminase.

    PubMed

    Li, Zhengyi; Chang, Siping; Ye, Shuting; Chen, Mingyue; Lin, Li; Li, Yuanyuan; Li, Shuying; An, Qianli

    2015-10-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase-mediated reduction of ethylene generation in plants under abiotic stresses is a key mechanism by which bacteria can promote plant growth. Misidentification of ACC deaminase and the ACC deaminase structure gene (acdS) can lead to overestimation of the number of bacteria containing ACC deaminase and their function in ecosystems. Previous non-specific amplification of acdS homologs has led to an overestimation of the horizontal transfer of acdS genes. Here, we designed consensus-degenerate hybrid oligonucleotide primers (acdSf3, acdSr3 and acdSr4) based on differentiating the key residues in ACC deaminases from those of homologs for specific amplification of partial acdS genes. PCR amplification, sequencing and phylogenetic analysis identified acdS genes from a wide range of proteobacteria and actinobacteria. PCR amplification and a genomic search did not find the acdS gene in bacteria belonging to Pseudomonas stutzeri or in the genera Enterobacter, Klebsiella or Bacillus. We showed that differentiating the acdS gene and ACC deaminase from their homologs was crucial for the molecular identification of bacteria containing ACC deaminase and for understanding the evolution of the acdS gene. We provide an effective method for screening and identifying bacteria containing ACC deaminase. PMID:26362924

  13. AID/APOBEC deaminases and cancer

    PubMed Central

    Rebhandl, Stefan; Huemer, Michael; Greil, Richard; Geisberger, Roland

    2015-01-01

    Mutations are the basis for evolution and the development of genetic diseases. Especially in cancer, somatic mutations in oncogenes and tumor suppressor genes alongside the occurrence of passenger mutations have been observed by recent deep-sequencing approaches. While mutations have long been considered random events induced by DNA-replication errors or by DNA damaging agents, genome sequencing led to the discovery of non-random mutation signatures in many human cancer. Common non-random mutations comprise DNA strand-biased mutation showers and mutations restricted to certain DNA motifs, which recently have become attributed to the activity of the AID/APOBEC family of DNA deaminases. Hence, APOBEC enzymes, which have evolved as key players in natural and adaptive immunity, have been proposed to contribute to cancer development and clonal evolution of cancer by inducing collateral genomic damage due to their DNA deaminating activity. This review focuses on how mutagenic events through AID/APOBEC deaminases may contribute to cancer development. PMID:26097867

  14. Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems

    PubMed Central

    Iyer, Lakshminarayan M.; Zhang, Dapeng; Rogozin, Igor B.; Aravind, L.

    2011-01-01

    The deaminase-like fold includes, in addition to nucleic acid/nucleotide deaminases, several catalytic domains such as the JAB domain, and others involved in nucleotide and ADP-ribose metabolism. Using sensitive sequence and structural comparison methods, we develop a comprehensive natural classification of the deaminase-like fold and show that its ancestral version was likely to operate on nucleotides or nucleic acids. Consequently, we present evidence that a specific group of JAB domains are likely to possess a DNA repair function, distinct from the previously known deubiquitinating peptidase activity. We also identified numerous previously unknown clades of nucleic acid deaminases. Using inference based on contextual information, we suggest that most of these clades are toxin domains of two distinct classes of bacterial toxin systems, namely polymorphic toxins implicated in bacterial interstrain competition and those that target distantly related cells. Genome context information suggests that these toxins might be delivered via diverse secretory systems, such as Type V, Type VI, PVC and a novel PrsW-like intramembrane peptidase-dependent mechanism. We propose that certain deaminase toxins might be deployed by diverse extracellular and intracellular pathogens as also endosymbionts as effectors targeting nucleic acids of host cells. Our analysis suggests that these toxin deaminases have been acquired by eukaryotes on several independent occasions and recruited as organellar or nucleo-cytoplasmic RNA modifiers, operating on tRNAs, mRNAs and short non-coding RNAs, and also as mutators of hyper-variable genes, viruses and selfish elements. This scenario potentially explains the origin of mutagenic AID/APOBEC-like deaminases, including novel versions from Caenorhabditis, Nematostella and diverse algae and a large class of fast-evolving fungal deaminases. These observations greatly expand the distribution of possible unidentified mutagenic processes catalyzed by nucleic acid deaminases. PMID:21890906

  15. Activation-induced cytidine deaminase (AID) is localized to subnuclear domains enriched in splicing factors

    SciTech Connect

    Hu, Yi Ericsson, Ida Doseth, Berit Liabakk, Nina B. Krokan, Hans E. Kavli, Bodil

    2014-03-10

    Activation-induced cytidine deaminase (AID) is the mutator enzyme in adaptive immunity. AID initiates the antibody diversification processes in activated B cells by deaminating cytosine to uracil in immunoglobulin genes. To some extent other genes are also targeted, which may lead to genome instability and B cell malignancy. Thus, it is crucial to understand its targeting and regulation mechanisms. AID is regulated at several levels including subcellular compartmentalization. However, the complex nuclear distribution and trafficking of AID has not been studied in detail previously. In this work, we examined the subnuclear localization of AID and its interaction partner CTNNBL1 and found that they associate with spliceosome-associated structures including Cajal bodies and nuclear speckles. Moreover, protein kinase A (PKA), which activates AID by phosphorylation at Ser38, is present together with AID in nuclear speckles. Importantly, we demonstrate that AID physically associates with the major spliceosome subunits (small nuclear ribonucleoproteins, snRNPs), as well as other essential splicing components, in addition to the transcription machinery. Based on our findings and the literature, we suggest a transcription-coupled splicing-associated model for AID targeting and activation. - Highlights: • AID and its interaction partner CTNNBL1 localize to Cajal bodies and nuclear speckles. • AID associates with its activating kinase PKA in nuclear speckles. • AID is linked to the splicing machinery in switching B-cells. • Our findings suggest a transcription-coupled splicing associated mechanism for AID targeting and activation.

  16. Profiling cytosine oxidation in DNA by LC-MS/MS.

    PubMed

    Samson-Thibault, Francois; Madugundu, Guru S; Gao, Shanshan; Cadet, Jean; Wagner, J Richard

    2012-09-17

    Spontaneous and oxidant-induced damage to cytosine is probably the main cause of CG to TA transition mutations in mammalian genomes. The reaction of hydroxyl radical (·OH) and one-electron oxidants with cytosine derivatives produces numerous oxidation products, which have been identified in large part by model studies with monomers and short oligonucleotides. Here, we developed an analytical method based on LC-MS/MS to detect 10 oxidized bases in DNA, including 5 oxidation products of cytosine. The utility of this method is demonstrated by the measurement of base damage in isolated calf thymus DNA exposed to ionizing radiation in aerated aqueous solutions (0-200 Gy) and to well-known Fenton-like reactions (Fe(2+) or Cu(+) with H(2)O(2) and ascorbate). The following cytosine modifications were quantified as modified 2'-deoxyribonucleosides upon exposure of DNA to ionizing radiation in aqueous aerated solution: 5-hydroxyhydantoin (Hyd-Ura) > 5-hydroxyuracil (5-OHUra) > 5-hydroxycytosine (5-OHCyt) > 5,6-dihydroxy-5,6-dihydrouracil (Ura-Gly) > 1-carbamoyl-4,5-dihydroxy-2-oxoimidazolidine (Imid-Cyt). The total yield of cytosine oxidation products was comparable to that of thymine oxidation products (5,6-dihydroxy-5,6-dihydrothymine (Thy-Gly), 5-hydroxy-5-methylhydantotin (Hyd-Thy), 5-(hydroxymethyl)uracil (5-HmUra), and 5-formyluracil (5-ForUra)) as well as the yield of 8-oxo-7,8-dihydroguanine (8-oxoGua). The major oxidation product of cytosine in DNA was Hyd-Ura. In contrast, the formation of Imid-Cyt was a minor pathway of DNA damage, although it is the major product arising from irradiation of the monomers, cytosine, and 2'-deoxycytidine. The reaction of Fenton-like reagents with DNA gave a different distribution of cytosine derived products compared to ionizing radiation, which likely reflects the reaction of metal ions with intermediate peroxyl radicals or hydroperoxides. The analysis of the main cytosine oxidation products will help elucidate the complex mechanism of oxidative degradation of cytosine in DNA and probe the consequences of these reactions in biology and medicine. PMID:22725252

  17. Characterising new roles for APOBEC4 and ADAR deaminases 

    E-print Network

    Hogg, Marion

    2010-01-01

    Deamination or the hydrolytic removal of one hydroxyl group from a base in DNA or RNA can lead to changes in the transcript and protein produced. Examples of this are the deamination of cytosine residues in DNA by ...

  18. Streptomyces lividans Blasticidin S Deaminase and Its Application in Engineering a Blasticidin S-Producing Strain for Ease of Genetic Manipulation

    PubMed Central

    Li, Li; Wu, Jun; Deng, Zixin; Zabriskie, T. Mark

    2013-01-01

    Blasticidin S is a peptidyl nucleoside antibiotic produced by Streptomyces griseochromogenes that exhibits strong fungicidal activity. To circumvent an effective DNA uptake barrier system in the native producer and investigate its biosynthesis in vivo, the blasticidin S biosynthetic gene cluster (bls) was engrafted to the chromosome of Streptomyces lividans. However, the resulting mutant, LL2, produced the inactive deaminohydroxyblasticidin S instead of blasticidin S. Subsequently, a blasticidin S deaminase (SLBSD, for S. lividans blasticidin S deaminase) was identified in S. lividans and shown to govern this in vivo conversion. Purified SLBSD was found to be capable of transforming blasticidin S to deaminohydroxyblasticidin S in vitro. It also catalyzed deamination of the cytosine moiety of cytosylglucuronic acid, an intermediate in blasticidin S biosynthesis. Disruption of the SLBSD gene in S. lividans LL2 led to successful production of active blasticidin S in the resultant mutant, S. lividans WJ2. To demonstrate the easy manipulation of the blasticidin S biosynthetic gene cluster, blsE, blsF, and blsL, encoding a predicted radical S-adenosylmethionine (SAM) protein, an unknown protein, and a guanidino methyltransferase, were individually inactivated to access their role in blasticidin S biosynthesis. PMID:23377931

  19. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s?¹ at 30 °C. Since adenine is deaminated ?10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-?-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common ?/? barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. PMID:21511036

  20. Human Papillomavirus E6 Triggers Upregulation of the Antiviral and Cancer Genomic DNA Deaminase APOBEC3B

    PubMed Central

    Vieira, Valdimara C.; Leonard, Brandon; White, Elizabeth A.; Starrett, Gabriel J.; Temiz, Nuri A.; Lorenz, Laurel D.; Lee, Denis; Soares, Marcelo A.; Lambert, Paul F.; Howley, Peter M.

    2014-01-01

    ABSTRACT Several recent studies have converged upon the innate immune DNA cytosine deaminase APOBEC3B (A3B) as a significant source of genomic uracil lesions and mutagenesis in multiple human cancers, including those of the breast, head/neck, cervix, bladder, lung, ovary, and other tissues. A3B is upregulated in these tumor types relative to normal tissues, but the mechanism is unclear. Because A3B also has antiviral activity in multiple systems and is a member of the broader innate immune response, we tested the hypothesis that human papillomavirus (HPV) infection causes A3B upregulation. We found that A3B mRNA expression and enzymatic activity were upregulated following transfection of a high-risk HPV genome and that this effect was abrogated by inactivation of E6. Transduction experiments showed that the E6 oncoprotein alone was sufficient to cause A3B upregulation, and a panel of high-risk E6 proteins triggered higher A3B levels than did a panel of low-risk or noncancer E6 proteins. Knockdown experiments in HPV-positive cell lines showed that endogenous E6 is required for A3B upregulation. Analyses of publicly available head/neck cancer data further support this relationship, as A3B levels are higher in HPV-positive cancers than in HPV-negative cancers. Taken together with the established role for high-risk E6 in functional inactivation of TP53 and published positive correlations in breast cancer between A3B upregulation and genetic inactivation of TP53, our studies suggest a model in which high-risk HPV E6, possibly through functional inactivation of TP53, causes derepression of A3B gene transcription. This would lead to a mutator phenotype that explains the observed cytosine mutation biases in HPV-positive head/neck and cervical cancers. PMID:25538195

  1. Phosphorylation Directly Regulates the Intrinsic DNA Cytidine Deaminase Activity of Activation-induced Deaminase and APOBEC3G Protein*

    PubMed Central

    Demorest, Zachary L.; Li, Ming; Harris, Reuben S.

    2011-01-01

    The beneficial effects of DNA cytidine deamination by activation-induced deaminase (AID; antibody gene diversification) and APOBEC3G (retrovirus restriction) are tempered by probable contributions to carcinogenesis. Multiple regulatory mechanisms serve to minimize this detrimental outcome. Here, we show that phosphorylation of a conserved threonine attenuates the intrinsic activity of activation-induced deaminase (Thr-27) and APOBEC3G (Thr-218). Phospho-null alanine mutants maintain intrinsic DNA deaminase activity, whereas phospho-mimetic glutamate mutants are inactive. The phospho-mimetic variants fail to mediate isotype switching in activated mouse splenic B lymphocytes or suppress HIV-1 replication in human T cells. Our data combine to suggest a model in which this critical threonine acts as a phospho-switch that fine-tunes the adaptive and innate immune responses and helps protect mammalian genomic DNA from procarcinogenic lesions. PMID:21659520

  2. Degradation of the cancer genomic DNA deaminase APOBEC3B by SIV Vif.

    PubMed

    Land, Allison M; Wang, Jiayi; Law, Emily K; Aberle, Ryan; Kirmaier, Andrea; Krupp, Annabel; Johnson, Welkin E; Harris, Reuben S

    2015-11-24

    APOBEC3B is a newly identified source of mutation in many cancers, including breast, head/neck, lung, bladder, cervical, and ovarian. APOBEC3B is a member of the APOBEC3 family of enzymes that deaminate DNA cytosine to produce the pro-mutagenic lesion, uracil. Several APOBEC3 family members function to restrict virus replication. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H combine to restrict HIV-1 in human lymphocytes. HIV-1 counteracts these APOBEC3s with the viral protein Vif, which targets the relevant APOBEC3s for proteasomal degradation. While APOBEC3B does not restrict HIV-1 and is not targeted by HIV-1 Vif in CD4-positive T cells, we asked whether related lentiviral Vif proteins could degrade APOBEC3B. Interestingly, several SIV Vif proteins are capable of promoting APOBEC3B degradation, with SIVmac239 Vif proving the most potent. This likely occurs through the canonical polyubiquitination mechanism as APOBEC3B protein levels are restored by MG132 treatment and by altering a conserved E3 ligase-binding motif. We further show that SIVmac239 Vif can prevent APOBEC3B mediated geno/cytotoxicity and degrade endogenous APOBEC3B in several cancer cell lines. Our data indicate that the APOBEC3B degradation potential of SIV Vif is an effective tool for neutralizing the cancer genomic DNA deaminase APOBEC3B. Further optimization of this natural APOBEC3 antagonist may benefit cancer therapy. PMID:26544511

  3. Quantum Mechanical Calculations of Cytosine, Thiocytosine and Their Radical Ions

    NASA Astrophysics Data System (ADS)

    Singh, Rashmi

    2010-08-01

    The RNA and DNA are polymer that share some interesting similarities, for instance it is well known that cytosine is the one of the common nucleic acid base. The sulfur is characterized as a very reactive element and it has been used, in chemical warfare agents. Since the genetic information is based on the sequence of the nucleic acid bases. The quantum mechanical calculations of the energies, geometries, charges and vibrational characteristics of the cytosine and thiocytosine. and their corresponding radicals were carried out by using DFT method with b3lyp/6-311++g** basis set.

  4. Red yeast

    MedlinePLUS

    ... cause kidney damage. Special precautions & warnings: Pregnancy and breast-feeding: Red yeast is LIKELY UNSAFE during pregnancy. It ... about the safety of using red yeast during breast-feeding. Don’t use during pregnancy or breast-feeding. ...

  5. High-Resolution Analysis of Cytosine Methylation in Ancient DNA

    PubMed Central

    Cropley, Jennifer E.; Cooper, Alan; Suter, Catherine M.

    2012-01-01

    Epigenetic changes to gene expression can result in heritable phenotypic characteristics that are not encoded in the DNA itself, but rather by biochemical modifications to the DNA or associated chromatin proteins. Interposed between genes and environment, these epigenetic modifications can be influenced by environmental factors to affect phenotype for multiple generations. This raises the possibility that epigenetic states provide a substrate for natural selection, with the potential to participate in the rapid adaptation of species to changes in environment. Any direct test of this hypothesis would require the ability to measure epigenetic states over evolutionary timescales. Here we describe the first single-base resolution of cytosine methylation patterns in an ancient mammalian genome, by bisulphite allelic sequencing of loci from late Pleistocene Bison priscus remains. Retrotransposons and the differentially methylated regions of imprinted loci displayed methylation patterns identical to those derived from fresh bovine tissue, indicating that methylation patterns are preserved in the ancient DNA. Our findings establish the biochemical stability of methylated cytosines over extensive time frames, and provide the first direct evidence that cytosine methylation patterns are retained in DNA from ancient specimens. The ability to resolve cytosine methylation in ancient DNA provides a powerful means to study the role of epigenetics in evolution. PMID:22276161

  6. Comparative isoschizomer profiling of cytosine methylation: The HELP assay

    PubMed Central

    Khulan, Batbayar; Thompson, Reid F.; Ye, Kenny; Fazzari, Melissa J.; Suzuki, Masako; Stasiek, Edyta; Figueroa, Maria E.; Glass, Jacob L.; Chen, Quan; Montagna, Cristina; Hatchwell, Eli; Selzer, Rebecca R.; Richmond, Todd A.; Green, Roland D.; Melnick, Ari; Greally, John M.

    2006-01-01

    The distribution of cytosine methylation in 6.2 Mb of the mouse genome was tested using cohybridization of genomic representations from a methylation-sensitive restriction enzyme and its methylation-insensitive isoschizomer. This assay, termed HELP (HpaII tiny fragment Enrichment by Ligation-mediated PCR), allows both intragenomic profiling and intergenomic comparisons of cytosine methylation. The intragenomic profile shows most of the genome to be contiguous methylated sequence with occasional clusters of hypomethylated loci, usually but not exclusively at promoters and CpG islands. Intergenomic comparison found marked differences in cytosine methylation between spermatogenic and brain cells, identifying 223 new candidate tissue-specific differentially methylated regions (T-DMRs). Bisulfite pyrosequencing confirmed the four candidates tested to be T-DMRs, while quantitative RT-PCR for two genes with T-DMRs located at their promoters showed the HELP data to be correlated with gene activity at these loci. The HELP assay is robust, quantitative, and accurate and is providing new insights into the distribution and dynamic nature of cytosine methylation in the genome. PMID:16809668

  7. Structural, electronic and energetic consequences of epigenetic cytosine modifications.

    PubMed

    Cysewski, P; Oli?ski, R

    2015-07-15

    The hydrogen bonding patterns of cytosine and its seven C5-modifed analogues paired with canonical guanine were studied using the first principle approach. Both global minima and biologically relevant conformations were studied. The former resulted from full gradient geometry optimizations of hydrogen bonded pairs, while the latter were obtained based on 125 d(GpC) dinucleotides found in the PDB database. The obtained energetic, electronic and structural data lead to the conclusion that the epigenetically relevant modification of cytosine may have serious consequences on hydrogen bonding with guanine. First of all, the significant substituent effects were observed for such trends as charges on sites involved in hydrogen bonding, the total intermolecular interaction energy or electron densities at bond critical points. Moreover, the molecular orbital polarization contribution resulting from energy decomposition expressed in terms of absolutely localized molecular orbitals exhibited an inverse linear correlation with frozen density contributions. A substituent effect on the amount of charge transfer from pyrimidine toward guanine was also observed. The increase of intermolecular interactions of guanine with modified cytosine is associated with the increase of the electro-donating character of the C5-substituent. However, only pairs involving 5-methylcytosine are more stable than those formed by canonical cytosine. Furthermore, the energy differences observed for global minima also remain important for a broad range of displacement and angular parameters defining pair conformations in model d(GpC) dinucleotides. Due to the sensitivities of intermolecular interactions to mutual arrangements of monomers the modification of cytosine at the C5 site can significantly alter the actual energy profiles. Consequently, it may be anticipated that the modified dinucleotides will adopt different conformations than a standard G-C pair in a B-DNA double helix. PMID:26151626

  8. The importance of adenosine deaminase for lymphocyte development and function.

    PubMed

    Aldrich, M B; Blackburn, M R; Kellems, R E

    2000-06-01

    Deficiency in the enzyme adenosine deaminase (ADA) in humans manifests primarily as severe lymphopenia and immunodeficiency, resulting in death by 6 months of age, if untreated. In this review, we discuss phenotypical, biochemical, and metabolic hallmarks of the disease, and describe a mouse model in which levels of ADA can be biochemically and genetically manipulated. This model provides exciting possibilities for uncovering the mechanisms by which this purine catabolic enzyme affects lymphopoiesis. PMID:10833410

  9. A Phenotypic Screen for Functional Mutants of Human Adenosine Deaminase Acting on RNA 1.

    PubMed

    Wang, Yuru; Havel, Jocelyn; Beal, Peter A

    2015-11-20

    Adenosine deaminases acting on RNA (ADARs) are RNA-editing enzymes responsible for the conversion of adenosine to inosine at specific locations in cellular RNAs. ADAR1 and ADAR2 are two members of the family that have been shown to be catalytically active. Earlier, we reported a phenotypic screen for the study of human ADAR2 using budding yeast S. cerevisiae as the host system. While this screen has been successfully applied to the study of ADAR2, it failed with ADAR1. Here, we report a new reporter that uses a novel editing substrate and is suitable for the study of ADAR1. We screened plasmid libraries with randomized codons for two important residues in human ADAR1 (G1007 and E1008). The screening results combined with in vitro deamination assays led to the identification of mutants that are more active than the wild type protein. Furthermore, a screen of the ADAR1 E1008X library with a reporter construct bearing an A•G mismatch at the editing site suggests one role for the residue at position 1008 is to sense the identity of the base pairing partner for the editing site adenosine. This work has provided a starting point for future in vitro evolution studies of ADAR1 and led to new insight into ADAR's editing site selectivity. PMID:26372505

  10. Communication: UV photoionization of cytosine catalyzed by Ag(+).

    PubMed

    Taccone, Martín I; Féraud, Geraldine; Berdakin, Matías; Dedonder-Lardeux, Claude; Jouvet, Christophe; Pino, Gustavo A

    2015-07-28

    The photo-induced damages of DNA in interaction with metal cations, which are found in various environments, still remain to be characterized. In this paper, we show how the complexation of a DNA base (cytosine (Cyt)) with a metal cation (Ag(+)) changes its electronic properties. By means of UV photofragment spectroscopy of cold ions, it was found that the photoexcitation of the CytAg(+) complex at low energy (315-282) nm efficiently leads to ionized cytosine (Cyt(+)) as the single product. This occurs through a charge transfer state in which an electron from the p orbital of Cyt is promoted to Ag(+), as confirmed by ab initio calculations at the TD-DFT/B3LYP and RI-ADC(2) theory level using the SV(P) basis set. The low ionization energy of Cyt in the presence of Ag(+) could have important implications as point mutation of DNA upon sunlight exposition. PMID:26233098

  11. Communication: UV photoionization of cytosine catalyzed by Ag+

    NASA Astrophysics Data System (ADS)

    Taccone, Martín I.; Féraud, Geraldine; Berdakin, Matías; Dedonder-Lardeux, Claude; Jouvet, Christophe; Pino, Gustavo A.

    2015-07-01

    The photo-induced damages of DNA in interaction with metal cations, which are found in various environments, still remain to be characterized. In this paper, we show how the complexation of a DNA base (cytosine (Cyt)) with a metal cation (Ag+) changes its electronic properties. By means of UV photofragment spectroscopy of cold ions, it was found that the photoexcitation of the CytAg+ complex at low energy (315-282) nm efficiently leads to ionized cytosine (Cyt+) as the single product. This occurs through a charge transfer state in which an electron from the p orbital of Cyt is promoted to Ag+, as confirmed by ab initio calculations at the TD-DFT/B3LYP and RI-ADC(2) theory level using the SV(P) basis set. The low ionization energy of Cyt in the presence of Ag+ could have important implications as point mutation of DNA upon sunlight exposition.

  12. High-throughput sequencing of cytosine methylation in plant DNA

    E-print Network

    Hardcastle, Thomas J.

    2013-06-07

    from cytosine methylation in the sequenced data. Several protocols have been suggested for reduced rep- resentation bisulphite sequencing (RRBS) [32]. These methods make use of restriction enzymes to isolate CpG- rich regions of the genome... of mapping [51,52], considerations which appear to depend chiefly on the underlying alignment algorithm used. Several BS-seq aligners make use of exist- ing alignment tools, notably Bowtie [53-57] and SOAP package [58], both methods exploiting Burrows...

  13. An efficient prebiotic synthesis of cytosine and uracil

    NASA Technical Reports Server (NTRS)

    Robertson, M. P.; Miller, S. L.

    1995-01-01

    In contrast to the purines, the routes that have been proposed for the prebiotic synthesis of pyrimidines from simple precursors give only low yields. Cytosine can be synthesized from cyanoacetylene and cyanate; the former precursor is produced from a spark discharge in a CH4/N2 mixture and is an abundant interstellar molecule. But this reaction requires relatively high concentrations of cyanate (> 0.1 M), which are unlikely to occur in aqueous media as cyanate is hydrolysed rapidly to CO2 and NH3. An alternative route that has been explored is the reaction of cyanoacetaldehyde (formed by hydrolysis of cyanoacetylene) with urea. But at low concentrations of urea, this reaction produces no detectable quantities of cytosine. Here we show that in concentrated urea solution--such as might have been found in an evaporating lagoon or in pools on drying beaches on the early Earth--cyanoacetaldehyde reacts to form cytosine in yields of 30-50%, from which uracil can be formed by hydrolysis. These reactions provide a plausible route to the pyrimidine bases required in the RNA world.

  14. An efficient prebiotic synthesis of cytosine and uracil

    NASA Astrophysics Data System (ADS)

    Robertson, Michael P.; Miller, Stanley L.

    1995-06-01

    IN contrast to the purines1 3, the routes that have been proposed for the prebiotic synthesis of pyrimidines from simple precursors give only low yields. Cytosine can be synthesized from cyano-acetylene and cyanate4,5; the former precursor is produced from a spark discharge in a CH4/N2 mixture4,5 and is an abundant interstellar molecule6. But this reaction requires relatively high concentrations of cyanate (>0.1 M), which are unlikely to occur in aqueous media as cyanate is hydrolysed rapidly to CO2 and NH3. An alternative route that has been explored7 is the reaction of cyanoacetaldehyde (formed by hydrolysis of cyanoacetylene8) with urea. But at low concentrations of urea, this reaction produces no detectable quantities of cytosine7. Here we show that in concentrated urea solution-such as might have been found in an evaporating lagoon or in pools on drying beaches on the early Earth-cyanoacetaldehyde reacts to form cytosine in yields of 30-50%, from which uracil can be formed by hydrolysis. These reactions provide a plausible route to the pyrimidine bases required in the RNA world9.

  15. Yeast Infection

    MedlinePLUS

    ... in women who have taken antibiotics, are on hormonal contraception, have diabetes and or are pregnant. ? Women who have medical conditions or take medicines which weaken the immune system are at greater risk for yeast Signs and symptoms of yeast vaginitis ? ...

  16. ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616

    EPA Science Inventory

    D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...

  17. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance

    PubMed Central

    Nascimento, Francisco X.; Rossi, Márcio J.; Soares, Cláudio R. F. S.; McConkey, Brendan J.; Glick, Bernard R.

    2014-01-01

    The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications. PMID:24905353

  18. Regulation of Activation Induced Deaminase (AID) by Estrogen.

    PubMed

    Pauklin, Siim

    2016-01-01

    Regulation of Activation Induced Deaminase (AID) by the hormone estrogen has important implications for understanding adaptive immune responses as well as the involvement of AID in autoimmune diseases and tumorigenesis. This chapter describes the general laboratory techniques for analyzing AID expression and activity induced by estrogen, focusing on the isolation and preparation of cells for hormone treatment and the subsequent analysis of AID responsiveness to estrogen at the RNA level and for determining the regulation of AID activity via estrogen by analyzing Ig switch circle transcripts and mutations in switch region loci. PMID:26585164

  19. The ONIOM molecular dynamics method for biochemical applications: Cytidine deaminase

    NASA Astrophysics Data System (ADS)

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2007-03-01

    We developed and implemented the ONIOM-molecular dynamics (MD) method for biochemical applications. The implementation allows the characterization of the functions of the real enzymes taking account of their thermal motion. In this method, the direct MD is performed by calculating the ONIOM energy and gradients of the system on the fly. We describe the first application of this ONOM-MD method to cytidine deaminase. The environmental effects on the substrate in the active site are examined. The ONIOM-MD simulations show that the product uridine is strongly perturbed by the thermal motion of the environment and dissociates easily from the active site.

  20. Structure of the bifunctional dCTP deaminase-dUTPase from Methanocaldococcus jannaschii and its relation to other homotrimeric dUTPases.

    PubMed

    Johansson, Eva; Bjornberg, Olof; Nyman, Per Olof; Larsen, Sine

    2003-07-25

    The bifunctional dCTP deaminase-dUTPase (DCD-DUT) from Methanocaldococcus jannaschii catalyzes the deamination of the cytosine moiety in dCTP and the hydrolysis of the triphosphate moiety forming dUMP, thereby preventing uracil from being incorporated into DNA. The crystal structure of DCD-DUT has been determined to 1.88-A resolution and represents the first known structure of an enzyme catalyzing dCTP deamination. The functional form of DCD-DUT is a homotrimer wherein the subunits are composed of a central distorted beta-barrel surrounded by two beta-sheets and four helices. The trimeric DCD-DUT shows structural similarity to trimeric dUTPases at the tertiary and quaternary levels. There are also additional structural elements in DCD-DUT compared with dUTPase because of a longer primary structure. Four of the five conserved sequence motifs that create the active sites in dUTPase are found in structurally equivalent positions in DCD-DUT. The last 25 C-terminal residues of the 204-residue-long DCD-DUT are not visible in the electron density map, but, analogous to dUTPases, the C terminus is probably ordered, closing the active site upon catalysis. Unlike other enzymes catalyzing the deamination of cytosine compounds, DCD-DUT is not exploiting an enzyme-bound metal ion such as zinc or iron for nucleophile generation. The active site contains two water molecules that are engaged in hydrogen bonds to the invariant residues Ser118, Arg122, Thr130, and Glu145. These water molecules are potential nucleophile candidates in the deamination reaction. PMID:12756253

  1. Yeast Infections

    MedlinePLUS

    Candida is the scientific name for yeast. It is a fungus that lives almost everywhere, including in ... infection that causes white patches in your mouth Candida esophagitis is thrush that spreads to your esophagus, ...

  2. Red yeast

    MedlinePLUS

    ... cholesterol levels and triglycerides. However, this specific product contains large amounts of a chemical similar to "statin" ... this product and other red yeast products that contain statins to be illegal unapproved drugs. However, outside ...

  3. Counting Yeast.

    ERIC Educational Resources Information Center

    Bealer, Jonathan; Welton, Briana

    1998-01-01

    Describes changes to a traditional study of population in yeast colonies. Changes to the procedures include: (1) only one culture per student team; (2) cultures are inoculated only once; and (3) the same tube is sampled daily. (DDR)

  4. Measurement of human placental 5'-AMP deaminase activity by radiometric assay

    SciTech Connect

    Maguire, M.H.; Aronson, D.M.

    1981-09-01

    The level of 5'-AMP deaminase in homogenates of human term placenta has been measured by means of a simple radiometric assay. The assay uses /sup 14/C-labeled AMP as substrate and incorporates conditions of pH and K/sup +/ concentration, which optimize the 5'-AMP deaminase activity, and inhibitors of 5'-nucleotidase and adenosine deaminase to reduce interferences from these enzymes. Assay products are separated by descending paper chromatography and quantitated by liquid scintillation counting. The activity of 5'-AMP deaminase in human term placenta determined by this assay was 474 +/- 37 nmol min/sup -1/ g/sup -1/ at 30/sup o/C and was less than the 5'-AMP phosphatase activity evident under the same assay conditions. The assay is suitable for measurement of 5'-AMP deaminase in extracts of other tissues in which high levels of phosphates and adenosine deaminase preclude assay of 5'-AMP deaminase by such techniques as ultraviolet absorption changes or ammonia estimation.

  5. Arabidopsis PAI gene arrangements, cytosine methylation and expression.

    PubMed Central

    Melquist, S; Luff, B; Bender, J

    1999-01-01

    Previous analysis of the PAI tryptophan biosynthetic gene family in Arabidopsis thaliana revealed that the Wassilewskija (WS) ecotype has four PAI genes at three unlinked sites: a tail-to-tail inverted repeat at one locus (PAI1-PAI4) plus singlet genes at two other loci (PAI2 and PAI3). The four WS PAI genes are densely cytosine methylated over their regions of DNA identity. In contrast, the Columbia (Col) ecotype has three singlet PAI genes at the analogous loci (PAI1, PAI2, and PAI3) and no cytosine methylation. To understand the mechanism of PAI gene duplication at the polymorphic PAI1 locus, and to investigate the relationship between PAI gene arrangement and PAI gene methylation, we analyzed 39 additional ecotypes of Arabidopsis. Six ecotypes had PAI arrangements similar to WS, with an inverted repeat and dense PAI methylation. All other ecotypes had PAI arrangements similar to Col, with no PAI methylation. The novel PAI-methylated ecotypes provide insights into the mechanisms underlying PAI gene duplication and methylation, as well as the relationship between methylation and gene expression. PMID:10471722

  6. Effects of cytosine methylation on DNA charge transport

    NASA Astrophysics Data System (ADS)

    Hihath, Joshua; Guo, Shaoyin; Zhang, Peiming; Tao, Nongjian

    2012-04-01

    The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements.

  7. Investigating the target recognition of DNA cytosine-5 methyltransferase HhaI by library

    E-print Network

    Tawfik, Dan S.

    Investigating the target recognition of DNA cytosine-5 methyltransferase HhaI by library selection-5 methyltransferase M.HhaI with its target DNA (5¢-GCGC-3¢). Crystallog- raphy shows that the active translation and enzymatic reactions in emulsions, was used to investigate the interaction of the DNA cytosine

  8. Yeast Infection (Candidiasis)

    MedlinePLUS

    newsletter | contact Share | Yeast Infection (Candidiasis) Information for adults A A A This is a candida (yeast) infection of the skin folds of the abdomen. Overview Candidiasis, commonly known as a yeast infection, is an infection with the common yeast ( ...

  9. Detection of Cytosine Methylation in Ancient DNA from Five Native American Populations Using Bisulfite Sequencing

    PubMed Central

    Smith, Rick W. A.; Monroe, Cara; Bolnick, Deborah A.

    2015-01-01

    While cytosine methylation has been widely studied in extant populations, relatively few studies have analyzed methylation in ancient DNA. Most existing studies of epigenetic marks in ancient DNA have inferred patterns of methylation in highly degraded samples using post-mortem damage to cytosines as a proxy for cytosine methylation levels. However, this approach limits the inference of methylation compared with direct bisulfite sequencing, the current gold standard for analyzing cytosine methylation at single nucleotide resolution. In this study, we used direct bisulfite sequencing to assess cytosine methylation in ancient DNA from the skeletal remains of 30 Native Americans ranging in age from approximately 230 to 4500 years before present. Unmethylated cytosines were converted to uracils by treatment with sodium bisulfite, bisulfite products of a CpG-rich retrotransposon were pyrosequenced, and C-to-T ratios were quantified for a single CpG position. We found that cytosine methylation is readily recoverable from most samples, given adequate preservation of endogenous nuclear DNA. In addition, our results indicate that the precision of cytosine methylation estimates is inversely correlated with aDNA preservation, such that samples of low DNA concentration show higher variability in measures of percent methylation than samples of high DNA concentration. In particular, samples in this study with a DNA concentration above 0.015 ng/?L generated the most consistent measures of cytosine methylation. This study presents evidence of cytosine methylation in a large collection of ancient human remains, and indicates that it is possible to analyze epigenetic patterns in ancient populations using direct bisulfite sequencing approaches. PMID:26016479

  10. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas

    ClinicalTrials.gov

    2015-03-02

    Adult Anaplastic Astrocytoma; Recurrent Grade III Glioma; Recurrent Grade IV Glioma; Adult Anaplastic Oligodendroglioma; Adult Brain Tumor; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Adult Anaplastic Oligoastrocytoma; Recurrent High Grade Glioma

  11. Transgenerational epigenetic effects of the Apobec1 cytidine deaminase deficiency on testicular germ

    E-print Network

    Transgenerational epigenetic effects of the Apobec1 cytidine deaminase deficiency on testicular heritable epigenetic changes that affect phenotypic variation and disease risk in many species cell tumors (TGCTs) in mice, in part by interacting epigenetically with other TGCT modifier genes

  12. Pericardial Effusion and Adenosine Deaminase False Positivity Due to Parvovirus B19.

    PubMed

    Öner, Taliha; Ocak, Seda; Telhan, Leyla; Hatipoglu, Dilek; Dalgic, Nazan

    2015-09-01

    This case is presented to highlight that one of the causes for massive exudative pericardial effusion in a child may be parvovirus B19, and adenosine deaminase can be falsely positive in such patients. PMID:26376310

  13. Dynamics of UV-excited uracil, thymine, and cytosine

    NASA Astrophysics Data System (ADS)

    Hudock, Hanneli

    The excited state dynamics of nucleic acids has been a subject of much experimental and theoretical interest. Nucleic acid bases readily absorb UV radiation, which can lead to mutagenic dimer formation. The dynamics of UV-excited nucleic acids is an important step in understanding how these dimers form. The pyrimidine bases (uracil, thymine, and cytosine) have been studied with ab initio multiple spawning molecular dynamics and high level electronic structure methods. This work has involved both gas-phase and aqueous dynamics as well as simulation of the time-resolved photoelectron spectrum, transient absorption, fluorescence, and reaction rates. With these findings, complete relaxation mechanisms are proposed for the pyrimidines and comparisons are made directly to experimental results.

  14. Yeast osmoregulation.

    PubMed

    Hohmann, Stefan; Krantz, Marcus; Nordlander, Bodil

    2007-01-01

    Osmoregulation is the active control of the cellular water balance and encompasses homeostatic mechanisms crucial for life. The osmoregulatory system in the yeast Saccharomyces cerevisiae is particularly well understood. Key to yeast osmoregulation is the production and accumulation of the compatible solute glycerol, which is partly controlled by the high osmolarity glycerol (HOG) signaling system. Genetic analyses combined with studies on protein-protein interactions have revealed the wiring scheme of the HOG signaling network, a branched mitogen-activated protein (MAP) kinase (MAPK) pathway that eventually converges on the MAPK Hog1. Hog1 is activated following cell shrinking and controls posttranscriptional processes in the cytosol as well as gene expression in the nucleus. HOG pathway activity can easily and rapidly be controlled experimentally by extracellular stimuli, and signaling and adaptation can be separated by a system of forced adaptation. This makes yeast osmoregulation suitable for studies on system properties of signaling and cellular adaptation via mathematical modeling. Computational simulations and parallel quantitative time course experimentation on different levels of the regulatory system have provided a stepping stone toward a holistic understanding, revealing how the HOG pathway can combine rigorous feedback control with maintenance of signaling competence. The abundant tools make yeast a suitable model for an integrated analysis of cellular osmoregulation. Maintenance of the cellular water balance is fundamental for life. All cells, even those in multicellular organisms with an organism-wide osmoregulation, have the ability to actively control their water balance. Osmoregulation encompasses homeostatic processes that maintain an appropriate intracellular environment for biochemical processes as well as turgor of cells and organism. In the laboratory, the osmoregulatory system is studied most conveniently as a response to osmotic shock, causing rapid and dramatic changes in the extracellular water activity. Those rapid changes mediate either water efflux (hyperosmotic shock), and hence cell shrinkage, or influx (hypoosmotic shock), causing cell swelling. The yeast S. cerevisiae, as a free-living organism experiencing both slow and rapid changes in extracellular water activity, has proven a suitable and genetically tractable experimental system in studying the underlying signaling pathways and regulatory processes governing osmoregulation. Although far from complete, the present picture of yeast osmoregulation is both extensive and detailed (de Nadal et al., 2002; Hohmann, 2002; Klipp et al., 2005). Simulations using mathematical models combined with time course measurements of different molecular processes in signaling and adaptation have allowed elucidation of the first system properties on the yeast osmoregulatory network. PMID:17875410

  15. Raman spectral study of metal-cytosine complexes: A density functional theoretical (DFT) approach

    NASA Astrophysics Data System (ADS)

    Liu, Shuanjiang; Zheng, Guimei; Li, Jianxin

    2011-09-01

    The fluctuation of surface-enhanced Raman scattering (SERS) spectra has been an obstacle to the analysis of the adsorbate on the metal surface. In this paper, we aim at using the density functional theory (DFT) to study the fluctuant Raman spectra of the cytosine molecule which interacts with a coinage metal atom or cation via N 1 and N 3 sites. The results show that the adsorption site strongly influences the Raman spectral property of cytosine molecule, especially the relative intensity of some bands. In addition, the SERS spectra of cytosine which is adsorbed on the gold, silver, and copper electrodes are measured, and the possible orientation and adsorption site of the cytosine molecule adsorbed on metal electrodes surface are proposed with the help of DFT simulations.

  16. Vaginal Yeast Infection

    MedlinePLUS

    ... Content Marketing Share this: Main Content Area Vaginal Yeast Infection Vaginal yeast infection, or vulvovaginal candidiasis, is a common cause ... all adult women have had at least one "yeast infection" in their lifetime, according to the Centers ...

  17. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study.

    PubMed

    Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Shoifet, Evgeni; Meurer, Florian; Verevkin, Sergey P; Schick, Christoph; Held, Christoph

    2015-09-17

    The thermochemical properties available in the literature for adenine and cytosine are in disarray. A new condensed phase standard (p° = 0.1 MPa) molar enthalpy of formation at T = 298.15 K was measured by using combustion calorimetry. New molar enthalpies of sublimation were derived from the temperature dependence of vapor pressure measured by transpiration and by the quarz-crystal microbalance technique. The heat capacities of crystalline adenine and cytosine were measured by temperature-modulated DSC. Thermodynamic data on adenine and cytosine available in the literature were collected, evaluated, and combined with our experimental results. Thus, the evaluated collection of data together with the new experimental results reported here has helped to resolve contradictions in the available enthalpies of formation. A set of reliable thermochemical data is recommended for adenine and cytosine for further thermochemical calculations. Quantum-chemical calculations of the gas phase molar enthalpies of formation of adenine and cytosine have been performed by using the G4 method and results were in excellent agreement with the recommended experimental data. The standard molar entropies of formation and the standard molar Gibbs functions of formation in crystal and gas state have been calculated. Experimental vapor-pressure data measured in this work were used to estimate pure-component PC-SAFT parameters. This allowed modeling solubility of adenine and cytosine in water over the temperature interval 278-310 K. PMID:26317826

  18. Impaired germinal center maturation in adenosine deaminase deficiency.

    PubMed

    Aldrich, Melissa B; Chen, Wilma; Blackburn, Michael R; Martinez-Valdez, Hector; Datta, Surjit K; Kellems, Rodney E

    2003-11-15

    Mice deficient in the enzyme adenosine deaminase (ADA) have small lymphoid organs that contain reduced numbers of peripheral lymphocytes, and they are immunodeficient. We investigated B cell deficiency in ADA-deficient mice and found that B cell development in the bone marrow was normal. However, spleens were markedly smaller, their architecture was dramatically altered, and splenic B lymphocytes showed defects in proliferation and activation. ADA-deficient B cells exhibited a higher propensity to undergo B cell receptor-mediated apoptosis than their wild-type counterparts, suggesting that ADA plays a role in the survival of cells during Ag-dependent responses. In keeping with this finding, IgM production by extrafollicular plasmablast cells was higher in ADA-deficient than in wild-type mice, thus indicating that activated B cells accumulate extrafollicularly as a result of a poor or nonexistent germinal center formation. This hypothesis was subsequently confirmed by the profound loss of germinal center architecture. A comparison of levels of the ADA substrates, adenosine and 2'-deoxyadenosine, as well resulting dATP levels and S-adenosylhomocysteine hydrolase inhibition in bone marrow and spleen suggested that dATP accumulation in ADA-deficient spleens may be responsible for impaired B cell development. The altered splenic environment and signaling abnormalities may concurrently contribute to a block in B cell Ag-dependent maturation in ADA-deficient mouse spleens. PMID:14607964

  19. Function of murine adenosine deaminase in the gastrointestinal tract.

    PubMed

    Xu, P A; Kellems, R E

    2000-03-24

    Adenosine deaminase (ADA) deficiency in humans leads to a combined immunodeficiency characterized by severe T and B cell lymphopenia. ADA-deficient humans also display defective development of gut-associated lymphoid tissues (GALT). They lack lymphoid cells, and the Peyer's patches are without germinal centers. In mice, ADA-deficient fetuses die perinatally due to liver damage, but they also exhibit pathology in the thymus, spleen, and the small intestine. The GI phenotype associated with ADA-deficient humans prompted us to examine the effect of ADA-deficiency on mouse small intestine tissue. The work presented here focuses on understanding the physiological role of ADA in the GI tract, using ADA-deficient mice rescued from perinatal lethality by restoring Ada expression to trophoblast cells. Histologically and immunologically, the GALT was compromised at all sites in ADA-/- mice, with the most dramatic changes seen in the Peyer's patches. Profound disturbances in purine metabolism were detected in all the gastrointestinal tissues. In particular, adenosine and deoxyadenosine, the ADA substrates, increased markedly while the product inosine decreased. The activity of S-adenosylhomocysteine hydrolase decreased throughout the GI tract, indicating a possible disruption of cellular transmethylation and activation of apoptotic pathways. There were also disturbances in the purine metabolic pathway with a decrease in the production of downstream nucleosides hypoxanthine and xanthine. PMID:10720488

  20. ADA (adenosine deaminase) gene therapy enters the competition

    SciTech Connect

    Culliton, B.J.

    1990-08-31

    Around the world, some 70 children are members of a select and deadly club. Born with an immune deficiency so severe that they will die of infection unless their immune systems can be repaired, they have captured the attention of would-be gene therapists who believe that a handful of these kids--the 15 or 20 who lack functioning levels of the enzyme adenosine deaminase (ADA)--could be saved by a healthy ADA gene. A team of gene therapists is ready to put the theory to the test. In April 1987, a team of NIH researchers headed by R. Michael Blaese and W. French Anderson came up with the first formal protocol to introduce a healthy ADA gene into an unhealthy human. After 3 years of line-by-line scrutiny by five review committees, they have permission to go ahead. Two or three children will be treated in the next year, and will be infused with T lymphocytes carrying the gene for ADA. If the experiment works, the ADA gene will begin producing normal amounts of ADA. An interesting feature of ADA deficiency, that makes it ideal for initial gene studies, is that the amount of ADA one needs for a healthy immune system is quite variable. Hence, once inside a patient's T cells, the new ADA gene needs only to express the enzyme in moderate amounts. No precise gene regulation is necessary.

  1. The ONIOM molecular dynamics method for biochemical applications: cytidine deaminase

    SciTech Connect

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2007-03-22

    Abstract We derived and implemented the ONIOM-molecular dynamics (MD) method for biochemical applications. The implementation allows the characterization of the functions of the real enzymes taking account of their thermal motion. In this method, the direct MD is performed by calculating the ONIOM energy and gradients of the system on the fly. We describe the first application of this ONOM-MD method to cytidine deaminase. The environmental effects on the substrate in the active site are examined. The ONIOM-MD simulations show that the product uridine is strongly perturbed by the thermal motion of the environment and dissociates easily from the active site. TM and MA were supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.

  2. A Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea

    SciTech Connect

    Randau, L.; Stanley, B; Kohlway, A; Mechta, S; Xiong, Y; Söll, D

    2009-01-01

    All canonical transfer RNAs (tRNAs) have a uridine at position 8, involved in maintaining tRNA tertiary structure. However, the hyperthermophilic archaeon Methanopyrus kandleri harbors 30 (out of 34) tRNA genes with cytidine at position 8. Here, we demonstrate C-to-U editing at this location in the tRNA's tertiary core, and present the crystal structure of a tRNA-specific cytidine deaminase, CDAT8, which has the cytidine deaminase domain linked to a tRNA-binding THUMP domain. CDAT8 is specific for C deamination at position 8, requires only the acceptor stem hairpin for activity, and belongs to a unique family within the cytidine deaminase-like superfamily. The presence of this C-to-U editing enzyme guarantees the proper folding and functionality of all M. kandleri tRNAs.

  3. Effects of cytosine arabinoside on human leukemia cells.

    PubMed

    Crisp, L B; Smith, S M; Mathers, M A; Young, G A; Lyons, S D; Christopherson, R I

    1996-09-01

    Cytosine arabinoside (Ara-C) is used to treat leukemias, with complete remission induced by combination chemotherapy in approximately 70% of cases of acute myelogenous leukemia (AML). Ara-CTP acts as a competitive inhibitor of DNA polymerase and may also be incorporated into DNA. Accumulation of deoxyribonucleoside triphosphates (dNTPs) induced by Ara-C may indicate disruption of DNA synthesis in susceptible leukemia cells. A procedure has been developed for the quantification of Ara-CTP and dNTPs from small samples of leukaemia cells from patients (4 x 10(7) cells) activated with concanavalin A (10 micrograms/ml, 48 hr) and grown in the presence of [32P]orthophosphate (1.1 microM, 9 x 10(6) Ci/mol, 16 hr). The susceptibilities to Ara-C of the human leukemia cell lines CCRF-CEM (IC50 = 6.30 nM), CCRF-HSB-2 (IC50 = 10.4 nM) and MOLT-4 (IC50 = 10.0 nM) may be correlated with their abilities to accumulate high concentrations of Ara-CTP (> 1000 amol/cell) with increases of between 1.3- and 3.4-fold in dATP, dGTP and dTTP for the four cell lines, while dCTP decreased between 0.23- and 0.78-fold. By contrast, an Ara-C-resistant derivative of HL-60 cells (IC50 = 400 nM) accumulated only low concentrations of Ara-CTP (71 amol/cell) without significant changes in dNTPs. High concentrations of Ara-CTP in leukemia cells induce accumulations of dATP, dGTP and dTTP due to inhibition of DNA synthesis, and depletion of dCTP. This imbalance in the pools of the four dNTPs could lead to genetic miscoding and cell death. PMID:8930129

  4. Human adenosine deaminase: properties and turnover in cultured T and B lymphoblasts

    SciTech Connect

    Daddona, P.E.

    1981-12-10

    In this study, the properties and rate of turnover of adenosine deaminase are compared in cultured human T and B lymphoblast cell lines. 1) Relative to B lymphoblasts, the level of adenosine deaminase activity in extracts of T lymphoblast cell lines (MOLT-4, RPMI-8402, CCRF-CEM, and CCRF-HSB-2) is elevated 7-14-fold and differs by 2-fold between the C cell lines. 2) In both T and B lymphoblast extracts, the enzyme is apparently identical, based on K/sub m/ for adenosine and deoxyadenosine, K/sub i/ for inosine, V/sub max/ for adenosine, /sub S20,w/, isoelectric pH, and heat stability. Furthermore, by radioimmunoassay, the quantity of adenosine deaminase-immunocreative protein is proportional to the level of enzyme activity in all cell lines studies. 3) Using a purification and selective immunoprecipitation technique, the enzyme turnover could be assessed in cell lines labeled with (/sup 35/S)methionine. The apparent rate of adenosine deaminase synthesis, relative to total protein, is 2-fold faster in both T cell lines (RPMI-8402 and CCRF-CEM) than in the B cell lines (MGL-8 and GM-130). The apparent half-life (tsub1/2) for the enzyme degradation is 19 and 39 h, respectively, in CCFR-CEM and RPMI-8402, while the tsub1/2 in both B cell lines is 7-9 h. From the net rate of synthesis and degradation, the T cell lines, respectively, exhibit approximately a 6- and 12-fold difference in adenosine deaminase turnover relative to B cells, consistent with the observed differences in enzyme activity. This study suggests that while adenosine deaminase is apparently identical in both T and B lymphoblast cell lines, alterations in both the rate of enzyme synthesis and degradation contribute to its high steady state level in T cells.

  5. YEAST GENETICS Fred Winston

    E-print Network

    Winston, Fred

    YEAST GENETICS Fred Winston 7.1 Introduction Key Concepts · Genetic studies of the yeast. The yeast Saccharomyces cerevisiae is an ideal experimental organism. It is a microorganism that has a fast biology. Yeast has been the focus of extensive studies in many aspects of molecular biology. These areas

  6. Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes

    PubMed Central

    Dhar, Alok; Polev, Dmitrii E.; Masharsky, Alexey E.; Rogozin, Igor B.; Pavlov, Youri I.

    2015-01-01

    Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells. PMID:25941824

  7. Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes.

    PubMed

    Lada, Artem G; Kliver, Sergei F; Dhar, Alok; Polev, Dmitrii E; Masharsky, Alexey E; Rogozin, Igor B; Pavlov, Youri I

    2015-05-01

    Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells. PMID:25941824

  8. Inhibition of AMP deaminase as therapeutic target in cardiovascular pathology.

    PubMed

    Zabielska, Magdalena A; Borkowski, Tomasz; Slominska, Ewa M; Smolenski, Ryszard T

    2015-08-01

    AMP deaminase (AMPD; EC 3.5.4.6) catalyzes hydrolysis of the amino group from the adenine ring of AMP resulting in production of inosine 5'-monophosphate (IMP) and ammonia. This reaction helps to maintain healthy cellular energetics by removing excess AMP that accumulates in energy depleted cells. Furthermore, AMPD permits the synthesis of guanine nucleotides from the larger adenylate pool. This enzyme competes with cytosolic 5'-nucleotidases (c5NT) for AMP. Adenosine, a product of c5NT is a vasodilator, antagonizes inotropic effects of catecholamines and exerts anti-platelet, anti-inflammatory and immunosuppressive activities. The ratio of AMPD/c5NT defines the amount of adenosine produced in adenine nucleotide catabolic pathway. Inhibition of AMPD could alter this ratio resulting in increased adenosine production. Besides the potential effect on adenosine production, elevation of AMP due to inhibition of AMPD could also lead to activation of AMP regulated protein kinase (AMPK) with myriad of downstream events including enhanced energetic metabolism, mitochondrial biogenesis and cytoprotection. While the benefits of these processes are well appreciated in cells such as skeletal or cardiac myocytes its role in protection of endothelium could be even more important. Therapeutic use of AMPD inhibition has been limited due to difficulties with obtaining compounds with adequate characteristics. However, endothelium seems to be the easiest target as effective inhibition of AMPD could be achieved at much lower concentration than in the other types of cells. New generation of AMPD inhibitors has recently been established and its testing in context of endothelial and organ protection could provide important basic knowledge and potential therapeutic tools. PMID:26321268

  9. Autoimmune Dysregulation and Purine Metabolism in Adenosine Deaminase Deficiency

    PubMed Central

    Sauer, Aisha Vanessa; Brigida, Immacolata; Carriglio, Nicola; Aiuti, Alessandro

    2012-01-01

    Genetic defects in the adenosine deaminase (ADA) gene are among the most common causes for severe combined immunodeficiency (SCID). ADA-SCID patients suffer from lymphopenia, severely impaired cellular and humoral immunity, failure to thrive, and recurrent infections. Currently available therapeutic options for this otherwise fatal disorder include bone marrow transplantation (BMT), enzyme replacement therapy with bovine ADA (PEG-ADA), or hematopoietic stem cell gene therapy (HSC-GT). Although varying degrees of immune reconstitution can be achieved by these treatments, breakdown of tolerance is a major concern in ADA-SCID. Immune dysregulation such as autoimmune hypothyroidism, diabetes mellitus, hemolytic anemia, and immune thrombocytopenia are frequently observed in milder forms of the disease. However, several reports document similar complications also in patients on long-term PEG-ADA and after BMT or GT treatment. A skewed repertoire and decreased immune functions have been implicated in autoimmunity observed in certain B-cell and/or T-cell immunodeficiencies, but it remains unclear to what extent specific mechanisms of tolerance are affected in ADA deficiency. Herein we provide an overview about ADA-SCID and the autoimmune manifestations reported in these patients before and after treatment. We also assess the value of the ADA-deficient mouse model as a useful tool to study both immune and metabolic disease mechanisms. With focus on regulatory T- and B-cells we discuss the lymphocyte subpopulations particularly prone to contribute to the loss of self-tolerance and onset of autoimmunity in ADA deficiency. Moreover we address which aspects of immune dysregulation are specifically related to alterations in purine metabolism caused by the lack of ADA and the subsequent accumulation of metabolites with immunomodulatory properties. PMID:22969765

  10. Structural and Metabolic Specificity of Methylthiocoformycin for Malarial Adenosine Deaminases

    SciTech Connect

    Ho, M.; Cassera, M; Madrid, D; Ting, L; Tyler, P; Kim, K; Almo, S; Schramm, V

    2009-01-01

    Plasmodium falciparum is a purine auxotroph requiring hypoxanthine as a key metabolic precursor. Erythrocyte adenine nucleotides are the source of the purine precursors, making adenosine deaminase (ADA) a key enzyme in the pathway of hypoxanthine formation. Methylthioadenosine (MTA) is a substrate for most malarial ADAs, but not for human ADA. The catalytic site specificity of malarial ADAs permits methylthiocoformycin (MT-coformycin) to act as a Plasmodium-specific transition state analogue with low affinity for human ADA. The structural basis for MTA and MT-coformycin specificity in malarial ADAs is the subject of speculation. Here, the crystal structure of ADA from Plasmodium vivax (PvADA) in a complex with MT-coformycin reveals an unprecedented binding geometry for 5?-methylthioribosyl groups in the malarial ADAs. Compared to malarial ADA complexes with adenosine or deoxycoformycin, 5?-methylthioribosyl groups are rotated 130 degrees. A hydrogen bonding network between Asp172 and the 3?-hydroxyl of MT-coformycin is essential for recognition of the 5?-methylthioribosyl group. Water occupies the 5?-hydroxyl binding site when MT-coformycin is bound. Mutagenesis of Asp172 destroys the substrate specificity for MTA and MT-coformycin. Kinetic, mutagenic, and structural analyses of PvADA and kinetic analysis of five other Plasmodium ADAs establish the unique structural basis for its specificity for MTA and MT-coformycin. Plasmodium gallinaceum ADA does not use MTA as a substrate, is not inhibited by MT-coformycin, and is missing Asp172. Treatment of P. falciparum cultures with coformycin or MT-coformycin in the presence of MTA is effective in inhibiting parasite growth.

  11. The effect of sequence context on the activity of cytosine DNA glycosylases.

    PubMed

    Kimber, Scott T; Brown, Tom; Fox, Keith R

    2015-11-10

    We have prepared single (N204D) and double (N204D:L272A) mutants of human uracil DNA glycosylase (hUDG), generating two cytosine DNA glycosylases (hCDG and hCYDG). Both these enzymes are able to excise cytosine (but not 5-methylcytosine), when this base is part of a mismatched base pair. hCDG is more active than the equivalent E. coli enzyme (eCYDG) and also has some activity when the cytosine is paired with guanine, unlike eCYDG. hCDG also has some activity against single stranded DNA, while having poor activity towards an unnatural base pair that forces the cytosine into an extrahelical conformation (in contrast to eCYDG for which a bulky base enhances the enzyme's activity). We also examined how sequence context affects the activity of these enzymes, determining the effect of flanking base pairs on cleavage efficiency. An abasic site or a hexaethylene glycol linker placed opposite the target cytosine, also causes an increase in activity compared with an AC mismatch. Flanking an AC mismatch with GC base pairs resulted in a 100-fold decrease in excision activity relative to flanking AT base pairs and the 5'-flanking base pair had a greater effect on the rate of cleavage. However, this effect is not simply due to the stability of the flanking base pairs as adjacent GT mismatches also produce low cleavage efficiency. PMID:26463365

  12. Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction.

    PubMed

    Asselman, Jana; De Coninck, Dieter I M; Vandegehuchte, Michiel B; Jansen, Mieke; Decaestecker, Ellen; De Meester, Luc; Vanden Bussche, Julie; Vanhaecke, Lynn; Janssen, Colin R; De Schamphelaere, Karel A C

    2015-05-01

    The authors characterized global cytosine methylation levels in 2 different genotypes of the ecotoxicological model organism Daphnia magna after exposure to a wide array of biotic and abiotic environmental stressors. The present study aimed to improve the authors' understanding of the role of cytosine methylation in the organism's response to environmental conditions. The authors observed a significant genotype effect, an environment effect, and a genotype?×?environment effect. In particular, global cytosine methylation levels were significantly altered after exposure to Triops predation cues, Microcystis, and sodium chloride compared with control conditions. Significant differences between the 2 genotypes were observed when animals were exposed to Triops predation cues, Microcystis, Cryptomonas, and sodium chloride. Despite the low global methylation rate under control conditions (0.49-0.52%), global cytosine methylation levels upon exposure to Triops demonstrated a 5-fold difference between the genotypes (0.21% vs 1.02%). No effects were found in response to arsenic, cadmium, fish, lead, pH of 5.5, pH of 8, temperature, hypoxia, and white fat cell disease. The authors' results point to the potential role of epigenetic effects under changing environmental conditions such as predation (i.e., Triops), diet (i.e., Cryptomonas and Microcystis), and salinity. The results of the present study indicate that, despite global cytosine methylation levels being low, epigenetic effects may be important in environmental studies on Daphnia. PMID:25639773

  13. Inheritance and Variation of Cytosine Methylation in Three Populus Allotriploid Populations with Different Heterozygosity

    PubMed Central

    Suo, Yujing; Dong, Chunbo; Kang, Xiangyang

    2015-01-01

    DNA methylation is an epigenetic mechanism with the potential to regulate gene expression and affect plant phenotypes. Both hybridization and genome doubling may affect the DNA methylation status of newly formed allopolyploid plants. Previous studies demonstrated that changes in cytosine methylation levels and patterns were different among individual hybrid plant, therefore, studies investigating the characteristics of variation in cytosine methylation status must be conducted at the population level to avoid sampling error. In the present study, an F1 hybrid diploid population and three allotriploid populations with different heterozygosity [originating from first-division restitution (FDR), second-division restitution (SDR), and post-meiotic restitution (PMR) 2n eggs of the same female parent] were used to investigate cytosine methylation inheritance and variation relative to their common parents using methylation-sensitive amplification polymorphism (MSAP). The variation in cytosine methylation in individuals in each population exhibited substantial differences, confirming the necessity of population epigenetics. The total methylation levels of the diploid population were significantly higher than in the parents, but those of the three allotriploid populations were significantly lower than in the parents, indicating that both hybridization and polyploidization contributed to cytosine methylation variation. The vast majority of methylated status could be inherited from the parents, and the average percentages of non-additive variation were 6.29, 3.27, 5.49 and 5.07% in the diploid, FDR, SDR and PMR progeny populations, respectively. This study lays a foundation for further research on population epigenetics in allopolyploids. PMID:25901359

  14. Paradoxical expression of adenosine deaminase in T cells cultured from a patient with adenosine deaminase deficiency and combine immunodeficiency.

    PubMed Central

    Arredondo-Vega, F X; Kurtzberg, J; Chaffee, S; Santisteban, I; Reisner, E; Povey, M S; Hershfield, M S

    1990-01-01

    T lymphocytes cultured from a patient (T.D.) with adenosine deaminase (ADA) deficiency expressed ADA activity in the normal range, inconsistent with her severe immunodeficiency, metabolic abnormalities, and with the absence of ADA activity in her B lymphocytes and other nucleated hematopoietic cells. ADA from T.D. T cells had normal Km, heat stability, and sensitivity to ADA inhibitors. Examination of HLA phenotype and polymorphic DNA loci indicated that T.D. was neither chimeric nor a genetic mosaic. Amplified and subcloned ADA cDNA from ADA+ T.D. T cells was shown by allele-specific oligonucleotide hybridization to possess the same mutations (Arg101----Trp, Arg211----His) previously found in the ADA-T.D. B cell line GM 2606 (Akeson, A. L., D. A. Wiginton, M. R. Dusing, J. C. States, and J. J. Hutton. 1988. J. Biol. Chem. 263:16291-16296). Our findings suggest that one of these mutant alleles can be expressed selectively in IL-2-dependent T cells as stable, active enzyme. Cultured T cells from other patients with the Arg211----His mutation did not express significant ADA activity, while some B cell lines from a patient with an Arg101----Gln mutation have been found to express normal ADA activity. We speculate that Arg101 may be at a site that determines degradation of ADA by a protease that is under negative control by IL-2 in T cells, and is variably expressed in B cells. Il-2 might increase ADA expression in T cells of patients who possess mutations of Arg101. Images PMID:1974554

  15. Ionization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations

    SciTech Connect

    Kostko, Oleg; Bravaya, Ksenia; Krylov, Anna; Ahmed, Musahid

    2009-12-14

    We report a combined theoretical and experimental study of ionization of cytosine monomers and dimers. Gas-phase molecules are generated by thermal vaporization of cytosine followed by expansion of the vapor in a continuous supersonic jet seeded in Ar. The resulting species are investigated by single photon ionization with tunable vacuum-ultraviolet (VUV) synchrotron radiation and mass analyzed using reflectron mass spectrometry. Energy onsets for the measured photoionization efficiency (PIE) spectra are 8.60+-0.05 eV and 7.6+-0.1 eV for the monomer and the dimer, respectively, and provide an estimate for the adiabatic ionization energies (AIE). The first AIE and the ten lowest vertical ionization energies (VIEs) for selected isomers of cytosine dimer computed using equation-of-motion coupled-cluster (EOM-IP-CCSD) method are reported. The comparison of the computed VIEs with the derivative of the PIE spectra, suggests that multiple isomers of the cytosine dimer are present in the molecular beam. The calculations reveal that the large red shift (0.7 eV) of the first IE of the lowest-energy cytosine dimer is due to strong inter-fragment electrostatic interactions, i.e., the hole localized on one of the fragments is stabilized by the dipole moment of the other. A sharp rise in the CH+ signal at 9.20+-0.05 eV is ascribed to the formation of protonated cytosine by dissociation of the ionized dimers. The dominant role of this channel is supported by the computed energy thresholds for the CH+ appearance and the barrierless or nearly barrierless ionization-induced proton transfer observed for five isomers of the dimer.

  16. SELECTIVE IMMUNOTOXIC EFFECTS IN MICE TREATED WITH THE ADENOSINE DEAMINASE INHIBITOR 2-DEOXYCOFORMYCIN (JOURNAL VERSION)

    EPA Science Inventory

    Mice given the adenosine deaminase inhibitor 2-deoxycoformycin, for five days were evaluated 24 h, 72 h and 6 days after the final dose. Spleen weight was decreased for up to 6 days after treatment. The number and relative percentage of circulating lymphocytes were decreased 24 a...

  17. Studies on the porphobilinogen deaminase–uroporphyrinogen cosynthetase system of cultured soya-bean cells

    PubMed Central

    Llambías, Elena B. C.; Batlle, Alcira M. Del C.

    1971-01-01

    1. Porphobilinogenase was isolated and purified from soya-bean callus tissue; its components, porphobilinogen deaminase and uroporphyrinogen isomerase, were separated and purified. 2. The purified porphobilinogenase was resolved into two bands on starch-gel electrophoresis. The molecular weights of porphobilinogenase, deaminase and isomerase fractions were determined by the gel-filtration method. Porphobilinogenase activity was affected by the presence of air; uroporphyrinogens were only formed under anaerobic conditions, although substrate consumption was the same in the absence of oxygen as in its presence. 3. pH-dependence of both porphobilinogenase and deaminase was the same and a sharp optimum at pH 7.2 was obtained. Isomerase was heat-labile, but the presence of ammonium ions or porphobilinogen afforded some protection against inactivation. The action of several compounds added to the system was studied. Cysteine, thioglycollate, ammonium ions and hydroxylamine inhibited porphobilinogenase; certain concentrations of sodium and magnesium salts enhanced activity; some dicarboxylic acids and 2-methoxy-5-nitrotropone inhibited the deaminase. 4. ?-Aminolaevulate and ethionine in the culture media stimulated porphyrin synthesis and increased porphobilinogenase activity, whereas iron deficiency resulted in porphyrin accumulation. 5. The development of chlorophyll and porphobilinogenase on illumination of dark-grown callus was followed. 6. A hypothetical scheme is suggested for the enzymic synthesis of uroporphyrinogens from porphobilinogen. PMID:5165654

  18. IMMUNE FUNCTION IN MICE EXPOSED TO THE ADENOSINE DEAMINASE INHIBITOR 2'-DEOXYCOFORMYCIN DURING IMMUNE SYSTEM DEVELOPMENT

    EPA Science Inventory

    Pregnant mice were administered 2'-deoxycoformycin (2dCF), a potent inhibitor of adensoine deaminase activity, by intraperitoneal injection on day 7 or 15 of gestation or from day 8-12 or 14-18 of gestation. A total dose of 0, 0.5 or 2.0 micrograms 2dCF/g of maternal body weight ...

  19. The Effect of Acute Exercise upon Adenosin Deaminase Oxidant and Antioxidant Activity

    ERIC Educational Resources Information Center

    Kafkas, M. Emin; Karabulut, Aysun Bay; Sahin, Armagan; Otlu, Onder; Savas, Seyfi; Aytac, Aylin

    2012-01-01

    The purpose of this study was to determine the changes of MDA, glutation (GSH), Adenozine deaminase (ADA) and superoxidase dismutaze (SOD) levels with exercise training in obese middle-aged women (body mass index, MMI [greater than or equal to] 30.0). Twelve obese middle-aged women participated in this study. The descriptive statistics of some of…

  20. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms

    PubMed Central

    Alonso, Conchita; Pérez, Ricardo; Bazaga, Pilar; Herrera, Carlos M.

    2015-01-01

    DNA cytosine methylation is a widespread epigenetic mechanism in eukaryotes, and plant genomes commonly are densely methylated. Genomic methylation can be associated with functional consequences such as mutational events, genomic instability or altered gene expression, but little is known on interspecific variation in global cytosine methylation in plants. In this paper, we compare global cytosine methylation estimates obtained by HPLC and use a phylogenetically-informed analytical approach to test for significance of evolutionary signatures of this trait across 54 angiosperm species in 25 families. We evaluate whether interspecific variation in global cytosine methylation is statistically related to phylogenetic distance and also whether it is evolutionarily correlated with genome size (C-value). Global cytosine methylation varied widely between species, ranging between 5.3% (Arabidopsis) and 39.2% (Narcissus). Differences between species were related to their evolutionary trajectories, as denoted by the strong phylogenetic signal underlying interspecific variation. Global cytosine methylation and genome size were evolutionarily correlated, as revealed by the significant relationship between the corresponding phylogenetically independent contrasts. On average, a ten-fold increase in genome size entailed an increase of about 10% in global cytosine methylation. Results show that global cytosine methylation is an evolving trait in angiosperms whose evolutionary trajectory is significantly linked to changes in genome size, and suggest that the evolutionary implications of epigenetic mechanisms are likely to vary between plant lineages. PMID:25688257

  1. Zinc enhancement of cytidine deaminase activity highlights a potential allosteric role of loop-3 in regulating APOBEC3 enzymes

    PubMed Central

    Marx, Ailie; Galilee, Meytal; Alian, Akram

    2015-01-01

    The strong association of APOBEC3 cytidine deaminases with somatic mutations leading to cancers accentuates the importance of their tight intracellular regulation to minimize cellular transformations. We reveal a novel allosteric regulatory mechanism of APOBEC3 enzymes showing that APOBEC3G and APOBEC3A coordination of a secondary zinc ion, reminiscent to ancestral deoxycytidylate deaminases, enhances deamination activity. Zinc binding is pinpointed to loop-3 which whilst highly variable harbors a catalytically essential and spatially conserved asparagine at its N-terminus. We suggest that loop-3 may play a general role in allosterically tuning the activity of zinc-dependent cytidine deaminase family members. PMID:26678087

  2. Control of adenosine deaminase levels in human lymphoblasts.

    PubMed

    Daddona, P E; Kelley, W N

    1982-01-01

    High levels of adenosine deaminase (ADA) activity have been associated with normal T cell differentiation and T cell disease, such as acute lymphoblastic leukemia; however, possible mechanisms controlling the level of this enzyme have not been explored. In this study, the properties and rate of turnover of ADA are compared in cultured human T and B lymphoblast cell lines. (1) Relative to B lymphoblasts, the level of ADA activity in extracts of T lymphoblast cell lines (MOLT-4, RPMI-8402, CCRF-CEM and CCRF-HSB-2) is elevated 7- to 14-fold and differs by 2-fold among the T-cell lines. (2) In T and B lymphoblast extracts, the enzyme is apparently identical based on Km for adenosine and deoxyadenosine, Ki for inosine, Vmax for adenosine, S20w, isoelectric pH, and heat stability. Further, by radioimmunoassay the quantity of ADA immunoreactive protein is proportional to the level of enzyme activity in all cell lines studied. (3) Using a purification and selective immunoprecipitation technique, the enzyme turnover could be assessed in cell lines labeled with [35S]methionine. The apparent rate of ADA synthesis, relative to total protein, is 2-fold faster in both T cell lines (RPMI-8402 and CCRF-CEM) than in the B cell lines (MGL-8 and GM-130). The apparent half-life (t1/2) for the enzyme degradation is 19 and 39 hr, respectively, for CCRF-CEM and RPMI-8402, while the t1/2 for both B cell lines is 7-9 hr. From the net rate of synthesis and degradation, the T cell lines exhibit a 6- and 12-fold difference in ADA turnover relative to B cells, consistent with the observed differences in enzyme activity. (4) The level of ADA (activity and/or protein) in cultured T or B lymphoblasts is not influenced by either substrates or products of the ADA reaction or an ADA inhibitor or a selected group of immunosuppressive drugs added to these cells in culture. These studies indicate that while ADA is apparently identical in all T and B lymphoblasts, alterations in both the rate of ADA synthesis and degradation lead to its accumulation and high steady-state level in T cells. PMID:6981287

  3. Serum Adenosine Deaminase as Inflammatory Marker in Rheumatoid Arthritis

    PubMed Central

    Vinapamula, Kiranmayi S.; Bhattaram, Siddartha Kumar; Bitla, Aparna R.; Manohar, Suchitra M.

    2015-01-01

    Background Rheumatoid arthritis (RA) is a prototypical inflammatory joint disease. The degree of inflammation is reflected in the extent of joint damage, which further has influence on the quality of life of patients with RA, including risk of atherosclerosis. Hence, besides clinical indices, estimation of degree of inflammation using biochemical markers helps in effecting optimum treatment strategies. C-reactive protein (CRP) is established as an inflammatory marker in patients with RA. Adenosine deaminase (ADA), an enzyme of purine metabolism is considered as a marker of cell mediated immunity and has also been suggested as a marker of inflammatory process in RA. The present study attempts to study the efficacy of serum ADA activity as an inflammatory marker in RA. Materials and Methods Forty six RA patients and forty six age and sex matched healthy controls were included in the study. ADA activity and high sensitivity C-reactive protein (hsCRP) levels in serum were measured in all the subjects. Statistical analyses were done using Medcalc statistical software version 12.2.2. Results ADA activity and hsCRP levels were increased in RA patients compared to controls (p<0.0001 and 0.0001 respectively). Significant positive correlation was obtained between hsCRP and ADA in patients (r=0.316, p=0.033). Receiver operating characteristic (ROC) curve analysis revealed statistically significant area under curve (AUC) for ADA that is comparable to that obtained for hsCRP (0.776, p<0.0001 for ADA, 0.726, p<0.0001 for hsCRP). Similar diagnostic utility was obtained with ROC generated cut-off value of 25.3 IU/L (82.6% sensitivity and 65.2% specificity) and with control mean value of 23.48 IU/L (86.96% sensitivity and 54.35% specificity) for ADA. Conclusion Findings of the present study indicate the importance of ADA as a marker of inflammation. Considering the higher sensitivity obtained, we propose control mean (23.48 IU/L) as a cut-off for serum ADA activity as an inflammatory marker. Owing to the simplicity and also the cost effectiveness of ADA assay, ADA may be recommended as a marker of inflammation in patients with RA. However, further larger and well controlled studies are needed to establish its role as inflammatory marker. PMID:26500897

  4. Vaginal Yeast Infections (For Parents)

    MedlinePLUS

    ... Best Self Smart Snacking Losing Weight Safely Vaginal Yeast Infections KidsHealth > Teens > Infections > Fungal Infections > Vaginal Yeast ... side effect of taking antibiotics. What Is a Yeast Infection? A yeast infection is a common infection ...

  5. Gas Phase Structure of Metal Mediated (Cytosine)2Ag(+) Mimics the Hemiprotonated (Cytosine)2H(+) Dimer in i-Motif Folding.

    PubMed

    Berdakin, Matias; Steinmetz, Vincent; Maitre, Philippe; Pino, Gustavo A

    2014-05-16

    The study of metal ion-DNA interaction aiming to understand the stabilization of artificial base pairing and a number of noncanonical motifs is of current interest, due to their potential exploitation in developing new technological devices and expanding the genetic code. A successful strategy has been the synthesis of metal-mediated base pairs, in which a coordinative bond to a central metal cation replaces a H-bond in a natural pair. In this work, we characterized, for the first time, the gas phase structure of the cytosine···Ag(+)···cytosine (C-Ag(+)-C) complex by means of InfraRed-MultiPhoton-Dissociation (IR-MPD) spectroscopy and theoretical calculation. The IR-spectrum was confidently assigned to one structure with the Ag(+) acting as a bridge between the heteronitrogen atoms in each cytosine (both in the keto-amino form). This structure is biologically relevant since it mimics the structure of the hemiprotonated C-H(+)-C dimer responsible for the stabilization of the i-motif structure in DNA, with the replacement of the NH···N bond by a stronger N···Ag(+)···N bond. Moreover, since the structure of the C-Ag(+)-C complex is planar, it allows an optimum intercalation between pairs of the two antiparallel strand duplex in the DNA i-motif structure. PMID:24807048

  6. Functional Exploration and Characterization of the Deaminases of Cog0402 

    E-print Network

    Hitchcock, Daniel Stephen

    2014-02-24

    representatives from this group are from Bacillales, and lactobacillales, however mouse (PDB: 1ZAB) (33), yeast (PDB: 1R5T) (34), and human (PDB: 1MQ0) (35) possess homologues. The first representative discovered was Bacillus subtilis in 1989 (36). Here....16). The largest group contains several crystal structures, including that of E. coli RibD and the liganded Bacillus subtilis RibG (PDB: 4G3M) (70), which is used in this study for active site comparison. The central cluster retains the active site residues...

  7. Vaginal Yeast Infections

    MedlinePLUS

    ... for sure if yogurt with Lactobacillus or other probiotics can prevent or treat vaginal yeast infections. If ... for sure if yogurt with Lactobacillus or other probiotics can prevent or treat vaginal yeast infections. If ...

  8. Vaginal yeast infection

    MedlinePLUS

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts in the ...

  9. Cooperative activity of DNA methyltransferases for maintenance of symmetrical and non-symmetrical cytosine

    E-print Network

    Meyer, Peter

    Cooperative activity of DNA methyltransferases for maintenance of symmetrical and non of cytosine methylation in plants is controlled by three DNA methyltransferases. MET1 maintains CG methylation cooperative activity of all three DNA methyltransferases is therefore required for maintenance of both CG

  10. The De Novo Cytosine Methyltransferase DRM2 Requires Intact UBA Domains and a Catalytically Mutated Paralog

    E-print Network

    Jacobsen, Steve

    DNA replication. The Arabidopsis thaliana Dnmt3 cytosine methyltransferase ortholog DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) is required for establishment of small interfering RNA (siRNA) directed DNA methylation domains and C-terminal methyltransferase domain are required for normal RNA­directed DNA methylation

  11. Cytosine methylation is the most common covalent modification of DNA in eukaryotes. DNA methylation has an

    E-print Network

    3959 Cytosine methylation is the most common covalent modification of DNA in eukaryotes. DNA to transcriptional silencing. Complex multicellular eukaryotes (plants and animals) primarily methylate DNA reports have considerably expanded our knowledge of eukaryotic DNA methylation (Bibikova et al., 2006a

  12. Yeast Immunofluorescence Prepare Cells

    E-print Network

    Aris, John P.

    temperature for 30 minutes. 5. Microfuge ~15 seconds to pellet yeast. Do step 11 now. 6. Wash 3 X 5 minutesYeast Immunofluorescence Prepare Cells: 1. Grow yeast in 25 ml YPD to OD600 = 0.2. We usually. Swirl gently for 10 minutes at room temperature. Paraformaldehyde (30%): A. Add 2.0 g paraformaldehyde

  13. CLONTECHInnovative Yeast Protocols Handbook

    E-print Network

    Erickson, F. Les

    CLONTECHInnovative Tools to Accelerate Discovery Yeast Protocols Handbook PT3024-1 (PR13103 FOR RESEARCH USE ONLY #12;Yeast Protocols Handbook CLONTECH Laboratories, Inc. www.clontech.com Protocol # PT3024-1 2 Version # PR13103 I. Introduction 4 II. Introduction to Yeast Promoters 5 III. Culturing

  14. Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth.

    PubMed

    Magnucka, El?bieta G; Pietr, Stanis?aw J

    2015-12-01

    The study evaluates the effect of rhizobacteria having 1-aminocyclopropane-1-carboxylate deaminase (ACCd) on the development of wheat seedlings. This enzyme has been proposed to play a key role in microbe-plant association. Three fluorescent pseudomonads containing this deaminase were selected from 70 strains of pseudomonads isolated from rhizosphere of wheat (Triticum aestivum L.) and rape (Brassica napus L.). These bacteria, varied significantly in the ability to both biosynthesize auxins and hydrolyze ACC. Among them, Pseudomonas brassicacearum subsp. brassicacearum strain RZ310 presented the highest activities of ACC deaminase during 96h of growth in liquid Dworkin and Foster (DF) salt medium. Additionally, this rape rhizosphere strain did not produce indoles. Two other isolates, Pseudomonas sp. PO283 and Pseudomonas sp. PO366, secreted auxins only in the presence of their precursor. Phylogenetic analysis of the 16S rRNA gene and four other protein-encoding genes indicated that these wheat rhizosphere isolates belonged to the fluorescent Pseudomonas group. Moreover, the effects of these strains on wheat seedling growth under in vitro conditions were markedly dependent on both their cell suspensions used to grain inoculation and nutrient conditions. Strains tested had beneficial influence on wheat seedlings mainly at low cell densities. In addition, access to nutrients markedly changed bacteria action on cereal growth. Their presence generally favored the positive effects of pseudomonads on length and the estimated biomasses of wheat coleoptiles. Despite these general rules, impacts of each isolate on the growth parameters of cereal seedlings were unique. PMID:25983132

  15. Precise estimates of mutation rate and spectrum in yeast

    PubMed Central

    Zhu, Yuan O.; Siegal, Mark L.; Hall, David W.; Petrov, Dmitri A.

    2014-01-01

    Mutation is the ultimate source of genetic variation. The most direct and unbiased method of studying spontaneous mutations is via mutation accumulation (MA) lines. Until recently, MA experiments were limited by the cost of sequencing and thus provided us with small numbers of mutational events and therefore imprecise estimates of rates and patterns of mutation. We used whole-genome sequencing to identify nearly 1,000 spontaneous mutation events accumulated over ?311,000 generations in 145 diploid MA lines of the budding yeast Saccharomyces cerevisiae. MA experiments are usually assumed to have negligible levels of selection, but even mild selection will remove strongly deleterious events. We take advantage of such patterns of selection and show that mutation classes such as indels and aneuploidies (especially monosomies) are proportionately much more likely to contribute mutations of large effect. We also provide conservative estimates of indel, aneuploidy, environment-dependent dominant lethal, and recessive lethal mutation rates. To our knowledge, for the first time in yeast MA data, we identified a sufficiently large number of single-nucleotide mutations to measure context-dependent mutation rates and were able to (i) confirm strong AT bias of mutation in yeast driven by high rate of mutations from C/G to T/A and (ii) detect a higher rate of mutation at C/G nucleotides in two specific contexts consistent with cytosine methylation in S. cerevisiae. PMID:24847077

  16. Stable loop in the crystal structure of the intercalated four-stranded cytosine-rich metazoan telomere

    SciTech Connect

    Kang, C.H.; Lockshin, C.; Rich, A.

    1995-04-25

    In most metazoans, the telomeric cytosine-rich strand repeating sequence is d(TAACCC). The crystal structure of this sequence was solved to 1.9-{angstrom} resolution. Four strands associate via the cytosine-containing parts to form a four-stranded intercalated structure held together by C-C{sup +} hydrogen bonds. The base-paired strands are parallel to each other, and the two duplexes are intercalated into each other in opposite orientations. One TAA end forms a highly stabilized loop with the 5{prime} thymine Hoogsteen-base-paired to the third adenine. The 5{prime} end of this loop is in close proximity to the 3{prime} end of one of the other intercalated cytosine strands. Instead of being entirely in a DNA duplex, this structure suggests the possibility of an alternative conformation for the cytosine-rich telomere strands. 25 refs., 5 figs.

  17. Direct pKa Measurement of the Active-Site Cytosine in a Genomic Hepatitis Delta Virus Ribozyme

    E-print Network

    Doudna, Jennifer A.

    out elevation of the C75 pKa in an intermediate state of the transesterification reaction in the transesterification reaction. While mutation of this cytosine to G or U inactivates both ribozymes, substitution

  18. Stable loop in the crystal structure of the intercalated four-stranded cytosine-rich metazoan telomere

    NASA Technical Reports Server (NTRS)

    Kang, C.; Berger, I.; Lockshin, C.; Ratliff, R.; Moyzis, R.; Rich, A.

    1995-01-01

    In most metazoans, the telomeric cytosine-rich strand repeating sequence is d(TAACCC). The crystal structure of this sequence was solved to 1.9-A resolution. Four strands associate via the cytosine-containing parts to form a four-stranded intercalated structure held together by C.C+ hydrogen bonds. The base-paired strands are parallel to each other, and the two duplexes are intercalated into each other in opposite orientations. One TAA end forms a highly stabilized loop with the 5' thymine Hoogsteen-base-paired to the third adenine. The 5' end of this loop is in close proximity to the 3' end of one of the other intercalated cytosine strands. Instead of being entirely in a DNA duplex, this structure suggests the possibility of an alternative conformation for the cytosine-rich telomere strands.

  19. Neurodevelopmental disabilities in children with intermediate and premutation range fragile X cytosine-guanine-guanine expansions.

    PubMed

    Renda, Meredith M; Voigt, Robert G; Babovic-Vuksanovic, Dusica; Highsmith, W Edward; Vinson, Sherry S; Sadowski, Christine M; Hagerman, Randi J

    2014-03-01

    To determine the range of neurodevelopmental diagnoses associated with intermediate (45-54 repeats) and premutation (55-200 repeats) range cytosine-guanine-guanine fragile X expansions, the medical records of children with intermediate or premutation range expansions were retrospectively reviewed, and all neurodevelopmental diagnoses were abstracted. Twenty-nine children (9 female, 20 male; age, 13 months to 17 years) with intermediate (n = 25) or premutation (n = 4) range expansions were identified with neurodevelopmental diagnoses, including global developmental delay/intellectual disability (n = 15), language and learning disorders (n = 9), attention-deficit hyperactivity disorder (n = 5), epilepsy (n = 5), and motor disorders (n = 12), including 2 boys younger than 4 years of age with tremor and ataxia. Thus, children with intermediate or premutation range fragile X cytosine-guanine-guanine expansions may be more susceptible than children without such expansions to other processes, both genetic and environmental, that contribute to neurodevelopmental disability. PMID:23266944

  20. Cytosine-specific chemical probing of DNA using bromide and monoperoxysulfate.

    PubMed

    Ross, S A; Burrows, C J

    1996-12-15

    Bromination of cytosine and formation of a piperidine-labile site are observed when two simple salts, KBr and KHSO5, are allowed to react with single-stranded oligodeoxynucleotides. Selectivity for C compared with T, G or A is typically a factor of 4 or more; selectivity for Cs in a single-stranded region such as a C-bulge is nearly a factor of 10 compared with duplex Cs. Low reactivity and little base selectivity are observed using duplex DNA, although increased concentrations of reagents lead to complete degradation of the DNA. The results suggest that these conditions for in situ generation of Br2 constitute a useful tool for examination of the exposure of a non-duplex cytosine base in folded DNA structures. PMID:9016685

  1. Chemical modification of cytosine residues of U6 snRNA with hydrogen sulfide (nucleosides and nucleotides. Part 49 [1]).

    PubMed Central

    Miura, K; Tsuda, S; Harada, F; Ueda, T

    1983-01-01

    Sulfhydrolysis of cytosine residues to 4-thiouracil residues in mouse U6 snRNA was carried out to examine the secondary structure of U6 snRNA. The cytosine residues at positions 6, 42 and 68 were modified significantly, and at positions 11, 19 (or/and 25), 61 and 66 in moderate extent. Based on the result, the plausible secondary structure of U6 snRNA is discussed. Images PMID:6193487

  2. The role of cytosine methylation on charge transport through a DNA strand

    NASA Astrophysics Data System (ADS)

    Qi, Jianqing; Govind, Niranjan; Anantram, M. P.

    2015-09-01

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.

  3. Molecular energetics of cytosine revisited: a joint computational and experimental study.

    PubMed

    Gomes, José R B; Ribeiro da Silva, Maria D M C; Freitas, Vera L S; Ribeiro da Silva, Manuel A V

    2007-08-01

    A static bomb calorimeter has been used to measure the standard molar energy of combustion, in oxygen, at T = 298.15 K, of a commercial sample of cytosine. From this energy, the standard (p degrees = 0.1 MPa) molar enthalpy of formation in the crystalline state was derived as -(221.9 +/- 1.7) kJ.mol(-1). This value confirms one experimental value already published in the literature but differs from another literature value by 13.5 kJ.mol(-1). Using the present standard molar enthalpy of formation in the condensed phase and the enthalpy of sublimation due to Burkinshaw and Mortimer [J. Chem. Soc., Dalton Trans. 1984, 75], (155.0 +/- 3.0) kJ.mol(-1), results in a value for the gas-phase standard molar enthalpy of formation for cytosine of -66.9 kJ.mol(-1). A similar value, -65.1 kJ.mol(-1), has been estimated after G3MP2B3 calculations combined with the reaction of atomization on three different tautomers of cytosine. In agreement with experimental evidence, the hydroxy-amino tautomer is the most stable form of cytosine in the gas phase. The enthalpies of formation of the other two tautomers were also estimated as -60.7 kJ.mol(-1) and -57.2 kJ.mol(-1) for the oxo-amino and oxo-imino tautomers, respectively. The same composite approach was also used to compute other thermochemical data, which is difficult to be measured experimentally, such as C-H, N-H, and O-H bond dissociation enthalpies, gas-phase acidities, and ionization enthalpies. PMID:17616179

  4. The Role of Cytosine Methylation on Charge Transport through a DNA Strand

    SciTech Connect

    Qi, Jianqing; Govind, Niranjan; Anantram, M. P.

    2015-09-04

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modifi-cation remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Buttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. Specifically, we compare the results generated with the widely used B3LYP exchange-correlation (XC) functional and CAM-B3LYP based tuned range-separated hybrid density functional. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that with both functionals, the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and interstrand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital (HOMO) level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with both functionals. We also study the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit. Our results suggest that the effect of the two different functionals is to alter the on-site energies of the DNA bases at the HOMO level, while the transport properties don't depend much on the two functionals.

  5. Spontaneous tunneling and near-infrared-induced interconversion between the amino-hydroxy conformers of cytosine

    SciTech Connect

    Reva, Igor; Fausto, Rui; Nowak, Maciej J.; Lapinski, Leszek

    2012-02-14

    Spontaneous and near-infrared/infrared (NIR/IR)-induced interconversions between two amino-hydroxy conformers of monomeric cytosine have been investigated for the compound isolated in a low-temperature argon matrix. Combined use of a laser source (which provides narrowband NIR radiation) and a broadband NIR/IR source of excitation light allowed a detailed investigation of mutual conversions of the two conformers in question. The experiments carried out within the current work demonstrated that upon broadband NIR/IR irradiation (with the IR source of FTIR spectrometer) the population ratio of the two amino-hydroxy conformers changes towards a ratio corresponding to a photostationary state. Evolution of the conformer population ratio towards the photostationary ratio occurred independent of the initial ratio of conformers, which could be prepared by a population shift (in favor of one of the forms) induced by narrowband NIR excitation. Moreover, spontaneous tunneling conversion of the higher-energy conformer into a lower-energy form was observed for cytosine isolated in a low-temperature argon matrix kept in the dark. This process is slow and occurs on a time scale of days. The tunneling process, studied for matrix-isolated cytosine, clearly follows a dispersive type of kinetics rather than the classical monoexponential kinetics.

  6. VUV photoionization of gas phase adenine and cytosine: A comparison between oven and aerosol vaporization

    NASA Astrophysics Data System (ADS)

    Touboul, D.; Gaie-Levrel, F.; Garcia, G. A.; Nahon, L.; Poisson, L.; Schwell, M.; Hochlaf, M.

    2013-03-01

    We studied the single photon ionization of gas phase adenine and cytosine by means of vacuum ultraviolet synchrotron radiation coupled to a velocity map imaging electron/ion coincidence spectrometer. Both in-vacuum temperature-controlled oven and aerosol thermodesorption were successfully applied to promote the intact neutral biological species into the gas phase. The photoion yields are consistent with previous measurements. In addition, we deduced the threshold photoelectron spectra and the slow photoelectron spectra for both species, where the close to zero kinetic energy photoelectrons and the corresponding photoions are measured in coincidence. The photoionization close and above the ionization energies are found to occur mainly via direct processes. Both vaporization techniques lead to similar electronic spectra for the two molecules, which consist of broadbands due to the complex electronic structure of the cationic species and to the possible contribution of several neutral tautomers for cytosine prior to ionization. Accurate ionization energies are measured for adenine and cytosine at, respectively, 8.267 ± 0.005 eV and 8.66 ± 0.01 eV, and we deduce precise thermochemical data for the adenine radical cation. Finally, we performed an evaluation and a comparison of the two vaporization techniques addressing the following criteria: measurement precision, thermal fragmentation, sensitivity, and sample consumption. The aerosol thermodesorption technique appears as a promising alternative to vaporize large thermolabile biological compounds, where extended thermal decomposition or low sensitivity could be encountered when using a simple oven vaporization technique.

  7. Identification of Two Pentatricopeptide Repeat Genes Required for RNA Editing and Zinc Binding by C-terminal Cytidine Deaminase-like Domains*

    PubMed Central

    Hayes, Michael L.; Giang, Karolyn; Berhane, Beniam; Mulligan, R. Michael

    2013-01-01

    Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins are required as RNA binding specificity determinants in the RNA editing mechanism. Bioinformatic analysis has shown that most of the Arabidopsis PPR proteins necessary for RNA editing events include a C-terminal portion that shares structural characteristics with a superfamily of deaminases. The DYW deaminase domain includes a highly conserved zinc binding motif that shares characteristics with cytidine deaminases. The Arabidopsis PPR genes, ELI1 and DOT4, both have DYW deaminase domains and are required for single RNA editing events in chloroplasts. The ELI1 DYW deaminase domain was expressed as a recombinant protein in Escherichia coli and was shown to bind two zinc atoms per polypeptide. Thus, the DYW deaminase domain binds a zinc metal ion, as expected for a cytidine deaminase, and is potentially the catalytic component of an editing complex. Genetic complementation experiments demonstrate that large portions of the DYW deaminase domain of ELI1 may be eliminated, but the truncated genes retain the ability to restore editing site conversion in a mutant plant. These results suggest that the catalytic activity can be supplied in trans by uncharacterized protein(s) of the editosome. PMID:24194514

  8. A New Nuclear Function of the Entamoeba histolytica Glycolytic Enzyme Enolase: The Metabolic Regulation of Cytosine-5 Methyltransferase 2 (Dnmt2) Activity

    PubMed Central

    Tovy, Ayala; Siman Tov, Rama; Gaentzsch, Ricarda; Helm, Mark; Ankri, Serge

    2010-01-01

    Cytosine-5 methyltransferases of the Dnmt2 family function as DNA and tRNA methyltransferases. Insight into the role and biological significance of Dnmt2 is greatly hampered by a lack of knowledge about its protein interactions. In this report, we address the subject of protein interaction by identifying enolase through a yeast two-hybrid screen as a Dnmt2-binding protein. Enolase, which is known to catalyze the conversion of 2-phosphoglycerate (2-PG) to phosphoenolpyruvate (PEP), was shown to have both a cytoplasmatic and a nuclear localization in the parasite Entamoeba histolytica. We discovered that enolase acts as a Dnmt2 inhibitor. This unexpected inhibitory activity was antagonized by 2-PG, which suggests that glucose metabolism controls the non-glycolytic function of enolase. Interestingly, glucose starvation drives enolase to accumulate within the nucleus, which in turn leads to the formation of additional enolase-E.histolytica DNMT2 homolog (Ehmeth) complex, and to a significant reduction of the tRNAAsp methylation in the parasite. The crucial role of enolase as a Dnmt2 inhibitor was also demonstrated in E.histolytica expressing a nuclear localization signal (NLS)-fused-enolase. These results establish enolase as the first Dnmt2 interacting protein, and highlight an unexpected role of a glycolytic enzyme in the modulation of Dnmt2 activity. PMID:20174608

  9. Prions in Yeast

    PubMed Central

    Liebman, Susan W.; Chernoff, Yury O.

    2012-01-01

    The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the “protein only” model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-? aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions. PMID:22879407

  10. Significance of the d-Serine-Deaminase and d-Serine Metabolism of Staphylococcus saprophyticus for Virulence

    PubMed Central

    Sakinc, Türkan; Kline, Kimberly; Nielsen, Hailyn V.; Hultgren, Scott; Gatermann, Sören G.

    2013-01-01

    Staphylococcus saprophyticus is the only species of Staphylococcus that is typically uropathogenic and possesses a gene coding for a d-serine-deaminase (DsdA). As d-serine is prevalent in urine and toxic or bacteriostatic to many bacteria, it is not surprising that the d-serine-deaminase gene is found in the genome of uropathogens. It has been suggested that d-serine-deaminase or the ability to respond to or to metabolize d-serine is important for virulence. For uropathogenic Escherichia coli (UPEC), a high intracellular d-serine concentration affects expression of virulence factors. S. saprophyticus is able to grow in the presence of high d-serine concentrations; however, its d-serine metabolism has not been described. The activity of the d-serine-deaminase was verified by analyzing the formation of pyruvate from d-serine in different strains with and without d-serine-deaminase. Cocultivation experiments were performed to show that d-serine-deaminase confers a growth advantage to S. saprophyticus in the presence of d-serine. Furthermore, in vivo coinfection experiments showed a disadvantage for the ?dsdA mutant during urinary tract infection. Expression analysis of known virulence factors by reverse transcription-quantitative PCR (RT-qPCR) showed that the surface-associated lipase Ssp is upregulated in the presence of d-serine. In addition, we show that S. saprophyticus is able to use d-serine as the sole carbon source, but interestingly, d-serine had a negative effect on growth when glucose was also present. Taken together, d-serine metabolism is associated with virulence in S. saprophyticus, as at least one known virulence factor is upregulated in the presence of d-serine and a ?dsdA mutant was attenuated in virulence murine model of urinary tract infection. PMID:24082071

  11. The role of divalent cations in structure and function of murine adenosine deaminase.

    PubMed Central

    Cooper, B. F.; Sideraki, V.; Wilson, D. K.; Dominguez, D. Y.; Clark, S. W.; Quiocho, F. A.; Rudolph, F. B.

    1997-01-01

    For murine adenosine deaminase, we have determined that a single zinc or cobalt cofactor bound in a high affinity site is required for catalytic function while metal ions bound at an additional site(s) inhibit the enzyme. A catalytically inactive apoenzyme of murine adenosine deaminase was produced by dialysis in the presence of specific zinc chelators in an acidic buffer. This represents the first production of the apoenzyme and demonstrates a rigorous method for removing the occult cofactor. Restoration to the holoenzyme is achieved with stoichiometric amounts of either Zn2+ or Co2+ yielding at least 95% of initial activity. Far UV CD and fluorescence spectra are the same for both the apo- and holoenzyme, providing evidence that removal of the cofactor does not alter secondary or tertiary structure. The substrate binding site remains functional as determined by similar quenching measured by tryptophan fluorescence of apo- or holoenzyme upon mixing with the transition state analog, deoxycoformycin. Excess levels of adenosine or N6- methyladenosine incubated with the apoenzyme prior to the addition of metal prevent restoration, suggesting that the cofactor adds through the substrate binding cleft. The cations Ca2+, Cd2+, Cr2+, Cu+, Cu2+, Mn2+, Fe2+, Fe3+, Pb2+, or Mg2+ did not restore adenosine deaminase activity to the apoenzyme. Mn2+, Cu2+, and Zn2+ were found to be competitive inhibitors of the holoenzyme with respect to substrate and Cd2+ and Co2+ were noncompetitive inhibitors. Weak inhibition (Ki > or = 1000 microM) was noted for Ca2+, Fe2+, and Fe3+. PMID:9144774

  12. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants

    PubMed Central

    Singh, Rajnish P.; Shelke, Ganesh M.; Kumar, Anil; Jha, Prabhat N.

    2015-01-01

    1-aminocyclopropane-1-carboxylate deaminase (ACCD), a pyridoxal phosphate-dependent enzyme, is widespread in diverse bacterial and fungal species. Owing to ACCD activity, certain plant associated bacteria help plant to grow under biotic and abiotic stresses by decreasing the level of “stress ethylene” which is inhibitory to plant growth. ACCD breaks down ACC, an immediate precursor of ethylene, to ammonia and ?-ketobutyrate, which can be further metabolized by bacteria for their growth. ACC deaminase is an inducible enzyme whose synthesis is induced in the presence of its substrate ACC. This enzyme encoded by gene AcdS is under tight regulation and regulated differentially under different environmental conditions. Regulatory elements of gene AcdS are comprised of the regulatory gene encoding LRP protein and other regulatory elements which are activated differentially under aerobic and anaerobic conditions. The role of some additional regulatory genes such as AcdB or LysR may also be required for expression of AcdS. Phylogenetic analysis of AcdS has revealed that distribution of this gene among different bacteria might have resulted from vertical gene transfer with occasional horizontal gene transfer (HGT). Application of bacterial AcdS gene has been extended by developing transgenic plants with ACCD gene which showed increased tolerance to biotic and abiotic stresses in plants. Moreover, distribution of ACCD gene or its homolog's in a wide range of species belonging to all three domains indicate an alternative role of ACCD in the physiology of an organism. Therefore, this review is an attempt to explore current knowledge of bacterial ACC deaminase mediated physiological effects in plants, mode of enzyme action, genetics, distribution among different species, ecological role of ACCD and, future research avenues to develop transgenic plants expressing foreign AcdS gene to cope with biotic and abiotic stressors. Systemic identification of regulatory circuits would be highly valuable to express the gene under diverse environmental conditions. PMID:26441873

  13. Isolation of Yeast Nuclei Growth of Yeast

    E-print Network

    Aris, John P.

    )] X final volume. Preparation of Spheroplasts 1. Harvest yeast at OD600 = 0.6 - 0.8 (OD600 = 0.8 is ~5 in ddH2O. Centrifuge again as in step 4. Prepare pretreatment buffer. 6. Pretreatment: Resuspend cell pellet(s) per 1 g of wet weight in 4 ml of freshly prepared Pretreatment Buffer at room temperature

  14. “REVERSE” CARBOCYCLIC FLEXIMERS: SYNTHESIS OF A NEW CLASS OF ADENOSINE DEAMINASE INHIBITORS

    PubMed Central

    Zimmermann, Sarah C.; Sadler, Joshua M.; O’Daniel, Peter I.; Kim, Nathaniel T.; Seley-Radtke, Katherine L.

    2013-01-01

    A series of flexible carbocyclic pyrimidine nucleosides has been designed and synthesized. In contrast to previously reported “fleximers” from our laboratory, these analogues have the connectivity of the heterocyclic base system “reversed”, where the pyrimidine ring is attached to the sugar moiety, rather than the five membered imidazole ring. As was previously seen with the ribose fleximers, their inherent flexibility should allow them to adjust to enzyme binding site mutations, as well as increase the affinity for atypical enzymes. Preliminary biological screening has revealed surprising inhibition of adenosine deaminase, despite their lack of resemblance to adenosine. PMID:23473101

  15. Disruption of the adenosine deaminase gene causes hepatocellular impairment and perinatal lethality in mice.

    PubMed Central

    Wakamiya, M; Blackburn, M R; Jurecic, R; McArthur, M J; Geske, R S; Cartwright, J; Mitani, K; Vaishnav, S; Belmont, J W; Kellems, R E

    1995-01-01

    We have generated mice with a null mutation at the Ada locus, which encodes the purine catabolic enzyme adenosine deaminase (ADA, EC 3.5.4.4). ADA-deficient fetuses exhibited hepatocellular impairment and died perinatally. Their lymphoid tissues were not largely affected. Accumulation of ADA substrates was detectable in ADA-deficient conceptuses as early as 12.5 days postcoitum, dramatically increasing during late in utero development, and is the likely cause of liver damage and fetal death. The results presented here demonstrate that ADA is important for the homeostatic maintenance of purines in mice. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7731963

  16. Disruption of the adenosine deaminase gene causes hepatocellular impairment and perinatal lethality in mice.

    PubMed

    Wakamiya, M; Blackburn, M R; Jurecic, R; McArthur, M J; Geske, R S; Cartwright, J; Mitani, K; Vaishnav, S; Belmont, J W; Kellems, R E

    1995-04-25

    We have generated mice with a null mutation at the Ada locus, which encodes the purine catabolic enzyme adenosine deaminase (ADA, EC 3.5.4.4). ADA-deficient fetuses exhibited hepatocellular impairment and died perinatally. Their lymphoid tissues were not largely affected. Accumulation of ADA substrates was detectable in ADA-deficient conceptuses as early as 12.5 days postcoitum, dramatically increasing during late in utero development, and is the likely cause of liver damage and fetal death. The results presented here demonstrate that ADA is important for the homeostatic maintenance of purines in mice. PMID:7731963

  17. Threonine deaminase from extremely halophilic bacteria - Cooperative substrate kinetics and salt dependence.

    NASA Technical Reports Server (NTRS)

    Lieberman, M. M.; Lanyi, J. K.

    1972-01-01

    The effect of salt on the activity, stability, and allosteric properties of catabolic threonine deaminase from Halobacterium cutirubrum was studied. The enzyme exhibits sigmoidal kinetics with the substrate, threonine. The Hill slope is 1.55 at pH 10. The enzyme is activated by ADP at low substrate concentrations. In the presence of this effector, sigmoidal kinetics are no longer observed. At pH 10, in the absence of ADP, enzyme activity increases with increasing NaCl concentration from 0 to 4 M.

  18. Yeast transcription factors Kevin Struhl

    E-print Network

    Yeast transcription factors Kevin Struhl Harvard Medical School, Boston, USA Studies of yeast Transcriptional regulatory mechanisms are fundamentally similar in eukaryotic organisms from yeasts to humans (for reviews of yeast transcription, see [1,2]). Compo- nents of the chromatin template and the basic RNA

  19. Reactions of an osmium-hexahydride complex with cytosine, deoxycytidine, and cytidine: the importance of the minor tautomers.

    PubMed

    Esteruelas, Miguel A; García-Raboso, Jorge; Oliván, Montserrat

    2012-09-01

    Complex OsH(6)(P(i)Pr(3))(2) (1) deprotonates cytosine to give molecular hydrogen and the d(4)-trihydride derivative OsH(3)(cytosinate)(P(i)Pr(3))(2) (2), which in solution exists as a mixture of isomers containing ?(2)-N1,O (2a) and ?(2)-N3,O (2b) amino-oxo and ?(2)-N3,N4 (2c) imino-oxo tautomers. The major isomer 2b associates with the minor one 2c through N-H···N and N-H···O hydrogen bonds to form [2b·2c](2) dimers, which crystallize from saturated pentane solutions of 2. Complex 1 is also able to perform the double deprotonation of cytosine (cytosinate') to afford the dinuclear derivative (P(i)Pr(3))(2)H(3)Os(cytosinate')OsH(3)(P(i)Pr(3))(2) (3), where the anion is coordinated ?(2)-N1,O and ?(2)-N3,N4 to two different OsH(3)(P(i)Pr(3))(2) metal fragments. The deprotonation of deoxycytidine and cytidine leads to OsH(3)(deoxycytidinate)(P(i)Pr(3))(2) (4) and OsH(3)(cytidinate)(P(i)Pr(3))(2) (5), respectively, containing the anion ?(2)-N3,N4 coordinated. Dimer [2b·2c](2) and dinuclear complex 3 have been characterized by X-ray diffraction analysis. PMID:22897627

  20. Some new reaction pathways for the formation of cytosine in interstellar space - A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Gupta, V. P.; Tandon, Poonam; Mishra, Priti

    2013-03-01

    The detection of nucleic acid bases in carbonaceous meteorites suggests that their formation and survival is possible outside of the Earth. Small N-heterocycles, including pyrimidine, purines and nucleobases, have been extensively sought in the interstellar medium. It has been suggested theoretically that reactions between some interstellar molecules may lead to the formation of cytosine, uracil and thymine though these processes involve significantly high potential barriers. We attempted therefore to use quantum chemical techniques to explore if cytosine can possibly form in the interstellar space by radical-radical and radical-molecule interaction schemes, both in the gas phase and in the grains, through barrier-less or low barrier pathways. Results of DFT calculations for the formation of cytosine starting from some of the simple molecules and radicals detected in the interstellar space are being reported. Global and local descriptors such as molecular hardness, softness and electrophilicity, and condensed Fukui functions and local philicity indices were used to understand the mechanistic aspects of chemical reaction. The presence and nature of weak bonds in the molecules and transition states formed during the reaction process have been ascertained using Bader's quantum theory of atoms in molecules (QTAIMs). Two exothermic reaction pathways starting from propynylidyne (CCCH) and cyanoacetylene (HCCCN), respectively, have been identified. While the first reaction path is found to be totally exothermic, it involves a barrier of 12.5 kcal/mol in the gas phase against the lowest value of about 32 kcal/mol reported in the literature. The second path is both exothermic and barrier-less. The later has, therefore, a greater probability of occurrence in the cold interstellar clouds (10-50 K).

  1. Solvent effect on the anharmonic vibrational frequencies in guanine-cytosine base pair

    NASA Astrophysics Data System (ADS)

    Bende, A.; Muntean, C. M.

    2012-02-01

    We present an ab initio study of the vibrational properties of cytosine and guanine in the Watson-Crick and Hoogsteen base pair configurations. The results are obtained by considering the DFT method together with the Polarizable Continuum Model (PCM) using PBE and B3PW91 exchange-correlation functionals and triple-? valence basis set. We investigate the importance of anharmonic corrections for the vibrational modes taking into account the solvent effect of the water environment. In particular, the unusual anharmonic effect of the H+ vibration in the case of the Hoogsteen base pair configuration is discussed.

  2. Supramolecular hydrogen-bonding networks in cytosine salicylic acid hydrate (2 : 3 : 2) complex

    NASA Astrophysics Data System (ADS)

    Sridhar, B.; Ravikumar, K.

    2010-03-01

    Cytosine-cytosinium base pairs are interconnected by triple hydrogen bonds thereby resembling a pseudo-Watson-Crick pattern and generates two characteristic R {2/2}(8)-motifs. Both molecules of the salicylic acids interconnect the base pair and lead to the formation of one dimensional supramolecular hexameric tape along b-axis. This hexameric tape are sandwiched by the water molecules, one of the salicylic acid and salicylate anion which form one dimensional and two dimensional supramolecular hydrogen bonded networks in the crystal packing. Macrocylic rings of cavities are also noticed in the crystal structure.

  3. Yeast infections (image)

    MedlinePLUS

    Yeast infections may follow a course of antibiotics that were prescribed for another purpose. The antibiotics change the normal "balance" between organisms in the vagina by suppressing the growth of protective bacteria that normally have an antifungal effect.

  4. RNAi in Budding Yeast

    E-print Network

    Drinnenberg, Ines A.

    RNA interference (RNAi), a gene-silencing pathway triggered by double-stranded RNA, is conserved in diverse eukaryotic species but has been lost in the model budding yeast Saccharomyces cerevisiae. Here, we show that RNAi ...

  5. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing enzymes of yeasts.

  6. A 24-Year Enzyme Replacement Therapy in an Adenosine-deaminase-Deficient Patient.

    PubMed

    Tartibi, Hana M; Hershfield, Michael S; Bahna, Sami L

    2016-01-01

    Severe combined immunodeficiency (SCID) is a fatal childhood disease unless immune reconstitution is performed early in life, with either hematopoietic stem cell transplantation or gene therapy. One of its subtypes is caused by adenosine deaminase (ADA) enzyme deficiency, which leads to the accumulation of toxic metabolites that impair lymphocyte development and function. With the development of polyethylene glycol-conjugated adenosine deaminase (PEG-ADA) enzyme replacement therapy, many ADA-deficient children with SCID who could not receive a hematopoietic stem cell transplantation or gene therapy survived and had longer and healthier lives. We report a 24-year course of treatment in a patient who was diagnosed with ADA deficiency at 4 months of age. The patient was treated with PEG-ADA, which was the only therapy available for him. The patient's plasma ADA level was regularly monitored and the PEG-ADA dose adjusted accordingly. This treatment has resulted in near-normalization of lymphocyte counts, and his clinical course has been associated with only minor to moderate infections. Thus far, he has had no manifestations of autoimmune or lymphoproliferative disorders. This patient is among the longest to be maintained on PEG-ADA enzyme replacement therapy. PMID:26684479

  7. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  8. On the Ag(+)-cytosine interaction: the effect of microhydration probed by IR optical spectroscopy and density functional theory.

    PubMed

    Berdakin, Matias; Steinmetz, Vincent; Maitre, Philippe; Pino, Gustavo A

    2015-09-30

    The gas-phase structures of cytosine-Ag(+) [CAg](+) and cytosine-Ag(+)-H2O [CAg-H2O](+) complexes have been studied by mass-selected infrared multiphoton dissociation (IRMPD) spectroscopy in the 900-1800 cm(-1) spectral region using the Free Electron Laser facility in Orsay (CLIO). The IRMPD experimental spectra have been compared with the calculated IR absorption spectra of the different low-lying isomers (computed at the DFT level using the B3LYP functional and the 6-311G++(d,p) basis set for C, H, N and O atoms and the Stuttgart effective core potential for Ag). For the [CAg](+) complex, only one isomer with cytosine in the keto-amino (KA) tautomeric form and Ag(+) interacting simultaneously with the C(2)[double bond, length as m-dash]O(7) group and N(3) of cytosine was observed. However, the mono-hydration of the complex in the gas phase leads to the stabilization of a two quasi-isoenergetic structure of the [CAg-H2O](+) complex, in which Ag(+) interacts with the O atom of the water molecule and with the N(3) or C(2)[double bond, length as m-dash]O(7) group of cytosine. The relative populations of the two isomers determined from the IRMPD kinetics plot are in good agreement with the calculated values. Comparison of these results with those of protonated cytosine [CH](+) and its mono-hydrated complex [CH-H2O](+) shows some interesting differences between H(+) and Ag(+). In particular, while a single water molecule catalyzes the isomerization reaction in the case of [CH-H2O](+), it is found that in the case of [CAg-H2O](+) the addition of water leads to the stabilization of two isomers separated by small energy barrier (0.05 eV). PMID:26068183

  9. Site-directed mutagenesis and high-resolution NMR spectroscopy of the active site of porphobilinogen deaminase

    SciTech Connect

    Scott, A.I.; Roessner, C.A.; Stolowich, N.J.; Karuso, P.; Williams, H.J.; Grant, S.K.; Gonzalez, M.D.; Hoshino, T. )

    1988-10-18

    The active site of porphobilinogen (PBG){sup 1} deaminase from Escherichia coli has been found to contain an unusual dipyrromethane derived from four molecules of 5-aminolevulinic acid (ALA) covalently linked to Cys-242, one of the two cysteine residues conserved in E. coli and human deaminase. By use of a hemA{sup {minus}} strain of E. coli the enzyme was enriched from (5-{sup 13}C)ALA and examined by {sup 1}H-detected multiple quantum coherence spectroscopy, which revealed all of the salient features of a dipyrromethane composed of two PBG units linked heat to tail and terminating in a CH{sub 2}-S bond to a cysteine residue. Site-specific mutagenesis of Cys-99 and Cys-242, respectively, has shown that substitution of Ser for Cys-99 does not affect the enzymatic activity, whereas substitution of Ser for Cys-242 removes essentially all of the catalytic activity as measured by the conversion of the substrate PBG to uro'gen I. The NMR spectrum of the covalent complex of deaminase with the suicide inhibitor 2-bromo-(2,11-{sup 13}C{sub 2})PBG reveals that the aminomethyl terminus of the inhibitor reacts with the enzyme's cofactor at the {alpha}-free pyrrole. NMR spectroscopy of the ES{sub 2} complex confirmed a PBG-derived head-to-tail dipyrromethane attached to the {alpha}-free pyrrole position of the enzyme. A mechanistic rationale for deaminase is presented.

  10. Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development

    PubMed Central

    2013-01-01

    Background One in eleven people is affected by chronic kidney disease, a condition characterized by kidney fibrosis and progressive loss of kidney function. Epidemiological studies indicate that adverse intrauterine and postnatal environments have a long-lasting role in chronic kidney disease development. Epigenetic information represents a plausible carrier for mediating this programming effect. Here we demonstrate that genome-wide cytosine methylation patterns of healthy and chronic kidney disease tubule samples obtained from patients show significant differences. Results We identify differentially methylated regions and validate these in a large replication dataset. The differentially methylated regions are rarely observed on promoters, but mostly overlap with putative enhancer regions, and they are enriched in consensus binding sequences for important renal transcription factors. This indicates their importance in gene expression regulation. A core set of genes that are known to be related to kidney fibrosis, including genes encoding collagens, show cytosine methylation changes correlating with downstream transcript levels. Conclusions Our report raises the possibility that epigenetic dysregulation plays a role in chronic kidney disease development via influencing core pro-fibrotic pathways and can aid the development of novel biomarkers and future therapeutics. PMID:24098934

  11. Evolving insights on how cytosine methylation affects protein–DNA binding

    PubMed Central

    Dantas Machado, Ana Carolina; Zhou, Tianyin; Rao, Satyanarayan; Goel, Pragya; Rastogi, Chaitanya; Lazarovici, Allan; Bussemaker, Harmen J.

    2015-01-01

    Many anecdotal observations exist of a regulatory effect of DNA methylation on gene expression. However, in general, the underlying mechanisms of this effect are poorly understood. In this review, we summarize what is currently known about how this important, but mysterious, epigenetic mark impacts cellular functions. Cytosine methylation can abrogate or enhance interactions with DNA-binding proteins, or it may have no effect, depending on the context. Despite being only a small chemical change, the addition of a methyl group to cytosine can affect base readout via hydrophobic contacts in the major groove and shape readout via electrostatic contacts in the minor groove. We discuss the recent discovery that CpG methylation increases DNase I cleavage at adjacent positions by an order of magnitude through altering the local 3D DNA shape and the possible implications of this structural insight for understanding the methylation sensitivity of transcription factors (TFs). Additionally, 5-methylcytosines change the stability of nucleosomes and, thus, affect the local chromatin structure and access of TFs to genomic DNA. Given these complexities, it seems unlikely that the influence of DNA methylation on protein–DNA binding can be captured in a small set of general rules. Hence, data-driven approaches may be essential to gain a better understanding of these mechanisms. PMID:25319759

  12. Cytosine methylation does not affect binding of transcription factor Sp1

    SciTech Connect

    Harrington, M.A.; Jones, P.A. ); Imagawa, M.; Karin, M. )

    1988-04-01

    DNA methylation may be a component of a multilevel control mechanism that regulates eukaryotic gene expression. The authors used synthetic oligonucleotides to investigate the effect of cytosine methylation on the binding of the transcription factor Sp1 to its target sequence (a G+C-rich sequence known as a GC box). Concatemers of double-stranded 14-mers containing a GC box successfully competed with the human metallothionein IIA promoter for binding to Sp1 in DNase I protection experiments. The presence of 5-methylcytosine in the CpG sequence of the GC box did not influence Sp1 binding. The result was confirmed using double-stranded 20-mers containing 16 base pairs of complementary sequence. Electrophoretic gel retardation analysis of annealed 28-mers containing a GC box incubated with an Sp1-containing HeLa cell nuclear extract demonstrated the formation of DNA-protein complexes; formation of these complexes was not inhibited when an oligomer without a GC box was used as a competitor. Once again, the presence of a 5-methylcytosine residue in the GC box did not influence the binding of the protein to DNA. The results therefore preclude a direct effect of cytosine methylation on Sp1-DNA interactions.

  13. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis ) and dried torula yeast (Candida utilis ) may be safely used in food provided the total folic acid content of the yeast does not exceed 0.04 milligram...

  14. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis ) and dried torula yeast (Candida utilis ) may be safely used in food provided the total folic acid content of the yeast does not exceed 0.04 milligram...

  15. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis ) and dried torula yeast (Candida utilis ) may be safely used in food provided the total folic acid content of the yeast does not exceed 0.04 milligram...

  16. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis ) and dried torula yeast (Candida utilis ) may be safely used in food provided the total folic acid content of the yeast does not exceed 0.04 milligram...

  17. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis ) and dried torula yeast (Candida utilis ) may be safely used in food provided the total folic acid content of the yeast does not exceed 0.04 milligram...

  18. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human

    SciTech Connect

    Palmer, T.D.; Hock, R.A.; Osborne, W.R.A.; Miller, A.D.

    1987-02-01

    Skin fibroblasts might be considered suitable recipients for therapeutic genes to cure several human genetic diseases; however, these cells are resistant to gene transfer by most methods. The authors studied the ability of retroviral vectors to transfer genes into normal human diploid skin fibroblasts. Retroviruses carrying genes for neomycin or hygromycin B resistance conferred drug resistance to greater than 50% of the human fibroblasts after a single exposure to virus-containing medium. This represents at least a 500-fold increase in efficiency over other methods. Transfer was achieved in the absence of helper virus by using amphotropic retrovirus-packaging cells. A retrovirus vector containing a human adenosine deaminase (ADA) cDNA was constructed and used to infect ADA/sup -/ fibroblasts from a patient with ADA deficiency. The infected cells produced 12-fold more ADA enzyme than fibroblasts from normal individuals and were able to rapidly metabolize exogenous deoxyadenosine and adenosine, metabolites that accumulate in plasma in ADA-deficient patients and are responsible for the severe combined immunodeficiency in these patients. These experiments indicate the potential of retrovirus-mediated gene transfer into human fibroblasts for gene therapy.

  19. Evolutionary history of Ascomyceteous Yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 20 ascomyceteous yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comp...

  20. [Fructose transporter in yeasts].

    PubMed

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Ma?gorzata

    2014-01-01

    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells. PMID:25033548

  1. Yeast killer systems.

    PubMed Central

    Magliani, W; Conti, S; Gerloni, M; Bertolotti, D; Polonelli, L

    1997-01-01

    The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed. PMID:9227858

  2. Energetics of the lattice: packing elements in crystals of four-stranded intercalated cytosine-rich DNA molecules

    NASA Technical Reports Server (NTRS)

    Berger, I.; Cai, L.; Chen, L.; Rich, A.

    1997-01-01

    Condensation of single molecules from solution into crystals represents a transition between distinct energetic states. In solution, the atomic interactions within the molecule dominate. In the crystalline state, however, a set of additional interactions are formed between molecules in close contact in the lattice--these are the packing interactions. The crystal structures of d(CCCT), d(TAACCC), d(CCCAAT), and d(AACCCC) have in common a four-stranded intercalated cytosine segment, built by stacked layers of cytosine.cytosine+ (C.C+) base pairs coming from two parallel duplexes that intercalate into each other with opposite polarity. The intercalated cytosine segments in these structures are similar in their geometry, even though the sequences crystallized in different space groups. In the crystals, adenine and thymine residues of the sequences are used to build the three-dimensional crystal lattice by elaborately interacting with symmetry-related molecules. The packing elements observed provide novel insight about the copious ways in which nucleic acid molecules can interact with each other--for example, when folded in more complicated higher order structures, such as mRNA and chromatin.

  3. L-arabinose fermenting yeast

    SciTech Connect

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  4. Tissue-specific rescue suggests that placental adenosine deaminase is important for fetal development in mice.

    PubMed

    Blackburn, M R; Wakamiya, M; Caskey, C T; Kellems, R E

    1995-10-13

    Adenosine deaminase (ADA, EC 3.5.4.4) is an essential enzyme of purine metabolism that is expressed at very high levels in the murine placenta where it accounts for over 95% of the ADA present at the fetal gestation site. We have recently shown that ADA-deficient fetuses, which also lack ADA in their adjoining placentas, die during late fetal development in association with profound purine metabolic disturbances and hepatocellular impairment. We have now investigated the potential importance of placental ADA by genetically restoring the enzyme to placentas of ADA-deficient fetuses. This genetic engineering strategy corrected most of the purine metabolic disturbances, prevented serious fetal liver damage, and rescued the fetuses from perinatal lethality. Our findings suggest that placental ADA is important for murine fetal development and illustrate a general strategy for the tissue specific correction of phenotypes associated with null mutations in mice. PMID:7592575

  5. Epigenetic Function of Activation-Induced Cytidine Deaminase and Its Link to Lymphomagenesis

    PubMed Central

    Dominguez, Pilar M.; Shaknovich, Rita

    2014-01-01

    Activation-induced cytidine deaminase (AID) is essential for somatic hypermutation and class switch recombination of immunoglobulin (Ig) genes during B cell maturation and immune response. Expression of AID is tightly regulated due to its mutagenic and recombinogenic potential, which is known to target not only Ig genes, but also non-Ig genes, contributing to lymphomagenesis. In recent years, a new epigenetic function of AID and its link to DNA demethylation came to light in several developmental systems. In this review, we summarize existing evidence linking deamination of unmodified and modified cytidine by AID to base-excision repair and mismatch repair machinery resulting in passive or active removal of DNA methylation mark, with the focus on B cell biology. We also discuss potential contribution of AID-dependent DNA hypomethylation to lymphomagenesis. PMID:25566255

  6. Metal Ion Induced Pairing of Cytosine Bases: Formation of I-Motif Structures Identified by IR Ion Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Juehan; Berden, Giel; Oomens, J.

    2015-06-01

    While the Watson-Crick structure of DNA is among the most well-known molecular structures of our time, alternative base-pairing motifs are also known to occur, often depending on base sequence, pH, or presence of cations. Pairing of two cytosine (C) bases induced by the sharing of a single proton (C-H^+-C) gives rise to the so-called i-motif, occurring particularly in the telomeric region of DNA, and particularly at low pH. At physiological pH, silver cations were recently suggested to form cytosine dimers in a C-Ag^+-C structure analogous to the hemiprotonated cytosine dimer, which was later confirmed by IR spectroscopy.^1 Here we investigate whether Ag^+ is unique in this behavior. Using infrared action spectroscopy employing the free-electron laser FELIX and a tandem mass spectrometer in combination with quantum-chemical computations, we investigate a series of C-M^+-C complexes, where M is Cu, Li and Na. The complexes are formed by electrospray ionization (ESI) from a solution of cytosine and the metal chloride salt in acetonitrile/water. The complexes of interest are mass-isolated in the cell of a FT ion cyclotron resonance mass spectrometer, where they are irradiated with the tunable IR radiation from FELIX in the 600 - 1800 wn range. Spectra in the H-stretching range are obtained with a LaserVision OPO. Both experimental spectra as well as theoretical calculations indicate that while Cu behaves as Ag, the alkali metal ions induce a clearly different dimer structure, in which the two cytosine units are parallelly displaced. In addition to coordination to the ring nitrogen atom, the alkali metal ions coordinate to the carbonyl oxygen atoms of both cytosine bases, indicating that the alkali metal ion coordination favorably competes with hydrogen bonding between the two cytosine sub-units of the i-motif like structure. 1. Berdakin, Steinmetz, Maitre, Pino, J. Phys. Chem. A 2014, 118, 3804

  7. N-terminal amino acid sequences of D-serine deaminases of wild-type and operator-constitutive strains of Escherichia coli K-12.

    PubMed Central

    Heincz, M C; McFall, E

    1975-01-01

    The N-terminal amino acid sequences of the D-serine deaminases from strains of Escherichia coli K-12 that harbor wild-type and high-level constitutive catabolite-insensitive operator-initiator regions are identical: Met-Ser-GluNH2-Ser-Gly-Arg-His-Cys. This result indicates that the operator-initiator region is probably distinct from the D-serine deaminase structural gene. Images PMID:1099073

  8. The ADA*2 allele of the adenosine deaminase gene (20q13.11) and recurrent spontaneous abortions: an age-dependent association

    PubMed Central

    Nunes, Daniela Prudente Teixeira; Spegiorin, Lígia Cosentino Junqueira Franco; de Mattos, Cinara Cássia Brandão; Oliani, Antonio Helio; Vaz-Oliani, Denise Cristina Mós; de Mattos, Luiz Carlos

    2011-01-01

    OBJECTIVE: Adenosine deaminase acts on adenosine and deoxyadenosine metabolism and modulates the immune response. The adenosine deaminase G22A polymorphism (20q.11.33) influences the level of adenosine deaminase enzyme expression, which seems to play a key role in maintaining pregnancy. The adenosine deaminase 2 phenotype has been associated with a protective effect against recurrent spontaneous abortions in European Caucasian women. The aim of this study was to investigate whether the G22A polymorphism of the adenosine deaminase gene is associated with recurrent spontaneous abortions in Brazilian women. METHODS: A total of 311 women were recruited to form two groups: G1, with a history of recurrent spontaneous abortions (N?=?129), and G2, without a history of abortions (N?=?182). Genomic DNA was extracted from peripheral blood with a commercial kit and PCR-RFLP analysis was used to identify the G22A genetic polymorphism. Fisher's exact test and odds ratio values were used to compare the proportions of adenosine deaminase genotypes and alleles between women with and without a history of recurrent spontaneous abortion (p<0.05). The differences between mean values for categorical data were calculated using unpaired t tests. The Hardy-Weinberg equilibrium was assessed with a chi-square test. RESULTS: Statistically significant differences were identified for the frequencies of adenosine deaminase genotypes and alleles between the G1 and G2 groups when adjusted for maternal age. CONCLUSIONS: The results suggest that the adenosine deaminase *2 allele is associated with a low risk for recurrent spontaneous abortions, but this association is dependent on older age. PMID:22086524

  9. Diagnostic Value of Serum Adenosine Deaminase (ADA) Level for Pulmonary Tuberculosis

    PubMed Central

    Salmanzadeh, Shokrollah; Tavakkol, Heshmatollah; Bavieh, Khalid; Alavi, Seyed Mohammad

    2015-01-01

    Background: Diagnosis of tuberculosis (TB) is not always easy, thus employing methods with a short duration and acceptable sensitivity and specificity is necessary to diagnose TB. Objectives: The aim of this study was to investigate the diagnostic value of serum adenosine deaminase (ADA) level for diagnosis of pulmonary tuberculosis. Patients and Methods: A total of 160 sex and age-matched subjects were included in this study, and were divided to four groups; forty patients with pulmonary tuberculosis (PTB) diagnosed based on the national TB program (NTP), forty patients with non-tuberculosis bacterial pneumonia, forty patients with lung cancer and forty people who were healthy in every respect. Serum adenosine deaminase activity in patients of each group was measured by the Giusti and Galanti calorimetry method using a commercial kit (Diazyme, USA). The ANOVA analysis was used to compare groups for quantitative variables. Results: Mean serum ADA level in the PTB group was clearly higher than the mean serum ADA in the other three groups. Mean serum ADA was 26 IU/L in PTB patients, 19.48 IU/L in patients with pneumonia, 15.8 IU/L in patients with lung cancer, and 10.7 IU/L in the control group (P < 0.05). In regard to the cut off value of 26 IU/L for ADA in patients with PTB sensitivity and specificity was defined as 35% and 91%, respectively. Conclusions: Serum ADA activity with high specificity percentage may be a useful alternative test in restricted resource areas to rule out diagnosis of PTB. However, serum ADA activity is not a useful tool for TB diagnosis. PMID:25861440

  10. Activation-induced cytidine deaminase in B cells of hepatits C virus-related cryoglobulinaemic vasculitis.

    PubMed

    Russi, S; Dammacco, F; Sansonno, S; Pavone, F; Sansonno, D

    2015-12-01

    Immunoglobulin variable region heavy chain (IgVH ) somatic gene diversification is instrumental in the transformation process that characterizes hepatitis C virus (HCV)-related B cell lymphoproliferative disorders. However, the extent to which activation-induced cytidine deaminase (AID), an enzyme essential for IgV gene somatic hypermutation (SHM), is active in cryoglobulinaemic vasculitis (CV) remains unclear. AID mRNA expression in the peripheral blood of 102 chronically hepatitis C virus (HCV)-infected patients (58 with and 44 without CV) and 26 healthy subjects was investigated using real-time reverse transcription-polymerase chain reaction (RT-PCR). The features of activation-induced cytidine deaminase (AID) protein and mRNA transcripts were explored in liver tissue biopsies and portal tracts isolated using laser capture microdissection. In chronically HCV-infected patients, AID mRNA expression was almost threefold higher in those with than in those without CV and sevenfold higher than in healthy subjects (median-fold: 6·68 versus 2·54, P?=?0·03 and versus 0·95, P?=?0·0003). AID transcript levels were significantly higher in polyclonal than in clonally restricted B cell preparations in either CV or non-CV patients (median-fold, 15·0 versus 2·70, P?=?0·009 and 3·46 versus 1·58, P?=?0·02, respectively). AID gene expression was found to be related negatively to age and virological parameters. AID protein was found in portal tracts containing inflammatory cells that, in several instances, expressed AID mRNA transcripts. Our data indicate that the aberrant expression of AID may reflect continuous B cell activation and sustained survival signals in HCV-related CV patients. PMID:26219420

  11. High cytidine deaminase expression in the liver provides sanctuary for cancer cells from decitabine treatment effects

    PubMed Central

    Ebrahem, Quteba; Mahfouz, Reda; Ng, Kwok Peng; Saunthararajah, Yogen

    2012-01-01

    We document for the first time that sanctuary in an organ which expresses high levels of the enzyme cytidine deaminase (CDA) is a mechanism of cancer cell resistance to cytidine analogues. This mechanism could explain why historically, cytidine analogues have not been successful chemotherapeutics against hepatotropic cancers, despite efficacy in vitro. Importantly, this mechanism of resistance can be readily reversed, without increasing toxicity to sensitive organs, by combining cytidine analogue with an inhibitor of cytidine deaminase (tetrahydrouridine). Specifically, CDA rapidly metabolizes cytidine analogues into inactive uridine counterparts. Hence, to determine if sheltering/protection of cancer cells in organs which express high levels of CDA (e.g., liver) is a mechanism of resistance, we utilized a murine xenotransplant model of myeloid cancer that is sensitive to epigenetic therapeutic effects of the cytidine analogue decitabine in vitro and hepato-tropic in vivo. Treatment of tumor-bearing mice with decitabine (subcutaneous 0.2mg/kg 2X/week) doubled median survival and significantly decreased extra-hepatic tumor burden, but hepatic tumor burden remained substantial, to which the animals eventually succumbed. Combining a clinically-relevant inhibitor of CDA (tetrahydrouridine) with a lower dose of decitabine (subcutaneous 0.1mg/kg 2X/week) markedly decreased liver tumor burden without blood count or bone marrow evidence of myelotoxicity, and with further improvement in survival. In conclusion, sanctuary in a CDA-rich organ is a mechanism by which otherwise susceptible cancer cells can resist the effects of decitabine epigenetic therapy. This protection can be reversed without increasing myelotoxicity by combining tetrahydrouridine with a lower dose of decitabine. PMID:23087155

  12. Effects of an induced adenosine deaminase deficiency on T-cell differentiation in the rat

    SciTech Connect

    Barton, R.W.

    1985-10-15

    Inherited deficiency of the enzyme adenosine deaminase (ADA) has been found in a significant proportion of patients with severe combined immunodeficiency disease and inherited defect generally characterized by a deficiency of both B and T cells. Two questions are central to understanding the pathophysiology of this disease: (1) at what stage or stages in lymphocyte development are the effects of the enzyme deficiency manifested; (2) what are the biochemical mechanisms responsible for the selective pathogenicity of the lymphoid system. We have examined the stage or stages of rat T-cell development in vivo which are affected by an induced adenosine deaminase deficiency using the ADA inhibitors, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and 2'-deoxycoformycin (DCF). In normal rats given daily administration of an ADA inhibitor, cortical thymocytes were markedly depleted; peripheral lymphocytes and pluripotent hemopoietic stem cells (CFU-S) all were relatively unaffected. Since a deficiency of ADA affects lymphocyte development, the regeneration of cortical and medullary thymocytes and their precursors after sublethal irradiation was used as a model of lymphoid development. By Day 5 after irradiation the thymus was reduced to 0.10-0.5% of its normal size; whereas at Days 9 and 14 the thymus was 20-40% and 60-80% regenerated, respectively. When irradiated rats were given daily parenteral injections of the ADA inhibitor plus adenosine or deoxyadenosine, thymus regeneration at Days 9 and 14 was markedly inhibited, whereas the regeneration of thymocyte precursors was essentially unaffected. Thymus regeneration was at least 40-fold lower than in rats given adenosine or deoxyadenosine alone. Virtually identical results were obtained with both ADA inhibitors, EHNA and DCF.

  13. DNA methylation by wheat cytosine DNA methyltransferase: modulation by protease inhibitor E-64.

    PubMed

    Vlasova, T I; Vanyushin, B F

    1998-06-01

    Cytosine DNA methyltransferase isolated from wheat seedlings and purified in the presence of metalloprotease and serine protease inhibitors has molecular mass and specific activity equal to about 85 kDa and 250 units/mg protein, respectively. Apparent K(m) for AdoMet and [I]50 for AdoHcy values are about 6 microM and 12 microM, respectively. The enzyme is active in wide pH range (pH 5.5-8.5) and is inhibited by NaCl. The enzyme rapidly loses its methyltransferase activity in the absence of substrates. Using the cysteine protease inhibitor E-64 it has been shown that rapid enzyme inactivation is caused by disappearance of essential enzyme SH-groups but is not due to proteolytic enzyme cleavage. PMID:9635138

  14. Recognition of foldback DNA by the human DNA (cytosine-5-)-methyltransferase

    SciTech Connect

    Smith, S.S.; Lingeman, R.G.; Kaplan, B.E. City of Hope National Medical Center, Duarte, CA )

    1992-01-28

    In order to specify the recognition requirements of the human DNA (cytosine-5-)-methyltransferase, two isomeric 48mers were synthesized so as to link a long block of DNA with a shorter complementary block of DNA through a tether consisting of five thymidine residues. These isomeric foldback molecules, differing only in the location of the 5-methyldeoxycytosine, were shown to be unimolecular, to contain a region of duplex DNA, and to contain a region of single-stranded DNA. When used as substrates for the DNA methyltransferase, only one of the isomers was methylated. A comparison of the structures of the two isomers allows us to begin to define the potential sites of interaction between the enzyme and the three nucleotides forming a structural motif consisting of 5-methyldeoxycytosine, its base-paired deoxyguanosine, and a deoxycytosine 5{prime} to the paired deoxyguanosine.

  15. Paramutation of the r1 locus of maize is associated with increased cytosine methylation.

    PubMed Central

    Walker, E L

    1998-01-01

    In paramutation two alleles of a gene interact so that one of the alleles is epigenetically silenced. The silenced state is then genetically transmissible for many generations. The large (220 kbp) multigenic complex R-r is paramutable: its level of expression is changed during paramutation. R-r was found to exhibit increases in its level of cytosine methylation (C-methylation) following paramutation. These C-methylation changes are localized to the 5' portions of the two genes in the complex that are most sensitive to paramutation. These methylation changes flank a small region called sigma that is thought to have been derived from a transposon named doppia. A mutant derivative of R-r that has a deletion of the sigma region fails to become methylated under conditions in which R-r is heavily methylated. This suggests that the presence of sigma sequences at the locus is required for the methylation changes that are observed following paramutation. PMID:9560410

  16. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population

    PubMed Central

    Schmitz, Robert J.; He, Yupeng; Valdés-López, Oswaldo; Khan, Saad M.; Joshi, Trupti; Urich, Mark A.; Nery, Joseph R.; Diers, Brian; Xu, Dong; Stacey, Gary; Ecker, Joseph R.

    2013-01-01

    Cytosine DNA methylation is one avenue for passing information through cell divisions. Here, we present epigenomic analyses of soybean recombinant inbred lines (RILs) and their parents. Identification of differentially methylated regions (DMRs) revealed that DMRs mostly cosegregated with the genotype from which they were derived, but examples of the uncoupling of genotype and epigenotype were identified. Linkage mapping of methylation states assessed from whole-genome bisulfite sequencing of 83 RILs uncovered widespread evidence for local methylQTL. This epigenomics approach provides a comprehensive study of the patterns and heritability of methylation variants in a complex genetic population over multiple generations, paving the way for understanding how methylation variants contribute to phenotypic variation. PMID:23739894

  17. Somatic Inactivation and Reactivation of Ac Associated with Changes in Cytosine Methylation and Transposase Expression

    PubMed Central

    Brutnell, T. P.; Dellaporta, S. L.

    1994-01-01

    Several metastable Ac alleles at the maize p locus were identified that produced novel pericarp variegation patterns. From the transmission analysis of pericarp sectors, we show that Ac inactivation is a somatic process. Ac excision from P and transactivation of an unlinked Ds was delayed or absent in plants with metastable Ac alleles. These decreases in Ac activity were correlated to increases in cytosine methylation at specific sites near the start of Ac transcription (open reading frame a; ORFa) and at sites in some flanking P sequence. Reactivation of inactive alleles was accompanied by decreased methylation of Ac and P sequences. Using a competitive polymerase chain reaction assay, steady state levels of ORFa transcript were quantitatively compared among the various metastable alleles. We propose that changes in the methylation profile of Ac correspond to changes in Ac activity through the differential accumulation of Ac transcript. PMID:8001788

  18. Singlet excited-state dynamics of 5-fluorocytosine and cytosine: An experimental and computational study

    PubMed Central

    Blancafort, Lluís; Cohen, Boiko; Hare, Patrick M.; Kohler, Bern; Robb, Michael A.

    2005-01-01

    The photophysics of singlet excited 5-fluorocytosine (5FC) was studied in steady-state and time-resolved experiments and theoretically by quantum chemical calculations. Femtosecond transient absorption measurements show that replacement of the C5 hydrogen of cytosine by fluorine increases the excited-state lifetime by two orders of magnitude from 720 fs to 73 ± 4 ps. Experimental evidence indicates that emission in both compounds originates from a single tautomeric form. The lifetime of 5FC is the same within experimental uncertainty in the solvents ethanol and dimethylsulfoxide. The insensitivity of the S1 lifetime to the protic nature of the solvent suggests that proton transfer is not the principal quenching mechanism for the excited state. Excited state calculations were carried out for the amino-keto tautomer of 5FC, the dominant species in polar environments, in order to understand its longer excited-state lifetime. CASSCF and CAS-PT2 calculations of the excited states show that the minimum energy path connecting the minimum of the 1?, ?* state with the conical intersection responsible for internal conversion has essentially the same energetics for cytosine and 5FC, suggesting that both bases decay nonradiatively by the same mechanism. The dramatic difference in lifetimes may be due to subtle changes along the decay coordinate. A possible reason may be differences in the intramolecular vibrational redistribution rate from the Franck-Condon active, in-plane modes to the out-of-plane modes that must be activated to reach the conical intersection region. PMID:16833777

  19. Mapping global changes in nuclear cytosine base modifications in the early mouse embryo.

    PubMed

    Li, Y; Seah, Michelle K Y; O'Neill, C

    2016-02-01

    Reprogramming epigenetic modifications to cytosine is required for normal embryo development. We used improved immunolocalization techniques to simultaneously map global changes in the levels of 5'-methylcytosine (5meC) and 5'-hydroxymethylcytosine (5hmC) in each cell of the embryo from fertilization through the first rounds of cellular differentiation. The male and female pronuclei of the zygote showed similar staining levels, and these remained elevated over the next three cell cycles. The inner cells of the morula showed a progressive reduction in global levels of both 5meC and 5hmC and further losses occurred in the pluripotent inner cell mass (ICM) of the blastocyst. This was accompanied by undetectable levels of DNA methyltransferase of each class in the nuclei of the ICM, while DNA methyltransferase 3B was elevated in the hypermethylated nuclei of the trophectoderm (TE). Segregation of the ICM into hypoblast and epiblast was accompanied by increased levels in the hypoblast compared with the epiblast. Blastocyst outgrowth in vitro is a model for implantation and showed that a demethylated state persisted in the epiblast while the hypoblast had higher levels of both 5meC and 5hmC staining. The high levels of 5meC and 5hmC evident in the TE persisted in trophoblast and trophoblast giant cells after attachment of the blastocyst to the substratum in vitro. This study shows that global cytosine hypomethylation and hypohydroxymethylation accompanied the formation of the pluripotent ICM and this persisted into the epiblast after blastocyst outgrowth, and each differentiated lineage formed in the early embryo showed higher global levels of 5meC and 5hmC. PMID:26660107

  20. Yeast Media Sterilization Guidelines

    E-print Network

    Aris, John P.

    bucket (to minimize exposure to heat). 2. Syringe filter sterilize into sterile 100 ml glass bottle. 31 Yeast Media Sterilization Guidelines: Use the following exposure times for liquids and remove temperature. Add carbon source from sterilized 20% solution. SD (Synthetic Dextrose) "Drop In" Medium: 1 L 20

  1. Opportunistic Pathogenic Yeasts

    NASA Astrophysics Data System (ADS)

    Banerjee, Uma

    Advances in medical research, made during the last few decades, have improved the prophylactic, diagnostic and therapeutic capabilities for variety of infections/diseases. However, many of the prophylactic and therapeutic procedures have been seen in many instances to exact a price of host-vulnerability to an expanding group of opportunistic pathogens and yeasts are one of the important members in it. Fortunately amongst the vast majority of yeasts present in nature only few are considered to have the capability to cause infections when certain opportunities predisposes and these are termed as ‘opportunistic pathogenic yeasts.’ However, the term ‘pathogenic’ is quite tricky, as it depends of various factors of the host, the ‘bug’ and the environment to manifest the clinical infection. The borderline is expanding. In the present century with unprecedented increase in number of immune-compromised host in various disciplines of health care settings, where any yeast, which has the capability to grow at 37 ° C (normal body temperature of human), can be pathogenic and cause infection in particular situation

  2. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  3. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  4. STRIPE2 encodes a putative dCMP deaminase that plays an important role in chloroplast development in rice.

    PubMed

    Xu, Jing; Deng, Yiwen; Li, Qun; Zhu, Xudong; He, Zuhua

    2014-10-20

    Mutants with abnormal leaf coloration are good genetic materials for understanding the mechanism of chloroplast development and chlorophyll biosynthesis. In this study, a rice mutant st2 (stripe2) with stripe leaves was identified from the ?-ray irradiated mutant pool. The st2 mutant exhibited decreased accumulation of chlorophyll and aberrant chloroplasts. Genetic analysis indicated that the st2 mutant was controlled by a single recessive locus. The ST2 gene was finely confined to a 27-kb region on chromosome 1 by the map-based cloning strategy and a 5-bp deletion in Os01g0765000 was identified by sequence analysis. The deletion happened in the joint of exon 3 and intron 3 and led to new spliced products of mRNA. Genetic complementation confirmed that Os01g0765000 is the ST2 gene. We found that the ST2 gene was expressed ubiquitously. Subcellular localization assay showed that the ST2 protein was located in mitochondria. ST2 belongs to the cytidine deaminase-like family and possibly functions as the dCMP deaminase, which catalyzes the formation of dUMP from dCMP by deamination. Additionally, exogenous application of dUMP could partially rescue the st2 phenotype. Therefore, our study identified a putative dCMP deaminase as a novel regulator in chloroplast development for the first time. PMID:25438698

  5. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  6. Mitochondrial inheritance in yeast.

    PubMed

    Westermann, Benedikt

    2014-07-01

    Mitochondria are the site of oxidative phosphorylation, play a key role in cellular energy metabolism, and are critical for cell survival and proliferation. The propagation of mitochondria during cell division depends on replication and partitioning of mitochondrial DNA, cytoskeleton-dependent mitochondrial transport, intracellular positioning of the organelle, and activities coordinating these processes. Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism to study the mechanisms that drive segregation of the mitochondrial genome and determine mitochondrial partitioning and behavior in an asymmetrically dividing cell. Here, I review past and recent advances that identified key components and cellular pathways contributing to mitochondrial inheritance in yeast. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira. PMID:24183694

  7. Tapping into yeast diversity.

    PubMed

    Fay, Justin C

    2012-11-01

    Domesticated organisms demonstrate our capacity to influence wild species but also provide us with the opportunity to understand rapid evolution in the context of substantially altered environments and novel selective pressures. Recent advances in genetics and genomics have brought unprecedented insights into the domestication of many organisms and have opened new avenues for further improvements to be made. Yet, our ability to engineer biological systems is not without limits; genetic manipulation is often quite difficult. The budding yeast, Saccharomyces cerevisiae, is not only one of the most powerful model organisms, but is also the premier producer of fermented foods and beverages around the globe. As a model system, it entertains a hefty workforce dedicated to deciphering its genome and the function it encodes at a rich mechanistic level. As a producer, it is used to make leavened bread, and dozens of different alcoholic beverages, such as beer and wine. Yet, applying the awesome power of yeast genetics to understanding its origins and evolution requires some knowledge of its wild ancestors and the environments from which they were derived. A number of surprisingly diverse lineages of S. cerevisiae from both primeval and secondary forests in China have been discovered by Wang and his colleagues. These lineages substantially expand our knowledge of wild yeast diversity and will be a boon to elucidating the ecology, evolution and domestication of this academic and industrial workhorse. PMID:23281494

  8. Synthesis of adenine, guanine, cytosine, and other nitrogen organic compounds by a Fischer-Tropsch-like process.

    NASA Technical Reports Server (NTRS)

    Yang, C. C.; Oro, J.

    1971-01-01

    Study of the formation of purines, pyrimidines, and other bases from CO, H2, and NH3 under conditions similar to those used in the Fischer-Tropsch process. It is found that industrial nickel/iron alloy catalyzes the synthesis of adenine, guanine, cytosine, and other nitrogenous compounds from mixtures of CO, H2, and NH3 at temperatures of about 600 C. Sufficient sample was accumulated to isolate as solid products adenine, guanine, and cytosine, which were identified by infrared spectrophotometry. In the absence of nickel/iron catalyst, at 650 C, or in the presence of this catalyst, at 450 C, no purines or pyrimidines were synthesized. These results confirm and extend some of the work reported by Kayatsu et al. (1968).

  9. Quantum chemical MP2 results on some hydrates of cytosine: binding sites, energies and the first hydration shell.

    PubMed

    Fogarasi, Géza; Szalay, Péter G

    2015-11-28

    A detailed quantum chemical investigation was undertaken to obtain the structure and energetics of cytosine hydrates Cyt·nH2O, with n = 1 to 7. The MP2(fc)/aug-cc-pVDZ level was used as the standard, with some DFT (B3LYP) and coupled cluster calculations, as well as calculations with the aug-cc-pVTZ basis set added for comparison. In a systematic search for microhydrated forms of cytosine, we have found that several structures have not yet been reported in the literature. The energies of different isomers, as well as binding energies are compared. When predicting the stability of a complex, we suggest using a scheme where the water molecules are extracted from a finite model of bulk water. Finally, based on energetic data, we suggest a rational definition of the first hydration shell; with this definition, it contains just six water molecules. PMID:26487481

  10. Effects of Cytosine-phosphate-Guanosine Oligodeoxynucleotides (CpG-ODN) on vaccination and immunization of neonatal chickens 

    E-print Network

    Barri, Adriana

    2005-02-17

    -1 EFFECTS OF CYTOSINE-PHOSPHATE-GUANOSINE OLIGODEOXYNUCLEOTIDES (CPG-ODN) ON VACCINATION AND IMMUNIZATION OF NEONATAL CHICKENS A Thesis by ADRIANA BARRI Submitted to the Office of Graduate Studies of Texas A&M University in partial... CHICKENS A Thesis by ADRIANA BARRI Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by...

  11. New roles for DNA cytosine modification, eRNA, anchors, and superanchors in developing B cell progenitors.

    PubMed

    Benner, Christopher; Isoda, Takeshi; Murre, Cornelis

    2015-10-13

    B-cell fate is orchestrated by a series of well-characterized developmental regulators. Here, we found that the onset of B-cell development was accompanied by large-scale changes in DNA cytosine modifications associated with promoters, enhancers, and anchors. These changes were tightly linked to alterations in transcription factor occupancy and nascent RNA (eRNA) transcription. We found that the prepro-B to the pro-B-cell transition was associated with a global exchange of DNA cytosine modifications for polycomb-mediated repression at CpG islands. Hypomethylated regions were found exclusively in the active/permissive compartment of the nucleus and were predominantly associated with regulatory elements or anchors that orchestrate the folding patterns of the genome. We identified superanchors, characterized by clusters of hypomethylated CCCTC-binding factor (CTCF)-bound elements, which were predominantly located at boundaries that define topological associated domains. A particularly prominent hypomethylated superanchor was positioned down-stream of the Ig heavy chain (Igh) locus. Analysis of global formaldehyde-cross-linking studies indicated that the Igh locus superanchor interacts with the VH region repertoire across vast genomic distances. We propose that the Igh locus superanchor sequesters the VH and DHJH regions into a spatial confined geometric environment to promote rapid first-passage times. Collectively, these studies demonstrate how, in developing B cells, DNA cytosine modifications associated with regulatory and architectural elements affect patterns of gene expression, folding patterns of the genome, and antigen receptor assembly. PMID:26417104

  12. Engineering alcohol tolerance in yeast

    E-print Network

    Lam, Felix H.

    Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical ...

  13. Genomics and the making of yeast biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  14. ORIGINAL PAPER Evolutionarily engineered ethanologenic yeast detoxifies

    E-print Network

    Song, Joe

    ORIGINAL PAPER Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion industry. Numerous yeast genes were found to be associated with the inhibitor tolerance. However developed tolerant ethanologenic yeast Saccharo- myces cerevisiae NRRL Y-50049, we investigate pathway

  15. Ultrafast two-dimensional infrared spectroscopy of guanine-cytosine base pairs in DNA oligomers.

    PubMed

    Greve, Christian; Elsaesser, Thomas

    2013-11-14

    NH and OH stretching excitations of hydrated double-stranded DNA oligomers containing guanine-cytosine (GC) base pairs in a Watson-Crick geometry are studied by two-dimensional (2D) infrared spectroscopy. The 2D spectra measured at a low hydration level (?4 water molecules/base pair) are dominated by NH stretch contributions from the NH2 groups of G and C and the NH group of G. Partially hydrated NH2 groups display red-shifted NH stretch frequencies and a mixing of the wave functions of the two local NH oscillators via the mechanical vibrational coupling. The NH stretch lifetimes are of the order of 200-300 fs. Weak couplings exist between NH stretch oscillators within a base pair, while interactions between neighboring GC pairs in the double helix are negligible. The absence of spectral diffusion on a 1 ps time scale suggests a relatively rigid structure of the hydrogen bonds between DNA and residual water molecules. 2D spectra recorded with fully hydrated DNA oligomers exhibit NH and OH stretch contributions with a weak influence of water fluctuations on the NH stretch lineshapes. The femtosecond spectral diffusion of OH stretch excitations is slower than that in bulk H2O and originates from structural fluctuations of the water shell and the formation of a vibrationally hot ground state by vibrational relaxation. We compare our findings with measurements on hydrated adenine-thymine DNA oligomers and anhydrous GC base pairs in solution. PMID:24127664

  16. Protein-facilitated base flipping in DNA by cytosine-5-methyltransferase

    NASA Astrophysics Data System (ADS)

    Huang, Niu; Banavali, Nilesh K.; Mackerell, Alexander D., Jr.

    2003-01-01

    DNA methylation, various DNA repair mechanisms, and possibly early events in the opening of DNA as required for transcription and replication are initiated by flipping of a DNA base out of the DNA double helix. The energetics and structural mechanism of base flipping in the presence of the DNA-processing enzyme, cytosine 5-methyltransferase from HhaI (M.HhaI), were obtained through molecular dynamics based upon free-energy calculations. Free-energy profiles for base flipping show that, when in the closed conformation, M.HhaI lowers the free-energy barrier to flipping by 17 kcal/mol and stabilizes the fully flipped state. Flipping is shown to occur via the major groove of the DNA. Structural analysis indicates that flipping is facilitated by destabilization of the DNA double-helical structure and substitution of DNA base-pairing and base-stacking interactions with DNA-protein interactions. The fully flipped state is stabilized by DNA-protein interactions that are enhanced upon binding of coenzyme. This study represents an atomic detail description of the mechanism by which a protein facilitates specific structural distortion in DNA.

  17. SCAN database: facilitating integrative analyses of cytosine modification and expression QTL.

    PubMed

    Zhang, Wei; Gamazon, Eric R; Zhang, Xu; Konkashbaev, Anuar; Liu, Cong; Szilágyi, Keely L; Dolan, M Eileen; Cox, Nancy J

    2015-01-01

    Functional annotation of genetic variants including single nucleotide polymorphisms (SNPs) and copy number variations (CNV) promises to greatly improve our understanding of human complex traits. Previous transcriptomic studies involving individuals from different global populations have investigated the genetic architecture of gene expression variation by mapping expression quantitative trait loci (eQTL). Functional interpretation of genome-wide association studies (GWAS) has identified enrichment of eQTL in top signals from GWAS of human complex traits. The SCAN (SNP and CNV Annotation) database was developed as a web-based resource of genetical genomic studies including eQTL detected in the HapMap lymphoblastoid cell line samples derived from apparently healthy individuals of European and African ancestry. Considering the critical roles of epigenetic gene regulation, cytosine modification quantitative trait loci (mQTL) are expected to add a crucial layer of annotation to existing functional genomic information. Here, we describe the new features of the SCAN database that integrate comprehensive mQTL mapping results generated in the HapMap CEU (Caucasian residents from Utah, USA) and YRI (Yoruba people from Ibadan, Nigeria) LCL samples and demonstrate the utility of the enhanced functional annotation system. PMID:25818895

  18. Morphologic and phenotypic changes of human neuroblastoma cells in culture induced by cytosine arabinoside

    SciTech Connect

    Ponzoni, M.; Lanciotti, M.; Melodia, A.; Casalaro, A.; Cornaglia-Ferraris, P. )

    1989-03-01

    The effects of cytosine-arabinoside (ARA-C) on the growth and phenotypic expression of a new human neuroblastoma (NB) cell line (GI-ME-N) have been extensively tested. Low doses of ARA-C allowing more than 90% cell viability induce morphological differentiation and growth inhibition. Differentiated cells were larger and flattened with elongated dendritic processes; such cells appeared within 48 hours after a dose of ARA-C as low as 0.1 {mu}g/ml. The new morphological aspect reached the maximum expression after 5-6 days of culture being independent from the addition of extra drug to the culture. A decrease in ({sup 3}H)thymidine incorporation was also observed within 24 hours and the cell growth was completely inhibited on the sixth day. Moreover, ARA-C strongly inhibited anchorage-independent growth in soft agar assay. Membrane immunofluorescence showed several dramatic changes in NB-specific antigen expression after 5 days of treatment with ARA-C. At the same time ARA-C also modulated cytoskeletal proteins and slightly increased catecholamine expression. These findings suggest that noncytotoxic doses of ARA-C do promote the differentiation of GI-ME-N neuroblastoma cells associated with reduced expression of the malignant phenotype.

  19. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    PubMed Central

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M. Vargas; Parker, Brian J.; Rasmussen, Morten; Lindgreen, Stinus; Lilje, Berit; Tobin, Desmond J.; Kelly, Theresa K.; Vang, Søren; Andersson, Robin; Jones, Peter A.; Hoover, Cindi A.; Tikhonov, Alexei; Prokhortchouk, Egor; Rubin, Edward M.; Sandelin, Albin; Gilbert, M. Thomas P.; Krogh, Anders; Willerslev, Eske; Orlando, Ludovic

    2014-01-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics. PMID:24299735

  20. Effects of cytosine methylation on DNA morphology: An atomic force microscopy study.

    PubMed

    Cassina, V; Manghi, M; Salerno, D; Tempestini, A; Iadarola, V; Nardo, L; Brioschi, S; Mantegazza, F

    2016-01-01

    Methylation is one of the most important epigenetic mechanisms in eukaryotes. As a consequence of cytosine methylation, the binding of proteins that are implicated in transcription to gene promoters is severely hindered, which results in gene regulation and, eventually, gene silencing. To date, the mechanisms by which methylation biases the binding affinities of proteins to DNA are not fully understood; however, it has been proposed that changes in double-strand conformations, such as stretching, bending, and over-twisting, as well as local variations in DNA stiffness/flexibility may play a role. The present work investigates, at the single molecule level, the morphological consequences of DNA methylation in vitro. By tracking the atomic force microscopy images of single DNA molecules, we characterize DNA conformations pertaining to two different degrees of methylation. In particular, we observe that methylation induces no relevant variations in DNA contour lengths, but produces measurable incremental changes in persistence lengths. Furthermore, we observe that for the methylated chains, the statistical distribution of angles along the DNA coordinate length is characterized by a double exponential decay, in agreement with what is predicted for polyelectrolytes. The results reported herein support the claim that the biological consequences of the methylation process, specifically difficulties in protein-DNA binding, are at least partially due to DNA conformation modifications. PMID:26475643

  1. Sequence requirements for transcriptional arrest in exon 1 of the human adenosine deaminase gene

    SciTech Connect

    Zhi Chen; Kellems, R.E.; Innis, J.W. ); Sun, Minghua; Wright, D.A. )

    1991-12-01

    The authors have previously demonstrated that a transcriptional arrest site exists in exon 1 of the human adenosine deaminase (ADA) gene and that this site may play a role in ADA gene expression. Sequences involved in this process are not known precisely. To further define the template requirements for transcriptional arrest within exon 1 of the human ADA gene, various ADA templates were constructed and their abilities to confer transcriptional arrest were determined following injection into Xenopus oocytes. The exon 1 transcriptional arrest signal functioned downstream of several RNA polymerase II promoters and an RNA polymerase II promoter, implying that the transcriptional arrest site in exon 1 of the ADA gene is promoter independent. They identified a 43-bp DNA fragment which functions as a transcriptional arrest signal. Additional studies showed that the transcriptional arrest site functioned only in the naturally occurring orientation. Therefore, they have identified a 43-bp DNA fragment which functions as a transcriptional arrest signal in an orientation-dependent and promoter-independent manner. On the basis of the authors findings, they hypothesize that tissue-specific expression of the ADA gene is governed by factors that function as antiterminators to promote transcriptional readthrough of the exon 1 transcriptional arrest site.

  2. ADENOSINE DEAMINASE ACTIVITY AND SERUM C-REACTIVE PROTEIN AS PROGNOSTIC MARKERS OF CHAGAS DISEASE SEVERITY

    PubMed Central

    BRAVO-TOBAR, Iván Darío; NELLO-PÉREZ, Carlota; FERNÁNDEZ, Alí; MOGOLLÓN, Nora; PÉREZ, Mary Carmen; VERDE, Juan; CONCEPCIÓN, Juan Luis; RODRIGUEZ-BONFANTE, Claudina; BONFANTE-CABARCAS, Rafael

    2015-01-01

    SUMMARY Chagas disease is a public health problem worldwide. The availability of diagnostic tools to predict the development of chronic Chagas cardiomyopathy is crucial to reduce morbidity and mortality. Here we analyze the prognostic value of adenosine deaminase serum activity (ADA) and C-reactive protein serum levels (CRP) in chagasic individuals. One hundred and ten individuals, 28 healthy and 82 chagasic patients were divided according to disease severity in phase I (n = 35), II (n = 29), and III (n = 18). A complete medical history, 12-lead electrocardiogram, chest X-ray, and M-mode echocardiogram were performed on each individual. Diagnosis of Chagas disease was confirmed by ELISA and MABA using recombinant antigens; ADA was determined spectrophotometrically and CRP by ELISA. The results have shown that CRP and ADA increased linearly in relation to disease phase, CRP being significantly higher in phase III and ADA at all phases. Also, CRP and ADA were positively correlated with echocardiographic parameters of cardiac remodeling and with electrocardiographic abnormalities, and negatively with ejection fraction. CRP and ADA were higher in patients with cardiothoracic index ? 50%, while ADA was higher in patients with ventricular repolarization disturbances. Finally, CRP was positively correlated with ADA. In conclusion, ADA and CRP are prognostic markers of cardiac dysfunction and remodeling in Chagas disease. PMID:26603224

  3. Genetically engineered mice demonstrate that adenosine deaminase is essential for early postimplantation development.

    PubMed

    Blackburn, M R; Knudsen, T B; Kellems, R E

    1997-08-01

    Adenosine deaminase (ADA) is an essential enzyme of purine metabolism that is enriched at the maternal-fetal interface of mice throughout postimplantation development. During early postimplantation stages Ada is highly expressed in both maternally derived decidual cells and zygotically derived trophoblast cells. For the current study we utilized genetically modified mice to delineate the relative contribution and importance of decidual and trophoblast ADA at the maternal-fetal interface. In females genetically engineered to lack decidual ADA a striking pattern of expression was revealed in giant trophoblast cells that surround the early postimplantation embryo. Embryos within gestation sites lacking both decidual and trophoblast ADA died during the early postimplantation period, whereas expression in trophoblast cells alone was sufficient for survival through this period. Severe disturbances in purine metabolism were observed in gestation sites lacking decidual ADA, including the accumulation of the potentially toxic ADA substrates adenosine and 2'-deoxyadenosine. These experiments provide genetic evidence that Ada expression at the maternal-fetal interface is essential for early postimplantation development in mice. PMID:9272950

  4. Control of transcription arrest in intron 1 of the murine adenosine deaminase gene.

    PubMed

    Kash, S F; Kellems, R E

    1994-09-01

    Transcription arrest plays a key role in the regulation of the murine adenosine deaminase (ADA) gene, as well as a number of other cellular and viral genes. We have previously characterized the ADA intron 1 arrest site, located 145 nucleotides downstream of the transcription start site, with respect to sequence and elongation factor requirements. Here, we show that the optimal conditions for both intron 1 arrest and overall ADA transcription involve the addition of high concentrations of KCl soon after initiation. As we have further delineated the sequence requirements for intron 1 arrest, we have found that sequences downstream of the arrest site are unnecessary for arrest. Also, a 24-bp fragment containing sequences upstream of the arrest site is sufficient to generate arrest downstream of the adenovirus major late promoter only in the native orientation. Surprisingly, we found that deletion of sequences encompassing the ADA transcription start site substantially reduced intron 1 arrest, with no effect on overall levels of transcription. At the same time, deletion of sequences upstream of the TATA box had no significant effect on either process. We believe the start site mutations have disrupted either the assembly or the composition of the transcription complex such that intron 1 site read-through is now favored. This finding, coupled with the increase in overall transcription after high-concentration KCl treatment, allows us to further refine our model of ADA gene regulation. PMID:8065352

  5. Adenosine deaminase deficiency: metabolic basis of immune deficiency and pulmonary inflammation.

    PubMed

    Blackburn, Michael R; Kellems, Rodney E

    2005-01-01

    Genetic deficiencies in the purine catabolic enzyme adenosine deaminase (ADA) in humans results primarily in a severe lymphopenia and immunodeficiency that can lead to the death of affected individuals early in life. The metabolic basis of the immunodeficiency is likely related to the sensitivity of lymphocytes to the accumulation of the ADA substrates adenosine and 2'-deoxyadenosine. Investigations using ADA-deficient mice have provided compelling evidence to support the hypothesis that T and B cells are sensitive to increased concentrations of 2'-deoxyadenosine that kill cells through mechanisms that involve the accumulation of dATP and the induction of apoptosis. In addition to effects on the developing immune system, ADA-deficient humans exhibit phenotypes in other physiological systems including the renal, neural, skeletal, and pulmonary systems. ADA-deficient mice develop similar abnormalities that are dependent on the accumulation of adenosine and 2'-deoxyadenosine. Detailed analysis of the pulmonary insufficiency seen in ADA-deficient mice suggests that the accumulation of adenosine in the lung can directly access cellular signaling pathways that lead to the development and exacerbation of chronic lung disease. The ability of adenosine to regulate aspects of chronic lung disease is likely mediated by specific interactions with adenosine receptor subtypes on key regulatory cells. Thus, the examination of ADA deficiency has identified the importance of purinergic signaling during lymphoid development and in the regulation of aspects of chronic lung disease. PMID:15705418

  6. Regulation of forestomach-specific expression of the murine adenosine deaminase gene.

    PubMed

    Xu, P A; Winston, J H; Datta, S K; Kellems, R E

    1999-04-01

    The maturation of stratified squamous epithelium of the upper gastrointestinal tract is a highly ordered process of development and differentiation. Information on the molecular basis of this process is, however, limited. Here we report the identification of the first murine forestomach regulatory element using the murine adenosine deaminase (Ada) gene as a model. In the adult mouse, Ada is highly expressed in the terminally differentiated epithelial layer of upper gastrointestinal tract tissues. The data reported here represent the identification and detailed analysis of a 1. 1-kilobase (kb) sequence located 3.4-kb upstream of the transcription initiation site of the murine Ada gene, which is sufficient to target cat reporter gene expression to the forestomach in transgenic mice. This 1.1-kb fragment is capable of directing cat reporter gene expression mainly to the forestomach of transgenic mice, with a level comparable to the endogenous Ada gene. This expression is localized to the appropriate cell types, confers copy number dependence, and shows the same developmental regulation. Mutational analysis revealed the functional importance of multiple transcription factor-binding sites. PMID:10187819

  7. Adenosine deaminase deficiency increases thymic apoptosis and causes defective T cell receptor signaling

    PubMed Central

    Apasov, Sergey G.; Blackburn, Michael R.; Kellems, Rodney E.; Smith, Patrick T.; Sitkovsky, Michail V.

    2001-01-01

    Adenosine deaminase (ADA) deficiency in humans results in a severe combined immunodeficiency (SCID). This immunodeficiency is associated with severe disturbances in purine metabolism that are thought to mediate lymphotoxicity. The recent generation of ADA-deficient (ADA–/–) mice has enabled the in vivo examination of mechanisms that may underlie the SCID resulting from ADA deficiency. We demonstrate severe depletion of T and B lymphocytes and defects in T and B cell development in ADA–/– mice. T cell apoptosis was abundant in thymi of ADA–/– mice, but no increase in apoptosis was detected in the spleen and lymph nodes of these animals, suggesting that the defect is specific to developing thymocytes. Studies of mature T cells recovered from spleens of ADA–/– mice revealed that ADA deficiency is accompanied by TCR activation defects of T cells in vivo. Furthermore, ex vivo experiments on ADA–/– T cells demonstrated that elevated adenosine is responsible for this abnormal TCR signaling. These findings suggest that the metabolic disturbances seen in ADA–/– mice affect various signaling pathways that regulate thymocyte survival and function. Experiments with thymocytes ex vivo confirmed that ADA deficiency reduces tyrosine phosphorylation of TCR-associated signaling molecules and blocks TCR-triggered calcium increases. J. Clin. Invest. 108:131–141 (2001). DOI:10.1172/JCI200110360. PMID:11435465

  8. Partially adenosine deaminase-deficient mice develop pulmonary fibrosis in association with adenosine elevations.

    PubMed

    Chunn, Janci L; Mohsenin, Amir; Young, Hays W J; Lee, Chun G; Elias, Jack A; Kellems, Rodney E; Blackburn, Michael R

    2006-03-01

    Adenosine, a signaling nucleoside, exhibits tissue-protective and tissue-destructive effects. Adenosine levels in tissues are controlled in part by the enzyme adenosine deaminase (ADA). ADA-deficient mice accumulate adenosine levels in multiple tissues, including the lung, where adenosine contributes to the development of pulmonary inflammation and chronic airway remodeling. The present study describes the development of pulmonary fibrosis in mice that have been genetically engineered to possess partial ADA enzyme activity and, thus, accumulate adenosine over a prolonged period of time. These partially ADA-deficient mice live for up to 5 mo and die from apparent respiratory distress. Detailed investigations of the lung histopathology of partially ADA-deficient mice revealed progressive pulmonary fibrosis marked by an increase in the number of pulmonary myofibroblasts and an increase in collagen deposition. In addition, in regions of the distal airways that did not exhibit fibrosis, an increase in the number of large foamy macrophages and a substantial enlargement of the alveolar air spaces suggest emphysemic changes. Furthermore, important proinflammatory and profibrotic signaling pathways, including IL-13 and transforming growth factor-beta1, were activated. Increases in tissue fibrosis were also seen in the liver and kidneys of these mice. These changes occurred in association with pronounced elevations of lung adenosine concentrations and alterations in lung adenosine receptor levels, supporting the hypothesis that elevation of endogenous adenosine is a proinflammatory and profibrotic signal in this model. PMID:16258000

  9. Metabolic and immunologic consequences of limited adenosine deaminase expression in mice.

    PubMed

    Blackburn, M R; Datta, S K; Wakamiya, M; Vartabedian, B S; Kellems, R E

    1996-06-21

    Adenosine deaminase (ADA; EC 3.5.4.4) deficiency in humans is an autosomal recessive genetic disorder that results in severe combined immunodeficiency disease. ADA-deficient mice generated by targeted gene disruption die perinatally, preventing postnatal analysis of ADA deficiency. We have recently rescued ADA-deficient fetuses from perinatal lethality by expression of an ADA minigene in the placentas of ADA-deficient fetuses, thus generating postnatal mice admissible to analysis of ADA deficiency. The minigene used also directed ADA expression to the forestomach postnatally, producing adult animals that lacked ADA enzymatic activity in all tissues outside the gastrointestinal tract. Mice with limited ADA expression exhibited profound disturbances in purine metabolism, including thymus-specific accumulations of deoxyadenosine and dATP, and inhibition of S-adenosylhomocysteine hydrolase in the thymus, spleen, and, to a lesser extent, the liver. Lymphopenia and mild immunodeficiency were associated with these tissue-specific metabolic disturbances. These mice represent the first genetic animal model for ADA deficiency and provide insight into the tissue-specific requirements of ADA. PMID:8663040

  10. Adenosine deaminase deficiency increases thymic apoptosis and causes defective T cell receptor signaling.

    PubMed

    Apasov, S G; Blackburn, M R; Kellems, R E; Smith, P T; Sitkovsky, M V

    2001-07-01

    Adenosine deaminase (ADA) deficiency in humans results in a severe combined immunodeficiency (SCID). This immunodeficiency is associated with severe disturbances in purine metabolism that are thought to mediate lymphotoxicity. The recent generation of ADA-deficient (ADA(-/-)) mice has enabled the in vivo examination of mechanisms that may underlie the SCID resulting from ADA deficiency. We demonstrate severe depletion of T and B lymphocytes and defects in T and B cell development in ADA(-/-) mice. T cell apoptosis was abundant in thymi of ADA(-/-) mice, but no increase in apoptosis was detected in the spleen and lymph nodes of these animals, suggesting that the defect is specific to developing thymocytes. Studies of mature T cells recovered from spleens of ADA(-/-) mice revealed that ADA deficiency is accompanied by TCR activation defects of T cells in vivo. Furthermore, ex vivo experiments on ADA(-/-) T cells demonstrated that elevated adenosine is responsible for this abnormal TCR signaling. These findings suggest that the metabolic disturbances seen in ADA(-/-) mice affect various signaling pathways that regulate thymocyte survival and function. Experiments with thymocytes ex vivo confirmed that ADA deficiency reduces tyrosine phosphorylation of TCR-associated signaling molecules and blocks TCR-triggered calcium increases. PMID:11435465

  11. The Binding Site of Human Adenosine Deaminase for Cd26/Dipeptidyl Peptidase IV

    PubMed Central

    Richard, Eva; Arredondo-Vega, Francisco X.; Santisteban, Ines; Kelly, Susan J.; Patel, Dhavalkumar D.; Hershfield, Michael S.

    2000-01-01

    Human, but not murine, adenosine deaminase (ADA) forms a complex with the cell membrane protein CD26/dipeptidyl peptidase IV. CD26-bound ADA has been postulated to regulate extracellular adenosine levels and to modulate the costimulatory function of CD26 on T lymphocytes. Absence of ADA–CD26 binding has been implicated in causing severe combined immunodeficiency due to ADA deficiency. Using human–mouse ADA hybrids and ADA point mutants, we have localized the amino acids critical for CD26 binding to the helical segment 126–143. Arg142 in human ADA and Gln142 in mouse ADA largely determine the capacity to bind CD26. Recombinant human ADA bearing the R142Q mutation had normal catalytic activity per molecule, but markedly impaired binding to a CD26+ ADA-deficient human T cell line. Reduced CD26 binding was also found with ADA from red cells and T cells of a healthy individual whose only expressed ADA has the R142Q mutation. Conversely, ADA with the E217K active site mutation, the only ADA expressed by a severely immunodeficient patient, showed normal CD26 binding. These findings argue that ADA binding to CD26 is not essential for immune function in humans. PMID:11067872

  12. Control of transcription arrest in intron 1 of the murine adenosine deaminase gene.

    PubMed Central

    Kash, S F; Kellems, R E

    1994-01-01

    Transcription arrest plays a key role in the regulation of the murine adenosine deaminase (ADA) gene, as well as a number of other cellular and viral genes. We have previously characterized the ADA intron 1 arrest site, located 145 nucleotides downstream of the transcription start site, with respect to sequence and elongation factor requirements. Here, we show that the optimal conditions for both intron 1 arrest and overall ADA transcription involve the addition of high concentrations of KCl soon after initiation. As we have further delineated the sequence requirements for intron 1 arrest, we have found that sequences downstream of the arrest site are unnecessary for arrest. Also, a 24-bp fragment containing sequences upstream of the arrest site is sufficient to generate arrest downstream of the adenovirus major late promoter only in the native orientation. Surprisingly, we found that deletion of sequences encompassing the ADA transcription start site substantially reduced intron 1 arrest, with no effect on overall levels of transcription. At the same time, deletion of sequences upstream of the TATA box had no significant effect on either process. We believe the start site mutations have disrupted either the assembly or the composition of the transcription complex such that intron 1 site read-through is now favored. This finding, coupled with the increase in overall transcription after high-concentration KCl treatment, allows us to further refine our model of ADA gene regulation. Images PMID:8065352

  13. Adenosine-dependent pulmonary fibrosis in adenosine deaminase-deficient mice.

    PubMed

    Chunn, Janci L; Molina, Jose G; Mi, Tiejuan; Xia, Yang; Kellems, Rodney E; Blackburn, Michael R

    2005-08-01

    Pulmonary fibrosis is a common feature of numerous lung disorders, including interstitial lung diseases, asthma, and chronic obstructive pulmonary disease. Despite the prevalence of pulmonary fibrosis, the molecular mechanisms governing inflammatory and fibroproliferative aspects of the disorder are not clear. Adenosine is a purine-signaling nucleoside that is generated in excess during cellular stress and damage. This signaling molecule has been implicated in the regulation of features of chronic lung disease; however, the impact of adenosine on pulmonary fibrosis is not well understood. The goal of this study was to explore the impact of endogenous adenosine elevations on pulmonary fibrosis. To accomplish this, adenosine deaminase (ADA)-deficient mice were treated with various levels of ADA enzyme replacement therapy to regulate endogenous adenosine levels in the lung. Maintaining ADA-deficient mice on low dosages of ADA enzyme therapy led to chronic elevations in lung adenosine levels that were associated with pulmonary inflammation, expression of profibrotic molecules, collagen deposition, and extreme alteration in airway structure. These features could be blocked by preventing elevations in lung adenosine. Furthermore, lowering lung adenosine levels after the establishment of pulmonary fibrosis resulted in a resolution of fibrosis. These findings demonstrate that chronic adenosine elevations are associated with pulmonary fibrosis in ADA-deficient mice and suggest that the adenosine functions as a profibrotic signal in the lung. PMID:16034138

  14. Transcription factor AP-2gamma regulates murine adenosine deaminase gene expression during placental development.

    PubMed

    Shi, D; Kellems, R E

    1998-10-16

    Trophoblast cells are specialized extra-embryonic cells present only in eutherian mammals. They play a major role in the implantation and placentation processes. To understand better the molecular mechanisms that control the development and function of trophoblast cells, we sought to identify the transcription factors that regulate murine adenosine deaminase (ADA) gene expression in the placenta. Here we report a detailed characterization of a placenta-specific footprinting region (FP1) in the Ada placental regulatory element. The sequence of FP1 was mapped by DNase I footprinting and was found to match a consensus AP-2 transcription factor-binding site. Electrophoretic mobility shift assays demonstrated that FP1 interacted with AP-2-like proteins. Further analysis using AP-2 antibody confirmed that AP-2 protein was indeed present in the placenta and bound to FP1. Mutation at the AP-2 site in FP1 abolished the ability of the Ada placental regulatory element to bind AP-2 proteins and failed to target chloramphenicol acetyltransferase reporter gene expression to placentas in transgenic mice, indicating that AP-2 is required for Ada expression in the placenta. In addition, RNase protection assays demonstrated that AP-2gamma was the predominant AP-2 family member expressed in the placenta. In situ hybridization analysis revealed that AP-2gamma expression was enriched in the trophoblast lineage throughout development, suggesting that AP-2gamma may be critical for trophoblast development and differentiation. PMID:9765260

  15. Metabolites from apoptotic thymocytes inhibit thymopoiesis in adenosine deaminase–deficient fetal thymic organ cultures

    PubMed Central

    Thompson, Linda F.; Van De Wiele, C. Justin; Laurent, Aletha B.; Hooker, Scott W.; Vaughn, James G.; Jiang, Hong; Khare, Kamayani; Kellems, Rodney E.; Blackburn, Michael R.; Hershfield, Michael S.; Resta, Regina

    2000-01-01

    Murine fetal thymic organ culture was used to investigate the mechanism by which adenosine deaminase (ADA) deficiency causes T-cell immunodeficiency. C57BL/6 fetal thymuses treated with the specific ADA inhibitor 2?-deoxycoformycin exhibited features of the human disease, including accumulation of dATP and inhibition of S-adenosylhomocysteine hydrolase enzyme activity. Although T-cell receptor (TCR) V? gene rearrangements and pre–TCR-? expression were normal in ADA-deficient cultures, the production of ?? TCR+ thymocytes was inhibited by 95%, and differentiation was blocked beginning at the time of ? selection. In contrast, the production of ?? TCR+ thymocytes was unaffected. Similar results were obtained using fetal thymuses from ADA gene-targeted mice. Differentiation and proliferation were preserved by the introduction of a bcl-2 transgene or disruption of the gene encoding apoptotic protease activating factor–1. The pan-caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethyl ketone also significantly lessened the effects of ADA deficiency and prevented the accumulation of dATP. Thus, ADA substrates accumulate and disrupt thymocyte development in ADA deficiency. These substrates derive from thymocytes that undergo apoptosis as a consequence of failing to pass developmental checkpoints, such as ? selection. PMID:11067867

  16. Metabolites from apoptotic thymocytes inhibit thymopoiesis in adenosine deaminase-deficient fetal thymic organ cultures.

    PubMed

    Thompson, L F; Van de Wiele, C J; Laurent, A B; Hooker, S W; Vaughn, J G; Jiang, H; Khare, K; Kellems, R E; Blackburn, M R; Hershfield, M S; Resta, R

    2000-11-01

    Murine fetal thymic organ culture was used to investigate the mechanism by which adenosine deaminase (ADA) deficiency causes T-cell immunodeficiency. C57BL/6 fetal thymuses treated with the specific ADA inhibitor 2'-deoxycoformycin exhibited features of the human disease, including accumulation of dATP and inhibition of S-adenosylhomocysteine hydrolase enzyme activity. Although T-cell receptor (TCR) Vbeta gene rearrangements and pre-TCR-alpha expression were normal in ADA-deficient cultures, the production of alphabeta TCR(+) thymocytes was inhibited by 95%, and differentiation was blocked beginning at the time of beta selection. In contrast, the production of gammadelta TCR(+) thymocytes was unaffected. Similar results were obtained using fetal thymuses from ADA gene-targeted mice. Differentiation and proliferation were preserved by the introduction of a bcl-2 transgene or disruption of the gene encoding apoptotic protease activating factor-1. The pan-caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethyl ketone also significantly lessened the effects of ADA deficiency and prevented the accumulation of dATP. Thus, ADA substrates accumulate and disrupt thymocyte development in ADA deficiency. These substrates derive from thymocytes that undergo apoptosis as a consequence of failing to pass developmental checkpoints, such as beta selection. PMID:11067867

  17. Diverse genetic regulatory motifs required for murine adenosine deaminase gene expression in the placenta.

    PubMed

    Shi, D; Winston, J H; Blackburn, M R; Datta, S K; Hanten, G; Kellems, R E

    1997-01-24

    Murine adenosine deaminase (ADA) is a ubiquitous purine catabolic enzyme whose expression is subject to developmental and tissue-specific regulation. ADA is enriched in trophoblast cells of the chorioallantoic placenta and is essential for embryonic and fetal development. To begin to understand the genetic pathway controlling Ada gene expression in the placenta, we have identified and characterized a 770-base pair fragment located 5.4 kilobase pairs upstream of the Ada transcription initiation site, which directs reporter gene expression to the placenta of transgenic mice. The expression pattern of the reporter gene reflected that of the endogenous Ada gene in the placenta. Sequence analysis revealed potential binding sites for bHLH and GATA transcription factors. DNase I footprinting defined three protein binding regions, one of which was placenta-specific. Mutations in the potential protein binding sites and footprinting regions resulted in loss of placental expression in transgenic mice. These findings indicate that multiple protein binding motifs are necessary for Ada expression in the placenta. PMID:8999942

  18. The Role of Histidine-Proline-Rich Glycoprotein as Zinc Chaperone for Skeletal Muscle AMP Deaminase

    PubMed Central

    Ranieri-Raggi, Maria; Moir, Arthur J. G.; Raggi, Antonio

    2014-01-01

    Metallochaperones function as intracellular shuttles for metal ions. At present, no evidence for the existence of any eukaryotic zinc-chaperone has been provided although metallochaperones could be critical for the physiological functions of Zn2+ metalloenzymes. We propose that the complex formed in skeletal muscle by the Zn2+ metalloenzyme AMP deaminase (AMPD) and the metal binding protein histidine-proline-rich glycoprotein (HPRG) acts in this manner. HPRG is a major plasma protein. Recent investigations have reported that skeletal muscle cells do not synthesize HPRG but instead actively internalize plasma HPRG. X-ray absorption spectroscopy (XAS) performed on fresh preparations of rabbit skeletal muscle AMPD provided evidence for a dinuclear zinc site in the enzyme compatible with a (?-aqua)(?-carboxylato)dizinc(II) core with two histidine residues at each metal site. XAS on HPRG isolated from the AMPD complex showed that zinc is bound to the protein in a dinuclear cluster where each Zn2+ ion is coordinated by three histidine and one heavier ligand, likely sulfur from cysteine. We describe the existence in mammalian HPRG of a specific zinc binding site distinct from the His-Pro-rich region. The participation of HPRG in the assembly and maintenance of skeletal muscle AMPD by acting as a zinc chaperone is also demonstrated. PMID:24970226

  19. Hereditary overexpression of adenosine deaminase in erythrocytes: Evidence for a cis-acting mutation

    SciTech Connect

    Chen, E.H. ); Tartaglia, A.P. ); Mitchell, B.S. )

    1993-10-01

    Overexpression of adenosine deaminase (ADA) in red blood cells is inherited as an autosomal dominant trait and causes hemolytic anemia. The increased ADA activity in erythrocytes is due to an increase in steady-state levels of ADA mRNA of normal sequence. Increased ADA mRNA may be due to a cis-acting mutation which results in increased transcription or a loss of down-regulation during erythroid differentiation. Alternatively, it is possible that the mutation is in a trans-acting factor which interacts with normal ADA transcriptional elements to cause overexpression in red blood cells. To discriminate between a cis-acting and a trans-acting mutation, the authors took advantage of a highly polymorphic TAAA repeat located at the tail end of an Alu repeat approximately 1.1 kb upstream of the ADA gene. Using PCR to amplify this region, the authors identified five different alleles in 19 members of the family. All 11 affected individuals had an ADA allele with 12 TAAA repeats, whereas none of the 8 normal individuals did. The authors conclude that this disorder results from a cis-acting mutation in the vicinity of the ADA gene. 24 refs., 3 figs.

  20. AMP deaminase histochemical activity and immunofluorescent isozyme localization in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Sabina, R. L.; Ogasawara, N.; Riley, D. A.

    1992-01-01

    The cellular distribution of AMP deaminase (AMPda) isozymes was documented for rat soleus and plantaris muscles, utilizing immunofluorescence microscopy and immunoprecipitation methods. AMPda is a ubiquitous enzyme existing as three distinct isozymes, A, B and C, which were initially purified from skeletal muscle, liver (and kidney), and heart, respectively. AMPda-A is primarily concentrated subsarcolemmally and intermyofibrillarly within muscle cells, while isozymes B and C are concentrated within non-myofiber elements of muscle tissue. AMPda-B is principally associated with connective tissues surrounding neural elements and the muscle spindle capsule, and AMPda-C is predominantly associated with circulatory elements, such as arterial and venous walls, capillary endothelium, and red blood cells. These specific localizations, combined with documented differences in kinetic properties, suggest multiple functional roles for the AMPda isozymes or temporal segregation of similar AMPda functions. Linkage of the AMPda substrate with adenosine production pathways at the AMP level and the localization of isozyme-C in vascular tissue suggest a regulatory role in the microcirculation.

  1. Human ADA2 belongs to a new family of growth factors with adenosine deaminase activity

    PubMed Central

    2005-01-01

    Two distinct isoenzymes of ADA (adenosine deaminase), ADA1 and ADA2, have been found in humans. Inherited mutations in ADA1 result in SCID (severe combined immunodeficiency). This observation has led to extensive studies of the structure and function of this enzyme that have revealed an important role for it in lymphocyte activation. In contrast, the physiological role of ADA2 is unknown. ADA2 is found in negligible quantities in serum and may be produced by monocytes/macrophages. ADA2 activity in the serum is increased in various diseases in which monocyte/macrophage cells are activated. In the present study, we report that ADA2 is a heparin-binding protein. This allowed us to obtain a highly purified enzyme and to study its biochemistry. ADA2 was identified as a member of a new class of ADGFs (ADA-related growth factors), which is present in almost all organisms from flies to humans. Our results suggest that ADA2 may be active in sites of inflammation during hypoxia and in areas of tumour growth where the adenosine concentration is significantly elevated and the extracellular pH is acidic. Our finding that ADA2 co-purified and concentrated together with IgG in commercially available preparations offers an intriguing explanation for the observation that treatment with such preparations leads to non-specific immune-system stimulation. PMID:15926889

  2. Adaptive evolution of threonine deaminase in plant defense against insect herbivores

    SciTech Connect

    Gonzales-Vigil, Eliana; Bianchetti, Christopher M.; Phillips, Jr., George N.; Howe, Gregg A.

    2011-11-07

    Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to {alpha}-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gut of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.

  3. Sensitivity and specificity of adenosine deaminase in diagnosis of juvenile idiopathic arthritis

    PubMed Central

    Doudkani-Fard, Mina; Ziaee, Vahid; Moradinejad, Mohamad-Hassan; Sedaghat, Mojtaba; Haghi-Ashtiani, Mohammad-Taghi; Ahmadinejad, Zahra

    2014-01-01

    Background: Juvenile Idiopathic Arthritis (JIA) is one of the most common chronic rheumatic diseases inchildren with unknown etiology and pathogenesis. It also has no diagnostic test and its clinical diagnosis ismade through ruling out other types of arthritis. The aim of this study was to evaluate the level of ADA (AdenosineDeaminase) in the serum of JIA patients and to compare it with that of patients with Reactive Arthritis(RA). Evaluation of sensitivity and specificity of serum ADA level in JIA was another objective. Methods: The study included 120 children with JIA (mean age= 7.6 ± 4.3 years) and 40 children with RA(mean age= 5.5 ± 3.1 years). The ADA was measured in the active phase of both diseases. Results: The mean ADA serum level was obtained as 15.8 ± 11.8 U/l in JIA patients and 14.3 ± 7.5 U/l in RApatients. The difference was statistically insignificant (p= 0.4). Another finding of this study was the significantspecificity (77.5%) of this laboratory parameter for JIA in comparison with its low sensitivity (36.7%). Positivepredictive value was 83% and negative predictive value 29%. Conclusion: Determination of ADA serum levels is a noninvasive reliable and easy biomarker for diagnosis ofJIA and it can be used as alternative parameters representing disease activity. PMID:25678992

  4. Modulatory effect of iron chelators on adenosine deaminase activity and gene expression in Trichomonas vaginalis

    PubMed Central

    Primon-Barros, Muriel; Rigo, Graziela Vargas; Frasson, Amanda Piccoli; dos Santos, Odelta; Smiderle, Lisiane; Almeida, Silvana; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival. PMID:26517498

  5. Modulatory effect of iron chelators on adenosine deaminase activity and gene expression in Trichomonas vaginalis.

    PubMed

    Primon-Barros, Muriel; Rigo, Graziela Vargas; Frasson, Amanda Piccoli; Santos, Odelta Dos; Smiderle, Lisiane; Almeida, Silvana; Macedo, Alexandre José; Tasca, Tiana

    2015-11-01

    Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalisisolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival. PMID:26517498

  6. PORPHOBILINOGEN DEAMINASE Deficiency Alters Vegetative and Reproductive Development and Causes Lesions in Arabidopsis

    PubMed Central

    Quesada, Víctor; Hricová, Andrea; Ponce, María Rosa; Micol, José Luis

    2013-01-01

    The Arabidopsis rugosa1 (rug1) mutant has irregularly shaped leaves and reduced growth. In the absence of pathogens, leaves of rug1 plants have spontaneous lesions reminiscent of those seen in lesion-mimic mutants; rug1 plants also express cytological and molecular markers associated with defence against pathogens. These rug1 phenotypes are made stronger by dark/light transitions. The rug1 mutant also has delayed flowering time, upregulation of the floral repressor FLOWERING LOCUS C (FLC) and downregulation of the flowering promoters FT and SOC1/AGL20. Vernalization suppresses the late flowering phenotype of rug1 by repressing FLC. Microarray analysis revealed that 280 nuclear genes are differentially expressed between rug1 and wild type; almost a quarter of these genes are involved in plant defence. In rug1, the auxin response is also affected and several auxin-responsive genes are downregulated. We identified the RUG1 gene by map-based cloning and found that it encodes porphobilinogen deaminase (PBGD), also known as hydroxymethylbilane synthase, an enzyme of the tetrapyrrole biosynthesis pathway, which produces chlorophyll, heme, siroheme and phytochromobilin in plants. PBGD activity is reduced in rug1 plants, which accumulate porphobilinogen. Our results indicate that Arabidopsis PBGD deficiency impairs the porphyrin pathway and triggers constitutive activation of plant defence mechanisms leading to leaf lesions and affecting vegetative and reproductive development. PMID:23308205

  7. Label-free aptasensor for adenosine deaminase sensing based on fluorescence turn-on.

    PubMed

    Zeng, X; Wang, C; Li, Y X; Li, X X; Su, Y Y; An, J; Tang, Y L

    2015-02-21

    A label-free and fluorescence turn-on aptamer biosensor has been developed for the detection of adenosine deaminase (ADA) activity with simplicity and selectivity. Adenosine aptamer will form a tight stem-loop structure upon binding with adenosine. In the absence of ADA, only a small quantity of picagreen intercalates into the stem section of aptamer, resulting in a low fluorescence of picagreen when excited at 490 nm. Interestingly, after the addition of ADA, adenosine is hydrolyzed to inosine, and the released aptamer forms double-stranded DNA (dsDNA) with its complementary single-stranded DNAc, followed by the intercalation of picagreen to dsDNA. When the solution is excited, picagreen emits strong green fluorescence. The increased fluorescence intensity of picagreen is dependent on the concentration of ADA. The detection limit of the ADA is determined to be 2 U L(-1), which is lower than ADA cutoff value (4 U L(-1)) in the clinical requirement and more sensitive than most of the reported methods. Compared to other previous ADA sensors, the assay is not only label-free but also a turn-on signal, and possesses properties of lower cost and simpler detection system. Furthermore, this label-free strategy is also applicable to the assay of other enzymes and screening of corresponding inhibitors. PMID:25521724

  8. A gold nanoparticle-based label free colorimetric aptasensor for adenosine deaminase detection and inhibition assay.

    PubMed

    Cheng, Fen; He, Yue; Xing, Xiao-Jing; Tan, Dai-Di; Lin, Yi; Pang, Dai-Wen; Tang, Hong-Wu

    2015-03-01

    A novel strategy for the fabrication of a colorimetric aptasensor using label free gold nanoparticles (AuNPs) is proposed in this work, and the strategy has been employed for the assay of adenosine deaminase (ADA) activity. The aptasensor consists of adenosine (AD) aptamer, AD and AuNPs. The design of the biosensor takes advantage of the special optical properties of AuNPs and the interaction between AuNPs and single-strand DNA. In the absence of ADA, the AuNPs are aggregated and are blue in color under appropriate salt concentration because of the grid structure of an AD aptamer when binding to AD, while in the presence of the analyte, AuNPs remain dispersed with red color under the same concentration of salt owing to ADA converting AD into inosine which has no affinity with the AD aptamer, thus allowing quantitative investigation of ADA activity. The present strategy is simple, cost-effective, selective and sensitive for ADA with a detection limit of 1.526 U L(-1), which is about one order of magnitude lower than that previously reported. In addition, a very low concentration of the inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) could generate a distinguishable response. Therefore, the AuNP-based colorimetric biosensor has great potential in the diagnosis of ADA-relevant diseases and drug screening. PMID:25597304

  9. Adenosine deaminase activity modulation by some street drug: molecular docking simulation and experimental investigation

    PubMed Central

    2014-01-01

    Background Adenosine deaminase (ADA) is an enzyme that plays important roles in proliferation, maturation, function and development of the immune system. ADA activity may be altered by variety of substances including synthetic or natural products. Morphine, cocaine and their analogs exert immune suppressive activities by decreasing immune system function. The purpose of this study is to confirm that this possible effect may be modulated by interaction of these substances with ADA activity by experimental and computational method. Methods The structural changes in ADA have been studied in presence of cocaine, ethylmorphine, homatropine, morphine and thebaine by determination of ADA hydrolytic activity, circular dichroism and fluorescence spectroscopy in different concentrations. Docking study was performed to evaluate interaction method of test compound with ADA active site using AutoDock4 software. Results According to in-vitro studies all compounds inhibited ADA with different potencies, however thebaine activated it at concentration below 50 ?M, ethylmorphine inhibited ADA at 35 ?M. Moreover, fluorescence spectra patterns were differed from compounds based on structural resemblance which were very considerable for cocaine and homatropine. Conclusion The results of this study confirms that opioids and some other stimulant drugs such as cocaine can alter immune function in illegal drug abusers. These findings may lead other investigators to develop a new class of ADA activators or inhibitors in the near future. PMID:24887139

  10. Structural Insights into E. coli Porphobilinogen Deaminase during Synthesis and Exit of 1-Hydroxymethylbilane

    PubMed Central

    Bulusu, Gopalakrishnan

    2014-01-01

    Porphobilinogen deaminase (PBGD) catalyzes the formation of 1-hydroxymethylbilane (HMB), a crucial intermediate in tetrapyrrole biosynthesis, through a step-wise polymerization of four molecules of porphobilinogen (PBG), using a unique dipyrromethane (DPM) cofactor. Structural and biochemical studies have suggested residues with catalytic importance, but their specific role in the mechanism and the dynamic behavior of the protein with respect to the growing pyrrole chain remains unknown. Molecular dynamics simulations of the protein through the different stages of pyrrole chain elongation suggested that the compactness of the overall protein decreases progressively with addition of each pyrrole ring. Essential dynamics showed that domains move apart while the cofactor turn region moves towards the second domain, thus creating space for the pyrrole rings added at each stage. Residues of the flexible active site loop play a significant role in its modulation. Steered molecular dynamics was performed to predict the exit mechanism of HMB from PBGD at the end of the catalytic cycle. Based on the force profile and minimal structural changes the proposed path for the exit of HMB is through the space between the domains flanking the active site loop. Residues reported as catalytically important, also play an important role in the exit of HMB. Further, upon removal of HMB, the structure of PBGD gradually relaxes to resemble its initial stage structure, indicating its readiness to resume a new catalytic cycle. PMID:24603363

  11. New and emerging yeast pathogens.

    PubMed Central

    Hazen, K C

    1995-01-01

    The most common yeast species that act as agents of human disease are Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, and Cryptococcus neoformans. The incidence of infections by other yeasts has increased during the past decade. The most evident emerging pathogens are Malassezia furfur, Trichosporon beigelii, Rhodotorula species, Hansenula anomala, Candida lusitaniae, and Candida krusei. Organisms once considered environmental contaminants or only industrially important, such as Candida utilis and Candida lipolytica, have now been implicated as agents of fungemia, onychomycosis, and systemic disease. The unusual yeasts primarily infect immunocompromised patients, newborns, and the elderly. The role of central venous catheter removal and antifungal therapy in patient management is controversial. The antibiograms of the unusual yeasts range from resistant to the most recent azoles and amphotericin B to highly susceptible to all antifungal agents. Current routine methods for yeast identification may be insufficient to identify the unusual yeasts within 2 days after isolation. The recognition of unusual yeasts as agents of sometimes life-threatening infection and their unpredictable antifungal susceptibilities increase the burden on the clinical mycology laboratory to pursue complete species identification and MIC determinations. Given the current and evolving medical practices for management of seriously ill patients, further evaluations of the clinically important data about these yeasts are needed. PMID:8665465

  12. Studies on Plant Growth Promoting Properties of Fruit-Associated Bacteria from Elettaria cardamomum and Molecular Analysis of ACC Deaminase Gene.

    PubMed

    Jasim, B; Anish, Mathew Chacko; Shimil, Vellakudiyan; Jyothis, Mathew; Radhakrishnan, E K

    2015-09-01

    Endophytic microorganisms have been reported to have diverse plant growth promoting mechanisms including phosphate solubilization, N2 fixation, production of phyto-hormones and ACC (1-aminocyclopropane-1-carboxylate) deaminase and antiphyto-pathogenic properties. Among these, ACC deaminase production is very important because of its regulatory effect on ethylene which is a stress hormone with precise role in the control of fruit development and ripening. However, distribution of these properties among various endophytic bacteria associated with fruit tissue and its genetic basis is least investigated. In the current study, 11 endophytic bacteria were isolated and identified from the fruit tissue of Elettaria cardamomum and were studied in detail for various plant growth promoting properties especially ACC deaminase activity using both culture-based and PCR-based methods. PCR-based screening identified the isolates EcB 2 (Pantoea sp.), EcB 7 (Polaromonas sp.), EcB 9 (Pseudomonas sp.), EcB 10 (Pseudomonas sp.) and EcB 11 (Ralstonia sp.) as positive for ACC deaminase. The PCR products were further subjected to sequence analysis which proved the similarity of the sequences identified in the study with ACC deaminase sequences reported from other sources. The detailed bioinformatic analysis of the sequence including homology-based modelling and molecular docking confirmed the sequences to have ACC deaminase activity. The docking of the modelled proteins was done using patch dock, and the detailed scrutiny of the protein ligand interaction revealed conservation of key amino acids like Lys51, Ser78, Tyr268 and Tyr294 which play important role in the enzyme activity. These suggest the possible regulatory effect of these isolates on fruit physiology. PMID:26164855

  13. The Budding Yeast Nucleus

    PubMed Central

    Taddei, Angela; Schober, Heiko; Gasser, Susan M.

    2010-01-01

    The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure. PMID:20554704

  14. Crystallization and preliminary X-ray crystallographic analysis of biodegradative threonine deaminase (TdcB) from Salmonella typhimurium

    SciTech Connect

    Simanshu, Dhirendra K.; Chittori, Sagar; Savithri, H. S.; Murthy, M. R. N.

    2006-03-01

    S. typhimurium biodegradative threonine deaminase (TdcB), a member of the ?-family of PLP-dependent enzymes, has been overexpressed, purified and crystallized in three different crystal forms using the hanging-drop vapour-diffusion method. Biodegradative threonine deaminase (TdcB) catalyzes the deamination of l-threonine to ?-ketobutyrate, the first reaction in the anaerobic breakdown of l-threonine to propionate. Unlike the biosynthetic threonine deaminase, TdcB is insensitive to l-isoleucine and is activated by AMP. Here, the cloning of TdcB (molecular weight 36 kDa) from Salmonella typhimurium with an N-terminal hexahistidine affinity tag and its overexpression in Escherichia coli is reported. TdcB was purified to homogeneity using Ni–NTA affinity column chromatography and crystallized using the hanging-drop vapour-diffusion technique in three different crystal forms. Crystal forms I (unit-cell parameters a = 46.32, b = 55.30, c = 67.24 Å, ? = 103.09, ? = 94.70, ? = 112.94°) and II (a = 56.68, b = 76.83, c = 78.50 Å, ? = 66.12, ? = 89.16, ? = 77.08°) belong to space group P1 and contain two and four molecules of TdcB, respectively, in the asymmetric unit. Poorly diffracting form III crystals were obtained in space group C2 and based on the unit-cell volume are most likely to contain one molecule per asymmetric unit. Two complete data sets of resolutions 2.2 Å (crystal form I) and 1.7 Å (crystal form II) were collected at 100 K using an in-house X-ray source.

  15. Agriculturally important yeasts: Biological control of field and postharvest diseases using yeast antagonists, and yeasts as pathogens of plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two important agricultural aspects of yeasts, control of plant diseases through application of yeasts as the control agent, and yeasts that are plant pathogens are reviewed. Yeasts as biocontrol organisms are presented first, followed by a discussion of some of the more common plant pathogenic yeas...

  16. Neurodegenerative Central Nervous System Langerhans Cell Histiocytosis and Coincident Hydrocephalus: Treated with Vincristine/Cytosine Arabinoside

    PubMed Central

    Allen, Carl E.; Flores, Ricardo; Rauch, Ronald; Dauser, Robert; Murray, Jeffrey C.; Puccetti, Diane; Hsu, David A.; Sondel, Paul; Hetherington, Maxine; Goldman, Stan; McClain, Kenneth L.

    2012-01-01

    Background Central nervous system (CNS) complications of Langerhans cell histiocytosis (LCH) include mass lesions and a neurodegenerative (ND) syndrome with ataxia, dysarthria, dysmetria, learning and behavior difficulties and/or characteristic changes on brain MRIs. Hydrocephalus has rarely been reported in LCH. LCH lesions of the orbit, mastoid and temporal bones (“CNS-Risk” lesions) and diabetes insipidus predispose patients to ND-CNS-LCH. Treatment options have been limited and only a case series using trans-retinoic acid (ATRA) and intravenous immunoglobulin (IVIG) have been published. Methods We have used cytosine arabinoside (ARA-C) with or without vincristine to treat 8 patients with ND-CNS LCH. Patients:7 male children and one young adult male with clinical and radiologic ND- CNS-LCH were treated with a regimen of vincristine 1.5 mg/m2 on day 1 and ARA-C 100 mg/m2 daily for 5 days or ARA-C alone monthly for 4–19 months. Seven patients were evaluated with an ataxia rating scale (ARS) and all with serial MRIs of the brain. Results Five of 7 patients had decreases in their ARS scores and/or decreased T2 hyperintense lesions on MRI images. Grade 2 neutropenia was the most frequent adverse event. Vincristine-associated neuropathy occurred in two patients. Hydrocephalus caused symptoms and signs that confounded the diagnosis and management of ND-CNS-LCH in all 4 patients affected with both. Conclusions Subtle changes in neurologic function may be complicated by hydrocephalus. Vcr/ARA-C or ARA-C were an effective therapies for some ND-CNS LCH patients. A clinical trial using this and possibly other modalities such as IVIG or ATRA should be done. PMID:19908293

  17. Modified-cytosine restriction-system-induced recombinant cloning artefacts in Escherichia coli.

    PubMed

    Williamson, M R; Doherty, J P; Woodcock, D M

    1993-02-14

    We have tested whether, and to what extent, recombinant clones from DNA segments with 5-methylation of cytosines recovered in methylation-restrictive (mcr+) hosts contain mutations. We constructed a model system in which the tetracycline-resistance-encoding gene (tet) from pBR322 was cloned into the plasmid pGEM3Zf+. The central region of tet was removed from the construct, methylated in vitro and then religated back into the unmethylated remainder of the construct. The central region of tet was either (1) methylated with a combination of four bacterial methyltransferases (M.AluI, M.HaeIII, M.HpaII plus M.HhaI) or (2) methylated with M.SssI which methylates at all CpG dinucleotides. These two protocols generated theoretical levels of DNA methylation in the central fragment of 10.5% and 33%, respectively. The construct was transformed into a series of isogenic (recA+) bacterial strains that were mcrA+ mcrB+C+, mcrA+ mcrB-C+, mcrA- mcrB+C+, mcrA- mcrB-C+ or mcrA- delta mcrBC, and also into a set of isogenic recA- derivatives of these strains. With the two methylation protocols, there was an average 48- and 141-fold reduction, respectively, in the number of transformants recovered from the recA+ mcr+ hosts compared with a methylation-tolerant host (mcr-). Of the clones recovered in recA+mcr+ hosts, > 20% of clones had an inactivating mutation in tet. The majority of such mutant clones contained deletions that frequently extended into the unmethylated portion of tet and even into the plasmid sequences beyond the end of the polylinker. With the recA- mcr+ hosts, effective restriction was much more stringent, rendering the plasmid containing the methylated segment effectively unclonable.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8382656

  18. Evolution of complete proteomes: guanine-cytosine pressure, phylogeny and environmental influences blend the proteomic architecture

    PubMed Central

    2013-01-01

    Background Guanine-cytosine (GC) composition is an important feature of genomes. Likewise, amino acid composition is a distinct, but less valued, feature of proteomes. A major concern is that it is not clear what valuable information can be acquired from amino acid composition data. To address this concern, in-depth analyses of the amino acid composition of the complete proteomes from 63 archaea, 270 bacteria, and 128 eukaryotes were performed. Results Principal component analysis of the amino acid matrices showed that the main contributors to proteomic architecture were genomic GC variation, phylogeny, and environmental influences. GC pressure drove positive selection on Ala, Arg, Gly, Pro, Trp, and Val, and adverse selection on Asn, Lys, Ile, Phe, and Tyr. The physico-chemical framework of the complete proteomes withstood GC pressure by frequency complementation of GC-dependent amino acid pairs with similar physico-chemical properties. Gln, His, Ser, and Val were responsible for phylogeny and their constituted components could differentiate archaea, bacteria, and eukaryotes. Environmental niche was also a significant factor in determining proteomic architecture, especially for archaea for which the main amino acids were Cys, Leu, and Thr. In archaea, hyperthermophiles, acidophiles, mesophiles, psychrophiles, and halophiles gathered successively along the environment-based principal component. Concordance between proteomic architecture and the genetic code was also related closely to genomic GC content, phylogeny, and lifestyles. Conclusions Large-scale analyses of the complete proteomes of a wide range of organisms suggested that amino acid composition retained the trace of GC variation, phylogeny, and environmental influences during evolution. The findings from this study will help in the development of a global understanding of proteome evolution, and even biological evolution. PMID:24088322

  19. Serum cytidine deaminase levels after withdrawal of non-steroidal anti-inflammatory treatment in rheumatoid arthritis.

    PubMed Central

    Thompson, P W; Kirwan, J R; Jones, D D; Currey, H L

    1988-01-01

    Increases in joint inflammation in nine patients with rheumatoid arthritis were provoked by withdrawal of their non-steroidal anti-inflammatory drugs. Pain score, duration of morning stiffness, Ritchie articular index score, and the number of analgesic tablets consumed reached peaks after five, three, five, and five days respectively compared with values during six days of normal treatment. Changes in serum cytidine deaminase (believed to reflect polymorph turnover in inflamed joints) showed a different pattern, with a sharp peak after two days and a subsequent trough. Possible mechanisms for these differences are discussed. PMID:3365029

  20. Adenosine Deaminase Acts as a Natural Antagonist for Dipeptidyl Peptidase 4-Mediated Entry of the Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Raj, V. Stalin; Smits, Saskia L.; Provacia, Lisette B.; van den Brand, Judith M. A.; Wiersma, Lidewij; Ouwendijk, Werner J. D.; Bestebroer, Theo M.; Spronken, Monique I.; van Amerongen, Geert; Rottier, Peter J. M.; Fouchier, Ron A. M.; Bosch, Berend Jan; Osterhaus, Albert D.M.E.

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) replicates in cells of different species using dipeptidyl peptidase 4 (DPP4) as a functional receptor. Here we show the resistance of ferrets to MERS-CoV infection and inability of ferret DDP4 to bind MERS-CoV. Site-directed mutagenesis of amino acids variable in ferret DPP4 thus revealed the functional human DPP4 virus binding site. Adenosine deaminase (ADA), a DPP4 binding protein, competed for virus binding, acting as a natural antagonist for MERS-CoV infection. PMID:24257613

  1. Adenosine Deaminase Enzyme Therapy Prevents and Reverses the Heightened Cavernosal Relaxation in Priapism

    PubMed Central

    Wen, Jiaming; Jiang, Xianzhen; Dai, Yingbo; Zhang, Yujin; Tang, Yuxin; Sun, Hong; Mi, Tiejuan; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2010-01-01

    Introduction Priapism featured with painful prolonged penile erection is dangerous and commonly seen in sickle cell disease (SCD). The preventive approaches or effective treatment options for the disorder are limited because of poor understanding of its pathogenesis. Recent studies have revealed a novel role of excess adenosine in priapism caused by heightened cavernosal relaxation, and therefore present an intriguing mechanism-based therapeutic possibility. Aim The aim of this study was to determine the therapeutic effects of adenosine deaminase (ADA) enzyme therapy to lower adenosine in priapism. Methods Both ADA-deficient mice and SCD transgenic (Tg) mice display priapism caused by excessive adenosine. Thus, we used these two distinct lines of mouse models of priapism as our investigative tools. Specifically, we treated both of these mice with different dosages of polyethylene glycol–modified ADA (PEG–ADA) to reduce adenosine levels in vivo. At the end points of the experiments, we evaluated the therapeutic effects of PEG–ADA treatment by measuring adenosine levels and monitoring the cavernosal relaxation. Main Outcome Measures Adenosine levels in penile tissues were measured by high-performance liquid chromatography, and cavernosal relaxation was quantified by electrical field stimulation (EFS)-induced corporal cavernosal strip (CCS) assays. Results We found that lowering adenosine levels in penile tissues by PEG–ADA treatment from birth in ADA-deficient mice prevented the increased EFS-induced CCS relaxation associated with priapism. Intriguingly, in both ADA-deficient mice and SCD Tg mice with established priapism, we found that normalization of adenosine levels in penile tissues by PEG–ADA treatment relieved the heightened EFS-induced cavernosal relaxation in priapism. Conclusions Our studies have identified that PEG–ADA is a novel, safe, and mechanism-based drug to prevent and correct excess adenosine-mediated increased cavernosal relaxation seen in two independent priapic animal models, and suggested its therapeutic possibility in men suffering from priapism. PMID:19845544

  2. Probing the functional role of two conserved active site aspartates in mouse adenosine deaminase.

    PubMed

    Sideraki, V; Mohamedali, K A; Wilson, D K; Chang, Z; Kellems, R E; Quiocho, F A; Rudolph, F B

    1996-06-18

    Two adjacent aspartates, Asp 295 and Asp 296, playing major roles in the reaction catalyzed by mouse adenosine deaminase (mADA) were altered using site-directed mutagenesis. These mutants were expressed and purified from an ADA-deficient bacterial strain and characterized. Circular dichroism spectroscopy shows the mutants to have unperturbed secondary structure. Their zinc content compares well to that of wild-type enzyme. Changing Asp 295 to a glutamate decreases the kcat but does not alter the Km for adenosine, confirming the importance of this residue in the catalytic process and its minimal role in substrate binding. The crystal structure of the D295E mutant reveals a displacement of the catalytic water from the active site due to the longer glutamate side chain, resulting in the mutant's inability to turn over the substrate. In contrast, Asp 296 mutants exhibit markedly increased Km values, establishing this residue's critical role in substrate binding. The Asp 296->Ala mutation causes a 70-fold increase in the Km for adenosine and retains 0.001% of the wild-type kcat/Km value, whereas the ASP 296->Asn mutant has a 10-fold higher Km and retains 1% of the wild-type kcat/Km value. The structure of the D296A mutant shows that the impaired binding of substrate is caused by the loss of a single hydrogen bond between a carboxylate oxygen and N7 of the purine ring. These results and others discussed below are in agreement with the postulated role of the adjacent aspartates in the catalytic mechanism for mADA. PMID:8672487

  3. Diagnosis of tuberculosis pleurisy with adenosine deaminase (ADA): a systematic review and meta-analysis

    PubMed Central

    Gui, Xuwei; Xiao, Heping

    2014-01-01

    This systematic review and meta-analysis was performed to determine accuracy and usefulness of adenosine deaminase (ADA) in diagnosis of tuberculosis pleurisy. Medline, Google scholar and Web of Science databases were searched to identify related studies until 2014. Two reviewers independently assessed quality of studies included according to standard Quality Assessment of Diagnosis Accuracy Studies (QUADAS) criteria. The sensitivity, specificity, diagnostic odds ratio and other parameters of ADA in diagnosis of tuberculosis pleurisy were analyzed with Meta-DiSC1.4 software, and pooled using the random effects model. Twelve studies including 865 tuberculosis pleurisy patients and 1379 non-tuberculosis pleurisy subjects were identified from 110 studies for this meta-analysis. The sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnosis odds ratio (DOR) of ADA in the diagnosis of tuberculosis pleurisy were 45.25 (95% CI 27.63-74.08), 0.86 (95% CI 0.84-0.88), 0.88 (95% CI 0.86-0.90), 6.32 (95% CI 4.83-8.26) and 0.15 (95% 0.11-0.22), respectively. The area under the summary receiver operating characteristic curve (SROC) was 0.9340. Our results demonstrate that the sensitivity and specificity of ADA are high in the diagnosis of tuberculosis pleurisy especially when ADA?50 (U/L). Thus, ADA is a relatively sensitive and specific marker for tuberculosis pleurisy diagnosis. However, it is cautious to apply these results due to the heterogeneity in study design of these studies. Further studies are required to confirm the optimal cut-off value of ADA. PMID:25419343

  4. Use of adenosine deaminase measurements and QuantiFERON in the rapid diagnosis of tuberculous peritonitis.

    PubMed

    Saleh, Mohammad A; Hammad, Enas; Ramadan, Mahmoud M; Abd El-Rahman, Azima; Enein, Asmaa F

    2012-04-01

    Peritoneal tuberculosis (TB) is a considerable problem in certain developing nations. Current diagnostic tests for peritoneal TB are difficult and time-consuming. This study aimed to determine the effectiveness of an adenosine deaminase (ADA) assay and the QuantiFERON-Gold (QFT-G) assay in the rapid diagnosis of TB peritonitis. Forty-one patients with a presumptive diagnosis of TB peritonitis with ascites were admitted to Mansoura University Hospital and included in the study. Ascitic fluid and blood samples were collected from each patient. Fluid samples were examined biochemically (protein concentration), cytologically (white blood cell count) and microbiologically (Ziehl-Neelsen stain and TB culture in Löwenstein-Jensen media), and ADA levels were determined using colorimetry. Interferon-? levels in whole-blood samples were measured using the QFT-G assay. Fourteen (34?%) patients received a final clinical diagnosis of TB peritonitis; these patients were subclassified as definite (positive culture for Mycobacterium tuberculosis; eight patients), highly probable (four patients) and probable (two patients) for TB peritonitis. Of the 14 patients with a final clinical diagnosis of TB peritonitis, 3 (21?%) tested positive using an acid-fast bacilli smear, which showed a sensitivity of 21?% and a specificity of 100?%. A receiver operating characteristic curve showed that a cut-off value of 35 IU l(-1) for the ADA level produced the best results as a diagnostic test for TB peritonitis, yielding the following parameter values: sensitivity 100?%, specificity 92.6?%, positive predictive value (PPV) 87.5?% and negative predictive value (NPV) 100?%. The QFT-G assay yielded the following values: sensitivity 92.9?%, specificity 100?%, PPV 100?% and NPV 96.4?%. The ADA and QFT-G assays might be used to rapidly diagnose TB peritonitis and initiate prompt treatment while waiting for a final diagnosis using the standard culture approach. PMID:22174374

  5. Diagnostic Algorithm for Glycogenoses and Myoadenylate Deaminase Deficiency Based on Exercise Testing Parameters: A Prospective Study

    PubMed Central

    Rannou, Fabrice; Uguen, Arnaud; Scotet, Virginie; Le Maréchal, Cédric; Rigal, Odile; Marcorelles, Pascale; Gobin, Eric; Carré, Jean-Luc; Zagnoli, Fabien; Giroux-Metges, Marie-Agnès

    2015-01-01

    Aim Our aim was to evaluate the accuracy of aerobic exercise testing to diagnose metabolic myopathies. Methods From December 2008 to September 2012, all the consecutive patients that underwent both metabolic exercise testing and a muscle biopsy were prospectively enrolled. Subjects performed an incremental and maximal exercise testing on a cycle ergometer. Lactate, pyruvate, and ammonia concentrations were determined from venous blood samples drawn at rest, during exercise (50% predicted maximal power, peak exercise), and recovery (2, 5, 10, and 15 min). Biopsies from vastus lateralis or deltoid muscles were analysed using standard techniques (reference test). Myoadenylate deaminase (MAD) activity was determined using p-nitro blue tetrazolium staining in muscle cryostat sections. Glycogen storage was assessed using periodic acid-Schiff staining. The diagnostic accuracy of plasma metabolite levels to identify absent and decreased MAD activity was assessed using Receiver Operating Characteristic (ROC) curve analysis. Results The study involved 51 patients. Omitting patients with glycogenoses (n = 3), MAD staining was absent in 5, decreased in 6, and normal in 37 subjects. Lactate/pyruvate at the 10th minute of recovery provided the greatest area under the ROC curves (AUC, 0.893 ± 0.067) to differentiate Abnormal from Normal MAD activity. The lactate/rest ratio at the 10th minute of recovery from exercise displayed the best AUC (1.0) for discriminating between Decreased and Absent MAD activities. The resulting decision tree achieved a diagnostic accuracy of 86.3%. Conclusion The present algorithm provides a non-invasive test to accurately predict absent and decreased MAD activity, facilitating the selection of patients for muscle biopsy and target appropriate histochemical analysis. PMID:26207760

  6. B-cell development and functions and therapeutic options in adenosine deaminase–deficient patients

    PubMed Central

    Brigida, Immacolata; Sauer, Aisha V.; Ferrua, Francesca; Giannelli, Stefania; Scaramuzza, Samantha; Pistoia, Valentina; Castiello, Maria Carmina; Barendregt, Barbara H.; Cicalese, Maria Pia; Casiraghi, Miriam; Brombin, Chiara; Puck, Jennifer; Müller, Klaus; Notarangelo, Lucia Dora; Montin, Davide; van Montfrans, Joris M.; Roncarolo, Maria Grazia; Traggiai, Elisabetta; van Dongen, Jacques J. M.; van der Burg, Mirjam; Aiuti, Alessandro

    2015-01-01

    Background Adenosine deaminase (ADA) deficiency causes severe cellular and humoral immune defects and dysregulation because of metabolic toxicity. Alterations in B-cell development and function have been poorly studied. Enzyme replacement therapy (ERT) and hematopoietic stem cell (HSC) gene therapy (GT) are therapeutic options for patients lacking a suitable bone marrow (BM) transplant donor. Objective We sought to study alterations in B-cell development in ADA-deficient patients and investigate the ability of ERT and HSC-GT to restore normal B-cell differentiation and function. Methods Flow cytometry was used to characterize B-cell development in BM and the periphery. The percentage of gene-corrected B cells was measured by using quantitative PCR. B cells were assessed for their capacity to proliferate and release IgM after stimulation. Results Despite the severe peripheral B-cell lymphopenia, patients with ADA-deficient severe combined immunodeficiency showed a partial block in central BM development. Treatment with ERT or HSC-GT reverted most BM alterations, but ERT led to immature B-cell expansion. In the periphery transitional B cells accumulated under ERT, and the defect in maturation persisted long-term. HSC-GT led to a progressive improvement in B-cell numbers and development, along with increased levels of gene correction. The strongest selective advantage for ADA-transduced cells occurred at the transition from immature to naive cells. B-cell proliferative responses and differentiation to immunoglobulin secreting IgM after B-cell receptor and Toll-like receptor triggering were severely impaired after ERT and improved significantly after HSC-GT. Conclusions ADA-deficient patients show specific defects in B-cell development and functions that are differently corrected after ERT and HSC-GT. PMID:24506932

  7. Investigation into effects of antipsychotics on ectonucleotidase and adenosine deaminase in zebrafish brain.

    PubMed

    Seibt, Kelly Juliana; da Luz Oliveira, Renata; Bogo, Mauricio Reis; Senger, Mario Roberto; Bonan, Carla Denise

    2015-12-01

    Antipsychotic agents are used for the treatment of psychotic symptoms in patients with several brain disorders, such as schizophrenia. Atypical and typical antipsychotics differ regarding their clinical and side-effects profile. Haloperidol is a representative typical antipsychotic drug and has potent dopamine receptor antagonistic functions; however, atypical antipsychotics have been developed and characterized an important advance in the treatment of schizophrenia and other psychotic disorders. Purine nucleotides and nucleosides, such as ATP and adenosine, constitute a ubiquitous class of extracellular signaling molecules crucial for normal functioning of the nervous system. Indirect findings suggest that changes in the purinergic system, more specifically in adenosinergic activity, could be involved in the pathophysiology of schizophrenia. We investigated the effects of typical and atypical antipsychotics on ectonucleotidase and adenosine deaminase (ADA) activities, followed by an analysis of gene expression patterns in zebrafish brain. Haloperidol treatment (9 µM) was able to decrease ATP hydrolysis (35 %), whereas there were no changes in hydrolysis of ADP and AMP in brain membranes after antipsychotic exposure. Adenosine deamination in membrane fractions was inhibited (38 %) after haloperidol treatment when compared to the control; however, no changes were observed in ADA soluble fractions after haloperidol exposure. Sulpiride (250 µM) and olanzapine (100 µM) did not alter ectonucleotidase and ADA activities. Haloperidol also led to a decrease in entpd2_mq, entpd3 and adal mRNA transcripts. These findings demonstrate that haloperidol is an inhibitor of NTPDase and ADA activities in zebrafish brain, suggesting that purinergic signaling may also be a target of pharmacological effects promoted by this drug. PMID:26156500

  8. Lager Yeast Comes of Age

    PubMed Central

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  9. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  10. Yeast ecology of Kombucha fermentation.

    PubMed

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species. PMID:15282124

  11. Yeasts: From genetics to biotechnology

    SciTech Connect

    Russo, S.; Poli, G.; Siman-Tov, R.B.

    1995-12-31

    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the {open_quotes}biotechnological revolution{close_quotes} by virtue of both their features and their very long and safe use in human nutrition and industry. 175 refs., 4 figs., 6 tabs.

  12. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  13. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida...

  14. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  15. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  16. 21 CFR 172.896 - Dried yeasts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  17. Spatial and Functional Relationships Among Pol V-Associated loci, Pol IV-Dependent siRNAs, and Cytosine Methylation in the Arabidopsis Epigenome

    SciTech Connect

    Wierzbicki, A. T.; Cocklin, Ross; Mayampurath, Anoop; Lister, Ryan; Rowley, M. J.; Gregory, Brian D.; Ecker, Joseph R.; Tang, Haixu; Pikaard, Craig S.

    2012-08-15

    Multisubunit RNA polymerases IV and V (Pols IV and V) mediate RNA-directed DNA methylation and transcriptional silencing of retrotransposons and heterochromatic repeats in plants. We identified genomic sites of Pol V occupancy in parallel with siRNA deep sequencing and methylcytosine mapping, comparing wild-type plants with mutants defective for Pol IV, Pol V, or both Pols IV and V. Approximately 60% of Pol V-associated regions encompass regions of 24-nucleotide (nt) siRNA complementarity and cytosine methylation, consistent with cytosine methylation being guided by base-pairing of Pol IV-dependent siRNAs with Pol V transcripts. However, 27% of Pol V peaks do not overlap sites of 24-nt siRNA biogenesis or cytosine methylation, indicating that Pol V alone does not specify sites of cytosine methylation. Surprisingly, the number of methylated CHH motifs, a hallmark of RNA-directed de novo methylation, is similar in wild-type plants and Pol IV or Pol V mutants. In the mutants, methylation is lost at 50%-60% of the CHH sites that are methylated in the wild type but is gained at new CHH positions, primarily in pericentromeric regions. These results indicate that Pol IV and Pol V are not required for cytosine methyltransferase activity but shape the epigenome by guiding CHH methylation to specific genomic sites.

  18. Marine yeast isolation and industrial application

    PubMed Central

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-01-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. PMID:24738708

  19. Yeast Breads: Made at Home. 

    E-print Network

    Cox, Maeona; Harris, Jimmie Nell; Reasonover, Frances; Mason, Lousie

    1957-01-01

    refrigeration. It may substitute for compressed yeast in any recipe when dissolving directions on the package are followed. sugar and salt Yeast and sugar work together to form carbon dioxide gas which causes the dough to rise. Salt helps control... this rate of rise and also flavors the bread. Sugar helps give a golden brown color to the crust. fat Some type of fat or oil is included in nearly all yeast breads. It conditions the gluten, making a dough that stretches easily as the bubbles...

  20. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-10-25

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  1. N-Sulfomethylation of guanine, adenine and cytosine with formaldehyde-bisulfite. A selective modification of guanine in DNA.

    PubMed Central

    Hayatsu, H; Yamashita, Y; Yui, S; Yamagata, Y; Tomita, K; Negishi, K

    1982-01-01

    When guanine-, adenine- and cytosine-nucleosides and nucleotides were treated with formaldehyde and then with bisulfite, stable N-sulfomethyl compounds were formed. N2-Sulfomethylguanine, N6-sulfomethyladenine, N4-sulfomthylcytosine and N6-sulfomethyl-9-beta-D-arabinofuranosyladenine were isolated as crystals and characterized. A guanine-specific sulfomethylation was brought about by treatment and denatured single-stranded DNA with formaldehyde and then with bisulfite at pH 7 and 4 degrees C. Since native double-stranded DNA was not modified by this treatment, this new method of modification is expected to be useful as a conformational probe for polynucleotides. PMID:7177848

  2. Structural and Kinetic Characterization of Escherichia coli TadA, the Wobble-Specific tRNA Deaminase

    SciTech Connect

    Kim,J.; Malashkevich, V.; Roday, S.; Lisbin, M.; Schramm, V.; Almo, S.

    2006-01-01

    The essential tRNA-specific adenosine deaminase catalyzes the deamination of adenosine to inosine at the wobble position of tRNAs. This modification allows for a single tRNA species to recognize multiple synonymous codons containing A, C, or U in the last (3'-most) position and ensures that all sense codons are appropriately decoded. We report the first combined structural and kinetic characterization of a wobble-specific deaminase. The structure of the Escherichia coli enzyme clearly defines the dimer interface and the coordination of the catalytically essential zinc ion. The structure also identifies the nucleophilic water and highlights residues near the catalytic zinc likely to be involved in recognition and catalysis of polymeric RNA substrates. A minimal 19 nucleotide RNA stem substrate has permitted the first steady-state kinetic characterization of this enzyme (k{sub cat} = 13 {+-} 1 min{sup -1} and K{sub M} = 0.83 {+-} 0.22 {micro}M). A continuous coupled assay was developed to follow the reaction at high concentrations of polynucleotide substrates (>10 {micro}M). This work begins to define the chemical and structural determinants responsible for catalysis and substrate recognition and lays the foundation for detailed mechanistic analysis of this essential enzyme.

  3. Investigation of Radical-Mediated Catalysis in Coenzyme B12-Dependent Ethanolamine Deaminase by using Transient Optical Absorption Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Gadbaw, Michael C.; Warncke, Kurt

    2002-10-01

    Radical-mediated catalysis in the B12-dependent enzymes is initiated by the thermal cleavage of the cobalt-carbon bond of coenzyme B12 (adenosylcob(III)alamin), which produces a geminate CoII-deoxyadenosyl radical pair. Migration of the deoxyadenosyl radical center over 6 Åpromotes radical pair stabilization, so that hydrogen atom abstraction from substrate by the deoxyadenosyl radical can occur to initiate the radical rearrangement to the product radical. Cob(II)alamin is present during these reactions, which occur on the sub-ms timescale. We are investigating the mechanism of radical pair stabilization by using pulsed-laser excitation (Nd-YAG at 355, 532 nm; 10 ns fwhm) to photolyze the cobalt-carbon bond in adenosylcob(III)alamin bound to purified ethanolamine deaminase isolated from Salmonella typhimurium. Absorbance changes are monitored on timescales of >100 ns at approximately 480 nm [cob(II)alamin] or 524 nm [cob(III)alamin] by using a home-constructed transient UV-visible spectrophotometer. The lifetime of the radical pair state is measured in free holoenzyme, and in the presence of substrate analogs and inhibitors. The results provide insights into the mechanism of high-yield radical pair separation in ethanolamine deaminase. [1] Canfield & Warncke, J. Phys. Chem. B 2002, 106, 8831.

  4. Red Yeast Rice: An Introduction

    MedlinePLUS

    ... of the red yeast rice products on the market contain very little monacolin K. These products may ... them that it is against the law to market these products as dietary supplements. Despite the FDA ...

  5. Assimilation of nitrate by yeasts.

    PubMed

    Siverio, José M

    2002-08-01

    Nitrate assimilation has received much attention in filamentous fungi and plants but not so much in yeasts. Recently the availability of classical genetic and molecular biology tools for the yeast Hansenula polymorpha has allowed the advance of the study of this metabolic pathway in yeasts. The genes YNT1, YNR1 and YNI1, encoding respectively nitrate transport, nitrate reductase and nitrite reductase, have been cloned, as well as two other genes encoding transcriptional regulatory factors. All these genes lie closely together in a cluster. Transcriptional regulation is the main regulatory mechanism that controls the levels of the enzymes involved in nitrate metabolism although other mechanisms may also be operative. The process involved in the sensing and signalling of the presence of nitrate in the medium is not well understood. In this article the current state of the studies of nitrate assimilation in yeasts as well as possible venues for future research are reviewed. PMID:12165428

  6. Altered multidrug resistance phenotype caused by anthracycline analogues and cytosine arabinoside in myeloid leukemia.

    PubMed

    Hu, X F; Slater, A; Kantharidis, P; Rischin, D; Juneja, S; Rossi, R; Lee, G; Parkin, J D; Zalcberg, J R

    1999-06-15

    The expression of P-glycoprotein (Pgp) is often increased in acute myeloid leukemia (AML). However, little is known of the regulation of Pgp expression by cytotoxics in AML. We examined whether Pgp expression and function in leukemic blasts was altered after a short exposure to cytotoxics. Blasts were isolated from 19 patients with AML (15 patients) or chronic myeloid leukemia in blastic transformation (BT-CML, 4 patients). Pgp expression and function were analyzed by flow cytometric analysis of MRK 16 binding and Rhodamine 123 retention, respectively. At equitoxic concentrations, ex vivo exposure for 16 hours to the anthracyclines epirubicin (EPI), daunomycin (DAU), idarubicin (IDA), or MX2 or the nucleoside analogue cytosine arabinoside (AraC) differentially upregulated MDR1/Pgp expression in Pgp-negative and Pgp-positive blast cells. In Pgp-negative blasts, all four anthracyclines and AraC significantly increased Pgp expression (P =.01) and Pgp function (P =.03). In contrast, MX2, DAU, and AraC were the most potent in inducing Pgp expression and function in Pgp positive blasts (P <.05). A good correlation between increased Pgp expression and function was observed in Pgp-negative (r =.90, P =.0001) and Pgp-positive blasts (r =.77, P =.0002). This increase in Pgp expression and function was inhibited by the addition of 1 micromol/L PSC 833 to blast cells at the time of their exposure to these cytotoxics. In 1 patient with AML, an increase in Pgp levels was observed in vivo at 4 and 16 hours after the administration of standard chemotherapy with DAU/AraC. Upregulation of Pgp expression was also demonstrated ex vivo in blasts harvested from this patient before the commencement of treatment. In 3 other cases (1 patient with AML and 2 with BT-CML) in which blasts were Pgp negative at the time of initial clinical presentation, serial samples at 1 to 5 months after chemotherapy showed the presence of Pgp-positive blasts. All 3 patients had refractory disease. Interestingly, in all 3 cases, upregulation of Pgp by cytotoxics was demonstrated ex vivo in blasts harvested at the time of presentation. These data suggest that upregulation of the MDR1 gene may represent a normal response of leukemic cells to cytotoxic stress and may contribute to clinical drug resistance. PMID:10361105

  7. Pulsed magnetic field from video display terminals enhances teratogenic effects of cytosine arabinoside in mice

    SciTech Connect

    Chiang, H.; Wu, R.Y.; Shao, B.J.; Fu, Y.D.; Yao, G.D.; Lu, D.J.

    1995-05-01

    Eighty-nine Swiss Webster mice were randomly divided into four groups: a control group, a pulsed magnetic field (PMF) group, a cytosine arabinoside (ara-C, a teratogen) group, and a combined PMF + ara-C group. Mice in the PMF and PMF + ara-C groups were irradiated with a PMF (a sawtooth waveform with 52 {mu}s rise time, 12{mu}s decay time, and 15.6 kHz frequency) at a peak magnetic flux density of 40 {mu}T for 4 hours daily on days 6-17 of gestation. The mice in the ara-C and the PMF + ara-C groups were injected intraperitoneally on day 9 of gestation with 10 mg/kg of ara-C. The incidence of resorption and dead fetuses was not affected by PMF but was increased by ara-C injection. The malformation incidence of cleft palate (CP) and/or cleft lip (CL) was significantly higher in all three of the treated groups than in the control group (P < 0.05). If, however, statistical analyses had been done on litters rather than on individual fetuses, they would show that the incidence of CP and/or CL in the PMF group is not significantly greater than that in the control group. A significantly higher incidence of CP and/or CL was found in the PMF + ara-C group (49%) than the ara-C alone group (26.1%). These data suggest that PMF might enhance the development of ara-C-induced CP and/or CL. The incidence of minor variations in skeletal development, including reduction of skeletal calcification and loss of skeleton, was not statistically significant in the PMF group. However, it was higher in the two ara-C-treated groups, and there was no significant difference between the ara-C alone group and the ara-C + PMF group. From these results it is concluded that the very weak embryotoxic effects of PMF exposure may be revealed and enhanced in combination with a teratogenic agent.

  8. Intersystem crossing rates of S1 state keto-amino cytosine at low excess energy.

    PubMed

    Lobsiger, Simon; Etinski, Mihajlo; Blaser, Susan; Frey, Hans-Martin; Marian, Christel; Leutwyler, Samuel

    2015-12-21

    The amino-keto tautomer of supersonic jet-cooled cytosine undergoes intersystem crossing (ISC) from the v = 0 and low-lying vibronic levels of its S1((1)??(?)) state. We investigate these ISC rates experimentally and theoretically as a function of S1 state vibrational excess energy Eexc. The S1 vibronic levels are pumped with a ?5 ns UV laser, the S1 and triplet state ion signals are separated by prompt or delayed ionization with a second UV laser pulse. After correcting the raw ISC yields for the relative S1 and T1 ionization cross sections, we obtain energy dependent ISC quantum yields QISC (corr)=1%-5%. These are combined with previously measured vibronic state-specific decay rates, giving ISC rates kISC = 0.4-1.5 ? 10(9) s(-1), the corresponding S1?S0 internal conversion (IC) rates are 30-100 times larger. Theoretical ISC rates are computed using SCS-CC2 methods, which predict rapid ISC from the S1; v = 0 state with kISC = 3 ? 10(9) s(-1) to the T1((3)??(?)) triplet state. The surprisingly high rate of this El Sayed-forbidden transition is caused by a substantial admixture of (1)nO?(?) character into the S1((1)??(?)) wave function at its non-planar minimum geometry. The combination of experiment and theory implies that (1) below Eexc = 550 cm(-1) in the S1 state, S1?S0 internal conversion dominates the nonradiative decay with kIC ? 2 ? 10(10) s(-1), (2) the calculated S1?T1 ((1)??(?)?(3)??(?)) ISC rate is in good agreement with experiment, (3) being El-Sayed forbidden, the S1?T1 ISC is moderately fast (kISC = 3 ? 10(9) s(-1)), and not ultrafast, as claimed by other calculations, and (4) at Eexc ? 550 cm(-1) the IC rate increases by ?50 times, probably by accessing the lowest conical intersection (the C5-twist CI) and thereby effectively switching off the ISC decay channels. PMID:26696056

  9. Electron transfer in amino acid.nucleic acid base complexes: EPR, ENDOR, and DFT study of X-irradiated N-formylglycine.cytosine complex crystals.

    PubMed

    Sagstuen, Einar; Close, David M; Vågane, Randi; Hole, Eli O; Nelson, William H

    2006-07-20

    Single crystals of the 1:1 complex of the nucleic acid base cytosine and the dipeptide N-formylglycine (C.NFG) have been irradiated at 10 and 273 K to doses of about 70 kGy and studied at temperatures between 10 and 293 K using 24 GHz (K-band) and 9.5 GHz (X-band) electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and ENDOR-induced EPR (EIE) spectroscopy. In this complex, the cytosine base is hydrogen bonded at positions N3 and N4 to the carboxylic group of the dipeptide, and the N3 position of cytosine has become protonated by the carboxylic group. At 10 K, two major radicals were characterized and identified. One of these (R1) is ascribed to the decarboxylated N-formylglycine one-electron oxidized species. The other (R2) is the N3-protonated cytosine one-electron reduced species. A third minority species (R3) appears to be a different conformation or protonation state of the one-electron reduced cytosine radical. Upon warming, the R2 and R3 radicals decay at about 100 K, and at 295 K, the only cytosine-centered radicals present are the C5 and C6 H-addition radicals (R5, R6). The R1 radical decays at about 150 K, and a glycine backbone radical (R4) grows in slowly. Thus, in the complex, a complete separation of initial oxidation and reduction events occurs, with oxidation localized at the dipeptide moiety, whereas reduction occurs at the nucleic acid base moiety. DFT calculations indicate that this separation is driven by large differences in electron affinities and ionization potentials between the two constituents of the complex. Once the initial oxidation and reduction products are trapped, no further electron transfer between the two constituents of the complex takes place. PMID:16836426

  10. Biotechnological Applications of Dimorphic Yeasts

    NASA Astrophysics Data System (ADS)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  11. Yeasts preservation: alternatives for lyophilisation.

    PubMed

    Nyanga, Loveness K; Nout, Martinus J R; Smid, Eddy J; Boekhout, Teun; Zwietering, Marcel H

    2012-11-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts during 6 months storage at 4 and 25 °C. None of the yeast cultures showed a significant loss in viable cell count during 6 months of storage at 4 °C upon lyophilisation and preservation in dry rice cakes. During storage at 25 °C in the dark, yeast cultures preserved in dry rice cakes, and lyophilised cultures of Saccharomyces cerevisiae and Issatchenkia orientalis showed no significant loss of viable cells up to 4 months of storage. Yeast cultures preserved in dry plant fibre strands had the greatest loss of viable count during the 6 months of storage at 25 °C. Preservation of yeasts cultures in dry rice cakes provided better survival during storage at 4 °C than lyophilisation. The current study demonstrated that traditional methods can be useful and effective for starter culture preservation in small-scale, low-tech applications. PMID:22806747

  12. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction.

    PubMed Central

    Ginés, Silvia; Mariño, Marta; Mallol, Josefa; Canela, Enric I; Morimoto, Chikao; Callebaut, Christian; Hovanessian, Ara; Casadó, Vicent; Lluis, Carmen; Franco, Rafael

    2002-01-01

    The extra-enzymic function of cell-surface adenosine deaminase (ADA), an enzyme mainly localized in the cytosol but also found on the cell surface of monocytes, B cells and T cells, has lately been the subject of numerous studies. Cell-surface ADA is able to transduce co-stimulatory signals in T cells via its interaction with CD26, an integral membrane protein that acts as ADA-binding protein. The aim of the present study was to explore whether ADA-CD26 interaction plays a role in the adhesion of lymphocyte cells to human epithelial cells. To meet this aim, different lymphocyte cell lines (Jurkat and CEM T) expressing endogenous, or overexpressing human, CD26 protein were tested in adhesion assays to monolayers of colon adenocarcinoma human epithelial cells, Caco-2, which express high levels of cell-surface ADA. Interestingly, the adhesion of Jurkat and CEM T cells to a monolayer of Caco-2 cells was greatly dependent on CD26. An increase by 50% in the cell-to-cell adhesion was found in cells containing higher levels of CD26. Incubation with an anti-CD26 antibody raised against the ADA-binding site or with exogenous ADA resulted in a significant reduction (50-70%) of T-cell adhesion to monolayers of epithelial cells. The role of ADA-CD26 interaction in the lymphocyte-epithelial cell adhesion appears to be mediated by CD26 molecules that are not interacting with endogenous ADA (ADA-free CD26), since SKW6.4 (B cells) that express more cell-surface ADA showed lower adhesion than T cells. Adhesion stimulated by CD26 and ADA is mediated by T cell lymphocyte function-associated antigen. A role for ADA-CD26 interaction in cell-to-cell adhesion was confirmed further in integrin activation assays. FACS analysis revealed a higher expression of activated integrins on T cell lines in the presence of increasing amounts of exogenous ADA. Taken together, these results suggest that the ADA-CD26 interaction on the cell surface has a role in lymphocyte-epithelial cell adhesion. PMID:11772392

  13. Mutagenic effects induced by the attack of NO2 radical to the guanine-cytosine base pair

    PubMed Central

    Cerón-Carrasco, José P.; Requena, Alberto; Zúñiga, José; Jacquemin, Denis

    2015-01-01

    We investigate the attack of the nitrogen dioxide radical (NO•2) to the guanine—cytosine (GC) base pair and the subsequent tautomeric reactions able to induce mutations, by means of density functional theory (DFT) calculations. The conducted simulations allow us to identify the most reactive sites of the GC base pair. Indeed, the computed relative energies demonstrate that the addition of the NO•2 radical to the C8 position of the guanine base forms to the most stable adduct. Although the initial adducts might evolve to non-canonical structures via inter-base hydrogen bonds rearrangements, the probability for the proton exchange to occur lies in the same range as that observed for undamaged DNA. As a result, tautomeric errors in NO2-attacked DNA arises at the same rate as in canonical DNA, with no macroscopic impact on the overall stability of DNA. The potential mutagenic effects of the GC–NO•2 radical adducts likely involve side reactions, e.g., the GC deprotonation to the solvent, rather than proton exchange between guanine and cytosine basis. PMID:25798437

  14. Investigating the target recognition of DNA cytosine-5 methyltransferase HhaI by library selection using in vitro compartmentalisation

    PubMed Central

    Lee, Yin-Fai; Tawfik, Dan S.; Griffiths, Andrew D.

    2002-01-01

    In vitro compartmentalisation (IVC), a technique for selecting genes encoding enzymes based on compartmentalising gene translation and enzymatic reactions in emulsions, was used to investigate the interaction of the DNA cytosine-5 methyltransferase M.HhaI with its target DNA (5?-GCGC-3?). Crystallog raphy shows that the active site loop from the large domain of M.HhaI interacts with a flipped-out cytosine (the target for methylation) and two target recognition loops (loops I and II) from the small domain make almost all the other base-specific interactions. A library of M.HhaI genes was created by randomising all the loop II residues thought to make base-specific interactions and directly determine target specificity. The library was selected for 5?-GCGC-3? methylation. Interestingly, in 11 selected active clones, 10 different sequences were found and none were wild-type. At two of the positions mutated (Ser252 and Tyr254) a number of different amino acids could be tolerated. At the third position, however, all active mutants had a glycine, as in wild-type M.HhaI, suggesting that Gly257 is crucial for DNA recognition and enzyme activity. Our results suggest that recognition of base pairs 3 and 4 of the target site either relies entirely on main chain interactions or that different residues from those identified in the crystal structure contribute to DNA recognition. PMID:12433997

  15. DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos

    PubMed Central

    Bakhtari, Azizollah; Ross, Pablo J

    2014-01-01

    Dppa3 has been described in mice as an important maternal factor contributed by the oocyte that participates in protecting the maternal genome from oxidation of methylated cytosines (5mC) to hydroxymethylated cytosines (5hmC). Dppa3 is also required for normal mouse preimplantation development. This gene is poorly conserved across mammalian species, with less than 32% of protein sequence shared between mouse, cow and human. RNA-seq analysis of bovine oocytes and preimplantation embryos revealed that DPPA3 transcripts are some of the most highly abundant mRNAs in the oocyte, and their levels gradually decrease toward the time of embryonic genome activation (EGA). Knockdown of DPPA3 by injection of siRNA in germinal vesicle (GV) stage oocytes was used to assess its role in epigenetic remodeling and embryo development. DPPA3 knockdown resulted in increased intensity of 5hmC staining in the maternal pronucleus (PN), demonstrating a role for this factor in the asymmetric remodeling of the maternal and paternal PN in bovine zygotes. Also, DPPA3 knockdown decreased the developmental competence of parthenogenetic and in vitro fertilized embryos. Finally, DPPA3 knockdown embryos that reached the blastocyst stage had significantly fewer ICM cells as compared with control embryos. We conclude that DPPA3 is a maternal factor important for correct epigenetic remodeling and normal embryonic development in cattle, indicating that the role of DPPA3 during early development is conserved between species. PMID:25147917

  16. Photoreaction channels of the guanine-cytosine base pair explored by long-range corrected TDDFT calculations.

    PubMed

    Yamazaki, Shohei; Taketsugu, Tetsuya

    2012-07-01

    Photoinduced processes in the Watson-Crick guanine-cytosine base pair are comprehensively studied by means of long-range corrected (LC) TDDFT calculations of potential energy profiles using the LC-BLYP and CAM-B3LYP functionals. The ab initio CC2 method and the conventional TDDFT method with the B3LYP functional are also employed to assess the reliability of the LC-TDDFT method. The present approach allows us to compare the potential energy profiles at the same computational level for excited-state reactions of the base pair, including single and double proton transfer between the bases and nonradiative decay via ring puckering in each base. In particular, long-range correction to the TDDFT method is critical for a qualitatively correct description of the proton transfer reactions. The calculated energy profiles exhibit low barriers for out-of-plane deformation of the guanine moiety in the locally-excited state, which is expected to lead to a conical intersection with the ground state, as well as for single proton transfer from guanine to cytosine with the well-known electron-driven proton transfer mechanism. Thus the present results suggest that both processes can compete in hydrogen-bonded base pairs and play a significant role in the mechanism of photostability. PMID:22596076

  17. Metabolic regulation of yeast

    NASA Astrophysics Data System (ADS)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  18. Coherent regulation in yeast’s cell-cycle network

    NASA Astrophysics Data System (ADS)

    Aral, Ne?e; Kabakç?o?lu, Alkan

    2015-05-01

    We define a measure of coherent activity for gene regulatory networks, a property that reflects the unity of purpose between the regulatory agents with a common target. We propose that such harmonious regulatory action is desirable under a demand for energy efficiency and may be selected for under evolutionary pressures. We consider two recent models of the cell-cycle regulatory network of the yeast, Saccharomyces cerevisiae as a case study and calculate their degree of coherence. A comparison with random networks of similar size and composition reveals that the yeast’s cell-cycle regulation is wired to yield an exceptionally high level of coherent regulatory activity. We also investigate the mean degree of coherence as a function of the network size, connectivity and the fraction of repressory/activatory interactions.

  19. Yeast Genetics and Biotechnological Applications

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 ?m plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  20. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    SciTech Connect

    Sadat Hayatshahi, Sayyed Hamed; Khajeh, Khosro

    2005-12-16

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, the previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.

  1. Adenosine deaminase-deficient mice generated using a two-stage genetic engineering strategy exhibit a combined immunodeficiency.

    PubMed

    Blackburn, M R; Datta, S K; Kellems, R E

    1998-02-27

    Adenosine deaminase (ADA) deficiency in humans leads to a combined immunodeficiency. The mechanisms involved in the lymphoid specificity of the disease are not fully understood due to the inaccessibility of human tissues for detailed analysis and the absence of an adequate animal model for the disease. We report the use of a two-stage genetic engineering strategy to generate ADA-deficient mice that retain many features associated with ADA deficiency in humans, including a combined immunodeficiency. Severe T and B cell lymphopenia was accompanied by a pronounced accumulation of 2'-deoxyadenosine and dATP in the thymus and spleen, and a marked inhibition of S-adenosylhomocysteine hydrolase in these organs. Accumulation of adenosine was widespread among all tissues examined. ADA-deficient mice also exhibited severe pulmonary insufficiency, bone abnormalities, and kidney pathogenesis. These mice have provided in vivo information into the metabolic basis for the immune phenotype associated with ADA deficiency. PMID:9478961

  2. On-Chip Sequence-Specific Immunochemical Epigenomic Analysis Utilizing Outward-Turned Cytosine in a DNA Bulge with Handheld Surface Plasmon Resonance Equipment.

    PubMed

    Kurita, Ryoji; Yanagisawa, Hiroyuki; Yoshioka, Kyoko; Niwa, Osamu

    2015-11-17

    This paper reports a sequence-specific immunoassay chip for DNA methylation assessment by microfluidic-based surface plasmon resonance (SPR) detection. This was achieved by utilizing an affinity measurement involving the target, (methyl)cytosine, in a single-base bulge region and an anti-methylcytosine antibody in a microchannel, following hybridization with a biotinylated bulge-inducing DNA probe. The probe alters the target cytosine in a looped-out state because of the ?-? stacking between flanking bases of the target. The probe design is simple and consists of the elimination of guanine paired with the target cytosine from a fragmented full-match sequence. We obtained the single methylation status in 6 amol (48 fg) of synthesized oligo DNA in 45 min, which is the fastest DNA methylation assessment yet reported, without employing a conventional bisulfite reaction, PCR, or sequencing. We also succeeded in discrimination of the methylation status of single cytosine in genomic ? DNA and HCT116 human colon cancer cells. The advantages of the proposed method are its small equipment, simple microfluidics design, ease of handling (two injections of DNA and antibody), lack of need for a methylation-sensitive enzyme, and neutral buffer conditions. PMID:26482842

  3. PHYLOGENETICS OF SACCHAROMYCETALES, THE ASCOMYCETE YEASTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ascomycete yeasts (Phylum Ascomycota: Subphylum Saccharomycotina: Class Saccharomycetes: Order Saccharomycetales) comprise a monophyletic lineage with a single order of about 1000 known species. These yeasts live as saprobes, often in association with plants, animals, and their interfaces. A few s...

  4. Transcription Regulatory Networks in Yeast Cell Cycle

    E-print Network

    CHAPTER 4 Transcription Regulatory Networks in Yeast Cell Cycle Nilanjana Banerjee and Michael Q. Zhang* Introduction T he functional genomics techniques for mapping transcription regulatory networks organisms. As a consequence, yeast is particularly amenable for analyz- ing transcriptional regulatory

  5. Yeast Can Affect Behavior and Learning.

    ERIC Educational Resources Information Center

    Crook, William G.

    1984-01-01

    A pediatrician recounts his experiences in diagnosing and treating allergies to common yeast germs that may result in behavior and learning problems. He lists characteristics that may predispose children to yeast-connected health problems. (CL)

  6. Pre-Absorbing Antibody with Yeast Cells Preparation of Fixed Yeast

    E-print Network

    Aris, John P.

    106 Pre-Absorbing Antibody with Yeast Cells Preparation of Fixed Yeast 1. Plan to do steps 1-10 in the yeast immunofluorescence method. But, start with 100 mls of cells at OD600=0.2. Then, do all steps in quadruplicate. Do pretreatment, and digest cells for 10 minutes. 2. Pool all yeast in SPC + Pics in one

  7. 280 EXPRESSION IN YEAST [23] [23] Manipulating Yeast Genome Using Plasmid Vectors

    E-print Network

    Botstein, David

    280 EXPRESSION IN YEAST [23] [23] Manipulating Yeast Genome Using Plasmid Vectors By TIM STEARNS, HONG MA, and DAVID BOTSTEIN The yeast Saccharomyces cerevisiae has proved to be a popular high status of yeast as an experimental system is in large part due to the work of the many geneticists

  8. Yeast through the ages: A statistical analysis of genetic changes in aging yeast

    E-print Network

    Hardin, Jo

    Yeast through the ages: A statistical analysis of genetic changes in aging yeast A. Wise J. Hardin focuses on the analysis of data from a yeast DNA microarray experiment. The biological question that motivates our research is "What genetic changes in yeast happen over time?" In order to explore the research

  9. APPENDIX 4LGrowth and Manipulation of Yeast PREPARATION OF SELECTED YEAST MEDIA

    E-print Network

    Winston, Fred

    APPENDIX 4LGrowth and Manipulation of Yeast PREPARATION OF SELECTED YEAST MEDIA Like Escherichia coli, yeast can be grown in either liquid media or on the surface of (or embedded in) solid agar plates. Yeast cells grow well on a minimal medium containing dextrose (glucose) as a carbon source and salts

  10. Chromatin and Transcription in Yeast

    PubMed Central

    Rando, Oliver J.; Winston, Fred

    2012-01-01

    Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field. PMID:22345607

  11. SUPPLEMENTARY METHODS The Yeast Flux Balance Model

    E-print Network

    Kishony, Roy

    -14 .The yeast Flux Balance Analysis (FBA) model used in the present work is based on the stoichiometricSUPPLEMENTARY METHODS The Yeast Flux Balance Model Details about Flux Balance Analysis (FBA-7 . In particular, global-scale gene deletions in silico experiments were performed in yeast 8-10 and E. coli11

  12. Yeast: A Research Organism for Teaching Genetics.

    ERIC Educational Resources Information Center

    Manney, Thomas R.; Manney, Monta L.

    1992-01-01

    Explains why laboratory strains of bakers yeast, Saccharomyces cerevisiae, are particularly suited for classroom science activities. Describes the sexual life cycle of yeast and the genetic system with visible mutations. Presents an overview of activities that can be done with yeast and gives a source for teachers to obtain more information. (PR)

  13. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  14. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  15. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  16. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  17. YEASTBOOK PERSPECTIVES Yeast: An Experimental Organism

    E-print Network

    Botstein, David

    YEASTBOOK PERSPECTIVES Yeast: An Experimental Organism for 21st Century Biology David Botstein*,1, Cambridge, Massachusetts 02139 ABSTRACT In this essay, we revisit the status of yeast as a model system for biology. We first summarize important contributions of yeast to eukaryotic biology that we anticipated

  18. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  19. Coupling between hydrogen atoms transfer and stacking interaction in adenine-thymine/guanine-cytosine complexes: a theoretical study.

    PubMed

    Villani, Giovanni

    2014-05-22

    Four different complexes of two base pairs, an adenine-thymine and a guanine-cytosine one, have been studied in order to understand the modifications induced by the staking interaction between the two base pairs on the hydrogen atoms transfers between the bases in either base pair. The inclusion of these two kinds of interactions allows us to clarify if some properties, as the mechanism of hydrogen transfer, is exclusively a local effect of a base pair or can be modified by a more long-range interaction between the base pairs. The results on these four complexes are compared with those of the monomeric systems, the A-T and G-C base pair, and with those of the A-T and G-C dimers. The specificity of each complex and of each hydrogen bond has been analyzed. PMID:24813562

  20. Understanding the structural and dynamic consequences of DNA epigenetic modifications: computational insights into cytosine methylation and hydroxymethylation.

    PubMed

    Carvalho, Alexandra T P; Gouveia, Leonor; Kanna, Charan Raju; Wärmländer, Sebastian K T S; Platts, Jamie A; Kamerlin, Shina Caroline Lynn

    2014-12-01

    We report a series of molecular dynamics (MD) simulations of up to a microsecond combined simulation time designed to probe epigenetically modified DNA sequences. More specifically, by monitoring the effects of methylation and hydroxymethylation of cytosine in different DNA sequences, we show, for the first time, that DNA epigenetic modifications change the molecule's dynamical landscape, increasing the propensity of DNA toward different values of twist and/or roll/tilt angles (in relation to the unmodified DNA) at the modification sites. Moreover, both the extent and position of different modifications have significant effects on the amount of structural variation observed. We propose that these conformational differences, which are dependent on the sequence environment, can provide specificity for protein binding. PMID:25625845

  1. Ultrasensitive Direct Quantification of Nucleobase Modifications in DNA by Surface-Enhanced Raman Scattering: The Case of Cytosine.

    PubMed

    Morla-Folch, Judit; Xie, Hai-Nan; Gisbert-Quilis, Patricia; Pedro, Sara Gómez-de; Pazos-Perez, Nicolas; Alvarez-Puebla, Ramon A; Guerrini, Luca

    2015-11-01

    Recognition of chemical modifications in canonical nucleobases of nucleic acids is of key importance since such modified variants act as different genetic encoders, introducing variability in the biological information contained in DNA. Herein, we demonstrate the feasibility of direct SERS in combination with chemometrics and microfluidics for the identification and relative quantification of 4 different cytosine modifications in both single- and double-stranded DNA. The minute amount of DNA required per measurement, in the sub-nanogram regime, removes the necessity of pre-amplification or enrichment steps (which are also potential sources of artificial DNA damages). These findings show great potentials for the development of fast, low-cost and high-throughput screening analytical devices capable of detecting known and unknown modifications in nucleic acids (DNA and RNA) opening new windows of activity in several fields such as biology, medicine and forensic sciences. PMID:26447808

  2. Hydrogen-bonded double-proton transfer in five guanine-cytosine base pairs after hydrogen atom addition.

    PubMed

    Lin, Yuexia; Wang, Hongyan; Gao, Simin; Li, Ruhu; Schaefer, Henry F

    2012-08-01

    The double-proton transfer reactions in Watson-Crick guanine-cytosine (GC) base pairs after hydrogen atom addition are studied theoretically. The structural changes and energy differences among the structures are compared to explore the double-proton transfer mechanisms, concerted and stepwise. The concerted mechanism is found in all five radicals (GC+H)(•) considered, while the stepwise mechanism is predicted only for structures G-H(•)C(C6) and H(•)G(N7)-C. The geometrical features have been found to change regularly in the concerted double-proton transfer. This is different from the single-proton transfer, for which the structural perturbations are dispersed throughout the GC base pair. The energy analyses demonstrate that the concerted double-proton transfer mechanism is more favorable in the gas phase, while the stepwise mechanism dominates in water. The structures of proton transfer products become less favored energetically. PMID:22774934

  3. A 5? cytosine binding pocket in Puf3p specifies regulation of mitochondrial mRNAs

    SciTech Connect

    Zhu, Deyu; Stumpf, Craig R.; Krahn, Joseph M.; Wickens, Marvin; Tanaka Hall, Traci M.

    2010-11-03

    A single regulatory protein can control the fate of many mRNAs with related functions. The Puf3 protein of Saccharomyces cerevisiae is exemplary, as it binds and regulates more than 100 mRNAs that encode proteins with mitochondrial function. Here we elucidate the structural basis of that specificity. To do so, we explore the crystal structures of Puf3p complexes with 2 cognate RNAs. The key determinant of Puf3p specificity is an unusual interaction between a distinctive pocket of the protein with an RNA base outside the 'core' PUF-binding site. That interaction dramatically affects binding affinity in vitro and is required for regulation in vivo. The Puf3p structures, combined with those of Puf4p in the same organism, illuminate the structural basis of natural PUF-RNA networks. Yeast Puf3p binds its own RNAs because they possess a -2C and is excluded from those of Puf4p which contain an additional nucleotide in the core-binding site.

  4. Dynamic DNA cytosine methylation in the Populus trichocarpa genome: tissue-level variation and relationship to gene expression

    PubMed Central

    2012-01-01

    Background DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. Results We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem) in the reference tree species black cottonwood (Populus trichocarpa). Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq), we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation") had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. Conclusions We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation. PMID:22251412

  5. Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence

    PubMed Central

    Tittabutr, Panlada; Sripakdi, Sudarat; Boonkerd, Nantakorn; Tanthanuch, Waraporn; Minamisawa, Kiwamu; Teaumroong, Neung

    2015-01-01

    Sinorhizobium sp. BL3 forms symbiotic interactions with mung bean (Vigna radiata) and contains lrpL-acdS genes, which encode the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that cleaves ACC, a precursor of plant ethylene synthesis. Since ethylene interferes with nodule formation in some legumes and plays a role in senescence in plant cells, BL3-enhancing ACC deaminase activity (BL3+) and defective mutant (BL3?) strains were constructed in order to investigate the effects of this enzyme on symbiosis and nodule senescence. Nodulation competitiveness was weaker in BL3? than in the wild-type, but was stronger in BL3+. The inoculation of BL3? into mung bean resulted in less plant growth, a lower nodule dry weight, and smaller nodule number than those in the wild-type, whereas the inoculation of BL3+ had no marked effects. However, similar nitrogenase activity was observed with all treatments; it was strongly detected 3 weeks after the inoculation and gradually declined with time, indicating senescence. The rate of plant nodulation by BL3+ increased in a time-dependent manner. Nodules occupied by BL3? formed smaller symbiosomes, and bacteroid degradation was more prominent than that in the wild-type 7 weeks after the inoculation. Changes in biochemical molecules during nodulation were tracked by Fourier Transform Infrared (FT-IR) microspectroscopy, and the results obtained confirmed that aging processes differed in nodules occupied by BL3 and BL3?. This is the first study to show the possible role of ACC deaminase activity in senescence in determinate nodules. Our results suggest that an increase in ACC deaminase activity in this strain does not extend the lifespan of nodules, whereas the lack of this activity may accelerate nodule senescence. PMID:26657304

  6. Ecto-AMP deaminase blunts the ATP-derived adenosine A2A receptor facilitation of acetylcholine release at rat motor nerve endings

    PubMed Central

    Magalhães-Cardoso, M Teresa; Pereira, M Fátima; Oliveira, Laura; Ribeiro, J A; Cunha, Rodrigo A; Correia-de-Sá, Paulo

    2003-01-01

    At synapses, ATP is released and metabolised through ecto-nucleotidases forming adenosine, which modulates neurotransmitter release through inhibitory A1 or facilitatory A2A receptors, according to the amounts of extracellular adenosine. Neuromuscular junctions possess an ecto-AMP deaminase that can dissociate extracellular ATP catabolism from adenosine formation. In this study we have investigated the pattern of ATP release and its conversion into adenosine, to probe the role of ecto-AMP deaminase in controlling acetylcholine release from rat phrenic nerve terminals. Nerve-evoked ATP release was 28 ± 12 pmol (mg tissue)?1 at 1 Hz, 54 ± 3 pmol (mg tissue)?1 at 5 Hz and disproportionally higher at 50 Hz (324 ± 23 pmol (mg tissue)?1). Extracellular ATP (30 ?m) was metabolised with a half time of 8 ± 2 min, being converted into ADP then into AMP. AMP was either dephosphorylated into adenosine by ecto-5?-nucleotidase (inhibited by ATP and blocked by 200 ?m?,?-methylene ADP) or deaminated into IMP by ecto-AMP deaminase (inhibited by 200 ?m deoxycoformycin, which increased adenosine formation). Dephosphorylation and deamination pathways also catabolised endogenously released adenine nucleotides, since the nerve-evoked extracellular AMP accumulation was increased by either ?,?-methylene ADP (200 ?m) or deoxycoformycin (200 ?m). In the presence of nitrobenzylthioinosine (30 ?m) to inhibit adenosine transport, deoxycoformycin (200 ?m) facilitated nerve-evoked [3H]acetylcholine release by 77 ± 9 %, an effect prevented by the A2A receptor antagonist, ZM 241385 (10 nm). It is concluded that, while ecto-5?-nucleotidase is inhibited by released ATP, ecto-AMP deaminase activity transiently blunts adenosine formation, which would otherwise reach levels high enough to activate facilitatory A2A receptors on motor nerve terminals. PMID:12679375

  7. Possible Role of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and Determinate Nodule Senescence.

    PubMed

    Tittabutr, Panlada; Sripakdi, Sudarat; Boonkerd, Nantakorn; Tanthanuch, Waraporn; Minamisawa, Kiwamu; Teaumroong, Neung

    2015-12-22

    Sinorhizobium sp. BL3 forms symbiotic interactions with mung bean (Vigna radiata) and contains lrpL-acdS genes, which encode the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that cleaves ACC, a precursor of plant ethylene synthesis. Since ethylene interferes with nodule formation in some legumes and plays a role in senescence in plant cells, BL3-enhancing ACC deaminase activity (BL3(+)) and defective mutant (BL3(-)) strains were constructed in order to investigate the effects of this enzyme on symbiosis and nodule senescence. Nodulation competitiveness was weaker in BL3(-) than in the wild-type, but was stronger in BL3(+). The inoculation of BL3(-) into mung bean resulted in less plant growth, a lower nodule dry weight, and smaller nodule number than those in the wild-type, whereas the inoculation of BL3(+) had no marked effects. However, similar nitrogenase activity was observed with all treatments; it was strongly detected 3 weeks after the inoculation and gradually declined with time, indicating senescence. The rate of plant nodulation by BL3(+) increased in a time-dependent manner. Nodules occupied by BL3(-) formed smaller symbiosomes, and bacteroid degradation was more prominent than that in the wild-type 7 weeks after the inoculation. Changes in biochemical molecules during nodulation were tracked by Fourier Transform Infrared (FT-IR) microspectroscopy, and the results obtained confirmed that aging processes differed in nodules occupied by BL3 and BL3(-). This is the first study to show the possible role of ACC deaminase activity in senescence in determinate nodules. Our results suggest that an increase in ACC deaminase activity in this strain does not extend the lifespan of nodules, whereas the lack of this activity may accelerate nodule senescence. PMID:26657304

  8. Structures of substrate- and inhibitor-bound adenosine deaminase from a human malaria parasite show a dramatic conformational change and shed light on drug selectivity

    PubMed Central

    Larson, Eric T.; Deng, Wei; Krumm, Brian E.; Napuli, Alberto; Mueller, Natascha; Van Voorhis, Wesley C.; Buckner, Frederick S.; Fan, Erkang; Lauricella, Angela; DeTitta, George; Luft, Joseph; Zucker, Frank; Hol, Wim G. J.; Verlinde, Christophe L. M. J.; Merritt, Ethan A.

    2008-01-01

    Summary Plasmodium and other apicomplexan parasites are deficient in purine biosynthesis, relying instead on the salvage of purines from their host environment. Therefore interference with the purine salvage pathway is an attractive therapeutic target. The plasmodial enzyme adenosine deaminase (ADA) plays a central role in purine salvage and, unlike mammalian ADA homologs, has a further secondary role in methylthiopurine recycling. For this reason, plasmodial adenosine deaminase accepts a wider range of substrates, as it is responsible for deamination of both adenosine and 5?-methylthioadenosine. The latter substrate is not accepted by mammalian ADA homologs. The structural basis for this natural difference in specificity between plasmodial and mammalian ADA has not been well understood. We now report crystal structures of Plasmodium vivax adenosine deaminase in complex with adenosine, guanosine, and the picomolar inhibitor 2?-deoxycoformycin. These structures highlight a drastic conformational change in plasmodial ADA upon substrate-binding that has not been observed for mammalian ADA enzymes. Further, these complexes illuminate the structural basis for the differential substrate specificity and potential drug selectivity between mammalian and parasite enzymes. PMID:18602399

  9. Mycotoxins - prevention and decontamination by yeasts.

    PubMed

    Pfliegler, Walter P; Pusztahelyi, Tünde; Pócsi, István

    2015-07-01

    The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less-toxic or even non-toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast-mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here. PMID:25682759

  10. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand.

    PubMed

    Nutaratat, Pumin; Srisuk, Nantana; Arunrattiyakorn, Panarat; Limtong, Savitree

    2014-08-01

    A total of 1035 yeast isolates, obtained from rice and sugar cane leaves, were screened primarily for indole-3-acetic acid (IAA) production. Thirteen isolates were selected, due to their IAA production ranging from 1.2 to 29.3 mg g(-)(1) DCW. These isolates were investigated for their capabilities of calcium phosphate and ZnO(3) solubilisation, and also for production of NH(3), polyamine, and siderophore. Their 1-aminocyclopropane-1-carboxylate (ACC) deaminase, catalase and fungal cell wall-degrading enzyme activities were assessed. Their antagonism against rice fungal pathogens was also evaluated. Strain identification, based on molecular taxonomy, of the thirteen yeast isolates revealed that four yeast species - i.e. Hannaella sinensis (DMKU-RP45), Cryptococcus flavus (DMKU-RE12, DMKU-RE19, DMKU-RE67, and DMKU-RP128), Rhodosporidium paludigenum (DMKU-RP301) and Torulaspora globosa (DMKU-RP31) - were capable of high IAA production. Catalase activity was detected in all yeast strains tested. The yeast R. paludigenum DMKU-RP301 was the best IAA producer, yielding 29.3 mg g(-)(1) DCW, and showed the ability to produce NH3 and siderophore. Different levels of IAA production (7.2-9.7 mg g(-)(1) DCW) were found in four strains of C. flavus DMKU-RE12, DMKU-RE19, and DMKU-RE67, which are rice leaf endophytes, and strain DMKU-RP128, which is a rice leaf epiphyte. NH(3) production and carboxymethyl cellulase (CMCase) activity was also detected in these four strains. Antagonism to fungal plant pathogens and production of antifungal volatile compounds were exhibited in T. globosa DMKU-RP31, as well as a moderate level of IAA production (4.9 mg g(-)(1) DCW). The overall results indicated that T. globosa DMKU-RP31 might be used in two ways: enhancing plant growth and acting as a biocontrol agent. In addition, four C. flavus were also found to be strains of interest for optimal IAA production. PMID:25110131

  11. 21 CFR 172.381 - Vitamin D2 bakers yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Vitamin D2 bakers yeast. 172.381 Section 172.381... Additives § 172.381 Vitamin D2 bakers yeast. Vitamin D2 bakers yeast may be used safely in foods as a source...) Vitamin D2 bakers yeast is the substance produced by exposing bakers yeast (Saccharomyces cerevisiae)...

  12. Gas-phase interactions between lead(II) ions and cytosine: tandem mass spectrometry and infrared multiple-photon dissociation spectroscopy study.

    PubMed

    Salpin, Jean-Yves; Haldys, Violette; Guillaumont, Sébastien; Tortajada, Jeanine; Hurtado, Marcela; Lamsabhi, Al Mokhtar

    2014-10-01

    Gas-phase interactions between Pb(2+) ions and cytosine (C) were studied by combining tandem mass spectrometry, infrared multiple photon dissociation spectroscopy, and density functional theory (DFT) calculations. Both singly and doubly charged complexes were generated by electrospray. The [Pb(C)-H](+) complex was extensively studied, and this study shows that two structures, involving the interaction of the metal with the deprotonated canonical keto-amino tautomer of cytosine, are generated in the gas phase; the prominent structure is the bidentate form involving both the N1 and O2 electronegative centers. The DFT study also points out a significant charge transfer from the nucleobase to the low-lying p orbitals of the metal and a strong polarization of the base upon complexation. The various potential energy surfaces explored to account for the fragmentation observed are consistent with the high abundance of the [PbNH2](+) fragment ion. PMID:25044836

  13. Electron paramagnetic resonance and electron nuclear double resonance studies of X-irradiated crystals of cytosine hydrochloride. Part I: free radical formation at 10 K after high radiation doses.

    PubMed

    Hole, E O; Nelson, W H; Sagstuen, E; Close, D M

    1998-02-01

    Anhydrous single crystals of cytosine hydrochloride (protonated at N3) have been X-irradiated at 10 K and studied using K-band EPR, ENDOR and FSE spectroscopy. At least seven radicals were present at 10 K after X irradiation with a dose of about 150 kGy. Two different protonation states of the one-electron reduced cytosine cation were observed: an amino-protonated species (R1) and the pristine one-electron reduced species (R2) with zero net charge. Apparently three deprotonated versions of the one-electron oxidized cytosine cation were formed: the amino-deprotonated cation (R3), an N3-deprotonated cation (R4) and an N1-deprotonated cation (R5). Finally, two products formed by net hydrogen addition to the cytosine base were observed: a C5 hydrogen-addition radical (R6) and a C6 hydrogen-addition radical (R7). The crystalline lattice of cytosine hydrochloride is characterized in part by a cytosine base initially protonated at the N3-position, thus forming a cytosine base cation, and in part by an extended network of hydrogen bonding involving the chlorine anions. Proton transfer properties of pristine one-electron oxidation and reduction base products in this lattice are discussed and are suggested as explanations of the unusual multitude of positions for deprotonation of the one-electron oxidized species as well as for the two protonation states of the reduction product observed. The magnetic parameters for the amino-protonated species R1 agree well with those extracted from previous studies of cytosine derivatives in frozen solutions and in various glasses. PMID:9457889

  14. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations.

    PubMed

    Shanak, Siba; Helms, Volkhard

    2014-12-14

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here. PMID:25494783

  15. Hydration properties of natural and synthetic DNA sequences with methylated adenine or cytosine bases in the R.DpnI target and BDNF promoter studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shanak, Siba; Helms, Volkhard

    2014-12-01

    Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.

  16. Nuclear Import of Yeast Proteasomes.

    PubMed

    Burcoglu, Julianne; Zhao, Liang; Enenkel, Cordula

    2015-01-01

    Proteasomes are highly conserved protease complexes responsible for the degradation of aberrant and short-lived proteins. In highly proliferating yeast and mammalian cells, proteasomes are predominantly nuclear. During quiescence and cell cycle arrest, proteasomes accumulate in granules in close proximity to the nuclear envelope/ER. With prolonged quiescence in yeast, these proteasome granules pinch off as membraneless organelles, and migrate as stable entities through the cytoplasm. Upon exit from quiescence, the proteasome granules clear and the proteasomes are rapidly transported into the nucleus, a process reflecting the dynamic nature of these multisubunit complexes. Due to the scarcity of studies on the nuclear transport of mammalian proteasomes, we summarised the current knowledge on the nuclear import of yeast proteasomes. This pathway uses canonical nuclear localisation signals within proteasomal subunits and Srp1/Kap95, and the canonical import receptor, named importin/karyopherin ??. Blm10, a conserved 240 kDa protein, which is structurally related to Kap95, provides an alternative import pathway. Two models exist upon which either inactive precursor complexes or active holo-enzymes serve as the import cargo. Here, we reconcile both models and suggest that the import of inactive precursor complexes predominates in dividing cells, while the import of mature enzymes mainly occurs upon exit from quiescence. PMID:26262643

  17. Nuclear Import of Yeast Proteasomes

    PubMed Central

    Burcoglu, Julianne; Zhao, Liang; Enenkel, Cordula

    2015-01-01

    Proteasomes are highly conserved protease complexes responsible for the degradation of aberrant and short-lived proteins. In highly proliferating yeast and mammalian cells, proteasomes are predominantly nuclear. During quiescence and cell cycle arrest, proteasomes accumulate in granules in close proximity to the nuclear envelope/ER. With prolonged quiescence in yeast, these proteasome granules pinch off as membraneless organelles, and migrate as stable entities through the cytoplasm. Upon exit from quiescence, the proteasome granules clear and the proteasomes are rapidly transported into the nucleus, a process reflecting the dynamic nature of these multisubunit complexes. Due to the scarcity of studies on the nuclear transport of mammalian proteasomes, we summarised the current knowledge on the nuclear import of yeast proteasomes. This pathway uses canonical nuclear localisation signals within proteasomal subunits and Srp1/Kap95, and the canonical import receptor, named importin/karyopherin ??. Blm10, a conserved 240 kDa protein, which is structurally related to Kap95, provides an alternative import pathway. Two models exist upon which either inactive precursor complexes or active holo-enzymes serve as the import cargo. Here, we reconcile both models and suggest that the import of inactive precursor complexes predominates in dividing cells, while the import of mature enzymes mainly occurs upon exit from quiescence. PMID:26262643

  18. Accurate CpG and non-CpG cytosine methylation analysis by high-throughput locus-specific pyrosequencing in plants.

    PubMed

    How-Kit, Alexandre; Daunay, Antoine; Mazaleyrat, Nicolas; Busato, Florence; Daviaud, Christian; Teyssier, Emeline; Deleuze, Jean-François; Gallusci, Philippe; Tost, Jörg

    2015-07-01

    Pyrosequencing permits accurate quantification of DNA methylation of specific regions where the proportions of the C/T polymorphism induced by sodium bisulfite treatment of DNA reflects the DNA methylation level. The commercially available high-throughput locus-specific pyrosequencing instruments allow for the simultaneous analysis of 96 samples, but restrict the DNA methylation analysis to CpG dinucleotide sites, which can be limiting in many biological systems. In contrast to mammals where DNA methylation occurs nearly exclusively on CpG dinucleotides, plants genomes harbor DNA methylation also in other sequence contexts including CHG and CHH motives, which cannot be evaluated by these pyrosequencing instruments due to software limitations. Here, we present a complete pipeline for accurate CpG and non-CpG cytosine methylation analysis at single base-resolution using high-throughput locus-specific pyrosequencing. The devised approach includes the design and validation of PCR amplification on bisulfite-treated DNA and pyrosequencing assays as well as the quantification of the methylation level at every cytosine from the raw peak intensities of the Pyrograms by two newly developed Visual Basic Applications. Our method presents accurate and reproducible results as exemplified by the cytosine methylation analysis of the promoter regions of two Tomato genes (NOR and CNR) encoding transcription regulators of fruit ripening during different stages of fruit development. Our results confirmed a significant and temporally coordinated loss of DNA methylation on specific cytosines during the early stages of fruit development in both promoters as previously shown by WGBS. The manuscript describes thus the first high-throughput locus-specific DNA methylation analysis in plants using pyrosequencing. PMID:26072424

  19. Yeasts Diversity in Fermented Foods and Beverages

    NASA Astrophysics Data System (ADS)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  20. Low energy electron induced cytosine base release in 2?-deoxycytidine-3?-monophosphate via glycosidic bond cleavage: A time-dependent wavepacket study

    SciTech Connect

    Bhaskaran, Renjith; Sarma, Manabendra

    2014-09-14

    Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2?-deoxycytidine-3?-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3? C–O bond cleavage from the lowest ?{sup *} shape resonance in energy region <1 eV. This is mainly due to the high activation energy barrier associated with the electron transfer from the ?{sup *} orbital of the base to the ?{sup *} orbital of the glycosidic N–C bond. In addition, the metastable state formed after impinging LEE (0–1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N–C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ?35–55 fs. Comparison of salient features of the two dissociation events, i.e., 3? C–O single strand break and glycosidic N–C bond cleavage in 3?-dCMPH molecule are also provided.

  1. Low energy electron induced cytosine base release in 2'-deoxycytidine-3'-monophosphate via glycosidic bond cleavage: A time-dependent wavepacket study

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Renjith; Sarma, Manabendra

    2014-09-01

    Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2'-deoxycytidine-3'-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3' C-O bond cleavage from the lowest ?* shape resonance in energy region <1 eV. This is mainly due to the high activation energy barrier associated with the electron transfer from the ?* orbital of the base to the ?* orbital of the glycosidic N-C bond. In addition, the metastable state formed after impinging LEE (0-1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N-C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ˜35-55 fs. Comparison of salient features of the two dissociation events, i.e., 3' C-O single strand break and glycosidic N-C bond cleavage in 3'-dCMPH molecule are also provided.

  2. Opposing Activity Changes in AMP Deaminase and AMP-Activated Protein Kinase in the Hibernating Ground Squirrel

    PubMed Central

    Cicerchi, Christina; Garcia, Gabriela E.; Roncal-Jimenez, Carlos A.; Trostel, Jessica; Jain, Swati; Mant, Colin T.; Rivard, Christopher J.; Ishimoto, Takuji; Shimada, Michiko; Sanchez-Lozada, Laura Gabriela; Nakagawa, Takahiko; Jani, Alkesh; Stenvinkel, Peter; Martin, Sandra L.; Johnson, Richard J.

    2015-01-01

    Hibernating animals develop fatty liver when active in summertime and undergo a switch to a fat oxidation state in the winter. We hypothesized that this switch might be determined by AMP and the dominance of opposing effects: metabolism through AMP deaminase (AMPD2) (summer) and activation of AMP-activated protein kinase (AMPK) (winter). Liver samples were obtained from 13-lined ground squirrels at different times during the year, including summer and multiples stages of winter hibernation, and fat synthesis and ?-fatty acid oxidation were evaluated. Changes in fat metabolism were correlated with changes in AMPD2 activity and intrahepatic uric acid (downstream product of AMPD2), as well as changes in AMPK and intrahepatic ?-hydroxybutyrate (a marker of fat oxidation). Hepatic fat accumulation occurred during the summer with relatively increased enzymes associated with fat synthesis (FAS, ACL and ACC) and decreased enoyl CoA hydratase (ECH1) and carnitine palmitoyltransferase 1A (CPT1A), rate limiting enzymes of fat oxidation. In summer, AMPD2 activity and intrahepatic uric acid levels were high and hepatic AMPK activity was low. In contrast, the active phosphorylated form of AMPK and ?-hydroxybutyrate both increased during winter hibernation. Therefore, changes in AMPD2 and AMPK activity were paralleled with changes in fat synthesis and fat oxidation rates during the summer-winter cycle. These data illuminate the opposing forces of metabolism of AMP by AMPD2 and its availability to activate AMPK as a switch that governs fat metabolism in the liver of hibernating ground squirrel. PMID:25856396

  3. Identification of DNA cleavage- and recombination-specific hnRNP cofactors for activation-induced cytidine deaminase

    PubMed Central

    Hu, Wenjun; Begum, Nasim A.; Mondal, Samiran; Stanlie, Andre; Honjo, Tasuku

    2015-01-01

    Activation-induced cytidine deaminase (AID) is essential for antibody class switch recombination (CSR) and somatic hypermutation (SHM). AID originally was postulated to function as an RNA-editing enzyme, based on its strong homology with apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 1 (APOBEC1), the enzyme that edits apolipoprotein B-100 mRNA in the presence of the APOBEC cofactor APOBEC1 complementation factor/APOBEC complementation factor (A1CF/ACF). Because A1CF is structurally similar to heterogeneous nuclear ribonucleoproteins (hnRNPs), we investigated the involvement of several well-known hnRNPs in AID function by using siRNA knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9–mediated disruption. We found that hnRNP K deficiency inhibited DNA cleavage and thereby induced both CSR and SHM, whereas hnRNP L deficiency inhibited only CSR and somewhat enhanced SHM. Interestingly, both hnRNPs exhibited RNA-dependent interactions with AID, and mutant forms of these proteins containing deletions in the RNA-recognition motif failed to rescue CSR. Thus, our study suggests that hnRNP K and hnRNP L may serve as A1CF-like cofactors in AID-mediated CSR and SHM. PMID:25902538

  4. Gene therapy for adenosine deaminase–deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans

    PubMed Central

    Candotti, Fabio; Shaw, Kit L.; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H.; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G. Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F.; Weinberg, Kenneth I.; Crooks, Gay M.; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S.; Rosenblatt, Howard M.; Davis, Carla M.; Hanson, Celine; Rishi, Radha G.; Wang, Xiaoyan; Gjertson, David; Yang, Otto O.; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A.; Engel, Barbara C.; Podsakoff, Gregory M.; Hershfield, Michael S.; Blaese, R. Michael; Parkman, Robertson

    2012-01-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)–deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34+ cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m2). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency. PMID:22968453

  5. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution

    PubMed Central

    Kasar, S.; Kim, J.; Improgo, R.; Tiao, G.; Polak, P.; Haradhvala, N.; Lawrence, M. S.; Kiezun, A.; Fernandes, S. M.; Bahl, S.; Sougnez, C.; Gabriel, S.; Lander, E. S.; Kim, H. T.; Getz, G.; Brown, J. R.

    2015-01-01

    Patients with chromosome 13q deletion or normal cytogenetics represent the majority of chronic lymphocytic leukaemia (CLL) cases, yet have relatively few driver mutations. To better understand their genomic landscape, here we perform whole-genome sequencing on a cohort of patients enriched with these cytogenetic characteristics. Mutations in known CLL drivers are seen in only 33% of this cohort, and associated with normal cytogenetics and unmutated IGHV. The most commonly mutated gene in our cohort, IGLL5, shows a mutational pattern suggestive of activation-induced cytidine deaminase (AID) activity. Unsupervised analysis of mutational signatures demonstrates the activities of canonical AID (c-AID), leading to clustered mutations near active transcriptional start sites; non-canonical AID (nc-AID), leading to genome-wide non-clustered mutations, and an ageing signature responsible for most mutations. Using mutation clonality to infer time of onset, we find that while ageing and c-AID activities are ongoing, nc-AID-associated mutations likely occur earlier in tumour evolution. PMID:26638776

  6. Metabolic Consequences of Adenosine Deaminase Deficiency in Mice Are Associated with Defects in Alveogenesis, Pulmonary Inflammation, and Airway Obstruction

    PubMed Central

    Blackburn, Michael R.; Volmer, Jonathan B.; Thrasher, Janci L.; Zhong, Hongyan; Crosby, Jeff R.; Lee, James J.; Kellems, Rodney E.

    2000-01-01

    Adenosine deaminase (ADA) is a purine catabolic enzyme that manages levels of the biologically active purines adenosine and 2?-deoxyadenosine in tissues and cells. ADA-deficient mice die at 3 wk of age from severe respiratory distress. This phenotype is progressive and is linked to perturbations in pulmonary purine metabolism. The inflammatory changes found in the lungs of ADA-deficient mice included an accumulation of activated alveolar macrophages and eosinophils. These changes were accompanied by a pronounced enlargement of alveolar spaces and increases in mucus production in the bronchial airways. The alveolar enlargement was found to be due in part to abnormal alveogenesis. Lowering adenosine and 2?-deoxyadenosine levels using ADA enzyme therapy decreased the pulmonary eosinophilia and resolved many of the lung histopathologies. In addition, genetically restoring ADA to the forestomach of otherwise ADA-deficient mice prevented adenine metabolic disturbances as well as lung inflammation and damage. These data suggest that disturbances in purinergic signaling mediate the lung inflammation and damage seen in ADA-deficient mice. PMID:10899903

  7. Functional analysis of a stable transcription arrest site in the first intron of the murine adenosine deaminase gene.

    PubMed

    Kash, S F; Innis, J W; Jackson, A U; Kellems, R E

    1993-05-01

    Transcription arrest plays a role in regulating the expression of a number of genes, including the murine adenosine deaminase (ADA) gene. We have previously identified two prominent arrest sites at the 5' end of the ADA gene: one in the first exon and one in the first intron (J. W. Innis and R. E. Kellems, Mol. Cell. Biol. 11:5398-5409, 1991). Here we report the functional characterization of the intron 1 arrest site, located 137 to 145 nucleotides downstream of the cap site. We have determined, using gel filtration, that the intron 1 arrest site is a stable RNA polymerase II pause site and that the transcription elongation factor SII promotes read-through at this site. Additionally, the sequence determinants for the pause are located within a 37-bp fragment encompassing this site (+123 to +158) and can direct transcription arrest in an orientation-dependent manner in the context of the ADA and adenovirus major late promoters. Specific point mutations in this region increase or decrease the relative pausing efficiency. We also show that the sequence determinants for transcription arrest can function when placed an additional 104 bp downstream of their natural position. PMID:8474437

  8. Metabolic consequences of adenosine deaminase deficiency in mice are associated with defects in alveogenesis, pulmonary inflammation, and airway obstruction.

    PubMed

    Blackburn, M R; Volmer, J B; Thrasher, J L; Zhong, H; Crosby, J R; Lee, J J; Kellems, R E

    2000-07-17

    Adenosine deaminase (ADA) is a purine catabolic enzyme that manages levels of the biologically active purines adenosine and 2'-deoxyadenosine in tissues and cells. ADA-deficient mice die at 3 wk of age from severe respiratory distress. This phenotype is progressive and is linked to perturbations in pulmonary purine metabolism. The inflammatory changes found in the lungs of ADA-deficient mice included an accumulation of activated alveolar macrophages and eosinophils. These changes were accompanied by a pronounced enlargement of alveolar spaces and increases in mucus production in the bronchial airways. The alveolar enlargement was found to be due in part to abnormal alveogenesis. Lowering adenosine and 2'-deoxyadenosine levels using ADA enzyme therapy decreased the pulmonary eosinophilia and resolved many of the lung histopathologies. In addition, genetically restoring ADA to the forestomach of otherwise ADA-deficient mice prevented adenine metabolic disturbances as well as lung inflammation and damage. These data suggest that disturbances in purinergic signaling mediate the lung inflammation and damage seen in ADA-deficient mice. PMID:10899903

  9. Direct Assay of Enzymes in Heme Biosynthesis for the Detection of Porphyrias by Tandem Mass Spectrometry. Porphobilinogen Deaminase

    PubMed Central

    Wang, Yuesong; Scott, C. Ronald; Gelb, Michael H.; Ture?ek, František

    2008-01-01

    We report a new assay of human porphobilinogen deaminase (PBGD). Deficiency in this enzyme activity causes acute intermittent porphyria, the most common disorder of heme biosynthesis. The assay involves incubation of blood erythrocyte lysate with porphobilinogen, the natural PBGD substrate. Two subsequent enzymes in the heme biosynthetic pathway, uroporphyrinogen III synthase and uroporphyrinogen decarboxylase, are deactivated by heating so that their activity does not interfere with the PBGD assay. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) is used to monitor the production of uroporphyrinogen I and thus measure the PGBD activity. A simple and efficient workup using liquid—liquid extraction with >90% product recovery was employed to avoid separation by liquid chromatography. The assays show good reproducibility (±3.3%) and linear dependence of the uroporphyrinogen I formation on incubation time and protein amount. The Km of PGBD for porphobilinogen was measured as 11.2 ± 0.5 ?M with Vmax of 0.0041 ± 0.0002 ?M/(min·mg of hemoglobin). The coefficient of variation of PBGD activity among several unaffected individuals (12%) is significantly lower than the decrease due to acute intermittent porphyria (50%). PMID:18294005

  10. Opposing activity changes in AMP deaminase and AMP-activated protein kinase in the hibernating ground squirrel.

    PubMed

    Lanaspa, Miguel A; Epperson, L Elaine; Li, Nanxing; Cicerchi, Christina; Garcia, Gabriela E; Roncal-Jimenez, Carlos A; Trostel, Jessica; Jain, Swati; Mant, Colin T; Rivard, Christopher J; Ishimoto, Takuji; Shimada, Michiko; Sanchez-Lozada, Laura Gabriela; Nakagawa, Takahiko; Jani, Alkesh; Stenvinkel, Peter; Martin, Sandra L; Johnson, Richard J

    2015-01-01

    Hibernating animals develop fatty liver when active in summertime and undergo a switch to a fat oxidation state in the winter. We hypothesized that this switch might be determined by AMP and the dominance of opposing effects: metabolism through AMP deaminase (AMPD2) (summer) and activation of AMP-activated protein kinase (AMPK) (winter). Liver samples were obtained from 13-lined ground squirrels at different times during the year, including summer and multiples stages of winter hibernation, and fat synthesis and ?-fatty acid oxidation were evaluated. Changes in fat metabolism were correlated with changes in AMPD2 activity and intrahepatic uric acid (downstream product of AMPD2), as well as changes in AMPK and intrahepatic ?-hydroxybutyrate (a marker of fat oxidation). Hepatic fat accumulation occurred during the summer with relatively increased enzymes associated with fat synthesis (FAS, ACL and ACC) and decreased enoyl CoA hydratase (ECH1) and carnitine palmitoyltransferase 1A (CPT1A), rate limiting enzymes of fat oxidation. In summer, AMPD2 activity and intrahepatic uric acid levels were high and hepatic AMPK activity was low. In contrast, the active phosphorylated form of AMPK and ?-hydroxybutyrate both increased during winter hibernation. Therefore, changes in AMPD2 and AMPK activity were paralleled with changes in fat synthesis and fat oxidation rates during the summer-winter cycle. These data illuminate the opposing forces of metabolism of AMP by AMPD2 and its availability to activate AMPK as a switch that governs fat metabolism in the liver of hibernating ground squirrel. PMID:25856396

  11. Effects of aqueous soybean, mistletoe and red clover extracts on activities of adenosine deaminase and xanthine oxidase enzyme.

    PubMed

    Namuslu, M; Kocaoglu, H; Celik, H T; Avci, A; Devrim, E; Genc, Y; Gocmen, E; Erguder, I B; Durak, I

    2014-01-01

    Soybean (Glycine max), mistletoe (Viscum album) and red clover (Trifolium pratence) have been argued to have anti-cancer effects. In the present study it was aimed to investigate possible effects of these plant extracts on the activities of DNA turn-over enzymes, namely adenosine deaminase (ADA) and xanthine oxidase (XO) in cancerous and non-cancerous gastric and colon tissues. For this aim, 6 cancerous and 6 non-cancerous adjacent human gastric tissues, and 7 cancerous and 7 non-cancerous adjacent colon tissues were obtained by surgical operations. Our results suggest that aqueous soybean, mistletoe and red clover extracts may exhibit anti-tumoral activity by depleting hypoxanthine concentration in the cancer cells through XO activation, which may lead to lowered salvage pathway activity necessary for the cancer cells to proliferate in the cancerous colon tissue. Some foods like soybean, mistletoe and red clover may provide nutritional support to medical cancer therapy through inhibiting and/or activating key enzymes in cancer metabolism (Tab. 4, Ref.?33). PMID:25023428

  12. Circulating type 1 vaccine-derived poliovirus may evolve under the pressure of adenosine deaminases acting on RNA.

    PubMed

    Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Xu, Ruixue; Wang, Shujing

    2015-11-01

    Poliovirus, the causative agent of poliomyelitis, is a human enterovirus and member of the Picornaviridae family. An effective live-attenuated poliovirus vaccine strain (Sabin 1) has been developed and has protected humans from polio. However, a few cases of vaccine virulence reversion have been documented in several countries. For instance, circulating type 1 vaccine-derived poliovirus is a highly pathogenic poliovirus that evolved from an avirulent strain, but the mechanism by which vaccine strains undergo reversion remains unclear. In this study, vaccine strains exhibited A to G/U to C and G to A/C to U hypermutations in the reversed evolution of Sabin 1. Furthermore, the mutation ratios of U to C and C to U were higher than those of other mutation types. Dinucleotide editing context was then analyzed. Results showed that A to G and U to C mutations exhibited preferences similar to adenosine deaminases acting on RNA (ADAR). Hence, ADARs may participate in poliovirus vaccine evolution. PMID:25330844

  13. Patients with adenosine deaminase deficiency surviving after hematopoietic stem cell transplantation are at high risk of CNS complications.

    PubMed

    Hönig, Manfred; Albert, Michael H; Schulz, Ansgar; Sparber-Sauer, Monika; Schütz, Catharina; Belohradsky, Bernd; Güngör, Tayfun; Rojewski, Markus T; Bode, Harald; Pannicke, Ulrich; Lippold, Dominique; Schwarz, Klaus; Debatin, Klaus-Michael; Hershfield, Michael S; Friedrich, Wilhelm

    2007-04-15

    Adenosine deaminase (ADA) deficiency is a systemic metabolic disease that causes an autosomal recessive variant of severe combined immunodeficiency (SCID) and less consistently other complications including neurologic abnormalities. Hematopoietic stem cell transplantation (HSCT) is able to correct the immunodeficiency, whereas control of nonimmunologic complications has not been extensively explored. We applied HSCT in 15 ADA-deficient patients consecutively treated at our institutions since 1982 and analyzed long-term outcome. Seven patients received transplants without conditioning from HLA-matched family donors (MFDs); the other 8 patients received conditioning and were given transplants either from HLA-mismatched family donors (MMFDs; n = 6) or from matched unrelated donors (MUDs; n = 2). At a mean follow-up period of 12 years (range, 4-22 years), 12 patients are alive with stable and complete immune reconstitution (7 of 7 after MFD, 4 of 6 after MMFD, and 1 of 2 after MUD transplantation). Six of 12 surviving patients show marked neurologic abnormalities, which include mental retardation, motor dysfunction, and sensorineural hearing deficit. We were unable to identify disease or transplantation-related factors correlating with this divergent neurologic outcome. The high rate of neurologic abnormalities observed in long-term surviving patients with ADA deficiency indicates that HSCT commonly fails to control CNS complications in this metabolic disease. PMID:17185467

  14. High-yield production of apoplast-directed human adenosine deaminase in transgenic tobacco BY-2 cell suspensions.

    PubMed

    Singhabahu, Sanjeewa; George, John; Bringloe, David

    2015-01-01

    Adenosine deaminase (ADA) deficiency, where a deleterious mutation in the ADA gene of patients results in a dysfunctional immune system, is ultimately caused by an absence of ADA. Over the last 25 years the disease has been treated with PEG-ADA, made from purified bovine ADA coupled with polyethylene glycol (PEG). However, it is thought that an enzyme replacement therapy protocol based on recombinant human ADA would probably be a more effective treatment. With this end in mind, a human ADA cDNA was inserted into plant expression vectors used to transform tobacco plant cell suspensions. Transgenic calli expressing constructs containing apoplast-directing signals showed significantly higher levels of recombinant ADA expression than calli transformed with cytosolic constructs. The most significant ADA activities, however, were measured in the media of transgenic cell suspensions prepared from high expressing transformed calli: where incorporation of a signal for arabinogalactan addition to ADA led to a recombinant protein yield of approximately 16 mg L(-1) , a 336-fold increase over ADA produced by cell suspensions transformed with a cytosolic construct. PMID:24825606

  15. A Study on the Serum Adenosine Deaminase Activity in Patients with Typhoid Fever and Other Febrile Illnesses

    PubMed Central

    Ketavarapu, Sameera; Ramani G., Uma; Modi, Prabhavathi

    2013-01-01

    Background: Adenosine Deaminase (ADA) has been suggested to be an important enzyme which is associated with the cell mediated immunity, but its clinical significance in typhoid fever has not yet been characterized. The present study was taken up to evaluate the serum ADA activity in patients of typhoid fever. The levels of ADA were also measured in the patients who were suffering from other febrile illnesses. Material and Method: This was a case control study. The subjects who were included in this study were divided into 3 groups. Group A consisted of 50 normal healthy individuals who served as the controls. Group B consisted of 50 patients, both males and females of all age groups, who were suffering from culture positive typhoid fever. Group C consisted of 50 patients who were suffering from febrile illnesses other than typhoid fever like viral fever, gastro enteritis, malaria, tonsillitis, upper respiratory tract infections, etc. The serum levels of ADA were estimated in all the subjects who were under study. Results: The serum ADA level was found to be increased in the patients of typhoid fever as compared to that in those with other febrile illnesses and in the controls. Conclusion: From the present study, it can be concluded that there was a statistically significant increase in the serum ADA levels in the patients with typhoid. PMID:23730630

  16. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution.

    PubMed

    Kasar, S; Kim, J; Improgo, R; Tiao, G; Polak, P; Haradhvala, N; Lawrence, M S; Kiezun, A; Fernandes, S M; Bahl, S; Sougnez, C; Gabriel, S; Lander, E S; Kim, H T; Getz, G; Brown, J R

    2015-01-01

    Patients with chromosome 13q deletion or normal cytogenetics represent the majority of chronic lymphocytic leukaemia (CLL) cases, yet have relatively few driver mutations. To better understand their genomic landscape, here we perform whole-genome sequencing on a cohort of patients enriched with these cytogenetic characteristics. Mutations in known CLL drivers are seen in only 33% of this cohort, and associated with normal cytogenetics and unmutated IGHV. The most commonly mutated gene in our cohort, IGLL5, shows a mutational pattern suggestive of activation-induced cytidine deaminase (AID) activity. Unsupervised analysis of mutational signatures demonstrates the activities of canonical AID (c-AID), leading to clustered mutations near active transcriptional start sites; non-canonical AID (nc-AID), leading to genome-wide non-clustered mutations, and an ageing signature responsible for most mutations. Using mutation clonality to infer time of onset, we find that while ageing and c-AID activities are ongoing, nc-AID-associated mutations likely occur earlier in tumour evolution. PMID:26638776

  17. Pathologic findings in adenosine deaminase-deficient severe combined immunodeficiency. I. Kidney, adrenal, and chondro-osseous tissue alterations.

    PubMed Central

    Ratech, H.; Greco, M. A.; Gallo, G.; Rimoin, D. L.; Kamino, H.; Hirschhorn, R.

    1985-01-01

    The authors have reviewed the autopsies of 8 patients with adenosine-deaminase-deficient severe combined immunodeficiency disease (ADA-SCID). Several new findings in nonlymphoid organs, including kidney and adrenal gland, and chondro-osseous tissue indicate the multisystem nature of this disorder. Examination of renal tissue in 7 of 8 cases showed mesangial sclerosis. This was confirmed in 3 cases by electron microscopy. One case, treated with multiple erythrocyte partial exchange transfusions for several years, had no mesangial sclerosis. Six of 8 cases showed adrenal-gland cortical sclerosis. Chondro-osseous tissue from vertebrae and costochondral junctions of 4 cases examined showed typical alterations previously reported in ADA-SCID such as short growth plates with few proliferating and some hypertrophic chondrocytes. The authors report the new observations of necrotic chondrocytes, as well as large amounts of cellular debris. These changes were not observed in the 2 other patients examined, who received bone marrow or multiple partial exchange transfusions. The distribution and severity of these lesions, their relationship to ADA replacement therapy, and their homology to mice treated with a potent ADA inhibitor suggests that, in addition to lymphoid dysfunction, disordered nucleoside metabolism due to absent ADA activity in ADA-SCID may be the cause of diverse multi-system pathologic changes in tissues which continue to differentiate or mature after birth. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 PMID:4014441

  18. Role of glucose signaling in yeast metabolism

    SciTech Connect

    Dam, K. van

    1996-10-05

    The conversion of glucose to ethanol and carbon dioxide by yeast was the first biochemical pathway to be studied in detail. The initial observation that this process is catalyzed by an extract of yeast led to the discovery of enzymes and coenzymes and laid the foundation for modern biochemistry. In this article, knowledge concerning the relation between uptake of and signaling by glucose in the yeast Saccharomyces cerevisiae is reviewed and compared to the analogous process in prokaryotes. It is concluded that (much) more fundamental knowledge concerning these processes is required before rational redesign of metabolic fluxes from glucose in yeast can be achieved.

  19. Profiling of Yeast Lipids by Shotgun Lipidomics.

    PubMed

    Klose, Christian; Tarasov, Kirill

    2016-01-01

    Lipidomics is a rapidly growing technology for identification and quantification of a variety of cellular lipid molecules. Following the successful development and application of functional genomic technologies in yeast Saccharomyces cerevisiae, we witness a recent expansion of lipidomics applications in this model organism. The applications include detailed characterization of the yeast lipidome as well as screening for perturbed lipid phenotypes across hundreds of yeast gene deletion mutants. In this chapter, we describe sample handling, mass spectrometry, and bioinformatics methods developed for yeast lipidomics studies. PMID:26483029

  20. Evaluation of Automated Yeast Identification System

    NASA Technical Reports Server (NTRS)

    McGinnis, M. R.

    1996-01-01

    One hundred and nine teleomorphic and anamorphic yeast isolates representing approximately 30 taxa were used to evaluate the accuracy of the Biolog yeast identification system. Isolates derived from nomenclatural types, environmental, and clinica isolates of known identity were tested in the Biolog system. Of the isolates tested, 81 were in the Biolog database. The system correctly identified 40, incorrectly identified 29, and was unable to identify 12. Of the 28 isolates not in the database, 18 were given names, whereas 10 were not. The Biolog yeast identification system is inadequate for the identification of yeasts originating from the environment during space program activities.

  1. Sirtuins in yeast: phenotypes and tools.

    PubMed

    Tsuchiyama, Scott; Kwan, Elizabeth; Dang, Weiwei; Bedalov, Antonio; Kennedy, Brian K

    2013-01-01

    Originally discovered as a transcriptional silencing protein, SIR2 was later linked to yeast replicative aging and the rest was history. Sir2p is now known to be a member of a class of protein deacetylases with a unique enzymatic activity coupling the deacetylation event to NAD(+) hydrolysis. While still incompletely understood, the mechanism by which Sir2p modulates yeast aging is linked to inhibition of rDNA recombination. Here we describe phenotypes associated with yeast Sirtuins and assays used to monitor Sirtuin function in yeast, including the replicative aging assay. PMID:24014397

  2. Methylation by a Unique ?-class N4-Cytosine Methyltransferase Is Required for DNA Transformation of Caldicellulosiruptor bescii DSM6725

    PubMed Central

    Chung, Daehwan; Farkas, Joel; Huddleston, Jennifer R.; Olivar, Estefania; Westpheling, Janet

    2012-01-01

    Thermophilic microorganisms capable of using complex substrates offer special advantages for the conversion of lignocellulosic biomass to biofuels and bioproducts. Members of the Gram-positive bacterial genus Caldicellulosiruptor are anaerobic thermophiles with optimum growth temperatures between 65°C and 78°C and are the most thermophilic cellulolytic organisms known. In fact, they efficiently use biomass non-pretreated as their sole carbon source and in successive rounds of application digest 70% of total switchgrass substrate. The ability to genetically manipulate these organisms is a prerequisite to engineering them for use in conversion of these complex substrates to products of interest as well as identifying gene products critical for their ability to utilize non-pretreated biomass. Here, we report the first example of DNA transformation of a member of this genus, C. bescii. We show that restriction of DNA is a major barrier to transformation (in this case apparently absolute) and that methylation with an endogenous unique ?-class N4-Cytosine methyltransferase is required for transformation of DNA isolated from E. coli. The use of modified DNA leads to the development of an efficient and reproducible method for DNA transformation and the combined frequencies of transformation and recombination allow marker replacement between non-replicating plasmids and chromosomal genes providing the basis for rapid and efficient methods of genetic manipulation. PMID:22928042

  3. Identification of two human nuclear proteins that recognise the cytosine-rich strand of human telomeres in vitro

    PubMed Central

    Lacroix, Laurent; Liénard, Hélène; Labourier, Emmanuel; Djavaheri-Mergny, Mojgan; Lacoste, Jérôme; Leffers, Henrik; Tazi, Jamal; Hélène, Claude; Mergny, Jean-Louis

    2000-01-01

    Most studies on the structure of DNA in telomeres have been dedicated to the double-stranded region or the guanosine-rich strand and consequently little is known about the factors that may bind to the telomere cytosine-rich (C-rich) strand. This led us to investigate whether proteins exist that can recognise C-rich sequences. We have isolated several nuclear factors from human cell extracts that specifically bind the C-rich strand of vertebrate telomeres [namely a d(CCCTAA)n repeat] with high affinity and bind double-stranded telomeric DNA with a 100× reduced affinity. A biochemical assay allowed us to characterise four proteins of apparent molecular weights 66–64, 45 and 35 kDa, respectively. To identify these polypeptides we screened a ?gt11-based cDNA expression library, obtained from human HeLa cells using a radiolabelled telomeric oligonucleotide as a probe. Two clones were purified and sequenced: the first corresponded to the hnRNP K protein and the second to the ASF/SF2 splicing factor. Confirmation of the screening results was obtained with recombinant proteins, both of which bind to the human telomeric C-rich strand in vitro. PMID:10710423

  4. How the CCA-Adding Enzyme Selects Adenine over Cytosine at Position 76 of tRNA

    SciTech Connect

    B Pan; Y Xiong; T Steitz

    2011-12-31

    CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3' end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five cocrystal structures of the enzyme complexed with both a tRNA mimic and nucleoside triphosphates under catalytically active conditions. These structures suggest that adenosine 5'-monophosphate is incorporated onto the A76 position of the tRNA via a carboxylate-assisted, one-metal-ion mechanism with aspartate 110 functioning as a general base. The discrimination against incorporation of cytidine 5'-triphosphate (CTP) at position 76 arises from improper placement of the {alpha} phosphate of the incoming CTP, which results from the interaction of C with arginine 224 and prevents the nucleophilic attack by the 3' hydroxyl group of cytidine75.

  5. How the CCA-Adding Enzyme Selects Adenine over Cytosine at Position 76 of tRNA

    SciTech Connect

    Pan, Baocheng; Xiong, Yong; Steitz, Thomas A.

    2010-11-22

    CCA-adding enzymes [ATP(CTP):tRNA nucleotidyltransferases] add CCA onto the 3{prime} end of transfer RNA (tRNA) precursors without using a nucleic acid template. Although the mechanism by which cytosine (C) is selected at position 75 of tRNA has been established, the mechanism by which adenine (A) is selected at position 76 remains elusive. Here, we report five cocrystal structures of the enzyme complexed with both a tRNA mimic and nucleoside triphosphates under catalytically active conditions. These structures suggest that adenosine 5{prime}-monophosphate is incorporated onto the A76 position of the tRNA via a carboxylate-assisted, one-metal-ion mechanism with aspartate 110 functioning as a general base. The discrimination against incorporation of cytidine 5{prime}-triphosphate (CTP) at position 76 arises from improper placement of the {alpha} phosphate of the incoming CTP, which results from the interaction of C with arginine 224 and prevents the nucleophilic attack by the 3{prime} hydroxyl group of cytidine75.

  6. Distinguishing Between Relaxation Pathways by Combining Dissociative Ionization Pump Probe Spectroscopy and Ab Initio Calculations: A Case Study of Cytosine

    SciTech Connect

    Kotur, Marija; Weinacht, Thomas C.; Zhou, Congyi; Kistler, Kurt A.; Matsika, Spiridoula

    2011-05-10

    We present a general method for tracking molecular relaxation along different pathways from an excited state down to the ground state. We follow the excited state dynamics of cytosine pumped near the S0-S1 resonance using ultrafast laser pulses in the deep ultraviolet and probed with strong field near infrared pulses which ionize and dissociate the molecules. The fragment ions are detected via time of flight mass spectroscopy as a function of pump probe delay and probe pulse intensity. Our measurements reveal that different molecular fragments show different timescales, indicating that there are multiple relaxation pathways down to the ground state. We interpret our measurements with the help of ab initio electronic structure calculations of both the neutral molecule and the molecular cation for different conformations en route to relaxation back down to the ground state. Our measurements and calculations show passage through two seams of conical intersections between ground and excited states and demonstrate the ability of dissociative ionization pump probe measurements in conjunction with ab initio electronic structure calculations to track molecular relaxation through multiple pathways.

  7. 21 CFR 172.381 - Vitamin D2 bakers yeast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...Vitamin D2 bakers yeast is the substance produced by exposing bakers yeast (Saccharomyces cerevisiae ) to ultraviolet light, resulting in the photochemical conversion of endogenous ergosterol in bakers yeast to vitamin D2 (also...

  8. 21 CFR 172.381 - Vitamin D2 bakers yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...Vitamin D2 bakers yeast is the substance produced by exposing bakers yeast (Saccharomyces cerevisiae ) to ultraviolet light, resulting in the photochemical conversion of endogenous ergosterol in bakers yeast to vitamin D2 (also...

  9. Yeast Breads: Made at Home. 

    E-print Network

    Reasonover, Frances

    1971-01-01

    on the package are followed. '$ _. " : i. sugar and salt Yeast and sugar work together to form car- bon dioxide gas which causes the dough to rise. Salt helps control this rate of rise and also fla- vors the bread. Sugar helps give a golden brown color... place to become bubbly and light. When t!: sponge is light, the sugar, salt, shortening ap. In the straight dough method, the completed more flour are added for the desired consisten?; dough is made up at the first mixing. All of When this mixture...

  10. Experimental evolution in budding yeast

    NASA Astrophysics Data System (ADS)

    Murray, Andrew

    2012-02-01

    I will discuss our progress in analyzing evolution in the budding yeast, Saccharomyces cerevisiae. We take two basic approaches. The first is to try and examine quantitative aspects of evolution, for example by determining how the rate of evolution depends on the mutation rate and the population size or asking whether the rate of mutation is uniform throughout the genome. The second is to try to evolve qualitatively novel, cell biologically interesting phenotypes and track the mutations that are responsible for the phenotype. Our efforts include trying to alter cell morphology, evolve multicellularity, and produce a biological oscillator.

  11. Extraction of lipids from yeast.

    PubMed

    Sobus, M T; Homlund, C E

    1976-04-01

    Several methods for the extraction of lipids from intact yeast cells have been compared. Extraction of intact cells with methanol followed by methanol: benzene (1:1, v/v) and benzene resulted in the recovery of equal or greater amounts of polar and nonpolar lipids than obtained by other methods. A preparative method involving preincubation of cells with aqueous KOH followed by the treatment of the cellular residue as described above yielded slightly more steryl esters than was extracted from broken cell preparations. PMID:772348

  12. Anhydrobiosis in yeast: influence of calcium and magnesium ions on yeast resistance to dehydration-rehydration.

    PubMed

    Trofimova, Yuliya; Walker, Graeme; Rapoport, Alexander

    2010-07-01

    The influence of calcium and magnesium ions on resistance to dehydration in the yeast, Saccharomyces cerevisiae, was investigated. Magnesium ion availability directly influenced yeast cells' resistance to dehydration and, when additionally supplemented with calcium ions, this provided further significant increase of yeast resistance to dehydration. Gradual rehydration of dry yeast cells in water vapour indicated that both magnesium and calcium may be important for the stabilization of yeast cell membranes. In particular, calcium ions were shown for the first time to increase the resistance of yeast cells to dehydration in stress-sensitive cultures from exponential growth phases. It is concluded that magnesium and calcium ion supplementations in nutrient media may increase the dehydration stress tolerance of S. cerevisiae cells significantly, and this finding is important for the production of active dry yeast preparations for food and fermentation industries. PMID:20487021

  13. YEAST MEIOSIS Sister kinetochores are mechanically

    E-print Network

    Asbury, Chip

    YEAST MEIOSIS Sister kinetochores are mechanically fused during meiosis I in yeast Krishna K Production of healthy gametes requires a reductional meiosis I division in which replicated sister chromatids comigrate, rather than separate as in mitosis or meiosis II. Fusion of sister kinetochores during meiosis I

  14. Fermentation studies using Saccharomyces diastaticus yeast strains

    SciTech Connect

    Erratt, J.A.; Stewart, G.G.

    1981-01-01

    The yeast species, Saccharomyces diastaticus, has the ability to ferment starch and dextrin, because of the extracellular enzyme, glucoamylase, which hydrolyzes the starch/dextrin to glucose. A number of nonallelic genes--DEX 1, DEX 2, and dextrinase B which is allelic to STA 3--have been isolated, which impart to the yeast the ability to ferment dextrin. Various diploid yeast strains were constructed, each being either heterozygous or homozygous for the individual dextrinase genes. Using 12 (sup 0) plato hopped wort (30% corn adjunct) under agitated conditions, the fermentation rates of the various diploid yeast strains were monitored. A gene-dosage effect was exhibited by yeast strains containing DEX 1 or DEX 2, however, not with yeast strains containing dextrinase B (STA 3). The fermentation and growth rates and extents were determined under static conditions at 14.4 C and 21 C. With all yeast strains containing the dextrinase genes, both fermentation and growth were increased at the higher incubation temperature. Using 30-liter fermentors, beer was produced with the various yeast strains containing the dextrinase genes and the physical and organoleptic characteristics of the products were determined. The concentration of glucose in the beer was found to increase during a 3-mo storage period at 21 C, indicating that the glucoamylase from Saccharomyces diastaticus is not inactivated by pasteurization. (Refs. 36).

  15. The wine and beer yeast Dekkera bruxellensis

    PubMed Central

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  16. Macromolecular synthesis by yeasts under frozen conditions

    E-print Network

    Christner, Brent C.

    Macromolecular synthesis by yeasts under frozen conditions Pierre Amato,* Shawn Doyle and Brent C basidiomycetous yeasts isolated from an Antarctic ice core and showed that after freezing at a relatively slow rate (0.8°C min-1 ), the cells are excluded into veins of liquid at the triple junctions of ice

  17. Yeasts are essential for cocoa bean fermentation.

    PubMed

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics. PMID:24462702

  18. Yeast: An Experimental Organism for Modern Biology.

    ERIC Educational Resources Information Center

    Botstein, David; Fink, Gerald R.

    1988-01-01

    Discusses the applicability and advantages of using yeasts as popular and ideal model systems for studying and understanding eukaryotic biology at the cellular and molecular levels. Cites experimental tractability and the cooperative tradition of the research community of yeast biologists as reasons for this success. (RT)

  19. Identification and Characterization of d-Hydroxyproline Dehydrogenase and ?1-Pyrroline-4-hydroxy-2-carboxylate Deaminase Involved in Novel l-Hydroxyproline Metabolism of Bacteria

    PubMed Central

    Watanabe, Seiya; Morimoto, Daichi; Fukumori, Fumiyasu; Shinomiya, Hiroto; Nishiwaki, Hisashi; Kawano-Kawada, Miyuki; Sasai, Yuuki; Tozawa, Yuzuru; Watanabe, Yasuo

    2012-01-01

    l-Hydroxyproline (4-hydroxyproline) mainly exists in collagen, and most bacteria cannot metabolize this hydroxyamino acid. Pseudomonas putida and Pseudomonas aeruginosa convert l-hydroxyproline to ?-ketoglutarate via four hypothetical enzymatic steps different from known mammalian pathways, but the molecular background is rather unclear. Here, we identified and characterized for the first time two novel enzymes, d-hydroxyproline dehydrogenase and ?1-pyrroline-4-hydroxy-2-carboxylate (Pyr4H2C) deaminase, involved in this hypothetical pathway. These genes were clustered together with genes encoding other catalytic enzymes on the bacterial genomes. d-Hydroxyproline dehydrogenases from P. putida and P. aeruginosa were completely different from known bacterial proline dehydrogenases and showed similar high specificity for substrate (d-hydroxyproline) and some artificial electron acceptor(s). On the other hand, the former is a homomeric enzyme only containing FAD as a prosthetic group, whereas the latter is a novel heterododecameric structure consisting of three different subunits (?4?4?4), and two FADs, FMN, and [2Fe-2S] iron-sulfur cluster were contained in ??? of the heterotrimeric unit. These results suggested that the l-hydroxyproline pathway clearly evolved convergently in P. putida and P. aeruginosa. Pyr4H2C deaminase is a unique member of the dihydrodipicolinate synthase/N-acetylneuraminate lyase protein family, and its activity was competitively inhibited by pyruvate, a common substrate for other dihydrodipicolinate synthase/N-acetylneuraminate lyase proteins. Furthermore, disruption of Pyr4H2C deaminase genes led to loss of growth on l-hydroxyproline (as well as d-hydroxyproline) but not l- and d-proline, indicating that this pathway is related only to l-hydroxyproline degradation, which is not linked to proline metabolism. PMID:22833679

  20. Production of ethanol by immobilized yeast cells

    SciTech Connect

    Williams, D.; Munnecke, D.M.

    1981-08-01

    Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for use in the continuous production of ethanol. Yeasts were grown in medium supplemented with ethanol to selectively screen for a culture which showed the greatest tolerance to ethanol inhibition. Yeast beads were produced from a yeast slurry containing 1.5% alginate (w/v) which was added as drops to a 0.05M CaCl2 solution. To determine their optimum fermentation parameters, ethanol production using glucose as a substrate was monitored in batch systems at varying physiological conditions (temperature,pH, ethanol concentration), cell densities, and gel concentrations. The data obtained were compared to optimum free cell ethanol fermentation parameters. The immobilized yeast cells were examined in a packed-bed reactor system operated under optimized parameters derived from batch-immobilized yeast cell experiments. Ethanol production rates, as well as residual sugar concentrations were monitored at different feedstock flow rates. (Refs. 13).

  1. Yeast community survey in the Tagus estuary.

    PubMed

    de Almeida, João M G C F

    2005-07-01

    The yeast community in the waters of the Tagus estuary, Portugal, was followed for over a year in order to assess its dynamics. Yeast occurrence and incidence were measured and this information was related to relevant environmental data. Yeast occurrence did not seem to depend upon tides, but river discharge had a dramatic impact both on the density and diversity of the community. The occurrence of some yeasts was partially correlated with faecal pollution indicators. Yeast isolates were characterized by microsatellite primed PCR (MSP-PCR) fingerprinting and rRNA gene sequencing. The principal species found were Candida catenulata, C. intermedia, C. parapsilosis, Clavispora lusitaniae, Debaryomyces hansenii, Pichia guilliermondii, Rhodotorula mucilaginosa and Rhodosporidium diobovatum. The incidence of these species was evaluated against the environmental context of the samples and the current knowledge about the substrates from which they are usually isolated. PMID:16329949

  2. Anaerobic digestion of food waste using yeast.

    PubMed

    Suwannarat, Jutarat; Ritchie, Raymond J

    2015-08-01

    Fermentative breakdown of food waste seems a plausible alternative to feeding food waste to pigs, incineration or garbage disposal in tourist areas. We determined the optimal conditions for the fermentative breakdown of food waste using yeast (Saccharomyces cerevisiae) in incubations up to 30days. Yeast efficiently broke down food waste with food waste loadings as high as 700g FW/l. The optimum inoculation was ?46×10(6)cells/l of culture with a 40°C optimum (25-40°C). COD and BOD were reduced by ?30-50%. Yeast used practically all the available sugars and reduced proteins and lipids by ?50%. Yeast was able to metabolize lipids much better than expected. Starch was mobilized after very long term incubations (>20days). Yeast was effective in breaking down the organic components of food waste but CO2 gas and ethanol production (?1.5%) were only significant during the first 7days of incubations. PMID:25987287

  3. Yeasts that utilize lactose in sweet whey

    SciTech Connect

    Gholson, J.H.; Gough, R.H.

    1980-01-01

    Since processing costs are usually higher for whey than for other available food or feed nutrients, only about one-third of whey produced in the US is used by food and feed industries. As a result whey disposal costs are a problem. Further; when whey is disposed of through municipal sewerage systems, the lactose present is changed by bacteria to lactic acid which tends to act as a preservative and retards further oxidation of whey constituents. This article describes a method of utilizing lactose-fermenting yeasts to produce large quantities of yeast cells, single-cell protein. Kluveromyces fragilis was found to be the most effective yeast species and the yeast cells produced could be used as a natural food or feed additive. Results of this study determined that certain methods and yeast strains could reduce whey-related pollution and thus help reduce costs of whey disposal.

  4. Growing Yeast into Cylindrical Colonies

    PubMed Central

    Vulin, Clément; Di Meglio, Jean-Marc; Lindner, Ariel B.; Daerr, Adrian; Murray, Andrew; Hersen, Pascal

    2014-01-01

    Microorganisms often form complex multicellular assemblies such as biofilms and colonies. Understanding the interplay between assembly expansion, metabolic yield, and nutrient diffusion within a freely growing colony remains a challenge. Most available data on microorganisms are from planktonic cultures, due to the lack of experimental tools to control the growth of multicellular assemblies. Here, we propose a method to constrain the growth of yeast colonies into simple geometric shapes such as cylinders. To this end, we designed a simple, versatile culture system to control the location of nutrient delivery below a growing colony. Under such culture conditions, yeast colonies grow vertically and only at the locations where nutrients are delivered. Colonies increase in height at a steady growth rate that is inversely proportional to the cylinder radius. We show that the vertical growth rate of cylindrical colonies is not defined by the single-cell division rate, but rather by the colony metabolic yield. This contrasts with cells in liquid culture, in which the single-cell division rate is the only parameter that defines the population growth rate. This method also provides a direct, simple method to estimate the metabolic yield of a colony. Our study further demonstrates the importance of the shape of colonies on setting their expansion. We anticipate that our approach will be a starting point for elaborate studies of the population dynamics, evolution, and ecology of microbial colonies in complex landscapes. PMID:24853750

  5. Folding Properties of Cytosine Monophosphate Kinase from E. coli Indicate Stabilization through an Additional Insert in the NMP Binding Domain

    PubMed Central

    Beitlich, Thorsten; Lorenz, Thorsten; Reinstein, Jochen

    2013-01-01

    The globular 25 kDa protein cytosine monophosphate kinase (CMPK, EC ID: 2.7.4.14) from E. coli belongs to the family of nucleoside monophosphate (NMP) kinases (NMPK). Many proteins of this family share medium to high sequence and high structure similarity including the frequently found ?/? topology. A unique feature of CMPK in the family of NMPKs is the positioning of a single cis-proline residue in the CORE-domain (cis-Pro124) in conjunction with a large insert in the NMP binding domain. This insert is not found in other well studied NMPKs such as AMPK or UMP/CMPK. We have analyzed the folding pathway of CMPK using time resolved tryptophan and FRET fluorescence as well as CD. Our results indicate that unfolding at high urea concentrations is governed by a single process, whereas refolding in low urea concentrations follows at least a three step process which we interpret as follows: Pro124 in the CORE-domain is in cis in the native state (Nc) and equilibrates with its trans-isomer in the unfolded state (Uc - Ut). Under refolding conditions, at least the Ut species and possibly also the Uc species undergo a fast initial collapse to form intermediates with significant amount of secondary structure, from which the trans-Pro124 fraction folds to the native state with a 100-fold lower rate constant than the cis-Pro124 species. CMPK thus differs from homologous NMP kinases like UMP/CMP kinase or AMP kinase, where folding intermediates show much lower content of secondary structure. Importantly also unfolding is up to 100-fold faster compared to CMPK. We therefore propose that the stabilizing effect of the long NMP-domain insert in conjunction with a subtle twist in the positioning of a single cis-Pro residue allows for substantial stabilization compared to other NMP kinases with ?/? topology. PMID:24205218

  6. Hydrocortisone in culture protects the blast cells in acute myeloblastic leukemia from the lethal effects of cytosine arabinoside

    SciTech Connect

    Yang, G.S.; Wang, C.; Minkin, S.; Minden, M.D.; McCulloch, E.A. )

    1991-07-01

    The blast cells in acute myeloblastic leukemia (AML) respond to many of the same regulatory mechanisms that control normal hemopoiesis. These include the growth factors that bind to membrane receptors and steroid hormones or vitamins that have intracellular receptors. The authors report the effects in culture of the steroid glucocorticoid hydrocortisone on freshly explanted AML blasts from patients and on two continuous AML cell lines. Only small changes in clonogenic cell numbers in suspension cultures were seen in the presence of hydrocortisone. The most striking effect of the hormone was on the sensitivity of blasts cells to cytosine arabinoside (ara-C). In contrast to the response of AML blast cells to retinoic acid, a ligand for intracellular steroid receptors that sensitizes some blast populations to ara-C, hydrocortisone reduced the toxic effects of the drug. The protective action of hydrocortisone was not mediated through the cell cycle since exposure of blasts to hydrocortisone did not affect the percentage of cells in DNA synthesis as measured with the tritiated thymidine (3HTdR) suicide technique. The hydrocortisone effect could be demonstrated using a pulse (20 min) exposure protocol. Blasts pulsed with increasing specific activities of 3HTdR showed the usual response pattern with an initial loss in plating efficiency to about 50% of control, followed by a plateau, regardless of whether the cells had been exposed to hydrocortisone. Control blasts exposed to increasing ara-C concentrations gave very similar dose-response curves; in striking contrast, blast cells cultured in hydrocortisone, then pulsed with ara-C did not lose colony-forming ability even though the same population was sensitive to 3HTdR.

  7. Proton-transfer in hydrogenated guanine-cytosine trimer neutral species, cations, and anions embedded in B-form DNA.

    PubMed

    Lin, Yuexia; Wang, Hongyan; Wu, Yingxi; Gao, Simin; Schaefer, Henry F

    2014-04-14

    The neutral DNA trimers with the hydrogen atom added to the C8 site of the middle guanine-cytosine (GC) base pair, the DNA trimers protonated at the N7 site of the middle GC base pair, and the anionic species resulting from hydride addition to the C6 site of the middle GC base pair are investigated using theoretical methods. The canonical Watson-Crick structures (WC), transition state structures (TS) and proton-transferred structures (PT) of each relevant system are optimized in the gas phase and in aqueous solution, in order to understand the processes of proton transfer. The proton transfer reactions of the DNA trimers are compared with the corresponding isolated hydrogenated GC base pairs to explore the influence of the surrounding molecules and the base sequence. The proton transfer reactions of the neutral species, cations, and anions are compared, aiming to clarify the effects of the system's total charge. The results reveal that the surrounding molecules decrease the reaction energies of proton-transfer in aqueous solution. The structures with the dATGCAT and dGCGCGC sequences facilitate proton H4a transfer, but hinder proton H1 transfer. The structures with the dCGGCCG and dTAGCTA sequences facilitate proton H1 transfer. The net charge on the system plays an important role in determining the single and double proton-transfer patterns. Anions are more likely to experience proton-transfer reactions than neutral species and cations, and all the proton-transfer reactions of the anions are exothermic. PMID:24589940

  8. Utility of adenosine deaminase (ADA), PCR & thoracoscopy in differentiating tuberculous & non-tuberculous pleural effusion complicating chronic kidney disease

    PubMed Central

    Kumar, Sravan; Agarwal, Ritesh; Bal, Amanjit; Sharma, Kusum; Singh, Navneet; Aggarwal, Ashutosh N.; Verma, Indu; Rana, Satyawati V.; Jha, Vivekanand

    2015-01-01

    Background & objectives: Pleural effusion is a common occurrence in patients with late-stage chronic kidney disease (CKD). In developing countries, many effusions remain undiagnosed after pleural fluid analysis (PFA) and patients are empirically treated with antitubercular therapy. The aim of this study was to evaluate the role of adenosine deaminase (ADA), nucleic acid amplification tests (NAAT) and medical thoracoscopy in distinguishing tubercular and non-tubercular aetiologies in exudative pleural effusions complicating CKD. Methods: Consecutive stage 4 and 5 CKD patients with pleural effusions underwent PFA including ADA and PCR [65 kDa gene; multiplex (IS6110, protein antigen b, MPB64)]. Patients with exudative pleural effusion undiagnosed after PFA underwent medical thoracoscopy. Results: All 107 patients underwent thoracocentesis with 45 and 62 patients diagnosed as transudative and exudative pleural effusions, respectively. Twenty six of the 62 patients underwent medical thoracoscopy. Tuberculous pleurisy was diagnosed in six while uraemic pleuritis was diagnosed in 20 subjects. The sensitivity and specificity of pleural fluid ADA, 65 kDa gene PCR, and multiplex PCR were 66.7 and 90 per cent, 100 and 50 per cent, and 100 and 100 per cent, respectively. Thoracoscopy was associated with five complications in three patients. Interpretation & conclusions: Uraemia remains the most common cause of pleural effusion in CKD even in high TB prevalence country. Multiplex PCR and thoracoscopy are useful investigations in the diagnostic work-up of pleural effusions complicating CKD while the sensitivity and/or specificity of ADA and 65 kDa gene PCR is poor. PMID:25963491

  9. Mechanistic Studies of 1-Aminocyclopropane-1-carboxylate Deaminase (ACCD): Characterization of an Unusual PLP-dependent Reaction

    PubMed Central

    Thibodeaux, Christopher J.; Liu, Hung-wen

    2011-01-01

    1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) is a pyridoxal 5?-phosphate (PLP) dependent enzyme that cleaves the cyclopropane ring of ACC, to give ?-ketobutyric acid and ammonia as products. The cleavage of the C?-C? bond of an amino acid substrate is a rare event in PLP-dependent enzyme catalysis. Potential chemical mechanisms involving nucleophile- or acid-catalyzed cyclopropane ring opening have been proposed for the unusual transformation catalyzed by ACCD, but the actual mode of cyclopropane ring cleavage remains obscure. In this report, we aim to elucidate the mechanistic features of ACCD catalysis by investigating the kinetic properties of ACCD from Pseudomonas sp. ACP and several of its mutant enzymes. Our studies suggest that the pKa of the conserved active site residue, Tyr294, is lowered by a hydrogen bonding interaction with a second conserved residue, Tyr268. This allows Tyr294 to deprotonate the incoming amino group of ACC in order to initiate the aldimine exchange reaction between ACC and the PLP coenzyme, and also likely helps to activate Tyr294 for a role as nucleophile to attack and cleave the cyclopropane ring of the substrate. In addition, solvent kinetic isotope effect, proton inventory, and 13C-KIE studies of the wild type enzyme suggest that the C?-C? bond cleavage step in the chemical mechanism is at least partially rate limiting under kcat/Km conditions, and is likely preceded in the mechanism by a partially rate limiting step involving the conversion of a stable gem-diamine intermediate into a reactive external aldimine intermediate that is poised for cyclopropane ring cleavage. When viewed within the context of previous mechanistic and structural studies of ACCD enzymes, our studies are most consistent with a mode of cyclopropane ring cleavage involving nucleophilic catalysis by Tyr294. PMID:21244019

  10. Effects of iron supplementation on blood adenine deaminase activity and oxidative stress in Trypanosoma evansi infection of rats.

    PubMed

    Bottari, Nathieli B; Baldissera, Matheus D; Tonin, Alexandre A; França, Raqueli T; Zanini, Danieli; Leal, Marta L R; Lopes, Sonia T A; Schetinger, Maria Rosa C; Morsch, Vera M; Monteiro, Silvia G; Guarda, Naiara S; Moresco, Rafael N; Aires, Adelina R; Stefani, Lenita M; Da Silva, Aleksandro S

    2014-12-01

    The aim of this study was to assess the effects of iron supplementation on oxidative stress and on the activity of the adenosine deaminase (ADA) in rats experimentally infected by Trypanosoma evansi. For this purpose, 20 rats were divided into four experimental groups with five animals each as follows: groups A and B were composed by healthy animals, while animals from groups C and D were infected by T. evansi. Additionally, groups B and D received two subcutaneous doses of iron (60 mg kg(-1)) within an interval of 5 days. Blood samples were drawn on day 8 post infection in order to assess hematological and biochemical variables. Among the main results are: (1) animals from group C showed reduced erythrogram (with tendency to anemia); however the same results were not observed for group D; this might be a direct effect of free iron on trypanosomes which helped to reduce the parasitemia and the damage to erythrocytes caused by the infection; (2) iron supplementation was able to reduce NOx levels by inhibiting iNOS, and thus, providing an antioxidant action and, indirectly, reducing the ALT levels in groups Band D; (3) increase FRAP levels in group D; (4) reduce ADA activity in serum and erythrocytes in group C; however, this supplementation (5) increased the protein oxidation in groups B and D, as well as group C (positive control). Therefore, iron showed antioxidant and oxidant effects on animals that received supplementation; and it maintained the activity of E-ADA stable in infected/supplemented animals. PMID:25300765

  11. Expression of Activation-Induced Cytidine Deaminase Gene in B Lymphocytes of Patients with Common Variable Immunodeficiency

    PubMed Central

    Abolhassani, Hassan; Farrokhi, Amir Salek; Pourhamdi, Shabnam; Mohammadinejad, Payam; Sadeghi, Bamdad; Moazzeni, Seyed-Mohammad; Aghamohammadi, Asghar

    2013-01-01

    Objective Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by reduced serum level of IgG, IgA or IgM and recurrent bacterial infections. Class switch recombination (CSR) as a critical process in immunoglobulin production is defective in a group of CVID patients. Activation-induced cytidine deaminase (AID) protein is an important molecule involving CSR process. The aim of this study was to investigate the AID gene mRNA production in a group of CVID patients indicating possible role of this molecule in this disorder. Methods Peripheral blood mononuclear cells (PBMC) of 29 CVID patients and 21 healthy controls were isolated and stimulated by CD40L and IL-4 to induce AID gene expression. After 5 days AID gene mRNA production was investigated by real time polymerase chain reaction. Findings AID gene was expressed in all of the studied patients. However the mean density of extracted AID mRNA showed higher level in CVID patients (230.95±103.04 ng/ml) rather than controls (210.00±44.72 ng/ml; P=0.5). CVID cases with lower level of AID had decreased total level of IgE (P=0.04) and stimulated IgE production (P=0.02); while cases with increased level of AID presented higher level of IgA (P=0.04) and numbers of B cells (P=0.02) and autoimmune disease (P=0.02). Conclusion Different levels of AID gene expression may have important roles in dysregulation of immune system and final clinical presentation in CVID patients. Therefore investigating the expression of AID gene can help in classifying CVID patients. PMID:24427500

  12. Pyrimidine Pool Disequilibrium Induced by a Cytidine Deaminase Deficiency Inhibits PARP-1 Activity, Leading to the Under Replication of DNA

    PubMed Central

    Gemble, Simon; Ahuja, Akshay; Buhagiar-Labarchède, Géraldine; Onclercq-Delic, Rosine; Dairou, Julien; Biard, Denis S. F.; Lambert, Sarah; Lopes, Massimo; Amor-Guéret, Mounira

    2015-01-01

    Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA) deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at “difficult-to-replicate” sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS), a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3’-5’ DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects. PMID:26181065

  13. RNA binding to APOBEC3G induces the disassembly of functional deaminase complexes by displacing single-stranded DNA substrates

    PubMed Central

    Polevoda, Bogdan; McDougall, William M.; Tun, Bradley N.; Cheung, Michael; Salter, Jason D.; Friedman, Alan E.; Smith, Harold C.

    2015-01-01

    APOBEC3G (A3G) DNA deaminase activity requires a holoenzyme complex whose assembly on nascent viral reverse transcripts initiates with A3G dimers binding to ssDNA followed by formation of higher-order A3G homo oligomers. Catalytic activity is inhibited when A3G binds to RNA. Our prior studies suggested that RNA inhibited A3G binding to ssDNA. In this report, near equilibrium binding and gel shift analyses showed that A3G assembly and disassembly on ssDNA was an ordered process involving A3G dimers and multimers thereof. Although, fluorescence anisotropy showed that A3G had similar nanomolar affinity for RNA and ssDNA, RNA stochastically dissociated A3G dimers and higher-order oligomers from ssDNA, suggesting a different modality for RNA binding. Mass spectrometry mapping of A3G peptides cross-linked to nucleic acid suggested ssDNA only bound to three peptides, amino acids (aa) 181–194 in the N-terminus and aa 314–320 and 345–374 in the C-terminus that were part of a continuous exposed surface. RNA bound to these peptides and uniquely associated with three additional peptides in the N- terminus, aa 15–29, 41–52 and 83–99, that formed a continuous surface area adjacent to the ssDNA binding surface. The data predict a mechanistic model of RNA inhibition of ssDNA binding to A3G in which competitive and allosteric interactions determine RNA-bound versus ssDNA-bound conformational states. PMID:26424853

  14. Yeasts and yeast-like fungi associated with tree bark: diversity and identification of yeasts producing extracellular endoxylanases.

    PubMed

    Bhadra, Bhaskar; Rao, R Sreenivas; Singh, Pavan K; Sarkar, Partha K; Shivaji, Sisinthy

    2008-05-01

    A total of 239 yeast strains was isolated from 52 tree bark samples of the Medaram and Srisailam forest areas of Andhra Pradesh, India. Based on analysis of D1/D2 domain sequence of 26S rRNA gene, 114 strains were identified as ascomycetous; 107 strains were identified as basidiomycetous yeasts; and 18 strains were identified as yeast-like fungi. Among the ascomycetous yeasts, 51% were identified as members of the genus Pichia, and the remaining 49% included species belonging to the genera Clavispora, Debaryomyces, Kluyveromyces, Hanseniaspora, Issatchenkia, Lodderomyces, Kodamaea, Metschnikowia, and Torulaspora. The predominant genera in the basidiomycetous yeasts were Cryptococcus (48.6%), Rhodotorula (29%), and Rhodosporidium (12.1%). The yeast-like fungi were represented by Aureobasidium pullulans (6.7%) and Lecythophora hoffmanii (0.8%). Of the 239 yeast strains tested for Xylanase, only five strains of Aureobasidium sp. produced xylanase on xylan-agar medium. Matrix-assisted laser desorption ionization-time of flight analysis and N-terminal amino-acid sequence of the xylanase of isolate YS67 showed high similarity with endo-1-4-beta-xylanase (EC 3.2.1.8) of Aureobasidium pullulans var. melanigenum. PMID:18219522

  15. Accelerating Yeast Prion Biology using Droplet Microfluidics

    NASA Astrophysics Data System (ADS)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  16. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  17. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is the insoluble proteinaceous material...

  18. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  19. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  20. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  1. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  2. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  3. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract is the food ingredient resulting from concentration of the solubles of mechanically ruptured cells of a selected strain of yeast,...

  4. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout extract, as described in this section, may... produced by partial hydrolysis of yeast extract (derived from Saccharomyces cereviseae,...

  5. Systematic identification of cell size regulators in budding yeast

    E-print Network

    Barkai, Naama

    Article Systematic identification of cell size regulators in budding yeast Ilya Soifer & Naama yeast, we imaged and analyzed the cell cycle of millions of individual cells representing 591 mutants control mechanisms in budding yeast. Keywords cell growth; size control; START; yeast genetics Subject

  6. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  7. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is...

  8. MAP kinase dynamics in yeast.

    PubMed

    van Drogen, F; Peter, M

    2001-09-01

    MAP kinase pathways play key roles in cellular responses towards extracellular signals. In several cases, the three core kinases interact with a scaffold molecule, but the function of these scaffolds is poorly understood. They have been proposed to contribute to signal specificity, signal amplification, or subcellular localization of MAP kinases. Several MAP kinases translocate to the nucleus in response to their activation, suggesting that nuclear transport may provide a regulatory mechanism. Here we describe new applications for Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Loss In Photobleaching (FLIP), to study dynamic translocations of MAPKs between different subcellular compartments. We have used these methods to measure the nuclear/cytoplasmic dynamics of several yeast MAP kinases, and in particular to address the role of scaffold proteins for MAP-kinase signaling. PMID:11730324

  9. Rheologically interesting polysaccharides from yeasts

    NASA Technical Reports Server (NTRS)

    Petersen, G. R.; Nelson, G. A.; Cathey, C. A.; Fuller, G. G.

    1989-01-01

    We have examined the relationships between primary, secondary, and tertiary structures of polysaccharides exhibiting the rheological property of friction (drag) reduction in turbulent flows. We found an example of an exopolysaccharide from the yeast Cryptococcus laurentii that possessed high molecular weight but exhibited lower than expected drag reducing activity. Earlier correlations by Hoyt showing that beta 1 --> 3, beta 2 --> 4, and alpha 1 --> 3 linkages in polysaccharides favored drag reduction were expanded to include correlations to secondary structure. The effect of sidechains in a series of gellan gums was shown to be related to sidechain length and position. Disruption of secondary structure in drag reducing polysaccharides reduced drag reducing activity for some but not all exopolysaccharides. The polymer from C. laurentii was shown to be more stable than xanthan gum and other exopolysaccharides under the most vigorous of denaturing conditions. We also showed a direct relationship between extensional viscosity measurements and the drag reducing coefficient for four exopolysaccharides.

  10. Identification of a 5?-Deoxyadenosine Deaminase in Methanocaldococcus jannaschii and Its Possible Role in Recycling the Radical S-Adenosylmethionine Enzyme Reaction Product 5?-Deoxyadenosine

    PubMed Central

    Miller, Danielle; O'Brien, Kaitlin; Xu, Huimin

    2014-01-01

    We characterize here the MJ1541 gene product from Methanocaldococcus jannaschii, an enzyme that was annotated as a 5?-methylthioadenosine/S-adenosylhomocysteine deaminase (EC 3.5.4.31/3.5.4.28). The MJ1541 gene product catalyzes the conversion of 5?-deoxyadenosine to 5?-deoxyinosine as its major product but will also deaminate 5?-methylthioadenosine, S-adenosylhomocysteine, and adenosine to a small extent. On the basis of these findings, we are naming this new enzyme 5?-deoxyadenosine deaminase (DadD). The Km for 5?-deoxyadenosine was found to be 14.0 ± 1.2 ?M with a kcat/Km of 9.1 × 109 M?1 s?1. Radical S-adenosylmethionine (SAM) enzymes account for nearly 2% of the M. jannaschii genome, where the major SAM derived products is 5?-deoxyadenosine. Since 5?-dA has been demonstrated to be an inhibitor of radical SAM enzymes; a pathway for removing this product must be present. We propose here that DadD is involved in the recycling of 5?-deoxyadenosine, whereupon the 5?-deoxyribose moiety of 5?-deoxyinosine is further metabolized to deoxyhexoses used for the biosynthesis of aromatic amino acids in methanogens. PMID:24375099

  11. Cloning of the cDNA encoding adenosine 5'-monophosphate deaminase 1 and its mRNA expression in Japanese flounder Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Jiang, Keyong; Sun, Shujuan; Liu, Mei; Wang, Baojie; Meng, Xiaolin; Wang, Lei

    2013-01-01

    AMP deaminase catalyzes the conversion of AMP into IMP and ammonia. In the present study, a full-length cDNA of AMPD1 from skeletal muscle of Japanese flounder Paralichthys olivaceus was cloned and characterized. The 2 526 bp cDNA contains a 5'-UTR of 78 bp, a 3'-UTR of 237 bp and an open reading frame (ORF) of 2 211 bp, which encodes a protein of 736 amino acids. The predicted protein contains a highly conserved AMP deaminase motif (SLSTDDP) and an ATP-binding site sequence (EPLMEEYAIAAQVFK). Phylogenetic analysis showed that the AMPD1 and AMPD3 genes originate from the same branch, but are evolutionarily distant from the AMPD2 gene. RT-PCR showed that the flounder AMPD1 gene was expressed only in skeletal muscle. QRT-PCR analysis revealed a statistically significant 2.54 fold higher level of AMPD1 mRNA in adult muscle (750±40 g) compared with juvenile muscle (7.5±2 g) ( P<0.05). HPLC analysis showed that the IMP content in adult muscle (3.35±0.21 mg/g) was also statistically significantly higher than in juvenile muscle (1.08±0.04 mg/g) ( P<0.05). There is a direct relationship between the AMPD1 gene expression level and IMP content in the skeletal muscle of juvenile and adult flounders. These results may provide useful information for quality improvement and molecular breeding of aquatic animals.

  12. Quality assessment of lager brewery yeast samples and strains using barley malt extracts with anti-yeast activity.

    PubMed

    van Nierop, Sandra N E; Axcell, Barry C; Cantrell, Ian C; Rautenbach, Marina

    2009-04-01

    Membrane active anti-yeast compounds, such as antimicrobial peptides and proteins, cause yeast membrane damage which is likely to affect yeast vitality and fermentation performance, parameters which are notoriously difficult to analyse. In this work the sensitivity of lager brewery yeast strains towards barley malt extracts with anti-yeast activity was assessed with an optimised assay. It was found that yeast, obtained directly from a brewery, was much more sensitive towards the malt extracts than the same yeast strain propagated in the laboratory. Sensitivity to the malt extracts increased during the course of a laboratory scale fermentation when inoculated with brewery yeast. As the assay was able to differentiate yeast samples with different histories, it shows promise as a yeast quality assay measuring the yeast's ability to withstand stress which can be equated to vitality. The assay was also able to differentiate between different lager yeast strains of Saccharomyces cerevisiae propagated in the laboratory when challenged with a number of malt extracts of varying anti-yeast activity. The assessment of yeast strains in the presence of malt extracts will lead to the identification of yeast strains with improved quality/vitality that can withstand malt-associated anti-yeast activity during brewery fermentations. PMID:19171262

  13. Histone Variant H2A.Z Regulates Centromere Silencing and Chromosome Segregation in Fission Yeast*S

    E-print Network

    Jia, Songtao

    Histone Variant H2A.Z Regulates Centromere Silencing and Chromosome Segregation in Fission Yeast. Here, we show that the JmjC domain protein Msc1 is a novel component of the fission yeast Swr1 complex in Drosophila, Cse4 in budding yeast, and Cnp1 in fission yeast) (1­3). CENP-A serves as the foundation

  14. Yeast nucleosomes allow thermal untwisting of DNA.

    PubMed Central

    Morse, R H; Pederson, D S; Dean, A; Simpson, R T

    1987-01-01

    Thermal untwisting of DNA is suppressed in vitro in nucleosomes formed with chicken or monkey histones. In contrast, results obtained for the 2 micron plasmid in Saccharomyces cerevisiae are consistent with only 30% of the DNA being constrained from thermal untwisting in vivo. In this paper, we examine thermal untwisting of several plasmids in yeast cells, nuclei, and nuclear extracts. All show the same quantitative degree of thermal untwisting, indicating that this phenomenon is independent of DNA sequence. Highly purified yeast plasmid chromatin also shows a large degree of thermal untwisting, whereas circular chromatin reconstituted using chicken histones is restrained from thermal untwisting in yeast nuclear extracts. Thus, the difference in thermal untwisting between yeast chromatin and that assembled with chicken histones is most likely due to differences in the constituent histone proteins. Images PMID:3320966

  15. Prion formation by a yeast GLFG nucleoporin

    E-print Network

    Halfmann, Randal Arthur

    The self-assembly of proteins into higher order structures is both central to normal biology and a dominant force in disease. Certain glutamine/asparagine (Q/N)-rich proteins in the budding yeast Saccharomyces cerevisiae ...

  16. Comparative Functional Genomics of the Fission Yeasts

    E-print Network

    Regev, Aviv

    The fission yeast clade—comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus—occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative ...

  17. Kinetochore Structure: Pulling Answers from Yeast

    E-print Network

    Cheeseman, Iain McPherson

    Despite the identification of multiple kinetochore proteins, their structure and organization has remained unclear. New work uses electron microscopy to visualize isolated budding yeast kinetochore particles and reveal the ...

  18. Monitoring Air Quality with Leaf Yeasts.

    ERIC Educational Resources Information Center

    Richardson, D. H. S.; And Others

    1985-01-01

    Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)

  19. FFCD-1004 Clinical Trial: Impact of Cytidine Deaminase Activity on Clinical Outcome in Gemcitabine-Monotherapy Treated Patients

    PubMed Central

    Serdjebi, Cindy; Gagnière, Johan; Desramé, Jérôme; Fein, Francine; Guimbaud, Rosine; François, Eric; André, Thierry; Seitz, Jean-François; Montérymard, Carole; Arsene, Dominique; Volet, Julien; Abakar-Mahamat, Abakar; Lecomte, Thierry; Guerin-Meyer, Véronique; Legoux, Jean-Louis; Deplanque, Gaël; Guillet, Pierre; Ciccolini, Joseph; Lepage, Côme; Dahan, Laetitia

    2015-01-01

    Purpose Because cytidine deaminase (CDA) is the key enzyme in gemcitabine metabolism, numerous studies have attempted to investigate impact of CDA status (i.e. genotype or phenotype) on clinical outcome. To date, data are still controversial because none of these studies has fully investigated genotype-phenotype CDA status, pharmacokinetics and clinical outcome relationships in gemcitabine-treated patients. Besides, most patients were treated with gemcitabine associated with other drugs, thus adding a confounding factor. We performed a multicenter prospective clinical trial in gemcitabine-treated patients which aimed at investigating the link between CDA deficiency on the occurrence of severe toxicities and on pharmacokinetics, and studying CDA genotype-phenotype relationships. Experimental design One hundred twenty patients with resected pancreatic adenocarcinoma eligible for adjuvant gemcitabine monotherapy were enrolled in this study promoted and managed by the Fédération Francophone de Cancérologie Digestive. Toxicities were graded according to National Cancer Institute’s Common Terminology Criteria for Adverse Events Version 4. They were considered severe for grade ? 3, and early when occurring during the first eight weeks of treatment. CDA status was evaluated using a double approach: genotyping for 79A>C and functional testing. Therapeutic drug monitoring of gemcitabine and its metabolite were performed on the first course of gemcitabine. Results Five patients out of 120 (i.e., 4.6%) were found to be CDA deficient (i.e., CDA activity <1.3 U/mg), and only one among them experienced early severe hematological toxicity. There was no statistically significant difference in CDA activity between patients experiencing hematological severe toxicities (28.44%) and patients who tolerated the treatment (71.56%). CDA genetic analysis failed in evidencing an impact in terms of toxicities or in CDA activity. Regarding pharmacokinetics, a wide inter-individual variability has been observed in patients. Conclusion This study, which included only 4.6% of CDA-deficient patients, failed in identifying CDA status as a predictive marker of toxicities with gemcitabine. A lack of statistical power because of smoothing effect of CDA variability as compared with real life conditions could explain this absence of impact. Trial Registration ClinicalTrials.gov NCT01416662 PMID:26308942

  20. Size and Structure of Yeast Chromosomal DNA

    PubMed Central

    Petes, Thomas D.; Byers, Breck; Fangman, Walton L.

    1973-01-01

    Electron microscopic analysis indicates that yeast nuclear DNA can be isolated as linear molecules ranging in size from 50 ?m (1.2 × 108 daltons) to 355 ?m (8.4 × 108 daltons). Analysis indicates the data is consistent with the hypothesis that each yeast chromosome contains a single, linear DNA duplex. Mitochondrial DNA molecules have a contour length of 21 ± 2 ?m and are mostly linear. Images PMID:4594033

  1. The growth of solar radiated yeast

    SciTech Connect

    Kraft, T.

    1995-09-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  2. The growth of solar radiated yeast

    NASA Technical Reports Server (NTRS)

    Kraft, Tyrone

    1995-01-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  3. Nanodosimetry of Auger electrons: A case study from the decay of 125I and 0-18-eV electron stopping cross sections of cytosine

    NASA Astrophysics Data System (ADS)

    Michaud, M.; Bazin, M.; Sanche, L.

    2013-03-01

    Radiopharmaceuticals emitting Auger electrons are often injected into patients undergoing cancer treatment with targeted radionuclide therapy (TRT). In this type of radiotherapy, the radiation source is radial and most of the emitted primary particles are low-energy electrons (LEEs) having kinetic energies distributed mostly from zero to a few hundred electron volts with very short ranges in biological media. These LEEs generate a high density of energy deposits and clustered damage, thus offering a relative biological effectiveness comparable to that of alpha particles. In this paper, we present a simple model and corresponding measurements to assess the energy deposited near the site of the radiopharmaceuticals in TRT. As an example, a calculation is performed for the decay of a single 125I radionuclide surrounded by a 1-nm-radius spherical shell of cytosine molecules using the energy spectrum of LEEs emitted by 125I along with their stopping cross sections between 0 and 18 eV. The dose absorbed by the cytosine shell, which occupies a volume of 4 nm3, is extremely high. It amounts to 79 kGy per decay of which 3%, 39%, and 58% is attributed to vibrational excitations, electronic excitations, and ionization processes, respectively.

  4. Structure of the 2-Aminopurine-Cytosine Base Pair Formed in the Polymerase Active Site of the RB69 Y567A-DNA Polymerase

    SciTech Connect

    Reha-Krantz, Linda J.; Hariharan, Chithra; Subuddhi, Usharani; Xia, Shuangluo; Zhao, Chao; Beckman, Jeff; Christian, Thomas; Konigsberg, William

    2011-11-21

    The adenine base analogue 2-aminopurine (2AP) is a potent base substitution mutagen in prokaryotes because of its enhanceed ability to form a mutagenic base pair with an incoming dCTP. Despite more than 50 years of research, the structure of the 2AP-C base pair remains unclear. We report the structure of the 2AP-dCTP base pair formed within the polymerase active site of the RB69 Y567A-DNA polymerase. A modified wobble 2AP-C base pair was detected with one H-bond between N1 of 2AP and a proton from the C4 amino group of cytosine and an apparent bifurcated H-bond between a proton on the 2-amino group of 2-aminopurine and the ring N3 and O2 atoms of cytosine. Interestingly, a primer-terminal region rich in AT base pairs, compared to GC base pairs, facilitated dCTP binding opposite template 2AP. We propose that the increased flexibility of the nucleotide binding pocket formed in the Y567A-DNA polymerase and increased 'breathing' at the primer-terminal junction of A+T-rich DNA facilitate dCTP binding opposite template 2AP. Thus, interactions between DNA polymerase residues with a dynamic primer-terminal junction play a role in determining base selectivity within the polymerase active site of RB69 DNA polymerase.

  5. Phosphodiester bond rupture in 5? and 3? cytosine monophosphate in aqueous environment and the effect of low-energy electron attachment: A Car Parrinello QM/MM molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Schyman, Patric; Laaksonen, Aatto; Hugosson, Håkan W.

    2008-09-01

    In this study we have explored the effect of low-energy electrons (LEEs) when rupturing the C3'-O3' and C5'-O5' bonds in 3' and 5' cytosine monophosphate in an aqueous environment. This has been done using a hybrid quantum mechanics/classical mechanics (QM/MM) setup within the framework of Car-Parrinello molecular dynamics (CPMD). Our results are in agreement with experimental findings and indicate that LEEs do not drastically lower the energy barrier for breaking the 3' or 5' phosphodiester bonds for single cytosine nucleotides in aqueous environment.

  6. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    E-print Network

    Ishida, Yuko

    of fruit exposed to adult female flies previously fed fly- conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions to different treatments, fruits that developed low yeast densities in the absence of flies developed

  7. Boolean model of yeast apoptosis as a tool to study yeast and human apoptotic regulations.

    PubMed

    Kazemzadeh, Laleh; Cvijovic, Marija; Petranovic, Dina

    2012-01-01

    Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested. PMID:23233838

  8. Discussion of teleomorphic and anamorphic Ascomycetous yeasts and yeast-like taxa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship of ascomycetous yeasts with other members of the ascomycete fungi (Ascomycota) has been controversial for over 100 years. Because yeasts are morphologically simple, it was proposed that they represent primitive forms of ascomycetes (e.g., Guilliermond 1912). Alternatively, the ide...

  9. Training of yeast cell dynamics.

    PubMed

    Reijenga, Karin A; Bakker, Barbara M; van der Weijden, Coen C; Westerhoff, Hans V

    2005-04-01

    In both industrial fermenters and in their natural habitats, microorganisms often experience an inhomogeneous and fluctuating environment. In this paper we mimicked one aspect of this nonideal behaviour by imposing a low and oscillating extracellular glucose concentration on nonoscillating suspensions of yeast cells. The extracellular dynamics changed the intracellular dynamics--which was monitored through NADH fluorescence--from steady to equally dynamic; the latter followed the extracellular dynamics at the frequency of glucose pulsing. Interestingly, the amplitude of the oscillation of the NADH fluorescence increased with time. This increase in amplitude was sensitive to inhibition of protein synthesis, and was due to a change in the cells rather than in the medium; the cell population was 'trained' to respond to the extracellular dynamics. To examine the mechanism behind this 'training', we subjected the cells to a low and constant extracellular glucose concentration. Seventy-five minutes of adaptation to a low and constant glucose concentration induced the same increase of the amplitude of the forced NADH oscillations as did the train of glucose pulses. Furthermore, 75 min of adaptation to a low (oscillating or continuous) glucose concentration decreased the K(M) of the glucose transporter from 26 mm to 3.5 mm. When subsequently the apparent K(M) was increased by addition of maltose, the amplitude of the forced oscillations dropped to its original value. This demonstrated that the increased affinity of glucose transport was essential for the training of the cells' dynamics. PMID:15794749

  10. Yeast flocculation: New story in fuel ethanol production.

    PubMed

    Zhao, X Q; Bai, F W

    2009-01-01

    Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed. PMID:19577627

  11. Production of alpha-amylase by yeast

    SciTech Connect

    Thomse, K.K.

    1987-01-01

    The enzyme alpha-amylase confers to an organism the enzymatic activity for the degradation of polyglucosides with alpha-1,4 glycosidic bonds such as starch and glycogen which are among the major storage compounds in plants and animals. Most alpha-amylases are single polypeptides of molecular weights around 50,000 dalton. They are generally found in the digestive tract of animals and in germinating seeds. Among the products released upon enzymatic degradation of polyglucosides maltose, a sugar that can be utilized as carbon source by yeast, is a major constituent. A cDNA segment complementary to mouse salivary amylase messenger RNA has been inserted into the yeast expression vector pMA56 behind the promoter of the gene encoding alcohol dehydrogenase I of yeast. Yeast transformants harboring plasmids with the normal orientation of the promoter and the mouse amylase cDNA gene produce amylase and release the enzyme in free form into the culture medium. Approximately 90% of the amylase activity is found in the medium. Yeast strains carrying MAL allele and transformed with a plasmid which directed the synthesis of mouse alpha-amylase were tested on plates containing starch and in batch fermentations using different high molecular weight sugars and oligosaccharides as carbon source. The results of these experiments will be discussed. (Refs. 21).

  12. Influence of pesticides on yeasts colonizing leaves.

    PubMed

    Vadkertiová, Renata; Sláviková, Elena

    2011-01-01

    The effect of nine different pesticides on the growth of yeasts isolated from the leaves of fruit and forest trees was investigated. Four insecticides (with the active ingredients: thiacloprid, deltamethrin, lambdacyhalothrin, and thiamethoxam) and five fungicides (with the effective substances: bitertanol, kresoxim-methyl, mancozeb, trifloxystrobin, and cupric oxychloride) were tested. The concentrations of chemicals were those recommended by the manufacturers for the spraying of trees. The yeast strains isolated from the leaves of fruit trees were not sensitive to any of the insecticides. The majority of yeast strains isolated from the leaves of forest trees were either not sensitive or only to a small extent. While Rhodotorula mucilaginosa and Pichia anomala were not affected by any insecticide, the strains of Cryptococcus laurentii and Rhodotorula glutinis showed the highest sensitivity. The effects of fungicides on the growth of isolated yeasts were more substantial. The fungicide Dithane DG (mancozeb) completely inhibited the growth of all yeasts. All strains isolated from fruit tree leaves were more resistant to the tested fungicides than those isolated from the leaves of forest trees. The most resistant strains from the leaves of fruit trees belonged to the species Metschnikowia pulcherrima, Pichia anomala, and Saccharomyces cerevisiae, whereas Cryptococcus albidus and C. laurentii, originating from the leaves of forest trees, showed the highest sensitivity to fungicides. PMID:22351984

  13. Mitochondrial membrane lipidome defines yeast longevity.

    PubMed

    Beach, Adam; Richard, Vincent R; Leonov, Anna; Burstein, Michelle T; Bourque, Simon D; Koupaki, Olivia; Juneau, Mylène; Feldman, Rachel; Iouk, Tatiana; Titorenko, Vladimir I

    2013-07-01

    Our studies revealed that lithocholic acid (LCA), a bile acid, is a potent anti-aging natural compound that in yeast cultured under longevity-extending caloric restriction (CR) conditions acts in synergy with CR to enable a significant further increase in chronological lifespan. Here, we investigate a mechanism underlying this robust longevity-extending effect of LCA under CR. We found that exogenously added LCA enters yeast cells, is sorted to mitochondria, resides mainly in the inner mitochondrial membrane, and also associates with the outer mitochondrial membrane. LCA elicits an age-related remodeling of glycerophospholipid synthesis and movement within both mitochondrial membranes, thereby causing substantial changes in mitochondrial membrane lipidome and triggering major changes in mitochondrial size, number and morphology. In synergy, these changes in the membrane lipidome and morphology of mitochondria alter the age-related chronology of mitochondrial respiration, membrane potential, ATP synthesis and reactive oxygen species homeostasis. The LCA-driven alterations in the age-related dynamics of these vital mitochondrial processes extend yeast longevity. In sum, our findings suggest a mechanism underlying the ability of LCA to delay chronological aging in yeast by accumulating in both mitochondrial membranes and altering their glycerophospholipid compositions. We concluded that mitochondrial membrane lipidome plays an essential role in defining yeast longevity. PMID:23924582

  14. Role of adenosine deaminase, ecto-(5'-nucleotidase) and ecto-(non-specific phosphatase) in cyanide-induced adenosine monophosphate catabolism in rat polymorphonuclear leucocytes.

    PubMed Central

    Newby, A C

    1980-01-01

    1. The role of adenosine deaminase (EC 3.5.4.4), ecto-(5'-nucleotidase) (EC 3.1.3.5) and ecto-(non-specific phosphatase) in the CN-induced catabolism of adenine nucleotides in intact rat polymorphonuclear leucocytes was investigated by inhibiting the enzymes in situ. 2. KCN (10mM for 90 min) induced a 20-30% fall in ATP concentration accompanied by an approximately equimolar increase in hypoxanthine, ADP, AMP and adenosine concentrations were unchanged, and IMP and inosine remained undetectable ( less than 0.05 nmol/10(7) cells). 3. Cells remained 98% intact, as judged by loss of the cytoplasmic enzyme lactate dehydrogenase (EC 1.1.1.27). 4. Pentostatin (30 microM), a specific inhibitor of adenosine deaminase, completely inhibited hypoxanthine production from exogenous adenosine (55 microM), but did not black CN-induced hypoxanthine production or cause adenosine accumulation in intact cells. This implied that IMP rather than adenosine was an intermediate in AMP breakdown in response to cyanide. 5. Antibodies raised against purified plasma-membrane 5'-nucleotidase inhibited the ecto-(5'-nucleotidase) by 95-98%. Non-specific phosphatases were blocked by 10 mM-sodium beta-glycerophosphate. 6. These two agents together blocked hypoxanthine production from exogenous AMP and IMP (200 microM) by more than 90%, but had no effect on production from endogenous substrates. 7. These data suggest that ectophosphatases do not participate in CN-induced catabolism of intracellular AMP in rat polymorphonuclear leucocytes. 8. A minor IMPase, not inhibited by antiserum, was detected in the soluble fraction of disrupted cells. PMID:6249264

  15. Structural evidence for the partially oxidized dipyrromethene and dipyrromethanone forms of the cofactor of porphobilinogen deaminase: structures of the Bacillus megaterium enzyme at near-atomic resolution

    SciTech Connect

    Azim, N.; Deery, E.; Warren, M. J.; Wolfenden, B. A. A.; Erskine, P.; Cooper, J. B. Coker, A.; Wood, S. P.; Akhtar, M.

    2014-03-01

    The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses a key early step in the biosynthesis of tetrapyrroles in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. Two near-atomic resolution structures of PBGD from B. megaterium are reported that demonstrate the time-dependent accumulation of partially oxidized forms of the cofactor, including one that possesses a tetrahedral C atom in the terminal pyrrole ring. The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor, which is covalently linked by a thioether bridge to an invariant cysteine residue (Cys241 in the Bacillus megaterium enzyme). The cofactor is extended during the reaction by the sequential addition of the four substrate molecules, which are released as a linear tetrapyrrole product. Expression in Escherichia coli of a His-tagged form of B. megaterium PBGD has permitted the X-ray analysis of the enzyme from this species at high resolution, showing that the cofactor becomes progressively oxidized to the dipyrromethene and dipyrromethanone forms. In previously solved PBGD structures, the oxidized cofactor is in the dipyromethenone form, in which both pyrrole rings are approximately coplanar. In contrast, the oxidized cofactor in the B. megaterium enzyme appears to be in the dipyrromethanone form, in which the C atom at the bridging ?-position of the outer pyrrole ring is very clearly in a tetrahedral configuration. It is suggested that the pink colour of the freshly purified protein is owing to the presence of the dipyrromethene form of the cofactor which, in the structure reported here, adopts the same conformation as the fully reduced dipyrromethane form.

  16. Current Biology 17, 379384, February 20, 2007 2007 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2007.01.009 The SRA Methyl-Cytosine-Binding Domain

    E-print Network

    Jacobsen, Steve

    by the methyltransferase KRYPTONITE (KYP/ SUVH4), is required for maintenance of DNA methyla- tion outside of the standard these ideas, we examined H3K9me2 levels in different DNA methyltransferase mutants and at two loci with very.cub.2007.01.009 Report The SRA Methyl-Cytosine-Binding Domain Links DNA and Histone Methylation Lianna M

  17. Yeast genes fused to beta-galactosidase in Escherichia coli can be expressed normally in yeast.

    PubMed Central

    Rose, M; Casadaban, M J; Botstein, D

    1981-01-01

    A plasmid was constructed that allows the selection in vivo of gene fusions between the Escherichia coli beta-galactosidase gene and the yeast (Saccharomyces cerevisiae) URA3 gene. A large yeast DNA fragment containing the URA3 gene was placed upstream of an amino-terminally deleted version of the lacZ gene. The plasmid vehicle contains sequences that allow selection and maintenance of the plasmid in both yeast and E. coli. Selection for Lac+ in E. coli yielded numerous deletions that fused the lacZ gene to the URA3 gene and flanking yeast sequences, to the bacterial tetracycline-resistance gene from the parent plasmid pBR322, and to the yeast 2-micrometer plasmid DNA. Some of these fusion plasmids produced beta-galactosidase activity when introduced into yeast. One of the fusions to the URA3 gene itself has been shown to place the expression of beta-galactosidase activity under uracil regulation in yeasts. Images PMID:6787605

  18. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    PubMed

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities. PMID:23210991

  19. YEASTS FROM THE NORTH SEA AND AMOCO CADIZ OIL

    EPA Science Inventory

    The species and densities of yeasts isolated from North Sea waters before and after the production of oil were compared. Debaryomyces hansenii was the predominant species, but after oil production, Candida guillieromondii, a hydrocarbonoclastic yeast, was more commonly isolated a...

  20. Metabolic cycling without cell division cycling in respiring yeast

    E-print Network

    Slavov, Nikolai G.

    Despite rapid progress in characterizing the yeast metabolic cycle, its connection to the cell division cycle (CDC) has remained unclear. We discovered that a prototrophic batch culture of budding yeast, growing in a ...

  1. Complete biosynthesis of opioids in yeast.

    PubMed

    Galanie, Stephanie; Thodey, Kate; Trenchard, Isis J; Filsinger Interrante, Maria; Smolke, Christina D

    2015-09-01

    Opioids are the primary drugs used in Western medicine for pain management and palliative care. Farming of opium poppies remains the sole source of these essential medicines, despite diverse market demands and uncertainty in crop yields due to weather, climate change, and pests. We engineered yeast to produce the selected opioid compounds thebaine and hydrocodone starting from sugar. All work was conducted in a laboratory that is permitted and secured for work with controlled substances. We combined enzyme discovery, enzyme engineering, and pathway and strain optimization to realize full opiate biosynthesis in yeast. The resulting opioid biosynthesis strains required the expression of 21 (thebaine) and 23 (hydrocodone) enzyme activities from plants, mammals, bacteria, and yeast itself. This is a proof of principle, and major hurdles remain before optimization and scale-up could be achieved. Open discussions of options for governing this technology are also needed in order to responsibly realize alternative supplies for these medically relevant compounds. PMID:26272907

  2. Biofuels. Altered sterol composition renders yeast thermotolerant.

    PubMed

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam; Feizi, Amir; Buskov, Steen; Hallström, Björn M; Petranovic, Dina; Nielsen, Jens

    2014-10-01

    Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ?40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ?40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype. PMID:25278608

  3. Predicting the Fission Yeast Protein Interaction Network

    PubMed Central

    Pancaldi, Vera; Saraç, Ömer S.; Rallis, Charalampos; McLean, Janel R.; P?evorovský, Martin; Gould, Kathleen; Beyer, Andreas; Bähler, Jürg

    2012-01-01

    A systems-level understanding of biological processes and information flow requires the mapping of cellular component interactions, among which protein–protein interactions are particularly important. Fission yeast (Schizosaccharomyces pombe) is a valuable model organism for which no systematic protein-interaction data are available. We exploited gene and protein properties, global genome regulation datasets, and conservation of interactions between budding and fission yeast to predict fission yeast protein interactions in silico. We have extensively tested our method in three ways: first, by predicting with 70–80% accuracy a selected high-confidence test set; second, by recapitulating interactions between members of the well-characterized SAGA co-activator complex; and third, by verifying predicted interactions of the Cbf11 transcription factor using mass spectrometry of TAP-purified protein complexes. Given the importance of the pathway in cell physiology and human disease, we explore the predicted sub-networks centered on the Tor1/2 kinases. Moreover, we predict the histidine kinases Mak1/2/3 to be vital hubs in the fission yeast stress response network, and we suggest interactors of argonaute 1, the principal component of the siRNA-mediated gene silencing pathway, lost in budding yeast but preserved in S. pombe. Of the new high-quality interactions that were discovered after we started this work, 73% were found in our predictions. Even though any predicted interactome is imperfect, the protein network presented here can provide a valuable basis to explore biological processes and to guide wet-lab experiments in fission yeast and beyond. Our predicted protein interactions are freely available through PInt, an online resource on our website (www.bahlerlab.info/PInt). PMID:22540037

  4. Biochemical Comparison of Commercial Selenium Yeast Preparations.

    PubMed

    Fagan, Sheena; Owens, Rebecca; Ward, Patrick; Connolly, Cathal; Doyle, Sean; Murphy, Richard

    2015-08-01

    The trace mineral selenium (Se) is an essential element for human and animal nutrition. The addition of Se to the diet through dietary supplements or fortified food/feed is increasingly common owing to the often sub-optimal content of standard diets of many countries. Se supplements commercially available include the inorganic mineral salts such as sodium selenite or selenate, and organic forms such as Se-enriched yeast. Today, Se yeast is produced by several manufacturers and has become the most widely used source of Se for human supplementation and is also widely employed in animal nutrition where approval in all species has been granted by regulatory bodies such as the European Food Safety Authority (EFSA). Characterisation and comparison of Se-enriched yeast products has traditionally been made by quantifying total selenomethionine (SeMet) content. A disadvantage of this approach, however, is that it does not consider the effects of Se deposition on subsequent digestive availability. In this study, an assessment was made of the water-soluble extracts of commercially available Se-enriched yeast samples for free, peptide-bound and total water-soluble SeMet. Using LC-MS/MS, a total of 62 Se-containing proteins were identified across four Se yeast products, displaying quantitative/qualitative changes in abundance relative to the certified reference material, SELM-1 (P value <0.05; fold change ?2). Overall, the study indicates that significant differences exist between Se yeast products in terms of SeMet content, Se-containing protein abundance and associated metabolic pathways. PMID:25855372

  5. Laboratory evolution of copper tolerant yeast strains

    PubMed Central

    2012-01-01

    Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper-binding proteome. However, copper elicits different physiological and molecular reactions in yeasts with different backgrounds. PMID:22214286

  6. 5-Methylation of cytosine in CG:CG base-pair steps: a physicochemical mechanism for the epigenetic control of DNA nanomechanics.

    PubMed

    Yusufaly, Tahir I; Li, Yun; Olson, Wilma K

    2013-12-27

    van der Waals density functional theory is integrated with analysis of a non-redundant set of protein-DNA crystal structures from the Nucleic Acid Database to study the stacking energetics of CG:CG base-pair steps, specifically the role of cytosine 5-methylation. Principal component analysis of the steps reveals the dominant collective motions to correspond to a tensile "opening" mode and two shear "sliding" and "tearing" modes in the orthogonal plane. The stacking interactions of the methyl groups globally inhibit CG:CG step overtwisting while simultaneously softening the modes locally via potential energy modulations that create metastable states. Additionally, the indirect effects of the methyl groups on possible base-pair steps neighboring CG:CG are observed to be of comparable importance to their direct effects on CG:CG. The results have implications for the epigenetic control of DNA mechanics. PMID:24313757

  7. 5-Methylation of Cytosine in CG:CG Base-Pair Steps: A Physicochemical Mechanism for the Epigenetic Control of DNA Nanomechanics

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir; Olson, Wilma; Li, Yun

    2014-03-01

    Van der Waals density functional theory is integrated with analysis of a non-redundant set of protein-DNA crystal structures from the Nucleic Acid Database to study the stacking energetics of CG:CG base-pair steps, specifically the role of cytosine 5-methylation. Principal component analysis of the steps reveals the dominant collective motions to correspond to a tensile ``opening'' mode and two shear ``sliding'' and ``tearing'' modes in the orthogonal plane. The stacking interactions of the methyl groups are observed to globally inhibit CG:CG step overtwisting while simultaneously softening the modes locally via potential energy modulations that create metastable states. The results have implications for the epigenetic control of DNA mechanics.

  8. Disruption of Yeast Membranes by Methylphenidate

    PubMed Central

    Spoerl, Edward

    1971-01-01

    Methylphenidate blocked sorbose uptake and loss by yeast spheroplasts and, at higher concentrations (30 mm), disrupted the spheroplasts. At still higher concentrations (70 mm), methylphenidate also ruptured the membranes of whole yeast cells; sorbose and materials absorbing at 280 nm were lost from the cells, and methylene blue stained them. Intracellular structures were extensively affected, as shown by electron micrographs, and were more sensitive to disruption by methylphenidate than the external membrane. N-ethylmaleimide and Ca2+ enhanced the rupture of external membranes by methylphenidate. Images PMID:5547981

  9. Disruption of yeast membranes by methylphenidate.

    PubMed

    Spoerl, E

    1971-03-01

    Methylphenidate blocked sorbose uptake and loss by yeast spheroplasts and, at higher concentrations (30 mm), disrupted the spheroplasts. At still higher concentrations (70 mm), methylphenidate also ruptured the membranes of whole yeast cells; sorbose and materials absorbing at 280 nm were lost from the cells, and methylene blue stained them. Intracellular structures were extensively affected, as shown by electron micrographs, and were more sensitive to disruption by methylphenidate than the external membrane. N-ethylmaleimide and Ca(2+) enhanced the rupture of external membranes by methylphenidate. PMID:5547981

  10. Fission Yeast Cell Cycle Synchronization Methods.

    PubMed

    Tormos-Pérez, Marta; Pérez-Hidalgo, Livia; Moreno, Sergio

    2016-01-01

    Fission yeast cells can be synchronized by cell cycle arrest and release or by size selection. Cell cycle arrest synchronization is based on the block and release of temperature-sensitive cell cycle mutants or treatment with drugs. The most widely used approaches are cdc10-129 for G1; hydroxyurea (HU) for early S-phase; cdc25-22 for G2, and nda3-KM311 for mitosis. Cells can also be synchronized by size selection using centrifugal elutriation or a lactose gradient. Here we describe the methods most commonly used to synchronize fission yeast cells. PMID:26519320

  11. Anti-leukemic effect of sodium metaarsenite (KML001) in acute myeloid leukemia with breaking-down the resistance of cytosine arabinoside.

    PubMed

    Yoon, Jin Sun; Kim, Eun Shil; Park, Byeong Bae; Choi, Jung Hye; Won, Young Woong; Kim, Sujong; Lee, Young Yiul

    2015-05-01

    Sodium metaarsenite (NaAs2O3: code name KML001) is an orally bioavailable arsenic compound with potential anti-cancer activity. However, the effect of KML001 has not been studied in acute myeloid leukemia (AML). We investigated the anti-leukemic effect of KML001 in AML, and determined the mode of action of KML001. KML001 inhibited the cellular proliferation in all AML cell lines and primary AML blasts as well as HL-60R (cytosine arabinoside-resistant HL-60) cells, while As2O3 was not effective in primary AML blasts and AML cell lines including HL-60R cells. KML001 induced G1 arrest and apoptosis in HL-60 and HL-60R cells. KML001 inhibited the activation of STAT (signal transducer and activator of transcription) 1, 3, 5, NF-?B, AKT and PI3K, while phosphorylated PTEN was upregulated. In addition, activation of ERK, p38 and JNK was observed in KML001-induced growth inhibition of HL-60 and HL-60R cells. Furthermore, KML001 induced telomeric terminal restriction fragment (TRF) length shortening in a time-dependent manner in HL-60 and HL-60R cells. Real?time PCR with RNA extracted from KML001-treated HL-60 and HL-60R cells showed a significant reduction of catalytic subunit of telomerase, hTERT, in a time-dependent manner. Additionally, ?-H2AX, a sensitive molecular marker of DNA damage, in HL-60 and HL-60R cells was induced by KML001. These results suggest that KML001 inhibits the proliferation of AML cells including cytosine arabinoside-resistant AML cells via various mechanisms such as cell cycle arrest, induction of apoptosis, inhibition of JAK/STAT and PI3K pathways, activation of MAPK pathway and telomere targeting. PMID:25695330

  12. RESEARCH ARTICLE Open Access Evolutionary engineering of a wine yeast

    E-print Network

    Dunham, Maitreya

    . This study aimed to select and develop wine yeast strains that well adapt to ferment at low temperature-adapted yeasts to ferment at low temperature. Although the wine industry already has yeasts that are sold of inositol and mannoprotein metabolism during low- temperature fermentation María López-Malo1 , Estéfani

  13. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food and Drugs...Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with...

  14. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food and Drugs...Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with...

  15. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food and Drugs...Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with...

  16. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Bakers yeast protein. 172.325 Section 172.325 Food and Drugs...Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with...

  17. 21 CFR 172.325 - Bakers yeast protein.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2009-04-01 true Bakers yeast protein. 172.325 Section 172.325 Food and Drugs...Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with...

  18. Drosophila-associated yeast species in vineyard ecosystems.

    PubMed

    Lam, Samuel S T H; Howell, Kate S

    2015-10-01

    Yeast activity during wine fermentation directly contributes to wine quality, but the source and movement of yeasts in vineyards and winery environments have not been resolved. Here, we investigate the yeast species associated with the Drosophila insect vector to help understand yeast dispersal and persistence. Drosophila are commonly found in vineyards and are known to have a mutualistic relationship with yeasts in other ecosystems. Drosophilids were collected from vineyards, grape waste (marc) piles and wineries during grape harvest. Captured flies were identified morphologically, and their associated yeasts were identified. Drosophila melanogaster/D. simulans, D. hydei and Scaptodrosophila lativittata were identified in 296 captured Drosophila flies. These flies were associated with Metschnikowia pulcherrima, Hanseniaspora uvarum, Torulaspora delbrueckii and H. valbyensis yeasts. Yeast and Drosophila species diversity differed between collection locations (vineyard and marc: R = 0.588 for Drosophila and R = 0.644 for yeasts). Surprisingly, the primary wine fermentation yeast, Saccharomyces cerevisiae, was not isolated. Drosophila flies are preferentially associated with different yeast species in the vineyard and winery environments, and this association may help the movement and dispersal of yeast species in the vineyard and winery ecosystem. PMID:26391524

  19. Fission Yeast Tel1ATM and Rad3ATR

    E-print Network

    Nakamura, Toru M.

    Fission Yeast Tel1ATM and Rad3ATR Promote Telomere Protection and Telomerase Recruitment Bettina A organisms, including budding and fission yeasts, Arabidopsis, Drosophila, and mammals. However, such as fission yeast and humans. Here, we demonstrate by quantitative chromatin immunoprecipitation (ChIP) assays

  20. GENETICS | INVESTIGATION The Spontaneous Mutation Rate in the Fission Yeast

    E-print Network

    Lynch, Michael

    GENETICS | INVESTIGATION The Spontaneous Mutation Rate in the Fission Yeast Schizosaccharomyces of spontaneous mutations for the fission yeast Schizosaccharomyces pombe, a key model organism with many that the mechanisms of DNA maintenance may have diverged significantly between fission and budding yeasts

  1. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not...

  2. Research Articles Yeast Ancestral Genome Reconstructions: The Possibilities

    E-print Network

    Chauve, Cedric

    Research Articles Yeast Ancestral Genome Reconstructions: The Possibilities of Computational the availability of assembled eukaryotic genomes, the first one being a budding yeast, many computational methods them to infer and analyse the architectures of two ancestral yeast genomes, based on the sequence

  3. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not...

  4. Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast

    E-print Network

    Bornholdt, Stefan

    Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast Maria I. Davidich, Stefan network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar

  5. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not...

  6. GENE ENGINEERING OF YEASTS FOR THE DEGRADATION OF HAZARDOUS WASTE

    EPA Science Inventory

    The research examined the structure and function of cytochrome P-450 genes in yeast as a model for gene engineering such as eukaryotic P-450 enzymes for biodegradation of hazardous waste by yeasts. Saccharomyces cerevisiae and Candida tropicalis are two yeasts known to produce ma...

  7. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not...

  8. Clustering, Communication and Environmental Oscillations in Populations of Budding Yeast

    E-print Network

    Young, Todd

    Clustering, Communication and Environmental Oscillations in Populations of Budding Yeast Chris describe how simple models of communication, consistent with known yeast phys- iological mechanisms relevant variables during yeast growth and division have been reported and studied for over 40 years [8, 12

  9. Exploring the Yeast Genome with Generalized Singular Value

    E-print Network

    Fonseca, Rodrigo

    Exploring the Yeast Genome with Generalized Singular Value Decomposition Andrew Ferguson Advisor courses of the yeast Saccharomyces cerevisiae under two different experimental con- ditions. In the first analysis, a comparison is performed between the yeast stress response to hydrogen peroxide (H2O2

  10. Quantitative Analysis of the Effective Functional Structure in Yeast Glycolysis

    E-print Network

    Cortes, Jesus

    Quantitative Analysis of the Effective Functional Structure in Yeast Glycolysis Ildefonso M. De la the technique of Transfer Entropy. The data were obtained by means of a yeast glycolytic model formed by three-core of the metabolic system, behaving for all conditions as the main source of the effective causal flows in yeast

  11. Invited Review Functional expression of heterologous proteins in yeast: insights

    E-print Network

    Rao, Rajini

    Invited Review Functional expression of heterologous proteins in yeast: insights into Ca2 signaling of heterologous proteins in yeast: insights into Ca2 signaling and Ca2 -transporting ATPases. Am J Physiol Cell Physiol 287: C580­C589, 2004; 10.1152/ajpcell.00135.2004.-- The baker's yeast Saccharomyces cerevisiae

  12. Robust Spatial Sensing of Mating Pheromone Gradients by Yeast Cells

    E-print Network

    Nie, Qing

    Robust Spatial Sensing of Mating Pheromone Gradients by Yeast Cells Travis I. Moore1,2 , Ching not degrade the pheromone input. The yeast cells exhibited good accuracy with the mating projection typically caused defects in both sensing and response. Interestingly, yeast cells employed adaptive mechanisms

  13. Extracting yeast stress genes by dependencies between stress treatments

    E-print Network

    Kaski, Samuel

    Extracting yeast stress genes by dependencies between stress treatments Arto Klamia,b , Janne analysis on discovered dependent samples OVERVIEW OF METHOD METHOD FINDING YEAST STRESS GENES RESULTS where,R.A. (2001) Remodeling of yeast genome expression in response to environmental changes, Mol. Biol. Cell, 12

  14. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not...

  15. ORIGINAL PAPER Candida gelsemii sp. nov., a yeast

    E-print Network

    Thomson, James D.

    ORIGINAL PAPER Candida gelsemii sp. nov., a yeast of the Metschnikowiaceae clade isolated from+Business Media B.V. 2006 Abstract A new yeast species, Candida gelsemii, is described to accommodate three Metschnikowiaceae Á Gelsemium sempervirens Á Nectar alkaloids Á Gelsemine Á New yeast species Introduction Floral

  16. Research Focus A short history of recombination in yeast

    E-print Network

    Otto, Sarah

    Research Focus A short history of recombination in yeast Clifford W. Zeyl1* and Sarah P. Otto2* 1 of fungal genomics, we know little about either the ecology or reproductive biology of the budding yeast of a studyofhistoricalpoutcrossingeventsand inferthe genomic positions of previous recombination events in the yeast Saccharomyces cerevisiae

  17. A virtual lab for exploring the yeast prion

    E-print Network

    Kent, University of

    A virtual lab for exploring the ¢¡¤£¦¥¨§© yeast prion Jacqueline L. Whalley , Mick F. Tuite within the cell of a prion protein in yeast. The biological background to the project is outlined in simpler organisms such as yeasts [20], which make an ideal subject for laboratory study of the prion

  18. Antimycotic activity of 4-thioisosteres of flavonoids towards yeast and yeast-like microorganisms.

    PubMed

    Buzzini, Pietro; Menichetti, Stefano; Pagliuca, Chiara; Viglianisi, Caterina; Branda, Eva; Turchetti, Benedetta

    2008-07-01

    Different substituted methoxy- and hydroxy-4-thioisosteres of flavonoids were prepared and their in vitro antimycotic activity towards yeast (Candida spp., Clavispora spp., Cryptococcus spp., Filobasidiella spp., Issatchenkia spp., Pichia spp., Kluyveromyces spp., Saccharomyces spp. and Yarrowia spp.) and yeast-like (Prototheca spp.) microorganisms was tested. Further insights in the biological activities of these antioxidant, oestrogenic and antimicrobial biomimetic derivatives were obtained. PMID:18524588

  19. 21 CFR 73.355 - Phaffia yeast.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...Section 73.355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT...ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast...additive mixtures for coloring foods. (b) Specifications. ...million. Heavy metals (as Pb), not more than 10 parts...

  20. Antarctic Yeasts: Biodiversity and Potential Applications

    NASA Astrophysics Data System (ADS)

    Shivaji, S.; Prasad, G. S.

    This review is an attempt in cataloguing the diversity of yeasts in Antarctica, highlight their biotechnological potential and understand the basis of adaptation to low temperature. As of now several psychrophilic and psychrotolerant yeasts from Antarctic soils and marine waters have been characterized with respect to their growth characteristics, ecological distribution and taxonomic significance. Interestingly most of these species belonged to basidiomycetous yeasts which as a group are known for their ability to circumvent and survive under stress conditions. Simultaneously their possible role as work horses in the biotechnological industry was recognized due to their ability to produce novel enzymes and biomolecules such as agents for the breakdown of xenobiotics, and novel pharmaceutical chemi cals. The high activity of psychrophilic enzymes at low and moderate temperatures offers potential economic benefits. As of now lipases from Pseudozyma antarctica have been extensively studied to understand their unique thermal stability at 90°C and also because of its use in the pharmaceutical, agriculture, food, cosmetics and chemical industry. A few of the other enzymes which have been studied include extracellular alpha-amylase and glucoamylase from the yeast Pseudozyma antarctica (Candida antarctica), an extra-cellular protease from Cryptococcus humicola, an aspartyl proteinase from Cryptococcus humicola, a novel extracellular subtilase from Leucosporidium antarcticum, and a xylanase from Cryptococcus adeliensis

  1. Compositional Determinants of Prion Formation in Yeast?

    PubMed Central

    Toombs, James A.; McCarty, Blake R.; Ross, Eric D.

    2010-01-01

    Numerous prions (infectious proteins) have been identified in yeast that result from the conversion of soluble proteins into ?-sheet-rich amyloid-like protein aggregates. Yeast prion formation is driven primarily by amino acid composition. However, yeast prion domains are generally lacking in the bulky hydrophobic residues most strongly associated with amyloid formation and are instead enriched in glutamines and asparagines. Glutamine/asparagine-rich domains are thought to be involved in both disease-related and beneficial amyloid formation. These domains are overrepresented in eukaryotic genomes, but predictive methods have not yet been developed to efficiently distinguish between prion and nonprion glutamine/asparagine-rich domains. We have developed a novel in vivo assay to quantitatively assess how composition affects prion formation. Using our results, we have defined the compositional features that promote prion formation, allowing us to accurately distinguish between glutamine/asparagine-rich domains that can form prion-like aggregates and those that cannot. Additionally, our results explain why traditional amyloid prediction algorithms fail to accurately predict amyloid formation by the glutamine/asparagine-rich yeast prion domains. PMID:19884345

  2. ENGINEERING THE BIOSYNTHESIS OF STYRENE IN YEAST

    EPA Science Inventory

    The strategy pursued was to insert genes for phenylalanine ammonia lysase (pal) and phenolic acid decarboxylase (pad) into the yeast that would convert phenylalanine to styrene through a cinnamic acid intermediate.

    Intercellular communication during yeast cell growth

    NASA Astrophysics Data System (ADS)

    Musumeci, F.; Scordino, A.; Triglia, A.; Blandino, G.; Milazzo, I.

    1999-09-01

    An experiment has been performed that has shown the existence of cellular communication between optically coupled cultures which are chemically separate. The experiment used for the cellular culture the temperature-sensitive mutant yeast strain Saccharomyces cerevisiae. The novelty of this experiment lies in the simplicity of the experimental protocol and in the reasonably high statistic significance of the obtained results.

  3. Copper transport in non-growing yeast

    SciTech Connect

    Turos, S.; Donahue, T.; Trent, C.; Connelly, J.L.

    1986-05-01

    The mandatory role of copper (Cu) proteins in cell metabolism and the speculation that Cu influences the production of porphyrins and hemoproteins prompted an examination of the regulatory features of, and the process by which Cu is taken up by yeast. Saccharomyces Cerevisiae was grown on glucose minimal media in the absence of added Cu at 29/sup 0/C, 200 rpm for 48-72 hrs. Cells were harvested and washed by centrifugation and resuspended at standardized mg dry weight/ml. The yeast was exposed to Cu under a variety of experimental conditions in 10 ml volume containing approximately 5 mg (dry wt.) yeast and Cu (0-10/sup -4/M). Reactions were stopped by microcentrifugation and Cu was determined, by difference, using atomic absorption spectrophotometry. The time course of Cu uptake reflected two phases; a rapid rate followed by a slow rate which varied according to conditions. Direct determination of Cu using washing (chelators) and ashing of washed yeast showed that the initial phase was indeed adsorption of Cu to cell exterior. While the relationship of adsorbed Cu to Cu uptake has not been evaluated the system nevertheless is being used for the determination of the effects of environmental factors (pH, (Cu), temperature, etc.) on the uptake process. Furthermore, this system provides a convenient method for characterizing the Cu-transport machinery in a static (non-growth) mode.

  4. Microfermentation Test For Identification Of Yeast

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mishra, S. K.; Molina, Thomas C.

    1995-01-01

    Microfermentation test developed as supplementary method for use in identifying yeasts, especially in clinical and environmental studies. In comparison with traditional fermentation tests, simpler and easier, and requiries less equipment, material, and laboratory space. Results obtained in days instead of weeks.

  5. Glucose-Induced Acidification in Yeast Cultures

    ERIC Educational Resources Information Center

    Myers, Alan; Bourn, Julia; Pool, Brynne

    2005-01-01

    We present an investigation (for A-level biology students and equivalent) into the mechanism of glucose-induced extracellular acidification in unbuffered yeast suspensions. The investigation is designed to enhance understanding of aspects of the A-level curriculum that relate to the phenomenon (notably glucose catabolism) and to develop key skills…

  6. Yeast and Egg Contamination of Shell Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry and eggs are often contaminated with microorganisms such as bacteria, yeasts, and molds. Bacteria such as Salmonella cause illness in human who eat eggs contaminated with them, particularly if the eggs are pooled, improperly refrigerated, and eaten raw or undercooked. Other bacteria such a...

  7. Visualization and Image Analysis of Yeast Cells.

    PubMed

    Bagley, Steve

    2016-01-01

    When converting real-life data via visualization to numbers and then onto statistics the whole system needs to be considered so that conversion from the analogue to the digital is accurate and repeatable. Here we describe the points to consider when approaching yeast cell analysis visualization, processing, and analysis of a population by screening techniques. PMID:26519322

  8. Actin and Endocytosis in Budding Yeast

    PubMed Central

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  9. The awesome power of yeast biochemical genomics.

    PubMed

    Carlson, M

    2000-02-01

    A new genomic strategy for identifying the gene encoding any biochemical activity has recently been developed, in which an array of individual yeast strains expressing a genomic set of open reading frames fused to glutathione S-transferase can be assayed for a biochemical activity of interest. Designated 'biochemical genomics', this approach represents an innovative application of genomic information. PMID:10652525

  10. Yeast Protein Production on Corn Cob Hydrolysates 

    E-print Network

    Unknown

    2011-08-17

    unknown function in yeast, but its human ortholog, NUAK1, has been implicated in oncogenesis. We initially examined the growth rate or the mean rate of increase in size of tda1 mutants. These preliminary studies showed that homozygous diploid tda1 mutants...

  11. Inventions on baker's yeast strains and specialty ingredients.

    PubMed

    Gélinas, Pierre

    2009-06-01

    Baker's yeast is one of the oldest food microbial starters. Between 1927 and 2008, 165 inventions on more than 337 baker's yeast strains were patented. The first generation of patented yeast strains claimed improved biomass yield at the yeast plant, higher gassing power in dough or better survival to drying to prepare active dry baker's yeast. Especially between 1980 and 1995, a major interest was given to strains for multiple bakery applications such as dough with variable sugar content and stored at refrigeration (cold) or freezing temperatures. During the same period, genetically engineered yeast strains became very popular but did not find applications in the baking industry. Since year 2000, patented baker's yeast strains claimed aroma, anti-moulding or nutritive properties to better meet the needs of the baking industry. In addition to patents on yeast strains, 47 patents were issued on baker's yeast specialty ingredients for niche markets. This review shows that patents on baker's yeast with improved characteristics such as aromatic or nutritive properties have regularly been issued since the 1920's. Overall, it also confirms recent interest for a very wide range of tailored-made yeast-based ingredients for bakery applications. PMID:20653532

  12. Molecular identification of yeasts associated with traditional Egyptian dairy products.

    PubMed

    El-Sharoud, W M; Belloch, C; Peris, D; Querol, A

    2009-09-01

    This study aimed to examine the diversity and ecology of yeasts associated with traditional Egyptian dairy products employing molecular techniques in yeast identification. A total of 120 samples of fresh and stored Domiati cheese, kariesh cheese, and "Matared" cream were collected from local markets and examined. Forty yeast isolates were cultured from these samples and identified using the restriction-fragment length polymorphism (RFLPs) of 5.8S-ITS rDNA region and sequencing of the domains D1 and D2 of the 26S rRNA gene. Yeasts were identified as Issatchenkia orientalis (13 isolates), Candida albicans (4 isolates), Clavispora lusitaniae (Candida lusitaniae) (9 isolates), Kodamaea ohmeri (Pichia ohmeri) (1 isolate), Kluyveromyces marxianus (6 isolates), and Candida catenulata (7 isolates). With the exception of C. lusitaniae, the D1/D2 26S rRNA gene sequences were 100% identical for the yeast isolates within the same species. Phylogenetic reconstruction of C. lusitaniae isolates grouped them into 3 distinguished clusters. Kariesh cheese was found to be the most diverse in its yeast floras and contained the highest total yeast count compared with other examined dairy products. This was linked to the acidic pH and lower salt content of this cheese, which favor the growth and survival of yeasts in foodstuffs. Stored Domiati cheese also contained diverse yeast species involving isolates of the pathogenic yeast C. albicans. This raises the possibility of dairy products being vehicles of transmission of pathogenic yeasts. PMID:19895478

  13. Intrinsic conformational properties of deoxyribonucleosides: implicated role for cytosine in the equilibrium among the A, B, and Z forms of DNA.

    PubMed Central

    Foloppe, N; MacKerell, A D

    1999-01-01

    Structural properties of biomolecules are dictated by their intrinsic conformational energetics in combination with environmental contributions. Calculations using high-level ab initio methods on the deoxyribonucleosides have been performed to investigate the influence of base on the intrinsic conformational energetics of nucleosides. Energy minima in the north and south ranges of the deoxyribose pseudorotation surfaces have been located, allowing characterization of the influence of base on the structures and energy differences between those minima. With all bases, chi values associated with the south energy minimum are lower than in canonical B-DNA, while chi values associated with the north energy minimum are close to those in canonical A-DNA. In deoxycytidine, chi adopts an A-DNA conformation in both the north and south energy minima. Energy differences between the A and B conformations of the nucleosides are <0.5 kcal/mol in the present calculations, except with deoxycytidine, where the A form is favored by 2.3 kcal/mol, leading the intrinsic conformational energetics of GC basepairs to favor the A form of DNA by 1.5 kcal/mol as compared with AT pairs. This indicates that the intrinsic conformational properties of cytosine at the nucleoside level contribute to the A form of DNA containing predominately GC-rich sequences. In the context of a B versus Z DNA equilibrium, deoxycytidine favors the Z form over the B form by 1.6 kcal/mol as compared with deoxythymidine, suggesting that the intrinsic conformational properties of cytosine also contribute to GC-rich sequences occurring in Z DNA with a higher frequency than AT-rich sequences. Results show that the east pseudorotation energy barrier involves a decrease in the furanose amplitude and is systematically lower than the inversion barrier, with the energy differences influenced by the base. Energy barriers going from the south (B form) sugar pucker to the east pseudorotation barrier are lower in pyrimidines as compared with purines, indicating that the intrinsic conformational properties associated with base may also influence the sugar pseudorotational population distribution seen in DNA crystal structures and the kinetics of B to A transitions. The present work provides evidence that base composition, in addition to base sequence, can influence DNA conformation. PMID:10354445

  14. Refinement of DNA structures through near-edge X-ray absorption fine structure analysis: applications on guanine and cytosine nucleobases, nucleosides, and nucleotides.

    PubMed

    Hua, Weijie; Gao, Bin; Li, Shuhua; Agren, Hans; Luo, Yi

    2010-10-21

    In this work we highlight the potential of NEXAFS—near-edge X-ray absorption fine structure—analysis to perform refinements of hydrogen-bond structure in DNA. For this purpose we have carried out first-principle calculations of the N1s NEXAFS spectra of the guanine and cytosine nucleobases and their tautomers, nucleosides, and nucleotides in the gas phase, as well as for five crystal structures of guanine, cytosine, or guanosine. The spectra all clearly show imine (?1*) and amine (?2*) nitrogen absorption bands with a characteristic energy difference (?). Among all of the intramolecule covalent connections, the tautomerism of hydrogens makes the largest influence, around ±0.4?0.5 eV change of ?, to the spectra due to a switch of single?double bonds. Deoxyribose and ribose sugars can cause at most 0.2 eV narrowing of ?, while the phosphate groups have nearly negligible effects on the spectra. Two kinds of intermolecule interactions are analyzed, the hydrogen bonds and the stacking effect, by comparing “compressed” and “expanded” models or by comparing models including or excluding the nearest stacking molecules. The shortening of hydrogen-bond length by 0.2?0.3 Å can result in the reduction of ? by 0.2?0.8 eV. This is because the hydrogen bonds make the electrons more delocalized, and the amine and imine nitrogens become less distinguishable. Moreover, the hydrogen bond has a different ability to influence the spectra of different crystals, with guanine crystals as the largest (change by 0.8 eV) and the guanosine crystal as the smallest (change by 0.2 eV). The stacking has negligible effects on the spectra in all studied systems. A comparison of guanosine to guanine crystals shows that the sugars in the crystal could create “blocks” in the ?-and hydrogen bonds network of bases and thus makes the imine and amine nitrogens more distinguishable with a larger ?. Our theoretical calculations offer a good match with experimental findings and explain earlier discrepancies in the NEXAFS analysis. PMID:20873844

  15. Coherent regulation in yeast cell cycle network

    E-print Network

    Nese Aral; Alkan Kabakcioglu

    2014-12-14

    We define a measure of coherent activity for gene regulatory networks, a property that reflects the unity of purpose between the regulatory agents with a common target. We propose that such harmonious regulatory action is desirable under a demand for energy efficiency and may be selected for under evolutionary pressures. We consider two recent models of the cell-cycle regulatory network of the budding yeast, Saccharomyces cerevisiae, as a case study and calculate their degree of coherence. A comparison with random networks of similar size and composition reveals that the yeast's cell-cycle regulation is wired to yield and exceptionally high level of coherent regulatory activity. We also investigate the mean degree of coherence as a function of the network size, connectivity and the fraction of repressory/activatory interactions.

  16. Label-Free Quantitative Proteomics in Yeast.

    PubMed

    Léger, Thibaut; Garcia, Camille; Videlier, Mathieu; Camadro, Jean-Michel

    2016-01-01

    Label-free bottom-up shotgun MS-based proteomics is an extremely powerful and simple tool to provide high quality quantitative analyses of the yeast proteome with only microgram amounts of total protein. Although the experimental design of this approach is rather straightforward and does not require the modification of growth conditions, proteins or peptides, several factors must be taken into account to benefit fully from the power of this method. Key factors include the choice of an appropriate method for the preparation of protein extracts, careful evaluation of the instrument design and available analytical capabilities, the choice of the quantification method (intensity-based vs. spectral count), and the proper manipulation of the selected quantification algorithm. The elaboration of this robust workflow for data acquisition, processing, and analysis provides unprecedented insight into the dynamics of the yeast proteome. PMID:26483028

  17. Uncommon opportunistic yeast bloodstream infections from Qatar.

    PubMed

    Taj-Aldeen, Saad J; AbdulWahab, Atqah; Kolecka, Anna; Deshmukh, Anand; Meis, Jacques F; Boekhout, Teun

    2014-07-01

    Eleven uncommon yeast species that are associated with high mortality rates irrespective of antifungal therapy were isolated from 17/187 (201 episodes) pediatric and elderly patients with fungemia from Qatar. The samples were taken over a 6-year period (January 2004-December 2010). Isolated species included Kluyveromyces marxianus, Lodderomyces elongisporus, Lindnera fabianii, Candida dubliniensis, Meyerozyma guilliermondii, Candida intermedia, Pichia kudriavzevii, Yarrowia lipolytica, Clavispora lusitaniae, Candida pararugosa, and Wickerhamomyces anomalus. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry provided correct identifications compared with molecular analysis testing of the same isolates. Low minimal inhibitory concentrations were found when isavuconazole and voriconazole were used for all uncommon yeast species evaluated in this study. Resistance to antifungal drugs was low and remained restricted to a few species. PMID:24934803

  18. Dynamic Trans Interactions in Yeast Chromosomes

    PubMed Central

    Mirkin, Ekaterina V.; Chang, Frederick S.; Kleckner, Nancy

    2013-01-01

    Three-dimensional organization of the genome is important for regulation of gene expression and maintenance of genomic stability. It also defines, and is defined by, contacts between different chromosomal loci. Interactions between loci positioned on different chromosomes, i.e. “trans” interactions are one type of such contacts. Here, we describe a case of inducible trans interaction in chromosomes of the budding yeast S. cerevisiae. Special DNA sequences, inserted in two ectopic chromosomal loci positioned in trans, pair with one another in an inducible manner. The spatial proximity diagnostic of pairing is observable by both chromosome capture analysis (3C) and epifluorescence microscopy in whole cells. Protein synthesis de novo appears to be required for this process. The three-dimensional organization of the yeast nucleus imposes a constraint on such pairing, presumably by dictating the probability with which the two sequences collide with one another. PMID:24098740

  19. Synchronization of the Budding Yeast Saccharomyces cerevisiae.

    PubMed

    Foltman, Magdalena; Molist, Iago; Sanchez-Diaz, Alberto

    2016-01-01

    A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle. PMID:26519319

  1. Game Dynamic Model for Yeast Development

    PubMed Central

    Huang, Yuanyuan; Wu, Zhijun

    2013-01-01

    Game theoretic models, along with replicator equations, have been applied successfully to the study of evolution of populations of competing species, including the growth of a population, the reaching of the population to an equilibrium state, and the evolutionary stability of the state. In this paper, we analyze a game model proposed by Gore et al. (2009) in their recent study on the co-development of two mixed yeast strains. We examine the mathematical properties of this model with varying experimental parameters. We simulate the growths of the yeast strains and compare them with the experimental results. We also compute and analyze the equilibrium state of the system and prove that it is asymptotically and evolutionarily stable. PMID:22434448

  2. The flavoproteome of the yeast Saccharomyces cerevisiae?

    PubMed Central

    Gudipati, Venugopal; Koch, Karin; Lienhart, Wolf-Dieter; Macheroux, Peter

    2014-01-01

    Genome analysis of the yeast Saccharomyces cerevisiae identified 68 genes encoding flavin-dependent proteins (1.1% of protein encoding genes) to which 47 distinct biochemical functions were assigned. The majority of flavoproteins operate in mitochondria where they participate in redox processes revolving around the transfer of electrons to the electron transport chain. In addition, we found that flavoenzymes play a central role in various aspects of iron metabolism, such as iron uptake, the biogenesis of iron–sulfur clusters and insertion of the heme cofactor into apocytochromes. Another important group of flavoenzymes is directly (Dus1-4p and Mto1p) or indirectly (Tyw1p) involved in reactions leading to tRNA-modifications. Despite the wealth of genetic information available for S. cerevisiae, we were surprised that many flavoproteins are poorly characterized biochemically. For example, the role of the yeast flavodoxins Pst2p, Rfs1p and Ycp4p with regard to their electron donor and acceptor is presently unknown. Similarly, the function of the heterodimeric Aim45p/Cir1p, which is homologous to the electron-transferring flavoproteins of higher eukaryotes, in electron transfer processes occurring in the mitochondrial matrix remains to be elucidated. This lack of information extends to the five membrane proteins involved in riboflavin or FAD transport as well as FMN and FAD homeostasis within the yeast cell. Nevertheless, several yeast flavoproteins, were identified as convenient model systems both in terms of their mechanism of action as well as structurally to improve our understanding of diseases caused by dysfunctional human flavoprotein orthologs. PMID:24373875

  3. Isolation of Yeast DNA Prepare in advance

    E-print Network

    Aris, John P.

    . · Powdered dry ice (2-4 lbs). 1. Collect 5-10 OD units of yeast cells (e.g., 5 ml saturated SD culture at OD. Vortexing too long will shear genomic DNA into small pieces. 5. Place tubes in powdered dry ice. Allow and place on ice. · TENTS buffer: 100 mM NaCl, 10 mM Tris-HCl, pH 8, 1 mM EDTA, 2% Triton X-100, 1% SDS

  4. On the modeling of endocytosis in yeast

    E-print Network

    T. Zhang; R. Sknepnek; M. J. Bowick; J. M. Schwarz

    2014-12-04

    The cell membrane deforms during endocytosis to surround extracellular material and draw it into the cell. Experiments on endocytosis in yeast all agree that (i) actin polymerizes into a network of filaments exerting active forces on the membrane to deform it and (ii) the large scale membrane deformation is tubular in shape. There are three competing proposals, in contrast, for precisely how the actin filament network organizes itself to drive the deformation. We use variational approaches and numerical simulations to address this competition by analyzing a meso-scale model of actin-mediated endocytosis in yeast. The meso-scale model breaks up the invagination process into three stages: (i) initiation, where clathrin interacts with the membrane via adaptor proteins, (ii) elongation, where the membrane is then further deformed by polymerizing actin filaments, followed by (iii) pinch-off. Our results suggest that the pinch-off mechanism may be assisted by a pearling-like instability. We rule out two of the three competing proposals for the organization of the actin filament network during the elongation stage. These two proposals could possibly be important in the pinch-off stage, however, where additional actin polymerization helps break off the vesicle. Implications and comparisons with earlier modeling of endocytosis in yeast are discussed.

  5. Engineered yeast for enhanced CO2 mineralization.

    PubMed

    Barbero, Roberto; Carnelli, Lino; Simon, Anna; Kao, Albert; Monforte, Alessandra d'Arminio; Riccò, Moreno; Bianchi, Daniele; Belcher, Angela

    2013-02-01

    In this work, a biologically catalyzed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was modeled and evaluated at an industrial scale. A yeast display system in Saccharomyces cerevisae was used to screen several carbonic anhydrase isoforms and mineralization peptides for their impact on CO2 hydration, CaCO3 mineralization, and particle settling rate. Enhanced rates for each of these steps in the CaCO3 mineralization process were confirmed using quantitative techniques in lab-scale measurements. The effect of these enhanced rates on the CO2 capture cost in an industrial scale CO2 mineralization process using coal fly ash as the CaO source was evaluated. The model predicts a process using bCA2- yeast and fly ash is ~10% more cost effective per ton of CO2 captured than a process with no biological molecules, a savings not realized by wild-type yeast and high-temperature stable recombinant CA2 alone or in combination. The levelized cost of electricity for a power plant using this process was calculated and scenarios in which this process compares favorably to CO2 capture by MEA absorption process are presented. PMID:25289021

  6. Metabolic Engineering of Sesquiterpene Metabolism in Yeast

    PubMed Central

    Takahashi, Shunji; Yeo, Yunsoo; Greenhagen, Bryan T.; McMullin, Tom; Song, Linsheng; Maurina-Brunker, Julie; Rosson, Reinhardt; Noel, Joseph P.; Chappell, Joe

    2010-01-01

    Terpenes are structurally diverse compounds that are of interest because of their biological activities and industrial value. These compounds consist of chirally rich hydrocarbon backbones derived from terpene synthases, which are subsequently decorated with hydroxyl substituents catalyzed by terpene hydroxylases. Availability of these compounds is, however, limited by intractable synthetic means and because they are produced in low amounts and as complex mixtures by natural sources. We engineered yeast for sesquiterpene accumulation by introducing genetic modifications that enable the yeast to accumulate high levels of the key intermediate farnesyl diphosphate (FPP). Co-expression of terpene synthase genes diverted the enlarged FPP pool to greater than 80 mg/L of sesquiterpene. Efficient coupling of terpene production with hydroxylation was also demonstrated by coordinate expression of terpene hydroxylase activity, yielding 50 mg/L each of hydrocarbon and hydroxylated products. These yeast now provide a convenient format for investigating catalytic coupling between terpene synthases and hydroxylases, as well as a platform for the industrial production of high value, single-entity and stereochemically unique terpenes. PMID:17013941

  7. Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Woolford, John L.; Baserga, Susan J.

    2013-01-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  8. Utilization of Yeasts in Biological Control Programs

    NASA Astrophysics Data System (ADS)

    Pimenta, R. S.; Morais, P. B.; Rosa, C. A.; Corrêa, A.

    In an agricultural environment, the native flora is replaced by a commercial crop and consequently the native microbiota also undergoes changes and, no seldom, species with antagonistic action against pathogens are eliminated. The lack of natural competitors may result in an outburst of diseases or herbivores that will feed upon the growing crop. Several strategies such as: chemical control, pathogen resistant cultivars and biological control may be used to avoid economical loses in the crop. Biological control protocols are based on the assumption that in an undisturbed environment outbursts of diseases are seldom due to the presence of naturally occurring antagonists and therefore, the introduction/augmentation of antagonism in a disturbed environment will control the disease. A successful agent for biological control has to hold several characteristics such: antagonism against pathogens, well know biology, specificity, be ease to produce and apply, be safe to the environment. Yeast may present all of those characteristics and are used in several biological control protocols. We will discuss in this chapter the basic concepts of biological control, the use of yeasts as biological control agents and describe the commercial products that use yeasts for biological control

  9. Mesoporous zirconium phosphate from yeast biotemplate.

    PubMed

    Tian, Xiuying; He, Wen; Cui, Jingjie; Zhang, Xudong; Zhou, Weijia; Yan, Shunpu; Sun, Xianan; Han, Xiuxiu; Han, Shanshan; Yue, Yuanzheng

    2010-03-01

    Mesoporous zirconium phosphate has attracted increasing interest due to its extraordinary functionalities. In particular, great progress has been made in the synthesis of mesoporous zirconium phosphate using traditional approaches. However, synthesis of mesoporous zirconium phosphate using yeast as biotemplate has not been well studied so far. Here, we show that zirconium phosphate with a mesoporous structure has been synthesized under ambient conditions using yeast as biotemplate. The derived samples were examined by X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), thermogravimetry/differential thermal analysis (TG/DTA), fourier transform infrared spectroscopy (FTIR), and N(2) adsorption-desorption isotherms. A biotemplated mesoporous zirconium phosphate, possessing a specific surface area (Brunauer-Emmett-Teller, BET) of 217.64 m(2) g(-1), a narrow pore distribution centered at 2.7 nm, and pore volume of 0.24 cm(3) g(-1), was obtained. We discover that amide carboxyl groups of yeast play an important role in the chemical interaction between protein molecules and zirconium phosphate nanoparticles. Interestingly, an air electrode fabricated using mesoporous zirconium phosphate exhibits remarkable electrocatalytic activity for oxygen reduction reaction (ORR), compared to that of the electrolytic manganese dioxide (EMD) air electrode employed commercially, which has important applications in fuel cell technologies. PMID:20031146

  10. Engineered yeast for enhanced CO2 mineralization†

    PubMed Central

    Barbero, Roberto; Carnelli, Lino; Simon, Anna; Kao, Albert; Monforte, Alessandra d’Arminio; Riccò, Moreno; Bianchi, Daniele; Belcher, Angela

    2014-01-01

    In this work, a biologically catalyzed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was modeled and evaluated at an industrial scale. A yeast display system in Saccharomyces cerevisae was used to screen several carbonic anhydrase isoforms and mineralization peptides for their impact on CO2 hydration, CaCO3 mineralization, and particle settling rate. Enhanced rates for each of these steps in the CaCO3 mineralization process were confirmed using quantitative techniques in lab-scale measurements. The effect of these enhanced rates on the CO2 capture cost in an industrial scale CO2 mineralization process using coal fly ash as the CaO source was evaluated. The model predicts a process using bCA2- yeast and fly ash is ~10% more cost effective per ton of CO2 captured than a process with no biological molecules, a savings not realized by wild-type yeast and high-temperature stable recombinant CA2 alone or in combination. The levelized cost of electricity for a power plant using this process was calculated and scenarios in which this process compares favorably to CO2 capture by MEA absorption process are presented. PMID:25289021

  11. Structural evidence for the partially oxidized dipyrromethene and dipyrromethanone forms of the cofactor of porphobilinogen deaminase: structures of the Bacillus megaterium enzyme at near-atomic resolution

    PubMed Central

    Azim, N.; Deery, E.; Warren, M. J.; Wolfenden, B. A. A.; Erskine, P.; Cooper, J. B.; Coker, A.; Wood, S. P.; Akhtar, M.

    2014-01-01

    The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor, which is covalently linked by a thioether bridge to an invariant cysteine residue (Cys241 in the Bacillus megaterium enzyme). The cofactor is extended during the reaction by the sequential addition of the four substrate molecules, which are released as a linear tetrapyrrole product. Expression in Escherichia coli of a His-tagged form of B. megaterium PBGD has permitted the X-ray analysis of the enzyme from this species at high resolution, showing that the cofactor becomes progressively oxidized to the dipyrromethene and dipyrromethanone forms. In previously solved PBGD structures, the oxidized cofactor is in the dipyromethenone form, in which both pyrrole rings are approximately coplanar. In contrast, the oxidized cofactor in the B. megaterium enzyme appears to be in the dipyrromethanone form, in which the C atom at the bridging ?-position of the outer pyrrole ring is very clearly in a tetrahedral configuration. It is suggested that the pink colour of the freshly purified protein is owing to the presence of the dipyrromethene form of the cofactor which, in the structure reported here, adopts the same conformation as the fully reduced dipyrromethane form. PMID:24598743

  12. 5' flanking sequences of the murine adenosine deaminase gene direct expression of a reporter gene to specific prenatal and postnatal tissues in transgenic mice.

    PubMed

    Winston, J H; Hanten, G R; Overbeek, P A; Kellems, R E

    1992-07-01

    Adenosine deaminase (ADA), an enzyme of purine metabolism, is highly expressed in four tissues of the mouse: the maternal decidua, the fetal placenta, the keratinizing epithelium of the upper alimentary tract (tongue, esophagus, and forestomach), and the absorptive epithelium of the proximal small intestine. ADA is produced at relatively low levels in all other tissues. To identify genetic elements that direct appropriate prenatal and postnatal expression of the ADA gene, a segment of DNA including the ADA promoter and 6.4 kilobases of the adjacent 5' flanking region was tested for the ability to direct the expression of a reporter gene in transgenic mice. In seven lines of transgenic mice studied, this construct directed high levels of reporter gene expression in the placenta and forestomach and exhibited correct developmental regulation in these tissues. This construct failed to direct significant reporter gene expression to either the maternal decidua or the proximal small intestine. Thus, different gene regulatory elements are required to target high expression to the four tissues characterized by high levels of ADA. PMID:1618849

  13. The use of enzyme therapy to regulate the metabolic and phenotypic consequences of adenosine deaminase deficiency in mice. Differential impact on pulmonary and immunologic abnormalities.

    PubMed

    Blackburn, M R; Aldrich, M; Volmer, J B; Chen, W; Zhong, H; Kelly, S; Hershfield, M S; Datta, S K; Kellems, R E

    2000-10-13

    Adenosine deaminase (ADA) deficiency results in a combined immunodeficiency brought about by the immunotoxic properties of elevated ADA substrates. Additional non-lymphoid abnormalities are associated with ADA deficiency, however, little is known about how these relate to the metabolic consequences of ADA deficiency. ADA-deficient mice develop a combined immunodeficiency as well as severe pulmonary insufficiency. ADA enzyme therapy was used to examine the relative impact of ADA substrate elevations on these phenotypes. A "low-dose" enzyme therapy protocol prevented the pulmonary phenotype seen in ADA-deficient mice, but did little to improve their immune status. This treatment protocol reduced metabolic disturbances in the circulation and lung, but not in the thymus and spleen. A "high-dose" enzyme therapy protocol resulted in decreased metabolic disturbances in the thymus and spleen and was associated with improvement in immune status. These findings suggest that the pulmonary and immune phenotypes are separable and are related to the severity of metabolic disturbances in these tissues. This model will be useful in examining the efficacy of ADA enzyme therapy and studying the mechanisms underlying the immunodeficiency and pulmonary phenotypes associated with ADA deficiency. PMID:10908569

  14. An intron 1 regulatory region from the murine adenosine deaminase gene can activate heterologous promoters for ubiquitous expression in transgenic mice.

    PubMed

    Winston, J H; Hong, L; Datta, S K; Kellems, R E

    1996-07-01

    Ubiquitously expressed genes contain regulatory features which allow expression in virtually all cell types. In an effort to understand the molecular basis for this regulatory feature, the chromatin structure of the murine adenosine deaminase gene was examined by DNase I digestion in nuclei of several tissues. The promoter contained a strong hypersensitive site in all tissues examined, including those with very high and very low levels of ADA expression. Transgenic mouse studies revealed that a 3.3 kb EcoRI (3.3EE) fragment from intron I was required to generate a strong promoter DNase I hypersensitive site, and to produce ubiquitous expression. The 3.3EE fragment also contained a thymic enhancer activity which mapped to sequences conserved with the human ADA gene T-lymphocyte enhancer. Mutational analysis indicated that ubiquitous expression was not dependent on the presence of a functional thymic enhancer. Both the thymic enhancer and the ubiquitous activator within the 3.3EE fragment functioned with heterologous promoters in transgenic mice. PMID:9000171

  15. High-resolution melting analysis of sequence variations in the cytidine deaminase gene (CDA) in patients with cancer treated with gemcitabine.

    PubMed

    Raynal, Caroline; Ciccolini, Joseph; Mercier, Cédric; Boyer, Jean-Christophe; Polge, Anne; Lallemant, Benjamin; Mouzat, Kévin; Lumbroso, Serge; Brouillet, Jean-Paul; Evrard, Alexandre

    2010-02-01

    Gemcitabine (2',2'-difluorodeoxycytidine) is a major antimetabolite cytotoxic drug with a wide spectrum of activity against solid tumors. Hepatic elimination of gemcitabine depends on a catabolic pathway through a deamination step driven by the enzyme cytidine deaminase (CDA). Severe hematologic toxicity to gemcitabine was reported in patients harboring genetic polymorphisms in CDA gene. High-resolution melting (HRM) analysis of polymerase chain reaction amplicon emerges today as a powerful technique for both genotyping and gene scanning strategies. In this study, 46 DNA samples from gemcitabine-treated patients were subjected to HRM analysis on a LightCycler 480 platform. Residual serum CDA activity was assayed as a surrogate marker for the overall functionality of this enzyme. Genotyping of three well-described single nucleotide polymorphisms in coding region (c.79A>C, c.208G>A and c.435C>T) was successfully achieved by HRM analysis of small polymerase chain reaction fragments, whereas unknown single nucleotide polymorphisms were searched by a gene scanning strategy with longer amplicons (up to 622 bp). The gene scanning strategy allowed us to find a new intronic mutation c.246+37G>A in a female patient displaying marked CDA deficiency and who had an extreme toxic reaction with a fatal outcome to gemcitabine treatment. Our work demonstrates that HRM-based methods, owing to their simplicity, reliability, and speed, are useful tools for diagnosis of CDA deficiency and could be of interest for personalized medicine. PMID:20010457

  16. Speckled-like Pattern in the Germinal Center (SLIP-GC), a Nuclear GTPase Expressed in Activation-induced Deaminase-expressing Lymphomas and Germinal Center B Cells*

    PubMed Central

    Richter, Kathleen; Brar, Sukhdev; Ray, Madhumita; Pisitkun, Prapaporn; Bolland, Silvia; Verkoczy, Laurent; Diaz, Marilyn

    2009-01-01

    We identified a novel GTPase, SLIP-GC, with expression limited to a few tissues, in particular germinal center B cells. It lacks homology to any known proteins, indicating that it may belong to a novel family of GTPases. SLIP-GC is expressed in germinal center B cells and in lymphomas derived from germinal center B cells such as large diffuse B cell lymphomas. In cell lines, SLIP-GC is expressed in lymphomas that express activation-induced deaminase (AID) and that likely undergo somatic hypermutation. SLIP-GC is a nuclear protein, and it localizes to replication factories. Reduction of SLIP-GC levels in the Burkitt lymphoma cell line Raji and in non-Hodgkin lymphoma cell lines resulted in an increase in DNA breaks and apoptosis that was AID-dependent, as simultaneous reduction of AID abrogated the deleterious effects of SLIP-GC reduction. These results strongly suggest that SLIP-GC is a replication-related protein in germinal center B cells whose reduction is toxic to cells through an AID-dependent mechanism. PMID:19734146

  17. G22A Polymorphism of Adenosine Deaminase and its Association with Biochemical Characteristics of Gestational Diabetes Mellitus in an Iranian Population

    PubMed Central

    Takhshid, Mohammad Ali; Zahediannejad, Zinab; Aboualizadeh, Farzaneh; Moezzi, Leili; Ranjbaran, Reza

    2015-01-01

    Adenosine deaminase (ADA) is an important regulator of insulin action. The single nucleotide polymorphism (SNP) G22A in the ADA gene decreases enzymatic activity of ADA. The aim of this study was to investigate the relationship between the SNP G22A and blood glycemic control, insulin resistance, and obesity of gestational diabetes mellitus (GDM) patients in an Iranian population. SNP G22A was determined in women with GDM (N=70) and healthy pregnant women (control, N=70) using polymerase chain reaction-restriction fragment length polymorphism. Fasting plasma glucose (FPG), hemoglobin A1C (HbA1c), plasma insulin levels and plasma lipids were measured using commercial kits. Homeostasis model of assessment for insulin resistance (HOMA-IR) was calculated. The distribution of genotypes and alleles among GDM patients was similar to that of the control group. FPG and HbA1c were significantly higher in GDM patients with GG genotype compared with GDM patients with GA+AA genotype and non-GDM patients. The frequency of GG genotype was significantly higher in obese GDM patients compared to lean GDM patients. The SNP G22A in the ADA gene was not associated with the risk of GDM in our population. GG genotype was associated with poor glycemic control and obesity in GDM patients. PMID:25821298

  18. One-step biosynthesis of ?-ketoisocaproate from l-leucine by an Escherichia coli whole-cell biocatalyst expressing an l-amino acid deaminase from Proteus vulgaris

    PubMed Central

    Song, Yang; Li, Jianghua; Shin, Hyun-dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-01-01

    This work aimed to develop a whole-cell biotransformation process for the production of ?-ketoisocaproate from L-leucine. A recombinant Escherichia coli strain was constructed by expressing an L-amino acid deaminase from Proteus vulgaris. To enhance ?-ketoisocaproate production, the reaction conditions were optimized as follows: whole-cell biocatalyst 0.8?g/L, leucine concentration 13.1?g/L, temperature 35?°C, pH 7.5, and reaction time 20?h. Under the above conditions, the ?-ketoisocaproate titer reached 12.7?g/L with a leucine conversion rate of 97.8%. In addition, different leucine feeding strategies were examined to increase the ?-ketoisocaproate titer. When 13.1?g/L leucine was added at 2-h intervals (from 0 to 22?h, 12 addition times), the ?-ketoisocaproate titer reached 69.1?g/L, while the leucine conversion rate decreased to 50.3%. We have developed an effective process for the biotechnological production of ?-ketoisocaproate that is more environmentally friendly than the traditional petrochemical synthesis approach. PMID:26217895

  19. Activity of cholinesterases, pyruvate kinase and adenosine deaminase in rats experimentally infected by Fasciola hepatica: Influences of these enzymes on inflammatory response and pathological findings.

    PubMed

    Baldissera, Matheus D; Bottari, Nathieli B; Mendes, Ricardo E; Schwertz, Claiton I; Lucca, Neuber J; Dalenogare, Diessica; Bochi, Guilherme V; Moresco, Rafael N; Morsch, Vera M; Schetinger, Maria R C; Rech, Virginia C; Jaques, Jeandre A; Da Silva, Aleksandro S

    2015-11-01

    The aim of this study was to investigate acetylcholinesterase (AChE) in total blood and liver tissue; butyrylcholinesterase (BChE) in serum and liver tissue; adenosine deaminase (ADA) in serum and liver tissue; and pyruvate kinase (PK) in liver tissue of rats experimentally infected by Fasciola hepatica. Animals were divided into two groups with 12 animals each, as follows: group A (uninfected) and group B (infected). Samples were collected at 20 (A1 and B1;n=6 each) and 150 (A2 and B2; n=6 each) days post-infection (PI). Infected animals showed an increase in AChE activity in whole blood and a decrease in AChE activity in liver homogenates (P<0.05) at 20 and 150 days PI. BChE and PK activities were decreased (P<0.05) in serum and liver homogenates of infected animals at 150 days PI. ADA activity was decreased in serum at 20 and 150 days PI, while in liver homogenates it was only decreased at 150 days PI (P<0.05). Aspartate aminotransferase and alanine aminotransferase activities in serum were increased (P<0.05), while concentrations of total protein and albumin were decreased (P<0.05) when compared to control. The histological analysis revealed fibrous perihepatitis and necrosis. Therefore, we conclude that the liver fluke is associated with cholinergic and purinergic dysfunctions, which in turn may influence the pathogenesis of the disease. PMID:26452485

  20. Structures of substrate- and inhibitor-bound adenosine deaminase from a human malaria parasite show a dramatic conformational change and shed light on drug selectivity.

    PubMed

    Larson, Eric T; Deng, Wei; Krumm, Brian E; Napuli, Alberto; Mueller, Natascha; Van Voorhis, Wesley C; Buckner, Frederick S; Fan, Erkang; Lauricella, Angela; DeTitta, George; Luft, Joseph; Zucker, Frank; Hol, Wim G J; Verlinde, Christophe L M J; Merritt, Ethan A

    2008-09-12

    Plasmodium and other apicomplexan parasites are deficient in purine biosynthesis, relying instead on the salvage of purines from their host environment. Therefore, interference with the purine salvage pathway is an attractive therapeutic target. The plasmodial enzyme adenosine deaminase (ADA) plays a central role in purine salvage and, unlike mammalian ADA homologs, has a further secondary role in methylthiopurine recycling. For this reason, plasmodial ADA accepts a wider range of substrates, as it is responsible for deamination of both adenosine and 5'-methylthioadenosine. The latter substrate is not accepted by mammalian ADA homologs. The structural basis for this natural difference in specificity between plasmodial and mammalian ADA has not been well understood. We now report crystal structures of Plasmodium vivax ADA in complex with adenosine, guanosine, and the picomolar inhibitor 2'-deoxycoformycin. These structures highlight a drastic conformational change in plasmodial ADA upon substrate binding that has not been observed for mammalian ADA enzymes. Further, these complexes illuminate the structural basis for the differential substrate specificity and potential drug selectivity between mammalian and parasite enzymes. PMID:18602399