Sample records for yeast dbf4 sequences

  1. A Dbf4p BRCA1 C-Terminal-Like Domain Required for the Response to Replication Fork Arrest in Budding Yeast

    PubMed Central

    Gabrielse, Carrie; Miller, Charles T.; McConnell, Kristopher H.; DeWard, Aaron; Fox, Catherine A.; Weinreich, Michael

    2006-01-01

    Dbf4p is an essential regulatory subunit of the Cdc7p kinase required for the initiation of DNA replication. Cdc7p and Dbf4p orthologs have also been shown to function in the response to DNA damage. A previous Dbf4p multiple sequence alignment identified a conserved ∼40-residue N-terminal region with similarity to the BRCA1 C-terminal (BRCT) motif called “motif N.” BRCT motifs encode ∼100-amino-acid domains involved in the DNA damage response. We have identified an expanded and conserved ∼100-residue N-terminal region of Dbf4p that includes motif N but is capable of encoding a single BRCT-like domain. Dbf4p orthologs diverge from the BRCT motif at the C terminus but may encode a similar secondary structure in this region. We have therefore called this the BRCT and DBF4 similarity (BRDF) motif. The principal role of this Dbf4p motif was in the response to replication fork (RF) arrest; however, it was not required for cell cycle progression, activation of Cdc7p kinase activity, or interaction with the origin recognition complex (ORC) postulated to recruit Cdc7p–Dbf4p to origins. Rad53p likely directly phosphorylated Dbf4p in response to RF arrest and Dbf4p was required for Rad53p abundance. Rad53p and Dbf4p therefore cooperated to coordinate a robust cellular response to RF arrest. PMID:16547092

  2. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae.

    PubMed

    Chen, Ying-Chou; Kenworthy, Jessica; Gabrielse, Carrie; Hänni, Christine; Zegerman, Philip; Weinreich, Michael

    2013-06-01

    Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53-Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4-Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53-Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity.

  3. DNA Replication Checkpoint Signaling Depends on a Rad53–Dbf4 N-Terminal Interaction in Saccharomyces cerevisiae

    PubMed Central

    Chen, Ying-Chou; Kenworthy, Jessica; Gabrielse, Carrie; Hänni, Christine; Zegerman, Philip; Weinreich, Michael

    2013-01-01

    Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53–Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4–Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53–Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity. PMID:23564203

  4. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway.

    PubMed

    Kizis, Dimosthenis; Pagès, Montserrat

    2002-06-01

    The abscisic acid-responsive gene rab17 of maize is expressed during late embryogenesis, and is induced by ABA and desiccation in embryo and vegetative tissues. ABRE and DRE cis-elements are involved in regulation of the gene by ABA and drought. Using yeast one-hybrid screening, we isolated two cDNAs encoding two new DRE-binding proteins, designated DBF1 and DBF2, that are members of the AP2/EREBP transcription factor family. Analysis of mRNA accumulation profiles showed that DBF1 is induced during maize embryogenesis and after desiccation, NaCl and ABA treatments in plant seedlings, whereas the DBF2 mRNA is not induced. DNA-binding preferences of DBFs were analysed by electrophoretic mobility shift assays, and showed that both DBF1 and DBF2 bound to the wild-type DRE2 element, but not to the DRE2 mutant or to the DRE1 element which differs only in a single nucleotide. Transactivation activity using particle bombardment showed that DBF1 functioned as activator of DRE2-dependent transcription of rab17 promoter by ABA, whereas DBF2 overexpression had a repression action downregulating not only the basal promoter activity, but also the ABA effect. These results show that ABA plays a role in the regulation of DBF activity, and suggests the existence of an ABA-dependent pathway for the regulation of genes through the C-repeat/DRE element.

  5. Concerted activities of Mcm4, Sld3, and Dbf4 in control of origin activation and DNA replication fork progression

    PubMed Central

    Sheu, Yi-Jun; Kinney, Justin B.; Stillman, Bruce

    2016-01-01

    Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins in a temporally specific manner during S phase. The replicative helicase Mcm2-7 functions in both initiation and fork progression and thus is an important target of regulation. Mcm4, a helicase subunit, possesses an unstructured regulatory domain that mediates control from multiple kinase signaling pathways, including the Dbf4-dependent Cdc7 kinase (DDK). Following replication stress in S phase, Dbf4 and Sld3, an initiation factor and essential target of Cyclin-Dependent Kinase (CDK), are targets of the checkpoint kinase Rad53 for inhibition of initiation from origins that have yet to be activated, so-called late origins. Here, whole-genome DNA replication profile analysis is used to access under various conditions the effect of mutations that alter the Mcm4 regulatory domain and the Rad53 targets, Sld3 and Dbf4. Late origin firing occurs under genotoxic stress when the controls on Mcm4, Sld3, and Dbf4 are simultaneously eliminated. The regulatory domain of Mcm4 plays an important role in the timing of late origin firing, both in an unperturbed S phase and in dNTP limitation. Furthermore, checkpoint control of Sld3 impacts fork progression under replication stress. This effect is parallel to the role of the Mcm4 regulatory domain in monitoring fork progression. Hypomorph mutations in sld3 are suppressed by a mcm4 regulatory domain mutation. Thus, in response to cellular conditions, the functions executed by Sld3, Dbf4, and the regulatory domain of Mcm4 intersect to control origin firing and replication fork progression, thereby ensuring genome stability. PMID:26733669

  6. Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae.

    PubMed

    Hoang, Margaret L; Leon, Ronald P; Pessoa-Brandao, Luis; Hunt, Sonia; Raghuraman, M K; Fangman, Walton L; Brewer, Bonita J; Sclafani, Robert A

    2007-11-01

    Eukaryotic chromosomal replication is a complicated process with many origins firing at different efficiencies and times during S phase. Prereplication complexes are assembled on all origins in G(1) phase, and yet only a subset of complexes is activated during S phase by DDK (for Dbf4-dependent kinase) (Cdc7-Dbf4). The yeast mcm5-bob1 (P83L) mutation bypasses DDK but results in reduced intrinsic firing efficiency at 11 endogenous origins and at origins located on minichromosomes. Origin efficiency may result from Mcm5 protein assuming an altered conformation, as predicted from the atomic structure of an archaeal MCM (for minichromosome maintenance) homologue. Similarly, an intragenic mutation in a residue predicted to interact with P83L suppresses the mcm5-bob1 bypass phenotype. We propose DDK phosphorylation of the MCM complex normally results in a single, highly active conformation of Mcm5, whereas the mcm5-bob1 mutation produces a number of conformations, only one of which is permissive for origin activation. Random adoption of these alternate states by the mcm5-bob1 protein can explain both how origin firing occurs independently of DDK and why origin efficiency is reduced. Because similar mutations in mcm2 and mcm4 cannot bypass DDK, Mcm5 protein may be a unique Mcm protein that is the final target of DDK regulation.

  7. Interactions of the Human MCM-BP Protein with MCM Complex Components and Dbf4

    PubMed Central

    Nguyen, Tin; Jagannathan, Madhav; Shire, Kathy; Frappier, Lori

    2012-01-01

    MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK. PMID:22540012

  8. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    PubMed

    Nguyen, Tin; Jagannathan, Madhav; Shire, Kathy; Frappier, Lori

    2012-01-01

    MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  9. Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis.

    PubMed

    Princz, Lissa N; Wild, Philipp; Bittmann, Julia; Aguado, F Javier; Blanco, Miguel G; Matos, Joao; Pfander, Boris

    2017-03-01

    DNA repair by homologous recombination is under stringent cell cycle control. This includes the last step of the reaction, disentanglement of DNA joint molecules (JMs). Previous work has established that JM resolving nucleases are activated specifically at the onset of mitosis. In case of budding yeast Mus81-Mms4, this cell cycle stage-specific activation is known to depend on phosphorylation by CDK and Cdc5 kinases. Here, we show that a third cell cycle kinase, Cdc7-Dbf4 (DDK), targets Mus81-Mms4 in conjunction with Cdc5-both kinases bind to as well as phosphorylate Mus81-Mms4 in an interdependent manner. Moreover, DDK-mediated phosphorylation of Mms4 is strictly required for Mus81 activation in mitosis, establishing DDK as a novel regulator of homologous recombination. The scaffold protein Rtt107, which binds the Mus81-Mms4 complex, interacts with Cdc7 and thereby targets DDK and Cdc5 to the complex enabling full Mus81 activation. Therefore, Mus81 activation in mitosis involves at least three cell cycle kinases, CDK, Cdc5 and DDK Furthermore, tethering of the kinases in a stable complex with Mus81 is critical for efficient JM resolution. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  10. Array signal recovery algorithm for a single-RF-channel DBF array

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Wu, Wen; Fang, Da Gang

    2016-12-01

    An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of numerical simulations.

  11. A high-resolution genetic, physical, and comparative gene map of the doublefoot (Dbf) region of mouse chromosome 1 and the region of conserved synteny on human chromosome 2q35.

    PubMed

    Hayes, C; Rump, A; Cadman, M R; Harrison, M; Evans, E P; Lyon, M F; Morriss-Kay, G M; Rosenthal, A; Brown, S D

    2001-12-01

    The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0.4-cM (+/-0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.

  12. Recognition of Yeast Species from Gene Sequence Comparisons

    USDA-ARS?s Scientific Manuscript database

    This review discusses recognition of yeast species from gene sequence comparisons, which have been responsible for doubling the number of known yeasts over the past decade. The resolution provided by various single gene sequences is examined for both ascomycetous and basidiomycetous species, and th...

  13. The product of the Saccharomyces cerevisiae cell cycle gene DBF2 has homology with protein kinases and is periodically expressed in the cell cycle.

    PubMed Central

    Johnston, L H; Eberly, S L; Chapman, J W; Araki, H; Sugino, A

    1990-01-01

    Several Saccharomyces cerevisiae dbf mutants defective in DNA synthesis have been described previously. In this paper, one of them, dbf2, is characterized in detail. The DBF2 gene has been cloned and mapped, and its nucleotide sequence has been determined. This process has identified an open reading frame capable of encoding a protein of molecular weight 64,883 (561 amino acids). The deduced amino acid sequence contains all 11 conserved domains found in various protein kinases. DBF2 was periodically expressed in the cell cycle at a time that clearly differed from the time of expression of either the histone H2A or DNA polymerase I gene. Its first function was completed very near to initiation of DNA synthesis. However, DNA synthesis in the mutant was only delayed at 37 degrees C, and the cells blocked in nuclear division. Consistent with this finding, the execution point occurred about 1 h after DNA synthesis, and the nuclear morphology of the mutant at the restrictive temperature was that of cells blocked in late nuclear division. DBF2 is therefore likely to encode a protein kinase that may function in initiation of DNA synthesis and also in late nuclear division. Images PMID:2181271

  14. Hierarchical MFMO Circuit Modules for an Energy-Efficient SDR DBF

    NASA Astrophysics Data System (ADS)

    Mar, Jeich; Kuo, Chi-Cheng; Wu, Shin-Ru; Lin, You-Rong

    The hierarchical multi-function matrix operation (MFMO) circuit modules are designed using coordinate rotations digital computer (CORDIC) algorithm for realizing the intensive computation of matrix operations. The paper emphasizes that the designed hierarchical MFMO circuit modules can be used to develop a power-efficient software-defined radio (SDR) digital beamformer (DBF). The formulas of the processing time for the scalable MFMO circuit modules implemented in field programmable gate array (FPGA) are derived to allocate the proper logic resources for the hardware reconfiguration. The hierarchical MFMO circuit modules are scalable to the changing number of array branches employed for the SDR DBF to achieve the purpose of power saving. The efficient reuse of the common MFMO circuit modules in the SDR DBF can also lead to energy reduction. Finally, the power dissipation and reconfiguration function in the different modes of the SDR DBF are observed from the experiment results.

  15. Genome sequence of the oleaginous yeast Rhodotorula toruloides strain CGMCC 2.1609.

    PubMed

    Sambles, Christine; Middelhaufe, Sabine; Soanes, Darren; Kolak, Dagmara; Lux, Thomas; Moore, Karen; Matoušková, Petra; Parker, David; Lee, Rob; Love, John; Aves, Stephen J

    2017-09-01

    Most eukaryotic oleaginous species are yeasts and among them the basidiomycete red yeast, Rhodotorula ( Rhodosporidium ) toruloides (Pucciniomycotina) is known to produce high quantities of lipids when grown in nitrogen-limiting media, and has potential for biodiesel production. The genome of the CGMCC 2.1609 strain of this oleaginous red yeast was sequenced using a hybrid of Roche 454 and Illumina technology generating 13 × coverage. The de novo assembly was carried out using MIRA and scaffolded using MAQ and BAMBUS. The sequencing and assembly resulted in 365 scaffolds with total genome size of 33.4 Mb. The complete genome sequence of this strain was deposited in GenBank and the accession number is LKER00000000. The annotation is available on Figshare (doi:10.6084/m9.figshare.4754251).

  16. A Novel Non-canonical Forkhead-associated (FHA) Domain-binding Interface Mediates the Interaction between Rad53 and Dbf4 Proteins*

    PubMed Central

    Matthews, Lindsay A.; Selvaratnam, Rajeevan; Jones, Darryl R.; Akimoto, Madoka; McConkey, Brendan J.; Melacini, Giuseppe; Duncker, Bernard P.; Guarné, Alba

    2014-01-01

    Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains are overrepresented in DNA damage and replication stress response proteins. They function primarily as phosphoepitope recognition modules but can also mediate non-canonical interactions. The latter are rare, and only a few have been studied at a molecular level. We have identified a crucial non-canonical interaction between the N-terminal FHA1 domain of the checkpoint effector kinase Rad53 and the BRCT domain of the regulatory subunit of the Dbf4-dependent kinase that is critical to suppress late origin firing and to stabilize stalled forks during replication stress. The Rad53-Dbf4 interaction is phosphorylation-independent and involves a novel non-canonical interface on the FHA1 domain. Mutations within this surface result in hypersensitivity to genotoxic stress. Importantly, this surface is not conserved in the FHA2 domain of Rad53, suggesting that the FHA domains of Rad53 gain specificity by engaging additional interaction interfaces beyond their phosphoepitope-binding site. In general, our results point to FHA domains functioning as complex logic gates rather than mere phosphoepitope-targeting modules. PMID:24285546

  17. MIPS: a database for protein sequences, homology data and yeast genome information.

    PubMed Central

    Mewes, H W; Albermann, K; Heumann, K; Liebl, S; Pfeiffer, F

    1997-01-01

    The MIPS group (Martinsried Institute for Protein Sequences) at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, collects, processes and distributes protein sequence data within the framework of the tripartite association of the PIR-International Protein Sequence Database (,). MIPS contributes nearly 50% of the data input to the PIR-International Protein Sequence Database. The database is distributed on CD-ROM together with PATCHX, an exhaustive supplement of unique, unverified protein sequences from external sources compiled by MIPS. Through its WWW server (http://www.mips.biochem.mpg.de/ ) MIPS permits internet access to sequence databases, homology data and to yeast genome information. (i) Sequence similarity results from the FASTA program () are stored in the FASTA database for all proteins from PIR-International and PATCHX. The database is dynamically maintained and permits instant access to FASTA results. (ii) Starting with FASTA database queries, proteins have been classified into families and superfamilies (PROT-FAM). (iii) The HPT (hashed position tree) data structure () developed at MIPS is a new approach for rapid sequence and pattern searching. (iv) MIPS provides access to the sequence and annotation of the complete yeast genome (), the functional classification of yeast genes (FunCat) and its graphical display, the 'Genome Browser' (). A CD-ROM based on the JAVA programming language providing dynamic interactive access to the yeast genome and the related protein sequences has been compiled and is available on request. PMID:9016498

  18. Long-read sequencing data analysis for yeasts.

    PubMed

    Yue, Jia-Xing; Liti, Gianni

    2018-06-01

    Long-read sequencing technologies have become increasingly popular due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast Saccharomyces cerevisiae has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here, we present a modular computational framework named long-read sequencing data analysis for yeasts (LRSDAY), the first one-stop solution that streamlines this process. Starting from the raw sequencing reads, LRSDAY can produce chromosome-level genome assembly and comprehensive genome annotation in a highly automated manner with minimal manual intervention, which is not possible using any alternative tool available to date. The annotated genomic features include centromeres, protein-coding genes, tRNAs, transposable elements (TEs), and telomere-associated elements. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable to virtually any eukaryotic organism. When applying LRSDAY to an S. cerevisiae strain, it takes ∼41 h to generate a complete and well-annotated genome from ∼100× Pacific Biosciences (PacBio) running the basic workflow with four threads. Basic experience working within the Linux command-line environment is recommended for carrying out the analysis using LRSDAY.

  19. Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation.

    PubMed

    Deegan, Tom D; Yeeles, Joseph Tp; Diffley, John Fx

    2016-05-02

    The initiation of eukaryotic DNA replication requires the assembly of active CMG (Cdc45-MCM-GINS) helicases at replication origins by a set of conserved and essential firing factors. This process is controlled during the cell cycle by cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), and in response to DNA damage by the checkpoint kinase Rad53/Chk1. Here we show that Sld3, previously shown to be an essential CDK and Rad53 substrate, is recruited to the inactive MCM double hexamer in a DDK-dependent manner. Sld3 binds specifically to DDK-phosphorylated peptides from two MCM subunits (Mcm4, 6) and then recruits Cdc45. MCM mutants that cannot bind Sld3 or Sld3 mutants that cannot bind phospho-MCM or Cdc45 do not support replication. Moreover, phosphomimicking mutants in Mcm4 and Mcm6 bind Sld3 without DDK and facilitate DDK-independent replication. Thus, Sld3 is an essential "reader" of DDK phosphorylation, integrating signals from three distinct protein kinase pathways to coordinate DNA replication during S phase. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae.

    PubMed

    Yofe, Ido; Schuldiner, Maya

    2014-02-01

    The budding yeast Saccharomyces cerevisiae is a key model organism of functional genomics, due to its ease and speed of genetic manipulations. In fact, in this yeast, the requirement for homologous sequences for recombination purposes is so small that 40 base pairs (bp) are sufficient. Hence, an enormous variety of genetic manipulations can be performed by simply planning primers with the correct homology, using a defined set of transformation plasmids. Although designing primers for yeast transformations and for the verification of their correct insertion is a common task in all yeast laboratories, primer planning is usually done manually and a tool that would enable easy, automated primer planning for the yeast research community is still lacking. Here we introduce Primers-4-Yeast, a web tool that allows primers to be designed in batches for S. cerevisiae gene-targeting transformations, and for the validation of correct insertions. This novel tool enables fast, automated, accurate primer planning for large sets of genes, introduces consistency in primer planning and is therefore suggested to serve as a standard in yeast research. Primers-4-Yeast is available at: http://www.weizmann.ac.il/Primers-4-Yeast Copyright © 2013 John Wiley & Sons, Ltd.

  1. Genome sequence of the lager brewing yeast, an interspecies hybrid.

    PubMed

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-04-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.

  2. Genome Sequence of the Lager Brewing Yeast, an Interspecies Hybrid

    PubMed Central

    Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko

    2009-01-01

    This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production. PMID:19261625

  3. Bridge effects on light harvesting of a DBfA type polymer system

    NASA Astrophysics Data System (ADS)

    Sun, Sam-Shajing; Hasib, Muhammad; Gavrilenko, Alexander V.; Devan, Joshua; Gavrilenko, Vladimir

    2016-09-01

    Plastic optoelectronic materials and thin film devices are very attractive in future optical sensor and solar energy applications due to their lightweight, flexible shape, high photon absorption coefficients, low cost, and environmental benefits. In this study, optoelectronic properties of D, D/fA blend, DfA, and a series of DBfA type of conjugated block copolymers has been investigated, where D is a donor type PPV conjugated block, B is a non-conjugated and flexible aliphatic hydrocarbon bridge chain containing different number of aliphatic methylene units, and fA is a fluorinated acceptor type PPV conjugated block. The optical absorptions of the D/fA blend, DfA, and DBfAs are typical overlaps of individual absorptions of D and fA blocks, while the solution steady state photoluminescence (PL) emission of D were quenched to different levels in blends and block copolymers, with DBfAs containing one methylene unit bridge (DB1fA) quenched most. This could be attributed to an intra-molecular photo induced electron transfer or charge separation in DBfA systems. Theoretical first principles study of the equilibrium atomic configuration of DfA reveals the existence of twisting angles between the D and fA blocks in DfA stable states which may account for a less PL quenching of DfA as compared to DB1fA. These results are important for designing and developing high efficiency polymer based optoelectronic systems.

  4. Cloning and sequence analysis of the invertase gene INV 1 from the yeast Pichia anomala.

    PubMed

    Pérez, J A; Rodríguez, J; Rodríguez, L; Ruiz, T

    1996-02-01

    A genomic library from the yeast Pichia anomala has been constructed and employed to clone the gene encoding the sucrose-hydrolysing enzyme invertase by complementation of a sucrose non-fermenting mutant of Saccharomyces cerevisiae. The cloned gene, INV1, was sequenced and found to encode a polypeptide of 550 amino acids which contained a 22 amino-acid signal sequence and ten potential glycosylation sites. The amino-acid sequence shows significant identity with other yeast invertases and also with Kluyveromyces marxianus inulinase, a yeast beta-fructofuranosidase which has a different substrate specificity. The nucleotide sequences of the 5' and 3' non-coding regions were found to contain several consensus motifs probably involved in the initiation and termination of gene transcription.

  5. Genome Sequence of Saccharomyces carlsbergensis, the World’s First Pure Culture Lager Yeast

    PubMed Central

    Walther, Andrea; Hesselbart, Ana; Wendland, Jürgen

    2014-01-01

    Lager yeast beer production was revolutionized by the introduction of pure culture strains. The first established lager yeast strain is known as the bottom fermenting Saccharomyces carlsbergensis, which was originally termed Unterhefe No. 1 by Emil Chr. Hansen and has been used in production in since 1883. S. carlsbergensis belongs to group I/Saaz-type lager yeast strains and is better adapted to cold growth conditions than group II/Frohberg-type lager yeasts, e.g., the Weihenstephan strain WS34/70. Here, we sequenced S. carlsbergensis using next generation sequencing technologies. Lager yeasts are descendants from hybrids formed between a S. cerevisiae parent and a parent similar to S. eubayanus. Accordingly, the S. carlsbergensis 19.5-Mb genome is substantially larger than the 12-Mb S. cerevisiae genome. Based on the sequence scaffolds, synteny to the S. cerevisae genome, and by using directed polymerase chain reaction for gap closure, we generated a chromosomal map of S. carlsbergensis consisting of 29 unique chromosomes. We present evidence for genome and chromosome evolution within S. carlsbergensis via chromosome loss and loss of heterozygosity specifically of parts derived from the S. cerevisiae parent. Based on our sequence data and via fluorescence-activated cell-sorting analysis, we determined the ploidy of S. carlsbergensis. This inferred that this strain is basically triploid with a diploid S. eubayanus and haploid S. cerevisiae genome content. In contrast the Weihenstephan strain, which we resequenced, is essentially tetraploid composed of two diploid S. cerevisiae and S. eubayanus genomes. Based on conserved translocations between the parental genomes in S. carlsbergensis and the Weihenstephan strain we propose a joint evolutionary ancestry for lager yeast strains. PMID:24578374

  6. Cdc7-Dbf4 Regulates NDT80 Transcription as Well as Reductional Segregation during Budding Yeast Meiosis

    PubMed Central

    Lo, Hsiao-Chi; Wan, Lihong; Rosebrock, Adam; Futcher, Bruce

    2008-01-01

    In budding yeast, as in other eukaryotes, the Cdc7 protein kinase is important for initiation of DNA synthesis in vegetative cells. In addition, Cdc7 has crucial meiotic functions: it facilitates premeiotic DNA replication, and it is essential for the initiation of recombination. This work uses a chemical genetic approach to demonstrate that Cdc7 kinase has additional roles in meiosis. First, Cdc7 allows expression of NDT80, a meiosis-specific transcriptional activator required for the induction of genes involved in exit from pachytene, meiotic progression, and spore formation. Second, Cdc7 is necessary for recruitment of monopolin to sister kinetochores, and it is necessary for the reductional segregation occurring at meiosis I. The use of the same kinase to regulate several distinct meiosis-specific processes may be important for the coordination of these processes during meiosis. PMID:18768747

  7. High-resolution mapping, characterization, and optimization of autonomously replicating sequences in yeast

    PubMed Central

    Liachko, Ivan; Youngblood, Rachel A.; Keich, Uri; Dunham, Maitreya J.

    2013-01-01

    DNA replication origins are necessary for the duplication of genomes. In addition, plasmid-based expression systems require DNA replication origins to maintain plasmids efficiently. The yeast autonomously replicating sequence (ARS) assay has been a valuable tool in dissecting replication origin structure and function. However, the dearth of information on origins in diverse yeasts limits the availability of efficient replication origin modules to only a handful of species and restricts our understanding of origin function and evolution. To enable rapid study of origins, we have developed a sequencing-based suite of methods for comprehensively mapping and characterizing ARSs within a yeast genome. Our approach finely maps genomic inserts capable of supporting plasmid replication and uses massively parallel deep mutational scanning to define molecular determinants of ARS function with single-nucleotide resolution. In addition to providing unprecedented detail into origin structure, our data have allowed us to design short, synthetic DNA sequences that retain maximal ARS function. These methods can be readily applied to understand and modulate ARS function in diverse systems. PMID:23241746

  8. Identification of food and beverage spoilage yeasts from DNA sequence analyses

    USDA-ARS?s Scientific Manuscript database

    Detection, identification, and classification of yeasts has undergone a major transformation in the last decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined DNA sequences from domains 1 and 2 (D1/D2) of th...

  9. Genome Sequence of the Yeast Clavispora lusitaniae Type Strain CBS 6936

    PubMed Central

    Klopp, Christophe; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Dementhon, Karine; Accoceberry, Isabelle; Sherman, David J.; Noël, Thierry

    2017-01-01

    ABSTRACT Clavispora lusitaniae, an environmental saprophytic yeast belonging to the CTG clade of Candida, can behave occasionally as an opportunistic pathogen in humans. We report here the genome sequence of the type strain CBS 6936. Comparison with sequences of strain ATCC 42720 indicates conservation of chromosomal structure but significant nucleotide divergence. PMID:28774979

  10. Genome Sequence of the Yeast Clavispora lusitaniae Type Strain CBS 6936.

    PubMed

    Durrens, Pascal; Klopp, Christophe; Biteau, Nicolas; Fitton-Ouhabi, Valérie; Dementhon, Karine; Accoceberry, Isabelle; Sherman, David J; Noël, Thierry

    2017-08-03

    Clavispora lusitaniae , an environmental saprophytic yeast belonging to the CTG clade of Candida , can behave occasionally as an opportunistic pathogen in humans. We report here the genome sequence of the type strain CBS 6936. Comparison with sequences of strain ATCC 42720 indicates conservation of chromosomal structure but significant nucleotide divergence. Copyright © 2017 Durrens et al.

  11. Yeast Prions and Human Prion-like Proteins: Sequence Features and Prediction Methods

    PubMed Central

    Cascarina, Sean; Ross, Eric D.

    2014-01-01

    Prions are self-propagating infectious protein isoforms. A growing number of prions have been identified in yeast, each resulting from the conversion of soluble proteins into an insoluble amyloid form. These yeast prions have served as a powerful model system for studying the causes and consequences of prion aggregation. Remarkably, a number of human proteins containing prion-like domains, defined as domains with compositional similarity to yeast prion domains, have recently been linked to various human degenerative diseases, including amyotrophic lateral sclerosis (ALS). This suggests that the lessons learned from yeast prions may help in understanding these human diseases. In this review, we examine what has been learned about the amino acid sequence basis for prion aggregation in yeast, and how this information has been used to develop methods to predict aggregation propensity. We then discuss how this information is being applied to understand human disease, and the challenges involved in applying yeast prediction methods to higher organisms. PMID:24390581

  12. Yeast prions and human prion-like proteins: sequence features and prediction methods.

    PubMed

    Cascarina, Sean M; Ross, Eric D

    2014-06-01

    Prions are self-propagating infectious protein isoforms. A growing number of prions have been identified in yeast, each resulting from the conversion of soluble proteins into an insoluble amyloid form. These yeast prions have served as a powerful model system for studying the causes and consequences of prion aggregation. Remarkably, a number of human proteins containing prion-like domains, defined as domains with compositional similarity to yeast prion domains, have recently been linked to various human degenerative diseases, including amyotrophic lateral sclerosis. This suggests that the lessons learned from yeast prions may help in understanding these human diseases. In this review, we examine what has been learned about the amino acid sequence basis for prion aggregation in yeast, and how this information has been used to develop methods to predict aggregation propensity. We then discuss how this information is being applied to understand human disease, and the challenges involved in applying yeast prediction methods to higher organisms.

  13. Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus.

    PubMed

    Yarimizu, Tohru; Nakamura, Mikiko; Hoshida, Hisashi; Akada, Rinji

    2015-02-14

    Targeting of cellular proteins to the extracellular environment is directed by a secretory signal sequence located at the N-terminus of a secretory protein. These signal sequences usually contain an N-terminal basic amino acid followed by a stretch containing hydrophobic residues, although no consensus signal sequence has been identified. In this study, simple modeling of signal sequences was attempted using Gaussia princeps secretory luciferase (GLuc) in the yeast Kluyveromyces marxianus, which allowed comprehensive recombinant gene construction to substitute synthetic signal sequences. Mutational analysis of the GLuc signal sequence revealed that the GLuc hydrophobic peptide length was lower limit for effective secretion and that the N-terminal basic residue was indispensable. Deletion of the 16th Glu caused enhanced levels of secreted protein, suggesting that this hydrophilic residue defined the boundary of a hydrophobic peptide stretch. Consequently, we redesigned this domain as a repeat of a single hydrophobic amino acid between the N-terminal Lys and C-terminal Glu. Stretches consisting of Phe, Leu, Ile, or Met were effective for secretion but the number of residues affected secretory activity. A stretch containing sixteen consecutive methionine residues (M16) showed the highest activity; the M16 sequence was therefore utilized for the secretory production of human leukemia inhibitory factor protein in yeast, resulting in enhanced secreted protein yield. We present a new concept for the provision of secretory signal sequence ability in the yeast K. marxianus, determined by the number of residues of a single hydrophobic residue located between N-terminal basic and C-terminal acidic amino acid boundaries.

  14. Draft Genome Sequence of the Yeast Starmerella bombicola NBRC10243, a Producer of Sophorolipids, Glycolipid Biosurfactants

    PubMed Central

    Matsuzawa, Tomohiko; Koike, Hideaki; Saika, Azusa; Fukuoka, Tokuma; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2015-01-01

    The yeast Starmerella bombicola NBRC10243 is an excellent producer of sophorolipids (SLs) from various feedstocks. Here, we report the draft genome sequence of S. bombicola NBRC10243. Analysis of the sequence may provide insight into the properties of this yeast that make it superior for use in the production of functional glycolipids and biomolecules, leading to the further development of S. bombicola NBRC10243 for industrial applications. PMID:25814600

  15. Draft genome sequence of the D-Xylose-Fermenting yeast Spathaspora xylofermentans UFMG-HMD23.3

    USDA-ARS?s Scientific Manuscript database

    Here, we report the draft genome sequence of the yeast Spathaspora xylofermentans UFMG-HMD23.3 (CBMAI 1427=CBS 12681), a D-xylose fermenting yeast isolated from the Amazonian forest. The genome consists of 298 contigs, with a total size of 15.1 Mb, including the mitochondrial genome, and 5,948 predi...

  16. Draft genome sequence of the oleaginous yeast Cryptococcus curvatus ATCC 20509

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, Dan; Ojumu, John O.

    Cryptococcus curvatus ATCC 20509 is a commonly used nonmodel oleaginous yeast capable of converting a variety of carbon sources into fatty acids. In addition, we present the draft genome sequence of this popular organism to provide a means for more in-depth studies of its fatty acid production potential.

  17. Draft genome sequence of the oleaginous yeast Cryptococcus curvatus ATCC 20509

    DOE PAGES

    Close, Dan; Ojumu, John O.

    2016-11-03

    Cryptococcus curvatus ATCC 20509 is a commonly used nonmodel oleaginous yeast capable of converting a variety of carbon sources into fatty acids. In addition, we present the draft genome sequence of this popular organism to provide a means for more in-depth studies of its fatty acid production potential.

  18. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    PubMed

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast. © 2013 The Author. Yeast Published by John Wiley & Sons Ltd.

  19. Draft Genome Sequence of the Dimorphic Yeast Yarrowia lipolytica Strain W29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomraning, Kyle R.; Baker, Scott E.

    Here, we present the draft genome sequence of the dimorphic ascomycete yeastYarrowia lipolyticastrain W29 (ATCC 20460).Y. lipolyticais a commonly employed model for the industrial production of lipases, small molecules, and more recently for its ability to accumulate lipids.

  20. Characterization of the Upper Pathway Genes for Fluorene Metabolism in Terrabacter sp. Strain DBF63

    PubMed Central

    Habe, Hiroshi; Chung, Jin-Sung; Kato, Hiroyuki; Ayabe, Yuko; Kasuga, Kano; Yoshida, Takako; Nojiri, Hideaki; Yamane, Hisakazu; Omori, Toshio

    2004-01-01

    Genes involved in the degradation of fluorene to phthalate were characterized in the fluorene degrader Terrabacter sp. strain DBF63. The initial attack on both fluorene and 9-fluorenone was catalyzed by DbfA to yield 9-fluorenol and 1,1a-dihydroxy-1-hydro-9-fluorenone, respectively. The FlnB protein exhibited activities against both 9-fluorenol and 1,1a-dihydroxy-1-hydro-9-fluorenone to produce 9-fluorenone and 2′-carboxy-2,3-dihydroxybiphenyl, respectively. FlnD is a heteromeric protein encoded by flnD1 and ORF16, being a member of the class III two-subunit extradiol dioxygenase. FlnE was identified as a serine hydrolase for the meta-cleavage products that yield phthalate. PMID:15317800

  1. Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51.

    PubMed

    van Heemst, D; Swart, K; Holub, E F; van Dijk, R; Offenberg, H H; Goosen, T; van den Broek, H W; Heyting, C

    1997-05-01

    We have cloned the uvsC gene of Aspergillus nidulans by complementation of the A. nidulans uvsC114 mutant. The predicted protein UVSC shows 67.4% sequence identity to the Saccharomyces cerevisiae Rad51 protein and 27.4% sequence identity to the Escherichia coli RecA protein. Transcription of uvsC is induced by methyl-methane sulphonate (MMS), as is transcription of RAD51 of yeast. Similar levels of uvsC transcription were observed after MMS induction in a uvsC+ strain and the uvsC114 mutant. The coding sequence of the uvsC114 allele has a deletion of 6 bp, which results in deletion of two amino acids and replacement of one amino acid in the translation product. In order to gain more insight into the biological function of the uvsC gene, a uvsC null mutant was constructed, in which the entire uvsC coding sequence was replaced by a selectable marker gene. Meiotic and mitotic phenotypes of a uvsC+ strain, the uvsC114 mutant and the uvsC null mutant were compared. The uvsC null mutant was more sensitive to both UV and MMS than the uvsC114 mutant. The uvsC114 mutant arrested in meiotic prophase-I. The uvsC null mutant arrested at an earlier stage, before the onset of meiosis. One possible interpretation of these meiotic phenotypes is that the A. nidulans homologue of Rad51 of yeast has a role both in the specialized processes preceding meiosis and in meiotic prophase I.

  2. Whole-Genome Sequencing of Sake Yeast Saccharomyces cerevisiae Kyokai no. 7

    PubMed Central

    Akao, Takeshi; Yashiro, Isao; Hosoyama, Akira; Kitagaki, Hiroshi; Horikawa, Hiroshi; Watanabe, Daisuke; Akada, Rinji; Ando, Yoshinori; Harashima, Satoshi; Inoue, Toyohisa; Inoue, Yoshiharu; Kajiwara, Susumu; Kitamoto, Katsuhiko; Kitamoto, Noriyuki; Kobayashi, Osamu; Kuhara, Satoru; Masubuchi, Takashi; Mizoguchi, Haruhiko; Nakao, Yoshihiro; Nakazato, Atsumi; Namise, Masahiro; Oba, Takahiro; Ogata, Tomoo; Ohta, Akinori; Sato, Masahide; Shibasaki, Seiji; Takatsume, Yoshifumi; Tanimoto, Shota; Tsuboi, Hirokazu; Nishimura, Akira; Yoda, Koji; Ishikawa, Takeaki; Iwashita, Kazuhiro; Fujita, Nobuyuki; Shimoi, Hitoshi

    2011-01-01

    The term ‘sake yeast’ is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast. PMID:21900213

  3. Gene sequence analyses and other DNA-based methods for yeast species recognition

    USDA-ARS?s Scientific Manuscript database

    DNA sequence analyses, as well as other DNA-based methodologies, have transformed the way in which yeasts are identified. The focus of this chapter will be on the resolution of species using various types of DNA comparisons. In other chapters in this book, Rozpedowska, Piškur and Wolfe discuss mul...

  4. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    PubMed Central

    2017-01-01

    Summary Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR) seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day), and with a maximum achieved organic loading rate of 13.6 kg/(m3·day) in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD) inserted, and total COD removal efficiencies of over 90% were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8% (by volume). By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50%. PMID:28867948

  5. Expressed Sequence Tag Analysis of the Human Pathogen Paracoccidioides brasiliensis Yeast Phase: Identification of Putative Homologues of Candida albicans Virulence and Pathogenicity Genes

    PubMed Central

    Goldman, Gustavo H.; dos Reis Marques, Everaldo; Custódio Duarte Ribeiro, Diógenes; Ângelo de Souza Bernardes, Luciano; Quiapin, Andréa Carla; Vitorelli, Patrícia Marostica; Savoldi, Marcela; Semighini, Camile P.; de Oliveira, Regina C.; Nunes, Luiz R.; Travassos, Luiz R.; Puccia, Rosana; Batista, Wagner L.; Ferreira, Leslie Ecker; Moreira, Júlio C.; Bogossian, Ana Paula; Tekaia, Fredj; Nobrega, Marina Pasetto; Nobrega, Francisco G.; Goldman, Maria Helena S.

    2003-01-01

    Paracoccidioides brasiliensis, a thermodimorphic fungus, is the causative agent of the prevalent systemic mycosis in Latin America, paracoccidioidomycosis. We present here a survey of expressed genes in the yeast pathogenic phase of P. brasiliensis. We obtained 13,490 expressed sequence tags from both 5′ and 3′ ends. Clustering analysis yielded the partial sequences of 4,692 expressed genes that were functionally classified by similarity to known genes. We have identified several Candida albicans virulence and pathogenicity homologues in P. brasiliensis. Furthermore, we have analyzed the expression of some of these genes during the dimorphic yeast-mycelium-yeast transition by real-time quantitative reverse transcription-PCR. Clustering analysis of the mycelium-yeast transition revealed three groups: (i) RBT, hydrophobin, and isocitrate lyase; (ii) malate dehydrogenase, contigs Pb1067 and Pb1145, GPI, and alternative oxidase; and (iii) ubiquitin, delta-9-desaturase, HSP70, HSP82, and HSP104. The first two groups displayed high mRNA expression in the mycelial phase, whereas the third group showed higher mRNA expression in the yeast phase. Our results suggest the possible conservation of pathogenicity and virulence mechanisms among fungi, expand considerably gene identification in P. brasiliensis, and provide a broader basis for further progress in understanding its biological peculiarities. PMID:12582121

  6. Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases.

    PubMed

    Vandenbol, M; Jauniaux, J C; Grenson, M

    1989-11-15

    The complete nucleotide (nt) sequence of the PUT4 gene, whose product is required for high-affinity proline active transport in the yeast Saccharomyces cerevisiae, is presented. The sequence contains a single long open reading frame of 1881 nt, encoding a polypeptide with a calculated Mr of 68,795. The predicted protein is strongly hydrophobic and exhibits six potential glycosylation sites. Its hydropathy profile suggests the presence of twelve membrane-spanning regions flanked by hydrophilic N- and C-terminal domains. The N terminus does not resemble signal sequences found in secreted proteins. These features are characteristic of integral membrane proteins catalyzing translocation of ligands across cellular membranes. Protein sequence comparisons indicate strong resemblance to the arginine and histidine permeases of S. cerevisiae, but no marked sequence similarity to the proline permease of Escherichia coli or to other known prokaryotic or eukaryotic transport proteins. The strong similarity between the three yeast amino acid permeases suggests a common ancestor for the three proteins.

  7. Processing of intervening sequences: a new yeast mutant which fails to excise intervening sequences from precursor tRNAs.

    PubMed

    Hopper, A K; Schultz, L D; Shapiro, R A

    1980-03-01

    By using conditional loss of suppression an an assay, we have been successful in screening for a yeast mutant which is defective in tRNA processing. The los1-1 mutation causes an accumulation of a subset of precursor tRNAs at the nonpermissive temperature. These pre-tRNAs are like those which accumulate in the yeast mutant ts 136 (rna1) in that they have transcribed intervening sequences. The mutations at los1-1 and rna1 complement and segregate independently of each other. The los1-1 mutation affects the expression of all 8 tyrosine-inserting suppressor loci, but does not seem to affect rRNA or mRNA synthesis.

  8. LISTA, a comprehensive compilation of nucleotide sequences encoding proteins from the yeast Saccharomyces.

    PubMed Central

    Linder, P; Dölz, R; Mossé, M O; Lazowska, J; Slonimski, P P

    1993-01-01

    The amount of nucleotide sequence data is increasing exponentially. We therefore made an effort to make a comprehensive database (LISTA) for the yeast Saccharomyces cerevisiae. Each sequence has been attributed a single genetic name and in the case of allelic duplicated sequences, synonyms are given, if necessary. For the nomenclature we have introduced a standard principle for naming gene sequences based on priority rules. We have also applied a simple method to distinguish duplicated sequences of one and the same gene from non-allelic sequences of duplicated genes. By using these principles we have sorted out a lot of confusion in the literature and databanks. Along with the genetic name, the mnemonic from the EMBL databank, the codon bias, reference of the publication of the sequence and the EMBL accession numbers are included in each entry. PMID:8332521

  9. The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus

    PubMed Central

    Scannell, Devin R.; Zill, Oliver A.; Rokas, Antonis; Payen, Celia; Dunham, Maitreya J.; Eisen, Michael B.; Rine, Jasper; Johnston, Mark; Hittinger, Chris Todd

    2011-01-01

    High-quality, well-annotated genome sequences and standardized laboratory strains fuel experimental and evolutionary research. We present improved genome sequences of three species of Saccharomyces sensu stricto yeasts: S. bayanus var. uvarum (CBS 7001), S. kudriavzevii (IFO 1802T and ZP 591), and S. mikatae (IFO 1815T), and describe their comparison to the genomes of S. cerevisiae and S. paradoxus. The new sequences, derived by assembling millions of short DNA sequence reads together with previously published Sanger shotgun reads, have vastly greater long-range continuity and far fewer gaps than the previously available genome sequences. New gene predictions defined a set of 5261 protein-coding orthologs across the five most commonly studied Saccharomyces yeasts, enabling a re-examination of the tempo and mode of yeast gene evolution and improved inferences of species-specific gains and losses. To facilitate experimental investigations, we generated genetically marked, stable haploid strains for all three of these Saccharomyces species. These nearly complete genome sequences and the collection of genetically marked strains provide a valuable toolset for comparative studies of gene function, metabolism, and evolution, and render Saccharomyces sensu stricto the most experimentally tractable model genus. These resources are freely available and accessible through www.SaccharomycesSensuStricto.org. PMID:22384314

  10. Yeast diversity during the fermentation of Andean chicha: A comparison of high-throughput sequencing and culture-dependent approaches.

    PubMed

    Mendoza, Lucía M; Neef, Alexander; Vignolo, Graciela; Belloch, Carmela

    2017-10-01

    Diversity and dynamics of yeasts associated with the fermentation of Argentinian maize-based beverage chicha was investigated. Samples taken at different stages from two chicha productions were analyzed by culture-dependent and culture-independent methods. Five hundred and ninety six yeasts were isolated by classical microbiological methods and 16 species identified by RFLPs and sequencing of D1/D2 26S rRNA gene. Genetic typing of isolates from the dominant species, Saccharomyces cerevisiae, by PCR of delta elements revealed up to 42 different patterns. High-throughput sequencing (HTS) of D1/D2 26S rRNA gene amplicons from chicha samples detected more than one hundred yeast species and almost fifty filamentous fungi taxa. Analysis of the data revealed that yeasts dominated the fermentation, although, a significant percentage of filamentous fungi appeared in the first step of the process. Statistical analysis of results showed that very few taxa were represented by more than 1% of the reads per sample at any step of the process. S. cerevisiae represented more than 90% of the reads in the fermentative samples. Other yeast species dominated the pre-fermentative steps and abounded in fermented samples when S. cerevisiae was in percentages below 90%. Most yeasts species detected by pyrosequencing were not recovered by cultivation. In contrast, the cultivation-based methodology detected very few yeast taxa, and most of them corresponded with very few reads in the pyrosequencing analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex.

    PubMed

    Hiraga, Shin-Ichiro; Alvino, Gina M; Chang, Fujung; Lian, Hui-Yong; Sridhar, Akila; Kubota, Takashi; Brewer, Bonita J; Weinreich, Michael; Raghuraman, M K; Donaldson, Anne D

    2014-02-15

    Initiation of eukaryotic DNA replication requires phosphorylation of the MCM complex by Dbf4-dependent kinase (DDK), composed of Cdc7 kinase and its activator, Dbf4. We report here that budding yeast Rif1 (Rap1-interacting factor 1) controls DNA replication genome-wide and describe how Rif1 opposes DDK function by directing Protein Phosphatase 1 (PP1)-mediated dephosphorylation of the MCM complex. Deleting RIF1 partially compensates for the limited DDK activity in a cdc7-1 mutant strain by allowing increased, premature phosphorylation of Mcm4. PP1 interaction motifs within the Rif1 N-terminal domain are critical for its repressive effect on replication. We confirm that Rif1 interacts with PP1 and that PP1 prevents premature Mcm4 phosphorylation. Remarkably, our results suggest that replication repression by Rif1 is itself also DDK-regulated through phosphorylation near the PP1-interacting motifs. Based on our findings, we propose that Rif1 is a novel PP1 substrate targeting subunit that counteracts DDK-mediated phosphorylation during replication. Fission yeast and mammalian Rif1 proteins have also been implicated in regulating DNA replication. Since PP1 interaction sites are evolutionarily conserved within the Rif1 sequence, it is likely that replication control by Rif1 through PP1 is a conserved mechanism.

  12. Proteome-wide Identification of Novel Ceramide-binding Proteins by Yeast Surface cDNA Display and Deep Sequencing.

    PubMed

    Bidlingmaier, Scott; Ha, Kevin; Lee, Nam-Kyung; Su, Yang; Liu, Bin

    2016-04-01

    Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands.

  13. Assessing Genetic Diversity among Brettanomyces Yeasts by DNA Fingerprinting and Whole-Genome Sequencing

    PubMed Central

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A.

    2014-01-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. PMID:24814796

  14. Assessing genetic diversity among Brettanomyces yeasts by DNA fingerprinting and whole-genome sequencing.

    PubMed

    Crauwels, Sam; Zhu, Bo; Steensels, Jan; Busschaert, Pieter; De Samblanx, Gorik; Marchal, Kathleen; Willems, Kris A; Verstrepen, Kevin J; Lievens, Bart

    2014-07-01

    Brettanomyces yeasts, with the species Brettanomyces (Dekkera) bruxellensis being the most important one, are generally reported to be spoilage yeasts in the beer and wine industry due to the production of phenolic off flavors. However, B. bruxellensis is also known to be a beneficial contributor in certain fermentation processes, such as the production of certain specialty beers. Nevertheless, despite its economic importance, Brettanomyces yeasts remain poorly understood at the genetic and genomic levels. In this study, the genetic relationship between more than 50 Brettanomyces strains from all presently known species and from several sources was studied using a combination of DNA fingerprinting techniques. This revealed an intriguing correlation between the B. bruxellensis fingerprints and the respective isolation source. To further explore this relationship, we sequenced a (beneficial) beer isolate of B. bruxellensis (VIB X9085; ST05.12/22) and compared its genome sequence with the genome sequences of two wine spoilage strains (AWRI 1499 and CBS 2499). ST05.12/22 was found to be substantially different from both wine strains, especially at the level of single nucleotide polymorphisms (SNPs). In addition, there were major differences in the genome structures between the strains investigated, including the presence of large duplications and deletions. Gene content analysis revealed the presence of 20 genes which were present in both wine strains but absent in the beer strain, including many genes involved in carbon and nitrogen metabolism, and vice versa, no genes that were missing in both AWRI 1499 and CBS 2499 were found in ST05.12/22. Together, this study provides tools to discriminate Brettanomyces strains and provides a first glimpse at the genetic diversity and genome plasticity of B. bruxellensis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Draft Genome Sequence of the d-Xylose-Fermenting Yeast Spathaspora arborariae UFMG-HM19.1AT

    PubMed Central

    Lobo, Francisco P.; Gonçalves, Davi L.; Alves, Sergio L.; Gerber, Alexandra L.; de Vasconcelos, Ana Tereza R.; Basso, Luiz C.; Franco, Glória R.; Soares, Marco A.; Cadete, Raquel M.; Rosa, Carlos A.

    2014-01-01

    The draft genome sequence of the yeast Spathaspora arborariae UFMG-HM19.1AT (CBS 11463 = NRRL Y-48658) is presented here. The sequenced genome size is 12.7 Mb, consisting of 41 scaffolds containing a total of 5,625 predicted open reading frames, including many genes encoding enzymes and transporters involved in d-xylose fermentation. PMID:24435867

  16. Molecular Identification of Unusual Pathogenic Yeast Isolates by Large Ribosomal Subunit Gene Sequencing: 2 Years of Experience at the United Kingdom Mycology Reference Laboratory▿

    PubMed Central

    Linton, Christopher J.; Borman, Andrew M.; Cheung, Grace; Holmes, Ann D.; Szekely, Adrien; Palmer, Michael D.; Bridge, Paul D.; Campbell, Colin K.; Johnson, Elizabeth M.

    2007-01-01

    Rapid identification of yeast isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. We present here an analysis of the utility of PCR amplification and sequence analysis of the hypervariable D1/D2 region of the 26S rRNA gene for the identification of yeast species submitted to the United Kingdom Mycology Reference Laboratory over a 2-year period. A total of 3,033 clinical isolates were received from 2004 to 2006 encompassing 50 different yeast species. While more than 90% of the isolates, corresponding to the most common Candida species, could be identified by using the AUXACOLOR2 yeast identification kit, 153 isolates (5%), comprised of 47 species, could not be identified by using this system and were subjected to molecular identification via 26S rRNA gene sequencing. These isolates included some common species that exhibited atypical biochemical and phenotypic profiles and also many rarer yeast species that are infrequently encountered in the clinical setting. All 47 species requiring molecular identification were unambiguously identified on the basis of D1/D2 sequences, and the molecular identities correlated well with the observed biochemical profiles of the various organisms. Together, our data underscore the utility of molecular techniques as a reference adjunct to conventional methods of yeast identification. Further, we show that PCR amplification and sequencing of the D1/D2 region reliably identifies more than 45 species of clinically significant yeasts and can also potentially identify new pathogenic yeast species. PMID:17251397

  17. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis

    PubMed Central

    Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv

    2016-01-01

    The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548

  18. Basis of altered RNA-binding specificity by PUF proteins revealed by crystal structures of yeast Puf4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Matthew T.; Higgin, Joshua J.; Hall, Traci M.Tanaka

    2008-06-06

    Pumilio/FBF (PUF) family proteins are found in eukaryotic organisms and regulate gene expression post-transcriptionally by binding to sequences in the 3' untranslated region of target transcripts. PUF proteins contain an RNA binding domain that typically comprises eight {alpha}-helical repeats, each of which recognizes one RNA base. Some PUF proteins, including yeast Puf4p, have altered RNA binding specificity and use their eight repeats to bind to RNA sequences with nine or ten bases. Here we report the crystal structures of Puf4p alone and in complex with a 9-nucleotide (nt) target RNA sequence, revealing that Puf4p accommodates an 'extra' nucleotide by modestmore » adaptations allowing one base to be turned away from the RNA binding surface. Using structural information and sequence comparisons, we created a mutant Puf4p protein that preferentially binds to an 8-nt target RNA sequence over a 9-nt sequence and restores binding of each protein repeat to one RNA base.« less

  19. The repeating nucleotide sequence in the repetitive mitochondrial DNA from a "low-density" petite mutant of yeast.

    PubMed Central

    Van Kreijl, C F; Bos, J L

    1977-01-01

    The repeating nucleotide sequence of 68 base pairs in the mtDNA from an ethidium-induced cytoplasmic petite mutant of yeast has been determined. For sequence analysis specifically primed and terminated RNA copies, obtained by in vitro transcription of the separated strands, were use. The sequence consists of 66 consecutive AT base pairs flanked by two GC pairs and comprises nearly all of the mutant mitochondrial genome. The sequence, moreover, also represents the first part of wild-type mtDNA sequence so far. Images PMID:198740

  20. [Clone, construct, expression and verification of lactoferricin B gene and several sequence mutations in yeast].

    PubMed

    Feng, Yong-qian; Zha, Xiao-jun; Zhai, Chao-yang

    2007-07-01

    To construct the eucaryotic recombinant plasmid of pYES2/LactoferricinB expressing in yeast of S. cerevisiae, of which the expressed protein antibacterial activity was verified in preliminary. By self-template PCR method, the gene of Lactoferricin B and its several sequence mutations were amplified with the parts of the pre-synthesized single chains. And then Lactoferricin B gene and its mutants were cloned into the vector of pYES2 to construct the recombined expression plasmid pYES2/Lactoferricin B etc. extracted and used to transform the yeast S. cerevisiae. The expressions of proteins were determined after induced by galactose. The expression proteins were collected and purified by hydronium-exchange column, and the bacterial inhibited test was applied to identify the protein antibacterial activities. The PCR amplifying and DNA sequencing tests indicated that the purpose plasmid contained the Lactoferricin B gene and several mutations. The induced target proteins were confirmed by SDS-PAGE electrophoresis and mass spectrum test. The protein antibacterial activities of mutations were verified in preliminary. The recombined plasmid pYES2/Lactoferricin B etc. are successfully constructed and induced to express in yeast cell of S. cerevisiae; the obtained recombined protein of Lactoferricin B provides a basis for further research work on the biological function and antibacterial activity.

  1. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    PubMed

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of

  2. Identification of Medically Important Yeasts Using PCR-Based Detection of DNA Sequence Polymorphisms in the Internal Transcribed Spacer 2 Region of the rRNA Genes

    PubMed Central

    Chen, Y. C.; Eisner, J. D.; Kattar, M. M.; Rassoulian-Barrett, S. L.; LaFe, K.; Yarfitz, S. L.; Limaye, A. P.; Cookson, B. T.

    2000-01-01

    Identification of medically relevant yeasts can be time-consuming and inaccurate with current methods. We evaluated PCR-based detection of sequence polymorphisms in the internal transcribed spacer 2 (ITS2) region of the rRNA genes as a means of fungal identification. Clinical isolates (401), reference strains (6), and type strains (27), representing 34 species of yeasts were examined. The length of PCR-amplified ITS2 region DNA was determined with single-base precision in less than 30 min by using automated capillary electrophoresis. Unique, species-specific PCR products ranging from 237 to 429 bp were obtained from 92% of the clinical isolates. The remaining 8%, divided into groups with ITS2 regions which differed by ≤2 bp in mean length, all contained species-specific DNA sequences easily distinguishable by restriction enzyme analysis. These data, and the specificity of length polymorphisms for identifying yeasts, were confirmed by DNA sequence analysis of the ITS2 region from 93 isolates. Phenotypic and ITS2-based identification was concordant for 427 of 434 yeast isolates examined using sequence identity of ≥99%. Seven clinical isolates contained ITS2 sequences that did not agree with their phenotypic identification, and ITS2-based phylogenetic analyses indicate the possibility of new or clinically unusual species in the Rhodotorula and Candida genera. This work establishes an initial database, validated with over 400 clinical isolates, of ITS2 length and sequence polymorphisms for 34 species of yeasts. We conclude that size and restriction analysis of PCR-amplified ITS2 region DNA is a rapid and reliable method to identify clinically significant yeasts, including potentially new or emerging pathogenic species. PMID:10834993

  3. Draft genome sequence of Cryptococcus terricola JCM 24523, an oleaginous yeast capable of expressing exogenous DNA

    DOE PAGES

    Close, Dan; Ojumu, John O.; Zhang, Gui X.

    2016-11-03

    Cryptococcus terricola JCM 24523 has recently been identified as an oleaginous yeast capable of converting starch into fatty acids. Here, this draft genome sequence provides a platform for elucidating its fatty acid production potential and supporting comparisons with other oleaginous species.

  4. Draft genome sequence of Cryptococcus terricola JCM 24523, an oleaginous yeast capable of expressing exogenous DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, Dan; Ojumu, John O.; Zhang, Gui X.

    Cryptococcus terricola JCM 24523 has recently been identified as an oleaginous yeast capable of converting starch into fatty acids. Here, this draft genome sequence provides a platform for elucidating its fatty acid production potential and supporting comparisons with other oleaginous species.

  5. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast.

    PubMed

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L; Hallström, Björn M; Liu, Zihe; Petranovic, Dina; Uhlén, Mathias; Joensson, Haakan N; Andersson-Svahn, Helene; Nielsen, Jens

    2015-08-25

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant α-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories.

  6. Gleaning evolutionary insights from the genome sequence of a probiotic yeast Saccharomyces boulardii.

    PubMed

    Khatri, Indu; Akhtar, Akil; Kaur, Kamaldeep; Tomar, Rajul; Prasad, Gandham Satyanarayana; Ramya, Thirumalai Nallan Chakravarthy; Subramanian, Srikrishna

    2013-10-22

    The yeast Saccharomyces boulardii is used worldwide as a probiotic to alleviate the effects of several gastrointestinal diseases and control antibiotics-associated diarrhea. While many studies report the probiotic effects of S. boulardii, no genome information for this yeast is currently available in the public domain. We report the 11.4 Mbp draft genome of this probiotic yeast. The draft genome was obtained by assembling Roche 454 FLX + shotgun data into 194 contigs with an N50 of 251 Kbp. We compare our draft genome with all other Saccharomyces cerevisiae genomes. Our analysis confirms the close similarity of S. boulardii to S. cerevisiae strains and provides a framework to understand the probiotic effects of this yeast, which exhibits unique physiological and metabolic properties.

  7. Genomic Sequence of Saccharomyces cerevisiae BAW-6, a Yeast Strain Optimal for Brewing Barley Shochu

    PubMed Central

    Mori, Kazuki; Tashiro, Kosuke; Higuchi, Yujiro; Takashita, Hideharu

    2018-01-01

    ABSTRACT Here, we report the draft genome sequence of Saccharomyces cerevisiae strain BAW-6, which is used for the production of barley shochu, a traditional Japanese spirit. This genomic information can be used to elucidate the genetic basis underlying the high alcohol production capacity and citric acid tolerance of shochu yeast. PMID:29622617

  8. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts

    PubMed Central

    Langkjær, R. B.; Casaregola, S.; Ussery, D. W.; Gaillardin, C.; Piškur, J.

    2003-01-01

    The complete sequences of mitochondrial DNA (mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S.cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S.cerevisiae mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S.servazzii contain, in total, five +1 frameshifts. mtDNAs of S.castellii, S.servazzii and S.cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order is very different. Several gene rearrangements have taken place upon separation of the Saccharomyces lineages, and even a part of the transcription units have not been preserved. It seems that the mechanism(s) involved in the generation of the rearrangements has had to ensure that all genes stayed encoded by the same DNA strand. PMID:12799436

  9. The primary structures of two yeast enolase genes. Homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes.

    PubMed

    Holland, M J; Holland, J P; Thill, G P; Jackson, K A

    1981-02-10

    Segments of yeast genomic DNA containing two enolase structural genes have been isolated by subculture cloning procedures using a cDNA hybridization probe synthesized from purified yeast enolase mRNA. Based on restriction endonuclease and transcriptional maps of these two segments of yeast DNA, each hybrid plasmid contains a region of extensive nucleotide sequence homology which forms hybrids with the cDNA probe. The DNA sequences which flank this homologous region in the two hybrid plasmids are nonhomologous indicating that these sequences are nontandemly repeated in the yeast genome. The complete nucleotide sequence of the coding as well as the flanking noncoding regions of these genes has been determined. The amino acid sequence predicted from one reading frame of both structural genes is extremely similar to that determined for yeast enolase (Chin, C. C. Q., Brewer, J. M., Eckard, E., and Wold, F. (1981) J. Biol. Chem. 256, 1370-1376), confirming that these isolated structural genes encode yeast enolase. The nucleotide sequences of the coding regions of the genes are approximately 95% homologous, and neither gene contains an intervening sequence. Codon utilization in the enolase genes follows the same biased pattern previously described for two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes (Holland, J. P., and Holland, M. J. (1980) J. Biol. Chem. 255, 2596-2605). DNA blotting analysis confirmed that the isolated segments of yeast DNA are colinear with yeast genomic DNA and that there are two nontandemly repeated enolase genes per haploid yeast genome. The noncoding portions of the two enolase genes adjacent to the initiation and termination codons are approximately 70% homologous and contain sequences thought to be involved in the synthesis and processing messenger RNA. Finally there are regions of extensive homology between the two enolase structural genes and two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes within the 5

  10. High-throughput analysis of the protein sequence-stability landscape using a quantitative "yeast surface two-hybrid" system and fragment reconstitution

    PubMed Central

    Dutta, Sanjib; Koide, Akiko; Koide, Shohei

    2008-01-01

    Stability evaluation of many mutants can lead to a better understanding of the sequence determinants of a structural motif and of factors governing protein stability and protein evolution. The traditional biophysical analysis of protein stability is low throughput, limiting our ability to widely explore the sequence space in a quantitative manner. In this study, we have developed a high-throughput library screening method for quantifying stability changes, which is based on protein fragment reconstitution and yeast surface display. Our method exploits the thermodynamic linkage between protein stability and fragment reconstitution and the ability of the yeast surface display technique to quantitatively evaluate protein-protein interactions. The method was applied to a fibronectin type III (FN3) domain. Characterization of fragment reconstitution was facilitated by the co-expression of two FN3 fragments, thus establishing a "yeast surface two-hybrid" method. Importantly, our method does not rely on competition between clones and thus eliminates a common limitation of high-throughput selection methods in which the most stable variants are predominantly recovered. Thus, it allows for the isolation of sequences that exhibits a desired level of stability. We identified over one hundred unique sequences for a β-bulge motif, which was significantly more informative than natural sequences of the FN3 family in revealing the sequence determinants for the β-bulge. Our method provides a powerful means to rapidly assess stability of many variants, to systematically assess contribution of different factors to protein stability and to enhance protein stability. PMID:18674545

  11. Gleaning evolutionary insights from the genome sequence of a probiotic yeast Saccharomyces boulardii

    PubMed Central

    2013-01-01

    Background The yeast Saccharomyces boulardii is used worldwide as a probiotic to alleviate the effects of several gastrointestinal diseases and control antibiotics-associated diarrhea. While many studies report the probiotic effects of S. boulardii, no genome information for this yeast is currently available in the public domain. Results We report the 11.4 Mbp draft genome of this probiotic yeast. The draft genome was obtained by assembling Roche 454 FLX + shotgun data into 194 contigs with an N50 of 251 Kbp. We compare our draft genome with all other Saccharomyces cerevisiae genomes. Conclusions Our analysis confirms the close similarity of S. boulardii to S. cerevisiae strains and provides a framework to understand the probiotic effects of this yeast, which exhibits unique physiological and metabolic properties. PMID:24148866

  12. Genomic Sequence of Saccharomyces cerevisiae BAW-6, a Yeast Strain Optimal for Brewing Barley Shochu.

    PubMed

    Kajiwara, Yasuhiro; Mori, Kazuki; Tashiro, Kosuke; Higuchi, Yujiro; Takegawa, Kaoru; Takashita, Hideharu

    2018-04-05

    Here, we report the draft genome sequence of Saccharomyces cerevisiae strain BAW-6, which is used for the production of barley shochu, a traditional Japanese spirit. This genomic information can be used to elucidate the genetic basis underlying the high alcohol production capacity and citric acid tolerance of shochu yeast. Copyright © 2018 Kajiwara et al.

  13. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo.

    PubMed

    Ribeyre, Cyril; Lopes, Judith; Boulé, Jean-Baptiste; Piazza, Aurèle; Guédin, Aurore; Zakian, Virginia A; Mergny, Jean-Louis; Nicolas, Alain

    2009-05-01

    In budding yeast, the Pif1 DNA helicase is involved in the maintenance of both nuclear and mitochondrial genomes, but its role in these processes is still poorly understood. Here, we provide evidence for a new Pif1 function by demonstrating that its absence promotes genetic instability of alleles of the G-rich human minisatellite CEB1 inserted in the Saccharomyces cerevisiae genome, but not of other tandem repeats. Inactivation of other DNA helicases, including Sgs1, had no effect on CEB1 stability. In vitro, we show that CEB1 repeats formed stable G-quadruplex (G4) secondary structures and the Pif1 protein unwinds these structures more efficiently than regular B-DNA. Finally, synthetic CEB1 arrays in which we mutated the potential G4-forming sequences were no longer destabilized in pif1Delta cells. Hence, we conclude that CEB1 instability in pif1Delta cells depends on the potential to form G-quadruplex structures, suggesting that Pif1 could play a role in the metabolism of G4-forming sequences.

  14. Centromere-Like Regions in the Budding Yeast Genome

    PubMed Central

    Lefrançois, Philippe; Auerbach, Raymond K.; Yellman, Christopher M.; Roeder, G. Shirleen; Snyder, Michael

    2013-01-01

    Accurate chromosome segregation requires centromeres (CENs), the DNA sequences where kinetochores form, to attach chromosomes to microtubules. In contrast to most eukaryotes, which have broad centromeres, Saccharomyces cerevisiae possesses sequence-defined point CENs. Chromatin immunoprecipitation followed by sequencing (ChIP–Seq) reveals colocalization of four kinetochore proteins at novel, discrete, non-centromeric regions, especially when levels of the centromeric histone H3 variant, Cse4 (a.k.a. CENP-A or CenH3), are elevated. These regions of overlapping protein binding enhance the segregation of plasmids and chromosomes and have thus been termed Centromere-Like Regions (CLRs). CLRs form in close proximity to S. cerevisiae CENs and share characteristics typical of both point and regional CENs. CLR sequences are conserved among related budding yeasts. Many genomic features characteristic of CLRs are also associated with these conserved homologous sequences from closely related budding yeasts. These studies provide general and important insights into the origin and evolution of centromeres. PMID:23349633

  15. Resolution of model Holliday junctions by yeast endonuclease: effect of DNA structure and sequence.

    PubMed Central

    Parsons, C A; Murchie, A I; Lilley, D M; West, S C

    1989-01-01

    The resolution of Holliday junctions in DNA involves specific cleavage at or close to the site of the junction. A nuclease from Saccharomyces cerevisiae cleaves model Holliday junctions in vitro by the introduction of nicks in regions of duplex DNA adjacent to the crossover point. In previous studies [Parsons and West (1988) Cell, 52, 621-629] it was shown that cleavage occurred within homologous arm sequences with precise symmetry across the junction. In contrast, junctions with heterologous arm sequences were cleaved asymmetrically. In this work, we have studied the effect of sequence changes and base modification upon the site of cleavage. It is shown that the specificity of cleavage is unchanged providing that perfect homology is maintained between opposing arm sequences. However, in the absence of homology, cleavage depends upon sequence context and is affected by minor changes such as base modification. These data support the proposed mechanism for cleavage of a Holliday junction, which requires homologous alignment of arm sequences in an enzyme--DNA complex as a prerequisite for symmetrical cleavage by the yeast endonuclease. Images PMID:2653810

  16. The assessment of epiphytic yeast diversity in sugarcane phyllosphere in Thailand by culture-independent method.

    PubMed

    Nasanit, Rujikan; Tangwong-O-Thai, Apirat; Tantirungkij, Manee; Limtong, Savitree

    2015-12-01

    The diversity of epiphytic yeasts from sugarcane (Saccharum officinarum Linn.) phyllospheres in Thailand was investigated by culture-independent method based on the analysis of the D1/D2 domains of the large subunit rRNA gene sequences. Forty-five samples of sugarcane leaf were collected randomly from ten provinces in Thailand. A total of 1342 clones were obtained from 45 clone libraries. 426 clones (31.7 %) were closely related to yeast strains in the GenBank database, and they were clustered into 31 operational taxonomic units (OTUs) with a similarity threshold of 99 %. All OTU sequences were classified in phylum Basidiomycota which were closely related to 11 yeast species in seven genera including Cryptococcus flavus, Hannaella coprosmaensis, Rhodotorula taiwanensis, Jaminaea angkoreiensis, Malassezia restricta, Pseudozyma antarctica, Pseudozyma aphidis, Pseudozyma hubeiensis, Pseudozyma prolifica, Pseudozyma shanxiensis, and Sporobolomyces vermiculatus. The most predominant yeasts detected belonged to Ustilaginales with 89.4 % relative frequency and the prevalent yeast genus was Pseudozyma. However, the majority were unable to be identified as known yeast species and these sequences may represent the sequences of new yeast taxa. In addition, The OTU that closely related to P. prolifica was commonly detected in sugarcane phyllosphere. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  17. Genome Sequence of the Lager-Brewing Yeast Saccharomyces sp. Strain M14, Used in the High-Gravity Brewing Industry in China

    PubMed Central

    Liu, Chunfeng; Niu, Chengtuo; Zheng, Feiyun; Li, Yongxian; Zhao, Yun; Yin, Xiangsheng

    2017-01-01

    ABSTRACT Lager-brewing yeasts are mainly used for the production of lager beers. Illumina and PacBio-based sequence analyses revealed an approximate genome size of 22.8 Mb, with a GC content of 38.98%, for the Chinese lager-brewing yeast Saccharomyces sp. strain M14. Based on ab initio prediction, 9,970 coding genes were annotated. PMID:29074666

  18. Synthesis of human parainfluenza virus 4 nucleocapsid-like particles in yeast and their use for detection of virus-specific antibodies in human serum.

    PubMed

    Bulavaitė, Aistė; Lasickienė, Rita; Tamošiūnas, Paulius Lukas; Simanavičius, Martynas; Sasnauskas, Kęstutis; Žvirblienė, Aurelija

    2017-04-01

    The aim of this study was to produce human parainfluenza virus type 4 (HPIV4) nucleocapsid (N) protein in yeast Saccharomyces cerevisiae expression system, to explore its structural and antigenic properties and to evaluate its applicability in serology. The use of an optimized gene encoding HPIV4 N protein amino acid (aa) sequence GenBank AGU90031.1 allowed high yield of recombinant N protein forming nucleocapsid-like particles (NLPs) in yeast. A substitution L332D disrupted self-assembly of NLPs, confirming the role of this position in the N proteins of Paramyxovirinae. Three monoclonal antibodies (MAbs) were generated against the NLP-forming HPIV4 N protein. They recognised HPIV4-infected cells, demonstrating the antigenic similarity between the recombinant and virus-derived N proteins. HPIV4 N protein was used as a coating antigen in an indirect IgG ELISA with serum specimens of 154 patients with respiratory tract infection. The same serum specimens were tested with previously generated N protein of a closely related HPIV2, another representative of genus Rubulavirus. Competitive ELISA was developed using related yeast-produced viral antigens to deplete the cross-reactive serum antibodies. In the ELISA either without or with competition using heterologous HPIV (2 or 4) N or mumps virus N proteins, the seroprevalence of HPIV4 N-specific IgG was, respectively, 46.8, 39.6 and 40.3% and the seroprevalence of HPIV2 N-specific IgG-47.4, 39.0 and 37.7%. In conclusion, yeast-produced HPIV4 N protein shares structural and antigenic properties of the native virus nucleocapsids. Yeast-produced HPIV4 and HPIV2 NLPs are prospective tools in serology.

  19. Yeast Genomics for Bread, Beer, Biology, Bucks and Breath

    NASA Astrophysics Data System (ADS)

    Sakharkar, Kishore R.; Sakharkar, Meena K.

    The rapid advances and scale up of projects in DNA sequencing dur ing the past two decades have produced complete genome sequences of several eukaryotic species. The versatile genetic malleability of the yeast, and the high degree of conservation between its cellular processes and those of human cells have made it a model of choice for pioneering research in molecular and cell biology. The complete sequence of yeast genome has proven to be extremely useful as a reference towards the sequences of human and for providing systems to explore key gene functions. Yeast has been a ‘legendary model’ for new technologies and gaining new biological insights into basic biological sciences and biotechnology. This chapter describes the awesome power of yeast genetics, genomics and proteomics in understanding of biological function. The applications of yeast as a screening tool to the field of drug discovery and development are highlighted and the traditional importance of yeast for bakers and brewers is discussed.

  20. Complete Genome Sequence of Kluyveromyces lactis Strain GG799, a Common Yeast Host for Heterologous Protein Expression

    PubMed Central

    Chuzel, Léa; Ganatra, Mehul B.; Schermerhorn, Kelly M.; Gardner, Andrew F.; Anton, Brian P.

    2017-01-01

    ABSTRACT We report the genome sequence of the dairy yeast Kluyveromyces lactis strain GG799 obtained using the Pacific Biosciences RS II platform. K. lactis strain GG799 is a common host for the expression of proteins at both laboratory and industrial scales. PMID:28751387

  1. Genome Sequence of the Lager-Brewing Yeast Saccharomyces sp. Strain M14, Used in the High-Gravity Brewing Industry in China.

    PubMed

    Liu, Chunfeng; Li, Qi; Niu, Chengtuo; Zheng, Feiyun; Li, Yongxian; Zhao, Yun; Yin, Xiangsheng

    2017-10-26

    Lager-brewing yeasts are mainly used for the production of lager beers. Illumina and PacBio-based sequence analyses revealed an approximate genome size of 22.8 Mb, with a GC content of 38.98%, for the Chinese lager-brewing yeast Saccharomyces sp. strain M14. Based on ab initio prediction, 9,970 coding genes were annotated. Copyright © 2017 Liu et al.

  2. Phylogenetics of Saccharomycetales, the ascomycete yeasts.

    PubMed

    Suh, Sung-Oui; Blackwell, Meredith; Kurtzman, Cletus P; Lachance, Marc-André

    2006-01-01

    Ascomycete yeasts (phylum Ascomycota: subphylum Saccharomycotina: class Saccharomycetes: order Saccharomycetales) comprise a monophyletic lineage with a single order of about 1000 known species. These yeasts live as saprobes, often in association with plants, animals and their interfaces. A few species account for most human mycotic infections, and fewer than 10 species are plant pathogens. Yeasts are responsible for important industrial and biotechnological processes, including baking, brewing and synthesis of recombinant proteins. Species such as Saccharomyces cerevisiae are model organisms in research, some of which led to a Nobel Prize. Yeasts usually reproduce asexually by budding, and their sexual states are not enclosed in a fruiting body. The group also is well defined by synapomorphies visible at the ultrastructural level. Yeast identification and classification changed dramatically with the availability of DNA sequencing. Species identification now benefits from a constantly updated sequence database and no longer relies on ambiguous growth tests. A phylogeny based on single gene analyses has shown the order to be remarkably divergent despite morphological similarities among members. The limits of many previously described genera are not supported by sequence comparisons, and multigene phylogenetic studies are under way to provide a stable circumscription of genera, families and orders. One recent multigene study has resolved species of the Saccharomycetaceae into genera that differ markedly from those defined by analysis of morphology and growth responses, and similar changes are likely to occur in other branches of the yeast tree as additional sequences become available.

  3. Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme.

    PubMed Central

    Motorin, Y; Grosjean, H

    1999-01-01

    Several genes encoding putative RNA:5-methylcytidine-transferases (m5C-transferases) from different organisms, including yeast, have been identified by sequence homology with the recently identified 16S rRNA:m5C967-methyltransferase (gene SUN) from Escherichia coli. One of the yeast ORFs (YBL024w) was amplified by PCR, inserted in the expression vector pET28b, and the corresponding protein was hyperexpressed in E. coli BL21 (DE3). The resulting N-terminally His6-tagged recombinant Ybl024p was purified to apparent homogeneity by one-step affinity chromatography on Ni2+-NTA-agarose column. The activity and substrate specificity of the purified Ybl024p were tested in vitro using T7 transcripts of different yeast tRNAs as substrates and S-adenosyl-L-methionine as a donor of the methyl groups. The results indicate that yeast ORF YBL024w encodes S-adenosyl-L-methionine-dependent tRNA: m5C-methyltransferase that is capable of methylating cytosine to m5C at several positions in different yeast tRNAs and pre-tRNAs containing intron. Modification of tRNA occurs at all four positions (34, 40, 48, and 49) at which m5C has been found in yeast tRNAs sequenced so far. Disruption of the ORF YBL024w leads to the complete absence of m5C in total yeast tRNA. Moreover no tRNA:m5C-methyltransferase activity towards all potential m5C methylation sites was detected in the extract of the disrupted yeast strain. These results demonstrate that the protein product of a single gene is responsible for complete m5C methylation of yeast tRNA. Because this newly characterized multisite-specific modification enzyme Ybl024p is the fourth tRNA-specific methyltransferase identified in yeast, we suggest designating it as TRM4, the gene corresponding to ORF YBL024w. PMID:10445884

  4. Multiple α-Glucoside Transporter Genes in Brewer’s Yeast

    PubMed Central

    Jespersen, Lene; Cesar, Lene B.; Meaden, Philip G.; Jakobsen, Mogens

    1999-01-01

    Maltose and maltotriose are the two most abundant fermentable sugars in brewer’s wort, and the rate of uptake of these sugars by brewer’s yeast can have a major impact on fermentation performance. In spite of this, no information is currently available on the genetics of maltose and maltotriose uptake in brewing strains of yeast. In this work, we studied 30 brewing strains of yeast (5 ale strains and 25 lager strains) with the aim of examining the alleles of maltose and maltotriose transporter genes contained by them. To do this, we hybridized gene probes to chromosome blots. Studies performed with laboratory strains have shown that maltose utilization is conferred by any one of five unlinked but highly homologous MAL loci (MAL1 to MAL4 and MAL6). Gene 1 at each locus encodes a maltose transporter. All of the strains of brewer’s yeast examined except two were found to contain MAL11 and MAL31 sequences, and only one of these strains lacked MAL41. MAL21 was not present in the five ale strains and 12 of the lager strains. MAL61 was not found in any of the yeast strains. In three of the lager strains, there was evidence that MAL transporter gene sequences occurred on chromosomes other than those known to carry MAL loci. Sequences corresponding to the AGT1 gene, which encodes a transporter of several α-glucosides, including maltose and maltotriose, were detected in all but one of the yeast strains. Homologues of AGT1 were identified in three of the lager strains, and two of these homologues were mapped, one to chromosome II and the other to chromosome XI. AGT1 appears to be a member of a family of closely related genes, which may have arisen in brewer’s yeast in response to selective pressure. PMID:9925567

  5. The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan.

    PubMed

    Mittal, Nitish; Guimaraes, Joao C; Gross, Thomas; Schmidt, Alexander; Vina-Vilaseca, Arnau; Nedialkova, Danny D; Aeschimann, Florian; Leidel, Sebastian A; Spang, Anne; Zavolan, Mihaela

    2017-09-06

    In Saccharomyces cerevisiae, deletion of large ribosomal subunit protein-encoding genes increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the messenger RNA and protein abundance, ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and increase yeast lifespan. Chromatin immunoprecipitation reveals Gcn4 binding not only at genes that are activated, but also at genes, some encoding ribosomal proteins, that are repressed upon Gcn4 overexpression. The promoters of repressed genes contain Rap1 binding motifs. Our data suggest that Gcn4 is a central regulator of protein synthesis under multiple perturbations, including ribosomal protein gene deletions, calorie restriction, and rapamycin treatment, and provide an explanation for its role in longevity and stress response.The transcription factor Gcn4 is known to regulate yeast amino acid synthesis. Here, the authors show that Gcn4 also acts as a repressor of protein biosynthesis in a range of conditions that enhance yeast lifespan, such as ribosomal protein knockout, calorie restriction or mTOR inhibition.

  6. The new modern era of yeast genomics: community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces Genome Database

    PubMed Central

    Engel, Stacia R.; Cherry, J. Michael

    2013-01-01

    The first completed eukaryotic genome sequence was that of the yeast Saccharomyces cerevisiae, and the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is the original model organism database. SGD remains the authoritative community resource for the S. cerevisiae reference genome sequence and its annotation, and continues to provide comprehensive biological information correlated with S. cerevisiae genes and their products. A diverse set of yeast strains have been sequenced to explore commercial and laboratory applications, and a brief history of those strains is provided. The publication of these new genomes has motivated the creation of new tools, and SGD will annotate and provide comparative analyses of these sequences, correlating changes with variations in strain phenotypes and protein function. We are entering a new era at SGD, as we incorporate these new sequences and make them accessible to the scientific community, all in an effort to continue in our mission of educating researchers and facilitating discovery. Database URL: http://www.yeastgenome.org/ PMID:23487186

  7. Assessing fluctuating evolutionary pressure in yeast and mammal evolutionary rate covariation using bioinformatics of meiotic protein genetic sequences

    NASA Astrophysics Data System (ADS)

    Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Holden, T.; Lieberman, D.; Cheung, T.

    2013-09-01

    The evolutionary rate co-variation in meiotic proteins has been reported for yeast and mammal using phylogenic branch lengths which assess retention, duplication and mutation. The bioinformatics of the corresponding DNA sequences could be classified as a diagram of fractal dimension and Shannon entropy. Results from biomedical gene research provide examples on the diagram methodology. The identification of adaptive selection using entropy marker and functional-structural diversity using fractal dimension would support a regression analysis where the coefficient of determination would serve as evolutionary pathway marker for DNA sequences and be an important component in the astrobiology community. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, clinical trial targeted cancer gene CD47, SIRT6 in spermatogenesis, and HLA-C in mosquito bite immunology demonstrate the diagram classification methodology. Comparisons to the SEPT4-XIAP pair in stem cell apoptosis, testesexpressed taste genes TAS1R3-GNAT3 pair, and amyloid beta APLP1-APLP2 pair with the yeast-mammal DNA sequences for meiotic proteins RAD50-MRE11 pair and NCAPD2-ICK pair have accounted for the observed fluctuating evolutionary pressure systematically. Regression with high R-sq values or a triangular-like cluster pattern for concordant pairs in co-variation among the studied species could serve as evidences for the possible location of common ancestors in the entropy-fractal dimension diagram, consistent with an example of the human-chimp common ancestor study using the FOXP2 regulated genes reported in human fetal brain study. The Deinococcus radiodurans R1 Rad-A could be viewed as an outlier in the RAD50 diagram and also in the free energy versus fractal dimension regression Cook's distance, consistent with a non-Earth source for this radiation resistant bacterium. Convergent and divergent fluctuating evolutionary

  8. Homology analyses of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Soo-Ik; Hammes, G.G.

    1989-11-01

    Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chickenmore » and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the {beta}-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution.« less

  9. Diversity and killer activity of yeasts in Malaysian fermented food samples.

    PubMed

    Lim, S L; Tay, S T

    2011-08-01

    The biodiversity and the killer activity of yeasts isolated from various types of fermented food in Malaysia were investigated in this study. Of 252 yeasts isolated from 48 fermented food samples in this study, 19 yeast species were identified based on sequence analysis of the ITS1-5.8S-ITS2 partial fragments of the yeasts. A total of 29 (11.5%) of the yeast isolates demonstrated killer activity to at least one Candida species tested in this study; including 22 isolates of Trichosporon asahii, 4 isolates of Pichia anomala, and one isolate each of Pichia norvegensis, Pichia fermentans and Issatchenkia orientalis, respectively. The presence of killer yeasts reflects antagonism that occurs during microbial interaction in the fermented food, whereby certain yeasts produce killer toxins and possibly other toxic substances in competition for limited nutrients and space. The anti-Candida activity demonstrated by killer yeasts in this study should be further explored for development of alternative therapy against candidiasis.

  10. Genomic evolution of the ascomycetous yeasts

    USDA-ARS?s Scientific Manuscript database

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphr...

  11. Comparative genomics of biotechnologically important yeasts

    USDA-ARS?s Scientific Manuscript database

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the...

  12. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes

    PubMed Central

    Kofoed, Megan; Milbury, Karissa L.; Chiang, Jennifer H.; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C.

    2015-01-01

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. PMID:26175450

  13. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes.

    PubMed

    Kofoed, Megan; Milbury, Karissa L; Chiang, Jennifer H; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C

    2015-07-14

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. Copyright © 2015 Kofoed et al.

  14. Global investigation of protein-protein interactions in yeast Saccharomyces cerevisiae using re-occurring short polypeptide sequences.

    PubMed

    Pitre, S; North, C; Alamgir, M; Jessulat, M; Chan, A; Luo, X; Green, J R; Dumontier, M; Dehne, F; Golshani, A

    2008-08-01

    Protein-protein interaction (PPI) maps provide insight into cellular biology and have received considerable attention in the post-genomic era. While large-scale experimental approaches have generated large collections of experimentally determined PPIs, technical limitations preclude certain PPIs from detection. Recently, we demonstrated that yeast PPIs can be computationally predicted using re-occurring short polypeptide sequences between known interacting protein pairs. However, the computational requirements and low specificity made this method unsuitable for large-scale investigations. Here, we report an improved approach, which exhibits a specificity of approximately 99.95% and executes 16,000 times faster. Importantly, we report the first all-to-all sequence-based computational screen of PPIs in yeast, Saccharomyces cerevisiae in which we identify 29,589 high confidence interactions of approximately 2 x 10(7) possible pairs. Of these, 14,438 PPIs have not been previously reported and may represent novel interactions. In particular, these results reveal a richer set of membrane protein interactions, not readily amenable to experimental investigations. From the novel PPIs, a novel putative protein complex comprised largely of membrane proteins was revealed. In addition, two novel gene functions were predicted and experimentally confirmed to affect the efficiency of non-homologous end-joining, providing further support for the usefulness of the identified PPIs in biological investigations.

  15. Synthetic genome engineering forging new frontiers for wine yeast.

    PubMed

    Pretorius, Isak S

    2017-02-01

    Over the past 15 years, the seismic shifts caused by the convergence of biomolecular, chemical, physical, mathematical, and computational sciences alongside cutting-edge developments in information technology and engineering have erupted into a new field of scientific endeavor dubbed Synthetic Biology. Recent rapid advances in high-throughput DNA sequencing and DNA synthesis techniques are enabling the design and construction of new biological parts (genes), devices (gene networks) and modules (biosynthetic pathways), and the redesign of biological systems (cells and organisms) for useful purposes. In 2014, the budding yeast Saccharomyces cerevisiae became the first eukaryotic cell to be equipped with a fully functional synthetic chromosome. This was achieved following the synthesis of the first viral (poliovirus in 2002 and bacteriophage Phi-X174 in 2003) and bacterial (Mycoplasma genitalium in 2008 and Mycoplasma mycoides in 2010) genomes, and less than two decades after revealing the full genome sequence of a laboratory (S288c in 1996) and wine (AWRI1631 in 2008) yeast strain. A large international project - the Synthetic Yeast Genome (Sc2.0) Project - is now underway to synthesize all 16 chromosomes (∼12 Mb carrying ∼6000 genes) of the sequenced S288c laboratory strain by 2018. If successful, S. cerevisiae will become the first eukaryote to cross the horizon of in silico design of complex cells through de novo synthesis, reshuffling, and editing of genomes. In the meantime, yeasts are being used as cell factories for the semi-synthetic production of high-value compounds, such as the potent antimalarial artemisinin, and food ingredients, such as resveratrol, vanillin, stevia, nootkatone, and saffron. As a continuum of previously genetically engineered industrially important yeast strains, precision genome engineering is bound to also impact the study and development of wine yeast strains supercharged with synthetic DNA. The first taste of what the future

  16. Zygosaccharomyces favi sp. nov., an obligate osmophilic yeast species from bee bread and honey.

    PubMed

    Čadež, Neža; Fülöp, László; Dlauchy, Dénes; Péter, Gábor

    2015-03-01

    Five yeast strains representing a hitherto undescribed yeast species were isolated from bee bread and honey in Hungary. They are obligate osmophilic, i.e. they are unable to grow in/on high water activity culture media. Following isogamous conjugation, they form 1-4 spheroid or subspheroid ascospores in persistent asci. The analysis of the sequences of their large subunit rRNA gene D1/D2 domain placed the new species in the Zygosaccharomyces clade. In terms of pairwise sequence similarity, Zygosaccharomyces gambellarensis is the most closely related species. Comparisons of D1/D2, internal transcribed spacer and translation elongation factor-1α (EF-1α) gene sequences of the five strains with that of the type strain of Z. gambellarensis revealed that they represent a new yeast species. The name Zygosaccharomyces favi sp. nov. (type strain: NCAIM Y.01994(T) = CBS 13653(T) = NRRL Y-63719(T) = ZIM 2551(T)) is proposed for this new yeast species, which based on phenotype can be distinguished from related Zygosaccharomyces species by its obligate osmophilic nature. Some intragenomic sequence variability, mainly indels, was detected among the ITS copies of the strains of the new species.

  17. Activation of the yeast Hippo pathway by phosphorylation-dependent assembly of signaling complexes.

    PubMed

    Rock, Jeremy M; Lim, Daniel; Stach, Lasse; Ogrodowicz, Roksana W; Keck, Jamie M; Jones, Michele H; Wong, Catherine C L; Yates, John R; Winey, Mark; Smerdon, Stephen J; Yaffe, Michael B; Amon, Angelika

    2013-05-17

    Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.

  18. Yeast and the AIDS Virus: The Odd Couple

    PubMed Central

    Andréola, Marie-Line; Litvak, Simon

    2012-01-01

    Despite being simple eukaryotic organisms, the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have been widely used as a model to study human pathologies and the replication of human, animal, and plant viruses, as well as the function of individual viral proteins. The complete genome of S. cerevisiae was the first of eukaryotic origin to be sequenced and contains about 6,000 genes. More than 75% of the genes have an assigned function, while more than 40% share conserved sequences with known or predicted human genes. This strong homology has allowed the function of human orthologs to be unveiled starting from the data obtained in yeast. RNA plant viruses were the first to be studied in yeast. In this paper, we focus on the use of the yeast model to study the function of the proteins of human immunodeficiency virus type 1 (HIV-1) and the search for its cellular partners. This human retrovirus is the cause of AIDS. The WHO estimates that there are 33.4 million people worldwide living with HIV/AIDS, with 2.7 million new HIV infections per year and 2.0 million annual deaths due to AIDS. Current therapy is able to control the disease but there is no permanent cure or a vaccine. By using yeast, it is possible to dissect the function of some HIV-1 proteins and discover new cellular factors common to this simple cell and humans that may become potential therapeutic targets, leading to a long-lasting treatment for AIDS. PMID:22778552

  19. Unstable transpositions of his4 in yeast.

    PubMed Central

    Greer, H; Fink, G R

    1979-01-01

    Unstable transpositions in yeast have been selected in which the his4C gene from chromosome III is inserted into chromosome XII. This event is associated with the generation of a recessive lethal mutation, resulting from the integration of his4C into an essential gene. Strains with these transpositions are viable as diploids or aneuploids for chromosome XII. The event that generates the transpositions does not lead reciprocally to a deletion on chromosome III, implying that synthesis of a new copy of his4C and subsequent transposition may have occurred. The his4C transpositions are unstable and give rise to C- segregants at a high frequency, as a result of either precise excision of the his4C gene (restoring function of the gene into which insertion had occurred) or chromosome loss. PMID:386353

  20. Comparative analyses of ubiquitin-like ATG8 and cysteine protease ATG4 autophagy genes in the plant lineage and cross-kingdom processing of ATG8 by ATG4.

    PubMed

    Seo, Eunyoung; Woo, Jongchan; Park, Eunsook; Bertolani, Steven J; Siegel, Justin B; Choi, Doil; Dinesh-Kumar, Savithramma P

    2016-11-01

    Autophagy is important for degradation and recycling of intracellular components. In a diversity of genera and species, orthologs and paralogs of the yeast Atg4 and Atg8 proteins are crucial in the biogenesis of double-membrane autophagosomes that carry the cellular cargoes to vacuoles and lysosomes. Although many plant genome sequences are available, the ATG4 and ATG8 sequence analysis is limited to some model plants. We identified 28 ATG4 and 116 ATG8 genes from the available 18 different plant genome sequences. Gene structures and protein domain sequences of ATG4 and ATG8 are conserved in plant lineages. Phylogenetic analyses classified ATG8s into 3 subgroups suggesting divergence from the common ancestor. The ATG8 expansion in plants might be attributed to whole genome duplication, segmental and dispersed duplication, and purifying selection. Our results revealed that the yeast Atg4 processes Arabidopsis ATG8 but not human LC3A (HsLC3A). In contrast, HsATG4B can process yeast and plant ATG8s in vitro but yeast and plant ATG4s cannot process HsLC3A. Interestingly, in Nicotiana benthamiana plants the yeast Atg8 is processed compared to HsLC3A. However, HsLC3A is processed when coexpressed with HsATG4B in plants. Molecular modeling indicates that lack of processing of HsLC3A by plant and yeast ATG4 is not due to lack of interaction with HsLC3A. Our in-depth analyses of ATG4 and ATG8 in the plant lineage combined with results of cross-kingdom ATG8 processing by ATG4 further support the evolutionarily conserved maturation of ATG8. Broad ATG8 processing by HsATG4B and lack of processing of HsLC3A by yeast and plant ATG4s suggest that the cross-kingdom ATG8 processing is determined by ATG8 sequence rather than ATG4.

  1. Regional centromeres in the yeast Candida lusitaniae lack pericentromeric heterochromatin

    PubMed Central

    Kapoor, Shivali; Zhu, Lisha; Froyd, Cara; Liu, Tao; Rusche, Laura N.

    2015-01-01

    Point centromeres are specified by a short consensus sequence that seeds kinetochore formation, whereas regional centromeres lack a conserved sequence and instead are epigenetically inherited. Regional centromeres are generally flanked by heterochromatin that ensures high levels of cohesin and promotes faithful chromosome segregation. However, it is not known whether regional centromeres require pericentromeric heterochromatin. In the yeast Candida lusitaniae, we identified a distinct type of regional centromere that lacks pericentromeric heterochromatin. Centromere locations were determined by ChIP-sequencing of two key centromere proteins, Cse4 and Mif2, and are consistent with bioinformatic predictions. The centromeric DNA sequence was unique for each chromosome and spanned 44.5 kbp, consistent with regional epigenetically inherited centromeres. However, unlike other regional centromeres, there was no evidence of pericentromeric heterochromatin in C. lusitaniae. In particular, flanking genes were expressed at a similar level to the rest of the genome, and a URA3 reporter inserted adjacent to a centromere was not repressed. In addition, regions flanking the centromeric core were not associated with hypoacetylated histones or a sirtuin deacetylase that generates heterochromatin in other yeast. Interestingly, the centromeric chromatin had a distinct pattern of histone modifications, being enriched for methylated H3K79 and H3R2 but lacking methylation of H3K4, which is found at other regional centromeres. Thus, not all regional centromeres require flanking heterochromatin. PMID:26371315

  2. Identification of yeasts and evaluation of their distribution in Taiwanese Kefir and Viili starters.

    PubMed

    Wang, S Y; Chen, H C; Liu, J R; Lin, Y C; Chen, M J

    2008-10-01

    The objective of the present study was to investigate yeast communities in kefir grains and viili starters in Taiwan through conventional microbiological cultivation and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The DNA sequencing was used as a validity technique to ensure that all isolates within each group belonged to just one species, and to confirm the identified results of PCR-DGGE. Results indicated that a combination of conventional microbiological cultivation with PCR-DGGE and sequencing could successfully identify 4 yeast species from both types of cultures in Taiwan. Kluyveromyces marxianus, Saccharomyces turicensis, and Pichia fermentans were found in Taiwanese kefir grains with a distribution of 76, 22, and 2%, respectively, whereas Klu. marxianus, Saccharomyces unisporus and P. fermentans were identified in viili starters corresponding to 58, 11, and 31% of the total cell counts, respectively. Furthermore, the culture-independent method was applied to identify the yeast species using DGGE. Only 2 yeast species, Klu. marxianus and S. turicensis, were found in kefir grains and 2, Klu. marxianus and P. fermentans, in viili starters. These results suggest that in samples containing multiple species, PCR-DGGE may fail to detect some species. Sequences of yeast isolates reported in this study have been deposited in the GenBank database under accession nos. DQ139802, AF398485, DQ377652, and AY007920.

  3. Nucleotide sequence of the phosphoglycerate kinase gene from the extreme thermophile Thermus thermophilus. Comparison of the deduced amino acid sequence with that of the mesophilic yeast phosphoglycerate kinase.

    PubMed Central

    Bowen, D; Littlechild, J A; Fothergill, J E; Watson, H C; Hall, L

    1988-01-01

    Using oligonucleotide probes derived from amino acid sequencing information, the structural gene for phosphoglycerate kinase from the extreme thermophile, Thermus thermophilus, was cloned in Escherichia coli and its complete nucleotide sequence determined. The gene consists of an open reading frame corresponding to a protein of 390 amino acid residues (calculated Mr 41,791) with an extreme bias for G or C (93.1%) in the codon third base position. Comparison of the deduced amino acid sequence with that of the corresponding mesophilic yeast enzyme indicated a number of significant differences. These are discussed in terms of the unusual codon bias and their possible role in enhanced protein thermal stability. Images Fig. 1. PMID:3052437

  4. Draft genome sequence of Sugiyamaella xylanicola UFMG-CM-Y1884T, a xylan-degrading yeast species isolated from rotting wood samples in Brazil.

    PubMed

    Batista, Thiago M; Moreira, Rennan G; Hilário, Heron O; Morais, Camila G; Franco, Glória R; Rosa, Luiz H; Rosa, Carlos A

    2017-03-01

    We present the draft genome sequence of the type strain of the yeast Sugiyamaella xylanicola UFMG-CM-Y1884 T (= UFMG-CA-32.1 T  = CBS 12683 T ), a xylan-degrading species capable of fermenting d-xylose to ethanol. The assembled genome has a size of ~ 13.7 Mb and a GC content of 33.8% and contains 5971 protein-coding genes. We identified 15 genes with significant similarity to the d-xylose reductase gene from several other fungal species. The draft genome assembled from whole-genome shotgun sequencing of the yeast Sugiyamaella xylanicola UFMG-CM-Y1884 T (= UFMG-CA-32.1 T  = CBS 12683 T ) has been deposited at DDBJ/ENA/GenBank under the accession number MQSX00000000 under version MQSX01000000.

  5. Metabolism of 4-Chloronitrobenzene by the Yeast Rhodosporidium sp

    PubMed Central

    Corbett, Michael D.; Corbett, Bernadette R.

    1981-01-01

    The yeast Rhodosporidium sp. metabolized 4-chloronitrobenzene by a reductive pathway to give 4-chloroacetanilide and 4-chloro-2-hydroxyacetanilide as the major final metabolites. The intermediate production of 4-chloronitrosobenzene, 4-chlorophenylhydroxylamine, and 4-chloroaniline was demonstrated by high-pressure liquid chromatography. Additional studies with selected metabolites established that the metabolite 4-chloro-2-hydroxyacetanilide was produced by an initial Bamberger rearrangement of the hydroxylamine metabolite, followed by acetylation. Direct C hydroxylation of the aromatic ring was not observed in this species. No hydroxamic acid production was detected, even though significant concentrations of the nitroso and hydroxylamine precursors to this functional group were observed. PMID:16345757

  6. Evolutionary History of Ascomyceteous Yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with amore » large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.« less

  7. Cross-referencing yeast genetics and mammalian genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hieter, P.; Basset, D.; Boguski, M.

    1994-09-01

    We have initiated a project that will systematically transfer information about yeast genes onto the genetic maps of mice and human beings. Rapidly expanding human EST data will serve as a source of candidate human homologs that will be repeatedly searched using yeast protein sequence queries. Search results will be automatically reported to participating labs. Human cDNA sequences from which the ESTs are derived will be mapped at high resolution in the human and mouse genomes. The comparative mapping information cross-references the genomic position of novel human cDNAs with functional information known about the cognate yeast genes. This should facilitatemore » the initial identification of genes responsible for mammalian mutant phenotypes, including human disease. In addition, the identification of mammalian homologs of yeast genes provides reagents for determining evolutionary conservation and for performing direct experiments in multicellular eukaryotes to enhance study of the yeast protein`s function. For example, ESTs homologous to CDC27 and CDC16 were identified, and the corresponding cDNA clones were obtained from ATTC, completely sequenced, and mapped on human and mouse chromosomes. In addition, the CDC17hs cDNA has been used to raise antisera to the CDC27Hs protein and used in subcellular localization experiments and junctional studies in mammalian cells. We have received funding from the National Center for Human Genome Research to provide a community resource which will establish comprehensive cross-referencing among yeast, human, and mouse loci. The project is set up as a service and information on how to communicate with this effort will be provided.« less

  8. The plant G box promoter sequence activates transcription in Saccharomyces cerevisiae and is bound in vitro by a yeast activity similar to GBF, the plant G box binding factor.

    PubMed Central

    Donald, R G; Schindler, U; Batschauer, A; Cashmore, A R

    1990-01-01

    G box and I box sequences of the Arabidopsis thaliana ribulose-bisphosphate-1,5-carboxylase small subunit (RBCS) promoter are required for expression mediated by the Arabidopsis rbcS-1A promoter in transgenic tobacco plants and are bound in vitro by factors from plant nuclear extracts termed GBF and GA-1, respectively. We show here that a -390 to -60 rbcS-1A promoter fragment containing the G box and two I boxes activates transcription from a truncated iso-1-cytochrome c (CYC1) gene promoter in Saccharomyces cerevisiae. Mutagenesis of either the rbcS-1A G box or both I box sequences eliminated the expression mediated by this fragment. When polymerized, I box oligonucleotides were also capable of enhancing expression from the truncated CYC1 promoter. Single-copy G box sequences from the Arabidopsis rbcS-1A, Arabidopsis Adh and tomato rbcS-3A promoters were more potent activators and were used in mobility shift assays to identify a DNA binding activity in yeast functionally similar to GBF. In methylation interference experiments, the binding specificity of the yeast protein was indistinguishable from that obtained with plant nuclear extracts. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2161333

  9. Recombinant yeast with improved ethanol tolerance and related methods of use

    DOEpatents

    Gasch, Audrey P [Madison, WI; Lewis, Jeffrey A [Madison, WI

    2012-05-15

    The present invention provides isolated Elo1 and Mig3 nucleic acid sequences capable of conferring increased ethanol tolerance on recombinant yeast and methods of using same in biofuel production, particularly ethanol production. Methods of bioengineering yeast using the Elo1 and, or, Mig3 nucleic acid sequences are also provided.

  10. Yeast Sub1 and human PC4 are G-quadruplex binding proteins that suppress genome instability at co-transcriptionally formed G4 DNA.

    PubMed

    Lopez, Christopher R; Singh, Shivani; Hambarde, Shashank; Griffin, Wezley C; Gao, Jun; Chib, Shubeena; Yu, Yang; Ira, Grzegorz; Raney, Kevin D; Kim, Nayun

    2017-06-02

    G-quadruplex or G4 DNA is a non-B secondary DNA structure consisting of a stacked array of guanine-quartets that can disrupt critical cellular functions such as replication and transcription. When sequences that can adopt Non-B structures including G4 DNA are located within actively transcribed genes, the reshaping of DNA topology necessary for transcription process stimulates secondary structure-formation thereby amplifying the potential for genome instability. Using a reporter assay designed to study G4-induced recombination in the context of an actively transcribed locus in Saccharomyces cerevisiae, we tested whether co-transcriptional activator Sub1, recently identified as a G4-binding factor, contributes to genome maintenance at G4-forming sequences. Our data indicate that, upon Sub1-disruption, genome instability linked to co-transcriptionally formed G4 DNA in Top1-deficient cells is significantly augmented and that its highly conserved DNA binding domain or the human homolog PC4 is sufficient to suppress G4-associated genome instability. We also show that Sub1 interacts specifically with co-transcriptionally formed G4 DNA in vivo and that yeast cells become highly sensitivity to G4-stabilizing chemical ligands by the loss of Sub1. Finally, we demonstrate the physical and genetic interaction of Sub1 with the G4-resolving helicase Pif1, suggesting a possible mechanism by which Sub1 suppresses instability at G4 DNA. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes.

    PubMed

    Ricchetti, M; Fairhead, C; Dujon, B

    1999-11-04

    The endosymbiotic theory for the origin of eukaryotic cells proposes that genetic information can be transferred from mitochondria to the nucleus of a cell, and genes that are probably of mitochondrial origin have been found in nuclear chromosomes. Occasionally, short or rearranged sequences homologous to mitochondrial DNA are seen in the chromosomes of different organisms including yeast, plants and humans. Here we report a mechanism by which fragments of mitochondrial DNA, in single or tandem array, are transferred to yeast chromosomes under natural conditions during the repair of double-strand breaks in haploid mitotic cells. These repair insertions originate from noncontiguous regions of the mitochondrial genome. Our analysis of the Saccharomyces cerevisiae mitochondrial genome indicates that the yeast nuclear genome does indeed contain several short sequences of mitochondrial origin which are similar in size and composition to those that repair double-strand breaks. These sequences are located predominantly in non-coding regions of the chromosomes, frequently in the vicinity of retrotransposon long terminal repeats, and appear as recent integration events. Thus, colonization of the yeast genome by mitochondrial DNA is an ongoing process.

  12. A new series of yeast shuttle vectors for the recovery and identification of multiple plasmids from Saccharomyces cerevisiae.

    PubMed

    Frazer, LilyAnn Novak; O'Keefe, Raymond T

    2007-09-01

    The availability of Saccharomyces cerevisiae yeast strains with multiple auxotrophic markers allows the stable introduction and selection of more than one yeast shuttle vector containing marker genes that complement the auxotrophic markers. In certain experimental situations there is a need to recover more than one shuttle vector from yeast. To facilitate the recovery and identification of multiple plasmids from S. cerevisiae, we have constructed a series of plasmids based on the pRS series of yeast shuttle vectors. Bacterial antibiotic resistance genes to chloramphenicol, kanamycin and zeocin have been combined with the yeast centromere sequence (CEN6), the autonomously replicating sequence (ARSH4) and one of the four yeast selectable marker genes (HIS3, TRP1, LEU2 or URA3) from the pRS series of vectors. The 12 plasmids produced differ in antibiotic resistance and yeast marker gene within the backbone of the multipurpose plasmid pBluescript II. The newly constructed vectors show similar mitotic stability to the original pRS vectors. In combination with the ampicillin-resistant pRS series of yeast shuttle vectors, these plasmids now allow the recovery and identification in bacteria of up to four different vectors from S. cerevisiae. Copyright (c) 2007 John Wiley & Sons, Ltd.

  13. Between science and industry-applied yeast research.

    PubMed

    Korhola, Matti

    2018-03-01

    I was fortunate to enter yeast research at the Alko Research Laboratories with a strong tradition in yeast biochemistry and physiology studies. At the same time in the 1980s there was a fundamental or paradigm change in molecular biology research with discoveries in DNA sequencing and other analytical and physical techniques for studying macromolecules and cells. Since that time biotechnological research has expanded the traditional fermentation industries to efficient production of industrial and other enzymes and specialty chemicals. Our efforts were directed towards improving the industrial production organisms: minerals enriched yeasts (Se, Cr, Zn) and high glutathione content yeast, baker´s, distiller´s, sour dough and wine yeasts, and the fungal Trichoderma reesei platform for enzyme production. I am grateful for the trust of my colleagues in several leadership positions at the Alko Research Laboratories, Yeast Industry Platform and at the international yeast community.

  14. LISTA, LISTA-HOP and LISTA-HON: a comprehensive compilation of protein encoding sequences and its associated homology databases from the yeast Saccharomyces.

    PubMed Central

    Dölz, R; Mossé, M O; Slonimski, P P; Bairoch, A; Linder, P

    1996-01-01

    We continued our effort to make a comprehensive database (LISTA) for the yeast Saccharomyces cerevisiae. As in previous editions the genetic names are consistently associated to each sequence with a known and confirmed ORF. If necessary, synonyms are given in the case of allelic duplicated sequences. Although the first publication of a sequence gives-according to our rules-the genetic name of a gene, in some instances more commonly used names are given to avoid nomenclature problems and the use of ancient designations which are no longer used. In these cases the old designation is given as synonym. Thus sequences can be found either by the name or by synonyms given in LISTA. Each entry contains the genetic name, the mnemonic from the EMBL data bank, the codon bias, reference of the publication of the sequence, Chromosomal location as far as known, SWISSPROT and EMBL accession numbers. New entries will also contain the name from the systematic sequencing efforts. Since the release of LISTA4.1 we update the database continuously. To obtain more information on the included sequences, each entry has been screened against non-redundant nucleotide and protein data bank collections resulting in LISTA-HON and LISTA-HOP. This release includes reports from full Smith and Watermann peptide-level searches against a non-redundant protein sequence database. The LISTA data base can be linked to the associated data sets or to nucleotide and protein banks by the Sequence Retrieval System (SRS). The database is available by FTP and on World Wide Web. PMID:8594599

  15. History of genome editing in yeast.

    PubMed

    Fraczek, Marcin G; Naseeb, Samina; Delneri, Daniela

    2018-05-01

    For thousands of years humans have used the budding yeast Saccharomyces cerevisiae for the production of bread and alcohol; however, in the last 30-40 years our understanding of the yeast biology has dramatically increased, enabling us to modify its genome. Although S. cerevisiae has been the main focus of many research groups, other non-conventional yeasts have also been studied and exploited for biotechnological purposes. Our experiments and knowledge have evolved from recombination to high-throughput PCR-based transformations to highly accurate CRISPR methods in order to alter yeast traits for either research or industrial purposes. Since the release of the genome sequence of S. cerevisiae in 1996, the precise and targeted genome editing has increased significantly. In this 'Budding topic' we discuss the significant developments of genome editing in yeast, mainly focusing on Cre-loxP mediated recombination, delitto perfetto and CRISPR/Cas. © 2018 The Authors. Yeast published by John Wiley & Sons, Ltd.

  16. A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions.

    PubMed

    Mühlenhoff, Ulrich; Stadler, Jochen A; Richhardt, Nadine; Seubert, Andreas; Eickhorst, Thomas; Schweyen, Rudolf J; Lill, Roland; Wiesenberger, Gerlinde

    2003-10-17

    The yeast genes MRS3 and MRS4 encode two members of the mitochondrial carrier family with high sequence similarity. To elucidate their function we utilized genome-wide expression profiling and found that both deletion and overexpression of MRS3/4 lead to up-regulation of several genes of the "iron regulon." We therefore analyzed the two major iron-utilizing processes, heme formation and Fe/S protein biosynthesis in vivo, in organello (intact mitochondria), and in vitro (mitochondrial extracts). Radiolabeling of yeast cells with 55Fe revealed a clear correlation between MRS3/4 expression levels and the efficiency of these biosynthetic reactions indicating a role of the carriers in utilization and/or transport of iron in vivo. Similar effects on both heme formation and Fe/S protein biosynthesis were seen in organello using mitochondria isolated from cells grown under iron-limiting conditions. The correlation between MRS3/4 expression levels and the efficiency of the two iron-utilizing processes was lost upon detergent lysis of mitochondria. As no significant changes in the mitochondrial membrane potential were observed upon overexpression or deletion of MRS3/4, our results suggest that Mrs3/4p carriers are directly involved in mitochondrial iron uptake. Mrs3/4p function in mitochondrial iron transport becomes evident under iron-limiting conditions only, indicating that the two carriers do not represent the sole system for mitochondrial iron acquisition.

  17. Construction of a lactose-assimilating strain of baker's yeast.

    PubMed

    Adam, A C; Prieto, J A; Rubio-Texeira, M; Polaina, J

    1999-09-30

    A recombinant strain of baker's yeast has been constructed which can assimilate lactose efficiently. This strain has been designed to allow its propagation in whey, the byproduct resulting from cheese-making. The ability to metabolize lactose is conferred by the functional expression of two genes from Kluyveromyces lactis, LAC12 and LAC4, which encode a lactose permease and a beta-galactosidase, respectively. To make the recombinant strain more acceptable for its use in bread-making, the genetic transformation of the host baker's yeast was carried out with linear fragments of DNA of defined sequence, carrying as the only heterologous material the coding regions of the two K. lactis genes. Growth of the new strain on cheese whey affected neither the quality of bread nor the yeast gassing power. The significance of the newly developed strain is two-fold: it affords a cheap alternative to the procedure generally used for the propagation of baker's yeast, and it offers a profitable use for cheese whey. Copyright 1999 John Wiley & Sons, Ltd.

  18. Discovery of high affinity anti-ricin antibodies by B cell receptor sequencing and by yeast display of combinatorial VH:VL libraries from immunized animals.

    PubMed

    Wang, Bo; Lee, Chang-Han; Johnson, Erik L; Kluwe, Christien A; Cunningham, Josephine C; Tanno, Hidetaka; Crooks, Richard M; Georgiou, George; Ellington, Andrew D

    2016-01-01

    Ricin is a toxin that could potentially be used as a bioweapon. We identified anti-ricin A chain antibodies by sequencing the antibody repertoire from immunized mice and by selecting high affinity antibodies using yeast surface display. These methods led to the isolation of multiple antibodies with high (sub-nanomolar) affinity. Interestingly, the antibodies identified by the 2 independent approaches are from the same clonal lineages, indicating for the first time that yeast surface display can identify native antibodies. The new antibodies represent well-characterized reagents for biodefense diagnostics and therapeutics development.

  19. Properties of the intracellular transient receptor potential (TRP) channel in yeast, Yvc1.

    PubMed

    Chang, Yiming; Schlenstedt, Gabriel; Flockerzi, Veit; Beck, Andreas

    2010-05-17

    Transient receptor potential (TRP) channels are found among mammals, flies, worms, ciliates, Chlamydomonas, and yeast but are absent in plants. These channels are believed to be tetramers of proteins containing six transmembrane domains (TMs). Their primary structures are diverse with sequence similarities only in some short amino acid sequence motifs mainly within sequences covering TM5, TM6, and adjacent domains. In the yeast genome, there is one gene encoding a TRP-like sequence. This protein forms an ion channel in the vacuolar membrane and is therefore called Yvc1 for yeast vacuolar conductance 1. In the following we summarize its prominent features. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Identification of human ferritin, heavy polypeptide 1 (FTH1) and yeast RGI1 (YER067W) as pro-survival sequences that counteract the effects of Bax and copper in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eid, Rawan; Department of Biology, Queen's University, Kingston, Ontario; Boucher, Eric

    Ferritin is a sub-family of iron binding proteins that form multi-subunit nanotype iron storage structures and prevent oxidative stress induced apoptosis. Here we describe the identification and characterization of human ferritin, heavy polypeptide 1 (FTH1) as a suppressor of the pro-apoptotic murine Bax sequence in yeast. In addition we demonstrate that FTH1 is a general pro-survival sequence since it also prevents the cell death inducing effects of copper when heterologously expressed in yeast. Although ferritins are phylogenetically widely distributed and are present in most species of Bacteria, Archaea and Eukarya, ferritin is conspicuously absent in most fungal species including Saccharomycesmore » cerevisiae. An in silico analysis of the yeast proteome lead to the identification of the 161 residue RGI1 (YER067W) encoded protein as a candidate for being a yeast ferritin. In addition to sharing 20% sequence identity with the 183 residue FTH1, RGI1 also has similar pro-survival properties as ferritin when overexpressed in yeast. Analysis of recombinant protein by SDS-PAGE and by electron microscopy revealed the expected formation of higher-order structures for FTH1 that was not observed with Rgi1p. Further analysis revealed that cells overexpressing RGI1 do not show increased resistance to iron toxicity and do not have enhanced capacity to store iron. In contrast, cells lacking RGI1 were found to be hypersensitive to the toxic effects of iron. Overall, our results suggest that Rgi1p is a novel pro-survival protein whose function is not related to ferritin but nevertheless it may have a role in regulating yeast sensitivity to iron stress. - Highlights: • Human ferritin, heavy polypeptide 1 (FTH1) was identified as a suppressor of the pro-apoptotic Bax in yeast. • Based on its similarity to ferritin we examined Rgi1p/YER067W for potential ferritin like functions. • Like human H-ferritin, RGI1 confers increased resistance to apoptotic inducing stresses in

  1. The wine and beer yeast Dekkera bruxellensis

    PubMed Central

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  2. The wine and beer yeast Dekkera bruxellensis.

    PubMed

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  3. Cree antidiabetic plant extracts display mechanism-based inactivation of CYP3A4.

    PubMed

    Tam, Teresa W; Liu, Rui; Arnason, John T; Krantis, Anthony; Staines, William A; Haddad, Pierre S; Foster, Brian C

    2011-01-01

    Seventeen Cree antidiabetic medicinal plants were studied to determine their potential to inhibit cytochrome P450 3A4 (CYP3A4) through mechanism-based inactivation (MBI). The ethanolic extracts of the medicinal plants were studied for their inhibition of CYP3A4 using the substrates testosterone and dibenzylfluorescein (DBF) in high pressure liquid chromatography (HPLC) and microtiter fluorometric assays, respectively. Using testosterone as a substrate, extracts of Alnus incana, Sarracenia purpurea, and Lycopodium clavatum were identified as potent CYP3A4 MBIs, while those from Abies balsamea, Picea mariana, Pinus banksiana, Rhododendron tomentosum, Kalmia angustifolia, and Picea glauca were identified as less potent inactivators. Not unexpectedly, the other substrate, DBF, showed a different profile of inhibition. Only A. balsamea was identified as a CYP3A4 MBI using DBF. Abies balsamea displayed both NADPH- and time-dependence of CYP3A4 inhibition using both substrates. Overall, several of the medicinal plants may markedly deplete CYP3A4 through MBI and, consequently, decrease the metabolism of CYP3A4 substrates including numerous medications used by diabetics.

  4. The yeast genome may harbor hypoxia response elements (HRE).

    PubMed

    Ferreira, Túlio César; Hertzberg, Libi; Gassmann, Max; Campos, Elida Geralda

    2007-01-01

    The hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor activated when cells are submitted to hypoxia. The heterodimer is composed of two subunits, HIF-1alpha and the constitutively expressed HIF-1beta. During normoxia, HIF-1alpha is degraded by the 26S proteasome, but hypoxia causes HIF-1alpha to be stabilized, enter the nucleus and bind to HIF-1beta, thus forming the active complex. The complex then binds to the regulatory sequences of various genes involved in physiological and pathological processes. The specific regulatory sequence recognized by HIF-1 is the hypoxia response element (HRE) that has the consensus sequence 5'BRCGTGVBBB3'. Although the basic transcriptional regulation machinery is conserved between yeast and mammals, Saccharomyces cerevisiae does not express HIF-1 subunits. However, we hypothesized that baker's yeast has a protein analogous to HIF-1 which participates in the response to changes in oxygen levels by binding to HRE sequences. In this study we screened the yeast genome for HREs using probabilistic motif search tools. We described 24 yeast genes containing motifs with high probability of being HREs (p-value<0.1) and classified them according to biological function. Our results show that S. cerevisiae may harbor HREs and indicate that a transcription factor analogous to HIF-1 may exist in this organism.

  5. Integrated analysis, transcriptome-lipidome, reveals the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast.

    PubMed

    Chumnanpuen, Pramote; Nookaew, Intawat; Nielsen, Jens

    2013-10-16

    In the yeast Saccharomyces cerevisiae, genes containing UASINO sequences are regulated by the Ino2/Ino4 and Opi1 transcription factors, and this regulation controls lipid biosynthesis. The expression level of INO2 and INO4 genes (INO-level) at different nutrient limited conditions might lead to various responses in yeast lipid metabolism. In this study, we undertook a global study on how INO-levels (transcription level of INO2 and INO4) affect lipid metabolism in yeast and we also studied the effects of single and double deletions of the two INO-genes (deficient effect). Using 2 types of nutrient limitations (carbon and nitrogen) in chemostat cultures operated at a fixed specific growth rate of 0.1 h-1 and strains having different INO-level, we were able to see the effect on expression level of the genes involved in lipid biosynthesis and the fluxes towards the different lipid components. Through combined measurements of the transcriptome, metabolome, and lipidome it was possible to obtain a large dataset that could be used to identify how the INO-level controls lipid metabolism and also establish correlations between the different components. In this study, we undertook a global study on how INO-levels (transcription level of INO2 and INO4) affect lipid metabolism in yeast and we also studied the effects of single and double deletions of the two INO-genes (deficient effect). Using 2 types of nutrient limitations (carbon and nitrogen) in chemostat cultures operated at a fixed specific growth rate of 0.1 h-1 and strains having different INO-level, we were able to see the effect on expression level of the genes involved in lipid biosynthesis and the fluxes towards the different lipid components. Through combined measurements of the transcriptome, metabolome, and lipidome it was possible to obtain a large dataset that could be used to identify how the INO-level controls lipid metabolism and also establish correlations between the different components. Our analysis

  6. Deep learning of the regulatory grammar of yeast 5′ untranslated regions from 500,000 random sequences

    PubMed Central

    Groves, Benjamin; Kuchina, Anna; Rosenberg, Alexander B.; Jojic, Nebojsa; Fields, Stanley; Seelig, Georg

    2017-01-01

    Our ability to predict protein expression from DNA sequence alone remains poor, reflecting our limited understanding of cis-regulatory grammar and hampering the design of engineered genes for synthetic biology applications. Here, we generate a model that predicts the protein expression of the 5′ untranslated region (UTR) of mRNAs in the yeast Saccharomyces cerevisiae. We constructed a library of half a million 50-nucleotide-long random 5′ UTRs and assayed their activity in a massively parallel growth selection experiment. The resulting data allow us to quantify the impact on protein expression of Kozak sequence composition, upstream open reading frames (uORFs), and secondary structure. We trained a convolutional neural network (CNN) on the random library and showed that it performs well at predicting the protein expression of both a held-out set of the random 5′ UTRs as well as native S. cerevisiae 5′ UTRs. The model additionally was used to computationally evolve highly active 5′ UTRs. We confirmed experimentally that the great majority of the evolved sequences led to higher protein expression rates than the starting sequences, demonstrating the predictive power of this model. PMID:29097404

  7. Genomic Evolution of the Ascomycete Yeasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and amore » tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.« less

  8. Quercetin Protects Yeast Saccharomyces cerevisiae pep4 Mutant from Oxidative and Apoptotic Stress and Extends Chronological Lifespan.

    PubMed

    Alugoju, Phaniendra; Janardhanshetty, Sudharshan Setra; Subaramanian, Subasri; Periyasamy, Latha; Dyavaiah, Madhu

    2018-05-01

    The yeast Saccharomyces cerevisiae PEP4 gene encodes vacuolar endopeptidase proteinase A (Pep4p), which is a homolog of the human CTSD gene that encodes cathepsin D. Mutation of CTSD gene in human resulted in a number of neurodegenerative diseases. In this study, we have shown that yeast pep4 mutant cells are highly sensitive to oxidative and apoptotic stress induced by hydrogen peroxide and acetic acid, respectively. pep4∆ cells also showed accumulation of reactive oxygen species (ROS), apoptotic markers, and reduced chronological lifespan. In contrast, quercetin pretreatment protected the pep4 mutant from oxidative and apoptotic stress-induced sensitivity by scavenging ROS and reducing apoptotic markers. The percentage viability of quercetin-treated pep4∆ cells was more pronounced and increased stress resistance against oxidant, apoptotic, and heat stress during chronological aging. From our experimental results, we concluded that quercetin protects yeast pep4 mutant cells from oxidative stress and apoptosis, thereby increasing viability during chronological aging.

  9. The central domain of yeast transcription factor Rpn4 facilitates degradation of reporter protein in human cells.

    PubMed

    Morozov, A V; Spasskaya, D S; Karpov, D S; Karpov, V L

    2014-10-16

    Despite high interest in the cellular degradation machinery and protein degradation signals (degrons), few degrons with universal activity along species have been identified. It has been shown that fusion of a target protein with a degradation signal from mammalian ornithine decarboxylase (ODC) induces fast proteasomal degradation of the chimera in both mammalian and yeast cells. However, no degrons from yeast-encoded proteins capable to function in mammalian cells were identified so far. Here, we demonstrate that the yeast transcription factor Rpn4 undergoes fast proteasomal degradation and its central domain can destabilize green fluorescent protein and Alpha-fetoprotein in human HEK 293T cells. Furthermore, we confirm the activity of this degron in yeast. Thus, the Rpn4 central domain is an effective interspecies degradation signal. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Identification of human ferritin, heavy polypeptide 1 (FTH1) and yeast RGI1 (YER067W) as pro-survival sequences that counteract the effects of Bax and copper in Saccharomyces cerevisiae.

    PubMed

    Eid, Rawan; Boucher, Eric; Gharib, Nada; Khoury, Chamel; Arab, Nagla T T; Murray, Alistair; Young, Paul G; Mandato, Craig A; Greenwood, Michael T

    2016-03-01

    Ferritin is a sub-family of iron binding proteins that form multi-subunit nanotype iron storage structures and prevent oxidative stress induced apoptosis. Here we describe the identification and characterization of human ferritin, heavy polypeptide 1 (FTH1) as a suppressor of the pro-apoptotic murine Bax sequence in yeast. In addition we demonstrate that FTH1 is a general pro-survival sequence since it also prevents the cell death inducing effects of copper when heterologously expressed in yeast. Although ferritins are phylogenetically widely distributed and are present in most species of Bacteria, Archaea and Eukarya, ferritin is conspicuously absent in most fungal species including Saccharomyces cerevisiae. An in silico analysis of the yeast proteome lead to the identification of the 161 residue RGI1 (YER067W) encoded protein as a candidate for being a yeast ferritin. In addition to sharing 20% sequence identity with the 183 residue FTH1, RGI1 also has similar pro-survival properties as ferritin when overexpressed in yeast. Analysis of recombinant protein by SDS-PAGE and by electron microscopy revealed the expected formation of higher-order structures for FTH1 that was not observed with Rgi1p. Further analysis revealed that cells overexpressing RGI1 do not show increased resistance to iron toxicity and do not have enhanced capacity to store iron. In contrast, cells lacking RGI1 were found to be hypersensitive to the toxic effects of iron. Overall, our results suggest that Rgi1p is a novel pro-survival protein whose function is not related to ferritin but nevertheless it may have a role in regulating yeast sensitivity to iron stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The construction of recombinant industrial yeasts free of bacterial sequences by directed gene replacement into a nonessential region of the genome.

    PubMed

    Xiao, W; Rank, G H

    1989-03-15

    The yeast SMR1 gene was used as a dominant resistance-selectable marker for industrial yeast transformation and for targeting integration of an economically important gene at the homologous ILV2 locus. A MEL1 gene, which codes for alpha-galactosidase, was inserted into a dispensable upstream region of SMR1 in vitro; different treatments of the plasmid (pWX813) prior to transformation resulted in 3' end, 5' end and replacement integrations that exhibited distinct integrant structures. One-step replacement within a nonessential region of the host genome generated a stable integration of MEL1 devoid of bacterial plasmid DNA. Using this method, we have constructed several alpha-galactosidase positive industrial Saccharomyces strains. Our study provides a general method for stable gene transfer in most industrial Saccharomyces yeasts, including those used in the baking, brewing (ale and lager), distilling, wine and sake industries, with solely nucleotide sequences of interest. The absence of bacterial DNA in the integrant structure facilitates the commercial application of recombinant DNA technology in the food and beverage industry.

  12. Lager Yeast Comes of Age

    PubMed Central

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  13. LISTA, LISTA-HOP and LISTA-HON: a comprehensive compilation of protein encoding sequences and its associated homology databases from the yeast Saccharomyces.

    PubMed Central

    Dölz, R; Mossé, M O; Slonimski, P P; Bairoch, A; Linder, P

    1994-01-01

    We continued our effort to make a comprehensive database (LISTA) for the yeast Saccharomyces cerevisiae. In this database each sequence has been attributed a single genetic name. In the case of duplicated sequences a simple method has been applied to distinguish between sequences of one and the same gene from non-allelic sequences of duplicated genes. If necessary, synonyms are given in the case of allelic duplicated sequences. Thus sequences can be found either by the name or by synonyms given in LISTA. Each entry contains the genetic name, the mnemonic from the EMBL data bank, the codon bias, reference of the publication of the sequence, Chromosomal location as far as known, Swissprot and EMBL accession numbers. To obtain more information on the included sequences, each entry has been screened against non-redundant nucleotide and protein data bank collections resulting in LISTA-HON and LISTA-HOP. The LISTA data base can be linked to the associated data sets or to nucleotide and protein banks by the Sequence Retrieval System (SRS). PMID:7937046

  14. Functional mapping of yeast genomes by saturated transposition

    PubMed Central

    Michel, Agnès H; Hatakeyama, Riko; Kimmig, Philipp; Arter, Meret; Peter, Matthias; Matos, Joao; De Virgilio, Claudio; Kornmann, Benoît

    2017-01-01

    Yeast is a powerful model for systems genetics. We present a versatile, time- and labor-efficient method to functionally explore the Saccharomyces cerevisiae genome using saturated transposon mutagenesis coupled to high-throughput sequencing. SAturated Transposon Analysis in Yeast (SATAY) allows one-step mapping of all genetic loci in which transposons can insert without disrupting essential functions. SATAY is particularly suited to discover loci important for growth under various conditions. SATAY (1) reveals positive and negative genetic interactions in single and multiple mutant strains, (2) can identify drug targets, (3) detects not only essential genes, but also essential protein domains, (4) generates both null and other informative alleles. In a SATAY screen for rapamycin-resistant mutants, we identify Pib2 (PhosphoInositide-Binding 2) as a master regulator of TORC1. We describe two antagonistic TORC1-activating and -inhibiting activities located on opposite ends of Pib2. Thus, SATAY allows to easily explore the yeast genome at unprecedented resolution and throughput. DOI: http://dx.doi.org/10.7554/eLife.23570.001 PMID:28481201

  15. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater.

    PubMed

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  16. Initiation preference at a yeast origin of replication.

    PubMed

    Brewer, B J; Fangman, W L

    1994-04-12

    Replication origins in the yeast Saccharomyces cerevisiae are identified as autonomous replication sequence (ARS) elements. To examine the effect of origin density on replication initiation, we have analyzed the replication of a plasmid that contains two copies of the same origin, ARS1. The activation of origins and the direction that replication forks move through flanking sequences can be physically determined by analyzing replication intermediates on two-dimensional agarose gels. We find that only one of the two identical ARSs on the plasmid initiates replication on any given plasmid molecule; that is, this close spacing of ARSs results in an apparent interference between the potential origins. Moreover, in the particular plasmid that we constructed, one of the two identical copies of ARS1 is used four times more frequently than the other one. These results show that the plasmid context is critical for determining the preferred origin. This origin preference is also exhibited when the tandem copies of ARS1 are introduced into a yeast chromosome. The sequences responsible for establishing the origin preference have been identified by deletion analysis and are found to reside in a portion of the yeast URA3 gene.

  17. A purified truncated form of yeast Gal4 expressed in Escherichia coli and used to functionalize poly(lactic acid) nanoparticle surface is transcriptionally active in cellulo.

    PubMed

    Legaz, Sophie; Exposito, Jean-Yves; Borel, Agnès; Candusso, Marie-Pierre; Megy, Simon; Montserret, Roland; Lahaye, Vincent; Terzian, Christophe; Verrier, Bernard

    2015-09-01

    Gal4/UAS system is a powerful tool for the analysis of numerous biological processes. Gal4 is a large yeast transcription factor that activates genes including UAS sequences in their promoter. Here, we have synthesized a minimal form of Gal4 DNA sequence coding for the binding and dimerization regions, but also part of the transcriptional activation domain. This truncated Gal4 protein was expressed as inclusion bodies in Escherichia coli. A structured and active form of this recombinant protein was purified and used to cover poly(lactic acid) (PLA) nanoparticles. In cellulo, these Gal4-vehicles were able to activate the expression of a Green Fluorescent Protein (GFP) gene under the control of UAS sequences, demonstrating that the decorated Gal4 variant can be delivery into cells where it still retains its transcription factor capacities. Thus, we have produced in E. coli and purified a short active form of Gal4 that retains its functions at the surface of PLA-nanoparticles in cellular assay. These decorated Gal4-nanoparticles will be useful to decipher their tissue distribution and their potential after ingestion or injection in UAS-GFP recombinant animal models. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. G-rich telomeric and ribosomal DNA sequences from the fission yeast genome form stable G-quadruplex DNA structures in vitro and are unwound by the Pfh1 DNA helicase

    PubMed Central

    Wallgren, Marcus; Mohammad, Jani B.; Yan, Kok-Phen; Pourbozorgi-Langroudi, Parham; Ebrahimi, Mahsa; Sabouri, Nasim

    2016-01-01

    Certain guanine-rich sequences have an inherent propensity to form G-quadruplex (G4) structures. G4 structures are e.g. involved in telomere protection and gene regulation. However, they also constitute obstacles during replication if they remain unresolved. To overcome these threats to genome integrity, organisms harbor specialized G4 unwinding helicases. In Schizosaccharomyces pombe, one such candidate helicase is Pfh1, an evolutionarily conserved Pif1 homolog. Here, we addressed whether putative G4 sequences in S. pombe can adopt G4 structures and, if so, whether Pfh1 can resolve them. We tested two G4 sequences, derived from S. pombe ribosomal and telomeric DNA regions, and demonstrated that they form inter- and intramolecular G4 structures, respectively. Also, Pfh1 was enriched in vivo at the ribosomal G4 DNA and telomeric sites. The nuclear isoform of Pfh1 (nPfh1) unwound both types of structure, and although the G4-stabilizing compound Phen-DC3 significantly enhanced their stability, nPfh1 still resolved them efficiently. However, stable G4 structures significantly inhibited adenosine triphosphate hydrolysis by nPfh1. Because ribosomal and telomeric DNA contain putative G4 regions conserved from yeasts to humans, our studies support the important role of G4 structure formation in these regions and provide further evidence for a conserved role for Pif1 helicases in resolving G4 structures. PMID:27185885

  19. Genomic and Phenotypic Characterization of Yeast Biosensor for Deep-space Radiation

    NASA Technical Reports Server (NTRS)

    Marina, Diana B.; Santa Maria, Sergio; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission was selected to launch as a secondary payload onboard NASA Exploration Mission 1 (EM-1) in 2018. In BioSentinel, the budding yeast Saccharomyces cerevisiae will be used as a biosensor to measure the long-term impact of deep-space radiation to living organisms. In the 4U-payload, desiccated yeast cells from different strains will be stored inside microfluidic cards equipped with 3-color LED optical detection system to monitor cell growth and metabolic activity. At different times throughout the 12-month mission, these cards will be filled with liquid yeast growth media to rehydrate and grow the desiccated cells. The growth and metabolic rates of wild-type and radiation-sensitive strains in deep-space radiation environment will be compared to the rates measured in the ground- and microgravity-control units. These rates will also be correlated with measurements obtained from onboard physical dosimeters. In our preliminary long-term desiccation study, we found that air-drying yeast cells in 10% trehalose is the best method of cell preservation in order to survive the entire 18-month mission duration (6-month pre-launch plus 12-month full-mission periods). However, our study also revealed that desiccated yeast cells have decreasing viability over time when stored in payload-like environment. This suggests that the yeast biosensor will have different population of cells at different time points during the long-term mission. In this study, we are characterizing genomic and phenotypic changes in our yeast biosensor due to long-term storage and desiccation. For each yeast strain that will be part of the biosensor, several clones were reisolated after long-term storage by desiccation. These clones were compared to their respective original isolate in terms of genomic composition, desiccation tolerance and radiation sensitivity. Interestingly, clones from a radiation-sensitive mutant have better desiccation tolerance compared to their original isolate

  20. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    PubMed

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Yeast identification: reassessment of assimilation tests as sole universal identifiers.

    PubMed

    Spencer, J; Rawling, S; Stratford, M; Steels, H; Novodvorska, M; Archer, D B; Chandra, S

    2011-11-01

    To assess whether assimilation tests in isolation remain a valid method of identification of yeasts, when applied to a wide range of environmental and spoilage isolates. Seventy-one yeast strains were isolated from a soft drinks factory. These were identified using assimilation tests and by D1/D2 rDNA sequencing. When compared to sequencing, assimilation test identifications (MicroLog™) were 18·3% correct, a further 14·1% correct within the genus and 67·6% were incorrectly identified. The majority of the latter could be attributed to the rise in newly reported yeast species. Assimilation tests alone are unreliable as a universal means of yeast identification, because of numerous new species, variability of strains and increasing coincidence of assimilation profiles. Assimilation tests still have a useful role in the identification of common species, such as the majority of clinical isolates. It is probable, based on these results, that many yeast identifications reported in older literature are incorrect. This emphasizes the crucial need for accurate identification in present and future publications. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now

    PubMed Central

    Engel, Stacia R.; Dietrich, Fred S.; Fisk, Dianna G.; Binkley, Gail; Balakrishnan, Rama; Costanzo, Maria C.; Dwight, Selina S.; Hitz, Benjamin C.; Karra, Kalpana; Nash, Robert S.; Weng, Shuai; Wong, Edith D.; Lloyd, Paul; Skrzypek, Marek S.; Miyasato, Stuart R.; Simison, Matt; Cherry, J. Michael

    2014-01-01

    The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called “S288C 2010,” was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science. PMID:24374639

  3. A Modified MuDPIT Separation Identified 4,488 Proteins in a System Wide Analysis of Quiescence in Yeast

    PubMed Central

    Webb, Kristofor J.; Xu, Tao; Park, Sung Kyu; Yates, John R.

    2013-01-01

    A modified multidimensional protein identification technology (MudPIT) separation was coupled to an LTQ Orbitrap Velos mass spectrometer and used to rapidly identify the near complete yeast proteome from a whole cell tryptic digest. This modified on-line two dimensional liquid chromatography separation consists of 39 strong cation exchange steps followed by a short 18.5 min reversed-phase (RP) gradient. A total of 4,269 protein identifications were made from 4,189 distinguishable protein families from yeast during log phase growth. The “Micro” MudPIT separation performed as well as a standard MudPIT separation in 40% less gradient time. The majority of the yeast proteome can now be routinely covered in less than a days’ time with high reproducibility and sensitivity. The newly devised separation method was used to detect changes in protein expression during cellular quiescence in yeast. An enrichment in the GO annotations ‘oxidation reduction’, ‘catabolic processing’ and ‘cellular response to oxidative stress’ was seen in the quiescent cellular fraction, consistent with their long lived stress resistant phenotypes. Heterogeneity was observed in the stationary phase fraction with a less dense cell population showing reductions in KEGG pathway categories of ‘Ribosome’ and ‘Proteasome’, further defining the complex nature of yeast populations present during stationary phase growth. In total 4,488 distinguishable protein families were identified in all cellular conditions tested. PMID:23540446

  4. de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer

    PubMed Central

    Istace, Benjamin; Friedrich, Anne; d'Agata, Léo; Faye, Sébastien; Payen, Emilie; Beluche, Odette; Caradec, Claudia; Davidas, Sabrina; Cruaud, Corinne; Liti, Gianni; Lemainque, Arnaud; Engelen, Stefan; Wincker, Patrick; Schacherer, Joseph

    2017-01-01

    Abstract Background: Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease of use compared with existing long reads sequencing technologies. The MinION sequencer enables the rapid sequencing of small eukaryotic genomes, such as the yeast genome. Combined with existing assembler algorithms, near complete genome assemblies can be generated and comprehensive population genomic analyses can be performed. Results: Here, we resequenced the genome of the Saccharomyces cerevisiae S288C strain to evaluate the performance of nanopore-only assemblers. Then we de novo sequenced and assembled the genomes of 21 isolates representative of the S. cerevisiae genetic diversity using the MinION platform. The contiguity of our assemblies was 14 times higher than the Illumina-only assemblies and we obtained one or two long contigs for 65 % of the chromosomes. This high contiguity allowed us to accurately detect large structural variations across the 21 studied genomes. Conclusion: Because of the high completeness of the nanopore assemblies, we were able to produce a complete cartography of transposable elements insertions and inspect structural variants that are generally missed using a short-read sequencing strategy. Our analyses show that the Oxford Nanopore technology is already usable for de novo sequencing and assembly; however, non-random errors in homopolymers require polishing the consensus using an alternate sequencing technology. PMID:28369459

  5. de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer.

    PubMed

    Istace, Benjamin; Friedrich, Anne; d'Agata, Léo; Faye, Sébastien; Payen, Emilie; Beluche, Odette; Caradec, Claudia; Davidas, Sabrina; Cruaud, Corinne; Liti, Gianni; Lemainque, Arnaud; Engelen, Stefan; Wincker, Patrick; Schacherer, Joseph; Aury, Jean-Marc

    2017-02-01

    Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease of use compared with existing long reads sequencing technologies. The MinION sequencer enables the rapid sequencing of small eukaryotic genomes, such as the yeast genome. Combined with existing assembler algorithms, near complete genome assemblies can be generated and comprehensive population genomic analyses can be performed. Here, we resequenced the genome of the Saccharomyces cerevisiae S288C strain to evaluate the performance of nanopore-only assemblers. Then we de novo sequenced and assembled the genomes of 21 isolates representative of the S. cerevisiae genetic diversity using the MinION platform. The contiguity of our assemblies was 14 times higher than the Illumina-only assemblies and we obtained one or two long contigs for 65 % of the chromosomes. This high contiguity allowed us to accurately detect large structural variations across the 21 studied genomes. Because of the high completeness of the nanopore assemblies, we were able to produce a complete cartography of transposable elements insertions and inspect structural variants that are generally missed using a short-read sequencing strategy. Our analyses show that the Oxford Nanopore technology is already usable for de novo sequencing and assembly; however, non-random errors in homopolymers require polishing the consensus using an alternate sequencing technology. © The Author 2017. Published by Oxford University Press.

  6. Characterization of a Drosophila ortholog of the Cdc7 kinase: a role for Cdc7 in endoreplication independent of Chiffon.

    PubMed

    Stephenson, Robert; Hosler, Marcus R; Gavande, Navnath S; Ghosh, Arun K; Weake, Vikki M

    2015-01-16

    Cdc7 is a serine-threonine kinase that phosphorylates components of the pre-replication complex during DNA replication initiation. Cdc7 is highly conserved, and Cdc7 orthologs have been characterized in organisms ranging from yeast to humans. Cdc7 is activated specifically during late G1/S phase by binding to its regulatory subunit, Dbf4. Drosophila melanogaster contains a Dbf4 ortholog, Chiffon, which is essential for chorion amplification in Drosophila egg chambers. However, no Drosophila ortholog of Cdc7 has yet been characterized. Here, we report the functional and biochemical characterization of a Drosophila ortholog of Cdc7. Co-expression of Drosophila Cdc7 and Chiffon is able to complement a growth defect in yeast containing a temperature-sensitive Cdc7 mutant. Cdc7 and Chiffon physically interact and can be co-purified from insect cells. Cdc7 phosphorylates the known Cdc7 substrates Mcm2 and histone H3 in vitro, and Cdc7 kinase activity is stimulated by Chiffon and inhibited by the Cdc7-specific inhibitor XL413. Drosophila egg chamber follicle cells deficient for Cdc7 have a defect in two types of DNA replication, endoreplication and chorion gene amplification. However, follicle cells deficient for Chiffon have a defect in chorion gene amplification but still undergo endocycling. Our results show that Cdc7 interacts with Chiffon to form a functional Dbf4-dependent kinase complex and that Cdc7 is necessary for DNA replication in Drosophila egg chamber follicle cells. Additionally, we show that Chiffon is a member of an expanding subset of DNA replication initiation factors that are not strictly required for endoreplication in Drosophila. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Complete genome sequence and comparative genomics of the probiotic yeast Saccharomyces boulardii.

    PubMed

    Khatri, Indu; Tomar, Rajul; Ganesan, K; Prasad, G S; Subramanian, Srikrishna

    2017-03-23

    The probiotic yeast, Saccharomyces boulardii (Sb) is known to be effective against many gastrointestinal disorders and antibiotic-associated diarrhea. To understand molecular basis of probiotic-properties ascribed to Sb we determined the complete genomes of two strains of Sb i.e. Biocodex and unique28 and the draft genomes for three other Sb strains that are marketed as probiotics in India. We compared these genomes with 145 strains of S. cerevisiae (Sc) to understand genome-level similarities and differences between these yeasts. A distinctive feature of Sb from other Sc is absence of Ty elements Ty1, Ty3, Ty4 and associated LTR. However, we could identify complete Ty2 and Ty5 elements in Sb. The genes for hexose transporters HXT11 and HXT9, and asparagine-utilization are absent in all Sb strains. We find differences in repeat periods and copy numbers of repeats in flocculin genes that are likely related to the differential adhesion of Sb as compared to Sc. Core-proteome based taxonomy places Sb strains along with wine strains of Sc. We find the introgression of five genes from Z. bailii into the chromosome IV of Sb and wine strains of Sc. Intriguingly, genes involved in conferring known probiotic properties to Sb are conserved in most Sc strains.

  8. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    PubMed Central

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653

  9. Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation

    DTIC Science & Technology

    2016-02-11

    the White- head Genome Technology Core for sequencing . This work was supported by the UCSF Program for Breakthrough Biomedical Research (funded in...landscape of the yeast genome defined by RNA sequencing . Science 320, 1344–1349. Nedialkova, D.D., and Leidel, S.A. (2015). Optimization of Codon Translation... the CC BY license (http://creativecommons.org/licenses/by/4.0/). SUMMARY Ribosome-footprint profiling provides genome -wide snapshots of translation

  10. Phosphorylation and cellular function of the human Rpa2 N-terminus in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Ghospurkar, Padmaja L; Wilson, Timothy M; Liu, Shengqin; Herauf, Anna; Steffes, Jenna; Mueller, Erica N; Oakley, Gregory G; Haring, Stuart J

    2015-02-01

    Maintenance of genome integrity is critical for proper cell growth. This occurs through accurate DNA replication and repair of DNA lesions. A key factor involved in both DNA replication and the DNA damage response is the heterotrimeric single-stranded DNA (ssDNA) binding complex Replication Protein A (RPA). Although the RPA complex appears to be structurally conserved throughout eukaryotes, the primary amino acid sequence of each subunit can vary considerably. Examination of sequence differences along with the functional interchangeability of orthologous RPA subunits or regions could provide insight into important regions and their functions. This might also allow for study in simpler systems. We determined that substitution of yeast Replication Factor A (RFA) with human RPA does not support yeast cell viability. Exchange of a single yeast RFA subunit with the corresponding human RPA subunit does not function due to lack of inter-species subunit interactions. Substitution of yeast Rfa2 with domains/regions of human Rpa2 important for Rpa2 function (i.e., the N-terminus and the loop 3-4 region) supports viability in yeast cells, and hybrid proteins containing human Rpa2 N-terminal phospho-mutations result in similar DNA damage phenotypes to analogous yeast Rfa2 N-terminal phospho-mutants. Finally, the human Rpa2 N-terminus (NT) fused to yeast Rfa2 is phosphorylated in a manner similar to human Rpa2 in human cells, indicating that conserved kinases recognize the human domain in yeast. The implication is that budding yeast represents a potential model system for studying not only human Rpa2 N-terminal phosphorylation, but also phosphorylation of Rpa2 N-termini from other eukaryotic organisms. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Construction of a recombinant wine yeast strain expressing beta-(1,4)-endoglucanase and its use in microvinification processes.

    PubMed Central

    Pérez-González, J A; González, R; Querol, A; Sendra, J; Ramón, D

    1993-01-01

    A genetic transformation system for an industrial wine yeast strain is presented here. The system is based on the acquisition of cycloheximide resistance and is a direct adaptation of a previously published procedure for brewing yeasts (L. Del Pozo, D. Abarca, M. G. Claros, and A. Jiménez, Curr. Genet. 19:353-358, 1991). Transformants arose at an optimal frequency of 0.5 transformant per microgram of DNA, are stable in the absence of selective pressure, and produce wine in the same way as the untransformed industrial strain. By using this transformation protocol, a filamentous fungal beta-(1,4)-endoglucanase gene has been expressed in an industrial wine yeast under the control of the yeast actin gene promoter. Endoglucanolytic wine yeast secretes the fungal enzyme to the must, producing a wine with an increased fruity aroma. Images PMID:8215355

  12. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human

    PubMed Central

    Takahashi, Yoh-hei; Westfield, Gerwin H.; Oleskie, Austin N.; Trievel, Raymond C.; Shilatifard, Ali; Skiniotis, Georgios

    2011-01-01

    Histone H3 lysine 4 (H3K4) methylation is catalyzed by the highly evolutionarily conserved multiprotein complex known as Set1/COMPASS or MLL/COMPASS-like complexes from yeast to human, respectively. Here we have reconstituted fully functional yeast Set1/COMPASS and human MLL/COMPASS-like complex in vitro and have identified the minimum subunit composition required for histone H3K4 methylation. These subunits include the methyltransferase C-terminal SET domain of Set1/MLL, Cps60/Ash2L, Cps50/RbBP5, Cps30/WDR5, and Cps25/Dpy30, which are all common components of the COMPASS family from yeast to human. Three-dimensional (3D) cryo-EM reconstructions of the core yeast complex, combined with immunolabeling and two-dimensional (2D) EM analysis of the individual subcomplexes reveal a Y-shaped architecture with Cps50 and Cps30 localizing on the top two adjacent lobes and Cps60-Cps25 forming the base at the bottom. EM analysis of the human complex reveals a striking similarity to its yeast counterpart, suggesting a common subunit organization. The SET domain of Set1 is located at the juncture of Cps50, Cps30, and the Cps60-Cps25 module, lining the walls of a central channel that may act as the platform for catalysis and regulative processing of various degrees of H3K4 methylation. This structural arrangement suggested that COMPASS family members function as exo-methylases, which we have confirmed by in vitro and in vivo studies. PMID:22158900

  13. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human.

    PubMed

    Takahashi, Yoh-hei; Westfield, Gerwin H; Oleskie, Austin N; Trievel, Raymond C; Shilatifard, Ali; Skiniotis, Georgios

    2011-12-20

    Histone H3 lysine 4 (H3K4) methylation is catalyzed by the highly evolutionarily conserved multiprotein complex known as Set1/COMPASS or MLL/COMPASS-like complexes from yeast to human, respectively. Here we have reconstituted fully functional yeast Set1/COMPASS and human MLL/COMPASS-like complex in vitro and have identified the minimum subunit composition required for histone H3K4 methylation. These subunits include the methyltransferase C-terminal SET domain of Set1/MLL, Cps60/Ash2L, Cps50/RbBP5, Cps30/WDR5, and Cps25/Dpy30, which are all common components of the COMPASS family from yeast to human. Three-dimensional (3D) cryo-EM reconstructions of the core yeast complex, combined with immunolabeling and two-dimensional (2D) EM analysis of the individual subcomplexes reveal a Y-shaped architecture with Cps50 and Cps30 localizing on the top two adjacent lobes and Cps60-Cps25 forming the base at the bottom. EM analysis of the human complex reveals a striking similarity to its yeast counterpart, suggesting a common subunit organization. The SET domain of Set1 is located at the juncture of Cps50, Cps30, and the Cps60-Cps25 module, lining the walls of a central channel that may act as the platform for catalysis and regulative processing of various degrees of H3K4 methylation. This structural arrangement suggested that COMPASS family members function as exo-methylases, which we have confirmed by in vitro and in vivo studies.

  14. Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity.

    PubMed

    Belda, Ignacio; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-05-16

    The development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium. Yeast strains with an increased β-lyase activity grew rapidly because of their ability to release ammonium from SMC in comparison to others, and allowed for the easy isolation and differentiation of yeasts with promising properties in oenology, or another field, for aromatic thiol release. The selective medium was also helpful for the discrimination between those S. cerevisiae strains, which present a common 38-bp deletion in the IRC7 sequence (present in around 88% of the wild strains tested and are likely to be less functional for 4-mercapto-4-methylpentan-2-one (4MMP) production), and those S. cerevisiae strains homozygous for the full-length IRC7 allele. The medium was also helpful for the selection of non-Saccharomyces yeasts with increased β-lyase activity. Based on the same medium, a highly sensitive, reproducible and non-expensive GC-MS method for the evaluation of the potential volatile thiol release by different yeast isolates was developed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.

    PubMed

    Kitagaki, Hiroshi; Kitamoto, Katsuhiko

    2013-01-01

    Sake is an alcoholic beverage of Japan, with a tradition lasting more than 1,300 years; it is produced from rice and water by fermenting with the koji mold Aspergillus oryzae and sake yeast Saccharomyces cerevisiae. Breeding research on sake yeasts was originally developed in Japan by incorporating microbiological and genetic research methodologies adopted in other scientific areas. Since the advent of a genetic paradigm, isolation of yeast mutants has been a dominant approach for the breeding of favorable sake yeasts. These sake yeasts include (a) those that do not form foams (produced by isolating a mutant that does not stick to foams, thus decreasing the cost of sake production); (b) those that do not produce urea, which leads to the formation of ethyl carbamate, a possible carcinogen (isolated by positive selection in a canavanine-, arginine-, and ornithine-containing medium); (c) those that produce an increased amount of ethyl caproate, an apple-like flavor (produced by isolating a mutant resistant to cerulenin, an inhibitor of fatty-acid synthesis); and (d) those that produce a decreased amount of pyruvate (produced by isolating a mutant resistant to an inhibitor of mitochondrial transport, thus decreasing the amount of diacetyl). Given that sake yeasts perform sexual reproduction, sporulation and mating are potent approaches for their breeding. Recently, the genome sequences of sake yeasts have been determined and made publicly accessible. By utilizing this information, the quantitative trait loci (QTLs) for the brewing characteristics of sake yeasts have been identified, which paves a way to DNA marker-assisted selection of the mated strains. Genetic engineering technologies for experimental yeast strains have recently been established by academic groups, and these technologies have also been applied to the breeding of sake yeasts. Sake yeasts whose genomes have been modified with these technologies correspond to genetically modified organisms (GMOs

  16. Candida neustonensis sp. nov., a novel ascomycetous yeast isolated from the sea surface microlayer in Taiwan.

    PubMed

    Chang, Chin-Feng; Lee, Ching-Fu; Liu, Shiu-Mei

    2010-01-01

    A new ascomycetous yeast species, Candida neustonensis is proposed in this study based on four strains (SN92(T), SN47, SJ22, SJ25) isolated from sea surface microlayer in Taiwan. These four yeast strains were morphologically, physiologically and phylogenetically identical to each other. No sexual reproduction was observed on 5% malt extract agar, corn meal agar, V8 agar, McClary's acetate agar and potato-dextrose agar. Phylogenetic analysis of the sequences of the D1/D2 domain of the large subunit (LSU) rRNA gene places C. neustonensis as a member of the Pichia guilliermondii clade, it also reveals that the phylogenetically closest relatives of C. neustonensis are C. fukuyamaensis (4.4% divergence), C. xestobii (4.4% divergence) and P. guilliermondii (4.5% divergence). C. neustonensis also is clearly distinguished from other known species in the P. guilliermondii clade based on the results of physiology tests. From these comparison analyses, the following novel yeast species is proposed: Candida neustonensis sp. nov., with strain SN92(T) (= BCRC 23108(T) = JCM 14892(T) = CBS 11061(T)) as the type strain.

  17. Diversity of yeasts associated with the sea surface microlayer and underlying water along the northern coast of Taiwan.

    PubMed

    Chang, Chin-Feng; Lee, Ching-Fu; Lin, Kao-Yung; Liu, Shiu-Mei

    2016-01-01

    Yeast communities inhabiting the sea surface microlayer (SSML) on the northern coast of Taiwan were examined using a cultivation method and compared with those inhabiting the underlying water (UW) at a 50-cm depth. Culturable yeasts were recovered from the SSML and UW samples collected in the morning during 4 field campaigns, and 420 strains were isolated. The 420 isolates were grouped into 43 species using a polyphasic molecular approach, including sequence analysis of the 26S rDNA D1/D2 domain and 5.8S-ITS region. From the SSML samples, 12 genera and 39 species, including 7 new species of Cryptococcus sp. (1), Candida spp. (4), and Rhodotorula spp. (2), were isolated. From the UW samples, 10 genera and 21 species, including one new species of Rhodotorula sp. (1), were isolated. Rhodotorula mucilaginosa was the most abundant species present in the yeast community in SSML (37.6%) and UW (21.6%) samples. Basidiomycetous yeasts (63.6%) and pigmented yeasts (64.5%) comprised the major yeast population. The yeast community in the SSML had a higher species number and abundance than the UW. Moreover, although the majority of yeast community species were from the SSML, individual species distribution in the SSML was unequal. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Novel features of ARS selection in budding yeast Lachancea kluyveri

    PubMed Central

    2011-01-01

    Background The characterization of DNA replication origins in yeast has shed much light on the mechanisms of initiation of DNA replication. However, very little is known about the evolution of origins or the evolution of mechanisms through which origins are recognized by the initiation machinery. This lack of understanding is largely due to the vast evolutionary distances between model organisms in which origins have been examined. Results In this study we have isolated and characterized autonomously replicating sequences (ARSs) in Lachancea kluyveri - a pre-whole genome duplication (WGD) budding yeast. Through a combination of experimental work and rigorous computational analysis, we show that L. kluyveri ARSs require a sequence that is similar but much longer than the ARS Consensus Sequence well defined in Saccharomyces cerevisiae. Moreover, compared with S. cerevisiae and K. lactis, the replication licensing machinery in L. kluyveri seems more tolerant to variations in the ARS sequence composition. It is able to initiate replication from almost all S. cerevisiae ARSs tested and most Kluyveromyces lactis ARSs. In contrast, only about half of the L. kluyveri ARSs function in S. cerevisiae and less than 10% function in K. lactis. Conclusions Our findings demonstrate a replication initiation system with novel features and underscore the functional diversity within the budding yeasts. Furthermore, we have developed new approaches for analyzing biologically functional DNA sequences with ill-defined motifs. PMID:22204614

  19. Novel features of ARS selection in budding yeast Lachancea kluyveri.

    PubMed

    Liachko, Ivan; Tanaka, Emi; Cox, Katherine; Chung, Shau Chee Claire; Yang, Lu; Seher, Arael; Hallas, Lindsay; Cha, Eugene; Kang, Gina; Pace, Heather; Barrow, Jasmine; Inada, Maki; Tye, Bik-Kwoon; Keich, Uri

    2011-12-28

    The characterization of DNA replication origins in yeast has shed much light on the mechanisms of initiation of DNA replication. However, very little is known about the evolution of origins or the evolution of mechanisms through which origins are recognized by the initiation machinery. This lack of understanding is largely due to the vast evolutionary distances between model organisms in which origins have been examined. In this study we have isolated and characterized autonomously replicating sequences (ARSs) in Lachancea kluyveri - a pre-whole genome duplication (WGD) budding yeast. Through a combination of experimental work and rigorous computational analysis, we show that L. kluyveri ARSs require a sequence that is similar but much longer than the ARS Consensus Sequence well defined in Saccharomyces cerevisiae. Moreover, compared with S. cerevisiae and K. lactis, the replication licensing machinery in L. kluyveri seems more tolerant to variations in the ARS sequence composition. It is able to initiate replication from almost all S. cerevisiae ARSs tested and most Kluyveromyces lactis ARSs. In contrast, only about half of the L. kluyveri ARSs function in S. cerevisiae and less than 10% function in K. lactis. Our findings demonstrate a replication initiation system with novel features and underscore the functional diversity within the budding yeasts. Furthermore, we have developed new approaches for analyzing biologically functional DNA sequences with ill-defined motifs.

  20. Specialist nectar-yeasts decline with urbanization in Berlin

    NASA Astrophysics Data System (ADS)

    Wehner, Jeannine; Mittelbach, Moritz; Rillig, Matthias C.; Verbruggen, Erik

    2017-03-01

    Nectar yeasts are common inhabitants of insect-pollinated flowers but factors determining their distribution are not well understood. We studied the influence of host identity, environmental factors related to pollution/urbanization, and the distance to a target beehive on local distribution of nectar yeasts within Robinia pseudoacacia L. and Tilia tomentosa Moench in Berlin, Germany. Nectar samples of six individuals per species were collected at seven sites in a 2 km radius from each target beehive and plated on YM-Agar to visualise the different morphotypes, which were then identified by sequencing a section of the 26S rDNA gene. Multivariate linear models were used to analyze the effects of all investigated factors on yeast occurrence per tree. Yeast distribution was mainly driven by host identity. The influence of the environmental factors (NO2, height of construction, soil sealing) strongly depended on the radius around the tree, similar to the distance of the sampled beehive. Incidence of specialist nectar-borne yeast species decreased with increasing pollution/urbanization index. Given that specialist yeast species gave way to generalist yeasts that have a reduced dependency on pollinators for between-flower dispersal, our results indicate that increased urbanization may restrict the movement of nectar-specialized yeasts, via limitations of pollinator foraging behavior.

  1. Designed Electroresponsive Biomaterials: Sequence-Controlled Behavior

    DTIC Science & Technology

    2010-06-29

    protein of the M13 . Traditional phage and yeast display methodologies indicate that peptide sequences with high affinities for electrode materials...drug delivery. The original vision for this work was to employ combinatorial tools such as phage and yeast display under electrical selection pressure...and drug delivery. The original vision for this work was to employ combinatorial tools such as phage and yeast display under electrical selection

  2. Quantitative phenotyping via deep barcode sequencing.

    PubMed

    Smith, Andrew M; Heisler, Lawrence E; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J; Chee, Mark; Roth, Frederick P; Giaever, Guri; Nislow, Corey

    2009-10-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale.

  3. Quantitative phenotyping via deep barcode sequencing

    PubMed Central

    Smith, Andrew M.; Heisler, Lawrence E.; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J.; Chee, Mark; Roth, Frederick P.; Giaever, Guri; Nislow, Corey

    2009-01-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or “Bar-seq,” outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that ∼20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene–environment interactions on a genome-wide scale. PMID:19622793

  4. [Treatment of oil-manufacturing wastewater by yeast-SBR system].

    PubMed

    Lü, Wen-zhou; Liu, Ying; Huang, Yi-zhen

    2008-04-01

    Eight yeast strains were applied to a sequencing batch reactor (SBR) to treat high-strength oil-containing wastewater. The removal performance, yeast cultivation method and key factors affecting the stability of system were discussed. The results show yeast sludge with MLSS of 19 g/L and SVI of 35 mL/g can be obtained in 6 d in an open system without any molds and bacteria inhibitor addition; In 30 d continuous wastewater treatment, COD and oil removal rate achieve 86.8%-96.9% and above 99.5% respectively under the influent conditions of the COD of 9000-23000 mg/L and oil of 4500-16000 mg/L; Short period of pH impact brings reversible effects on the system and the sludge retention time can affect the SVI of the yeast; Absence of nitrogen induces morphology conversion of some yeast cells from single cell to filamentous one and impairs the settling capability of the yeast.

  5. The Yeast Deletion Collection: A Decade of Functional Genomics

    PubMed Central

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  6. The positive regulatory function of the 5'-proximal open reading frames in GCN4 mRNA can be mimicked by heterologous, short coding sequences.

    PubMed Central

    Williams, N P; Mueller, P P; Hinnebusch, A G

    1988-01-01

    Translational control of GCN4 expression in the yeast Saccharomyces cerevisiae is mediated by multiple AUG codons present in the leader of GCN4 mRNA, each of which initiates a short open reading frame of only two or three codons. Upstream AUG codons 3 and 4 are required to repress GCN4 expression in normal growth conditions; AUG codons 1 and 2 are needed to overcome this repression in amino acid starvation conditions. We show that the regulatory function of AUG codons 1 and 2 can be qualitatively mimicked by the AUG codons of two heterologous upstream open reading frames (URFs) containing the initiation regions of the yeast genes PGK and TRP1. These AUG codons inhibit GCN4 expression when present singly in the mRNA leader; however, they stimulate GCN4 expression in derepressing conditions when inserted upstream from AUG codons 3 and 4. This finding supports the idea that AUG codons 1 and 2 function in the control mechanism as translation initiation sites and further suggests that suppression of the inhibitory effects of AUG codons 3 and 4 is a general consequence of the translation of URF 1 and 2 sequences upstream. Several observations suggest that AUG codons 3 and 4 are efficient initiation sites; however, these sequences do not act as positive regulatory elements when placed upstream from URF 1. This result suggests that efficient translation is only one of the important properties of the 5' proximal URFs in GCN4 mRNA. We propose that a second property is the ability to permit reinitiation following termination of translation and that URF 1 is optimized for this regulatory function. Images PMID:3065626

  7. Disseminated yeast (Order Saccharomycetales) infection in a Muscovy duckling (Cairina moschata)

    PubMed Central

    Ravi, Madhu; Hill, Janet E.; Fernando, Champika; Wobeser, Gary

    2016-01-01

    A Muscovy duckling was presented for necropsy due to ongoing mortalities on a farm. Microscopic examination revealed multisystemic inflammatory lesions with intralesional and intracytoplasmic yeast-like organisms. We identified these agents as yeast belonging to the Order Saccharomycetales based on sequence data obtained from the ribosomal RNA operon. PMID:27807382

  8. The secretory pathway: exploring yeast diversity.

    PubMed

    Delic, Marizela; Valli, Minoska; Graf, Alexandra B; Pfeffer, Martin; Mattanovich, Diethard; Gasser, Brigitte

    2013-11-01

    Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Yeast Genetics and Biotechnological Applications

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  10. Nanoscale domain formation of phosphatidylinositol 4-phosphate in the plasma and vacuolar membranes of living yeast cells.

    PubMed

    Tomioku, Kan-Na; Shigekuni, Mikiko; Hayashi, Hiroki; Yoshida, Akane; Futagami, Taiki; Tamaki, Hisanori; Tanabe, Kenji; Fujita, Akikazu

    2018-05-01

    In budding yeast Saccharomyces cerevisiae, PtdIns(4)P serves as an essential signalling molecule in the Golgi complex, endosomal system, and plasma membrane, where it is involved in the control of multiple cellular functions via direct interactions with PtdIns(4)P-binding proteins. To analyse the distribution of PtdIns(4)P in yeast cells at a nanoscale level, we employed an electron microscopy technique that specifically labels PtdIns(4)P on the freeze-fracture replica of the yeast membrane. This method minimizes the possibility of artificial perturbation, because molecules in the membrane are physically immobilised in situ. We observed that PtdIns(4)P is localised on the cytoplasmic leaflet, but not the exoplasmic leaflet, of the plasma membrane, Golgi body, vacuole, and vesicular structure membranes. PtdIns(4)P labelling was not observed in the membrane of the endoplasmic reticulum, and in the outer and inner membranes of the nuclear envelope or mitochondria. PtdIns(4)P forms clusters of <100 nm in diameter in the plasma membrane and vacuolar membrane according to point pattern analysis of immunogold labelling. There are three kinds of compartments in the cytoplasmic leaflet of the plasma membrane. In the present study, we showed that PtdIns(4)P is specifically localised in the flat undifferentiated plasma membrane compartment. In the vacuolar membrane, PtdIns(4)P was concentrated in intramembrane particle (IMP)-deficient raft-like domains, which are tightly bound to lipid droplets, but not surrounding IMP-rich non-raft domains in geometrical IMP-distributed patterns in the stationary phase. This is the first report showing microdomain formations of PtdIns(4)P in the plasma membrane and vacuolar membrane of budding yeast cells at a nanoscale level, which will illuminate the functionality of PtdIns(4)P in each membrane. Copyright © 2018 Elsevier GmbH. All rights reserved.

  11. Enhancement of the Initial Rate of Ethanol Fermentation Due to Dysfunction of Yeast Stress Response Components Msn2p and/or Msn4p▿ †

    PubMed Central

    Watanabe, Daisuke; Wu, Hong; Noguchi, Chiemi; Zhou, Yan; Akao, Takeshi; Shimoi, Hitoshi

    2011-01-01

    Sake yeasts (strains of Saccharomyces cerevisiae) produce high concentrations of ethanol in sake fermentation. To investigate the molecular mechanisms underlying this brewing property, we compared gene expression of sake and laboratory yeasts in sake mash. DNA microarray and reporter gene analyses revealed defects of sake yeasts in environmental stress responses mediated by transcription factors Msn2p and/or Msn4p (Msn2/4p) and stress response elements (STRE). Furthermore, we found that dysfunction of MSN2 and/or MSN4 contributes to the higher initial rate of ethanol fermentation in both sake and laboratory yeasts. These results provide novel insights into yeast stress responses as major impediments of effective ethanol fermentation. PMID:21131516

  12. Yeasts associated with the curculionid beetle Xyloterinus politus: Candida xyloterini sp. nov., Candida palmyrensis sp. nov. and three common ambrosia yeasts.

    PubMed

    Suh, Sung-Oui; Zhou, Jianlong

    2010-07-01

    Seven yeast strains were isolated from the body surface and galleries of Xyloterinus politus, the ambrosia beetle that attacks black oak trees. Based on rDNA sequence comparisons and other taxonomic characteristics, five of the strains were identified as members of the species Saccharomycopsis microspora, Wickerhamomyces hampshirensis and Candida mycetangii, which have been reported previously as being associated with insects. The remaining two yeast strains were proposed as representatives of two novel species, Candida xyloterini sp. nov. (type strain ATCC 62898(T)=CBS 11547(T)) and Candida palmyrensis sp. nov. (type strain ATCC 62899(T)=CBS 11546(T)). C. xyloterini sp. nov. is a close sister taxon to Ogataea dorogensis and assimilates methanol as a sole carbon source but lacks ascospores. On the other hand, C. palmyrensis sp. nov. is phylogenetically distinct from any other ambrosia yeast reported so far. The species was placed near Candida sophiae-reginae and Candida beechii based on DNA sequence analyses, but neither of these were close sister taxa to C. palmyrensis sp. nov.

  13. Study on the effects of near-future ocean acidification on marine yeasts: a microcosm approach

    NASA Astrophysics Data System (ADS)

    Krause, Evamaria; Wichels, Antje; Erler, René; Gerdts, Gunnar

    2013-12-01

    Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.

  14. Evolutionary biology through the lens of budding yeast comparative genomics.

    PubMed

    Marsit, Souhir; Leducq, Jean-Baptiste; Durand, Éléonore; Marchant, Axelle; Filteau, Marie; Landry, Christian R

    2017-10-01

    The budding yeast Saccharomyces cerevisiae is a highly advanced model system for studying genetics, cell biology and systems biology. Over the past decade, the application of high-throughput sequencing technologies to this species has contributed to this yeast also becoming an important model for evolutionary genomics. Indeed, comparative genomic analyses of laboratory, wild and domesticated yeast populations are providing unprecedented detail about many of the processes that govern evolution, including long-term processes, such as reproductive isolation and speciation, and short-term processes, such as adaptation to natural and domestication-related environments.

  15. Active role of a human genomic insert in replication of a yeast artificial chromosome.

    PubMed

    van Brabant, A J; Fangman, W L; Brewer, B J

    1999-06-01

    Yeast artificial chromosomes (YACs) are a common tool for cloning eukaryotic DNA. The manner by which large pieces of foreign DNA are assimilated by yeast cells into a functional chromosome is poorly understood, as is the reason why some of them are stably maintained and some are not. We examined the replication of a stable YAC containing a 240-kb insert of DNA from the human T-cell receptor beta locus. The human insert contains multiple sites that serve as origins of replication. The activity of these origins appears to require the yeast ARS consensus sequence and, as with yeast origins, additional flanking sequences. In addition, the origins in the human insert exhibit a spacing, a range of activation efficiencies, and a variation in times of activation during S phase similar to those found for normal yeast chromosomes. We propose that an appropriate combination of replication origin density, activation times, and initiation efficiencies is necessary for the successful maintenance of YAC inserts.

  16. Yeast Identification During Fermentation of Turkish Gemlik Olives.

    PubMed

    Mujdeci, Gamze; Arévalo-Villena, María; Ozbas, Z Yesim; Briones Pérez, Ana

    2018-05-01

    Naturally fermented black table olives of the Gemlik variety are one of the most consumed fermented products in Turkey. The objective of this work was to identify yeast strains isolated during their natural fermentation by using Restriction Fragments Lengths Polymorphism-Polimerase Chain Reaction (RFLP-PCR) and DNA sequencing methods. The study also focused on determining the effect of regional differences on yeast microflora of naturally fermented Gemlik olives. A total of 47 yeast strains belonging to 12 different species which had been previously isolated from the natural brine of Akhisar and Iznik-Gemlik cv. olives were characterized by molecular methods. Forty-two of the tested strains could be identified by RFLP-PCR to species level. These yeast species were determined as Candida mycetangi, Candida hellenica, Candida membranaefaciens, Candida famata, Candida pelliculosa, Saccharomyces cerevisiae, and Zygosaccharomyces mrakii. Five strains were identified by DNA sequencing. These strains belonged to three different species: Aureobasidium pullulans, Kloeckera apiculate, and Cryptococcus saitoi. The most frequent species were C. famata and C. pelliculosa in both regions. This work studies the yeasts from Turkish table olives which could prove to be of importance to the food industry in that area. On the other hand, it compares identification by molecular and classical biochemical methods and offers an idea about the differences between the ecosystems of Gemlik olives in the Akhisar (AO) and Iznik (IO) regions. The study could be useful in characterizing a very important product and, in this way, could help to promote its marketing. © 2018 Institute of Food Technologists®.

  17. Genetic transformation of the yeast Dekkera/Brettanomyces bruxellensis with non-homologous DNA.

    PubMed

    Miklenić, Marina; Štafa, Anamarija; Bajić, Ana; Žunar, Bojan; Lisnić, Berislav; Svetec, Ivan-Krešimir

    2013-05-01

    Yeast Dekkera/Brettanomyces bruxellensis is probably the most common contaminant in wineries and ethanol production processes. The considerable economic losses caused by this yeast, but also its ability to produce and tolerate high ethanol concentrations, make it an attractive subject for research with potential for industrial applications. Unfortunately, efforts to understand the biology of D. bruxellensis and facilitate its broader use in industry are hampered by the lack of adequate procedures for delivery of exogenous DNA into this organism. Here we describe the development of transformation protocols (spheroplast transformation, LiAc/PEG method, and electroporation) and report the first genetic transformation of yeast D. bruxellensis. A linear heterologous DNA fragment carrying the kanMX4 sequence was used for transformation, which allowed transformants to be selected on plates containing geneticin. We found the spheroplast transformation method using 1M sorbitol as osmotic stabilizer to be inappropriate because sorbitol strikingly decreases the plating efficiency of both D. bruxellensis spheroplast and intact cells. However, we managed to modify the LiAc/ PEG transformation method and electroporation to accommodate D. bruxellensis transformation, achieving efficiencies of 0.6-16 and 10-20 transformants/microg DNA, respectively. The stability of the transformants ranged from 93.6% to 100%. All putative transformants were analyzed by Southern blot using the kanMX4 sequence as a hybridization probe, which confirmed that the transforming DNA fragment had integrated into the genome. The results of the molecular analysis were consistent with the expected illegitimate integration of a heterologous transforming fragment.

  18. A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast.

    PubMed

    Jaschke, Paul R; Lieberman, Erica K; Rodriguez, Jon; Sierra, Adrian; Endy, Drew

    2012-12-20

    The 5386 nucleotide bacteriophage øX174 genome has a complicated architecture that encodes 11 gene products via overlapping protein coding sequences spanning multiple reading frames. We designed a 6302 nucleotide synthetic surrogate, øX174.1, that fully separates all primary phage protein coding sequences along with cognate translation control elements. To specify øX174.1f, a decompressed genome the same length as wild type, we truncated the gene F coding sequence. We synthesized DNA encoding fragments of øX174.1f and used a combination of in vitro- and yeast-based assembly to produce yeast vectors encoding natural or designer bacteriophage genomes. We isolated clonal preparations of yeast plasmid DNA and transfected E. coli C strains. We recovered viable øX174 particles containing the øX174.1f genome from E. coli C strains that independently express full-length gene F. We expect that yeast can serve as a genomic 'drydock' within which to maintain and manipulate clonal lineages of other obligate lytic phage. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from 'Kombucha tea'.

    PubMed

    Kurtzman, C P; Robnett, C J; Basehoar-Powers, E

    2001-07-01

    A new ascosporogenous yeast, Zygosaccharomyces kombuchaensis sp. n. (type strain NRRL YB-4811, CBS 8849), is described; it was isolated from Kombucha tea, a popular fermented tea-based beverage. The four known strains of the new species have identical nucleotide sequences in domain D1/D2 of 26S rDNA. Phylogenetic analysis of D1/D2 and 18S rDNA sequences places Z. kombuchaensis near Zygosaccharomyces lentus. The two species are indistinguishable on standard physiological tests used for yeast identification, but can be recognized from differences in restriction fragment length polymorphism patterns obtained by digestion of 18S-ITS1 amplicons with the restriction enzymes DdeI and MboI.

  20. Genome Sequence of the Native Apiculate Wine Yeast Hanseniaspora vineae T02/19AF

    PubMed Central

    Giorello, Facundo M.; Berná, Luisa; Greif, Gonzalo; Camesasca, Laura; Salzman, Valentina; Medina, Karina; Robello, Carlos; Gaggero, Carina; Aguilar, Pablo S.

    2014-01-01

    The use of novel yeast strains for winemaking improves quality and provides variety including subtle characteristic differences in fine wines. Here we report the first genome of a yeast strain native to Uruguay, Hanseniaspora vineae T02/19AF, which has been shown to positively contribute to aroma and wine quality. PMID:24874663

  1. Synthesis of polypyrrole within the cell wall of yeast by redox-cycling of [Fe(CN)6](3-)/[Fe(CN)6](4-).

    PubMed

    Ramanavicius, Arunas; Andriukonis, Eivydas; Stirke, Arunas; Mikoliunaite, Lina; Balevicius, Zigmas; Ramanaviciene, Almira

    2016-02-01

    Yeast cells are often used as a model system in various experiments. Moreover, due to their high metabolic activity, yeast cells have a potential to be applied as elements in the design of biofuel cells and biosensors. However a wider application of yeast cells in electrochemical systems is limited due to high electric resistance of their cell wall. In order to reduce this problem we have polymerized conducting polymer polypyrrole (Ppy) directly in the cell wall and/or within periplasmic membrane. In this research the formation of Ppy was induced by [Fe(CN)6](3-)ions, which were generated from K4[Fe(CN)6], which was initially added to polymerization solution. The redox process was catalyzed by oxido-reductases, which are present in the plasma membrane of yeast cells. The formation of Ppy was confirmed by spectrophotometry and atomic force microscopy. It was confirmed that the conducting polymer polypyrrole was formed within periplasmic space and/or within the cell wall of yeast cells, which were incubated in solution containing pyrrole, glucose and [Fe(CN)6](4-). After 24h drying at room temperature we have observed that Ppy-modified yeast cell walls retained their initial spherical form. In contrast to Ppy-modified cells, the walls of unmodified yeast have wrinkled after 24h drying. The viability of yeast cells in the presence of different pyrrole concentrations has been evaluated. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Yeast diversity isolated from grape musts during spontaneous fermentation from a Brazilian winery.

    PubMed

    Bezerra-Bussoli, Carolina; Baffi, Milla Alves; Gomes, Eleni; Da-Silva, Roberto

    2013-09-01

    Saccharomyces and non-Saccharomyces yeast species from a winery located in Brazil were identified by ribosomal gene-sequencing analysis. A total of 130 yeast strains were isolated from grape surfaces and musts during alcoholic fermentation from Isabel, Bordeaux, and Cabernet Sauvignon varieties. Samples were submitted to PCR-RFLP analysis and genomic sequencing. Thirteen species were identified: Candida quercitrusa, Candida stellata, Cryptococcus flavescens, Cryptococcus laurentii, Hanseniaspora uvarum, Issatchenkia occidentalis, Issatchenkia orientalis, Issatchenkia terricola, Pichia kluyveri, Pichia guilliermondii, Pichia sp., Saccharomyces cerevisiae, and Sporidiobolus pararoseus. A sequential substitution of species during the different stages of fermentation, with a dominance of non-Saccharomyces yeasts at the beginning, and a successive replacement of species by S. cerevisiae strains at the final steps were observed. This is the first report about the yeast distribution present throughout the alcoholic fermentation in a Brazilian winery, providing supportive information for future studies on their contribution to wine quality.

  3. Evidence for a high mutation rate at rapidly evolving yeast centromeres.

    PubMed

    Bensasson, Douda

    2011-07-18

    Although their role in cell division is essential, centromeres evolve rapidly in animals, plants and yeasts. Unlike the complex centromeres of plants and aminals, the point centromeres of Saccharomcyes yeasts can be readily sequenced to distinguish amongst the possible explanations for fast centromere evolution. Using DNA sequences of all 16 centromeres from 34 strains of Saccharomyces cerevisiae and population genomic data from Saccharomyces paradoxus, I show that centromeres in both species evolve 3 times more rapidly even than selectively unconstrained DNA. Exceptionally high levels of polymorphism seen in multiple yeast populations suggest that rapid centromere evolution does not result from the repeated selective sweeps expected under meiotic drive. I further show that there is little evidence for crossing-over or gene conversion within centromeres, although there is clear evidence for recombination in their immediate vicinity. Finally I show that the mutation spectrum at centromeres is consistent with the pattern of spontaneous mutation elsewhere in the genome. These results indicate that rapid centromere evolution is a common phenomenon in yeast species. Furthermore, these results suggest that rapid centromere evolution does not result from the mutagenic effect of gene conversion, but from a generalised increase in the mutation rate, perhaps arising from the unusual chromatin structure at centromeres in yeast and other eukaryotes.

  4. (GTG)5 MSP-PCR fingerprinting as a technique for discrimination of wine associated yeasts?

    PubMed

    Ramírez-Castrillón, Mauricio; Mendes, Sandra Denise Camargo; Inostroza-Ponta, Mario; Valente, Patricia

    2014-01-01

    In microbiology, identification of all isolates by sequencing is still unfeasible in small research laboratories. Therefore, many yeast diversity studies follow a screening procedure consisting of clustering the yeast isolates using MSP-PCR fingerprinting, followed by identification of one or a few selected representatives of each cluster by sequencing. Although this procedure has been widely applied in the literature, it has not been properly validated. We evaluated a standardized protocol using MSP-PCR fingerprinting with the primers (GTG)5 and M13 for the discrimination of wine associated yeasts in South Brazil. Two datasets were used: yeasts isolated from bottled wines and vineyard environments. We compared the discriminatory power of both primers in a subset of 16 strains, choosing the primer (GTG)5 for further evaluation. Afterwards, we applied this technique to 245 strains, and compared the results with the identification obtained by partial sequencing of the LSU rRNA gene, considered as the gold standard. An array matrix was constructed for each dataset and used as input for clustering with two methods (hierarchical dendrograms and QAPGrid layout). For both yeast datasets, unrelated species were clustered in the same group. The sensitivity score of (GTG)5 MSP-PCR fingerprinting was high, but specificity was low. As a conclusion, the yeast diversity inferred in several previous studies may have been underestimated and some isolates were probably misidentified due to the compliance to this screening procedure.

  5. (GTG)5 MSP-PCR Fingerprinting as a Technique for Discrimination of Wine Associated Yeasts?

    PubMed Central

    Inostroza-Ponta, Mario; Valente, Patricia

    2014-01-01

    In microbiology, identification of all isolates by sequencing is still unfeasible in small research laboratories. Therefore, many yeast diversity studies follow a screening procedure consisting of clustering the yeast isolates using MSP-PCR fingerprinting, followed by identification of one or a few selected representatives of each cluster by sequencing. Although this procedure has been widely applied in the literature, it has not been properly validated. We evaluated a standardized protocol using MSP-PCR fingerprinting with the primers (GTG)5 and M13 for the discrimination of wine associated yeasts in South Brazil. Two datasets were used: yeasts isolated from bottled wines and vineyard environments. We compared the discriminatory power of both primers in a subset of 16 strains, choosing the primer (GTG)5 for further evaluation. Afterwards, we applied this technique to 245 strains, and compared the results with the identification obtained by partial sequencing of the LSU rRNA gene, considered as the gold standard. An array matrix was constructed for each dataset and used as input for clustering with two methods (hierarchical dendrograms and QAPGrid layout). For both yeast datasets, unrelated species were clustered in the same group. The sensitivity score of (GTG)5 MSP-PCR fingerprinting was high, but specificity was low. As a conclusion, the yeast diversity inferred in several previous studies may have been underestimated and some isolates were probably misidentified due to the compliance to this screening procedure. PMID:25171185

  6. Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production.

    PubMed

    Mukai, Nobuhiko; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2014-07-01

    Among industrial yeasts used for alcoholic beverage production, most wine and weizen beer yeasts decarboxylate ferulic acid to 4-vinylguaiacol, which has a smoke-like flavor, whereas sake, shochu, top-fermenting, and bottom-fermenting yeast strains lack this ability. However, the factors underlying this difference among industrial yeasts are not clear. We previously confirmed that both PAD1 (phenylacrylic acid decarboxylase gene, YDR538W) and FDC1 (ferulic acid decarboxylase gene, YDR539W) are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. In the present study, single nucleotide polymorphisms (SNPs) of PAD1 and FDC1 in sake, shochu, wine, weizen, top-fermenting, bottom-fermenting, and laboratory yeast strains were examined to clarify the differences in ferulic acid decarboxylation ability between these types of yeast. For PAD1, a nonsense mutation was observed in the gene sequence of standard top-fermenting yeast. Gene sequence analysis of FDC1 revealed that sake, shochu, and standard top-fermenting yeasts contained a nonsense mutation, whereas a frameshift mutation was identified in the FDC1 gene of bottom-fermenting yeast. No nonsense or frameshift mutations were detected in laboratory, wine, or weizen beer yeast strains. When FDC1 was introduced into sake and shochu yeast strains, the transformants exhibited ferulic acid decarboxylation activity. Our findings indicate that a positive relationship exists between SNPs in PAD1 and FDC1 genes and the ferulic acid decarboxylation ability of industrial yeast strains. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Human COQ9 Rescues a coq9 Yeast Mutant by Enhancing Coenzyme Q Biosynthesis from 4-Hydroxybenzoic Acid and Stabilizing the CoQ-Synthome

    PubMed Central

    He, Cuiwen H.; Black, Dylan S.; Allan, Christopher M.; Meunier, Brigitte; Rahman, Shamima; Clarke, Catherine F.

    2017-01-01

    Coq9 is required for the stability of a mitochondrial multi-subunit complex, termed the CoQ-synthome, and the deamination step of Q intermediates that derive from para-aminobenzoic acid (pABA) in yeast. In human, mutations in the COQ9 gene cause neonatal-onset primary Q10 deficiency. In this study, we determined whether expression of human COQ9 could complement yeast coq9 point or null mutants. We found that expression of human COQ9 rescues the growth of the temperature-sensitive yeast mutant, coq9-ts19, on a non-fermentable carbon source and increases the content of Q6, by enhancing Q biosynthesis from 4-hydroxybenzoic acid (4HB). To study the mechanism for the rescue by human COQ9, we determined the steady-state levels of yeast Coq polypeptides in the mitochondria of the temperature-sensitive yeast coq9 mutant expressing human COQ9. We show that the expression of human COQ9 significantly increased steady-state levels of yeast Coq4, Coq6, Coq7, and Coq9 at permissive temperature. Human COQ9 polypeptide levels persisted at non-permissive temperature. A small amount of the human COQ9 co-purified with tagged Coq6, Coq6-CNAP, indicating that human COQ9 interacts with the yeast Q-biosynthetic complex. These findings suggest that human COQ9 rescues the yeast coq9 temperature-sensitive mutant by stabilizing the CoQ-synthome and increasing Q biosynthesis from 4HB. This finding provides a powerful approach to studying the function of human COQ9 using yeast as a model. PMID:28736527

  8. Genome Sequence of the Native Apiculate Wine Yeast Hanseniaspora vineae T02/19AF.

    PubMed

    Giorello, Facundo M; Berná, Luisa; Greif, Gonzalo; Camesasca, Laura; Salzman, Valentina; Medina, Karina; Robello, Carlos; Gaggero, Carina; Aguilar, Pablo S; Carrau, Francisco

    2014-05-29

    The use of novel yeast strains for winemaking improves quality and provides variety including subtle characteristic differences in fine wines. Here we report the first genome of a yeast strain native to Uruguay, Hanseniaspora vineae T02/19AF, which has been shown to positively contribute to aroma and wine quality. Copyright © 2014 Giorello et al.

  9. Candida potacharoeniae sp. nov. and Candida spenceri sp. nov., two novel galactose-containing ascomycetous anamorphic yeast species isolated in Thailand.

    PubMed

    Nakase, Takashi; Jindamorakot, Sasitorn; Imanishi, Yumi; Am-In, Somjit; Ninomiya, Shinya; Kawasaki, Hiroko; Limtong, Savitree

    2010-08-01

    Fifteen strains of anamorphic yeasts isolated from various natural substrates collected in various places in Thailand were found to represent two novel species of anamorphic yeast genus Candida based on the sequence analysis of the D1/D2 domain of the large subunit rRNA genes, chemotaxonomic and conventional properties used for the classification of yeasts. These strains are located in the clade including Candida etchellsii and Candida magnoliae. Fourteen strains represented by ST-490(T) (BCC 15176(T)=NBRC 106439(T)= CBS 11674(T)) are closely related to Candida sorbosivorans in the D1/D2 sequences but 11 nucleotides (2.4%) were substituted. The remaining strain, ST-594(T) (=BCC 15278(T)=NBRC 106446(T)=CBS 11673(T)) showed a close relationship to Candida geochares but 21 nucleotides (4.7%) were substituted. Apparently, these strains represent two novel Candida species of the Starmerella clade. The two species are described as Candida potacharoeniae sp. nov. and Candida spenceri sp. nov. in the present paper. Like the most species of this clade, the two species contain galactose in the cells in addition to glucose and mannose and have high mol% G + C of 54.4-55.9 and 54.9, respectively.

  10. The genome sequence of Saccharomyces eubayanus and the domestication of lager-brewing yeasts

    DOE PAGES

    Baker, Emily Clare; Wang, Bing; Bellora, Nicolas; ...

    2015-08-11

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae ( S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts havemore » experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. In conclusion, our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions.« less

  11. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts

    PubMed Central

    Baker, EmilyClare; Wang, Bing; Bellora, Nicolas; Peris, David; Hulfachor, Amanda Beth; Koshalek, Justin A.; Adams, Marie; Libkind, Diego; Hittinger, Chris Todd

    2015-01-01

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions. PMID:26269586

  12. Biological diversity of yeasts in the gastrointestinal tract of weaned piglets kept under different farm conditions.

    PubMed

    Urubschurov, Vladimir; Janczyk, Pawel; Pieper, Robert; Souffrant, Wolfgang B

    2008-12-01

    The study was conducted to determine yeasts present in the gastrointestinal tract (GIT) of piglets kept under experimental farm (EF) and commercial farm (CF) conditions. Ninety five German Landrace full- and half-sibling piglets were sacrificed at 39 days of age. Sixty eight piglets were weaned at 28th day of life, when they were offered one diet ad libitum. Twenty seven piglets remained unweaned by their dams. None of the piglets received any creep feed before weaning. Digesta samples were collected from 1/3 distal small intestine (SI), caecum and proximal colon. One hundred seventy three colonies of isolated yeasts were characterized by sequence analysis of the PCR-amplified D1/D2 domain of the 26S rRNA gene with following alignment of the recovered sequences to GenBank entries. From the 17 phylotypes found, isolates most closely related to Galactomyces geotrichum, Kazachstania slooffiae and Candida catenulata dominated in the GIT of CF piglets. Kazachstania slooffiae and Candida glabrata dominated in GIT of EF piglets. Sørenson and Morisita-Horn similarity indices between farms were low (0.44 and 0.54 respectively) and the Simpson diversity index was higher for EF (7.58) than for CF (4.34). The study brings new data on yeasts composition in the pig GIT and shows differences in yeasts biodiversity between farms operated at different hygiene conditions.

  13. Fungal genome sequencing: basic biology to biotechnology.

    PubMed

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  14. A comparative study on the potential of epiphytic yeasts isolated from tropical fruits to produce flavoring compounds.

    PubMed

    Grondin, Eric; Shum Cheong Sing, Alain; Caro, Yanis; Raherimandimby, Marson; Randrianierenana, Ando Lalaniaina; James, Steve; Nueno-Palop, Carmen; François, Jean Marie; Petit, Thomas

    2015-06-16

    In recent years, there has been an increasing interest in identifying and characterizing the yeast flora associated with diverse types of habitat because of the many potential desirable technological properties of these microorganisms, especially in food applications. In this study, a total of 101 yeast strains were isolated from the skins of tropical fruits collected in several locations in the South West Indian Ocean. Sequence analysis of the D1/D2 domains of the large subunit (LSU) ribosomal RNA gene identified 26 different species. Among them, two species isolated from the skins of Cape gooseberry and cocoa beans appeared to represent putative new yeast species, as their LSU D1/D2 sequence was only 97.1% and 97.4% identical to that of the yeasts Rhodotorula mucilaginosa and Candida pararugosa, respectively. A total of 52 Volatile Organic Compounds (VOCs) were detected by Head Space Solid Phase Micro Extraction coupled to Gas Chromatography and Mass Spectroscopy (HS-SPME-GC/MS) from the 26 yeast species cultivated on a glucose rich medium. Among these VOCs, 6 uncommon compounds were identified, namely ethyl but-2-enoate, ethyl 2-methylbut-2-enoate (ethyl tiglate), ethyl 3-methylbut-2-enoate, 2-methylpropyl 2-methylbut-2-enoate, butyl 2-methylbut-2-enoate and 3-methylbutyl 2-methylbut-2-enoate, making them possible yeast species-specific markers. In addition, statistical methods such as Principal Component Analysis allowed to associate each yeast species with a specific flavor profile. Among them, Saprochaete suaveolens (syn: Geotrichum fragrans) turned to be the best producer of flavor compounds, with a total of 32 out of the 52 identified VOCs in its flavor profile. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cyberlindnera xylolytica sp. nov., a xylitol-producing yeast species isolated from lignocellulosic materials

    USDA-ARS?s Scientific Manuscript database

    Independent surveys of yeasts associated with lignocellulosic-related materials led to the discovery of a novel yeast species belonging to the Cyberlindnera clade (Saccharomycotina, Ascomycota). Analysis of the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the la...

  16. Functional Coupling of a Nematode Chemoreceptor to the Yeast Pheromone Response Pathway

    PubMed Central

    Tehseen, Muhammad; Dumancic, Mira; Briggs, Lyndall; Wang, Jian; Berna, Amalia; Anderson, Alisha; Trowell, Stephen

    2014-01-01

    Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm's simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1) of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ) triple mutant (“Cyb”) with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors. PMID:25415379

  17. Yeast RNA viruses as indicators of exosome activity: human exosome hCsl4p participates in RNA degradation in Saccharomyces cerevisiae'.

    PubMed

    Ramírez-Garrastacho, Manuel; Esteban, Rosa

    2011-12-01

    The exosome is an evolutionarily conserved 10-mer complex involved in RNA metabolism, located in both the nucleus and the cytoplasm. The cytoplasmic exosome plays an important role in mRNA turnover through its 3'→5' exonucleolytic activity. The superkiller (SKI) phenotype of yeast was originally identified as an increase of killer toxin production due to elevated levels of the L-A double-stranded RNA (dsRNA) Totivirus and its satellite toxin-encoding M dsRNA. Most SKI genes were later shown to be either components of the exosome or modulators of its activity. Variations in the amount of Totivirus are, thus, good indicators of yeast exosome activity, and can be used to analyse its components. Furthermore, if exosome proteins of higher eukaryotes were functional in S. cerevisiae, these viruses would provide a simple tool to analyse their function. In this work, we have found that hCSL4, the human orthologue of SKI4 in the yeast exosome, rescues the null phenotype of the deletion mutant. hCsl4p shares with Ski4p conserved S1 RNA-binding domains, but lacks the N-terminal third of Ski4p. Nevertheless, it interacts with the Dis3p exonuclease of yeast exosome, and partially complements the superkiller phenotype of ski4-1 mutation. The elimination of the N-terminal third of Ski4p does not affect its activity, indicating that it is dispensable for RNA degradation. We have also identified the point mutation G152E in hCSL4, equivalent to the ski4-1 mutation G253E, which impairs the activity of the protein, thus validating our approach of using yeast RNA virus to analyse the exosome of higher eukaryotes. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Impact of recent molecular phylogenetic studies on classification of ascomycete yeasts

    USDA-ARS?s Scientific Manuscript database

    Analyses of concatenated gene sequences as well as whole genome sequences are resolving relationships among the ascomycete yeasts (Saccharomycotina), thus allowing classification of members of this subphylum to be based on phylogeny. In addition, changes implemented in the new Botanical Code [Intern...

  19. Isolated yeast promoter sequence and a method of regulated heterologous expression

    DOEpatents

    Gao, Johnway; Skeen, Rodney S.; Hooker, Brian S.; Anderson, Daniel B.

    2005-05-31

    The present invention provides the promoter clone discovery of a glucoamylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated glucoamylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  20. Identification of yeast and bacteria involved in the mezcal fermentation of Agave salmiana.

    PubMed

    Escalante-Minakata, P; Blaschek, H P; Barba de la Rosa, A P; Santos, L; De León-Rodríguez, A

    2008-06-01

    To identify the yeast and bacteria present in the mezcal fermentation from Agave salmiana. The restriction and sequence analysis of the amplified region, between 18S and 28S rDNA and 16S rDNA genes, were used for the identification of yeast and bacteria, respectively. Eleven different micro-organisms were identified in the mezcal fermentation. Three of them were the following yeast: Clavispora lusitaniae, Pichia fermentans and Kluyveromyces marxianus. The bacteria found were Zymomonas mobilis subsp. mobilis and Zymomonas mobilis subsp. pomaceae, Weissella cibaria, Weissella paramesenteroides, Lactobacillus pontis, Lactobacillus kefiri, Lactobacillus plantarum and Lactobacillus farraginis. The phylogenetic analysis of 16S rDNA and ITS sequences showed that microbial diversity present in mezcal is dominated by bacteria, mainly lactic acid bacteria species and Zymomonas mobilis. Pichia fermentans and K. marxianus could be micro-organisms with high potential for the production of some volatile compounds in mezcal. We identified the community of bacteria and yeast present in mezcal fermentation from Agave salmiana.

  1. Barcode Identifiers as a Practical Tool for Reliable Species Assignment of Medically Important Black Yeast Species

    PubMed Central

    Heinrichs, Guido; de Hoog, G. Sybren

    2012-01-01

    Herpotrichiellaceous black yeasts and relatives comprise severe pathogens flanked by nonpathogenic environmental siblings. Reliable identification by conventional methods is notoriously difficult. Molecular identification is hampered by the sequence variability in the internal transcribed spacer (ITS) domain caused by difficult-to-sequence homopolymeric regions and by poor taxonomic attribution of sequences deposited in GenBank. Here, we present a potential solution using short barcode identifiers (27 to 50 bp) based on ITS2 ribosomal DNA (rDNA), which allows unambiguous definition of species-specific fragments. Starting from proven sequences of ex-type and authentic strains, we were able to describe 103 identifiers. Multiple BLAST searches of these proposed barcode identifiers in GenBank revealed uniqueness for 100 taxonomic entities, whereas the three remaining identifiers each matched with two entities, but the species of these identifiers could easily be discriminated by differences in the remaining ITS regions. Using the proposed barcode identifiers, a 4.1-fold increase of 100% matches in GenBank was achieved in comparison to the classical approach using the complete ITS sequences. The proposed barcode identifiers will be made accessible for the diagnostic laboratory in a permanently updated online database, thereby providing a highly practical, reliable, and cost-effective tool for identification of clinically important black yeasts and relatives. PMID:22785187

  2. Debaryomyces hansenii: An Osmotolerant and Halotolerant Yeast

    NASA Astrophysics Data System (ADS)

    Aggarwal, Monika; Mondal, Alok K.

    The yeast Debaryomyces hansenii which was isolated from saline environments such as sea water, concentrated brines, salty food, is one of the most halotolerant species. It can grow in media containing as high as 4 M NaCl, while the growth of Saccharomyces cerevisiae is limited in media with more than 1.7 M NaCl. This species is very important for food industry as it is used for surface ripening of cheese and meat products. In the recent past, there is growing interest in understanding the molecular mechanisms of high halotolerance exhibited by D. hansenii. Availability of genome sequence of D. hansenii has opened up new vistas in this direction

  3. Food-Associated Lactobacillus plantarum and Yeasts Inhibit the Genotoxic Effect of 4-Nitroquinoline-1-Oxide

    PubMed Central

    Prete, Roberta; Tofalo, Rosanna; Federici, Ermanno; Ciarrocchi, Aurora; Cenci, Giovanni; Corsetti, Aldo

    2017-01-01

    Lactic acid bacteria and yeasts, representing the prevailing microbiota associated with different foods generally consumed without any cooking, were identified and characterized in vitro for some functional properties, such as acid-bile tolerance and antigenotoxic activity. In particular, 22 Lactobacillus plantarum strains and 14 yeasts were studied. The gastro-intestinal tract tolerance of all the strains was determined by exposing washed cell suspensions at 37°C to a simulated gastric juice (pH 2.0), containing pepsin (0.3% w/v) and to a simulated small intestinal juice (pH 8.0), containing pancreatin (1 mg mL-1) and bile extract (0.5%), thus monitoring changes in total viable count. In general, following a strain-dependent behavior, all the tested strains persisted alive after combined acid-bile challenge. Moreover, many strains showed high in vitro inhibitory activity against a model genotoxin, 4-nitroquinoline-1-oxide (4-NQO), as determined by the short-term method, SOS-Chromotest. Interestingly, the supernatants from bacteria- or yeasts-genotoxin co-incubations exhibited a suppression on SOS-induction produced by 4-NQO on the tester strain Escherichia coli PQ37 (sfiA::lacZ) exceeding, in general, the value of 75%. The results highlight that food associated microorganisms may reach the gut in viable form and prevent genotoxin DNA damage in situ. Our experiments can contribute to elucidate the functional role of food-associated microorganisms general recognized as safe ingested with foods as a part of the diet. PMID:29234315

  4. Use of PCR-restriction fragment length polymorphism analysis for identification of yeast species isolated from bovine intramammary infection.

    PubMed

    Fadda, M E; Pisano, M B; Scaccabarozzi, L; Mossa, V; Deplano, M; Moroni, P; Liciardi, M; Cosentino, S

    2013-01-01

    This study reports a rapid PCR-based technique using a one-enzyme RFLP for discrimination of yeasts isolated from bovine clinical and subclinical mastitis milk samples. We analyzed a total of 1,486 milk samples collected over 1 yr in south Sardinia and northern Italy, and 142 yeast strains were preliminarily grouped based on their cultural morphology and physiological characteristics. Assimilation tests were conducted using the identification kit API ID 32C and APILAB Plus software (bioMérieux, Marcy l'Etoile, France). For PCR-RFLP analysis, the 18S-ITS1-5.8S ribosomal(r)DNA region was amplified and then digested with HaeIII, and dendrogram analysis of RFLP fragments was carried out. Furthermore, within each of the groups identified by the API or PCR-RFLP methods, the identification of isolates was confirmed by sequencing of the D1/D2 region using an ABI Prism 310 automatic sequencer (Applied Biosystems, Foster City, CA). The combined phenotypic and molecular approach enabled the identification of 17 yeast species belonging to the genera Candida (47.9%), Cryptococcus (21.1%), Trichosporon (19.7%), Geotrichum (7.1%), and Rhodotorula (4.2%). All Candida species were correctly identified by the API test and their identification confirmed by sequencing. All strains identified with the API system as Geotrichum candidum, Cryptococcus uniguttulatus, and Rhodotorula glutinis also produced characteristic restriction patterns and were confirmed as Galactomyces geotrichum (a teleomorph of G. candidum), Filobasidium uniguttulatum (teleomorph of Crypt. uniguttulatus), and R. glutinis, respectively, by D1/D2 rDNA sequencing. With regard to the genus Trichosporon, preliminary identification by API was problematic, whereas the RFLP technique used in this study gave characteristic restriction profiles for each species. Moreover, sequencing of the D1/D2 region allowed not only successful identification of Trichosporon gracile where API could not, but also correct identification of

  5. GC-Rich DNA Elements Enable Replication Origin Activity in the Methylotrophic Yeast Pichia pastoris

    PubMed Central

    Liachko, Ivan; Youngblood, Rachel A.; Tsui, Kyle; Bubb, Kerry L.; Queitsch, Christine; Raghuraman, M. K.; Nislow, Corey; Brewer, Bonita J.; Dunham, Maitreya J.

    2014-01-01

    The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins—a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation. PMID:24603708

  6. GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris.

    PubMed

    Liachko, Ivan; Youngblood, Rachel A; Tsui, Kyle; Bubb, Kerry L; Queitsch, Christine; Raghuraman, M K; Nislow, Corey; Brewer, Bonita J; Dunham, Maitreya J

    2014-03-01

    The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins--a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation.

  7. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts.

    PubMed

    Baker, EmilyClare; Wang, Bing; Bellora, Nicolas; Peris, David; Hulfachor, Amanda Beth; Koshalek, Justin A; Adams, Marie; Libkind, Diego; Hittinger, Chris Todd

    2015-11-01

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. The power of fission: yeast as a tool for understanding complex splicing.

    PubMed

    Fair, Benjamin Jung; Pleiss, Jeffrey A

    2017-06-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression. Many metazoans, including humans, regulate alternative splicing patterns to generate expansions of their proteome from a limited number of genes. Importantly, a considerable fraction of human disease causing mutations manifest themselves through altering the sequences that shape the splicing patterns of genes. Thus, understanding the mechanistic bases of this complex pathway will be an essential component of combating these diseases. Dating almost to the initial discovery of splicing, researchers have taken advantage of the genetic tractability of budding yeast to identify the components and decipher the mechanisms of splicing. However, budding yeast lacks the complex splicing machinery and alternative splicing patterns most relevant to humans. More recently, many researchers have turned their efforts to study the fission yeast, Schizosaccharomyces pombe, which has retained many features of complex splicing, including degenerate splice site sequences, the usage of exonic splicing enhancers, and SR proteins. Here, we review recent work using fission yeast genetics to examine pre-mRNA splicing, highlighting its promise for modeling the complex splicing seen in higher eukaryotes.

  9. Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast.

    PubMed

    Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A

    2016-06-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3' end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. Copyright © 2016 Larson et al.

  10. Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast

    PubMed Central

    Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A.

    2016-01-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3ʹ end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. PMID:27172183

  11. Comparative genomics of biotechnologically important yeasts

    PubMed Central

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H.; Lopes, Mariana R.; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A.; Wisecaver, Jennifer H.; Long, Tanya M.; Aerts, Andrea L.; Barry, Kerrie W.; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y.; Deshpande, Shweta; Douglass, Alexander P.; Hanson, Sara J.; Klenk, Hans-Peter; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lipzen, Anna M.; Meier-Kolthoff, Jan P.; Ohm, Robin A.; Otillar, Robert P.; Pangilinan, Jasmyn L.; Peng, Yi; Rosa, Carlos A.; Scheuner, Carmen; Sibirny, Andriy A.; Slot, Jason C.; Stielow, J. Benjamin; Sun, Hui; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor V.

    2016-01-01

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation. PMID:27535936

  12. The ecology of the Drosophila-yeast mutualism in wineries

    PubMed Central

    2018-01-01

    The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila. PMID:29768432

  13. The ecology of the Drosophila-yeast mutualism in wineries.

    PubMed

    Quan, Allison S; Eisen, Michael B

    2018-01-01

    The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila.

  14. HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene.

    PubMed

    Grably, Melanie R; Stanhill, Ariel; Tell, Osnat; Engelberg, David

    2002-04-01

    In an effort to understand how an accurate level of stress-specific expression is obtained, we studied the promoter of the yeast HSP104 gene. Through 5' deletions, we defined a 334 bp fragment upstream of the first coding AUG as sufficient and essential for maximal basal activity and a 260 bp fragment as sufficient and essential for heat shock responsiveness. These sequences contain heat shock elements (HSEs) and stress response elements (STREs) that cooperate to achieve maximal inducible expression. However, in the absence of one set of factors (e.g. in msn2Deltamsn4Delta cells) proper induction is obtained exclusively through HSEs. We also show that HSP104 is constitutively derepressed in ras2Delta cells. This derepression is achieved exclusively through activation of STREs, with no role for HSEs. Strikingly, in ras2Deltamsn2Deltamsn4Delta cells the HSP104 promoter is also derepressed, but in this strain derepression is mediated through HSEs, showing the flexibility and adaptation of the promoter. Thus, appropriate transcription of HSP104 is usually obtained through cooperation between the Msn2/4/STRE and the HSF/ HSE systems, but each factor could activate the promoter alone, backing up the other. Transcription control of HSP104 is adaptive and robust, ensuring proper expression under extreme conditions and in various mutants.

  15. Evidence for a high mutation rate at rapidly evolving yeast centromeres

    PubMed Central

    2011-01-01

    Background Although their role in cell division is essential, centromeres evolve rapidly in animals, plants and yeasts. Unlike the complex centromeres of plants and aminals, the point centromeres of Saccharomcyes yeasts can be readily sequenced to distinguish amongst the possible explanations for fast centromere evolution. Results Using DNA sequences of all 16 centromeres from 34 strains of Saccharomyces cerevisiae and population genomic data from Saccharomyces paradoxus, I show that centromeres in both species evolve 3 times more rapidly even than selectively unconstrained DNA. Exceptionally high levels of polymorphism seen in multiple yeast populations suggest that rapid centromere evolution does not result from the repeated selective sweeps expected under meiotic drive. I further show that there is little evidence for crossing-over or gene conversion within centromeres, although there is clear evidence for recombination in their immediate vicinity. Finally I show that the mutation spectrum at centromeres is consistent with the pattern of spontaneous mutation elsewhere in the genome. Conclusions These results indicate that rapid centromere evolution is a common phenomenon in yeast species. Furthermore, these results suggest that rapid centromere evolution does not result from the mutagenic effect of gene conversion, but from a generalised increase in the mutation rate, perhaps arising from the unusual chromatin structure at centromeres in yeast and other eukaryotes. PMID:21767380

  16. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piskur, Jure; Ling, Zhihao; Marcet-Houben, Marina

    2012-03-14

    The yeast Dekkera/Brettanomyces bruxellensis can cause enormous economic losses in wine industry due to production of phenolic off-flavor compounds. D. bruxellensis is a distant relative of baker's yeast Saccharomyces cerevisiae. Nevertheless, these two yeasts are often found in the same habitats and share several food-related traits, such as production of high ethanol levels and ability to grow without oxygen. In some food products, like lambic beer, D. bruxellensis can importantly contribute to flavor development. We determined the 13.4 Mb genome sequence of the D. bruxellensis strain Y879 (CBS2499) and deduced the genetic background of several ?food-relevant? properties and evolutionary historymore » of this yeast. Surprisingly, we find that this yeast is phylogenetically distant to other food-related yeasts and most related to Pichia (Komagataella) pastoris, which is an aerobic poor ethanol producer. We further show that the D. bruxellensis genome does not contain an excess of lineage specific duplicated genes nor a horizontally transferred URA1 gene, two crucial events that promoted the evolution of the food relevant traits in the S. cerevisiae lineage. However, D. bruxellensis has several independently duplicated ADH and ADH-like genes, which are likely responsible for metabolism of alcohols, including ethanol, and also a range of aromatic compounds.« less

  17. Yeast species associated with wine grapes in China.

    PubMed

    Li, Shuang-Shi; Cheng, Chao; Li, Zheng; Chen, Jing-Yu; Yan, Bin; Han, Bei-Zhong; Reeves, Malcolm

    2010-03-31

    Having more information on the yeast ecology of grapes is important for wine-makers to produce wine with high quality and typical attributes. China is a significant wine-consuming country and is becoming a serious wine-producer, but little has been reported about the yeast ecology of local ecosystems. This study provides the first step towards the exploitation of the yeast wealth in China's vine-growing regions. The aim of this study was to investigate the yeast population density and diversity on three grape varieties cultivated in four representative vine-growing regions of China. Yeast species diversity was evaluated by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequence analysis of the 5.8S internal transcribed spacer (ITS) ribosomal DNA (rDNA) region of cultivable yeasts. The grapes harbored yeast populations at 10(2)-10(6)CFU/mL, consisting mostly of non-Saccharomyces species. Seventeen different yeast species belonging to eight genera were detected on the grape samples tested, including Hanseniaspora uvarum, Cryptococcus flavescens, Pichia fermentans, Candida zemplinina, Cryptococcus carnescens, Candida inconpicua, Zygosaccharomyces fermentati, Issatchenkia terricola, Candida quercitrusa, Hanseniaspora guilliermondii, Candida bombi, Zygosaccharomyces bailii, Sporidiobolus pararoseus, Cryptococcus magnus, Metschnikowia pulcherrima, Issatchenkia orientalis and Pichia guilliermondii. H. uvarum and C. flavescens were the dominant species present on the grapes. For the first time Sporidiobolus pararoseus was discovered as an inhabitant of the grape ecosystem. The yeast community on grape berries was influenced by the grape chemical composition, vine-variety and vine-growing region. This study is the first to identify the yeast communities associated with grapes in China using molecular methods. The results enrich our knowledge of wine-related microorganisms, and can be used to promote the development of the local wine

  18. Replacement of the yeast TRP4 3' untranslated region by a hammerhead ribozyme results in a stable and efficiently exported mRNA that lacks a poly(A) tail.

    PubMed Central

    Düvel, Katrin; Valerius, Oliver; Mangus, David A; Jacobson, Allan; Braus, Gerhard H

    2002-01-01

    The mRNA poly(A) tail serves different purposes, including the facilitation of nuclear export, mRNA stabilization, efficient translation, and, finally, specific degradation. The posttranscriptional addition of a poly(A) tail depends on sequence motifs in the 3' untranslated region (3' UTR) of the mRNA and a complex trans-acting protein machinery. In this study, we have replaced the 3' UTR of the yeast TRP4 gene with sequences encoding a hammerhead ribozyme that efficiently cleaves itself in vivo. Expression of the TRP4-ribozyme allele resulted in the accumulation of a nonpolyadenylated mRNA. Cells expressing the TRP4-ribozyme mRNA showed a reduced growth rate due to a reduction in Trp4p enzyme activity. The reduction in enzyme activity was not caused by inefficient mRNA export from the nucleus or mRNA destabilization. Rather, analyses of mRNA association with polyribosomes indicate that translation of the ribozyme-containing mRNA is impaired. This translational defect allows sufficient synthesis of Trp4p to support growth of trp4 cells, but is, nevertheless, of such magnitude as to activate the general control network of amino acid biosynthesis. PMID:12003493

  19. PomBase: a comprehensive online resource for fission yeast

    PubMed Central

    Wood, Valerie; Harris, Midori A.; McDowall, Mark D.; Rutherford, Kim; Vaughan, Brendan W.; Staines, Daniel M.; Aslett, Martin; Lock, Antonia; Bähler, Jürg; Kersey, Paul J.; Oliver, Stephen G.

    2012-01-01

    PomBase (www.pombase.org) is a new model organism database established to provide access to comprehensive, accurate, and up-to-date molecular data and biological information for the fission yeast Schizosaccharomyces pombe to effectively support both exploratory and hypothesis-driven research. PomBase encompasses annotation of genomic sequence and features, comprehensive manual literature curation and genome-wide data sets, and supports sophisticated user-defined queries. The implementation of PomBase integrates a Chado relational database that houses manually curated data with Ensembl software that supports sequence-based annotation and web access. PomBase will provide user-friendly tools to promote curation by experts within the fission yeast community. This will make a key contribution to shaping its content and ensuring its comprehensiveness and long-term relevance. PMID:22039153

  20. Rescue of Targeted Regions of Mammalian Chromosomes by in Vivo Recombination in Yeast

    PubMed Central

    Kouprina, Natalya; Kawamoto, Kensaku; Barrett, J. Carl; Larionov, Vladimir; Koi, Minoru

    1998-01-01

    In contrast to other animal cell lines, the chicken pre-B cell lymphoma line, DT40, exhibits a high level of homologous recombination, which can be exploited to generate site-specific alterations in defined target genes or regions. In addition, the ability to generate human/chicken monochromosomal hybrids in the DT40 cell line opens a way for specific targeting of human genes. Here we describe a new strategy for direct isolation of a human chromosomal region that is based on targeting of the chromosome with a vector containing a yeast selectable marker, centromere, and an ARS element. This procedure allows rescue of the targeted region by transfection of total genomic DNA into yeast spheroplasts. Selection for the yeast marker results in isolation of chromosome sequences in the form of large circular yeast artificial chromosomes (YACs) up to 170 kb in size containing the targeted region. These YACs are generated by homologous recombination in yeast between common repeated sequences in the targeted chromosomal fragment. Alternatively, the targeted region can be rescued as a linear YACs when a YAC fragmentation vector is included in the yeast transformation mixture. Because the entire isolation procedure of the chromosomal region, once a target insertion is obtained, can be accomplished in ∼1 week, the new method greatly expands the utility of the homologous recombinationproficient DT40 chicken cell system. PMID:9647640

  1. The CCR4-NOT Complex Is Implicated in the Viability of Aneuploid Yeasts

    PubMed Central

    Tange, Yoshie; Kurabayashi, Atsushi; Goto, Bunshiro; Hoe, Kwang-Lae; Kim, Dong-Uk; Park, Han-Oh; Hayles, Jacqueline; Chikashige, Yuji; Tsutumi, Chihiro; Hiraoka, Yasushi; Yamao, Fumiaki; Nurse, Paul; Niwa, Osami

    2012-01-01

    To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the fission yeast Schizosaccharomyces pombe, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability. Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast Saccharomyces cerevisiae also affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids. In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid viability. PMID:22737087

  2. Functional Analysis With a Barcoder Yeast Gene Overexpression System

    PubMed Central

    Douglas, Alison C.; Smith, Andrew M.; Sharifpoor, Sara; Yan, Zhun; Durbic, Tanja; Heisler, Lawrence E.; Lee, Anna Y.; Ryan, Owen; Göttert, Hendrikje; Surendra, Anu; van Dyk, Dewald; Giaever, Guri; Boone, Charles; Nislow, Corey; Andrews, Brenda J.

    2012-01-01

    Systematic analysis of gene overexpression phenotypes provides an insight into gene function, enzyme targets, and biological pathways. Here, we describe a novel functional genomics platform that enables a highly parallel and systematic assessment of overexpression phenotypes in pooled cultures. First, we constructed a genome-level collection of ~5100 yeast barcoder strains, each of which carries a unique barcode, enabling pooled fitness assays with a barcode microarray or sequencing readout. Second, we constructed a yeast open reading frame (ORF) galactose-induced overexpression array by generating a genome-wide set of yeast transformants, each of which carries an individual plasmid-born and sequence-verified ORF derived from the Saccharomyces cerevisiae full-length EXpression-ready (FLEX) collection. We combined these collections genetically using synthetic genetic array methodology, generating ~5100 strains, each of which is barcoded and overexpresses a specific ORF, a set we termed “barFLEX.” Additional synthetic genetic array allows the barFLEX collection to be moved into different genetic backgrounds. As a proof-of-principle, we describe the properties of the barFLEX overexpression collection and its application in synthetic dosage lethality studies under different environmental conditions. PMID:23050238

  3. Construction of a self-cloning sake yeast that overexpresses alcohol acetyltransferase gene by a two-step gene replacement protocol.

    PubMed

    Hirosawa, I; Aritomi, K; Hoshida, H; Kashiwagi, S; Nishizawa, Y; Akada, R

    2004-07-01

    The commercial application of genetically modified industrial microorganisms has been problematic due to public concerns. We constructed a "self-cloning" sake yeast strain that overexpresses the ATF1 gene encoding alcohol acetyltransferase, to improve the flavor profile of Japanese sake. A constitutive yeast overexpression promoter, TDH3p, derived from the glyceraldehyde-3-phosphate dehydrogenase gene from sake yeast was fused to ATF1; and the 5' upstream non-coding sequence of ATF1 was further fused to TDH3p-ATF1. The fragment was placed on a binary vector, pGG119, containing a drug-resistance marker for transformation and a counter-selection marker for excision of unwanted DNA. The plasmid was integrated into the ATF1 locus of a sake yeast strain. This integration constructed tandem repeats of ATF1 and TDH3p-ATF1 sequences, between which the plasmid was inserted. Loss of the plasmid, which occurs through homologous recombination between either the TDH3p downstream ATF1 repeats or the TDH3p upstream repeat sequences, was selected by growing transformants on counter-selective medium. Recombination between the downstream repeats led to reversion to a wild type strain, but that between the upstream repeats resulted in a strain that possessed TDH3p-ATF1 without the extraneous DNA sequences. The self-cloning TDH3p-ATF1 yeast strain produced a higher amount of isoamyl acetate. This is the first expression-controlled self-cloning industrial yeast.

  4. [Thermoresistance in Saccharomyces cerevisiae yeasts].

    PubMed

    Kaliuzhin, V A

    2011-01-01

    Under natural conditions, yeast Saccharomyces cerevisiae reproduce, as a rule, on the surface of solid or liquid medium. Thus, life cycle of yeast populations is substantially influenced by diurnal changes in ambient temperature. The pattern in the response of unrestricted yeast S. cerevisiae culture to changes in the temperature of cultivation is revealed experimentally. Yeast population, in the absence of environmental constraints on the functioning of cell chemosmotic bioenergetic system, demonstrates the ability of thermoresistance when the temperature of cultivation switches from the range of 12-36 degrees C to 37.5-40 degrees C. During the transient period that is associated with the temperature switching and lasts from 1 to 4 turnover cycles, yeast reproduction rate remains 1.5-2 times higher than under stationary conditions. This is due to evolutionary acquired adaptive activity of cell chemosmotic system. After the adaptive resources exhausting, yeast thermoresistance fully recovers at the temperature range of 12-36 degrees C within one generation time under conditions of both restricted and unrestricted nourishment. Adaptive significance of such thermoresistance seems obvious enough--it allows maintaining high reproduction rate in yeast when ambient temperature is reaching a brief maximum shortly after noon.

  5. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe

    PubMed Central

    2012-01-01

    Background Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. Results An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. Conclusions This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches. PMID:22554201

  6. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Chen, Bo-Ruei; Hale, Devin C; Ciolek, Peter J; Runge, Kurt W

    2012-05-03

    Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches.

  7. Candida xinjiangensis sp. nov., a new anamorphic yeast species isolated from Scolytus scheryrewi Semenov in China.

    PubMed

    Zhu, Xiao-Feng; Zhang, Dian-Peng; Yang, Sen; Zhang, Qing-Wen

    2017-03-01

    Three yeast strains designated as S44, XF1 and XF2, respectively, were isolated from Scolytus scheryrewi Semenov of apricot tree in Shule County, Xinjiang, China, and were demonstrated to be a new member of the genus Candida by sequence comparisons of 26S rRNA gene D1/D2 domain and internal transcribed spacer (ITS) region. BLASTn alignments on NCBI showed that the similarity of 26S rRNA gene sequences of S44 (type strain) to all sequences of other Candida yeasts was very low (≦93 %). The phylogenetic tree based on the 26S rRNA gene D1/D2 domain and ITS region sequences revealed that the strain S44 is closely related to C. blattae, C. dosseyi, C. pruni, C. asparagi, C. fructus and C. musae. However, the strain S44 is distinguished from these Candida species by the physiological characteristics. Moreover, the strain S44 formed typical pseudohyphae when grown on cornmeal agar at 25 °C for 7 days, but did not form ascospores in sporulation medium for 3-4 weeks. Therefore, the name Candida xinjiangensis is proposed for the novel species, with S44 (=KCTC T 27747) as the type strain.

  8. Yeast One-Hybrid Gγ Recruitment System for Identification of Protein Lipidation Motifs

    PubMed Central

    Fukuda, Nobuo; Doi, Motomichi; Honda, Shinya

    2013-01-01

    Fatty acids and isoprenoids can be covalently attached to a variety of proteins. These lipid modifications regulate protein structure, localization and function. Here, we describe a yeast one-hybrid approach based on the Gγ recruitment system that is useful for identifying sequence motifs those influence lipid modification to recruit proteins to the plasma membrane. Our approach facilitates the isolation of yeast cells expressing lipid-modified proteins via a simple and easy growth selection assay utilizing G-protein signaling that induces diploid formation. In the current study, we selected the N-terminal sequence of Gα subunits as a model case to investigate dual lipid modification, i.e., myristoylation and palmitoylation, a modification that is widely conserved from yeast to higher eukaryotes. Our results suggest that both lipid modifications are required for restoration of G-protein signaling. Although we could not differentiate between myristoylation and palmitoylation, N-terminal position 7 and 8 play some critical role. Moreover, we tested the preference for specific amino-acid residues at position 7 and 8 using library-based screening. This new approach will be useful to explore protein-lipid associations and to determine the corresponding sequence motifs. PMID:23922919

  9. Aldehyde dehydrogenase, Ald4p, is a major component of mitochondrial fluorescent inclusion bodies in the yeast Saccharomyces cerevisiae

    PubMed Central

    Misonou, Yoshiko; Kikuchi, Maiko; Sato, Hiroshi; Inai, Tomomi; Kuroiwa, Tsuneyoshi; Tanaka, Kenji; Miyakawa, Isamu

    2014-01-01

    ABSTRACT When Saccharomyces cerevisiae strain 3626 was cultured to the stationary phase in a medium that contained glucose, needle-like structures that emitted autofluorescence were observed in almost all cells by fluorescence microscopy under UV excitation. The needle-like structures completely overlapped with the profile of straight elongated mitochondria. Therefore, these structures were designated as mitochondrial fluorescent inclusion bodies (MFIBs). The MFIB-enriched mitochondrial fractions were successfully isolated and 2D-gel electrophoresis revealed that a protein of 54 kDa was only highly concentrated in the fractions. Determination of the N-terminal amino acid sequence of the 54-kDa protein identified it as a mitochondrial aldehyde dehydrogenase, Ald4p. Immunofluorescence microscopy showed that anti-Ald4p antibody specifically stained MFIBs. Freeze-substitution electron microscopy demonstrated that cells that retained MFIBs had electron-dense filamentous structures with a diameter of 10 nm in straight elongated mitochondria. Immunoelectron microscopy showed that Ald4p was localized to the electron-dense filamentous structures in mitochondria. These results together showed that a major component of MFIBs is Ald4p. In addition, we demonstrate that MFIBs are common features that appear in mitochondria of many species of yeast. PMID:24771619

  10. Direct Cloning of Yeast Genes from an Ordered Set of Lambda Clones in Saccharomyces Cerevisiae by Recombination in Vivo

    PubMed Central

    Erickson, J. R.; Johnston, M.

    1993-01-01

    We describe a technique that facilitates the isolation of yeast genes that are difficult to clone. This technique utilizes a plasmid vector that rescues lambda clones as yeast centromere plasmids. The source of these lambda clones is a set of clones whose location in the yeast genome has been determined by L. Riles et al. in 1993. The Esherichia coli-yeast shuttle plasmid carries URA3, ARS4 and CEN6, and contains DNA fragments from the lambda vector that flank the cloned yeast insert. When yeast is cotransformed with linearized plasmid and lambda clone DNA, Ura(+) transformants are obtained by a recombination event between the lambda clone and the plasmid vector that generates an autonomously replicating plasmid containing the cloned yeast DNA sequences. Genes whose genetic map positions are known can easily be identified and recovered in this plasmid by testing only those lambda clones that map to the relevant region of the yeast genome for their ability to complement the mutant phenotype. This technique facilitates the isolation of yeast genes that resist cloning either because (1) they are underrepresented in yeast genomic libraries amplified in E. coli, (2) they provide phenotypes that are too marginal to allow selection of the gene by genetic complementation or (3) they provide phenotypes that are laborious to score. We demonstrate the utility of this technique by isolating three genes, GAL83, SSN2 and MAK7, each of which presents one of these problems for cloning. PMID:8514124

  11. Yeast species associated with orange juice: evaluation of different identification methods.

    PubMed

    Arias, Covadonga R; Burns, Jacqueline K; Friedrich, Lorrie M; Goodrich, Renee M; Parish, Mickey E

    2002-04-01

    Five different methods were used to identify yeast isolates from a variety of citrus juice sources. A total of 99 strains, including reference strains, were identified using a partial sequence of the 26S rRNA gene, restriction pattern analysis of the internal transcribed spacer region (5.8S-ITS), classical methodology, the RapID Yeast Plus system, and API 20C AUX. Twenty-three different species were identified representing 11 different genera. Distribution of the species was considerably different depending on the type of sample. Fourteen different species were identified from pasteurized single-strength orange juice that had been contaminated after pasteurization (PSOJ), while only six species were isolated from fresh-squeezed, unpasteurized orange juice (FSOJ). Among PSOJ isolates, Candida intermedia and Candida parapsilosis were the predominant species. Hanseniaspora occidentalis and Hanseniaspora uvarum represented up to 73% of total FSOJ isolates. Partial sequence of the 26S rRNA gene yielded the best results in terms of correct identification, followed by classical techniques and 5.8S-ITS analysis. The commercial identification kits RapID Yeast Plus system and API 20C AUX were able to correctly identify only 35 and 13% of the isolates, respectively. Six new 5.8S-ITS profiles were described, corresponding to Clavispora lusitaniae, Geotrichum citri-aurantii, H. occidentalis, H. vineae, Pichia fermentans, and Saccharomycopsis crataegensis. With the addition of these new profiles to the existing database, the use of 5.8S-ITS sequence became the best tool for rapid and accurate identification of yeast isolates from orange juice.

  12. Binding properties of SUMO-interacting motifs (SIMs) in yeast.

    PubMed

    Jardin, Christophe; Horn, Anselm H C; Sticht, Heinrich

    2015-03-01

    Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.

  13. Mammalian amyloidogenic proteins promote prion nucleation in yeast.

    PubMed

    Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O

    2018-03-02

    Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. A Comprehensive Analysis of Transcript-Supported De Novo Genes in Saccharomyces sensu stricto Yeasts

    PubMed Central

    Lu, Tzu-Chiao; Leu, Jun-Yi; Lin, Wen-Chang

    2017-01-01

    Abstract Novel genes arising from random DNA sequences (de novo genes) have been suggested to be widespread in the genomes of different organisms. However, our knowledge about the origin and evolution of de novo genes is still limited. To systematically understand the general features of de novo genes, we established a robust pipeline to analyze >20,000 transcript-supported coding sequences (CDSs) from the budding yeast Saccharomyces cerevisiae. Our analysis pipeline combined phylogeny, synteny, and sequence alignment information to identify possible orthologs across 20 Saccharomycetaceae yeasts and discovered 4,340 S. cerevisiae-specific de novo genes and 8,871 S. sensu stricto-specific de novo genes. We further combine information on CDS positions and transcript structures to show that >65% of de novo genes arose from transcript isoforms of ancient genes, especially in the upstream and internal regions of ancient genes. Fourteen identified de novo genes with high transcript levels were chosen to verify their protein expressions. Ten of them, including eight transcript isoform-associated CDSs, showed translation signals and five proteins exhibited specific cytosolic localizations. Our results suggest that de novo genes frequently arise in the S. sensu stricto complex and have the potential to be quickly integrated into ancient cellular network. PMID:28981695

  15. Multiple mechanisms determine the order of APC/C substrate degradation in mitosis

    PubMed Central

    Lu, Dan; Hsiao, Jennifer Y.; Davey, Norman E.; Van Voorhis, Vanessa A.; Foster, Scott A.

    2014-01-01

    The ubiquitin protein ligase anaphase-promoting complex or cyclosome (APC/C) controls mitosis by promoting ordered degradation of securin, cyclins, and other proteins. The mechanisms underlying the timing of APC/C substrate degradation are poorly understood. We explored these mechanisms using quantitative fluorescence microscopy of GFP-tagged APC/CCdc20 substrates in living budding yeast cells. Degradation of the S cyclin, Clb5, begins early in mitosis, followed 6 min later by the degradation of securin and Dbf4. Anaphase begins when less than half of securin is degraded. The spindle assembly checkpoint delays the onset of Clb5 degradation but does not influence securin degradation. Early Clb5 degradation depends on its interaction with the Cdk1–Cks1 complex and the presence of a Cdc20-binding “ABBA motif” in its N-terminal region. The degradation of securin and Dbf4 is delayed by Cdk1-dependent phosphorylation near their Cdc20-binding sites. Thus, a remarkably diverse array of mechanisms generates robust ordering of APC/CCdc20 substrate destruction. PMID:25287299

  16. The Budding Yeast Nucleus

    PubMed Central

    Taddei, Angela; Schober, Heiko; Gasser, Susan M.

    2010-01-01

    The budding yeast nucleus, like those of other eukaryotic species, is highly organized with respect to both chromosomal sequences and enzymatic activities. At the nuclear periphery interactions of nuclear pores with chromatin, mRNA, and transport factors promote efficient gene expression, whereas centromeres, telomeres, and silent chromatin are clustered and anchored away from pores. Internal nuclear organization appears to be function-dependent, reflecting localized sites for tRNA transcription, rDNA transcription, ribosome assembly, and DNA repair. Recent advances have identified new proteins involved in the positioning of chromatin and have allowed testing of the functional role of higher-order chromatin organization. The unequal distribution of silent information regulatory factors and histone modifying enzymes, which arises in part from the juxtaposition of telomeric repeats, has been shown to influence chromatin-mediated transcriptional repression. Other localization events suppress unwanted recombination. These findings highlight the contribution budding yeast genetics and cytology have made to dissecting the functional role of nuclear structure. PMID:20554704

  17. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties.

    PubMed

    Piškur, Jure; Ling, Zhihao; Marcet-Houben, Marina; Ishchuk, Olena P; Aerts, Andrea; LaButti, Kurt; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Compagno, Concetta; Bisson, Linda; Grigoriev, Igor V; Gabaldón, Toni; Phister, Trevor

    2012-07-02

    The yeast Dekkera/Brettanomyces bruxellensis can cause enormous economic losses in wine industry due to production of phenolic off-flavor compounds. D. bruxellensis is a distant relative of baker's yeast Saccharomyces cerevisiae. Nevertheless, these two yeasts are often found in the same habitats and share several food-related traits, such as production of high ethanol levels and ability to grow without oxygen. In some food products, like lambic beer, D. bruxellensis can importantly contribute to flavor development. We determined the 13.4 Mb genome sequence of the D. bruxellensis strain Y879 (CBS2499) and deduced the genetic background of several "food-relevant" properties and evolutionary history of this yeast. Surprisingly, we find that this yeast is phylogenetically distant to other food-related yeasts and most related to Pichia (Komagataella) pastoris, which is an aerobic poor ethanol producer. We further show that the D. bruxellensis genome does not contain an excess of lineage specific duplicated genes nor a horizontally transferred URA1 gene, two crucial events that promoted the evolution of the food relevant traits in the S. cerevisiae lineage. However, D. bruxellensis has several independently duplicated ADH and ADH-like genes, which are likely responsible for metabolism of alcohols, including ethanol, and also a range of aromatic compounds. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Water quality and antifungal susceptibility of opportunistic yeast pathogens from rivers.

    PubMed

    Monapathi, M E; Bezuidenhout, C C; Rhode, O H J

    2017-03-01

    Yeasts from water sources have been associated with diseases ranging from superficial mucosal infections to life threatening diseases. The aim of this study was to determine the water quality as well as diversity and antifungal susceptibility of yeasts from two rivers. Yeast levels and physico-chemical parameter data were analyzed by principal component analysis to determine correlations between physico-chemical data and yeast levels. Yeast morphotypes were identified by biochemical tests and 26S rRNA gene sequencing. Disk diffusion antifungal susceptibility tests were conducted. Physico-chemical parameters of the water were within target water quality range (TWQR) for livestock farming. For irrigational use, total dissolved solids and nitrates were not within the TWQR. Yeast levels ranged between 27 ± 10 and 2,573 ± 306 cfu/L. Only non-pigmented, ascomycetous yeasts were isolated. Saccharomyces cerevisiae and Candida glabrata were most frequently isolated. Several other opportunistic pathogens were also isolated. A large number of isolates were resistant to azoles, especially fluconazole, but also to other antifungal classes. Candida species were resistant to almost all the antifungal classes. These water sources are used for recreation and religious as well as for watering livestock and irrigation. Of particular concern is the direct contact of individuals with opportunistic yeast, especially the immune-compromised. Resistance of these yeast species to antifungal agents is a further health concern.

  19. Downsides and benefits of unicellularity in budding yeast

    NASA Astrophysics Data System (ADS)

    Balazsi, Gabor; Chen, Lin; Kuzdzal-Fick, Jennie

    Yeast cells that do not separate after cell division form clumps. Clumping was shown to aid utilization of certain sugars, but its effects in stressful conditions are unknown. Generally speaking, what are the costs and benefits of unicellularity versus clumping multicellularity in normal and stressful conditions? To address this question, we evolved clumping yeast towards unicellularity by continuously propagating only those cells that remain suspended in liquid culture after settling. Whole-genome sequencing indicated that mutations in the AMN1 (antagonist of mitotic exit network) gene underlie the changes from clumping to unicellular phenotypes in these evolved yeast cells. Simple models predict that clumping should hinder growth in normal conditions while being protective in stress. Accordingly, we find experimentally that yeast clumps are more resistant to freeze/thaw, hydrogen peroxide, and ethanol stressors than their unicellular counterparts. On the other hand, unicellularity seems to be advantageous in normal conditions. Overall, these results reveal the downsides and benefits of unicellularity in different environmental conditions and uncover its genetic bases in yeast. This research was supported by the NIH Director's New Innovator Award Program (1DP2 OD006481-01), by NSF/IOS 1021675 and the Laufer Center for Physical & Quantitative Biology.

  20. Structural differences between yeast and mammalian microtubules revealed by cryo-EM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howes, Stuart C.; Geyer, Elisabeth A.; LaFrance, Benjamin

    Microtubules are polymers of αβ-tubulin heterodimers essential for all eukaryotes. Despite sequence conservation, there are significant structural differences between microtubules assembled in vitro from mammalian or budding yeast tubulin. Yeast MTs were not observed to undergo compaction at the interdimer interface as seen for mammalian microtubules upon GTP hydrolysis. Lack of compaction might reflect slower GTP hydrolysis or a different degree of allosteric coupling in the lattice. The microtubule plus end–tracking protein Bim1 binds yeast microtubules both between αβ-tubulin heterodimers, as seen for other organisms, and within tubulin dimers, but binds mammalian tubulin only at interdimer contacts. At the concentrationsmore » used in cryo-electron microscopy, Bim1 causes the compaction of yeast microtubules and induces their rapid disassembly. In conclusion, our studies demonstrate structural differences between yeast and mammalian microtubules that likely underlie their differing polymerization dynamics. These differences may reflect adaptations to the demands of different cell size or range of physiological growth temperatures.« less

  1. High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome

    PubMed Central

    2013-01-01

    Background Comparative genomics is a formidable tool to identify functional elements throughout a genome. In the past ten years, studies in the budding yeast Saccharomyces cerevisiae and a set of closely related species have been instrumental in showing the benefit of analyzing patterns of sequence conservation. Increasing the number of closely related genome sequences makes the comparative genomics approach more powerful and accurate. Results Here, we report the genome sequence and analysis of Saccharomyces arboricolus, a yeast species recently isolated in China, that is closely related to S. cerevisiae. We obtained high quality de novo sequence and assemblies using a combination of next generation sequencing technologies, established the phylogenetic position of this species and considered its phenotypic profile under multiple environmental conditions in the light of its gene content and phylogeny. Conclusions We suggest that the genome of S. arboricolus will be useful in future comparative genomics analysis of the Saccharomyces sensu stricto yeasts. PMID:23368932

  2. Xenopus origin recognition complex (ORC) initiates DNA replication preferentially at sequences targeted by Schizosaccharomyces pombe ORC

    PubMed Central

    Kong, Daochun; Coleman, Thomas R.; DePamphilis, Melvin L.

    2003-01-01

    Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe. PMID:12840006

  3. Brettanomyces acidodurans sp. nov., a new acetic acid producing yeast species from olive oil.

    PubMed

    Péter, Gábor; Dlauchy, Dénes; Tóbiás, Andrea; Fülöp, László; Podgoršek, Martina; Čadež, Neža

    2017-05-01

    Two yeast strains representing a hitherto undescribed yeast species were isolated from olive oil and spoiled olive oil originating from Spain and Israel, respectively. Both strains are strong acetic acid producers, equipped with considerable tolerance to acetic acid. The cultures are not short-lived. Cellobiose is fermented as well as several other sugars. The sequences of their large subunit (LSU) rRNA gene D1/D2 domain are very divergent from the sequences available in the GenBank. They differ from the closest hit, Brettanomyces naardenensis by about 27%, mainly substitutions. Sequence analyses of the concatenated dataset from genes of the small subunit (SSU) rRNA, LSU rRNA and translation elongation factor-1α (EF-1α) placed the two strains as an early diverging member of the Brettanomyces/Dekkera clade with high bootstrap support. Sexual reproduction was not observed. The name Brettanomyces acidodurans sp. nov. (holotype: NCAIM Y.02178 T ; isotypes: CBS 14519 T  = NRRL Y-63865 T  = ZIM 2626 T , MycoBank no.: MB 819608) is proposed for this highly divergent new yeast species.

  4. Yeast community in traditional Portuguese Serpa cheese by culture-dependent and -independent DNA approaches.

    PubMed

    Gonçalves Dos Santos, Maria Teresa P; Benito, María José; Córdoba, María de Guía; Alvarenga, Nuno; Ruiz-Moyano Seco de Herrera, Santiago

    2017-12-04

    This study investigated the yeast community present in the traditional Portuguese cheese, Serpa, by culture-dependent and -independent methods. Sixteen batches of Serpa cheeses from various regional industries registered with the Protected Designation of Origin (PDO) versus non-PDO registered, during spring and winter, were used. Irrespective of the producer, the yeast counts were around 5log CFU/g in winter and, overall, were lower in spring. The yeast species identified at the end of ripening (30days), using PCR-RFLP analysis and sequencing of the 26S rRNA, mainly corresponded to Debaryomyces hansenii and Kluyveromyces marxianus, with Candida spp. and Pichia spp. present to a lesser extent. The culture-independent results, obtained using high-throughput sequencing analysis, confirmed the prevalence of Debaryomyces spp. and Kluyveromyces spp. but, also, that Galactomyces spp. was relevant for three of the five producers, which indicates its importance during the early stages of the cheese ripening process, considering it was not found among the dominant viable yeast species. In addition, differences between the identified yeast isolated from cheeses obtained from PDO and non-PDO registered industries, showed that the lack of regulation of the cheese-making practice, may unfavourably influence the final yeast microbiota. The new knowledge provided by this study of the yeast diversity in Serpa cheese, could be used to modify the cheese ripening conditions, to favour desirable yeast species. Additionally, the prevalent yeast isolates identified, Debaryomyces hansenii and Kluyveromyces spp., may have an important role during cheese ripening and in the final sensorial characteristics. Thus, the study of their technological and functional properties could be relevant, in the development of an autochthonous starter culture, to ensure final quality and safety of the cheese. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Screening wild yeast strains for alcohol fermentation from various fruits.

    PubMed

    Lee, Yeon-Ju; Choi, Yu-Ri; Lee, So-Young; Park, Jong-Tae; Shim, Jae-Hoon; Park, Kwan-Hwa; Kim, Jung-Wan

    2011-03-01

    Wild yeasts on the surface of various fruits including grapes were surveyed to obtain yeast strains suitable for fermenting a novel wine with higher alcohol content and supplemented with rice starch. We considered selected characteristics, such as tolerance to alcohol and osmotic pressure, capability of utilizing maltose, and starch hydrolysis. Among 637 putative yeast isolates, 115 strains exhibiting better growth in yeast-peptone-dextrose broth containing 30% dextrose, 7% alcohol, or 2% maltose were selected, as well as five α-amylase producers. Nucleotide sequence analysis of the 26S rDNA gene classified the strains into 13 species belonging to five genera; Pichia anomala was the most prevalent (41.7%), followed by Wickerhamomyces anomalus (19.2%), P. guilliermondii (15%), Candida spp. (5.8%), Kodamaea ohmeri (2.5%), and Metschnikowia spp. (2.5%). All of the α-amylase producers were Aureobasidium pullulans. Only one isolate (NK28) was identified as Saccharomyces cerevisiae. NK28 had all of the desired properties for the purpose of this study, except α-amylase production, and fermented alcohol better than commercial wine yeasts.

  6. Functional conservation of the yeast and Arabidopsis RAD54-like genes.

    PubMed

    Klutstein, Michael; Shaked, Hezi; Sherman, Amir; Avivi-Ragolsky, Naomi; Shema, Efrat; Zenvirth, Drora; Levy, Avraham A; Simchen, Giora

    2008-04-01

    The Saccharomyces cerevisiae RAD54 gene has critical roles in DNA double-strand break repair, homologous recombination, and gene targeting. Previous results show that the yeast gene enhances gene targeting when expressed in Arabidopsis thaliana. In this work we address the trans-species compatibility of Rad54 functions. We show that overexpression of yeast RAD54 in Arabidopsis enhances DNA damage resistance severalfold. Thus, the yeast gene is active in the Arabidopsis homologous-recombination repair system. Moreover, we have identified an A. thaliana ortholog of yeast RAD54, named AtRAD54. This gene, with close sequence similarity to RAD54, complements methylmethane sulfonate (MMS) sensitivity but not UV sensitivity or gene targeting defects of rad54Delta mutant yeast cells. Overexpression of AtRAD54 in Arabidopsis leads to enhanced resistance to DNA damage. This gene's assignment as a RAD54 ortholog is further supported by the interaction of AtRad54 with AtRad51 and the interactions between alien proteins (i.e., yeast Rad54 with AtRAD51 and yeast Rad51 with AtRad54) in a yeast two-hybrid experiment. These interactions hint at the molecular nature of this interkingdom complementation, although the stronger effect of the yeast Rad54 in plants than AtRad54 in yeast might be explained by an ability of the Rad54 protein to act alone, independently of its interaction with Rad51.

  7. Post-fermentative production of glutathione by baker's yeast (S. cerevisiae) in compressed and dried forms.

    PubMed

    Musatti, Alida; Manzoni, Matilde; Rollini, Manuela

    2013-01-25

    The study was aimed at investigating the best biotransformation conditions to increase intracellular glutathione (GSH) levels in samples of baker's yeast (Saccharomyces cerevisiae) employing either the commercially available compressed and dried forms. Glucose, GSH precursors amino acids, as well as other cofactors, were dissolved in a biotransformation solution and yeast cells were added (5%dcw). Two response surface central composite designs (RSCCDs) were performed in sequence: in the first step the influence of amino acid composition (cysteine, glycine, glutamic acid and serine) on GSH accumulation was investigated; once their formulation was set up, the influence of other components was studied. Initial GSH content was found 0.53 and 0.47%dcw for compressed and dried forms. GSH accumulation ability of baker's yeast in compressed form was higher at the beginning of shelf life, that is, in the first week, and a maximum of 2.04%dcw was obtained. Performance of yeast in dried form was not found satisfactory, as the maximum GSH level was 1.18%dcw. When cysteine lacks from the reaction solution, yeast cells do not accumulate GSH. With dried yeast, the highest GSH yields occurred when cysteine was set at 3 g/L, glycine and glutamic acid at least at 4 g/L, without serine. Employing compressed yeast, the highest GSH yields occurred when cysteine and glutamic acid were set at 2-3 g/L, while glycine and serine higher than 2 g/L. Results allowed to set up an optimal and feasible procedure to obtain GSH-enriched yeast biomass, with up to threefold increase with respect to initial content. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    PubMed Central

    Yea, Carmen; Cheung, Rose; Collins, Carol; Adachi, Dena; Nishikawa, John; Tellier, Raymond

    2009-01-01

    Although the human parainfluenza virus 4 (HPIV4) has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada). The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97%) with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized. PMID:21994536

  9. Characterization of Hyaluronan-Degrading Enzymes from Yeasts.

    PubMed

    Smirnou, Dzianis; Krčmář, Martin; Kulhánek, Jaromír; Hermannová, Martina; Bobková, Lenka; Franke, Lukáš; Pepeliaev, Stanislav; Velebný, Vladimír

    2015-10-01

    Hyaluronidases (HAases) from yeasts were characterized for the first time. The study elucidated that hyaluronate 4-glycanohydrolase and hyaluronan (HA) lyase can be produced by yeasts. Six yeasts producing HAases were found through express screening of activities. The extracellular HAases from two of the yeast isolates, Pseudozyma aphidis and Cryptococcus laurentii, were characterized among them. P. aphidis HAase hydrolyzed β-1,4 glycosidic bonds of HA, yielding even-numbered oligosaccharides with N-acetyl-D-glucosamine at the reducing end. C. laurentii produced hyaluronan lyase, which cleaved β-1,4 glycosidic bonds of HA in β-elimination reaction, and the products of HA degradation were different-sized even-numbered oligosaccharides. The shortest detected HA oligomer was dimer. The enzymes' pH and temperature optima were pH 3.0 and 37-45 °C (P. aphidis) and pH 6.0 and 37 °C (C. laurentii), respectively. Both HAases showed good thermostability.

  10. Study of amyloids using yeast

    PubMed Central

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.

    2012-01-01

    Summary Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, the emphasis of this chapter will be on genetic, biochemical, cell biological and physical methods particularly useful in the study of yeast prions and other amyloids studied in yeast. We limit our description of these methods to those aspects which have been most useful in studying yeast prions, citing more detailed expositions in the literature. Volumes on yeast genetics methods (2–4), and on amyloids and prions (5, 6) are useful, and Masison has edited a volume of Methods on “Identification, analysis and characterization of fungal prions” which covers some of this territory (7). We also outline some useful physical methods, pointing the reader to more extensive and authoratative descriptions. PMID:22528100

  11. XRN1 Is a Species-Specific Virus Restriction Factor in Yeasts

    PubMed Central

    Rowley, Paul A.; Ho, Brandon; Bushong, Sarah; Johnson, Arlen; Sawyer, Sara L.

    2016-01-01

    In eukaryotes, the degradation of cellular mRNAs is accomplished by Xrn1 and the cytoplasmic exosome. Because viral RNAs often lack canonical caps or poly-A tails, they can also be vulnerable to degradation by these host exonucleases. Yeast lack sophisticated mechanisms of innate and adaptive immunity, but do use RNA degradation as an antiviral defense mechanism. We find a highly refined, species-specific relationship between Xrn1p and the “L-A” totiviruses of different Saccharomyces yeast species. We show that the gene XRN1 has evolved rapidly under positive natural selection in Saccharomyces yeast, resulting in high levels of Xrn1p protein sequence divergence from one yeast species to the next. We also show that these sequence differences translate to differential interactions with the L-A virus, where Xrn1p from S. cerevisiae is most efficient at controlling the L-A virus that chronically infects S. cerevisiae, and Xrn1p from S. kudriavzevii is most efficient at controlling the L-A-like virus that we have discovered within S. kudriavzevii. All Xrn1p orthologs are equivalent in their interaction with another virus-like parasite, the Ty1 retrotransposon. Thus, Xrn1p appears to co-evolve with totiviruses to maintain its potent antiviral activity and limit viral propagation in Saccharomyces yeasts. We demonstrate that Xrn1p physically interacts with the Gag protein encoded by the L-A virus, suggesting a host-virus interaction that is more complicated than just Xrn1p-mediated nucleolytic digestion of viral RNAs. PMID:27711183

  12. Global Analysis of Transcription Factor-Binding Sites in Yeast Using ChIP-Seq

    PubMed Central

    Lefrançois, Philippe; Gallagher, Jennifer E. G.; Snyder, Michael

    2016-01-01

    Transcription factors influence gene expression through their ability to bind DNA at specific regulatory elements. Specific DNA-protein interactions can be isolated through the chromatin immunoprecipitation (ChIP) procedure, in which DNA fragments bound by the protein of interest are recovered. ChIP is followed by high-throughput DNA sequencing (Seq) to determine the genomic provenance of ChIP DNA fragments and their relative abundance in the sample. This chapter describes a ChIP-Seq strategy adapted for budding yeast to enable the genome-wide characterization of binding sites of transcription factors (TFs) and other DNA-binding proteins in an efficient and cost-effective way. Yeast strains with epitope-tagged TFs are most commonly used for ChIP-Seq, along with their matching untagged control strains. The initial step of ChIP involves the cross-linking of DNA and proteins. Next, yeast cells are lysed and sonicated to shear chromatin into smaller fragments. An antibody against an epitope-tagged TF is used to pull down chromatin complexes containing DNA and the TF of interest. DNA is then purified and proteins degraded. Specific barcoded adapters for multiplex DNA sequencing are ligated to ChIP DNA. Short DNA sequence reads (28–36 base pairs) are parsed according to the barcode and aligned against the yeast reference genome, thus generating a nucleotide-resolution map of transcription factor-binding sites and their occupancy. PMID:25213249

  13. Yeast as a model system for mammalian seven-transmembrane segment receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeansonne, N.E.

    1994-05-01

    Investigators have used the budding yeast Saccharomyces cerevisiae as a model system in which to study the {beta}-adrenergic receptor, the T-cell receptor pathway, initiation of mammalian DNA replication, initiation of mammalian transcription, secretion, the CDC2 kinase system, cell cycle control, and aging, as well as the function of oncogenes. This list continues to growth with the discovery of an immunoglobulin heavy-chain binding homologue in yeast, an Rb binding protein homologue, and a possible yeast arrestin. Yeast is relatively easy to maintain, to grow, and to genetically manipulate. A single gene can be overexpressed, selectively mutated or deleted from its chromosomalmore » location. In this way, the in vivo function of a gene can be studied. It has become reasonable to consider yeast as a model system for studying the seven transmembrane segments (7-TMS) receptor family. Currently, subtypes of the {beta}-adrenergic receptor are being studied in yeast. The receptor and its G{sub {alpha}}-G-protein, trigger the mating pheromone receptor pathway. This provides a powerful assay for determining receptor function. Studies expressing the muscarinic cholinergic receptor in yeast are underway. The yeast pheromone receptor belongs to this receptor family, sharing sequences and secondary structure homology. An effective strategy has been to identify a yeast pathway or process which is homologous to a mammalian system. The pathway is delineated in yeast, identifying other genetic components. Then yeast genes are used to screen for human homologues of these components. The putative human homologues are then expressed in yeast and in mammalian cells to determine function. When this type of {open_quotes}mixing and matching{close_quotes} works, yeast genetics can be a powerful tool. 115 refs.« less

  14. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts

    PubMed Central

    Gorter de Vries, Arthur R.; Pronk, Jack T.

    2017-01-01

    ABSTRACT Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. PMID:28341679

  15. Modifying Expression Modes of Human Neurotensin Receptor Type 1 Alters Sensing Capabilities for Agonists in Yeast Signaling Biosensor.

    PubMed

    Hashi, Hiroki; Nakamura, Yasuyuki; Ishii, Jun; Kondo, Akihiko

    2018-04-01

    Neurotensin receptor type 1 (NTSR1), a member of the G-protein-coupled receptor (GPCR) family, is naturally activated by binding of a neurotensin peptide, leading to a variety of physiological effects. The budding yeast Saccharomyces cerevisiae is a proven host organism for assaying the agonistic activation of human GPCRs. Previous studies showed that yeast cells can functionally express human NTSR1 receptor, permitting the detection of neurotensin-promoted signaling using a ZsGreen fluorescent reporter gene. However, the fluorescence intensity (sensitivity) of NTSR1-expressing yeast cells is low compared to that of yeast cells expressing other human GPCRs (e.g., human somatostatin receptors). The present study sought to increase the sensitivity of the NTSR1-expressing yeast for use as a fluorescent biosensor, including modification of the expression of human NTSR1 in yeast. Changes in the transcription, translation, and transport of the receptor are attempted by altering the promoter, consensus Kozak-like sequence, and secretion signal sequences of the NTSR1-encoding gene. The resulting yeast cells exhibited increased sensitivity to exogenously added peptide. The cells are further engineered by using cell-surface display technology to ensure that the agonistic peptides are secreted and tethered to the yeast cell wall, yielding cells with enhanced NTSR1 activation. This yeast biosensor holds promise for the identification of agonists to treat NTSR1-related diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Endosomal sorting of GLUT4 and Gap1 is conserved between yeast and insulin-sensitive cells

    PubMed Central

    Shewan, Annette M.; McCann, Rebecca K.; Lamb, Christopher A.; Stirrat, Laura; Kioumourtzoglou, Dimitrios; Adamson, Iain S.; Verma, Suzie; James, David E.; Bryant, Nia J.

    2013-01-01

    Summary The insulin-regulated trafficking of the facilitative glucose transporter GLUT4 in human fat and muscle cells and the nitrogen-regulated trafficking of the general amino acid permease Gap1 in the yeast Saccharomyces cerevisiae share several common features: Both Gap1 and GLUT4 are nutrient transporters that are mobilised to the cell surface from an intracellular store in response to an environmental cue; both are polytopic membrane proteins harbouring amino acid targeting motifs in their C-terminal tails that are required for their regulated trafficking; ubiquitylation of both Gap1 and GLUT4 plays an important role in their regulated trafficking, as do the ubiquitin-binding GGA (Golgi-localised, γ-ear-containing, ARF-binding) adaptor proteins. Here, we find that when expressed heterologously in yeast, human GLUT4 is subject to nitrogen-regulated trafficking in an ubiquitin-dependent manner similar to Gap1. In addition, by expressing a GLUT4/Gap1 chimeric protein in adipocytes we show that the carboxy-tail of Gap1 directs intracellular sequestration and insulin-regulated trafficking in adipocytes. These findings demonstrate that the trafficking signals and their cognate molecular regulatory machinery that mediate regulated exocytosis of membrane proteins are conserved across evolution. PMID:23424197

  17. Prion-based memory of heat stress in yeast

    PubMed Central

    Chernova, Tatiana A.; Wilkinson, Keith D.

    2017-01-01

    ABSTRACT Amyloids and amyloid-based prions are self-perpetuating protein aggregates which can spread by converting a normal protein of the same sequence into a prion form. They are associated with diseases in humans and mammals, and control heritable traits in yeast and other fungi. Some amyloids are implicated in biologically beneficial processes. As prion formation generates reproducible memory of a conformational change, prions can be considered as molecular memory devices.  We have demonstrated that in yeast, stress-inducible cytoskeleton-associated protein Lsb2 forms a metastable prion in response to high temperature. This prion promotes conversion of other proteins into prions and can persist in a fraction of cells for a significant number of cell generations after stress, thus maintaining the memory of stress in a population of surviving cells. Acquisition of an amino acid substitution required for Lsb2 to form a prion coincides with acquisition of increased thermotolerance in the evolution of Saccharomyces yeast. Thus the ability to form an Lsb2 prion in response to stress coincides with yeast adaptation to growth at higher temperatures. These findings intimately connect prion formation to the cellular response to environmental stresses. PMID:28521568

  18. Prion-based memory of heat stress in yeast.

    PubMed

    Chernova, Tatiana A; Chernoff, Yury O; Wilkinson, Keith D

    2017-05-04

    Amyloids and amyloid-based prions are self-perpetuating protein aggregates which can spread by converting a normal protein of the same sequence into a prion form. They are associated with diseases in humans and mammals, and control heritable traits in yeast and other fungi. Some amyloids are implicated in biologically beneficial processes. As prion formation generates reproducible memory of a conformational change, prions can be considered as molecular memory devices.  We have demonstrated that in yeast, stress-inducible cytoskeleton-associated protein Lsb2 forms a metastable prion in response to high temperature. This prion promotes conversion of other proteins into prions and can persist in a fraction of cells for a significant number of cell generations after stress, thus maintaining the memory of stress in a population of surviving cells. Acquisition of an amino acid substitution required for Lsb2 to form a prion coincides with acquisition of increased thermotolerance in the evolution of Saccharomyces yeast. Thus the ability to form an Lsb2 prion in response to stress coincides with yeast adaptation to growth at higher temperatures. These findings intimately connect prion formation to the cellular response to environmental stresses.

  19. Yeast species associated with the spontaneous fermentation of cider.

    PubMed

    Valles, Belén Suárez; Bedriñana, Rosa Pando; Tascón, Norman Fernández; Simón, Amparo Querol; Madrera, Roberto Rodríguez

    2007-02-01

    This paper reports the influence of cider-making technology (pneumatic and traditional pressing) on the dynamics of wild yeast populations. Yeast colonies isolated from apple juice before and throughout fermentation at a cider cellar of Asturias (Spain), during two consecutive years were studied. The yeast strains were identified by restriction fragment length polymorphism analysis of the 5.8S rRNA gene and the two flanking internal transcribed sequences (ITS). The musts obtained by pneumatic pressing were dominated by non-Saccharomyces yeasts (Hanseniaspora genus and Metschnikowia pulcherrima) whereas in the apple juices obtained by traditional pressing Saccharomyces together with non-Saccharomyces, were always present. The species Saccharomyces present were S. cerevisiae and S. bayanus. Apparently S. bayanus, was the predominant species at the beginning and the middle fermentation steps of the fermentation process, reaching a percentage of isolation between 33% and 41%, whereas S. cerevisiae took over the process in the final stages of fermentation. During the 2001 harvest, with independence of cider-making technology, the species Hanseniaspora valbyensis was always isolated at the end of fermentations.

  20. Gal4-VP16 directs ATP-independent chromatin reorganization in a yeast chromatin assembly system.

    PubMed

    Robinson, Karen M; Schultz, Michael C

    2005-03-22

    Major insights into the regulation of chromatin organization have stemmed from biochemical studies using Gal4-VP16, a chimeric transcriptional activator in which the DNA binding domain of Gal4p is fused to the activation domain of viral protein VP16. Unexpectedly, given previous intensive efforts to understand how Gal4-VP16 functions in the context of chromatin, we have uncovered a new mode of chromatin reorganization that is dependent on Gal4-VP16. This reorganization is performed by an activity in a crude DEAE (CD) fraction from budding yeast which also supports ATP-dependent assembly of physiologically spaced nucleosome arrays. Biochemical analysis reveals that the activity tightly associates with chromatin and reorganizes nucleosome arrays by a mechanism which is insensitive to ATP depletion after nucleosome assembly. It generates a chromatin organization in which a nucleosome is stably positioned immediately adjacent to Gal4p binding sites in the template DNA. Individual deletion of genes previously implicated in chromatin assembly and remodeling, namely, the histone chaperones NAP1, ASF1, and CAC1 and the SNF2-like DEAD/H ATPases SNF2, ISW1, ISW2, CHD1, SWR1, YFR038w, and SPT20, does not significantly perturb reorganization. Therefore, Gal4-VP16-directed chromatin reorganization in yeast can occur by an ATP-independent mechanism that does not require SAGA, SWI/SNF, Isw1, or Isw2 chromatin remodeling complexes.

  1. Regulation of the yeast triacylglycerol lipases Tgl4p and Tgl5p by the presence/absence of nonpolar lipids

    PubMed Central

    Klein, Isabella; Klug, Lisa; Schmidt, Claudia; Zandl, Martina; Korber, Martina; Daum, Günther; Athenstaedt, Karin

    2016-01-01

    Tgl3p, Tgl4p, and Tgl5p are the major triacylglycerol lipases of the yeast Saccharomyces cerevisiae. Recently we demonstrated that properties of Tgl3p are regulated by the formation of nonpolar lipids. The present study extends these investigations to the two other yeast triacylglycerol lipases, Tgl4p and Tgl5p. We show that Tgl4p and Tgl5p, which are localized to lipid droplets in wild type, are partially retained in the endoplasmic reticulum in cells lacking triacylglycerols and localize exclusively to the endoplasmic reticulum in a mutant devoid of lipid droplets. In cells lacking steryl esters, the subcellular distribution of Tgl4p and Tgl5p is unaffected, but Tgl5p becomes unstable, whereas the stability of Tgl4p increases. In cells lacking nonpolar lipids, Tgl4p and Tgl5p lose their lipolytic activity but retain their side activity as lysophospholipid acyltransferases. To investigate the regulatory network of yeast triacylglycerol lipases in more detail, we also examined properties of Tgl3p, Tgl4p, and Tgl5p, respectively, in the absence of the other lipases. Surprisingly, lack of two lipases did not affect expression, localization, and stability of the remaining Tgl protein. These results suggest that Tgl3p, Tgl4p, and Tgl5p, although they exhibit similar functions, act as independent entities. PMID:27170177

  2. Whole-Genome Analysis of Three Yeast Strains Used for Production of Sherry-Like Wines Revealed Genetic Traits Specific to Flor Yeasts

    PubMed Central

    Eldarov, Mikhail A.; Beletsky, Alexey V.; Tanashchuk, Tatiana N.; Kishkovskaya, Svetlana A.; Ravin, Nikolai V.; Mardanov, Andrey V.

    2018-01-01

    Flor yeast strains represent a specialized group of Saccharomyces cerevisiae yeasts used for biological wine aging. We have sequenced the genomes of three flor strains originated from different geographic regions and used for production of sherry-like wines in Russia. According to the obtained phylogeny of 118 yeast strains, flor strains form very tight cluster adjacent to the main wine clade. SNP analysis versus available genomes of wine and flor strains revealed 2,270 genetic variants in 1,337 loci specific to flor strains. Gene ontology analysis in combination with gene content evaluation revealed a complex landscape of possibly adaptive genetic changes in flor yeast, related to genes associated with cell morphology, mitotic cell cycle, ion homeostasis, DNA repair, carbohydrate metabolism, lipid metabolism, and cell wall biogenesis. Pangenomic analysis discovered the presence of several well-known “non-reference” loci of potential industrial importance. Events of gene loss included deletions of asparaginase genes, maltose utilization locus, and FRE-FIT locus involved in iron transport. The latter in combination with a flor-yeast-specific mutation in the Aft1 transcription factor gene is likely to be responsible for the discovered phenotype of increased iron sensitivity and improved iron uptake of analyzed strains. Expansion of the coding region of the FLO11 flocullin gene and alteration of the balance between members of the FLO gene family are likely to positively affect the well-known propensity of flor strains for velum formation. Our study provides new insights in the nature of genetic variation in flor yeast strains and demonstrates that different adaptive properties of flor yeast strains could have evolved through different mechanisms of genetic variation. PMID:29867869

  3. Yeast: An Overlooked Component of Bactrocera tryoni (Diptera: Tephritidae) Larval Gut Microbiota.

    PubMed

    Deutscher, Ania T; Reynolds, Olivia L; Chapman, Toni A

    2017-02-01

    Yeasts, often in hydrolyzed form, are key ingredients in the larval and adult diets of tephritid fruit fly colonies. However, very little is known about the presence or role of yeasts in the diets of tephritid fruit flies in nature. Previous studies have identified bacteria but not detected yeasts in the gut of Queensland fruit fly, Bactrocera tryoni (Froggatt), one of Australia's most economically damaging insect pests of horticultural crops and of significant biosecurity concern domestically and internationally. Here we demonstrate that cultivable yeasts are commonly found in the gut of B. tryoni larvae from fruit hosts. Analysis of the ITS1, 5.8S rRNA gene, and ITS2 sequences of randomly selected isolates identified yeasts and yeast-like fungi of the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Pichia, and Starmerella. The prevalence of these yeasts in fruits suggests that larvae consume the yeasts as part of their diet. This work highlights that yeasts should be considered in future tephritid larval gut microbiota studies. Understanding tephritid-microbial symbiont interactions will lead to improvements in artificial diets and the quality of mass-reared tephritids for the sterile insect technique. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Studies of the TLR4-associated protein MD-2 using yeast-display and mutational analyses

    PubMed Central

    Mattis, Daiva M.; Chervin, Adam; Ranoa, Diana; Kelley, Stacy; Tapping, Richard; Kranz, David M.

    2015-01-01

    Bacterial lipopolysaccharide (LPS) activates the innate immune system by forming a complex with myeloid differentiation factor 2 (MD-2) and Toll-like receptor 4 (TLR4), which is present on antigen presenting cells. MD-2 plays an essential role in this activation of the innate immune system as a member of the ternary complex, TLR4:MD-2:LPS. With the goal of further understanding the molecular details of the interaction of MD-2 with LPS and TLR4, and possibly toward engineering dominant negative regulators of the MD-2 protein, here we subjected MD-2 to a mutational analysis using yeast display. The approach included generation of site-directed alanine mutants, and ligand-driven selections of MD-2 mutant libraries. Our findings showed that: 1) proline mutations in the F119-K132 loop that binds LPS were strongly selected for enhanced yeast surface stability, 2) there was a preference for positive-charged side chains (R/K) at residue 120 for LPS binding, and negative-charged side chains (D/E) for TLR4 binding, 3) aromatic residues were strongly preferred at F119 and F121 for LPS binding, and 4) an MD-2 mutant (T84N/D101A/S118A/S120D/K122P) exhibited increased binding to TLR4 but decreased binding to LPS. These studies revealed the impact of specific residues and regions of MD-2 on the binding of LPS and TLR4, and they provide a framework for further directed evolution of the MD-2 protein. PMID:26320630

  5. Effects of the dose and viability of Saccharomyces cerevisiae. 1. Diversity of ruminal microbes as analyzed by Illumina MiSeq sequencing and quantitative PCR.

    PubMed

    Jiang, Y; Ogunade, I M; Qi, S; Hackmann, T J; Staples, C R; Adesogan, A T

    2017-01-01

    This study was conducted to examine effects of the dose and viability of supplemental Saccharomyces cerevisiae on the ruminal fermentation and bacteria population and the performance of lactating dairy cows. Four ruminally cannulated lactating cows averaging 284±18d in milk were assigned to 4 treatments arranged in a 4×4 Latin square design with four 21-d periods. Cows were fed a total mixed ration containing 41.7% corn silage, 12.1% brewer's grains, and 46.2% concentrate on a dry matter basis. The diet was supplemented with no yeast (control) or with a low dose of live yeast (5.7×10 7 cfu/cow per day; LLY), a high dose of live yeast (6.0×10 8 cfu/cow per day; HLY), or a high dose of killed yeast (6.0×10 8 cfu/cow per day; HDY). Microbial diversity was examined by high-throughput Illumina MiSeq sequencing (Illumina Inc., San Diego, CA) of the V4 region of the 16S rRNA gene. The relative abundance of select ruminal bacteria was also quantified by quantitative PCR (qPCR). Adding LLY to the diet increased the relative abundance of some ruminal cellulolytic bacteria (Ruminococcus and Fibrobacter succinogenes) and amylolytic bacteria (Ruminobacter, Bifidobacterium, and Selenomonas ruminantium). Adding live instead of killed yeast increased the relative abundance of Ruminococcus and F. succinogenes; adding HDY increased the relative abundance of Ruminobacter, Bifidobacterium, Streptococcus bovis, and Selenomonas ruminantium. The most dominant (≥1% of total sequences) bacteria that responded to LLY addition whose functions are among the least understood in relation to the mode of action of yeast include Paraprevotellaceae, CF231, Treponema, and Lachnospiraceae. Future studies should aim to speciate, culture, and examine the function of these bacteria to better understand their roles in the mode of action of yeast. A relatively precise relationship was detected between the relative abundance of F. succinogenes (R 2 =0.67) from qPCR and MiSeq sequencing, but weak

  6. Draft Genome Sequence of Cryophilic Basidiomycetous Yeast Mrakia blollopis SK-4, Isolated from an Algal Mat of Naga-ike Lake in the Skarvsnes Ice-Free Area, East Antarctica.

    PubMed

    Tsuji, Masaharu; Kudoh, Sakae; Hoshino, Tamotsu

    2015-01-22

    Mrakia blollopis strain SK-4 was isolated from an algal mat of Naga-ike, a lake in Skarvsnes, East Antarctica. Here, we report the draft genome sequence of M. blollopis SK-4. This is the first report on the genome sequence of any cold-adapted fungal species. Copyright © 2015 Tsuji et al.

  7. Yeast Based Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.

  8. Yeasts as important agents of onychomycosis: in vitro activity of propolis against yeasts isolated from patients with nail infection.

    PubMed

    Khosravi, Ali Reza; Shokri, Hojjatollah; Nikaein, Donya; Mansouri, Parvin; Erfanmanesh, Ahmad; Chalangari, Reza; Katalin, Martis

    2013-01-01

    The purposes of this study were to determine the frequency of the yeast species obtained from patients with clinical features of onychomycosis and the in vitro antifungal susceptibility of the yeast species to propolis. A prospective study was carried out at the Mycology Research Center in Iran from 2010 to 2011. Clinical diagnosis was performed by direct microscopic examination and culture. Different yeast species were identified by morphological and biochemical tests. An antifungal susceptibility test to fluconazole (FLU) and propolis by the broth microdilution method was performed on each isolate. One hundred and twenty-eight fungal isolates were obtained. The most prevalent fungi were yeasts (81, 63.2%), dermatophytes (36, 28.1%), and nondermatophyte fungi (11, 8.6%). Fingernails were more affected than toenails (65.4% vs. 19.8%, respectively). The most frequently found species was Candida albicans (38.5%), followed by Candida spp. (23.1%), C. tropicalis (10.8%), C. kefyr (6.2%), C. krusei (3.1%), Malassezia globosa (4.6%), M. slooffiae (4.6%), and M. pachydermatis (1.5%). Of all yeast isolates (65), seven showed resistance to FLU. The average MIC of propolis for FLU-susceptible isolates was 5.8 μg/mL, whereas this value was 12.25 μg/mL for FLU-resistant isolates. Our results proved that the propolis inhibits the growth of pathogenic yeasts and confirmed the efficiency of propolis as an anti-Candida and anti-Malassezia agent.

  9. Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10.

    PubMed

    Swinehart, William E; Henderson, Jeremy C; Jackman, Jane E

    2013-08-01

    N-1 Methylation of the nearly invariant purine residue found at position 9 of tRNA is a nucleotide modification found in multiple tRNA species throughout Eukarya and Archaea. First discovered in Saccharomyces cerevisiae, the tRNA methyltransferase Trm10 is a highly conserved protein both necessary and sufficient to catalyze all known instances of m1G9 modification in yeast. Although there are 19 unique tRNA species that contain a G at position 9 in yeast, and whose fully modified sequence is known, only 9 of these tRNA species are modified with m1G9 in wild-type cells. The elements that allow Trm10 to distinguish between structurally similar tRNA species are not known, and sequences that are shared between all substrate or all nonsubstrate tRNAs have not been identified. Here, we demonstrate that the in vitro methylation activity of yeast Trm10 is not sufficient to explain the observed pattern of modification in vivo, as additional tRNA species are substrates for Trm10 m1G9 methyltransferase activity. Similarly, overexpression of Trm10 in yeast yields m1G9 containing tRNA species that are ordinarily unmodified in vivo. Thus, yeast Trm10 has a significantly broader tRNA substrate specificity than is suggested by the observed pattern of modification in wild-type yeast. These results may shed light onto the suggested involvement of Trm10 in other pathways in other organisms, particularly in higher eukaryotes that contain up to three different genes with sequence similarity to the single TRM10 gene in yeast, and where these other enzymes have been implicated in pathways beyond tRNA processing.

  10. MIPS: a database for protein sequences and complete genomes.

    PubMed Central

    Mewes, H W; Hani, J; Pfeiffer, F; Frishman, D

    1998-01-01

    The MIPS group [Munich Information Center for Protein Sequences of the German National Center for Environment and Health (GSF)] at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, is involved in a number of data collection activities, including a comprehensive database of the yeast genome, a database reflecting the progress in sequencing the Arabidopsis thaliana genome, the systematic analysis of other small genomes and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database (described elsewhere in this volume). Through its WWW server (http://www.mips.biochem.mpg.de ) MIPS provides access to a variety of generic databases, including a database of protein families as well as automatically generated data by the systematic application of sequence analysis algorithms. The yeast genome sequence and its related information was also compiled on CD-ROM to provide dynamic interactive access to the 16 chromosomes of the first eukaryotic genome unraveled. PMID:9399795

  11. Budding yeast chromatin is dispersed in a crowded nucleoplasm in vivo

    PubMed Central

    Chen, Chen; Lim, Hong Hwa; Shi, Jian; Tamura, Sachiko; Maeshima, Kazuhiro; Surana, Uttam; Gan, Lu

    2016-01-01

    Chromatin organization has an important role in the regulation of eukaryotic systems. Although recent studies have refined the three-dimensional models of chromatin organization with high resolution at the genome sequence level, little is known about how the most fundamental units of chromatin—nucleosomes—are positioned in three dimensions in vivo. Here we use electron cryotomography to study chromatin organization in the budding yeast Saccharomyces cerevisiae. Direct visualization of yeast nuclear densities shows no evidence of 30-nm fibers. Aside from preribosomes and spindle microtubules, few nuclear structures are larger than a tetranucleosome. Yeast chromatin does not form compact structures in interphase or mitosis and is consistent with being in an “open” configuration that is conducive to high levels of transcription. From our study and those of others, we propose that yeast can regulate its transcription using local nucleosome–nucleosome associations. PMID:27605704

  12. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)

    PubMed Central

    Dujon, Bernard A.; Louis, Edward J.

    2017-01-01

    Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance. PMID:28592505

  13. Deciphering the Origin, Evolution, and Physiological Function of the Subtelomeric Aryl-Alcohol Dehydrogenase Gene Family in the Yeast Saccharomyces cerevisiae.

    PubMed

    Yang, Dong-Dong; de Billerbeck, Gustavo M; Zhang, Jin-Jing; Rosenzweig, Frank; Francois, Jean-Marie

    2018-01-01

    Homology searches indicate that Saccharomyces cerevisiae strain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). Yeast AAD genes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes, AAD4 and AAD14 , encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeast AAD genes are undergoing pseudogenization. The 5' sequence of AAD15 has been deleted from the genome. Repair of an AAD3 missense mutation at the catalytically essential Tyr 73 residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates that AAD genes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeast AAD genes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeast AAD gene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role for AAD genes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications. IMPORTANCE Functional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the first Saccharomyces cerevisiae genome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-member AAD family. Here, we demonstrate that proteins encoded by two

  14. Deciphering the Origin, Evolution, and Physiological Function of the Subtelomeric Aryl-Alcohol Dehydrogenase Gene Family in the Yeast Saccharomyces cerevisiae

    PubMed Central

    de Billerbeck, Gustavo M.; Zhang, Jin-jing; Rosenzweig, Frank

    2017-01-01

    ABSTRACT Homology searches indicate that Saccharomyces cerevisiae strain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). Yeast AAD genes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes, AAD4 and AAD14, encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeast AAD genes are undergoing pseudogenization. The 5′ sequence of AAD15 has been deleted from the genome. Repair of an AAD3 missense mutation at the catalytically essential Tyr73 residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates that AAD genes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeast AAD genes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeast AAD gene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role for AAD genes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications. IMPORTANCE Functional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the first Saccharomyces cerevisiae genome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-member AAD family. Here, we demonstrate that proteins encoded

  15. Concentration-Dependent Effects of Rhodiola Rosea on Long-Term Survival and Stress Resistance of Yeast Saccharomyces Cerevisiae: The Involvement of YAP 1 and MSN2/4 Regulatory Proteins

    PubMed Central

    Bayliak, Maria M.; Burdyliuk, Nadia I.; Izers’ka, Lilia I.; Lushchak, Volodymyr I.

    2014-01-01

    Concentration-dependent effects of aqueous extract from R. rosea root on long-term survival and stress resistance of budding yeast Saccharomyces cerevisiae were studied. At low concentrations, R. rosea aqueous extract extended yeast chronological lifespan, enhanced oxidative stress resistance of stationary-phase cells and resistance to number stressors in exponentially growing cultures. At high concentrations, R. rosea extract sensitized yeast cells to stresses and shortened yeast lifespan. These biphasic concentration-responses describe a common hormetic phenomenon characterized by a low-dose stimulation and a high-dose inhibition. Yeast pretreatment with low doses of R. rosea extract enhanced yeast survival and prevented protein oxidation under H2O2-induced oxidative stress. Positive effect of R. rosea extract on yeast survival under heat shock exposure was not accompanied with changes in antioxidant enzyme activities and levels of oxidized proteins. The deficiency in transcriptional regulators, Msn2/Msn4 and Yap1, abolished the positive effect of low doses of R. rosea extract on yeast viability under stress challenges. Potential involvement of Msn2/Msn4 and Yap1 regulatory proteins in realization of R. rosea beneficial effects is discussed. PMID:24659935

  16. Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Woolford, John L.; Baserga, Susan J.

    2013-01-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  17. Translation, modification and cellular distribution of two AC4 variants of African cassava mosaic virus in yeast and their pathogenic potential in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hipp, Katharina, E-mail: katharina.hipp@bio.uni-st

    Plant infecting geminiviruses encode a small (A)C4 protein within the open reading frame of the replication-initiator protein. In African cassava mosaic virus, two in-frame start codons may be used for the translation of a longer and a shorter AC4 variant. Both were fused to green fluorescent protein or glutathione-S-transferase genes and expressed in fission yeast. The longer variant accumulated in discrete spots in the cytoplasm, whereas the shorter variant localized to the plasma membrane. A similar expression pattern was found in plants. A myristoylation motif may promote a targeting of the shorter variant to the plasma membrane. Mass spectrometry analysismore » of the yeast-expressed shorter variant detected the corresponding myristoylation. The biological relevance of the second start codon was confirmed using mutated infectious clones. Whereas mutating the first start codon had no effect on the infectivity in Nicotiana benthamiana plants, the second start codon proved to be essential. -- Highlights: •The ACMV AC4 may be translated from one or the other in-frame start codon. •Both AC4 variants are translated in fission yeast. •The long AC4 protein localizes to the cytoplasm, the short to the plasma membrane. •The short variant is myristoylated in yeast and may promote membrane localization. •Only the shorter AC4 variant has an impact on viral infections in plants.« less

  18. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    PubMed Central

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  19. Studying Functions of All Yeast Genes Simultaneously

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Eason, Robert G.; Poumand, Nader; Herman, Zelek S.; Davis, Ronald W.; Anthony Kevin; Jejelowo, Olufisayo

    2006-01-01

    A method of studying the functions of all the genes of a given species of microorganism simultaneously has been developed in experiments on Saccharomyces cerevisiae (commonly known as baker's or brewer's yeast). It is already known that many yeast genes perform functions similar to those of corresponding human genes; therefore, by facilitating understanding of yeast genes, the method may ultimately also contribute to the knowledge needed to treat some diseases in humans. Because of the complexity of the method and the highly specialized nature of the underlying knowledge, it is possible to give only a brief and sketchy summary here. The method involves the use of unique synthetic deoxyribonucleic acid (DNA) sequences that are denoted as DNA bar codes because of their utility as molecular labels. The method also involves the disruption of gene functions through deletion of genes. Saccharomyces cerevisiae is a particularly powerful experimental system in that multiple deletion strains easily can be pooled for parallel growth assays. Individual deletion strains recently have been created for 5,918 open reading frames, representing nearly all of the estimated 6,000 genetic loci of Saccharomyces cerevisiae. Tagging of each deletion strain with one or two unique 20-nucleotide sequences enables identification of genes affected by specific growth conditions, without prior knowledge of gene functions. Hybridization of bar-code DNA to oligonucleotide arrays can be used to measure the growth rate of each strain over several cell-division generations. The growth rate thus measured serves as an index of the fitness of the strain.

  20. The primary structure of rat liver ribosomal protein L37. Homology with yeast and bacterial ribosomal proteins.

    PubMed

    Lin, A; McNally, J; Wool, I G

    1983-09-10

    The covalent structure of the rat liver 60 S ribosomal subunit protein L37 was determined. Twenty-four tryptic peptides were purified and the sequence of each was established; they accounted for all 111 residues of L37. The sequence of the first 30 residues of L37, obtained previously by automated Edman degradation of the intact protein, provided the alignment of the first 9 tryptic peptides. Three peptides (CN1, CN2, and CN3) were produced by cleavage of protein L37 with cyanogen bromide. The sequence of CN1 (65 residues) was established from the sequence of secondary peptides resulting from cleavage with trypsin and chymotrypsin. The sequence of CN1 in turn served to order tryptic peptides 1 through 14. The sequence of CN2 (15 residues) was determined entirely by a micromanual procedure and allowed the alignment of tryptic peptides 14 through 18. The sequence of the NH2-terminal 28 amino acids of CN3 (31 residues) was determined; in addition the complete sequences of the secondary tryptic and chymotryptic peptides were done. The sequence of CN3 provided the order of tryptic peptides 18 through 24. Thus the sequence of the three cyanogen bromide peptides also accounted for the 111 residues of protein L37. The carboxyl-terminal amino acids were identified after carboxypeptidase A treatment. There is a disulfide bridge between half-cystinyl residues at positions 40 and 69. Rat liver ribosomal protein L37 is homologous with yeast YP55 and with Escherichia coli L34. Moreover, there is a segment of 17 residues in rat L37 that occurs, albeit with modifications, in yeast YP55 and in E. coli S4, L20, and L34.

  1. Msn2p/Msn4p act as a key transcriptional activator of yeast cytoplasmic thiol peroxidase II.

    PubMed

    Hong, Seung-Keun; Cha, Mee-Kyung; Choi, Yong-Soo; Kim, Won-Cheol; Kim, Il-Han

    2002-04-05

    We observed that the transcription of Saccharomyces cerevisiae cytoplasmic thiol peroxidase type II (cTPx II) (YDR453C) is regulated in response to various stresses (e.g. oxidative stress, carbon starvation, and heat-shock). It has been suggested that both transcription-activating proteins, Yap1p and Skn7p, regulate the transcription of cTPx II upon exposure to oxidative stress. However, a dramatic loss of transcriptional response to various stresses in yeast mutant strains lacking both Msn2p and Msn4p suggests that the transcription factors act as a principal transcriptional activator. In addition to two Yap1p response elements (YREs), TTACTAA and TTAGTAA, the presence of two stress response elements (STREs) (CCCCT) in the upstream sequence of cTPx II also suggests that Msn2p/Msn4p could control stress-induced expression of cTPx II. Analysis of the transcriptional activity of site-directed mutagenesis of the putative STREs (STRE1 and STRE2) and YREs (TRE1 and YRE2) in terms of the activity of a lacZ reporter gene under control of the cTPx II promoter indicates that STRE2 acts as a principal binding element essential for transactivation of the cTPx II promoter. The transcriptional activity of the cTPx II promoter was exponentially increased after postdiauxic growth. The transcriptional activity of the cTPx II promoter is greatly increased by rapamycin. Deletion of Tor1, Tor2, Ras1, and Ras2 resulted in a considerable induction when compared with their parent strains, suggesting that the transcription of cTPx II is under negative control of the Ras/cAMP and target of rapamycin signaling pathways. Taken together, these results suggest that cTPx II is a target of Msn2p/Msn4p transcription factors under negative control of the Ras-protein kinase A and target of rapamycin signaling pathways. Furthermore, the accumulation of cTPx II upon exposure to oxidative stress and during the postdiauxic shift suggests an important antioxidant role in stationary phase yeast cells.

  2. Yeast species diversity in apple juice for cider production evidenced by culture-based method.

    PubMed

    Lorenzini, Marilinda; Simonato, Barbara; Zapparoli, Giacomo

    2018-05-07

    Identification of yeasts isolated from apple juices of two cider houses (one located in a plain area and one in an alpine area) was carried out by culture-based method. Wallerstein Laboratory Nutrient Agar was used as medium for isolation and preliminary yeasts identification. A total of 20 species of yeasts belonging to ten different genera were identified using both BLAST algorithm for pairwise sequence comparison and phylogenetic approaches. A wide variety of non-Saccharomyces species was found. Interestingly, Candida railenensis, Candida cylindracea, Hanseniaspora meyeri, Hanseniaspora pseudoguilliermondii, and Metschnikowia sinensis were recovered for the first time in the yeast community of an apple environment. Phylogenetic analysis revealed a better resolution in identifying Metschnikowia and Moesziomyces isolates than comparative analysis using the GenBank or YeastIP gene databases. This study provides important data on yeast microbiota of apple juice and evidenced differences between two geographical cider production areas in terms of species composition.

  3. Molecular and physiological characteristics of a grape yeast strain containing atypical genetic material.

    PubMed

    Cappello, M S; Poltronieri, P; Blaiotta, G; Zacheo, G

    2010-11-15

    The knowledge about wine yeasts remains largely dominated by the extensive studies on Saccharomyces (S.) cerevisiae. Molecular methods, allowing discrimination of both species and strains in winemaking, can profitably be applied for characterization of the microflora occurring in winemaking and for monitoring the fermentation process. Recently, some novel yeast isolates have been described as hybrid between S. cerevisiae and Saccharomyces species, leaving the Saccharomyces strains containing non-Saccharomyces hybrids essentially unexplored. In this study, we have analyzed a yeast strain isolated from "Primitivo" grape (http://www.ispa.cnr.it/index.php?page=collezioni&lang=en accession number 12998) and we found that, in addition to the S. cerevisiae genome, it has acquired genetic material from a non-Saccharomyces species. The study was focused on the analysis of chromosomal and mitochondrial gene sequences (ITS and 26S rRNA, SSU and COXII, ACTIN-1 and TEF), 2D-PAGE mitochondrial proteins, and spore viability. The results allowed us to formulate the hypothesis that in the MSH199 isolate a DNA containing an rDNA sequence from Hanseniaspora vineae, a non-Saccharomyces yeast, was incorporated through homologous recombination in the grape environment where yeast species are propagated. Moreover, physiological characterization showed that the MSH199 isolate possesses high technological quality traits (fermentation performance) and glycerol production, resistance to ethanol, SO₂ and temperature) useful for industrial application. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. The nucleotide sequence of the intergenic region between the 5.8S and 26S rRNA genes of the yeast ribosomal RNA operon. Possible implications for the interaction between 5.8S and 26S rRNA and the processing of the primary transcript.

    PubMed Central

    Veldman, G M; Klootwijk, J; van Heerikhuizen, H; Planta, R J

    1981-01-01

    We have determined the nucleotide sequence of part of a cloned yeast ribosomal RNA operon extending from the 5.8S RNA gene downstream into the 5' -terminal region of the 26S RNA gene. We mapped the pertinent processing sites, viz. the 5' end of 26S rRNA and the 3'ends of 5.8S rRNA and its immediate precursor, 7S RNA. At the 3' end of 7S RNA we find the sequence UCGUUU which is very similar to the type I consensus sequence UCAUUA/U present at the 3' ends of 17S, 5.8S and 26S rRNA as well as 18S precursor rRNA in yeast. At the 5' end of the 26S RNA gene we find a sequence of thirteen nucleotides which is homologous to the type II sequence present at the 5' termini of both the 17S and the 5.8S RNA gene. These findings further support the suggestion put forward earlier (G.M. Veldman et al. (1980) Nucl. Acids Res. 8, 2907-2920) that both consensus sequences are involved in the recognition of precursor rRNA by the processing nuclease(s). We discuss a model for the processing of yeast rRNA in which a processing enzyme sequentially recognizes several combinations of a type I and a type II consensus sequence. We also describe the existence of a significant base complementarity between sequences in the 5' -terminal region of 26S rRNA and the 3' -terminal region of 5.8S rRNA. We suggest that base pairing between these sequences contributes to the binding between 5.8S and 26S rRNA. Images PMID:7312619

  5. Yeast diversity associated to sediments and water from two Colombian artificial lakes

    PubMed Central

    Silva-Bedoya, L.M.; Ramírez-Castrillón, M.; Osorio-Cadavid, E.

    2014-01-01

    In Colombia, knowledge of the yeast and yeast-like fungi community is limited because most studies have focused on species with clinical importance. Sediments and water represent important habitats for the study of yeast diversity, especially for yeast species with industrial, biotechnological, and bioremediation potential. The main purpose of this study was to identify and compare the diversity of yeast species associated with sediment and water samples from two artificial lakes in Universidad del Valle (Cali-Colombia). Yeast samplings were performed from fifteen sediment samples and ten water samples. Grouping of similar isolates was initially based on colony and cell morphology, which was then complemented by micro/mini satellite primed PCR banding pattern analysis by using GTG5 as single primer. A representative isolate for each group established was chosen for D1/D2 domain sequencing and identification. In general, the following yeast species were identified: Candida albicans, Candida diversa, Candida glabrata, Candida pseudolambica, Cryptococcus podzolicus, Cryptococcus rajasthanensis, Cryptococcus laurentii, Williopsis saturnus, Hanseniaspora thailandica, Hanseniaspora uvarum, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Torulaspora delbrueckii, Torulaspora pretoriensis, Tricosporon jirovecii, Trichosporon laibachii and Yarrowia lypolitica. Two possible new species were also found, belonging to the Issatchenkia sp. and Bullera sp. genera. In conclusion, the lakes at the Universidad del Valle campus have significant differences in yeast diversity and species composition between them. PMID:24948924

  6. Extracellular Polysaccharides Produced by Yeasts and Yeast-Like Fungi

    NASA Astrophysics Data System (ADS)

    van Bogaert, Inge N. A.; de Maeseneire, Sofie L.; Vandamme, Erick J.

    Several yeasts and yeast-like fungi are known to produce extracellular polysaccharides. Most of these contain D-mannose, either alone or in combination with other sugars or phosphate. A large chemical and structural variability is found between yeast species and even among different strains. The types of polymers that are synthesized can be chemically characterized as mannans, glucans, phosphoman-nans, galactomannans, glucomannans and glucuronoxylomannans. Despite these differences, almost all of the yeast exopolysaccharides display some sort of biological activity. Some of them have already applications in chemistry, pharmacy, cosmetics or as probiotic. Furthermore, some yeast exopolysaccharides, such as pullulan, exhibit specific physico-chemical and rheological properties, making them useful in a wide range of technical applications. A survey is given here of the production, the characteristics and the application potential of currently well studied yeast extracellular polysaccharides.

  7. The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges

    PubMed Central

    Masneuf-Pomarede, Isabelle; Bely, Marina; Marullo, Philippe; Albertin, Warren

    2016-01-01

    Saccharomyces cerevisiae is by far the most widely used yeast in oenology. However, during the last decade, several other yeasts species has been purposed for winemaking as they could positively impact wine quality. Some of these non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, etc.) are now proposed as starters culture for winemakers in mixed fermentation with S. cerevisiae, and several others are the subject of various studies (Hanseniaspora uvarum, Starmerella bacillaris, etc.). Along with their biotechnological use, the knowledge of these non-conventional yeasts greatly increased these last 10 years. The aim of this review is to describe the last updates and the current state-of-art of the genetics of non-conventional yeasts (including S. uvarum, T. delbrueckii, S. bacillaris, etc.). We describe how genomics and genetics tools provide new data into the population structure and biodiversity of non-conventional yeasts in winemaking environments. Future challenges will lie on the development of selection programs and/or genetic improvement of these non-conventional species. We discuss how genetics, genomics and the advances in next-generation sequencing will help the wine industry to develop the biotechnological use of non-conventional yeasts to improve the quality and differentiation of wines. PMID:26793188

  8. The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges.

    PubMed

    Masneuf-Pomarede, Isabelle; Bely, Marina; Marullo, Philippe; Albertin, Warren

    2015-01-01

    Saccharomyces cerevisiae is by far the most widely used yeast in oenology. However, during the last decade, several other yeasts species has been purposed for winemaking as they could positively impact wine quality. Some of these non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, etc.) are now proposed as starters culture for winemakers in mixed fermentation with S. cerevisiae, and several others are the subject of various studies (Hanseniaspora uvarum, Starmerella bacillaris, etc.). Along with their biotechnological use, the knowledge of these non-conventional yeasts greatly increased these last 10 years. The aim of this review is to describe the last updates and the current state-of-art of the genetics of non-conventional yeasts (including S. uvarum, T. delbrueckii, S. bacillaris, etc.). We describe how genomics and genetics tools provide new data into the population structure and biodiversity of non-conventional yeasts in winemaking environments. Future challenges will lie on the development of selection programs and/or genetic improvement of these non-conventional species. We discuss how genetics, genomics and the advances in next-generation sequencing will help the wine industry to develop the biotechnological use of non-conventional yeasts to improve the quality and differentiation of wines.

  9. Genome Sequence of the Thermotolerant Yeast Kluyveromyces marxianus var. marxianus KCTC 17555

    PubMed Central

    Jeong, Haeyoung; Lee, Dae-Hee; Kim, Sun Hong; Kim, Hyun-Jin; Lee, Kyusang; Song, Ju Yeon; Kim, Byung Kwon; Sung, Bong Hyun; Sohn, Jung Hoon; Koo, Hyun Min

    2012-01-01

    Kluyveromyces marxianus is a thermotolerant yeast that has been explored for potential use in biotechnological applications, such as production of biofuels, single-cell proteins, enzymes, and other heterologous proteins. Here, we present the high-quality draft of the 10.9-Mb genome of K. marxianus var. marxianus KCTC 17555 (= CBS 6556 = ATCC 26548). PMID:23193140

  10. Yeast Infection (Vaginal)

    MedlinePlus

    Yeast infection (vaginal) Overview A vaginal yeast infection is a fungal infection that causes irritation, discharge and intense itchiness ... symptoms Causes The fungus candida causes a vaginal yeast infection. Your vagina naturally contains a balanced mix of yeast, including ...

  11. Yeast diversity on grapes in two German wine growing regions.

    PubMed

    Brysch-Herzberg, Michael; Seidel, Martin

    2015-12-02

    The yeast diversity on wine grapes in Germany, one of the most northern wine growing regions of the world, was investigated by means of a culture dependent approach. All yeast isolates were identified by sequence analysis of the D1/D2 domain of the 26S rDNA and the ITS region. Besides Hanseniaspora uvarum and Metschnikowia pulcherrima, which are well known to be abundant on grapes, Metschnikowia viticola, Rhodosporidium babjevae, and Curvibasidium pallidicorallinum, as well as two potentially new species related to Sporidiobolus pararoseus and Filobasidium floriforme, turned out to be typical members of the grape yeast community. We found M. viticola in about half of the grape samples in high abundance. Our data strongly suggest that M. viticola is one of the most important fermenting yeast species on grapes in the temperate climate of Germany. The frequent occurrence of Cu. pallidicorallinum and strains related to F. floriforme is a new finding. The current investigation provides information on the distribution of recently described yeast species, some of which are known from a very few strains up to now. Interestingly yeasts known for their role in the wine making process, such as Saccharomyces cerevisiae, Saccharomyces bayanus ssp. uvarum, Torulaspora delbrueckii, and Zygosaccharomyces bailii, were not found in the grape samples. Copyright © 2015. Published by Elsevier B.V.

  12. The m6A methyltransferase Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology in haploid yeast cells.

    PubMed

    Yadav, Pradeep Kumar; Rajasekharan, Ram

    2017-08-18

    N 6 -Methyladenosine (m 6 A) is among the most common modifications in eukaryotic mRNA. The role of yeast m 6 A methyltransferase, Ime4, in meiosis and sporulation in diploid strains is very well studied, but its role in haploid strains has remained unknown. Here, with the help of an immunoblotting strategy and Ime4-GFP protein localization studies, we establish the physiological role of Ime4 in haploid cells. Our data showed that Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology through the long-chain fatty acyl-CoA synthetase Faa1, independently of the RNA methylation complex (MIS complex). The MIS complex consists of the Ime4, Mum2, and Slz1 proteins. Our affinity enrichment strategy (methylated RNA immunoprecipitation assays) using m 6 A polyclonal antibodies coupled with mRNA isolation, quantitative real-time PCR, and standard PCR analyses confirmed the presence of m 6 A-modified FAA1 transcripts in haploid yeast cells. The term "epitranscriptional regulation" encompasses the RNA modification-mediated regulation of genes. Moreover, we demonstrate that the Aft2 transcription factor up-regulates FAA1 expression. Because the m 6 A methylation machinery is fundamentally conserved throughout eukaryotes, our findings will help advance the rapidly emerging field of RNA epitranscriptomics. The metabolic link identified here between m 6 A methylation and triacylglycerol metabolism via the Ime4 protein provides new insights into lipid metabolism and the pathophysiology of lipid-related metabolic disorders, such as obesity. Because the yeast vacuole is an analogue of the mammalian lysosome, our findings pave the way to better understand the role of m 6 A methylation in lysosome-related functions and diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis

    Treesearch

    Thomas W. Jeffries; Igor V. Grigroriev; Jane Grimwood; Jose M. Laplaza; Andrea Aerts; Asaf Salamov; Jeremy Schmutz; Erika Lindquist; Paramvir Dehal; Harris Shapiro; Yong-Su Jin; Volkmar Passoth; Paul M. Richardson

    2007-01-01

    Xylose is a major constituent of plant lignocellulose, and its fermentation is important for the bioconversion of plant biomass to fuels and chemicals. Pichia stipitis is a well-studied, native xylose-fermenting yeast. The mechanism and regulation of xylose metabolism in P. stipitis have been characterized and genes from P. stipitis have been used to engineer xylose...

  14. Divergence of iron metabolism in wild Malaysian yeast.

    PubMed

    Lee, Hana N; Mostovoy, Yulia; Hsu, Tiffany Y; Chang, Amanda H; Brem, Rachel B

    2013-12-09

    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics.

  15. Automated multiplex genome-scale engineering in yeast

    PubMed Central

    Si, Tong; Chao, Ran; Min, Yuhao; Wu, Yuying; Ren, Wen; Zhao, Huimin

    2017-01-01

    Genome-scale engineering is indispensable in understanding and engineering microorganisms, but the current tools are mainly limited to bacterial systems. Here we report an automated platform for multiplex genome-scale engineering in Saccharomyces cerevisiae, an important eukaryotic model and widely used microbial cell factory. Standardized genetic parts encoding overexpression and knockdown mutations of >90% yeast genes are created in a single step from a full-length cDNA library. With the aid of CRISPR-Cas, these genetic parts are iteratively integrated into the repetitive genomic sequences in a modular manner using robotic automation. This system allows functional mapping and multiplex optimization on a genome scale for diverse phenotypes including cellulase expression, isobutanol production, glycerol utilization and acetic acid tolerance, and may greatly accelerate future genome-scale engineering endeavours in yeast. PMID:28469255

  16. Influence of gene dosage and autoregulation of the regulatory genes INO2 and INO4 on inositol/choline-repressible gene transcription in the yeast Saccharomyces cerevisiae.

    PubMed

    Schwank, S; Hoffmann, B; Sch-uller, H J

    1997-06-01

    Expression of structural genes of phospholipid biosynthesis in yeast is mediated by the inositol/choline-responsive element (ICRE). ICRE-dependent gene activation, requiring the regulatory genes INO2 and INO4, is repressed in the presence of the phospholipid precursors inositol and choline. INO2 and, to a less extent, INO4 are positively autoregulated by functional ICRE sequences in the respective upstream regions. However, an INO2 allele devoid of its ICRE functionally complemented an ino2 mutation and completely restored inositol/choline regulation of Ino2p-dependent reporter genes. Low-level expression of INO2 and INO4 genes, each under control of the heterologous MET25 promoter, did not alter the regulatory pattern of target genes. Thus, upstream regions of INO2 and INO4 are not crucial for transcriptional control of ICRE-dependent genes by inositol and choline. Interestingly, over-expression of INO2, but not of INO4, counteracted repression by phospholipid precursors. Possibly, a functional antagonism between INO2 and a negative regulator is the key event responsible for repression or de-repression.

  17. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts.

    PubMed

    Gorter de Vries, Arthur R; Pronk, Jack T; Daran, Jean-Marc G

    2017-06-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyce s strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. Copyright © 2017 Gorter de Vries et al.

  18. Candida davenportii sp. nov., a potential soft-drinks spoilage yeast isolated from a wasp.

    PubMed

    Stratford, M; Bond, C J; James, S A; Roberts, N; Steels, H

    2002-07-01

    During a survey of yeast ecology in a soft-drinks production facility, a dead wasp was removed from the sampling tap of an external sugar-syrup storage tank. A yeast isolated from the dead wasp was found to be similar, although not identical, in its physiological characteristics to Candida lactis-condensi and Candida stellata. Sequence analysis of the 26S rDNA D1/D2 variable domain revealed that this isolate was most closely related to C stellata, but differed sufficiently in its D1/D2 sequence to indicate that it belonged to a separate species. The yeast species has been named Candida davenportii sp. nov.; the type strain is NCYC 3013T (= CBS 9069T). C davenportii sp. nov. was osmotolerant, moderately preservative-resistant and able to grow in very acidic conditions, i.e. pH 14. This yeast grew well in fruit-containing soft drinks, cola-type beverages and a synthetic soft drink and is therefore a potential cause of spoilage of soft drinks and other sugary food products. Other related yeast species in the same taxonomic clade as C davenportii sp. nov. are also osmotolerant, growing in < 50% (w/v) sugar. Many of these species are associated with insects, specifically bees, bumblebees and leafcutter bees, and many have been reported as the causative agent of spoilage of sugary foods, such as condensed milk, fruit juices and concentrates. It is proposed that C davenportii sp. nov. and other closely related yeasts are primarily associated with Aculeates (bees and wasps). In turn, bees and wasps are attracted by sugary residues in foods such as fruit juices and concentrates, forming the source of infection of these yeasts and thus instigating spoilage.

  19. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L

    PubMed Central

    Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  20. Extraction of genomic DNA from yeasts for PCR-based applications.

    PubMed

    Lõoke, Marko; Kristjuhan, Kersti; Kristjuhan, Arnold

    2011-05-01

    We have developed a quick and low-cost genomic DNA extraction protocol from yeast cells for PCR-based applications. This method does not require any enzymes, hazardous chemicals, or extreme temperatures, and is especially powerful for simultaneous analysis of a large number of samples. DNA can be efficiently extracted from different yeast species (Kluyveromyces lactis, Hansenula polymorpha, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris, and Saccharomyces cerevisiae). The protocol involves lysis of yeast colonies or cells from liquid culture in a lithium acetate (LiOAc)-SDS solution and subsequent precipitation of DNA with ethanol. Approximately 100 nanograms of total genomic DNA can be extracted from 1 × 10(7) cells. DNA extracted by this method is suitable for a variety of PCR-based applications (including colony PCR, real-time qPCR, and DNA sequencing) for amplification of DNA fragments of ≤ 3500 bp.

  1. Vicilin-like peptides from Capsicum baccatum L. seeds are α-amylase inhibitors and exhibit antifungal activity against important yeasts in medical mycology.

    PubMed

    Vieira Bard, Gabriela C; Nascimento, Viviane V; Oliveira, Antônia Elenir A; Rodrigues, Rosana; Da Cunha, Maura; Dias, Germana B; Vasconcelos, Ilka M; Carvalho, Andre O; Gomes, Valdirene M

    2014-07-01

    The objective of this study was to isolate antimicrobial peptides from Capsicum baccatum seeds and evaluate their antimicrobial activity and inhibitory effects against α-amylase. Initially, proteins from the flour of C. baccatum seeds were extracted in sodium phosphate buffer, pH 5.4, and precipitated with ammonium sulfate at 90% saturation. The D1 and D2 fractions were subjected to antifungal tests against the yeasts Saccharomyces cerevisiae, Candida albicans, Candida tropicalis, and Kluyveromyces marxiannus, and tested against α-amylases from Callosobruchus maculates and human saliva. The D2 fraction presented higher antimicrobial activity and was subjected to further purification and seven new different fractions (H1-H7) were obtained. Peptides in the H4 fraction were sequenced and the N-terminal sequences revealed homology with previously reported storage vicilins from seeds. The H4 fraction exhibited strong antifungal activity and also promoted morphological changes in yeast, including pseudohyphae formation. All fractions, including H4, inhibited mammalian α-amylase activity but only the H4 fraction was able to inhibit C. maculatus α-amylase activity. These results suggest that the fractions isolated from the seeds of C. baccatum can act directly in plant defenses against pathogens and insects. © 2014 Wiley Periodicals, Inc.

  2. In silico Analysis of 3′-End-Processing Signals in Aspergillus oryzae Using Expressed Sequence Tags and Genomic Sequencing Data

    PubMed Central

    Tanaka, Mizuki; Sakai, Yoshifumi; Yamada, Osamu; Shintani, Takahiro; Gomi, Katsuya

    2011-01-01

    To investigate 3′-end-processing signals in Aspergillus oryzae, we created a nucleotide sequence data set of the 3′-untranslated region (3′ UTR) plus 100 nucleotides (nt) sequence downstream of the poly(A) site using A. oryzae expressed sequence tags and genomic sequencing data. This data set comprised 1065 sequences derived from 1042 unique genes. The average 3′ UTR length in A. oryzae was 241 nt, which is greater than that in yeast but similar to that in plants. The 3′ UTR and 100 nt sequence downstream of the poly(A) site is notably U-rich, while the region located 15–30 nt upstream of the poly(A) site is markedly A-rich. The most frequently found hexanucleotide in this A-rich region is AAUGAA, although this sequence accounts for only 6% of all transcripts. These data suggested that A. oryzae has no highly conserved sequence element equivalent to AAUAAA, a mammalian polyadenylation signal. We identified that putative 3′-end-processing signals in A. oryzae, while less well conserved than those in mammals, comprised four sequence elements: the furthest upstream U-rich element, A-rich sequence, cleavage site, and downstream U-rich element flanking the cleavage site. Although these putative 3′-end-processing signals are similar to those in yeast and plants, some notable differences exist between them. PMID:21586533

  3. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    PubMed

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-06

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  4. Cryptococcus nanyangensis sp. nov., a new basidiomycetous yeast isolated from the gut of wood-boring larvae.

    PubMed

    Hui, Feng-Li; Niu, Qiu-Hong; Ke, Tao; Li, Ying-Xia

    2012-11-01

    Two strains of a novel basidiomycetous yeast species were isolated from the gut of wood-boring larvae collected in the Baotianman Nature Reserve, the central China. Sequence analysis of the D1/D2 domains of the large subunit (LSU) rRNA gene and internal transcribed spacer (ITS) regions showed that these yeasts belong to the Bulleromyces clade and formed a cluster together with eleven undescribed Cryptococcus species. The novel species differed from its closest known species, Cryptococcus rajasthanensis, by 3.3 % divergence (15 substitutions and 6 gaps over 630 bases) in the D1/D2 domains, and by 13.4 % divergence (41 substitutions and 27 gaps over 508 bases) in the ITS regions. Physiologically, the fermentation of glucose, galactose, sucrose, trehalose, and raffinose in Durham tubes was observed for the strains of this new yeast. Based on the phenotypical and molecular characteristics presented, the two strains are proposed as a new species, Cryptococcus nanyangensis sp. nov., with the type strain KCY-1(T) (=CICC 1976(T) = CBS 12474(T)).

  5. Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species.

    PubMed

    Liu, Yanbin; Yap, Sihui Amy; Koh, Chong Mei John; Ji, Lianghui

    2016-11-25

    Red yeast species in the Rhodotorula/Rhodosporidium genus are outstanding producers of triacylglyceride and cell biomass. Metabolic engineering is expected to further enhance the productivity and versatility of these hosts for the production of biobased chemicals and fuels. Promoters with strong activity during oil-accumulation stage are critical tools for metabolic engineering of these oleaginous yeasts. The upstream DNA sequences of 6 genes involved in lipid biosynthesis or accumulation in Rhodotorula toruloides were studied by luciferase reporter assay. The promoter of perilipin/lipid droplet protein 1 gene (LDP1) displayed much stronger activity (4-11 folds) than that of glyceraldehyde-3-phosphate dehydrogenase gene (GPD1), one of the strongest promoters known in yeasts. Depending on the stage of cultivation, promoter of acetyl-CoA carboxylase gene (ACC1) and fatty acid synthase β subunit gene (FAS1) exhibited intermediate strength, displaying 50-160 and 20-90% levels of GPD1 promoter, respectively. Interestingly, introns significantly modulated promoter strength at high frequency. The incorporation of intron 1 and 2 of LDP1 (LDP1in promoter) enhanced its promoter activity by 1.6-3.0 folds. Similarly, the strength of ACC1 promoter was enhanced by 1.5-3.2 folds if containing intron 1. The intron 1 sequences of ACL1 and FAS1 also played significant regulatory roles. When driven by the intronic promoters of ACC1 and LDP1 (ACC1in and LDP1in promoter, respectively), the reporter gene expression were up-regulated by nitrogen starvation, independent of de novo oil biosynthesis and accumulation. As a proof of principle, overexpression of the endogenous acyl-CoA-dependent diacylglycerol acyltransferase 1 gene (DGA1) by LDP1in promoter was significantly more efficient than GPD1 promoter in enhancing lipid accumulation. Intronic sequences play an important role in regulating gene expression in R. toruloides. Three intronic promoters, LDP1in, ACC1in and FAS1in, are

  6. Complete genomic sequences for hepatitis C virus subtypes 4b, 4c, 4d, 4g, 4k, 4l, 4m, 4n, 4o, 4p, 4q, 4r and 4t.

    PubMed

    Li, Chunhua; Lu, Ling; Wu, Xianghong; Wang, Chuanxi; Bennett, Phil; Lu, Teng; Murphy, Donald

    2009-08-01

    In this study, we characterized the full-length genomic sequences of 13 distinct hepatitis C virus (HCV) genotype 4 isolates/subtypes: QC264/4b, QC381/4c, QC382/4d, QC193/4g, QC383/4k, QC274/4l, QC249/4m, QC97/4n, QC93/4o, QC139/4p, QC262/4q, QC384/4r and QC155/4t. These were amplified, using RT-PCR, from the sera of patients now residing in Canada, 11 of which were African immigrants. The resulting genomes varied between 9421 and 9475 nt in length and each contains a single ORF of 9018-9069 nt. The sequences showed nucleotide similarities of 77.3-84.3 % in comparison with subtypes 4a (GenBank accession no. Y11604) and 4f (EF589160) and 70.6-72.8 % in comparison with genotype 1 (M62321/1a, M58335/1b, D14853/1c, and 1?/AJ851228) reference sequences. These similarities were often higher than those currently defined by HCV classification criteria for subtype (75.0-80.0 %) and genotype (67.0-70.0 %) division, respectively. Further analyses of the complete and partial E1 and partial NS5B sequences confirmed these 13 'provisionally assigned subtypes'.

  7. Survival of yeast spores in hypervelocity impact events up to velocities of 7.4 km s-1

    NASA Astrophysics Data System (ADS)

    Price, M. C.; Solscheid, C.; Burchell, M. J.; Josse, L.; Adamek, N.; Cole, M. J.

    2013-01-01

    We report on the survivability in hypervelocity impacts of yeast in spore form, and as mature cultures, at impact velocities from 1 to 7.4 km s-1, corresponding to an estimated peak shock pressure of ˜43 GPa. Spores from a yeast strain (BY4743), deficient in an enzyme required for uracil production, were fired into water (to simulate oceanic impact from space) using a light gas gun. The water was then retrieved and filtered and the resulting retentate and filtrate cultured to determine viability and survival rates of remnant spores. Yeast growth (confirmed as coming from the original sample as it had the same enzyme deficiency) was found in recovered samples at all impact speeds, albeit in smaller quantities at the higher speeds. The survival probabilities were measured as ˜50% at 1 km s-1, falling to ˜10-3% at 7.4 km s-1. This follows the pattern observed in previous work on survival of microbial life and spores exposed to extreme shock loading, where there is reasonable survival at low peak shock pressures with more severe lethality above a critical shock pressure at the GPa scale (here between 2 and 10 GPa). These results are explained in the context of a general model for survival against extreme shock and are relevant to the hypotheses of panspermia and litho-panspermia, showing that extreme shocks during transfer across space are not necessarily sterilising.

  8. Spores of the mycorrhizal fungus Glomus mosseae host yeasts that solubilize phosphate and accumulate polyphosphates.

    PubMed

    Mirabal Alonso, Loreli; Kleiner, Diethelm; Ortega, Eduardo

    2008-04-01

    The present paper reports the presence of bacteria and yeasts tightly associated with spores of an isolate of Glomus mosseae. Healthy spores were surface disinfected by combining chloramine-T 5%, Tween-40, and cephalexin 2.5 g L(-1) (CTCf). Macerates of these spores were incubated on agar media, microorganisms were isolated, and two yeasts were characterized (EndoGm1, EndoGm11). Both yeasts were able to solubilize low-soluble P sources (Ca and Fe phosphates) and accumulate polyphosphates (polyPs). Sequence analysis of 18S ribosomal deoxyribonucleic acid showed that the yeasts belong to the genera Rhodotorula or Rhodosporidium (EndoGm1) and Cryptococcus (EndoGm11). Results from inoculation experiments showed an effect of the spore-associated yeasts on the root growth of rice, suggesting potential tripartite interactions with mycorrhizal fungi and plants.

  9. Metabolic reconstruction and flux analysis of industrial Pichia yeasts.

    PubMed

    Chung, Bevan Kai-Sheng; Lakshmanan, Meiyappan; Klement, Maximilian; Ching, Chi Bun; Lee, Dong-Yup

    2013-03-01

    Pichia yeasts have been recognized as important microbial cell factories in the biotechnological industry. Notably, the Pichia pastoris and Pichia stipitis species have attracted much research interest due to their unique cellular physiology and metabolic capability: P. pastoris has the ability to utilize methanol for cell growth and recombinant protein production, while P. stipitis is capable of assimilating xylose to produce ethanol under oxygen-limited conditions. To harness these characteristics for biotechnological applications, it is highly required to characterize their metabolic behavior. Recently, following the genome sequencing of these two Pichia species, genome-scale metabolic networks have been reconstructed to model the yeasts' metabolism from a systems perspective. To date, there are three genome-scale models available for each of P. pastoris and P. stipitis. In this mini-review, we provide an overview of the models, discuss certain limitations of previous studies, and propose potential future works that can be conducted to better understand and engineer Pichia yeasts for industrial applications.

  10. Construction of a laccase chimerical gene: recombinant protein characterization and gene expression via yeast surface display.

    PubMed

    Bleve, G; Lezzi, C; Spagnolo, S; Rampino, P; Perrotta, C; Mita, G; Grieco, Francesco

    2014-03-01

    The ERY4 laccase gene from Pleurotus eryngii was expressed in Saccharomyces cerevisiae and the recombinant laccase resulted to be not biologically active. This gene was thus modified to obtain chimerical enzymes derived from the substitution of N-, C- and both N- and C-terminal regions with the corresponding regions of Ery3 laccase, another laccase isoform of P. eryngii. The chimerical isoform named 4NC3, derived from the substitution of both N- and C-terminal regions, showed the best performances in terms of enzymatic activities, affinities for different substrates and stability at a broad range of temperatures and pHs. The chimerical 4NC3 laccase isoform was displayed on the cell surface of S. cerevisiae using the N-terminal fusion with either the Pir2 or the Flo1 S. cerevisiae proteins as anchor attachment sequence. Immunofluorescence microscopy and Western blot analyses confirmed the localization of 4NC3 on the yeast cell surface. The enzyme activity on specific laccase substrates revealed that 4NC3 laccase was immobilized in active form on the cell surface. To our knowledge, this is the first example of expression of a chimerical fungal laccase by yeast cell display.

  11. Structural Fine-Tuning of MIT-Interacting Motif 2 (MIM2) and Allosteric Regulation of ESCRT-III by Vps4 in Yeast.

    PubMed

    Kojima, Rieko; Obita, Takayuki; Onoue, Kousuke; Mizuguchi, Mineyuki

    2016-06-05

    The endosomal sorting complex required for transport (ESCRT) facilitates roles in membrane remodeling, such as multivesicular body biogenesis, enveloped virus budding and cell division. In yeast, Vps4 plays a crucial role in intraluminal vesicle formation by disassembling ESCRT proteins. Vps4 is recruited by ESCRT-III proteins to the endosomal membrane through the interaction between the microtubule interacting and trafficking (MIT) domain of Vps4 and the C-terminal MIT-interacting motif (MIM) of ESCRT-III proteins. Here, we have determined the crystal structure of Vps4-MIT in a complex with Vps20, a member of ESCRT-III, and revealed that Vps20 adopts a unique MIM2 conformation. Based on structural comparisons with other known MIM2s, we have refined the consensus sequence of MIM2. We have shown that another ESCRT-III protein, Ist1, binds to Vps4-MIT via its C-terminal MIM1 with higher affinity than Vps2, but lacks MIM2 by surface plasmon resonance. Surprisingly, the Ist1 MIM1 competed with the MIM2 of Vfa1, a regulator of Vps4, for binding to Vps4-MIT, even though these MIMs bind in non-overlapping sites on the MIT. These findings provide insight into the allosteric recognition of MIMs of ESCRT-III by Vps4 and also the regulation of ESCRT machinery at the last step of membrane remodeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Electron transport chain in a thermotolerant yeast.

    PubMed

    Mejía-Barajas, Jorge A; Martínez-Mora, José A; Salgado-Garciglia, Rafael; Noriega-Cisneros, Ruth; Ortiz-Avila, Omar; Cortés-Rojo, Christian; Saavedra-Molina, Alfredo

    2017-04-01

    Yeasts capable of growing and surviving at high temperatures are regarded as thermotolerant. For appropriate functioning of cellular processes and cell survival, the maintenance of an optimal redox state is critical of reducing and oxidizing species. We studied mitochondrial functions of the thermotolerant Kluyveromyces marxianus SLP1 and the mesophilic OFF1 yeasts, through the evaluation of its mitochondrial membrane potential (ΔΨ m ), ATPase activity, electron transport chain (ETC) activities, alternative oxidase activity, lipid peroxidation. Mitochondrial membrane potential and the cytoplasmic free Ca 2+ ions (Ca 2+ cyt) increased in the SLP1 yeast when exposed to high temperature, compared with the mesophilic yeast OFF1. ATPase activity in the mesophilic yeast diminished 80% when exposed to 40° while the thermotolerant SLP1 showed no change, despite an increase in the mitochondrial lipid peroxidation. The SLP1 thermotolerant yeast exposed to high temperature showed a diminution of 33% of the oxygen consumption in state 4. The uncoupled state 3 of oxygen consumption did not change in the mesophilic yeast when it had an increase of temperature, whereas in the thermotolerant SLP1 yeast resulted in an increase of 2.5 times when yeast were grown at 30 o , while a decrease of 51% was observed when it was exposed to high temperature. The activities of the ETC complexes were diminished in the SLP1 when exposed to high temperature, but also it was distinguished an alternative oxidase activity. Our results suggest that the mitochondria state, particularly ETC state, is an important characteristic of the thermotolerance of the SLP1 yeast strain.

  13. Candida ficus sp. nov., a novel yeast species from the gut of Apriona germari larvae.

    PubMed

    Hui, Feng-Li; Niu, Qiu-Hong; Ke, Tao; Liu, Zheng

    2012-11-01

    A novel yeast species is described based on three strains from the gut of wood-boring larvae collected in a tree trunk of Ficus carica cultivated in parks near Nanyang, central China. Phylogenetic analysis based on sequences of the D1/D2 domains of the large subunit rRNA gene showed that these strains occurred in a separate clade that was genetically distinct from all known ascomycetous yeasts. In terms of pairwise sequence divergence, the novel strains differed by 15.3% divergence from the type strain of Pichia terricola, and by 15.8% divergence from the type strains of Pichia exigua and Candida rugopelliculosa in the D1/D2 domains. All three are ascomycetous yeasts in the Pichia clade. Unlike P. terricola, P. exigua and C. rugopelliculosa, the novel isolates did not ferment glucose. The name Candida ficus sp. nov. is proposed to accommodate these highly divergent organisms, with STN-8(T) (=CICC 1980(T)=CBS 12638(T)) as the type strain.

  14. Epidemiology and antifungal susceptibilities of yeast isolates causing invasive infections across urban Beijing, China.

    PubMed

    Guo, Li-Na; Xiao, Meng; Cao, Bin; Qu, Fen; Zhan, Yu-Liang; Hu, Yun-Jian; Wang, Xin-Ru; Liang, Guo-Wei; Gu, Hai-Tong; Qi, Jun; Yuan, Hui; Min, Rong; Wang, Fei-Yan; Liu, Lin-Juan; Wang, Hai-Bin; Jiang, Wei; Duan, Xue-Guang; Xu, Wen-Jian; Yu, Yan-Hua; Su, Jian-Rong; Zhang, Jian-Zhong; Nong, Jin-Qing; Liu, Shu-Mei; Li, Jun; Liu, Jun-Ting; Yue, Zhi-Gang; Yang, Duo; Guo, Jie; Zhao, Rui; Zhang, Ya-Nan; Yang, Xi-Ming; Liu, Xiao-Qing; Hsueh, Po-Ren; Xu, Ying-Chun

    2017-09-01

    To investigate the species distribution and antifungal susceptibility profiles of yeast isolates causing invasive infections across Beijing. A total of 1201 yeast isolates recovered from blood and other sterile body fluids were correctly identified by matrix-assisted laser desorption/ionization TOF MS supplemented by DNA sequencing. Antifungal susceptibility testing was performed according to the Clinical and Laboratory Standards Institute broth microdilution method. Candida (95.5%) remained the most common yeast species isolated; Candida albicans (38.8%) and Candida parapsilosis (22.6%) were the leading species of candidemia. Azole resistances were mainly observed in Candida glabrata and Candida tropicalis isolates. This study outlined the epidemiologic data of invasive yeast infections and highlighted the need for continuous monitoring of azole resistances among C. glabrata and C. tropicalis isolates in Beijing.

  15. Construction of the yeast whole-cell Rhizopus oryzae lipase biocatalyst with high activity.

    PubMed

    Chen, Mei-ling; Guo, Qin; Wang, Rui-zhi; Xu, Juan; Zhou, Chen-wei; Ruan, Hui; He, Guo-qing

    2011-07-01

    Surface display is effectively utilized to construct a whole-cell biocatalyst. Codon optimization has been proven to be effective in maximizing production of heterologous proteins in yeast. Here, the cDNA sequence of Rhizopus oryzae lipase (ROL) was optimized and synthesized according to the codon bias of Saccharomyces cerevisiae, and based on the Saccharomyces cerevisiae cell surface display system with α-agglutinin as an anchor, recombinant yeast displaying fully codon-optimized ROL with high activity was successfully constructed. Compared with the wild-type ROL-displaying yeast, the activity of the codon-optimized ROL yeast whole-cell biocatalyst (25 U/g dried cells) was 12.8-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate (pNPP) as the substrate. To our knowledge, this was the first attempt to combine the techniques of yeast surface display and codon optimization for whole-cell biocatalyst construction. Consequently, the yeast whole-cell ROL biocatalyst was constructed with high activity. The optimum pH and temperature for the yeast whole-cell ROL biocatalyst were pH 7.0 and 40 °C. Furthermore, this whole-cell biocatalyst was applied to the hydrolysis of tributyrin and the resulted conversion of butyric acid reached 96.91% after 144 h.

  16. The transcriptome of Candida albicans mitochondria and the evolution of organellar transcription units in yeasts.

    PubMed

    Kolondra, Adam; Labedzka-Dmoch, Karolina; Wenda, Joanna M; Drzewicka, Katarzyna; Golik, Pawel

    2015-10-21

    Yeasts show remarkable variation in the organization of their mitochondrial genomes, yet there is little experimental data on organellar gene expression outside few model species. Candida albicans is interesting as a human pathogen, and as a representative of a clade that is distant from the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Unlike them, it encodes seven Complex I subunits in its mtDNA. No experimental data regarding organellar expression were available prior to this study. We used high-throughput RNA sequencing and traditional RNA biology techniques to study the mitochondrial transcriptome of C. albicans strains BWP17 and SN148. The 14 protein-coding genes, two ribosomal RNA genes, and 24 tRNA genes are expressed as eight primary polycistronic transcription units. We also found transcriptional activity in the noncoding regions, and antisense transcripts that could be a part of a regulatory mechanism. The promoter sequence is a variant of the nonanucleotide identified in other yeast mtDNAs, but some of the active promoters show significant departures from the consensus. The primary transcripts are processed by a tRNA punctuation mechanism into the monocistronic and bicistronic mature RNAs. The steady state levels of various mature transcripts exhibit large differences that are a result of posttranscriptional regulation. Transcriptome analysis allowed to precisely annotate the positions of introns in the RNL (2), COB (2) and COX1 (4) genes, as well as to refine the annotation of tRNAs and rRNAs. Comparative study of the mitochondrial genome organization in various Candida species indicates that they undergo shuffling in blocks usually containing 2-3 genes, and that their arrangement in primary transcripts is not conserved. tRNA genes with their associated promoters, as well as GC-rich sequence elements play an important role in these evolutionary events. The main evolutionary force shaping the mitochondrial genomes of yeasts is the

  17. Dimorphic cycle in Candida citri sp. nov., a novel yeast species isolated from rotting fruit in Borneo.

    PubMed

    Sipiczki, Matthias

    2011-03-01

    Five dimorphic yeast strains were isolated from rotting lime fruits in Borneo. The sequences of the D1/D2 domains of the 26S rRNA genes, the internal transcribed spacer (ITS) chromosomal regions and the 18S rRNA genes were identical in the isolates and differed from the corresponding sequences of all known yeast species. Based on the sequence differences (12-15% in the D1/D2 domain) from the closest relatives and the different pattern of taxonomic traits, the new isolates are assigned the status of a new species, for which the name Candida citri sp. nov. is proposed. Its type strain is 11-469(T) , which has been deposited in Centralbureau voor Schimmelcultures (Utrecht, the Netherlands) as CBS 11858(T) , Culture Collection of Yeasts (Bratislava, Slovakia) as CCY 29-181-1(T) and the National Collection of Agricultural and Industrial Microorganisms (Budapest, Hungary) as NCAIM Y.01978(T) . MycoBank number: MB 519100. The GenBank accession numbers for nucleotide sequences of its D1/D2 domain, ITS and 18S regions are HM803241, HM803242 and HM803243, respectively. Candida citri produces invasive mycelium composed of true septate hyphae that grow towards nutrient-rich parts of the medium and develop large vacuoles at the nongrowing ends of their cells. The hyphae produce blastoconidia, which can establish satellite yeast colonies in the invaded solid substrate. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector

    NASA Technical Reports Server (NTRS)

    Ludwig, D. L.; Bruschi, C. V.

    1991-01-01

    The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.

  19. Comparison of Nested PCR and RFLP for Identification and Classification of Malassezia Yeasts from Healthy Human Skin

    PubMed Central

    Oh, Byung Ho; Song, Young Chan; Choe, Yong Beom; Ahn, Kyu Joong

    2009-01-01

    Background Malassezia yeasts are normal flora of the skin found in 75~98% of healthy subjects. The accurate identification of the Malassezia species is important for determining the pathogenesis of the Malassezia yeasts with regard to various skin diseases such as Malassezia folliculitis, seborrheic dermatitis, and atopic dermatitis. Objective This research was conducted to determine a more accurate and rapid molecular test for the identification and classification of Malassezia yeasts. Methods We compared the accuracy and efficacy of restriction fragment length polymorphism (RFLP) and the nested polymerase chain reaction (PCR) for the identification of Malassezia yeasts. Results Although both methods demonstrated rapid and reliable results with regard to identification, the nested PCR method was faster. However, 7 different Malassezia species (1.2%) were identified by the nested PCR compared to the RFLP method. Conclusion Our results show that RFLP method was relatively more accurate and reliable for the detection of various Malassezia species compared to the nested PCR. But, in the aspect of simplicity and time saving, the latter method has its own advantages. In addition, the 26S rDNA, which was targeted in this study, contains highly conserved base sequences and enough sequence variation for inter-species identification of Malassezia yeasts. PMID:20523823

  20. Isolation and expression of a gene (CGR1) regulated during the yeast-hyphal transition in Candida albicans.

    PubMed

    Cho, T; Sudoh, M; Tanaka, T; Nakashima, Y; Chibana, H; Kaminishi, H

    2001-01-26

    We used RNA fingerprinting of arbitrarily primed PCR to isolate genes upregulated during the yeast-hyphal transition in Candida albicans. The sequence and expression of one of these genes (CGR1, Candida growth regulation) are presented. Our results suggest that CGR1 expression is associated with a growth cessation of yeast cells, a prerequisite for germination in this organism.

  1. Mutations on the DNA Binding Surface of TBP Discriminate between Yeast TATA and TATA-Less Gene Transcription

    PubMed Central

    Kamenova, Ivanka; Warfield, Linda

    2014-01-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription. PMID:24865972

  2. Mutations on the DNA binding surface of TBP discriminate between yeast TATA and TATA-less gene transcription.

    PubMed

    Kamenova, Ivanka; Warfield, Linda; Hahn, Steven

    2014-08-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. [Yeast colonization of urinary catheters and the significance of biofilm formation].

    PubMed

    Růžička, Filip; Holá, Veronika; Mahelová, Martina; Procházková, Alena

    2012-08-01

    Urinary catheters are colonized by a wide range of microorganisms, including numerous yeasts. The catheters are usually colonized by more microbial species forming a community - multispecies biofilm. Catheter colonization usually does not affect the patient's clinical status in any significant way. On the other hand, the biofilm can become a source of endogenous infection and its presence can affect functionality of the catheter and formation of urinary stones. Material a A total of 721 urinary catheters were studied. Microorganisms were released from catheters by sonication and subsequently cultured. Their identification was performed with the use of common phenotypic tests, as well as using MALDI TOF. Yeasts whose identification was ambiguous were recognized by sequencing. Biofilm formation was assessed by growth in a microtiter plate. Yeast colonization was proved in 244 urinary catheters. However, a total of 274 yeast strains were isolated. Most of them occurred together with other yeast species and/or bacteria on the catheters, producing multispecies biofilm there. The most frequent species was Candida albicans (a total of 144 isolated strains), followed by Candida glabrata (41), Candida tropicalis (41) and Candida parapsilosis sensu stricto (14). Other isolated species were as follows: Candida kefyr (10), Candida krusei (9), Candida fabianii (6), Candida lusitaniae (5), Candida dubliniensis (3) and Saccharomyces cerevisiae (one case). Most of the yeasts rather readily formed a firmly adhering biofilm layer on artificial surfaces.

  4. Yeast communities associated with artisanal mezcal fermentations from Agave salmiana.

    PubMed

    Verdugo Valdez, A; Segura Garcia, L; Kirchmayr, M; Ramírez Rodríguez, P; González Esquinca, A; Coria, R; Gschaedler Mathis, A

    2011-11-01

    The aims of this work were to characterize the fermentation process of mezcal from San Luis Potosi, México and identify the yeasts present in the fermentation using molecular culture-dependent methods (RFLP of the 5.8S-ITS and sequencing of the D1/D2 domain) and also by using a culture-independent method (DGGE). The alcoholic fermentations of two separate musts obtained from Agave salmiana were analyzed. Sugar, ethanol and major volatile compounds concentrations were higher in the first fermentation, which shows the importance of having a quality standard for raw materials, particularly in the concentration of fructans, in order to produce fermented Agave salmiana must with similar characteristics. One hundred ninety-two (192) different yeast colonies were identified, from those present on WL agar plates, by RFLP analysis of the ITS1-5.8S- ITS2 from the rRNA gene, with restriction endonucleases, HhaI, HaeIII and HinfI. The identified yeasts were: Saccharomyces cerevisiae, Kluyveromyces marxianus, Pichia kluyveri, Zygosaccharomyces bailii, Clavispora lusitaniae, Torulaspora delbrueckii, Candida ethanolica and Saccharomyces exiguus. These identifications were confirmed by sequencing the D1-D2 region of the 26S rRNA gene. With the PCR-DGGE method, bands corresponding to S. cerevisiae, K. marxianus and T. delbrueckii were clearly detected, confirming the results obtained with classic techniques.

  5. Self-fertilization is the main sexual reproduction mechanism in native wine yeast populations.

    PubMed

    Cubillos, Francisco A; Vásquez, Claudia; Faugeron, Sylvain; Ganga, Angélica; Martínez, Claudio

    2009-01-01

    Saccharomyces cerevisiae is a model eukaryotic organism for classical genetics and genomics, and yet its ecology is still largely unknown. In this work, a population genetic analysis was performed on five yeast populations isolated from wine-making areas with different enological practices using simple sequence repeats and restriction fragment length polymorphism of mitochondrial DNA as molecular markers on 292 strains. In accordance with other studies, genome size estimation suggests that native S. cerevisiae strains are mainly homothallic and diploids. Analysis of mtDNA data showed that yeast populations from nonindustrial areas have 40% higher genetic diversity than populations isolated from industrial areas, demonstrating that industrial enological practices are likely to affect native yeast populations negatively by reducing its biodiversity. On the other hand, genetic differentiation analysis based on their microsatellite showed no correlation between genetic and geographic distance and a nonsignificant value when a Mantel test was applied. Finally, in the five populations studied, positive inbreeding (F(is)) values from 0.4 to 0.75, a low but significant level of linkage disequilibrium and a high number of multilocus genotypes were detected. These results strongly advocate that sexual reproduction is frequent enough to erase clonal signature in natural populations and that self-fertilization is the main mating system.

  6. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates.

    PubMed

    Liang, Xinjin; Csetenyi, Laszlo; Gadd, Geoffrey Michael

    2016-06-01

    In this research, we have demonstrated the ability of several yeast species to mediate U(VI) biomineralization through uranium phosphate biomineral formation when utilizing an organic source of phosphorus (glycerol 2-phosphate disodium salt hydrate (C3H7Na2O6P·xH2O (G2P)) or phytic acid sodium salt hydrate (C6H18O24P6·xNa(+)·yH2O (PyA))) in the presence of soluble UO2(NO3)2. The formation of meta-ankoleite (K2(UO2)2(PO4)2·6(H2O)), chernikovite ((H3O)2(UO2)2(PO4)2·6(H2O)), bassetite (Fe(++)(UO2)2(PO4)2·8(H2O)), and uramphite ((NH4)(UO2)(PO4)·3(H2O)) on cell surfaces was confirmed by X-ray diffraction in yeasts grown in a defined liquid medium amended with uranium and an organic phosphorus source, as well as in yeasts pre-grown in organic phosphorus-containing media and then subsequently exposed to UO2(NO3)2. The resulting minerals depended on the yeast species as well as physico-chemical conditions. The results obtained in this study demonstrate that phosphatase-mediated uranium biomineralization can occur in yeasts supplied with an organic phosphate substrate as sole source of phosphorus. Further understanding of yeast interactions with uranium may be relevant to development of potential treatment methods for uranium waste and utilization of organic phosphate sources and for prediction of microbial impacts on the fate of uranium in the environment.

  7. Ends-in Vs. Ends-Out Recombination in Yeast

    PubMed Central

    Hastings, P. J.; McGill, C.; Shafer, B.; Strathern, J. N.

    1993-01-01

    Integration of linearized plasmids into yeast chromosomes has been used as a model system for the study of recombination initiated by double-strand breaks. The linearized plasmid DNA recombines efficiently into sequences homologous to the ends of the DNA. This efficient recombination occurs both for the configuration in which the break is in a contiguous region of homology (herein called the ends-in configuration) and for ``omega'' insertions in which plasmid sequences interrupt a linear region of homology (herein called the ends-out configuration). The requirements for integration of these two configurations are expected to be different. We compared these two processes in a yeast strain containing an ends-in target and an ends-out target for the same cut plasmid. Recovery of ends-in events exceeds ends-out events by two- to threefold. Possible causes for the origin of this small bias are discussed. The lack of an extreme difference in frequency implies that cooperativity between the two ends does not contribute to the efficiency with which cut circular plasmids are integrated. This may also be true for the repair of chromosomal double-strand breaks. PMID:8307337

  8. Divergence of Iron Metabolism in Wild Malaysian Yeast

    PubMed Central

    Lee, Hana N.; Mostovoy, Yulia; Hsu, Tiffany Y.; Chang, Amanda H.; Brem, Rachel B.

    2013-01-01

    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics. PMID:24142925

  9. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1 {yields} S transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay

    2011-07-01

    Highlights: {yields} TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. {yields} TCP4 expression in yeast retards cell division by blocking G1 {yields} S transition. {yields} Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, theirmore » exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 {yields} S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 {yields} S arrest is discussed.« less

  10. South Brazilian wines: culturable yeasts associated to bottled wines produced in Rio Grande do Sul and Santa Catarina.

    PubMed

    Ramírez-Castrillón, Mauricio; Mendes, Sandra Denise Camargo; Valente, Patricia

    2017-04-01

    A comprehensive understanding of the presence and role of yeasts in bottled wines helps to know and control the organoleptic quality of the final product. The South Region of Brazil is an important wine producer, and the state of "Rio Grande do Sul" (RS) accounts for 90% of Brazilian wines. The state of "Santa Catarina" (SC) started the production in 1975, and is currently the fifth Brazilian producer. As there is little information about yeasts present in Brazilian wines, our main objective was to assess the composition of culturable yeasts associated to bottled wines produced in RS and SC, South of Brazil. We sampled 20 RS and 29 SC bottled wines produced between 2003 and 2011, and we isolated culturable yeasts in non-selective agar plates. We identified all isolates by sequencing of the D1/D2 domain of LSU rDNA or ITS1-5.8 S-ITS2 region, and comparison with type strain sequences deposited in GenBank database. Six yeast species were shared in the final product in both regions. We obtained two spoilage yeast profiles: RS with Zygosaccharomyces bailii and Pichia membranifaciens (Dekkera bruxellensis was found only in specific table wines); and SC with Dekkera bruxellensis and Pichia manshurica. Knowledge concerning the different spoilage profiles is important for winemaking practices in both regions.

  11. The AWA1 Gene Is Required for the Foam-Forming Phenotype and Cell Surface Hydrophobicity of Sake Yeast

    PubMed Central

    Shimoi, Hitoshi; Sakamoto, Kazutoshi; Okuda, Masaki; Atthi, Ratchanee; Iwashita, Kazuhiro; Ito, Kiyoshi

    2002-01-01

    Sake, a traditional alcoholic beverage in Japan, is brewed with sake yeasts, which are classified as Saccharomyces cerevisiae. Almost all sake yeasts form a thick foam layer on sake mash during the fermentation process because of their cell surface hydrophobicity, which increases the cells' affinity for bubbles. To reduce the amount of foam, nonfoaming mutants were bred from foaming sake yeasts. Nonfoaming mutants have hydrophilic cell surfaces and no affinity for bubbles. We have cloned a gene from a foam-forming sake yeast that confers foaming ability to a nonfoaming mutant. This gene was named AWA1 and structures of the gene and its product were analyzed. The N- and C-terminal regions of Awa1p have the characteristic sequences of a glycosylphosphatidylinositol anchor protein. The entire protein is rich in serine and threonine residues and has a lot of repetitive sequences. These results suggest that Awa1p is localized in the cell wall. This was confirmed by immunofluorescence microscopy and Western blotting analysis using hemagglutinin-tagged Awa1p. Moreover, an awa1 disruptant of sake yeast was hydrophilic and showed a nonfoaming phenotype in sake mash. We conclude that Awa1p is a cell wall protein and is required for the foam-forming phenotype and the cell surface hydrophobicity of sake yeast. PMID:11916725

  12. Candida pruni sp. nov. is a new yeast species with antagonistic potential against brown rot of peaches.

    PubMed

    Zhang, Dian-peng; Lu, Cai-ge; Zhang, Tao-tao; Spadaro, Davide; Liu, De-wen; Liu, Wei-cheng

    2014-07-01

    Brown rot caused by Monilinia spp. is among the most important postharvest diseases of commercially grown stone fruits, and application of antagonistic yeasts to control brown rot is one promising strategy alternative to chemical fungicides. In this research, new yeast strains were isolated and tested for their activity against peach brown rot caused by Monilinia fructicola. Three yeast strains were originally isolated from the surface of plums (cv Chinese Angelino) collected in the north of China. In artificially wounded inoculation tests, the yeast reduced the brown rot incidence to 20 %. The population of the yeast within inoculated wounds on peaches significantly increased at 25 °C from an initial level of 5.0×10(6) to 4.45×10(7) CFU per wound after 1 day. The antagonistic strains were belonging to a new species of the genus Candida by sequence comparisons of 26 S rDNA D1/D2 domain and internal transcribed spacer region. The strains are most closely related to C. asparagi, C. musae and C. fructus on the basis of the phylogenetic trees based on the D1/D2 region of 26S rDNA. However, the strains are notably different from C. asparagi, C. musae and C. fructus, in morphological and physiological characteristics. Therefore, the name Candida pruni is proposed for the novel species, with sp-Quan (=CBS12814T=KCTC 27526T=GCMC 6582T) as the type strain. Our study showed that Candida pruni is a novel yeast species with potential biocontrol against brown rot caused by M. fructicola on peaches.

  13. Two new anamorphic yeasts species, Cyberlindnera samutprakarnensis sp. nov. and Candida thasaenensis sp. nov., isolated from industrial wastes in Thailand.

    PubMed

    Poomtien, Jamroonsri; Jindamorakot, Sasitorn; Limtong, Savitree; Pinphanichakarn, Pairoh; Thaniyavarn, Jiraporn

    2013-01-01

    Three yeast strains were isolated from industrial wastes in Thailand. Based on the phylogenetic sequence analysis of the D1/D2 region of the large subunit rRNA gene, the internal transcribed spacer (ITS1-5.8S rRNA gene-ITS2; ITS1-2) region, and their physiological characteristics, the three strains were found to represent two novel species of the ascomycetous anamorphic yeast. Strain JP52(T) represent a novel species which was named Cyberlindnera samutprakarnensis sp. nov. (type strain JP52(T); = BCC 46825(T) = JCM 17816(T) = CBS 12528(T), MycoBank no. MB800879), which was differentiated from the closely related species Cyberlindnera mengyuniae CBS 10845(T) by 2.9 % sequence divergence in the D1/D2 region and 4.4 % sequence divergence in the ITS1-2. Strain JP59(T) and JP60 were identical in their D1/D2 and ITS1-2 regions, which were closely related to those of Scheffersomyces spartinae CBS 6059(T) by 0.9 and 1.0 % sequence divergence, respectively. In addition, supportive evidence of actin gene and translational elongation factor gene by sequence divergence of 6.5 % each confirmed their distinct status. Furthermore, JP59(T) and JP60 differentiated from the closely related species in some biochemical and physiological characteristics. These two strains were assigned as a single novel species which was named Candida thasaenensis sp. nov. (type JP59(T) = BCC 46828(T) = JCM 17817(T) = CBS 12529(T), MycoBank no. MB800880).

  14. Isolation and characterization of yeasts capable of efficient utilization of hemicellulosic hydrolyzate as the carbon source.

    PubMed

    Cassa-Barbosa, L A; Procópio, R E L; Matos, I T S R; Filho, S A

    2015-09-28

    Few yeasts have shown the potential to efficiently utilize hemicellulosic hydrolyzate as the carbon source. In this study, microorganisms isolated from the Manaus region in Amazonas, Brazil, were characterized based on their utilization of the pentoses, xylose, and arabinose. The yeasts that showed a potential to assimilate these sugars were selected for the better utilization of lignocellulosic biomass. Two hundred and thirty seven colonies of unicellular microorganisms grown on hemicellulosic hydrolyzate, xylose, arabinose, and yeast nitrogen base selective medium were analyzed. Of these, 231 colonies were subjected to sugar assimilation tests. One hundred and twenty five of these were shown to utilize hydrolyzed hemicellulose, xylose, or arabinose as the carbon source for growth. The colonies that showed the best growth (N = 57) were selected, and their internal transcribed spacer-5.8S rDNA was sequenced. The sequenced strains formed four distinct groups in the phylogenetic tree, and showed a high percentage of similarity with Meyerozyma caribbica, Meyerozyma guilliermondii, Trichosporon mycotoxinivorans, Trichosporon loubieri, Pichia kudriavzevii, Candida lignohabitans, and Candida ethanolica. The discovery of these xylose-fermenting yeasts could attract widespread interest, as these can be used in the cost-effective production of liquid fuel from lignocellulosic materials.

  15. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications.

    PubMed

    Chi, Zhenming; Chi, Zhe; Zhang, Tong; Liu, Guanglei; Li, Jing; Wang, Xianghong

    2009-01-01

    In this review article, the extracellular enzymes production, their properties and cloning of the genes encoding the enzymes from marine yeasts are overviewed. Several yeast strains which could produce different kinds of extracellular enzymes were selected from the culture collection of marine yeasts available in this laboratory. The strains selected belong to different genera such as Yarrowia, Aureobasidium, Pichia, Metschnikowia and Cryptococcus. The extracellular enzymes include cellulase, alkaline protease, aspartic protease, amylase, inulinase, lipase and phytase, as well as killer toxin. The conditions and media for the enzyme production by the marine yeasts have been optimized and the enzymes have been purified and characterized. Some genes encoding the extracellular enzymes from the marine yeast strains have been cloned, sequenced and expressed. It was found that some properties of the enzymes from the marine yeasts are unique compared to those of the homologous enzymes from terrestrial yeasts and the genes encoding the enzymes in marine yeasts are different from those in terrestrial yeasts. Therefore, it is of very importance to further study the enzymes and their genes from the marine yeasts. This is the first review on the extracellular enzymes and their genes from the marine yeasts.

  16. Structure, replication efficiency and fragility of yeast ARS elements.

    PubMed

    Dhar, Manoj K; Sehgal, Shelly; Kaul, Sanjana

    2012-05-01

    DNA replication in eukaryotes initiates at specific sites known as origins of replication, or replicators. These replication origins occur throughout the genome, though the propensity of their occurrence depends on the type of organism. In eukaryotes, zones of initiation of replication spanning from about 100 to 50,000 base pairs have been reported. The characteristics of eukaryotic replication origins are best understood in the budding yeast Saccharomyces cerevisiae, where some autonomously replicating sequences, or ARS elements, confer origin activity. ARS elements are short DNA sequences of a few hundred base pairs, identified by their efficiency at initiating a replication event when cloned in a plasmid. ARS elements, although structurally diverse, maintain a basic structure composed of three domains, A, B and C. Domain A is comprised of a consensus sequence designated ACS (ARS consensus sequence), while the B domain has the DNA unwinding element and the C domain is important for DNA-protein interactions. Although there are ∼400 ARS elements in the yeast genome, not all of them are active origins of replication. Different groups within the genus Saccharomyces have ARS elements as components of replication origin. The present paper provides a comprehensive review of various aspects of ARSs, starting from their structural conservation to sequence thermodynamics. All significant and conserved functional sequence motifs within different types of ARS elements have been extensively described. Issues like silencing at ARSs, their inherent fragility and factors governing their replication efficiency have also been addressed. Progress in understanding crucial components associated with the replication machinery and timing at these ARS elements is discussed in the section entitled "The replicon revisited". Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    PubMed Central

    Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.

    2012-01-01

    Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’, facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop. PMID:22860093

  18. Regulation of the yeast triacylglycerol lipases Tgl4p and Tgl5p by the presence/absence of nonpolar lipids.

    PubMed

    Klein, Isabella; Klug, Lisa; Schmidt, Claudia; Zandl, Martina; Korber, Martina; Daum, Günther; Athenstaedt, Karin

    2016-07-01

    Tgl3p, Tgl4p, and Tgl5p are the major triacylglycerol lipases of the yeast Saccharomyces cerevisiae Recently we demonstrated that properties of Tgl3p are regulated by the formation of nonpolar lipids. The present study extends these investigations to the two other yeast triacylglycerol lipases, Tgl4p and Tgl5p. We show that Tgl4p and Tgl5p, which are localized to lipid droplets in wild type, are partially retained in the endoplasmic reticulum in cells lacking triacylglycerols and localize exclusively to the endoplasmic reticulum in a mutant devoid of lipid droplets. In cells lacking steryl esters, the subcellular distribution of Tgl4p and Tgl5p is unaffected, but Tgl5p becomes unstable, whereas the stability of Tgl4p increases. In cells lacking nonpolar lipids, Tgl4p and Tgl5p lose their lipolytic activity but retain their side activity as lysophospholipid acyltransferases. To investigate the regulatory network of yeast triacylglycerol lipases in more detail, we also examined properties of Tgl3p, Tgl4p, and Tgl5p, respectively, in the absence of the other lipases. Surprisingly, lack of two lipases did not affect expression, localization, and stability of the remaining Tgl protein. These results suggest that Tgl3p, Tgl4p, and Tgl5p, although they exhibit similar functions, act as independent entities. © 2016 Klein, Klug, Schmidt, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.

    PubMed

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  20. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations

    PubMed Central

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  1. Use of CYP52A2A promoter to increase gene expression in yeast

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-01-06

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  2. 'Yeast mail': a novel Saccharomyces application (NSA) to encrypt messages.

    PubMed

    Rosemeyer, Helmut; Paululat, Achim; Heinisch, Jürgen J

    2014-09-01

    The universal genetic code is used by all life forms to encode biological information. It can also be used to encrypt semantic messages and convey them within organisms without anyone but the sender and recipient knowing, i.e., as a means of steganography. Several theoretical, but comparatively few experimental, approaches have been dedicated to this subject, so far. Here, we describe an experimental system to stably integrate encrypted messages within the yeast genome using a polymerase chain reaction (PCR)-based, one-step homologous recombination system. Thus, DNA sequences encoding alphabetical and/or numerical information will be inherited by yeast propagation and can be sent in the form of dried yeast. Moreover, due to the availability of triple shuttle vectors, Saccharomyces cerevisiae can also be used as an intermediate construction device for transfer of information to either Drosophila or mammalian cells as steganographic containers. Besides its classical use in alcoholic fermentation and its modern use for heterologous gene expression, we here show that baker's yeast can thus be employed in a novel Saccharomyces application (NSA) as a simple steganographic container to hide and convey messages. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  3. Yeasts in floral nectar: a quantitative survey

    PubMed Central

    Herrera, Carlos M.; de Vega, Clara; Canto, Azucena; Pozo, María I.

    2009-01-01

    Background and Aims One peculiarity of floral nectar that remains relatively unexplored from an ecological perspective is its role as a natural habitat for micro-organisms. This study assesses the frequency of occurrence and abundance of yeast cells in floral nectar of insect-pollinated plants from three contrasting plant communities on two continents. Possible correlations between interspecific differences in yeast incidence and pollinator composition are also explored. Methods The study was conducted at three widely separated areas, two in the Iberian Peninsula (Spain) and one in the Yucatán Peninsula (Mexico). Floral nectar samples from 130 species (37–63 species per region) in 44 families were examined microscopically for the presence of yeast cells. For one of the Spanish sites, the relationship across species between incidence of yeasts in nectar and the proportion of flowers visited by each of five major pollinator categories was also investigated. Key Results Yeasts occurred regularly in the floral nectar of many species, where they sometimes reached extraordinary densities (up to 4 × 105 cells mm−3). Depending on the region, between 32 and 44 % of all nectar samples contained yeasts. Yeast cell densities in the order of 104 cells mm−3 were commonplace, and densities >105 cells mm−3 were not rare. About one-fifth of species at each site had mean yeast cell densities >104 cells mm−3. Across species, yeast frequency and abundance were directly correlated with the proportion of floral visits by bumble-bees, and inversely with the proportion of visits by solitary bees. Conclusions Incorporating nectar yeasts into the scenario of plant–pollinator interactions opens up a number of intriguing avenues for research. In addition, with yeasts being as ubiquitous and abundant in floral nectars as revealed by this study, and given their astounding metabolic versatility, studies focusing on nectar chemical features should carefully control for the presence

  4. MethSMRT: an integrative database for DNA N6-methyladenine and N4-methylcytosine generated by single-molecular real-time sequencing.

    PubMed

    Ye, Pohao; Luan, Yizhao; Chen, Kaining; Liu, Yizhi; Xiao, Chuanle; Xie, Zhi

    2017-01-04

    DNA methylation is an important type of epigenetic modifications, where 5- methylcytosine (5mC), 6-methyadenine (6mA) and 4-methylcytosine (4mC) are the most common types. Previous efforts have been largely focused on 5mC, providing invaluable insights into epigenetic regulation through DNA methylation. Recently developed single-molecule real-time (SMRT) sequencing technology provides a unique opportunity to detect the less studied DNA 6mA and 4mC modifications at single-nucleotide resolution. With a rapidly increased amount of SMRT sequencing data generated, there is an emerging demand to systematically explore DNA 6mA and 4mC modifications from these data sets. MethSMRT is the first resource hosting DNA 6mA and 4mC methylomes. All the data sets were processed using the same analysis pipeline with the same quality control. The current version of the database provides a platform to store, browse, search and download epigenome-wide methylation profiles of 156 species, including seven eukaryotes such as Arabidopsis, C. elegans, Drosophila, mouse and yeast, as well as 149 prokaryotes. It also offers a genome browser to visualize the methylation sites and related information such as single nucleotide polymorphisms (SNP) and genomic annotation. Furthermore, the database provides a quick summary of statistics of methylome of 6mA and 4mC and predicted methylation motifs for each species. MethSMRT is publicly available at http://sysbio.sysu.edu.cn/methsmrt/ without use restriction. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Lactic acid bacteria and yeasts associated with gowé production from sorghum in Bénin.

    PubMed

    Vieira-Dalodé, G; Jespersen, L; Hounhouigan, J; Moller, P L; Nago, C M; Jakobsen, M

    2007-08-01

    To identify the dominant micro-organisms involved in the production of gowé, a fermented beverage, and to select the most appropriate species for starter culture development. Samples of sorghum gowé produced twice at three different production sites were taken at different fermentation times. DNA amplification by internal transcribed spacer-polymerase chain reaction of 288 lactic acid bacteria (LAB) isolates and 16S rRNA gene sequencing of selected strains revealed that the dominant LAB responsible for gowé fermentation were Lactobacillus fermentum, Weissella confusa, Lactobacillus mucosae, Pediococcus acidilactici, Pediococcus pentosaceus and Weissella kimchii. DNA from 200 strains of yeasts was amplified and the D1/D2 domain of the 26S rRNA gene was sequenced for selected isolates, revealing that the yeasts species were Kluyveromyces marxianus, Pichia anomala, Candida krusei and Candida tropicalis. Gowé processing is characterized by a mixed fermentation dominated by Lact. fermentum, W. confusa and Ped. acidilactici for the LAB and by K. marxianus, P. anomala and C. krusei for the yeasts. The diversity of the LAB and yeasts identified offers new opportunities for technology upgrading and products development in gowé production. The identified species can be used as possible starter for a controlled fermentation of gowé.

  6. Identification and Characterization of Functionally Critical, Conserved Motifs in the Internal Repeats and N-terminal Domain of Yeast Translation Initiation Factor 4B (yeIF4B)*

    PubMed Central

    Zhou, Fujun; Walker, Sarah E.; Mitchell, Sarah F.; Lorsch, Jon R.; Hinnebusch, Alan G.

    2014-01-01

    eIF4B has been implicated in attachment of the 43 S preinitiation complex (PIC) to mRNAs and scanning to the start codon. We recently determined that the internal seven repeats (of ∼26 amino acids each) of Saccharomyces cerevisiae eIF4B (yeIF4B) compose the region most critically required to enhance mRNA recruitment by 43 S PICs in vitro and stimulate general translation initiation in yeast. Moreover, although the N-terminal domain (NTD) of yeIF4B contributes to these activities, the RNA recognition motif is dispensable. We have now determined that only two of the seven internal repeats are sufficient for wild-type (WT) yeIF4B function in vivo when all other domains are intact. However, three or more repeats are needed in the absence of the NTD or when the functions of eIF4F components are compromised. We corroborated these observations in the reconstituted system by demonstrating that yeIF4B variants with only one or two repeats display substantial activity in promoting mRNA recruitment by the PIC, whereas additional repeats are required at lower levels of eIF4A or when the NTD is missing. These findings indicate functional overlap among the 7-repeats and NTD domains of yeIF4B and eIF4A in mRNA recruitment. Interestingly, only three highly conserved positions in the 26-amino acid repeat are essential for function in vitro and in vivo. Finally, we identified conserved motifs in the NTD and demonstrate functional overlap of two such motifs. These results provide a comprehensive description of the critical sequence elements in yeIF4B that support eIF4F function in mRNA recruitment by the PIC. PMID:24285537

  7. Microbiological and fermentative properties of baker's yeast starter used in breadmaking.

    PubMed

    Reale, A; Di Renzo, T; Succi, M; Tremonte, P; Coppola, R; Sorrentino, E

    2013-08-01

    This study assessed the levels of microbial contaminants in liquid, compressed and dry commercial baker's yeasts used as starters in breadmaking. Eumycetes, Enterobacteriaceae, total and fecal coliforms, Bacillus spp., and lactic acid bacteria (LAB), in particular enterococci, were quantified. Results obtained in this study highlighted that baker's yeast could represent a potential vehicle of spoilage and undesirable microorganisms into the baking environment, even if these do not influence the leavening activity in the dough, as ascertained by rheofermentometer analysis. Different microbial groups, such as spore-forming bacteria and moulds, were found in baker's yeast starters. Moreover, different species of LAB, which are considered the main contaminants in large-scale yeast fermentations, were isolated and identified by Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rDNA sequencing. The most recurrent species were Lactobacillus plantarum, Enterococcus faecalis, and Enterococcus durans, isolated from both compressed and dry starters, whereas strains belonging to Leuconostoc and Pediococcus genera were found only in dry ones. Nested-Polymerase Chain Reaction (Nested-PCR) and Randomly Amplified Polymorphic DNA-PCR (RAPD-PCR) were also used to highlight the biodiversity of the different commercial yeast strains, and to ascertain the culture purity. © 2013 Institute of Food Technologists®

  8. The Effect of Dietary Supplementation with Spent Cider Yeast on the Swine Distal Gut Microbiome

    PubMed Central

    Upadrasta, Aditya; O’Sullivan, Lisa; O’Sullivan, Orla; Sexton, Noel; Lawlor, Peadar G.; Hill, Colin; Fitzgerald, Gerald F.; Stanton, Catherine; Ross, R. Paul

    2013-01-01

    Background There is an increasing need for alternatives to antibiotics for promoting animal health, given the increasing problems associated with antibiotic resistance. In this regard, we evaluated spent cider yeast as a potential probiotic for modifying the gut microbiota in weanling pigs using pyrosequencing of 16S rRNA gene libraries. Methodology and Principal Findings Piglets aged 24–26 days were assigned to one of two study groups; control (n = 12) and treatment (n = 12). The control animals were fed with a basal diet and the treatment animals were fed with basal diet in combination with cider yeast supplement (500 ml cider yeast containing ∼7.6 log CFU/ml) for 21 days. Faecal samples were collected for 16s rRNA gene compositional analysis. 16S rRNA compositional sequencing analysis of the faecal samples collected from day 0 and day 21 revealed marked differences in microbial diversity at both the phylum and genus levels between the control and treatment groups. This analysis confirmed that levels of Salmonella and Escherichia were significantly decreased in the treatment group, compared with the control (P<0.001). This data suggest a positive influence of dietary supplementation with live cider yeast on the microbial diversity of the pig distal gut. Conclusions/Significance The effect of dietary cider yeast on porcine gut microbial communities was characterized for the first time using 16S rRNA gene compositional sequencing. Dietary cider yeast can potentially alter the gut microbiota, however such changes depend on their endogenous microbiota that causes a divergence in relative response to that given diet. PMID:24130736

  9. Anniversary of the discovery/isolation of the yeast centromere by Clarke and Carbon.

    PubMed

    Bloom, Kerry

    2015-05-01

    The first centromere was isolated 35 years ago by Louise Clarke and John Carbon from budding yeast. They embarked on their journey with rudimentary molecular tools (by today's standards) and little knowledge of the structure of a chromosome, much less the nature of a centromere. Their discovery opened up a new field, as centromeres have now been isolated from fungi and numerous plants and animals, including mammals. Budding yeast and several other fungi have small centromeres with short, well-defined sequences, known as point centromeres, whereas regional centromeres span several kilobases up to megabases and do not seem to have DNA sequence specificity. Centromeres are at the heart of artificial chromosomes, and we have seen the birth of synthetic centromeres in budding and fission yeast and mammals. The diversity in centromeres throughout phylogeny belie conserved functions that are only beginning to be understood. © 2015 Bloom. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Candida utilis and Cyberlindnera (Pichia) jadinii: yeast relatives with expanding applications.

    PubMed

    Buerth, Christoph; Tielker, Denis; Ernst, Joachim F

    2016-08-01

    The yeast Candida utilis is used as a food additive and as a host for heterologous gene expression to produce various metabolites and proteins. Reliable protocols for intracellular production of recombinant proteins are available for C. utilis and have now been expanded to secrete proteins into the growth medium or to achieve surface display by linkage to a cell wall protein. A recombinant C. utilis strain was recently shown to induce oral tolerance in a mouse model of multiple sclerosis suggesting future applications in autoimmune therapy. Whole genome sequencing of C. utilis and its presumed parent Cyberlindnera (Pichia) jadinii demonstrated different ploidy but high sequence identity, consistent with identical recombinant technologies for both yeasts. C. jadinii was recently described as an antagonist to the important human fungal pathogen Candida albicans suggesting its use as a probiotic agent. The review summarizes the status of recombinant protein production in C. utilis, as well as current and future biotechnological and medical applications of C. utilis and C. jadinii.

  11. A novel, easy and rapid method for constructing yeast two-hybrid vectors using In-Fusion technology.

    PubMed

    Yu, Deshui; Liao, Libing; Zhang, Ju; Zhang, Yi; Xu, Kedong; Liu, Kun; Li, Xiaoli; Tan, Guangxuan; Chen, Ran; Wang, Yulu; Liu, Xia; Zhang, Xuan; Han, Xiaomeng; Wei, Zhangkun; Li, Chengwei

    2018-05-01

    Yeast two-hybrid systems are powerful tools for analyzing interactions between proteins. Vector construction is an essential step in yeast two-hybrid experiments, which require bait and prey plasmids. In this study, we modified the multiple cloning site sequence of the yeast plasmid pGADT7 by site-directed mutagenesis PCR to generate the pGADT7-In vector, which resulted in an easy and rapid method for constructing yeast two-hybrid vectors using the In-Fusion cloning technique. This method has three key advantages: only one pair of primers and one round of PCR are needed to generate bait and prey plasmids for each gene, it is restriction endonuclease- and ligase-independent, and it is fast and easily performed.

  12. Advances in yeast systematics and phylogeny and their use as predictors of biotechnologically important metabolic pathways

    USDA-ARS?s Scientific Manuscript database

    Detection, identification, and classification of yeasts have undergone a major transformation in the last decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined DNA sequences from domains 1 and 2 (D1/D2) of t...

  13. Rhodotorula portillonensis sp. nov., a basidiomycetous yeast isolated from Antarctic shallow-water marine sediment.

    PubMed

    Laich, Federico; Vaca, Inmaculada; Chávez, Renato

    2013-10-01

    During the characterization of the mycobiota associated with shallow-water marine environments from Antarctic sea, a novel pink yeast species was isolated. Sequence analysis of the D1/D2 domain of the LSU rDNA gene and 5.8S-ITS regions revealed that the isolated yeast was closely related to Rhodotorula pallida CBS 320(T) and Rhodotorula benthica CBS 9124(T). On the basis of morphological, biochemical and physiological characterization and phylogenetic analyses, a novel basidiomycetous yeast species, Rhodotorula portillonensis sp. nov., is proposed. The type strain is Pi2(T) ( = CBS 12733(T)  = CECT 13081(T)) which was isolated from shallow-water marine sediment in Fildes Bay, King George Island, Antarctica.

  14. Genetic basis of priority effects: insights from nectar yeast

    PubMed Central

    Hartwig, Thomas

    2016-01-01

    Priority effects, in which the order of species arrival dictates community assembly, can have a major influence on species diversity, but the genetic basis of priority effects remains unknown. Here, we suggest that nitrogen scavenging genes previously considered responsible for starvation avoidance may drive priority effects by causing rapid resource depletion. Using single-molecule sequencing, we de novo assembled the genome of the nectar-colonizing yeast, Metschnikowia reukaufii, across eight scaffolds and complete mitochondrion, with gap-free coverage over gene spaces. We found a high rate of tandem gene duplication in this genome, enriched for nitrogen metabolism and transport. Both high-capacity amino acid importers, GAP1 and PUT4, present as tandem gene arrays, were highly expressed in synthetic nectar and regulated by the availability and quality of amino acids. In experiments with competitive nectar yeast, Candida rancensis, amino acid addition alleviated suppression of C. rancensis by early arrival of M. reukaufii, corroborating that amino acid scavenging may contribute to priority effects. Because niche pre-emption via rapid resource depletion may underlie priority effects in a broad range of microbial, plant and animal communities, nutrient scavenging genes like the ones we considered here may be broadly relevant to understanding priority effects. PMID:27708148

  15. Prions in Yeast

    PubMed Central

    Liebman, Susan W.; Chernoff, Yury O.

    2012-01-01

    The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the “protein only” model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions. PMID:22879407

  16. Extensive Horizontal Transfer and Homologous Recombination Generate Highly Chimeric Mitochondrial Genomes in Yeast.

    PubMed

    Wu, Baojun; Buljic, Adnan; Hao, Weilong

    2015-10-01

    The frequency of horizontal gene transfer (HGT) in mitochondrial DNA varies substantially. In plants, HGT is relatively common, whereas in animals it appears to be quite rare. It is of considerable importance to understand mitochondrial HGT across the major groups of eukaryotes at a genome-wide level, but so far this has been well studied only in plants. In this study, we generated ten new mitochondrial genome sequences and analyzed 40 mitochondrial genomes from the Saccharomycetaceae to assess the magnitude and nature of mitochondrial HGT in yeasts. We provide evidence for extensive, homologous-recombination-mediated, mitochondrial-to-mitochondrial HGT occurring throughout yeast mitochondrial genomes, leading to genomes that are highly chimeric evolutionarily. This HGT has led to substantial intraspecific polymorphism in both sequence content and sequence divergence, which to our knowledge has not been previously documented in any mitochondrial genome. The unexpectedly high frequency of mitochondrial HGT in yeast may be driven by frequent mitochondrial fusion, relatively low mitochondrial substitution rates and pseudohyphal fusion to produce heterokaryons. These findings suggest that mitochondrial HGT may play an important role in genome evolution of a much broader spectrum of eukaryotes than previously appreciated and that there is a critical need to systematically study the frequency, extent, and importance of mitochondrial HGT across eukaryotes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-09-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. © 2016 Cold Spring Harbor Laboratory Press.

  18. Purification and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1(T).

    PubMed

    Yuan, Bo; Hu, Nan; Sun, Juan; Wang, Shi-An; Li, Fu-Li

    2012-12-01

    A novel extracellular exoinulinase was purified and characterized from a new yeast strain KRF1(T), and the gene encoding the enzyme was successfully cloned. The enzyme was stable at low pH between 3.0 and 6.5. The K (m) and V (max) values of the purified enzyme for inulin were 2.3 mg/mL and 4.8 mg/min, respectively. The optimum temperature of the inulinase was 50 °C, and the enzyme remained 78 % of activity at 60 °C for 2 h. The inulinase showed an amino acid sequence identity of 58 % to its closest homolog in Meyerozyma (Pichia) guilliermondii. In the secondary structure, the domain G (VMEVH) of the enzyme contained three unique residues (V, M, and H). Compared with previously reported inulinases, the enzyme from strain KRF1(T) displayed strong acid resistance, notable thermostability, and high affinity for the substrate of inulin. Based on sequence analysis of the 26S rDNA D1/D2 domain and phenotypic characterization, the yeast strain KRF1(T) was found to represent a novel anamorphic, ascomycetous yeast species. A complete description of the species is given and the name Candida kutaonensis sp. nov (type strain = KRF1(T) = AS 2.4027(T) = CBS 11388(T)) is proposed.

  19. Diversity and antifungal resistance patterns of prevalent opportunistic pathogenic yeasts colonizing the oral cavities of asymptomatic human immunodeficiency virus-infected individuals, and their relation to CD4+ counts

    PubMed Central

    Kumar, Deepa Anil; Muralidhar, Sumathi; Banerjee, Uma; Basir, Seemi Farhat; Mathur, Purva; Khan, Luqman Ahmad

    2015-01-01

    Background: Yeasts are important opportunistic pathogens, in individuals infected with human immunodeficiency virus (HIV). Yeast species inhabiting the oral mucosa of HIV-infected persons can act as source of oral lesions, especially as the individual progresses towards immunocompromised state. Present study was conducted to evaluate the diversity of yeasts in oral cavities of asymptomatic HIV-infected persons and their association with CD4+ cell counts. Materials and Methods: 100 HIV seropositive subjects and 100 healthy controls were screened for oral yeast carriage using standard procedures. Results: Of the 100 HIV-seropositive persons screened, 48 were colonized by different yeasts, either alone or in association with another species. Candida albicans was the most common species (56.90%) while non C. albicans Candida (NCAC) accounted for 39.65%. Among NCAC, Candida tropicalis and Candida krusei were most common. One isolate each of rare opportunistic pathogenic yeasts, Geotrichum candidum and Saccharomyces cereviseae, was recovered. The control group had an oral candidal carriage rate of 23%; C. albicans was the predominant species, followed by Candida glabrata, C. tropicalis and Candida parapsilosis. Antifungal susceptibility testing revealed no resistance in C. albicans, to the commonly used antifungal agents, whereas resistance or dose dependent susceptibility to fluconazole was observed in some of the NCAC species. Conclusion: Oral carriage of opportunistic pathogenic yeasts was greater in HIV-seropositive persons heading towards immunocompromised state, as evidenced by their CD4+ cell count. The predominant yeast isolated in this study (C. albicans), was found to be susceptible to commonly used antifungals. PMID:26392655

  20. Antigenic characterisation of yeast-expressed lyssavirus nucleoproteins.

    PubMed

    Kucinskaite, Indre; Juozapaitis, Mindaugas; Serva, Andrius; Zvirbliene, Aurelija; Johnson, Nicholas; Staniulis, Juozas; Fooks, Anthony R; Müller, Thomas; Sasnauskas, Kestutis; Ulrich, Rainer G

    2007-12-01

    In Europe, three genotypes of the genus Lyssavirus, family Rhabdoviridae, are present, classical rabies virus (RABV, genotype 1), European bat lyssavirus type 1 (EBLV-1, genotype 5) and European bat lyssavirus type 2 (EBLV-2, genotype 6). The entire authentic nucleoprotein (N protein) encoding sequences of RABV (challenge virus standard, CVS, strain), EBLV-1 and EBLV-2 were expressed in yeast Saccharomyces cerevisiae at high level. Purification of recombinant N proteins by caesium chloride gradient centrifugation resulted in yields between 14-17, 25-29 and 18-20 mg/l of induced yeast culture for RABV-CVS, EBLV-1 and EBLV-2, respectively. The purified N proteins were evaluated by negative staining electron microscopy, which revealed the formation of nucleocapsid-like structures. The antigenic conformation of the N proteins was investigated for their reactivity with monoclonal antibodies (mAbs) directed against different lyssaviruses. The reactivity pattern of each mAb was virtually identical between immunofluorescence assay with virus-infected cells, and ELISA and dot blot assay using the corresponding recombinant N proteins. These observations lead us to conclude that yeast-expressed lyssavirus N proteins share antigenic properties with naturally expressed virus protein. These recombinant proteins have the potential for use as components of serological assays for lyssaviruses.

  1. MPact: the MIPS protein interaction resource on yeast.

    PubMed

    Güldener, Ulrich; Münsterkötter, Martin; Oesterheld, Matthias; Pagel, Philipp; Ruepp, Andreas; Mewes, Hans-Werner; Stümpflen, Volker

    2006-01-01

    In recent years, the Munich Information Center for Protein Sequences (MIPS) yeast protein-protein interaction (PPI) dataset has been used in numerous analyses of protein networks and has been called a gold standard because of its quality and comprehensiveness [H. Yu, N. M. Luscombe, H. X. Lu, X. Zhu, Y. Xia, J. D. Han, N. Bertin, S. Chung, M. Vidal and M. Gerstein (2004) Genome Res., 14, 1107-1118]. MPact and the yeast protein localization catalog provide information related to the proximity of proteins in yeast. Beside the integration of high-throughput data, information about experimental evidence for PPIs in the literature was compiled by experts adding up to 4300 distinct PPIs connecting 1500 proteins in yeast. As the interaction data is a complementary part of CYGD, interactive mapping of data on other integrated data types such as the functional classification catalog [A. Ruepp, A. Zollner, D. Maier, K. Albermann, J. Hani, M. Mokrejs, I. Tetko, U. Güldener, G. Mannhaupt, M. Münsterkötter and H. W. Mewes (2004) Nucleic Acids Res., 32, 5539-5545] is possible. A survey of signaling proteins and comparison with pathway data from KEGG demonstrates that based on these manually annotated data only an extensive overview of the complexity of this functional network can be obtained in yeast. The implementation of a web-based PPI-analysis tool allows analysis and visualization of protein interaction networks and facilitates integration of our curated data with high-throughput datasets. The complete dataset as well as user-defined sub-networks can be retrieved easily in the standardized PSI-MI format. The resource can be accessed through http://mips.gsf.de/genre/proj/mpact.

  2. The yeast transcription elongation factor Spt4/5 is a sequence‐specific RNA binding protein

    PubMed Central

    Blythe, Amanda J.; Yazar‐Klosinski, Berra; Webster, Michael W.; Chen, Eefei; Vandevenne, Marylène; Bendak, Katerina; Mackay, Joel P.; Hartzog, Grant A.

    2016-01-01

    Abstract The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co‐transcriptional pre‐mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence‐specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA‐binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5. PMID:27376968

  3. Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast

    PubMed Central

    Pais, Thiago M.; Foulquié-Moreno, María R.; Hubmann, Georg; Duitama, Jorge; Swinnen, Steve; Goovaerts, Annelies; Yang, Yudi; Dumortier, Françoise; Thevelein, Johan M.

    2013-01-01

    The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. PMID:23754966

  4. A Molecular Portrait of De Novo Genes in Yeasts.

    PubMed

    Vakirlis, Nikolaos; Hebert, Alex S; Opulente, Dana A; Achaz, Guillaume; Hittinger, Chris Todd; Fischer, Gilles; Coon, Joshua J; Lafontaine, Ingrid

    2018-03-01

    New genes, with novel protein functions, can evolve "from scratch" out of intergenic sequences. These de novo genes can integrate the cell's genetic network and drive important phenotypic innovations. Therefore, identifying de novo genes and understanding how the transition from noncoding to coding occurs are key problems in evolutionary biology. However, identifying de novo genes is a difficult task, hampered by the presence of remote homologs, fast evolving sequences and erroneously annotated protein coding genes. To overcome these limitations, we developed a procedure that handles the usual pitfalls in de novo gene identification and predicted the emergence of 703 de novo gene candidates in 15 yeast species from 2 genera whose phylogeny spans at least 100 million years of evolution. We validated 85 candidates by proteomic data, providing new translation evidence for 25 of them through mass spectrometry experiments. We also unambiguously identified the mutations that enabled the transition from noncoding to coding for 30 Saccharomyces de novo genes. We established that de novo gene origination is a widespread phenomenon in yeasts, only a few being ultimately maintained by selection. We also found that de novo genes preferentially emerge next to divergent promoters in GC-rich intergenic regions where the probability of finding a fortuitous and transcribed ORF is the highest. Finally, we found a more than 3-fold enrichment of de novo genes at recombination hot spots, which are GC-rich and nucleosome-free regions, suggesting that meiotic recombination contributes to de novo gene emergence in yeasts.

  5. Mutation of the Ser18 phosphorylation site on the sole Saccharomyces cerevisiae UCS protein, She4, can compromise high-temperature survival.

    PubMed

    Gomez-Escalante, Susana; Piper, Peter W; Millson, Stefan H

    2017-01-01

    Folding of the myosin head often requires the joint actions of Hsp90 and a dedicated UNC45, Cro1, She4 (UCS) domain-containing cochaperone protein. Relatively weak sequence conservation exists between the single UCS protein of simple eukaryotes (She4 in budding yeast) and the two UCS proteins of higher organisms (the general cell and smooth muscle UNC45s; UNC45-GC and UNC45-SM respectively). In vertebrates, UNC45-GC facilitates cytoskeletal function whereas the 55% identical UNC45-SM assists in the assembly of the contractile apparatus of cardiac and skeletal muscles. UNC45-SM, unlike UNC45-GC, shares with yeast She4 an IDSL sequence motif known to be a site of in vivo serine phosphorylation in yeast. Investigating this further, we found that both a non-phosphorylatable (S18A) and a phosphomimetic (S18E) mutant form of She4 could rescue the type 1 myosin localisation and endocytosis defects of the yeast she4Δ mutant at 39 °C. Nevertheless, at higher temperature (45 °C), only She4 (S18A), not She4(S18E), could substantially rescue the cell lysis defect of she4Δ mutant cells. In the yeast two-hybrid system, the non-phosphorylatable S18A and S251A mutant forms of She4 and UNC45-SM still displayed the stress-enhanced in vivo interaction with Hsp90 seen with the wild-type She4 and UNC45-SM. Such high-temperature enforcement to interaction was though lost with the phosphomimetic mutant forms (She4(S18E) and UNC45-SM (S251E)), an indication that phosphorylation might suppress these increases in She4/Hsp90 and UNC45-SM/Hsp90 interaction with stress.

  6. Yeast identification in floral nectar of Mimulus aurantiacus (Invited)

    NASA Astrophysics Data System (ADS)

    Kyauk, C.; Belisle, M.; Fukami, T.

    2009-12-01

    Nectar is such a sugar-rich resource that serves as a natural habitat in which microbes thrive. As a result, yeasts arrive to nectar on the bodies of pollinators such as hummingbirds and bees. Yeasts use the sugar in nectar for their own needs when introduced. This research focuses on the identification of different types of yeast that are found in the nectar of Mimulus aurantiacus (commonly known as sticky monkey-flower). Unopened Mimulus aurantiacus flower buds were tagged at Jasper Ridge and bagged three days later. Floral nectar was then extracted and plated on potato dextrose agar. Colonies on the plates were isolated and DNA was extracted from each sample using QIAGEN DNeasy Plant Mini Kit. The DNA was amplified through PCR and ran through gel electrophoresis. The PCR product was used to clone the nectar samples into an E.coli vector. Finally, a phylogenetic tree was created by BLAST searching sequences in GenBank using the Internal Transcribed Space (ITS) locus. It was found that 18 of the 50 identified species were Candida magnifica, 14 was Candida rancensis, 6 were Crytococcus albidus and there were 3 or less of the following: Starmella bombicola, Candida floricola, Aureobasidium pullulans, Pichia kluyvera, Metschnikowa cibodaserisis, Rhodotorua colostri, and Malassezia globosa. The low diversity of the yeast could have been due to several factors: time of collection, demographics of Jasper Ridge, low variety of pollinators, and sugar concentration of the nectar. The results of this study serve as a necessary first step for a recently started research project on ecological interactions between plants, pollinators, and nectar-living yeast. More generally, this research studies the use of the nectar-living yeast community as a natural microcosm for addressing basic questions about the role of dispersal and competitive and facilitative interactions in ecological succession.

  7. Yeast for virus research

    PubMed Central

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  8. Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany.

    PubMed

    Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo

    2016-06-01

    The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil.

  9. Bandoniozyma gen. nov., a Genus of Fermentative and Non-Fermentative Tremellaceous Yeast Species

    PubMed Central

    Landell, Melissa Fontes; Crestani, Juliana; Pagnocca, Fernando Carlos; Sette, Lara Durães; Passarini, Michel Rodrigo Zambrano; Rosa, Carlos Augusto; Brandão, Luciana R.; Pimenta, Raphael S.; Ribeiro, José Roberto; Garcia, Karina Marques; Lee, Ching-Fu; Suh, Sung-Oui; Péter, Gábor; Dlauchy, Dénes; Fell, Jack W.; Scorzetti, Gloria; Theelen, Bart; Vainstein, Marilene H.

    2012-01-01

    Background Independent surveys across the globe led to the proposal of a new basidiomycetous yeast genus within the Bulleromyces clade of the Tremellales, Bandoniozyma gen. nov., with seven new species. Methodology/Principal Findings The species were characterized by multiple methods, including the analysis of D1/D2 and ITS nucleotide sequences, and morphological and physiological/biochemical traits. Most species can ferment glucose, which is an unusual trait among basidiomycetous yeasts. Conclusions/Significance In this study we propose the new yeast genus Bandoniozyma, with seven species Bandoniozyma noutii sp. nov. (type species of genus; CBS 8364T  =  DBVPG 4489T), Bandoniozyma aquatica sp. nov. (UFMG-DH4.20T  =  CBS 12527T  =  ATCC MYA-4876T), Bandoniozyma complexa sp. nov. (CBS 11570T  =  ATCC MYA-4603T  =  MA28aT), Bandoniozyma fermentans sp. nov. (CBS 12399T  =  NU7M71T  =  BCRC 23267T), Bandoniozyma glucofermentans sp. nov. (CBS 10381T  =  NRRL Y-48076T  =  ATCC MYA-4760T  =  BG 02-7-15-015A-1-1T), Bandoniozyma tunnelae sp. nov. (CBS 8024T  =  DBVPG 7000T), and Bandoniozyma visegradensis sp. nov. (CBS 12505T  =  NRRL Y-48783T  =  NCAIM Y.01952T). PMID:23056233

  10. Characterization of yakju brewed from glutinous rice and wild-type yeast strains isolated from nuruks.

    PubMed

    Kim, Hye Ryun; Kim, Jae-Ho; Bae, Dong-Hoon; Ahn, Byung-Hak

    2010-12-01

    Korean traditional rice wines yakju and takju are generally brewed with nuruk as the source of the saccharogenic enzymes by natural fermentation. To improve the quality of Korean rice wine, the microorganisms in the nuruk need to be studied. The objective of this research was to improve the quality of Korean wine with the wild-type yeast strains isolated from the fermentation starter, nuruk. Only strain YA-6 showed high activity in 20% ethanol. Precipitation of Y89-5-3 was similar to that of very flocculent yeast (〉80%) at 75.95%. Using 18S rRNA sequencing, all 10 strains were identified as Saccharomyces cerevisiae. Volatile compounds present in yakju were analyzed by gas chromatography-mass selective detector. The principal component analysis (PCA) of the volatile compounds grouped long-chain esters on the right side of the first principal component, PC1; these compounds were found in yakju that was made with strains YA-6, Y89-5-3, Y89-5- 2, Y90-9, and Y89-1-1. On the other side of PC1 were short-chain esters; these compounds were found in wines that were brewed with strains Y183-2, Y268-3, Y54-3, Y98-4, and Y88-4. Overall, the results indicated that using different wild-type yeast strains in the fermentation process significantly affects the chemical characteristics of the glutinous rice wine.

  11. New lager yeast strains generated by interspecific hybridization.

    PubMed

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2015-05-01

    The interspecific hybrid Saccharomyces pastorianus is the most commonly used yeast in brewery fermentations worldwide. Here, we generated de novo lager yeast hybrids by mating a domesticated and strongly flocculent Saccharomyces cerevisiae ale strain with the Saccharomyces eubayanus type strain. The hybrids were characterized with respect to the parent strains in a wort fermentation performed at temperatures typical for lager brewing (12 °C). The resulting beers were analysed for sugar and aroma compounds, while the yeasts were tested for their flocculation ability and α-glucoside transport capability. These hybrids inherited beneficial properties from both parent strains (cryotolerance, maltotriose utilization and strong flocculation) and showed apparent hybrid vigour, fermenting faster and producing beer with higher alcohol content (5.6 vs 4.5 % ABV) than the parents. Results suggest that interspecific hybridization is suitable for production of novel non-GM lager yeast strains with unique properties and will help in elucidating the evolutionary history of industrial lager yeast.

  12. L-arabinose fermenting yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  13. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  14. CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4'-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis.

    PubMed

    Matsuno, Michiyo; Nagatsu, Akito; Ogihara, Yukio; Ellis, Brian E; Mizukami, Hajime

    2002-03-13

    Rosmarinic acid is the dominant hydroxycinnamic acid ester accumulated in Boraginaceae and Lamiaceae plants. A cytochrome P450 cDNA was isolated by differential display from cultured cells of Lithospermum erythrorhizon, and the gene product was designated CYP98A6 based on the deduced amino acid sequence. After expression in yeast, the P450 was shown to catalyze the 3-hydroxylation of 4-coumaroyl-4'-hydroxyphenyllactic acid, one of the final two steps leading to rosmarinic acid. The expression level of CYP98A6 is dramatically increased by addition of yeast extract or methyl jasmonate to L. erythrorhizon cells, and its expression pattern reflected the elicitor-induced change in rosmarinic acid production, indicating that CYP98A6 plays an important role in regulation of rosmarinic acid biosynthesis.

  15. Prevention of Yeast Spoilage in Feed and Food by the Yeast Mycocin HMK

    PubMed Central

    Lowes, K. F.; Shearman, C. A.; Payne, J.; MacKenzie, D.; Archer, D. B.; Merry, R. J.; Gasson, M. J.

    2000-01-01

    The yeast Williopsis mrakii produces a mycocin or yeast killer toxin designated HMK; this toxin exhibits high thermal stability, high pH stability, and a broad spectrum of activity against other yeasts. We describe construction of a synthetic gene for mycocin HMK and heterologous expression of this toxin in Aspergillus niger. Mycocin HMK was fused to a glucoamylase protein carrier, which resulted in secretion of biologically active mycocin into the culture media. A partial purification protocol was developed, and a comparison with native W. mrakii mycocin showed that the heterologously expressed mycocin had similar physiological properties and an almost identical spectrum of biological activity against a number of yeasts isolated from silage and yoghurt. Two food and feed production systems prone to yeast spoilage were used as models to assess the ability of mycocin HMK to act as a biocontrol agent. The onset of aerobic spoilage in mature maize silage was delayed by application of A. niger mycocin HMK on opening because the toxin inhibited growth of the indigenous spoilage yeasts. This helped maintain both higher lactic acid levels and a lower pH. In yoghurt spiked with dairy spoilage yeasts, A. niger mycocin HMK was active at all of the storage temperatures tested at which yeast growth occurred, and there was no resurgence of resistant yeasts. The higher the yeast growth rate, the more effective the killing action of the mycocin. Thus, mycocin HMK has potential applications in controlling both silage spoilage and yoghurt spoilage caused by yeasts. PMID:10698773

  16. Effect of long-term exposure to mobile phone radiation on alpha-Int1 gene sequence of Candida albicans.

    PubMed

    Shahin-Jafari, Ariyo; Bayat, Mansour; Shahhosseiny, Mohammad Hassan; Tajik, Parviz; Roudbar-Mohammadi, Shahla

    2016-05-01

    Over the last decade, communication industries have witnessed a tremendous expansion, while, the biological effects of electromagnetic waves have not been fully elucidated. Current study aimed at evaluating the mutagenic effect of long-term exposure to 900-MHz radiation on alpha-Int1 gene sequences of Candida albicans. A standard 900 MHz radiation generator was used for radiation. 10 ml volumes from a stock suspension of C. albicans were transferred into 10 polystyrene tubes. Five tubes were exposed at 4 °C to a fixed magnitude of radiation with different time periods of 10, 70, 210, 350 and 490 h. The other 5 tubes were kept far enough from radiation. The samples underwent genomic DNA extraction. PCR amplification of alpha-Int1 gene sequence was done using one set of primers. PCR products were resolved using agarose gel electrophoresis and the nucleotide sequences were determined. All samples showed a clear electrophoretic band around 441 bp and further sequencing revealed the amplified DNA segments are related to alpha-Int1 gene of the yeast. No mutations in the gene were seen in radiation exposed samples. Long-term exposure of the yeast to mobile phone radiation under the above mentioned conditions had no mutagenic effect on alpha-Int1 gene sequence.

  17. Contamination of sequence databases with adaptor sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, Takeo; Sanders, A.R.; Detera-Wadleigh, S.D.

    Because of the exponential increase in the amount of DNA sequences being added to the public databases on a daily basis, it has become imperative to identify sources of contamination rapidly. Previously, contaminations of sequence databases have been reported to alert the scientific community to the problem. These contaminations can be divided into two categories. The first category comprises host sequences that have been difficult for submitters to manage or control. Examples include anomalous sequences derived from Escherichia coli, which are inserted into the chromosomes (and plasmids) of the bacterial hosts. Insertion sequences are highly mobile and are capable ofmore » transposing themselves into plasmids during cloning manipulation. Another example of the first category is the infection with yeast genomic DNA or with bacterial DNA of some commercially available cDNA libraries from Clontech. The second category of database contamination is due to the inadvertent inclusion of nonhost sequences. This category includes incorporation of cloning-vector sequences and multicloning sites in the database submission. M13-derived artifacts have been common, since M13-based vectors have been widely used for subcloning DNA fragments. Recognizing this problem, the National Center for Biotechnology Information (NCBI) started to screen, in April 1994, all sequences directly submitted to GenBank, against a set of vector data retrieved from GenBank by use of key-word searches, such as {open_quotes}vector.{close_quotes} In this report, we present evidence for another sequence artifact that is widespread but that, to our knowledge, has not yet been reported. 11 refs., 1 tab.« less

  18. Rapid Molecular Identification of Pathogenic Yeasts by Pyrosequencing Analysis of 35 Nucleotides of Internal Transcribed Spacer 2 ▿

    PubMed Central

    Borman, Andrew M.; Linton, Christopher J.; Oliver, Debra; Palmer, Michael D.; Szekely, Adrien; Johnson, Elizabeth M.

    2010-01-01

    Rapid identification of yeast species isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. Here, we have evaluated the utility of pyrosequencing analysis of a portion of the internal transcribed spacer 2 region (ITS2) for identification of pathogenic yeasts. A total of 477 clinical isolates encompassing 43 different fungal species were subjected to pyrosequencing analysis in a strictly blinded study. The molecular identifications produced by pyrosequencing were compared with those obtained using conventional biochemical tests (AUXACOLOR2) and following PCR amplification and sequencing of the D1-D2 portion of the nuclear 28S large rRNA gene. More than 98% (469/477) of isolates encompassing 40 of the 43 fungal species tested were correctly identified by pyrosequencing of only 35 bp of ITS2. Moreover, BLAST searches of the public synchronized databases with the ITS2 pyrosequencing signature sequences revealed that there was only minimal sequence redundancy in the ITS2 under analysis. In all cases, the pyrosequencing signature sequences were unique to the yeast species (or species complex) under investigation. Finally, when pyrosequencing was combined with the Whatman FTA paper technology for the rapid extraction of fungal genomic DNA, molecular identification could be accomplished within 6 h from the time of starting from pure cultures. PMID:20702674

  19. The presence of a mycangium in European Sinodendron cylindricum (Coleoptera: Lucanidae) and the associated yeast symbionts

    PubMed Central

    Tanahashi, Masahiko; Hawes, Colin J.

    2016-01-01

    Part of the exoskeleton of some wood-inhabiting insects is modified to form a mycangium, which is a specialized organ used to convey fungal spores or yeasts to their offspring. Although most stag beetles (Coleoptera: Lucanidae) are known to have female-specific mycangia and associated yeast symbionts, the evolutionary origin of the mycangium in this group remains unresolved. Here, we report the presence of a mycangium and associated yeast symbionts in the European horned stag beetle Sinodendron cylindricum (L.), which belongs to an ancestral clade of the Lucanidae. The mycangium of S. cylindricum is shown to be female-specific and have the same developmental origin as that of other stag beetles. A total of five yeast strains were isolated from adult mycangia and larval gut of S. cylindricum. Of these, we suggest that SICYAM1 is an undescribed yeast with taxonomic novelty, and have identified SICYLG3 as the xylose-fermenting yeast Scheffersomyces insectosa using nuclear ribosomal RNA and ITS sequences. The remaining three yeast strains, SICYAM2, SICYLG1, and SICYLG2, were assigned to the genus Sugiyamaella. Yeast density in the adult mycangium was lower than that of the more evolutionarily advanced stag beetles, the European Lucanus cervus (L.) and Dorcus parallelipipedus (L.), which were also examined in this study. No living yeasts were isolated from the adult guts. However, a third instar larva of S. cylindricum harbored 104–106 living yeasts in each gut region, which suggests that gut yeasts play an important role in these wood-feeding larvae. PMID:27432353

  20. Antimicrobial activity of yeasts against some pathogenic bacteria

    PubMed Central

    Younis, Gamal; Awad, Amal; Dawod, Rehab E.; Yousef, Nehal E.

    2017-01-01

    Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR) for detection of khs (kievitone hydratase) and pelA (pectate degrading enzyme)genes. Results: The recovery rate of yeasts from sausage was 20% (2/10) followed by kareish cheese, processed cheese, and butter 10% (1/10) each as well as raw milk 9% (9/100), and fruit yoghurt 30% (6/20). Different yeast species were recovered, namely, Candida kefyr (5 isolates), Saccharomyces cerevisiae (4 isolates), Candida intermedia (3 isolates), Candida tropicalis (2 isolates), Candida lusitaniae (2 isolates), and Candida krusei (1 isolate). khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food. PMID:28919693

  1. The Isolation of Invertase from Baker's Yeast: A Four-Part Exercise in Protein Purification and Characterization

    ERIC Educational Resources Information Center

    Timerman, Anthony P.; Fenrick, Angela M.; Zamis, Thomas M.

    2009-01-01

    A sequence of exercises for the isolation and characterization of invertase (E.C. 3.1.2.26) from baker's yeast obtained from a local grocery store is outlined. Because the enzyme is colorless, the use of colored markers and the sequence of purification steps are designed to "visualize" the process by which a colorless protein is selectively…

  2. Engineering Promoter Architecture in Oleaginous Yeast Yarrowia lipolytica.

    PubMed

    Shabbir Hussain, Murtaza; Gambill, Lauren; Smith, Spencer; Blenner, Mark A

    2016-03-18

    Eukaryotic promoters have a complex architecture to control both the strength and timing of gene transcription spanning up to thousands of bases from the initiation site. This complexity makes rational fine-tuning of promoters in fungi difficult to predict; however, this very same complexity enables multiple possible strategies for engineering promoter strength. Here, we studied promoter architecture in the oleaginous yeast, Yarrowia lipolytica. While recent studies have focused on upstream activating sequences, we systematically examined various components common in fungal promoters. Here, we examine several promoter components including upstream activating sequences, proximal promoter sequences, core promoters, and the TATA box in autonomously replicating expression plasmids and integrated into the genome. Our findings show that promoter strength can be fine-tuned through the engineering of the TATA box sequence, core promoter, and upstream activating sequences. Additionally, we identified a previously unreported oleic acid responsive transcription enhancement in the XPR2 upstream activating sequences, which illustrates the complexity of fungal promoters. The promoters engineered here provide new genetic tools for metabolic engineering in Y. lipolytica and provide promoter engineering strategies that may be useful in engineering other non-model fungal systems.

  3. Naumovozyma castellii: an alternative model for budding yeast molecular biology.

    PubMed

    Karademir Andersson, Ahu; Cohn, Marita

    2017-03-01

    Naumovozyma castellii (Saccharomyces castellii) is a member of the budding yeast family Saccharomycetaceae. It has been extensively used as a model organism for telomere biology research and has gained increasing interest as a budding yeast model for functional analyses owing to its amenability to genetic modifications. Owing to the suitable phylogenetic distance to S. cerevisiae, the whole genome sequence of N. castellii has provided unique data for comparative genomic studies, and it played a key role in the establishment of the timing of the whole genome duplication and the evolutionary events that took place in the subsequent genomic evolution of the Saccharomyces lineage. Here we summarize the historical background of its establishment as a laboratory yeast species, and the development of genetic and molecular tools and strains. We review the research performed on N. castellii, focusing on areas where it has significantly contributed to the discovery of new features of molecular biology and to the advancement of our understanding of molecular evolution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA.

    PubMed

    Chen, Xin Jie; Wang, Xiaowen; Butow, Ronald A

    2007-08-21

    Aconitase (Aco1p) is a multifunctional protein: It is an enzyme of the tricarboxylic acid cycle. In animal cells, Aco1p also is a cytosolic protein binding to mRNAs to regulate iron metabolism. In yeast, Aco1p was identified as a component of mtDNA nucleoids. Here we show that yeast Aco1p protects mtDNA from excessive accumulation of point mutations and ssDNA breaks and suppresses reductive recombination of mtDNA. Aconitase binds to both ds- and ssDNA, with a preference for GC-containing sequences. Therefore, mitochondria are opportunistic organelles that seize proteins, such as metabolic enzymes, for construction of the nucleoid, an mtDNA maintenance/segregation apparatus.

  5. Heterologous expression of a Tpo1 homolog from Arabidopsis thaliana confers resistance to the herbicide 2,4-D and other chemical stresses in yeast.

    PubMed

    Cabrito, Tânia R; Teixeira, Miguel C; Duarte, Alexandra A; Duque, Paula; Sá-Correia, Isabel

    2009-10-01

    The understanding of the molecular mechanisms underlying acquired herbicide resistance is crucial in dealing with the emergence of resistant weeds. Saccharomyces cerevisiae has been used as a model system to gain insights into the mechanisms underlying resistance to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The TPO1 gene, encoding a multidrug resistance (MDR) plasma membrane transporter of the major facilitator superfamily (MFS), was previously found to confer resistance to 2,4-D in yeast and to be transcriptionally activated in response to the herbicide. In this work, we demonstrate that Tpo1p is required to reduce the intracellular concentration of 2,4-D. ScTpo1p homologs encoding putative plasma membrane MFS transporters from the plant model Arabidopsis thaliana were analyzed for a possible role in 2,4-D resistance. At5g13750 was chosen for further analysis, as its transcript levels were found to increase in 2,4-D stressed plants. The functional heterologous expression of this plant open reading frame in yeast was found to confer increased resistance to the herbicide in Deltatpo1 and wild-type cells, through the reduction of the intracellular concentration of 2,4-D. Heterologous expression of At5g13750 in yeast also leads to increased resistance to indole-3-acetic acid (IAA), Al(3+) and Tl(3+). At5g13750 is the first plant putative MFS transporter to be suggested as possibly involved in MDR.

  6. Effect of wine yeast monoculture practice on the biodiversity of non-Saccharomyces yeasts.

    PubMed

    Ganga, M A; Martínez, C

    2004-01-01

    The objective of this work was to study the effect of the use of Saccharomyces cerevisiae monocultures over the biodiversity of non-Saccharomyces yeasts in wine-producing areas in Chile. Microvinifications were carried out with grape musts of two areas. In one of them, the fermentation is carried out mainly in a spontaneous manner, whereas in the other the musts are inoculated with commercial yeasts. The isolated yeasts were identified by the internal transcribed (ITS)/restriction fragment length polymorphism technique. In the industrial production area less variability of yeast genera was observed as compared with the traditional area, an observation that is greatest at the end of the fermentation. Furthermore, a study of the production of extracellular enzymes was done. The majority of the yeasts showed at least one of the activities assayed with the exception of beta-glycosidase. The results suggest that in the industrialized area the diversity of yeasts is less in the traditional area. Likewise, the potentiality of the non-Saccharomyces yeasts as enzyme producers with industrial interest has been confirmed. This study shows the negative effect of the use of monocultures over the biodiversity of yeasts in wine-producing regions.

  7. Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones.

    PubMed

    Kandror, Olga; Bretschneider, Nancy; Kreydin, Evgeniy; Cavalieri, Duccio; Goldberg, Alfred L

    2004-03-26

    Virtually nothing is known about the biochemical adaptations in eukaryotic cells that may enhance survival at low temperatures or upon freezing. Here we demonstrate an adaptive response in yeast that is activated below 10 degrees C and increases tolerance to low temperatures and freezing. This response involves a dramatic accumulation of the chemical chaperone trehalose and induction of trehalose-synthesizing enzymes (Tps1, Tps2) and certain heat shock proteins (Hsp104, Hsp42, Hsp12, Ssa4). mRNAs for these proteins increase dramatically below 10 degrees C and even at 0 degrees C. Their expression requires Msn2,4 transcription factors but also involves marked mRNA stabilization. Upon return to 30 degrees C, TPS1, TPS2, and HSP104 mRNAs, trehalose levels and tolerance to freezing fall dramatically within minutes. Mutants lacking trehalose or Msn2,4 die more rapidly at 0 degrees C and upon freezing. Thus, below 10 degrees C, yeast show an adaptive response that sustains viability at low or freezing temperatures, which are commonly encountered in natural environments and laboratory refrigerators.

  8. The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and Their Role in Human Tumorigenesis

    PubMed Central

    Cazzanelli, Giulia; Francisco, Rita; Azevedo, Luísa; Carvalho, Patrícia Dias; Almeida, Ana; Côrte-Real, Manuela; Oliveira, Maria José; Lucas, Cândida; Sousa, Maria João

    2018-01-01

    The exploitation of the yeast Saccharomyces cerevisiae as a biological model for the investigation of complex molecular processes conserved in multicellular organisms, such as humans, has allowed fundamental biological discoveries. When comparing yeast and human proteins, it is clear that both amino acid sequences and protein functions are often very well conserved. One example of the high degree of conservation between human and yeast proteins is highlighted by the members of the RAS family. Indeed, the study of the signaling pathways regulated by RAS in yeast cells led to the discovery of properties that were often found interchangeable with RAS proto-oncogenes in human pathways, and vice versa. In this work, we performed an updated critical literature review on human and yeast RAS pathways, specifically highlighting the similarities and differences between them. Moreover, we emphasized the contribution of studying yeast RAS pathways for the understanding of human RAS and how this model organism can contribute to unveil the roles of RAS oncoproteins in the regulation of mechanisms important in the tumorigenic process, like autophagy. PMID:29463063

  9. Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii

    PubMed Central

    2017-01-01

    ABSTRACT Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae. Furthermore, formate dehydrogenase (FDH) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production. IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression

  10. Generation of henipavirus nucleocapsid proteins in yeast Saccharomyces cerevisiae.

    PubMed

    Juozapaitis, Mindaugas; Serva, Andrius; Zvirbliene, Aurelija; Slibinskas, Rimantas; Staniulis, Juozas; Sasnauskas, Kestutis; Shiell, Brian J; Wang, Lin-Fa; Michalski, Wojtek P

    2007-03-01

    Hendra and Nipah viruses are newly emerged, zoonotic viruses and their genomes have nucleotide and predicted amino acid homologies placing them in the family Paramyxoviridae. Currently these viruses are classified in the new genus Henipavirus, within the subfamily Paramyxovirinae, family Paramyxoviridae. The genes encoding HeV and NiV nucleocapsid proteins were cloned into the yeast Saccharomyces cerevisiae expression vector pFGG3 under control of GAL7 promoter. A high level of expression of these proteins (18-20 mg l(-1) of yeast culture) was obtained. Mass spectrometric analysis confirmed the primary structure of both proteins with 92% sequence coverage obtained using MS/MS analysis. Electron microscopy demonstrated the assembly of typical herring-bone structures of purified recombinant nucleocapsid proteins, characteristic for other paramyxoviruses. The nucleocapsid proteins revealed stability in yeast and can be easily purified by cesium chloride gradient ultracentrifugation. HeV nucleocapsid protein was detected by sera derived from fruit bats, humans, horses infected with HeV, and NiV nucleocapsid protein was immunodetected with sera from, fruit bats, humans and pigs. The development of an efficient and cost-effective system for generation of henipavirus nucleocapsid proteins might help to improve reagents for diagnosis of viruses.

  11. Separation by hydrophobic interaction chromatography and structural determination by mass spectrometry of mannosylated glycoforms of a recombinant transferrin-exendin-4 fusion protein from yeast.

    PubMed

    Zolodz, Melissa D; Herberg, John T; Narepekha, Halyna E; Raleigh, Emily; Farber, Matthew R; Dufield, Robert L; Boyle, Denis M

    2010-01-08

    Obtaining sufficient amounts of pure glycoprotein variants to characterize their structures is an important goal in both functional biology and the biotechnology industry. We have developed preparative HIC conditions that resolve glycoform variants on the basis of overall carbohydrate content for a recombinant transferrin-exendin-4 fusion protein. The fusion protein was expressed from the yeast Saccharomyces cerevisiae from high density fermentation and is post-translationally modified with mannose sugars through O-glycosidic linkages. Overall hydrophobic behavior appeared to be dominated by the N-terminal 39 amino acids from the exendin-4 and linker peptide sequences as compared to the less hydrophobic behavior of human transferrin alone. In addition, using LC techniques that measure total glycans released from the pure protein combined with new high resolution technologies using mass spectrometry, we have determined the locations and chain lengths of mannose residues on specific peptides derived from tryptic maps of the transferrin-exendin-4 protein. Though the protein is large (80,488kDa) and contains 78 possible serine and threonine residues as potential sites for sugar addition, mannosylation was observed on only two tryptic peptides located within the first 55 amino acids of the N-terminus. These glycopeptides were highly heterogeneous and contained between 1 and 10 mannose residues scattered among the various serine and threonine sites which were identified by electron transfer dissociation mass spectrometry. Glycan sequences from 1 to 6 linear mannose residues were detected, but mannose chain lengths of 3 or 4 were more common and formed 80% of the total oligosaccharides. This work introduces new technological capabilities for the purification and characterization of glycosylated variants of therapeutic recombinant proteins. Copyright 2009 Elsevier B.V. All rights reserved.

  12. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi.

    PubMed

    Quintilla, Raquel; Kolecka, Anna; Casaregola, Serge; Daniel, Heide M; Houbraken, Jos; Kostrzewa, Markus; Boekhout, Teun; Groenewald, Marizeth

    2018-02-02

    Since food spoilage by yeasts causes high economic losses, fast and accurate identifications of yeasts associated with food and food-related products are important for the food industry. In this study the efficiency of the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify food related yeasts was evaluated. A CBS in-house MALDI-TOF MS database was created and later challenged with a blinded test set of 146 yeast strains obtained from food and food related products. Ninety eight percent of the strains were correctly identified with log score values>1.7. One strain, Mrakia frigida, gained a correct identification with a score value<1.7. Two strains could not be identified at first as they represented a mix of two different species. These mixes were Rhodotorula babjevae with Meyerozyma caribbica and Clavispora lusitaniae with Debaryomyces hansenii. After separation, all four species could be correctly identified with scores>1.7. Ambiguous identifications were observed due to two incorrect reference mass spectra's found in the commercial database BDAL v.4.0, namely Candida sake DSM 70763 which was re-identified as Candida oleophila, and Candida inconspicua DSM 70631 which was re-identified as Pichia membranifaciens. MALDI-TOF MS can distinguish between most of the species, but for some species complexes, such as the Kazachstania telluris and Mrakia frigida complexes, MALDI-TOF MS showed limited resolution and identification of sibling species was sometimes problematic. Despite this, we showed that the MALDI-TOF MS is applicable for routine identification and validation of foodborne yeasts, but a further update of the commercial reference databases is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Multi-locus genotyping of bottom fermenting yeasts by single nucleotide polymorphisms indicative of brewing characteristics.

    PubMed

    Ikushima, Shigehito; Tateishi, Yoshiyuki; Kanai, Keiko; Shimada, Emiko; Tanaka, Misa; Ishiguro, Tatsuji; Mizutani, Satoru; Kobayashi, Osamu

    2012-04-01

    Yeast plays a capital role in brewing fermentation and has a direct impact on flavor and aroma. For the evaluation of competent brewing strains during quality control or development of novel strains it is standard practice to perform fermentation tests, which are costly and time-consuming. Here, we have categorized DNA markers which enable to distinguish and to screen brewing strains more efficiently than ever before. Sequence analysis at 289 loci in the genomes of six bottom fermenting Saccharomyces pastorianus strains revealed that 30 loci contained single nucleotide polymorphisms (SNPs). By determining the nucleotide sequences at the SNP-loci in 26 other S. pastorianus strains and 20 strains of the top fermenting yeast Saccharomyces cerevisiae, almost all these strains could be discriminated solely on the basis of the SNPs. By comparing the fermentative phenotypes of these strains we found that some DNA markers showed a strong association with brewing characteristics, such as the production of ethyl acetate and hydrogen sulphide (H2S). Therefore, the DNA markers we identified will facilitate quality control and the efficient development of brewing yeast strains. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Cystobasidiomycetes yeasts from Patagonia (Argentina): description of Rhodotorula meli sp. nov. from glacial meltwater.

    PubMed

    Libkind, Diego; Sampaio, José Paulo; van Broock, Maria

    2010-09-01

    A basidiomycetous yeast, strain CRUB 1032(T), which formed salmon-pink colonies, was isolated from glacial meltwater in Patagonia, Argentina. Morphological, physiological and biochemical characterization indicated that this strain belonged to the genus Rhodotorula. Molecular taxonomic analysis based on the 26S rDNA D1/D2 domain and internal transcribed spacer region sequences showed that strain CRUB 1032(T) represents an undescribed yeast species, for which the name Rhodotorula meli sp. nov. is proposed (type strain is CRUB 1032(T)=CBS 10797(T)=JCM 15319(T)). Phylogenetic analysis showed that Rhodotorula lamellibrachii was the closest known species, which, together with R. meli, formed a separate cluster related to the Sakaguchia clade within the Cystobasidiomycetes. Additional Patagonian yeast isolates of the class Cystobasidiomycetes are also investigated in the present work.

  15. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  16. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    PubMed

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. BAPJ69-4A: a yeast two-hybrid strain for both positive and negative genetic selection.

    PubMed

    Shaffer, Hally Anne; Rood, Michael Kenneth; Kashlan, Badar; Chang, Eileen I-ling; Doyle, Donald Francis; Azizi, Bahareh

    2012-10-01

    Genetic selection systems, such as the yeast two-hybrid system, are efficient methods to detect protein-protein and protein-ligand interactions. These systems have been further developed to assess negative interactions, such as inhibition, using the URA3 genetic selection marker. Previously, chemical complementation was used to assess positive selection in Saccharomyces cerevisiae. In this work, a new S. cerevisiae strain, called BAPJ69-4A, containing three selective markers ADE2, HIS3, and URA3 as well as the lacZ gene controlled by Gal4 response elements, was developed and characterized using the retinoid X receptor (RXR) and its ligand 9-cis retinoic acid (9cRA). Further characterization was performed using RXR variants and the synthetic ligand LG335. To assess the functionality of the strain, RXR was compared to the parent strain PJ69-4A in adenine, histidine, and uracil selective media. In positive selection, associating partners that lead to cell growth were observed in all media in the presence of ligand, whereas partners that did not associate due to the absence of ligand displayed no growth. Conversely, in negative selection, partners that did not associate in 5-FOA medium did not display cell death due to the lack of expression of the URA3 gene. The creation of the BAPJ69-4A yeast strain provides a high-throughput selection system, called negative chemical complementation, which can be used for both positive and negative selection, providing a fast, powerful tool for discovering novel ligand receptor pairs for applications in drug discovery and protein engineering. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica).

    PubMed

    Rovati, José I; Pajot, Hipólito F; Ruberto, Lucas; Mac Cormack, Walter; Figueroa, Lucía I C

    2013-11-01

    Antarctica offers a range of extreme climatic conditions, such as low temperatures, high solar radiation and low nutrient availability, and constitutes one of the harshest environments on Earth. Despite that, it has been successfully colonized by ’cold-loving’ fungi, which play a key role in decomposition cycles in cold ecosystems. However, knowledge about the ecological role of yeasts in nutrient or organic matter recycling/mineralization remains highly fragmentary. The aim of this work was to study the yeast microbiota in samples collected on 25 de Mayo/King George Island regarding the scope of their ability to degrade polyphenolic substrates such as lignin and azo dyes. Sixty-one yeast isolates were obtained from 37 samples, including soil, rocks, wood and bones. Molecular analyses based on rDNA sequences revealed that 35 yeasts could be identified at the species level and could be classified in the genera Leucosporidiella, Rhodotorula, Cryptococcus, Bullera and Candida. Cryptococcus victoriae was by far the most ubiquitous species. In total, 33% of the yeast isolates examined showed significant activity for dye decolorization, 25% for laccase activity and 38% for ligninolytic activity. Eleven yeasts did not show positive activity in any of the assays performed and no isolates showed positive activity across all tested substrates. A high diversity of yeasts were isolated in this work, possibly including undescribed species and conspicuous Antarctic yeasts, most of them belonging to oligotrophic, slow-growing and metabolically diverse basidiomycetous genera.

  19. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  20. Signal sequence-independent targeting of MID2 mRNA to the endoplasmic reticulum by the yeast RNA-binding protein Khd1p.

    PubMed

    Syed, Muhammad Ibrahim; Moorthy, Balaji T; Jenner, Andreas; Fetka, Ingrid; Jansen, Ralf-Peter

    2018-05-17

    Localization of mRNAs depends on specific RNA-binding proteins (RBPs) and critically contributes not only to cell polarization but also to basal cell function. The yeast RBP Khd1p binds to several hundred mRNAs, the majority of which encodes secreted or membrane proteins. We demonstrate that a subfraction of Khd1p associates with artificial liposomes and endoplasmic reticulum (ER), and that Khd1p endomembrane association is partially dependent on its binding to RNA. ER targeting of at least two mRNAs, MID2 and SLG1/WSC1, requires KHD1 but is independent of their translation. Together, our results suggest interdependence of Khd1p and mRNA for their targeting to the ER and presents additional evidence for signal sequence-independent, RBP-mediated mRNA targeting. © 2018 Federation of European Biochemical Societies.

  1. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  2. Hydrophobic Motif Phosphorylation Coordinates Activity and Polar Localization of the Neurospora crassa Nuclear Dbf2-Related Kinase COT1

    PubMed Central

    Maerz, Sabine; Dettmann, Anne

    2012-01-01

    Nuclear Dbf2p-related (NDR) kinases and associated proteins are recognized as a conserved network that regulates eukaryotic cell polarity. NDR kinases require association with MOB adaptor proteins and phosphorylation of two conserved residues in the activation segment and hydrophobic motif for activity and function. We demonstrate that the Neurospora crassa NDR kinase COT1 forms inactive dimers via a conserved N-terminal extension, which is also required for the interaction of the kinase with MOB2 to generate heterocomplexes with basal activity. Basal kinase activity also requires autophosphorylation of the COT1-MOB2 complex in the activation segment, while hydrophobic motif phosphorylation of COT1 by the germinal center kinase POD6 fully activates COT1 through induction of a conformational change. Hydrophobic motif phosphorylation is also required for plasma membrane association of the COT1-MOB2 complex. MOB2 further restricts the membrane-associated kinase complex to the hyphal apex to promote polar cell growth. These data support an integrated mechanism of NDR kinase regulation in vivo, in which kinase activation and cellular localization of COT1 are coordinated by dual phosphorylation and interaction with MOB2. PMID:22451488

  3. Partial complementation of the UV sensitivity of E. coli and yeast excision repair mutants by the cloned denV gene of bacteriophage T4.

    PubMed

    Chenevert, J M; Naumovski, L; Schultz, R A; Friedberg, E C

    1986-04-01

    The denV gene of bacteriophage T4 was reconstituted from two overlapping DNA fragments cloned in M13 vectors. The coding region of the intact gene was tailored into a series of plasmid vectors containing different promoters suitable for expression of the gene in E. coli and in yeast. Induction of the TAC promoter with IPTG resulted in overexpression of the gene, which was lethal to E. coli. Expression of the TACdenV gene in the absence of IPTG, or the use of the yeast GAL1 or ADH promoters resulted in partial complementation of the UV sensitivity of uvrA, uvrB, uvrC and recA mutants of E. coli and rad1, rad2, rad3, rad4 and rad10 mutants of S. cerevisiae. The extent of denV-mediated reactivation of excision-defective mutants was approximately equal to that of photoreactivation of such strains. Excision proficient E. coli cells transformed with a plasmid containing the denV gene were slightly more resistant to ultraviolet (UV) radiation than control cells without the denV gene. On the other hand, excision proficient yeast cells were slightly more sensitive to killing by UV radiation following transformation with a plasmid containing the denV gene. This effect was more pronounced in yeast mutants of the RAD52 epistasis group.

  4. Similar Mutation Rates but Highly Diverse Mutation Spectra in Ascomycete and Basidiomycete Yeasts.

    PubMed

    Long, Hongan; Behringer, Megan G; Williams, Emily; Te, Ronald; Lynch, Michael

    2016-12-01

    Yeast species are extremely diverse and not monophyletic. Because the majority of yeast research focuses on ascomycetes, the mutational determinants of genetic diversity across yeast species are not well understood. By combining mutation-accumulation techniques with whole-genome sequencing, we resolved the genomic mutation rate and spectrum of the oleaginous (oil-producing) ‘red yeast’ Rhodotorula toruloides, the first such study in the fungal phylum Basidiomycota. We find that the mutation spectrum is quite different from what has been observed in all other studied unicellular eukaryotes, but similar to that in most bacteria—a predominance of transitions relative to transversions. Rhodotorula toruloides has a significantly higher A:T→G:C transition rate—possibly elevated by the abundant flanking G/C nucleotides in the GC-rich genome, as well as a much lower G:C→T:A transversion rate. In spite of these striking differences, there are substantial consistencies between R. toruloides and the ascomycete model yeasts: a spontaneous base-substitution mutation rate of 1.90 × 10 −10 per site per cell division as well as an elevated mutation rate at non-methylated 5'CpG3' sites. These results imply the evolution of variable mutation spectra in the face of similar mutation rates in yeasts.

  5. Mapping the yeast genome by melting in nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Welch, Robert L.; Czolkos, Ilja; Sladek, Rob; Reisner, Walter

    2012-02-01

    Optical mapping of DNA provides large-scale genomic information that can be used to assemble contigs from next-generation sequencing, and to detect re-arrangements between single cells. A recent optical mapping technique called denaturation mapping has the unique advantage of using physical principles rather than the action of enzymes to probe genomic structure. The absence of reagents or reaction steps makes denaturation mapping simpler than other protocols. Denaturation mapping uses fluorescence microscopy to image the pattern of partial melting along a DNA molecule extended in a channel of cross-section ˜100nm at the heart of a nanofluidic device. We successfully aligned melting maps from single DNA molecules to a theoretical map of the yeast genome (11.6Mbp) to identify their location. By aligning hundreds of molecules we assembled a consensus melting map of the yeast genome with 95% coverage.

  6. Genome dynamics and evolution in yeasts: A long-term yeast-bacteria competition experiment

    PubMed Central

    Katz, Michael; Knecht, Wolfgang; Compagno, Concetta; Piškur, Jure

    2018-01-01

    There is an enormous genetic diversity evident in modern yeasts, but our understanding of the ecological basis of such diversifications in nature remains at best fragmented so far. Here we report a long-term experiment mimicking a primordial competitive environment, in which yeast and bacteria co-exist and compete against each other. Eighteen yeasts covering a wide phylogenetic background spanning approximately 250 million years of evolutionary history were used to establish independent evolution lines for at most 130 passages. Our collection of hundreds of modified strains generated through such a rare two-species cross-kingdom competition experiment re-created the appearance of large-scale genomic rearrangements and altered phenotypes important in the diversification history of yeasts. At the same time, the methodology employed in this evolutionary study would also be a non-gene-technological method of reprogramming yeast genomes and then selecting yeast strains with desired traits. Cross-kingdom competition may therefore be a method of significant value to generate industrially useful yeast strains with new metabolic traits. PMID:29624585

  7. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe

    PubMed Central

    Duhig, Trevor; Nam, Miyoung; Palmer, Georgia; Han, Sangjo; Jeffery, Linda; Baek, Seung-Tae; Lee, Hyemi; Shim, Young Sam; Lee, Minho; Kim, Lila; Heo, Kyung-Sun; Noh, Eun Joo; Lee, Ah-Reum; Jang, Young-Joo; Chung, Kyung-Sook; Choi, Shin-Jung; Park, Jo-Young; Park, Youngwoo; Kim, Hwan Mook; Park, Song-Kyu; Park, Hae-Joon; Kang, Eun-Jung; Kim, Hyong Bai; Kang, Hyun-Sam; Park, Hee-Moon; Kim, Kyunghoon; Song, Kiwon; Song, Kyung Bin; Nurse, Paul; Hoe, Kwang-Lae

    2014-01-01

    SUMMARY We report the construction and analysis of 4,836 heterozygous diploid deletion mutants covering 98.4% of the fission yeast genome. This resource provides a powerful tool for biotechnological and eukaryotic cell biology research. Comprehensive gene dispensability comparisons with budding yeast, the first time such studies have been possible between two eukaryotes, revealed that 83% of single copy orthologues in the two yeasts had conserved dispensability. Gene dispensability differed for certain pathways between the two yeasts, including mitochondrial translation and cell cycle checkpoint control. We show that fission yeast has more essential genes than budding yeast and that essential genes are more likely than non-essential genes to be single copy, broadly conserved and to contain introns. Growth fitness analyses determined sets of haploinsufficient and haploproficient genes for fission yeast, and comparisons with budding yeast identified specific ribosomal proteins and RNA polymerase subunits, which may act more generally to regulate eukaryotic cell growth. PMID:20473289

  8. Synthetic biology stretching the realms of possibility in wine yeast research.

    PubMed

    Jagtap, Umesh B; Jadhav, Jyoti P; Bapat, Vishwas A; Pretorius, Isak S

    2017-07-03

    It took several millennia to fully understand the scientific intricacies of the process through which grape juice is turned into wine. This yeast-driven fermentation process is still being perfected and advanced today. Motivated by ever-changing consumer preferences and the belief that the 'best' wine is yet to be made, numerous approaches are being pursued to improve the process of yeast fermentation and the quality of wine. Central to recent enhancements in winemaking processes and wine quality is the development of Saccharomyces cerevisiae yeast strains with improved robustness, fermentation efficiencies and sensory properties. The emerging science of Synthetic Biology - including genome engineering and DNA editing technologies - is taking yeast strain development into a totally new realm of possibility. The first example of how future wine strain development might be impacted by these new 'history-making' Synthetic Biology technologies, is the de novo production of the raspberry ketone aroma compound, 4-[4-hydroxyphenyl]butan-2-one, in a wine yeast containing a synthetic DNA cassette. This article explores how this breakthrough and the imminent outcome of the international Yeast 2.0 (or Sc2.0) project, aimed at the synthesis of the entire genome of a laboratory strain of S. cerevisiae, might accelerate the design of improved wine yeasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Structure and regulation of KGD1, the structural gene for yeast alpha-ketoglutarate dehydrogenase.

    PubMed

    Repetto, B; Tzagoloff, A

    1989-06-01

    Nuclear respiratory-defective mutants of Saccharomyces cerevisiae have been screened for lesions in the mitochondrial alpha-ketoglutarate dehydrogenase complex. Strains assigned to complementation group G70 were ascertained to be deficient in enzyme activity due to mutations in the KGD1 gene coding for the alpha-ketoglutarate dehydrogenase component of the complex. The KGD1 gene has been cloned by transformation of a representative kgd1 mutant, C225/U1, with a recombinant plasmid library of wild-type yeast nuclear DNA. Transformants containing the gene on a multicopy plasmid had three- to four-times-higher alpha-ketoglutarate dehydrogenase activity than did wild-type S. cerevisiae. Substitution of the chromosomal copy of KGD1 with a disrupted allele (kgd1::URA3) induced a deficiency in alpha-ketoglutarate dehydrogenase. The sequence of the cloned region of DNA which complements kgd1 mutants was found to have an open reading frame of 3,042 nucleotides capable of coding for a protein of Mw 114,470. The encoded protein had 38% identical residues with the reported sequence of alpha-ketoglutarate dehydrogenase from Escherichia coli. Two lines of evidence indicated that transcription of KGD1 is catabolite repressed. Higher steady-state levels of KGD1 mRNA were detected in wild-type yeast grown on the nonrepressible sugar galactose than in yeast grown on high glucose. Regulation of KGD1 was also studied by fusing different 5'-flanking regions of KGD1 to the lacZ gene of E. coli and measuring the expression of beta-galactosidase in yeast. Transformants harboring a fusion of 693 nucleotides of the 5'-flanking sequence expressed 10 times more beta-galactosidase activity when grown under derepressed conditions. The response to the carbon source was reduced dramatically when the same lacZ fusion was present in a hap2 or hap3 mutant. The promoter element(s) responsible for the regulated expression of KGD1 has been mapped to the -354 to -143 region. This region contained several

  10. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii

    PubMed Central

    Douradinha, Bruno; Reis, Viviane CB; Rogers, Matthew B; Torres, Fernando AG; Evans, Jared D; Marques Jr, Ernesto TA

    2014-01-01

    Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (>96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest. PMID:24013355

  11. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii.

    PubMed

    Douradinha, Bruno; Reis, Viviane C B; Rogers, Matthew B; Torres, Fernando A G; Evans, Jared D; Marques, Ernesto T A

    2014-01-01

    Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (> 96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest.

  12. Yeast aquaporin regulation by 4-hydroxynonenal is implicated in oxidative stress response.

    PubMed

    Rodrigues, Claudia; Tartaro Bujak, Ivana; Mihaljević, Branka; Soveral, Graça; Cipak Gasparovic, Ana

    2017-05-01

    Reactive oxygen species, especially hydrogen peroxide (H 2 O 2 ), contribute to functional molecular impairment and cellular damage, but also are necessary in normal cellular metabolism, and in low doses play stimulatory role in cell proliferation and stress resistance. In parallel, reactive aldehydes such as 4-hydroxynonenal (HNE), are lipid peroxidation breakdown products which also contribute to regulation of numerous cellular processes. Recently, channeling of H 2 O 2 by some mammalian aquaporin isoforms has been reported and suggested to contribute to aquaporin involvement in cancer malignancies, although the mechanism by which these membrane water channels are implicated in oxidative stress is not clear. In this study, two yeast models with increased levels of membrane polyunsaturated fatty acids (PUFAs) and aquaporin AQY1 overexpression, respectively, were used to evaluate their interplay in cell's oxidative status. In particular, the aim of the study was to investigate if HNE accumulation could affect aquaporin function with an outcome in oxidative stress response. The data showed that induction of aquaporin expression by PUFAs results in increased water permeability in yeast membranes and that AQY1 activity is impaired by HNE. Moreover, AQY1 expression increases cellular sensitivity to oxidative stress by facilitating H 2 O 2 influx. On the other hand, AQY1 expression has no influence on the cellular antioxidant GSH levels and catalase activity. These results strongly suggest that aquaporins are important players in oxidative stress response and could contribute to regulation of cellular processes by regulation of H 2 O 2 influx. © 2017 IUBMB Life, 69(5):355-362, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  13. PCR on yeast colonies: an improved method for glyco-engineered Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Saccharomyces cerevisiae is extensively used in bio-industries. However, its genetic engineering to introduce new metabolism pathways can cause unexpected phenotypic alterations. For example, humanisation of the glycosylation pathways is a high priority pharmaceutical industry goal for production of therapeutic glycoproteins in yeast. Genomic modifications can lead to several described physiological changes: biomass yields decrease, temperature sensitivity or cell wall structure modifications. We have observed that deletion of several N-mannosyltransferases in Saccharomyces cerevisiae, results in strains that can no longer be analyzed by classical PCR on yeast colonies. Findings In order to validate our glyco-engineered Saccharomyces cerevisiae strains, we developed a new protocol to carry out PCR directly on genetically modified yeast colonies. A liquid culture phase, combined with the use of a Hot Start DNA polymerase, allows a 3-fold improvement of PCR efficiency. The results obtained are repeatable and independent of the targeted sequence; as such the protocol is well adapted for intensive screening applications. Conclusions The developed protocol enables by-passing of many of the difficulties associated with PCR caused by phenotypic modifications brought about by humanisation of the glycosylation in yeast and allows rapid validation of glyco-engineered Saccharomyces cerevisiae cells. It has the potential to be extended to other yeast strains presenting cell wall structure modifications. PMID:23688076

  14. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants.

    PubMed

    Xu, Kai; Nagy, Peter D

    2017-04-01

    Membranous structures derived from various organelles are important for replication of plus-stranded RNA viruses. Although the important roles of co-opted host proteins in RNA virus replication have been appreciated for a decade, the equally important functions of cellular lipids in virus replication have been gaining full attention only recently. Previous work with Tomato bushy stunt tombusvirus (TBSV) in model host yeast has revealed essential roles for phosphatidylethanolamine and sterols in viral replication. To further our understanding of the role of sterols in tombusvirus replication, in this work we showed that the TBSV p33 and p92 replication proteins could bind to sterols in vitro The sterol binding by p33 is supported by cholesterol recognition/interaction amino acid consensus (CRAC) and CARC-like sequences within the two transmembrane domains of p33. Mutagenesis of the critical Y amino acids within the CRAC and CARC sequences blocked TBSV replication in yeast and plant cells. We also showed the enrichment of sterols in the detergent-resistant membrane (DRM) fractions obtained from yeast and plant cells replicating TBSV. The DRMs could support viral RNA synthesis on both the endogenous and exogenous templates. A lipidomic approach showed the lack of enhancement of sterol levels in yeast and plant cells replicating TBSV. The data support the notion that the TBSV replication proteins are associated with sterol-rich detergent-resistant membranes in yeast and plant cells. Together, the results obtained in this study and the previously published results support the local enrichment of sterols around the viral replication proteins that is critical for TBSV replication. IMPORTANCE One intriguing aspect of viral infections is their dependence on efficient subcellular assembly platforms serving replication, virion assembly, or virus egress via budding out of infected cells. These assembly platforms might involve sterol-rich membrane microdomains, which are

  15. Targeted mutagenesis of dengue virus type 2 replicon RNA by yeast in vivo recombination.

    PubMed

    Manzano, Mark; Padmanabhan, Radhakrishnan

    2014-01-01

    The use of cDNA infectious clones or subgenomic replicons is indispensable in studying flavivirus biology. Mutating nucleotides or amino acid residues gives important clues to their function in the viral life cycle. However, a major challenge to the establishment of a reverse genetics system for flaviviruses is the instability of their nucleotide sequences in Escherichia coli. Thus, direct cloning using conventional restriction enzyme-based procedures usually leads to unwanted rearrangements of the construct. In this chapter, we discuss a cloning strategy that bypasses traditional cloning procedures. We take advantage of the observations from previous studies that (1) unstable sequences in bacteria can be cloned in eukaryotic systems and (2) Saccharomyces cerevisiae has a well-studied genetics system to introduce sequences using homologous recombination. We describe a protocol to perform targeted mutagenesis in a subgenomic dengue virus 2 replicon. Our method makes use of homologous recombination in yeast using a linearized replicon and a PCR product containing the desired mutation. Constructs derived from this method can be propagated in E. coli with improved stability. Thus, yeast in vivo recombination provides an excellent strategy to genetically engineer flavivirus infectious clones or replicons because this system is compatible with inherently unstable sequences of flaviviruses and is not restricted by the limitations of traditional cloning procedures.

  16. Characterization and stability of lactobacilli and yeast microbiota in kefir grains.

    PubMed

    Vardjan, T; Mohar Lorbeg, P; Rogelj, I; Čanžek Majhenič, A

    2013-05-01

    Characterization and stability of lactobacilli and yeasts from kefir grains using culture-dependent and culture-independent methods were investigated in this study. Culture-dependent analysis, followed by sequencing of 16S ribosomal DNA for bacteria and 26S rRNA gene for yeasts, revealed 3 different species of lactobacilli and yeasts, respectively. The most frequently isolated bacterial species were Lactobacillus kefiranofaciens ssp. kefirgranum, Lb. parakefiri, and Lb. kefiri, whereas yeasts belonged to Kluyveromyces marxianus, Kazachstania exigua, and Rhodosporidium kratochvilovae. This study is the first to report on the presence of R. kratochvilovae in kefir grains. On the other hand, PCR-denaturing gradient gel electrophoresis in the culture-independent method showed that the dominant microorganisms were Lb. kefiranofaciens ssp. kefirgranum, Kl. marxianus and Ka. exigua, but did not reveal bands corresponding to Lb. parakefiri, Lb. kefiri, or R. kratochvilovae. Our results support the necessity of combining more techniques for detailed and reliable study of microbial communities in kefir grains. Another interesting finding confirmed that the detected dominant microbiota of kefir grains is very stable and did not change over experimental time. This finding is important to ensure consistent product quality. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Characterization of karyopherins in androgen receptor intracellular trafficking in the yeast model

    PubMed Central

    Nguyen, Minh M; Harmon, Robert M; Wang, Zhou

    2014-01-01

    Background: Mechanisms regulating androgen receptor (AR) subcellular localization represent an essential component of AR signaling. Karyopherins are a family of nucleocytoplasmic trafficking factors. In this paper, we used the yeast model to study the effects of karyopherins on the subcellular localization of the AR. Methods: Yeast mutants deficient in different nuclear transport factors were transformed with various AR based, GFP tagged constructs and their localization was monitored using microscopy. Results: We showed that yeast can mediate androgen-induced AR nuclear localization and that in addition to the import factor, Importinα/β, this process required the import karyopherin Sxm1. We also showed that a previously identified nuclear export sequence (NESAR) in the ligand binding domain of AR does not appear to rely on karyopherins for cytoplasmic localization. Conclusions: These results suggest that while AR nuclear import relies on karyopherin activity, AR nuclear export and/or cytoplasmic localization may require other undefined mechanisms. PMID:25031696

  18. Molecular Diagnostics of Arthroconidial Yeasts, Frequent Pulmonary Opportunists.

    PubMed

    Kaplan, Engin; Al-Hatmi, Abdullah M S; Ilkit, Macit; Gerrits van den Ende, A H G; Hagen, Ferry; Meis, Jacques F; de Hoog, G Sybren

    2018-01-01

    Magnusiomyces capitatus and Saprochaete clavata are members of the clade of arthroconidial yeasts that represent emerging opportunistic pulmonary pathogens in immunocompromised patients. Given that standard ribosomal DNA (rDNA) identification often provides confusing results, in this study, we analyzed 34 isolates with the goal of finding new genetic markers for classification using multilocus sequencing and amplified fragment length polymorphism (AFLP). The interspecific similarity obtained using rDNA markers (the internal transcribed spacer [ITS] and large subunit regions) was in the range of 96 to 99%, whereas that obtained using protein-coding loci ( Rbp2 , Act , and Tef1α ) was lower at 89.4 to 95.2%. Ultimately, Rbp2 was selected as the best marker for species distinction. On the basis of cloned ITS data, some strains proved to be misidentified in comparison with the identities obtained with phenotypic characters, protein sequences, and AFLP profiles, indicating that different copies of the ribosomal operon were present in a single species. Antifungal susceptibility testing revealed that voriconazole had the lowest MIC against M. capitatus , while amphotericin B had the lowest MIC against S. clavata Both species exhibited in vitro resistance to fluconazole and micafungin. Copyright © 2017 American Society for Microbiology.

  19. Efficient activation of transcription in yeast by the BPV1 E2 protein.

    PubMed Central

    Stanway, C A; Sowden, M P; Wilson, L E; Kingsman, A J; Kingsman, S M

    1989-01-01

    The full-length gene product encoded by the E2 open reading frame (ORF) of bovine papillomavirus type 1 (BPV1) is a transcriptional transactivator. It is believed to mediate its effect on the BPV1 long control region (LCR) by binding to motifs with the consensus sequence ACCN6GGT. The minimal functional cis active site, called the E2 response element (E2RE), in mammalian cells comprises two copies of this motif. Here we have shown that E2 can function in Saccharomyces cerevisiae by placing an E2RE upstream of a synthetic yeast assay promoter which consists of a TATA motif and an mRNA initiation site, spaced correctly. This E2RE-minimal promoter is only transcriptionally active in the presence of E2 protein and the resulting mRNA is initiated at the authentic start site. This is the first report of a mammalian viral transactivator functioning in yeast. The level of activation by E2 via the E2RE was the same as observed with the highly efficient authentic PGK promoter where the upstream activation sequence is composed of three distinct elements. Furthermore a single E2 motif which is insufficient in mammalian cells as an activation site was as efficiently utilized in yeast as the E2RE (2 motifs). Previous studies have shown that mammalian cellular activators can function in yeast and our data now extend this to viral-specific activators. Our data indicate however that while the mechanism of transactivation is broadly conserved there may be significant differences at the detailed level. Images PMID:2539584

  20. Identification of yeasts during alcoholic fermentation of tchapalo, a traditional sorghum beer from Côte d'Ivoire.

    PubMed

    N'guessan, Kouadio Florent; Brou, Kouakou; Jacques, Noémie; Casaregola, Serge; Dje, Koffi Marcellin

    2011-05-01

    This study investigated the diversity and dynamics of yeasts involved in alcoholic fermentation of a traditional sorghum beer from Côte d'Ivoire, tchapalo. A total of 240 yeast strains were isolated from fermenting sorghum wort inoculated with dry yeast from two geographic regions of Côte d'Ivoire (Abidjan and Bondoukou). Initial molecular identification to the species level was carried out using RFLP of PCR-amplified internal transcribed spacers of rDNA (ITS1-5.8S-ITS2). Ten different profiles were obtained from the restriction of PCR products with the three endonucleases HaeIII, CfoI and HinfI. Sequence analysis of the D1/D2 domain of the 26S rDNA and the ACT1 gene allowed us to assign these groups to six different species: Saccharomyces cerevisiae-like, Candida tropicalis, Pichia kudriavzevii, Pichia kluyveri, Kodamaea ohmeri and Meyerozyma caribbica. The most frequent species associated with tchapalo fermentation was S. cerevisiae-like (87.36%), followed by C. tropicalis (5.45%) and M. caribbica (2.71%). S. cerevisiae-like strains were diploid heterozygotes and exhibited three to four nucleotides divergence from the type strain in the D1/D2 domain and several indels in the more discriminant sequence of the intron of the ACT1 gene. During the process, the yeast species isolated and their frequencies varied according to the geographic origin of the dry yeast. The occurrence of some species was sporadic and only two non-Saccharomyces species were found in the final product.

  1. Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast.

    PubMed

    Jesch, Stephen A; Zhao, Xin; Wells, Martin T; Henry, Susan A

    2005-03-11

    In the yeast Saccharomyces cerevisiae, the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was used to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination of inositol and choline increased the number of repressed genes compared with inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild-type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another nonoverlapping set of genes was coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but was not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, whereas choline plays a minor role.

  2. Genome Wide Analysis Reveals Inositol, not Choline, as the Major Effector of Ino2p-Ino4p and Unfolded Protein Response Target Gene Expression in Yeast

    PubMed Central

    Jesch, Stephen A.; Zhao, Xin; Wells, Martin T.; Henry, Susan A.

    2005-01-01

    SUMMARY In the yeast Saccharomyces cerevisiae the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was utilized to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination inositol and choline increased the number of repressed genes compared to inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another non-overlapping set of genes were coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but were not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, while choline plays a minor role. PMID:15611057

  3. Demonstration of retrotransposition of the Tf1 element in fission yeast.

    PubMed

    Levin, H L; Boeke, J D

    1992-03-01

    Tf1, a retrotransposon from fission yeast, has LTRs and coding sequences resembling the protease, reverse transcriptase and integrase domains of retroviral pol genes. A unique aspect of Tf1 is that it contains a single open reading frame whereas other retroviruses and retrotransposons usually possess two or more open reading frames. To determine whether Tf1 can transpose, we overproduced Tf1 transcripts encoded by a plasmid copy of the element marked with a neo gene. Approximately 0.1-4.0% of the cell population acquired chromosomally inherited resistance to G418. DNA blot analysis demonstrated that such strains had acquired both Tf1 and neo specific sequences within a restriction fragment of the same size; the size of this restriction fragment varied between different isolates. Structural analysis of the cloned DNA flanking the Tf1-neo element of two transposition candidates with the same regions in the parent strain showed that the ability to grow on G418 was due to transposition of Tf1-neo and not other types of recombination events.

  4. Parallel evolution of the make–accumulate–consume strategy in Saccharomyces and Dekkera yeasts

    PubMed Central

    Rozpędowska, Elżbieta; Hellborg, Linda; Ishchuk, Olena P.; Orhan, Furkan; Galafassi, Silvia; Merico, Annamaria; Woolfit, Megan; Compagno, Concetta; Piškur, Jure

    2011-01-01

    Saccharomyces yeasts degrade sugars to two-carbon components, in particular ethanol, even in the presence of excess oxygen. This characteristic is called the Crabtree effect and is the background for the 'make–accumulate–consume' life strategy, which in natural habitats helps Saccharomyces yeasts to out-compete other microorganisms. A global promoter rewiring in the Saccharomyces cerevisiae lineage, which occurred around 100 mya, was one of the main molecular events providing the background for evolution of this strategy. Here we show that the Dekkera bruxellensis lineage, which separated from the Saccharomyces yeasts more than 200 mya, also efficiently makes, accumulates and consumes ethanol and acetic acid. Analysis of promoter sequences indicates that both lineages independently underwent a massive loss of a specific cis-regulatory element from dozens of genes associated with respiration, and we show that also in D. bruxellensis this promoter rewiring contributes to the observed Crabtree effect. PMID:21556056

  5. Laboratory evolution of copper tolerant yeast strains

    PubMed Central

    2012-01-01

    Background Yeast strains endowed with robustness towards copper and/or enriched in intracellular Cu might find application in biotechnology processes, among others in the production of functional foods. Moreover, they can contribute to the study of human diseases related to impairments of copper metabolism. In this study, we investigated the molecular and physiological factors that confer copper tolerance to strains of baker's yeasts. Results We characterized the effects elicited in natural strains of Candida humilis and Saccharomyces cerevisiae by the exposure to copper in the culture broth. We observed that, whereas the growth of Saccharomyces cells was inhibited already at low Cu concentration, C. humilis was naturally robust and tolerated up to 1 g · L-1 CuSO4 in the medium. This resistant strain accumulated over 7 mg of Cu per gram of biomass and escaped severe oxidative stress thanks to high constitutive levels of superoxide dismutase and catalase. Both yeasts were then "evolved" to obtain hyper-resistant cells able to proliferate in high copper medium. While in S. cerevisiae the evolution of robustness towards Cu was paralleled by the increase of antioxidative enzymes, these same activities decreased in evolved hyper-resistant Candida cells. We also characterized in some detail changes in the profile of copper binding proteins, that appeared to be modified by evolution but, again, in a different way in the two yeasts. Conclusions Following evolution, both Candida and Saccharomyces cells were able to proliferate up to 2.5 g · L-1 CuSO4 and to accumulate high amounts of intracellular copper. The comparison of yeasts differing in their robustness, allowed highlighting physiological and molecular determinants of natural and acquired copper tolerance. We observed that different mechanisms contribute to confer metal tolerance: the control of copper uptake, changes in the levels of enzymes involved in oxidative stress response and changes in the copper

  6. New yeasts-new brews: modern approaches to brewing yeast design and development.

    PubMed

    Gibson, B; Geertman, J-M A; Hittinger, C T; Krogerus, K; Libkind, D; Louis, E J; Magalhães, F; Sampaio, J P

    2017-06-01

    The brewing industry is experiencing a period of change and experimentation largely driven by customer demand for product diversity. This has coincided with a greater appreciation of the role of yeast in determining the character of beer and the widespread availability of powerful tools for yeast research. Genome analysis in particular has helped clarify the processes leading to domestication of brewing yeast and has identified domestication signatures that may be exploited for further yeast development. The functional properties of non-conventional yeast (both Saccharomyces and non-Saccharomyces) are being assessed with a view to creating beers with new flavours as well as producing flavoursome non-alcoholic beers. The discovery of the psychrotolerant S. eubayanus has stimulated research on de novo S. cerevisiae × S. eubayanus hybrids for low-temperature lager brewing and has led to renewed interest in the functional importance of hybrid organisms and the mechanisms that determine hybrid genome function and stability. The greater diversity of yeast that can be applied in brewing, along with an improved understanding of yeasts' evolutionary history and biology, is expected to have a significant and direct impact on the brewing industry, with potential for improved brewing efficiency, product diversity and, above all, customer satisfaction. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Mitochondrial Telomeres as Molecular Markers for Identification of the Opportunistic Yeast Pathogen Candida parapsilosis

    PubMed Central

    Nosek, Jozef; Tomáška, L'ubomír; Ryčovská, Adriana; Fukuhara, Hiroshi

    2002-01-01

    Recent studies have demonstrated that a large number of organisms carry linear mitochondrial DNA molecules possessing specialized telomeric structures at their ends. Based on this specific structural feature of linear mitochondrial genomes, we have developed an approach for identification of the opportunistic yeast pathogen Candida parapsilosis. The strategy for identification of C. parapsilosis strains is based on PCR amplification of specific DNA sequences derived from the mitochondrial telomere region. This assay is complemented by immunodetection of a protein component of mitochondrial telomeres. The results demonstrate that mitochondrial telomeres represent specific molecular markers with potential applications in yeast diagnostics and taxonomy. PMID:11923346

  8. Effect of storage and processing on plasmid, yeast and plant genomic DNA stability in juice from genetically modified oranges.

    PubMed

    Weiss, Julia; Ros-Chumillas, Maria; Peña, Leandro; Egea-Cortines, Marcos

    2007-01-30

    Recombinant DNA technology is an important tool in the development of plant varieties with new favourable features. There is strong opposition towards this technology due to the potential risk of horizontal gene transfer between genetically modified plant material and food-associated bacteria, especially if genes for antibiotic resistance are involved. Since horizontal transfer efficiency depends on size and length of homologous sequences, we investigated the effect of conditions required for orange juice processing on the stability of DNA from three different origins: plasmid DNA, yeast genomic DNA and endogenous genomic DNA from transgenic sweet orange (C. sinensis L. Osb.). Acidic orange juice matrix had a strong degrading effect on plasmid DNA which becomes apparent in a conformation change from supercoiled structure to nicked, linear structure within 5h of storage at 4 degrees C. Genomic yeast DNA was degraded during exposure to acidic orange juice matrix within 4 days, and also the genomic DNA of C. sinensis suffered degradation within 2 days of storage as indicated by amplification results from transgene markers. Standard pasteurization procedures affected DNA integrity depending on the method and time used. Our data show that the current standard industrial procedures to pasteurize orange juice as well as its acidic nature causes a strong degradation of both yeast and endogenous genomic DNA below sizes reported to be suitable for horizontal gene transfer.

  9. Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii.

    PubMed

    Di Rienzi, Sara C; Lindstrom, Kimberly C; Lancaster, Ragina; Rolczynski, Lisa; Raghuraman, M K; Brewer, Bonita J

    2011-02-01

    Sequencing of the yeast Kluyveromyces waltii (recently renamed Lachancea waltii) provided evidence of a whole genome duplication event in the lineage leading to the well-studied Saccharomyces cerevisiae. While comparative genomic analyses of these yeasts have proven to be extremely instructive in modeling the loss or maintenance of gene duplicates, experimental tests of the ramifications following such genome alterations remain difficult. To transform L. waltii from an organism of the computational comparative genomic literature into an organism of the functional comparative genomic literature, we have developed genetic, molecular and genomic tools for working with L. waltii. In particular, we have characterized basic properties of L. waltii (growth, ploidy, molecular karyotype, mating type and the sexual cycle), developed transformation, cell cycle arrest and synchronization protocols, and have created centromeric and non-centromeric vectors as well as a genome browser for L. waltii. We hope that these tools will be used by the community to follow up on the ideas generated by sequence data and lead to a greater understanding of eukaryotic biology and genome evolution. 2010 John Wiley & Sons, Ltd.

  10. Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii

    PubMed Central

    Di Rienzi, Sara C.; Lindstrom, Kimberly C.; Lancaster, Ragina; Rolczynski, Lisa; Raghuraman, M. K.; Brewer, Bonita J.

    2011-01-01

    Sequencing of the yeast Kluyveromyces waltii (recently renamed Lachancea waltii) provided evidence of a whole genome duplication event in the lineage leading to the well-studied Saccharomyces cerevisiae. While comparative genomic analyses of these yeasts have proven to be extremely instructive in modeling the loss or maintenance of gene duplicates, experimental tests of the ramifications following such genome alterations remain difficult. To transform L. waltii from an organism of the computational comparative genomic literature into an organism of the functional comparative genomic literature, we have developed genetic, molecular and genomic tools for working with L. waltii. In particular, we have characterized basic properties of L. waltii (growth, ploidy, molecular karyotype, mating type and the sexual cycle), developed transformation, cell cycle arrest and synchronization protocols, and have created centromeric and non-centromeric vectors as well as a genome browser for L. waltii. We hope that these tools will be used by the community to follow up on the ideas generated by sequence data and lead to a greater understanding of eukaryotic biology and genome evolution. PMID:21246627

  11. House microbiotas as sources of lactic acid bacteria and yeasts in traditional Italian sourdoughs.

    PubMed

    Minervini, Fabio; Lattanzi, Anna; De Angelis, Maria; Celano, Giuseppe; Gobbetti, Marco

    2015-12-01

    This study aimed at understanding the extent of contamination by lactic acid bacteria (LAB) and yeasts from the house microbiotas during sourdough back-slopping. Besides sourdoughs, wall, air, storage box, dough mixer and flour of four bakeries were analyzed. Based on plate counts, LAB and yeasts dominated the house microbiota. Based on high throughput sequencing of the 16S rRNA genes, flour harbored the highest number of Firmicutes, but only few of them adapted to storage box, dough mixer and sourdough. Lactobacillus sanfranciscensis showed the highest abundance in dough mixer and sourdoughs. Lactobacillus plantarum persisted only in storage box, dough mixer and sourdough of two bakeries. Weissella cibaria also showed higher adaptability in sourdough than in bakery equipment, suggesting that flour is the main origin of this species. Based on 18S rRNA data, Saccharomyces cerevisiae was the dominant yeast in house and sourdough microbiotas, excepted one bakery dominated by Kazachstania exigua. The results of this study suggest that the dominant species of sourdough LAB and yeasts dominated also the house microbiota. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection

    PubMed Central

    Gelperin, Daniel M.; White, Michael A.; Wilkinson, Martha L.; Kon, Yoshiko; Kung, Li A.; Wise, Kevin J.; Lopez-Hoyo, Nelson; Jiang, Lixia; Piccirillo, Stacy; Yu, Haiyuan; Gerstein, Mark; Dumont, Mark E.; Phizicky, Eric M.; Snyder, Michael; Grayhack, Elizabeth J.

    2005-01-01

    Functional analysis of the proteome is an essential part of genomic research. To facilitate different proteomic approaches, a MORF (moveable ORF) library of 5854 yeast expression plasmids was constructed, each expressing a sequence-verified ORF as a C-terminal ORF fusion protein, under regulated control. Analysis of 5573 MORFs demonstrates that nearly all verified ORFs are expressed, suggests the authenticity of 48 ORFs characterized as dubious, and implicates specific processes including cytoskeletal organization and transcriptional control in growth inhibition caused by overexpression. Global analysis of glycosylated proteins identifies 109 new confirmed N-linked and 345 candidate glycoproteins, nearly doubling the known yeast glycome. PMID:16322557

  13. Effect of long-term exposure to mobile phone radiation on alpha-Int1 gene sequence of Candida albicans

    PubMed Central

    Shahin-jafari, Ariyo; Bayat, Mansour; Shahhosseiny, Mohammad Hassan; Tajik, Parviz; Roudbar-mohammadi, Shahla

    2015-01-01

    Over the last decade, communication industries have witnessed a tremendous expansion, while, the biological effects of electromagnetic waves have not been fully elucidated. Current study aimed at evaluating the mutagenic effect of long-term exposure to 900-MHz radiation on alpha-Int1 gene sequences of Candida albicans. A standard 900 MHz radiation generator was used for radiation. 10 ml volumes from a stock suspension of C. albicans were transferred into 10 polystyrene tubes. Five tubes were exposed at 4 °C to a fixed magnitude of radiation with different time periods of 10, 70, 210, 350 and 490 h. The other 5 tubes were kept far enough from radiation. The samples underwent genomic DNA extraction. PCR amplification of alpha-Int1 gene sequence was done using one set of primers. PCR products were resolved using agarose gel electrophoresis and the nucleotide sequences were determined. All samples showed a clear electrophoretic band around 441 bp and further sequencing revealed the amplified DNA segments are related to alpha-Int1 gene of the yeast. No mutations in the gene were seen in radiation exposed samples. Long-term exposure of the yeast to mobile phone radiation under the above mentioned conditions had no mutagenic effect on alpha-Int1 gene sequence. PMID:27081370

  14. Copper-tolerant yeasts: Raman spectroscopy in determination of bioaccumulation mechanism.

    PubMed

    Radić, Danka S; Pavlović, Vera P; Lazović, Milana M; Jovičić-Petrović, Jelena P; Karličić, Vera M; Lalević, Blažo T; Raičević, Vera B

    2017-09-01

    Modern, efficient, and cost-effective approach to remediation of heavy metal-contaminated soil is based on the application of microorganisms. In this paper, four isolates from agricultural and urban contaminated soil showed abundant growth in the presence of copper(II) sulfate pentahydrate (CuSO 4 ·5H 2 O) up to 2 mM. Selected yeasts were identified by molecular methods as Candida tropicalis (three isolates) and Schwanniomyces occidentalis (one isolate). C. tropicalis (4TD1101S) showed the highest percentage of bioaccumulation capabilities (94.37%), determined by the inductively coupled plasma optical emission spectrometry (ICP-OES). The Raman spectra of C. tropicalis (4TD1101S) analyzed in a medium with the addition of 2 mM CuSO 4 ·5H 2 O showed certain increase in metallothionein production, which represents a specific response of the yeast species to the stress conditions. These results indicate that soil yeasts represent a potential for practical application in the bioremediation of contaminated environments.

  15. Mapping Ribonucleotides Incorporated into DNA by Hydrolytic End-Sequencing.

    PubMed

    Orebaugh, Clinton D; Lujan, Scott A; Burkholder, Adam B; Clausen, Anders R; Kunkel, Thomas A

    2018-01-01

    Ribonucleotides embedded within DNA render the DNA sensitive to the formation of single-stranded breaks under alkali conditions. Here, we describe a next-generation sequencing method called hydrolytic end sequencing (HydEn-seq) to map ribonucleotides inserted into the genome of Saccharomyce cerevisiae strains deficient in ribonucleotide excision repair. We use this method to map several genomic features in wild-type and replicase variant yeast strains.

  16. Systematic bacterialization of yeast genes identifies a near-universally swappable pathway

    PubMed Central

    Kachroo, Aashiq H; Laurent, Jon M; Akhmetov, Azat; Szilagyi-Jones, Madelyn; McWhite, Claire D; Zhao, Alice; Marcotte, Edward M

    2017-01-01

    Eukaryotes and prokaryotes last shared a common ancestor ~2 billion years ago, and while many present-day genes in these lineages predate this divergence, the extent to which these genes still perform their ancestral functions is largely unknown. To test principles governing retention of ancient function, we asked if prokaryotic genes could replace their essential eukaryotic orthologs. We systematically replaced essential genes in yeast by their 1:1 orthologs from Escherichia coli. After accounting for mitochondrial localization and alternative start codons, 31 out of 51 bacterial genes tested (61%) could complement a lethal growth defect and replace their yeast orthologs with minimal effects on growth rate. Replaceability was determined on a pathway-by-pathway basis; codon usage, abundance, and sequence similarity contributed predictive power. The heme biosynthesis pathway was particularly amenable to inter-kingdom exchange, with each yeast enzyme replaceable by its bacterial, human, or plant ortholog, suggesting it as a near-universally swappable pathway. DOI: http://dx.doi.org/10.7554/eLife.25093.001 PMID:28661399

  17. Vaginal yeast infection

    MedlinePlus

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts in the ...

  18. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Synthetic Genetic Arrays: Automation of Yeast Genetics.

    PubMed

    Kuzmin, Elena; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2016-04-01

    Genome-sequencing efforts have led to great strides in the annotation of protein-coding genes and other genomic elements. The current challenge is to understand the functional role of each gene and how genes work together to modulate cellular processes. Genetic interactions define phenotypic relationships between genes and reveal the functional organization of a cell. Synthetic genetic array (SGA) methodology automates yeast genetics and enables large-scale and systematic mapping of genetic interaction networks in the budding yeast,Saccharomyces cerevisiae SGA facilitates construction of an output array of double mutants from an input array of single mutants through a series of replica pinning steps. Subsequent analysis of genetic interactions from SGA-derived mutants relies on accurate quantification of colony size, which serves as a proxy for fitness. Since its development, SGA has given rise to a variety of other experimental approaches for functional profiling of the yeast genome and has been applied in a multitude of other contexts, such as genome-wide screens for synthetic dosage lethality and integration with high-content screening for systematic assessment of morphology defects. SGA-like strategies can also be implemented similarly in a number of other cell types and organisms, includingSchizosaccharomyces pombe,Escherichia coli, Caenorhabditis elegans, and human cancer cell lines. The genetic networks emerging from these studies not only generate functional wiring diagrams but may also play a key role in our understanding of the complex relationship between genotype and phenotype. © 2016 Cold Spring Harbor Laboratory Press.

  20. Purification and Characterization of Enzymes from Yeast: An Extended Undergraduate Laboratory Sequence for Large Classes

    ERIC Educational Resources Information Center

    Johanson, Kelly E.; Watt, Terry J.; McIntyre, Neil R.; Thompson, Marleesa

    2013-01-01

    Providing a project-based experience in an undergraduate biochemistry laboratory class can be complex with large class sizes and limited resources. We have designed a 6-week curriculum during which students purify and characterize the enzymes invertase and phosphatase from bakers yeast. Purification is performed in two stages via ethanol…

  1. Sequence of the amino-terminal region of rat liver ribosomal proteins S4, S6, S8, L6, L7a, L18, L27, L30, L37, L37a, and L39.

    PubMed

    Wittmann-Liebold, B; Geissler, A W; Lin, A; Wool, I G

    1979-01-01

    The sequence of the amino-terminal region of eleven rat liver ribosomal proteins--S4, S6, S8, L6, L7a, L18, L27, L30, L37a, and L39--was determined. The analysis confirmed the homogeneity of the proteins and suggests that they are unique, since no extensive common sequences were found. The N-terminal regions of the rat liver proteins were compared with amino acid sequences in Saccharomyces cerevisiae and in Escherichia coli ribosomal proteins. It seems likely that the proteins L37 from rat liver and Y55 from yeast ribosomes are homologous. It is possible that rat liver L7a or L37a or both are related to S cerevisiae Y44, although the similar sequences are at the amino-terminus of the rat liver proteins and in an internal region of Y44. A number of similarities in the sequences of rat liver and E coli ribosomal proteins have been found; however, it is not yet possible to say whether they connote a common ancestry.

  2. Marine yeast isolation and industrial application.

    PubMed

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-09-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. © 2014 The Authors FEMS Yeast Research published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  3. Biodegradation of Jet Fuel-4 (JP-4) in Sequencing Batch Reactors

    DTIC Science & Technology

    1992-06-01

    nalw~eo %CUMENTATION PAGE__ _ _ _ _ _ _ _ _O 74S Ab -A258 020 L AW POi~W6 DATI .~ TYP AIMqm ,-& 0 U. glbs A~ I ma"&LFUN Mu BIODEGRADATION OF JET FUEL...Specific Objectives of This Proposal Are: 1. To assess the ability of C. resinae , P. chrysosporium and selected bacterial consortia to degrade individual...chemical components of JP-4. 2. To develop a sequencing batch reactor that utilizes C. resinae to degrade chemical components of JP-4 in contaminated

  4. Intra-Genomic Internal Transcribed Spacer Region Sequence Heterogeneity and Molecular Diagnosis in Clinical Microbiology.

    PubMed

    Zhao, Ying; Tsang, Chi-Ching; Xiao, Meng; Cheng, Jingwei; Xu, Yingchun; Lau, Susanna K P; Woo, Patrick C Y

    2015-10-22

    Internal transcribed spacer region (ITS) sequencing is the most extensively used technology for accurate molecular identification of fungal pathogens in clinical microbiology laboratories. Intra-genomic ITS sequence heterogeneity, which makes fungal identification based on direct sequencing of PCR products difficult, has rarely been reported in pathogenic fungi. During the process of performing ITS sequencing on 71 yeast strains isolated from various clinical specimens, direct sequencing of the PCR products showed ambiguous sequences in six of them. After cloning the PCR products into plasmids for sequencing, interpretable sequencing electropherograms could be obtained. For each of the six isolates, 10-49 clones were selected for sequencing and two to seven intra-genomic ITS copies were detected. The identities of these six isolates were confirmed to be Candida glabrata (n=2), Pichia (Candida) norvegensis (n=2), Candida tropicalis (n=1) and Saccharomyces cerevisiae (n=1). Multiple sequence alignment revealed that one to four intra-genomic ITS polymorphic sites were present in the six isolates, and all these polymorphic sites were located in the ITS1 and/or ITS2 regions. We report and describe the first evidence of intra-genomic ITS sequence heterogeneity in four different pathogenic yeasts, which occurred exclusively in the ITS1 and ITS2 spacer regions for the six isolates in this study.

  5. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes

    PubMed Central

    Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin

    2016-01-01

    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including “codon capture,” “genome streamlining,” and “ambiguous intermediate” theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNAAla containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. PMID:27197221

  6. Engineering yeasts as platform organisms for cannabinoid biosynthesis.

    PubMed

    Zirpel, Bastian; Degenhardt, Friederike; Martin, Chantale; Kayser, Oliver; Stehle, Felix

    2017-10-10

    Δ 9 -tetrahydrocannabinolic acid (THCA) is a plant derived secondary natural product from the plant Cannabis satival. The discovery of the human endocannabinoid system in the late 1980s resulted in a growing number of known physiological functions of both synthetic and plant derived cannabinoids. Thus, manifold therapeutic indications of cannabinoids currently comprise a significant area of research. Here we reconstituted the final biosynthetic cannabinoid pathway in yeasts. The use of the soluble prenyltransferase NphB from Streptomyces sp. strain CL190 enables the replacement of the native transmembrane prenyltransferase cannabigerolic acid synthase from C. sativa. In addition to the desired product cannabigerolic acid, NphB catalyzes an O-prenylation leading to 2-O-geranyl olivetolic acid. We show for the first time that the bacterial prenyltransferase and the final enzyme of the cannabinoid pathway tetrahydrocannabinolic acid synthase can both be actively expressed in the yeasts Saccharomyces cerevisiae and Komagataella phaffii simultaneously. While enzyme activities in S. cerevisiae were insufficient to produce THCA from olivetolic acid and geranyl diphosphate, genomic multi-copy integrations of the enzyme's coding sequences in K. phaffii resulted in successful synthesis of THCA from olivetolic acid and geranyl diphosphate. This study is an important step toward total biosynthesis of valuable cannabinoids and derivatives and demonstrates the potential for developing a sustainable and secure yeast bio-manufacturing platform. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Strain conformation controls the specificity of cross-species prion transmission in the yeast model.

    PubMed

    Grizel, Anastasia V; Rubel, Aleksandr A; Chernoff, Yury O

    2016-07-03

    Transmissible self-assembled fibrous cross-β polymer infectious proteins (prions) cause neurodegenerative diseases in mammals and control non-Mendelian heritable traits in yeast. Cross-species prion transmission is frequently impaired, due to sequence differences in prion-forming proteins. Recent studies of prion species barrier on the model of closely related yeast species show that colocalization of divergent proteins is not sufficient for the cross-species prion transmission, and that an identity of specific amino acid sequences and a type of prion conformational variant (strain) play a major role in the control of transmission specificity. In contrast, chemical compounds primarily influence transmission specificity via favoring certain strain conformations, while the species origin of the host cell has only a relatively minor input. Strain alterations may occur during cross-species prion conversion in some combinations. The model is discussed which suggests that different recipient proteins can acquire different spectra of prion strain conformations, which could be either compatible or incompatible with a particular donor strain.

  8. Yeast ecology of Kombucha fermentation.

    PubMed

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  9. [Evaluation of mass spectrometry for the identification of clinically interesting yeasts].

    PubMed

    Galán, Fátima; García-Agudo, Lidia; Guerrero, Inmaculada; Marín, Pilar; García-Tapia, Ana; García-Martos, Pedro; Rodríguez-Iglesias, Manuel

    2015-01-01

    Identification of yeasts is based on morphological, biochemical and nutritional characteristics, and using molecular methods. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, a new method for the identification of microorganisms, has demonstrated to be very useful. The aim of this study is to evaluate this new method in the identification of yeasts. A total of 600 strains of yeasts isolated from clinical specimens belonging to 9 genera and 43 species were tested. Identification was made by sequencing of the ITS regions of ribosomal DNA, assimilation of carbon compounds (ID 32C), and mass spectrometry on a Microflex spectrometer (Bruker Daltonics GmbH, Germany). A total of 569 strains (94.8%) were identified to species level by ID 32C, and 580 (96.7%) by MALDI-TOF. Concordance between both methods was observed for 553 strains (92.2%), with 100% in clinically relevant species: C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and almost 100% in C. krusei. MALDI-TOF identified species requiring molecular methods: Candida dubliniensis, C. nivariensis, C. metapsilosis and C. orthopsilosis. Some irregularities were observed in the identification of arthroconidia yeast and basidiomycetes. MALDI-TOF is a rapid, effective and economic method, which enables the identification of most clinically important yeasts and the differentiation of closely related species. It would be desirable to include more species in its database to expand its performance. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  10. Characterization of pectinase activity for enology from yeasts occurring in Argentine Bonarda grape.

    PubMed

    Merín, María Gabriela; Martín, María Carolina; Rantsiou, Kalliopi; Cocolin, Luca; de Ambrosini, Vilma Inés Morata

    2015-01-01

    Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic polymers from grape, contributing to enhance process efficiency and wine quality. This study aimed to analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic activity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and during fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation ecosystem. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at 12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not produce β-glucosidase activity under these conditions. The strain showed encouraging enological properties for its potential use in low-temperature winemaking.

  11. Characterization of pectinase activity for enology from yeasts occurring in Argentine Bonarda grape

    PubMed Central

    Merín, María Gabriela; Martín, María Carolina; Rantsiou, Kalliopi; Cocolin, Luca; de Ambrosini, Vilma Inés Morata

    2015-01-01

    Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic polymers from grape, contributing to enhance process efficiency and wine quality. This study aimed to analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic activity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and during fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation ecosystem. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at 12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not produce β-glucosidase activity under these conditions. The strain showed encouraging enological properties for its potential use in low-temperature winemaking. PMID:26413065

  12. Contacts between the factor TUF and RPG sequences.

    PubMed

    Vignais, M L; Huet, J; Buhler, J M; Sentenac, A

    1990-08-25

    The yeast TUF factor binds specifically to RPG-like sequences involved in multiple functions at enhancers, silencers, and telomeres. We have characterized the interaction of TUF with its optimal binding sequence, rpg-1 (1-ACACCCATACATTT-14), using a gel DNA-binding assay in combination with methylation protection and mutagenesis experiments. As many as 10 base pairs appear to be engaged in factor binding. Analysis of a collection of 30 different RPG mutants demonstrated the importance of 8 base pairs at position 2, 3, 4, 5, 6, 7, 10, and 12 and the critical role of the central GC pair at position 5. Methylation protection data on four different natural sites confirmed a close contact at positions 4, 5, 6, and 10 and suggested additional contacts at base pairs 8, 12, and 13. The derived consensus sequence was RCAAYCCRYNCAYY. A quantitative band shift analysis was used to determine the equilibrium dissociation constant for the complex of TUF and its optimal binding site rpg-1. The specific dissociation constant (K8) was found to be 1.3 x 10(-11) M. The comparison of the K8 value with the dissociation constant obtained for nonspecific DNA sites (Kn8 = 8.7 x 10(-6) M) shows the high binding selectivity of TUF for its specific RPG target.

  13. Marine yeast isolation and industrial application

    PubMed Central

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-01-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. PMID:24738708

  14. Identification of Chemical-Genetic Interactions via Parallel Analysis of Barcoded Yeast Strains.

    PubMed

    Suresh, Sundari; Schlecht, Ulrich; Xu, Weihong; Miranda, Molly; Davis, Ronald W; Nislow, Corey; Giaever, Guri; St Onge, Robert P

    2016-09-01

    The Yeast Knockout Collection is a complete set of gene deletion strains for the budding yeast, Saccharomyces cerevisiae In each strain, one of approximately 6000 open-reading frames is replaced with a dominant selectable marker flanked by two DNA barcodes. These barcodes, which are unique to each gene, allow the growth of thousands of strains to be individually measured from a single pooled culture. The collection, and other resources that followed, has ushered in a new era in chemical biology, enabling unbiased and systematic identification of chemical-genetic interactions (CGIs) with remarkable ease. CGIs link bioactive compounds to biological processes, and hence can reveal the mechanism of action of growth-inhibitory compounds in vivo, including those of antifungal, antibiotic, and anticancer drugs. The chemogenomic profiling method described here measures the sensitivity induced in yeast heterozygous and homozygous deletion strains in the presence of a chemical inhibitor of growth (termed haploinsufficiency profiling and homozygous profiling, respectively, or HIPHOP). The protocol is both scalable and amenable to automation. After competitive growth of yeast knockout collection cultures, with and without chemical inhibitors, CGIs can be identified and quantified using either array- or sequencing-based approaches as described here. © 2016 Cold Spring Harbor Laboratory Press.

  15. Candida northwykensis sp. nov., a novel yeast isolated from the gut of the click beetle Melanotus villosus.

    PubMed

    Ravella, Sreenivas Rao; Donovan, Neil; James, Stephen A; Shivaji, Sisinthy; Arunasri, Kotakonda; Bond, Christopher J; Roberts, Ian N; Hobbs, Phil J

    2011-08-01

    Two yeast morphotypes, BET 4(T) and BET 7, were isolated from the gut of click beetle Melanotus villosus. Click beetles were collected from the decaying timber within the woodlands of North Wyke Research, South West England, UK (latitude, 50°46'29″N; longitude, 3°55'23″W). Morphotype BET 7 was identified as Debaryomyces hansenii, and the other morphotype, BET 4(T), was found to differ from Priceomyces castillae and Priceomyces haplophilus, its closest phylogenetic neighbours, by 5.0% with respect to the nucleotide sequence of the D1/D2 domain of the large-subunit (LSU) rRNA gene, and by 8.0% with respect to the ribosomal internal-transcribed spacer (ITS) region. BET 4(T) also differ from P. castillae and P. haplophilus in a number of different phenotypic characteristics. Thus, based on the unique nucleotide sequences of its D1/D2 domain and ITS region, its physiological characteristics and an inability to sporulate, strain BET 4(T) is assigned the status of a new species of Candida, for which the name Candida northwykensis sp. nov., is proposed. The type strain is BET 4(T) (NCYC 3525(T) = CBS 11370(T)).

  16. Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii.

    PubMed

    Ortiz-Merino, Raúl A; Kuanyshev, Nurzhan; Byrne, Kevin P; Varela, Javier A; Morrissey, John P; Porro, Danilo; Wolfe, Kenneth H; Branduardi, Paola

    2018-03-01

    Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii 's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae Furthermore, formate dehydrogenase ( FDH ) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production. IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression patterns

  17. The Effects of a Probiotic Yeast on the Bacterial Diversity and Population Structure in the Rumen of Cattle

    PubMed Central

    Pinloche, Eric; McEwan, Neil; Marden, Jean-Philippe; Bayourthe, Corinne; Auclair, Eric; Newbold, C. Jamie

    2013-01-01

    It has been suggested that the ability of live yeast to improve milk yield and weight gain in cattle is because the yeast stimulates bacterial activity within the rumen. However it remains unclear if this is a general stimulation of all species or a specific stimulation of certain species. Here we characterised the change in the bacterial population within the rumen of cattle fed supplemental live yeast. Three cannulated lactating cows received a daily ration (24 kg/d) of corn silage (61% of DM), concentrates (30% of DM), dehydrated alfalfa (9% of DM) and a minerals and vitamins mix (1% of DM). The effect of yeast (BIOSAF SC 47, Lesaffre Feed Additives, France; 0.5 or 5 g/d) was compared to a control (no additive) in a 3×3 Latin square design. The variation in the rumen bacterial community between treatments was assessed using Serial Analysis of V1 Ribosomal Sequence Tag (SARST-V1) and 454 pyrosequencing based on analysis of the 16S rRNA gene. Compared to the control diet supplementation of probiotic yeast maintained a healthy fermentation in the rumen of lactating cattle (higher VFA concentration [high yeast dose only], higher rumen pH, and lower Eh and lactate). These improvements were accompanied with a shift in the main fibrolytic group (Fibrobacter and Ruminococcus) and lactate utilising bacteria (Megasphaera and Selenomonas). In addition we have shown that the analysis of short V1 region of 16s rRNA gene (50–60 bp) could give as much phylogenetic information as a longer read (454 pyrosequencing of 250 bp). This study also highlights the difficulty of drawing conclusions on composition and diversity of complex microbiota because of the variation caused by the use of different methods (sequencing technology and/or analysis). PMID:23844101

  18. Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data

    PubMed Central

    Shen, Xing-Xing; Zhou, Xiaofan; Kominek, Jacek; Kurtzman, Cletus P.; Hittinger, Chris Todd; Rokas, Antonis

    2016-01-01

    Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multilocus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationships remain unsupported. In contrast, phylogenomic analyses have involved relatively few taxa and lineages that were often selected with limited considerations for covering the breadth of yeast biodiversity. Here we used genome sequence data from 86 publicly available yeast genomes representing nine of the 11 known major lineages and 10 nonyeast fungal outgroups to generate a 1233-gene, 96-taxon data matrix. Species phylogenies reconstructed using two different methods (concatenation and coalescence) and two data matrices (amino acids or the first two codon positions) yielded identical and highly supported relationships between the nine major lineages. Aside from the lineage comprised by the family Pichiaceae, all other lineages were monophyletic. Most interrelationships among yeast species were robust across the two methods and data matrices. However, eight of the 93 internodes conflicted between analyses or data sets, including the placements of: the clade defined by species that have reassigned the CUG codon to encode serine, instead of leucine; the clade defined by a whole genome duplication; and the species Ascoidea rubescens. These phylogenomic analyses provide a robust roadmap for future comparative work across the yeast subphylum in the disciplines of taxonomy, molecular genetics, evolutionary biology, ecology, and biotechnology. To further this end, we have also provided a BLAST server to query the 86 Saccharomycotina genomes, which can be found at http://y1000plus.org/blast. PMID:27672114

  19. Reconstructing the backbone of the Saccharomycotina yeast phylogeny using genome-scale data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Xing -Xing; Zhou, Xiaofan; Kominek, Jacek

    Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multilocus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationships remain unsupported. In contrast, phylogenomic analyses have involved relatively few taxa and lineages that were often selected with limited considerations for covering the breadth of yeast biodiversity. Here we used genome sequence data from 86 publicly available yeast genomes representing nine of the 11 known major lineages and 10 nonyeastmore » fungal outgroups to generate a 1233-gene, 96-taxon data matrix. Species phylogenies reconstructed using two different methods (concatenation and coalescence) and two data matrices (amino acids or the first two codon positions) yielded identical and highly supported relationships between the nine major lineages. Aside from the lineage comprised by the family Pichiaceae, all other lineages were monophyletic. Most interrelationships among yeast species were robust across the two methods and data matrices. Furthermore, eight of the 93 internodes conflicted between analyses or data sets, including the placements of: the clade defined by species that have reassigned the CUG codon to encode serine, instead of leucine; the clade defined by a whole genome duplication; and the species Ascoidea rubescens. These phylogenomic analyses provide a robust roadmap for future comparative work across the yeast subphylum in the disciplines of taxonomy, molecular genetics, evolutionary biology, ecology, and biotechnology. To further this end, we have also provided a BLAST server to query the 86 Saccharomycotina genomes, which can be found at http://y1000plus.org/blast.« less

  20. Reconstructing the backbone of the Saccharomycotina yeast phylogeny using genome-scale data

    DOE PAGES

    Shen, Xing -Xing; Zhou, Xiaofan; Kominek, Jacek; ...

    2016-09-26

    Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multilocus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationships remain unsupported. In contrast, phylogenomic analyses have involved relatively few taxa and lineages that were often selected with limited considerations for covering the breadth of yeast biodiversity. Here we used genome sequence data from 86 publicly available yeast genomes representing nine of the 11 known major lineages and 10 nonyeastmore » fungal outgroups to generate a 1233-gene, 96-taxon data matrix. Species phylogenies reconstructed using two different methods (concatenation and coalescence) and two data matrices (amino acids or the first two codon positions) yielded identical and highly supported relationships between the nine major lineages. Aside from the lineage comprised by the family Pichiaceae, all other lineages were monophyletic. Most interrelationships among yeast species were robust across the two methods and data matrices. Furthermore, eight of the 93 internodes conflicted between analyses or data sets, including the placements of: the clade defined by species that have reassigned the CUG codon to encode serine, instead of leucine; the clade defined by a whole genome duplication; and the species Ascoidea rubescens. These phylogenomic analyses provide a robust roadmap for future comparative work across the yeast subphylum in the disciplines of taxonomy, molecular genetics, evolutionary biology, ecology, and biotechnology. To further this end, we have also provided a BLAST server to query the 86 Saccharomycotina genomes, which can be found at http://y1000plus.org/blast.« less

  1. Indigenous Georgian Wine-Associated Yeasts and Grape Cultivars to Edit the Wine Quality in a Precision Oenology Perspective.

    PubMed

    Vigentini, Ileana; Maghradze, David; Petrozziello, Maurizio; Bonello, Federica; Mezzapelle, Vito; Valdetara, Federica; Failla, Osvaldo; Foschino, Roberto

    2016-01-01

    In Georgia, one of the most ancient vine-growing environment, the homemade production of wine is still very popular in every rural family and spontaneous fermentation of must, without addition of chemical preservatives, is the norm. The present work investigated the yeast biodiversity in five Georgian areas (Guria, Imereti, Kakheti, Kartli, Ratcha-Lechkhumi) sampling grapes and wines from 22 different native cultivars, in 26 vineyards and 19 family cellars. One hundred and eighty-two isolates were ascribed to 15 different species by PCR-ITS and RFLP, and partial sequencing of D1/D2 domain 26S rDNA gene. Metschnikowia pulcherrima (F' = 0.56, I' = 0.32), Hanseniaspora guilliermondii (F' = 0.49, I' = 0.27), and Cryptococcus flavescens (F' = 0.31, I' = 0.11) were the dominant yeasts found on grapes, whereas Saccharomyces cerevisiae showed the highest prevalence into wine samples. Seventy four isolates with fermentative potential were screened for oenological traits such as ethanol production, resistance to SO2, and acetic acid, glycerol and H2S production. Three yeast strains (Kluyveromyces marxianus UMY207, S. cerevisiae UMY255, Torulaspora delbrueckii UMY196) were selected and separately inoculated in vinifications experiments at a Georgian cellar. Musts were prepared from healthy grapes of local varieties, Goruli Mtsvane (white berry cultivar) and Saperavi (black berry cultivar). Physical (°Brix) and microbial analyses (plate counts) were performed to monitor the fermentative process. The isolation of indigenous S. cerevisiae yeasts beyond the inoculated strains indicated that a co-presence occurred during the vinification tests. Results from quantitative GC-FID analysis of volatile compounds revealed that the highest amount of fermentation flavors, such as 4-ethoxy-4-oxobutanoic acid (monoethyl succinate), 2-methylpropan-1-ol, ethyl 2-hydroxypropanoate, and 2-phenylethanol, were significantly more produced in fermentation conducted in Saperavi variety inoculated

  2. Type 1 diabetes in children is not a predisposing factor for oral yeast colonization.

    PubMed

    Costa, Ana L; Silva, Branca M A; Soares, Rui; Mota, Diana; Alves, Vera; Mirante, Alice; Ramos, João C; Maló de Abreu, João; Santos-Rosa, Manuel; Caramelo, Francisco; Gonçalves, Teresa

    2017-06-01

    Type 1 diabetes mellitus (T1D) is considered a risk factor associated with oral yeast infections. The aim of this study was to evaluate the yeast oral carriage (in saliva and mucosal surface) of children with T1D and potential relation with host factors, particularly the subset of CD4+ T cells. Yeasts were quantified and identified in stimulated saliva and in cheek mucosal swabs of 133 diabetic T1D and 72 healthy control subjects. Salivary lymphocytes were quantified using flow cytometry. The presence of yeasts in the oral cavity (60% of total patients) was not affected by diabetes, metabolic control, duration of the disease, salivary flow rate or saliva buffer capacity, by age, sex, place of residence, number of daily meals, consumption of sweets or frequency of tooth brushing. Candida albicans was the most prevalent yeast species, but a higher number of yeast species was isolated in nondiabetics. T1D children with HbA1c ≤ 7.5 (metabolically controlled) presented higher number of CD4+ T salivary subsets when compared with the other groups of children (non-diabetic and nonmetabolically controlled) and also presented the highest number of individuals without oral yeast colonization. In conclusion, T1D does not predisposes for increased oral yeast colonization and a higher number of salivary CD4+T cells seems to result in the absence of oral colonization by yeasts. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Reducing patulin contamination in apple juice by using inactive yeast.

    PubMed

    Yue, Tianli; Dong, Qinfang; Guo, Caixia; Worobo, Randy W

    2011-01-01

    The mycotoxin, patulin (4-hydroxy-4H-furo[3,2c]pyran-2[6H]-one), is a secondary metabolite produced mainly in rotten parts of fruits and vegetables, most notably apples and apple products, by a wide range of fungal species in the genera Penicillium, Aspergillus, and Byssochlamys. Due to its mutagenic and teratogenic nature and possible health risks to consumers, many countries have regulations to reduce levels of patulin in apple products. In the present study, reduction of patulin contamination in apple juice by using 10 different inactivated yeast strains was assessed. Our results indicated that nearly twofold differences in biomass existed among the 10 yeast strains. Eight of the 10 inactivated yeast strains could provide >50% patulin reduction in apple juice within 24 h, with the highest reduction rate being >72%. Furthermore, juice quality parameters, i.e., degrees Brix, total sugar, titratable acidity, color value, and clarity, of the treated apple juice were very similar to those of the untreated patulin-free juice. Potential applications of using inactivated yeast strain for patulin control are also discussed.

  4. Exome capture sequencing identifies a novel mutation in BBS4

    PubMed Central

    Wang, Hui; Chen, Xianfeng; Dudinsky, Lynn; Patenia, Claire; Chen, Yiyun; Li, Yumei; Wei, Yue; Abboud, Emad B.; Al-Rajhi, Ali A.; Lewis, Richard Alan; Lupski, James R.; Mardon, Graeme; Gibbs, Richard A.; Perkins, Brian D.

    2011-01-01

    Purpose Leber congenital amaurosis (LCA) is one of the most severe eye dystrophies characterized by severe vision loss at an early stage and accounts for approximately 5% of all retinal dystrophies. The purpose of this study was to identify a novel LCA disease allele or gene and to develop an approach combining genetic mapping with whole exome sequencing. Methods Three patients from King Khaled Eye Specialist Hospital (KKESH205) underwent whole genome single nucleotide polymorphism genotyping, and a single candidate region was identified. Taking advantage of next-generation high-throughput DNA sequencing technologies, whole exome capture sequencing was performed on patient KKESH205#7. Sanger direct sequencing was used during the validation step. The zebrafish model was used to examine the function of the mutant allele. Results A novel missense mutation in Bardet-Biedl syndrome 4 protein (BBS4) was identified in a consanguineous family from Saudi Arabia. This missense mutation in the fifth exon (c.253G>C;p.E85Q) of BBS4 is likely a disease-causing mutation as it segregates with the disease. The mutation is not found in the single nucleotide polymorphism (SNP) database, the 1000 Genomes Project, or matching normal controls. Functional analysis of this mutation in zebrafish indicates that the G253C allele is pathogenic. Coinjection of the G253C allele cannot rescue the mislocalization of rhodopsin in the retina when BBS4 is knocked down by morpholino injection. Immunofluorescence analysis in cell culture shows that this missense mutation in BBS4 does not cause obvious defects in protein expression or pericentriolar localization. Conclusions This mutation likely mainly reduces or abolishes BBS4 function in the retina. Further studies of this allele will provide important insights concerning the pleiotropic nature of BBS4 function. PMID:22219648

  5. Sequence analysis of the msp4 gene of Anaplasma ovis strains

    USGS Publications Warehouse

    de la Fuente, J.; Atkinson, M.W.; Naranjo, V.; Fernandez de Mera, I. G.; Mangold, A.J.; Keating, K.A.; Kocan, K.M.

    2007-01-01

    Anaplasma ovis (Rickettsiales: Anaplasmataceae) is a tick-borne pathogen of sheep, goats and wild ruminants. The genetic diversity of A. ovis strains has not been well characterized due to the lack of sequence information. In this study, we evaluated bighorn sheep (Ovis canadensis) and mule deer (Odocoileus hemionus) from Montana for infection with A. ovis by serology and sequence analysis of the msp4 gene. Antibodies to Anaplasma spp. were detected in 37% and 39% of bighorn sheep and mule deer analyzed, respectively. Four new msp4 genotypes were identified. The A. ovis msp4 sequences identified herein were analyzed together with sequences reported previously for the characterization of the genetic diversity of A. ovis strains in comparison with other Anaplasma spp. The results of these studies demonstrated that although A. ovis msp4 genotypes may vary among geographic regions and between sheep and deer hosts, the variation observed was less than the variation observed between A. marginale and A. phagocytophilum strains. The results reported herein further confirm that A. ovis infection occurs in natural wild ruminant populations in Western United States and that bighorn sheep and mule deer may serve as wildlife reservoirs of A. ovis. ?? 2006.

  6. Diversity of endophytic yeasts from sweet orange and their localization by scanning electron microscopy.

    PubMed

    Gai, Cláudia Santos; Lacava, Paulo Teixeira; Maccheroni, Walter; Glienke, Chirlei; Araújo, Welington Luiz; Miller, Thomas Albert; Azevedo, João Lúcio

    2009-10-01

    Endophytes are microorganisms that colonize plant tissues internally without causing harm to the host. Despite the increasing number of studies on sweet orange pathogens and endophytes, yeast has not been described as a sweet orange endophyte. In the present study, endophytic yeasts were isolated from sweet orange plants and identified by sequencing of internal transcribed spacer (ITS) rRNA. Plants sampled from four different sites in the state of São Paulo, Brazil exhibited different levels of CVC (citrus variegated chlorosis) development. Three citrus endophytic yeasts (CEYs), chosen as representative examples of the isolates observed, were identified as Rhodotorula mucilaginosa, Pichia guilliermondii and Cryptococcus flavescens. These strains were inoculated into axenic Citrus sinensis seedlings. After 45 days, endophytes were re-isolated in populations ranging from 10(6) to 10(9) CFU/g of plant tissue, but, in spite of the high concentrations of yeast cells, no disease symptoms were observed. Colonized plant material was examined by scanning electron microscopy (SEM), and yeast cells were found mainly in the stomata and xylem of plants, reinforcing their endophytic nature. P. guilliermondii was isolated primarily from plants colonized by the causal agent of CVC, Xylella fastidiosa. The supernatant from a culture of P. guilliermondii increased the in vitro growth of X. fastidiosa, suggesting that the yeast could assist in the establishment of this pathogen in its host plant and, therefore, contribute to the development of disease symptoms. Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The protein expression landscape of mitosis and meiosis in diploid budding yeast.

    PubMed

    Becker, Emmanuelle; Com, Emmanuelle; Lavigne, Régis; Guilleux, Marie-Hélène; Evrard, Bertrand; Pineau, Charles; Primig, Michael

    2017-03-06

    Saccharomyces cerevisiae is an established model organism for the molecular analysis of fundamental biological processes. The genomes of numerous strains have been sequenced, and the transcriptome and proteome ofmajor phases during the haploid and diploid yeast life cycle have been determined. However, much less is known about dynamic changes of the proteome when cells switch from mitotic growth to meiotic development. We report a quantitative protein profiling analysis of yeast cell division and differentiation based on mass spectrometry. Information about protein levels was integrated with strand-specific tiling array expression data. We identified a total of 2366 proteins in at least one condition, including 175 proteins showing a statistically significant>5-fold change across the sample set, and 136 proteins detectable in sporulating but not respiring cells. We correlate protein expression patterns with biological processes and molecular function by Gene Ontology term enrichment, chemoprofiling, transcription interference and the formation of double stranded RNAs by overlapping sense/antisense transcripts. Our work provides initial quantitative insight into protein expression in diploid respiring and differentiating yeast cells. Critically, it associates developmentally regulated induction of antisense long noncoding RNAs and double stranded RNAs with fluctuating protein concentrations during growth and development. This integrated genomics analysis helps better understand how the transcriptome and the proteome correlate in diploid yeast cells undergoing mitotic growth in the presence of acetate (respiration) versus meiotic differentiation (Meiosis I and II). The study (i) provides quantitative expression data for 2366 proteins and their cognate mRNAs in at least one sample, (ii) shows strongly fluctuating protein levels during growth and differentiation for 175 cases, and (iii) identifies 136 proteins absent in mitotic but present in meiotic yeast cells. We

  8. A Three-Dimensional Model of the Yeast Genome

    NASA Astrophysics Data System (ADS)

    Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony

    Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.

  9. Genome Sequence of Saccharomyces cerevisiae Double-Stranded RNA Virus L-A-28.

    PubMed

    Konovalovas, Aleksandras; Serviené, Elena; Serva, Saulius

    2016-06-16

    We cloned and sequenced the complete genome of the L-A-28 virus from the Saccharomyces cerevisiae K28 killer strain. This sequence completes the set of currently identified L-A helper viruses required for expression of double-stranded RNA-originated killer phenotypes in baking yeast. Copyright © 2016 Konovalovas et al.

  10. Integrative network alignment reveals large regions of global network similarity in yeast and human.

    PubMed

    Kuchaiev, Oleksii; Przulj, Natasa

    2011-05-15

    High-throughput methods for detecting molecular interactions have produced large sets of biological network data with much more yet to come. Analogous to sequence alignment, efficient and reliable network alignment methods are expected to improve our understanding of biological systems. Unlike sequence alignment, network alignment is computationally intractable. Hence, devising efficient network alignment heuristics is currently a foremost challenge in computational biology. We introduce a novel network alignment algorithm, called Matching-based Integrative GRAph ALigner (MI-GRAAL), which can integrate any number and type of similarity measures between network nodes (e.g. proteins), including, but not limited to, any topological network similarity measure, sequence similarity, functional similarity and structural similarity. Hence, we resolve the ties in similarity measures and find a combination of similarity measures yielding the largest contiguous (i.e. connected) and biologically sound alignments. MI-GRAAL exposes the largest functional, connected regions of protein-protein interaction (PPI) network similarity to date: surprisingly, it reveals that 77.7% of proteins in the baker's yeast high-confidence PPI network participate in such a subnetwork that is fully contained in the human high-confidence PPI network. This is the first demonstration that species as diverse as yeast and human contain so large, continuous regions of global network similarity. We apply MI-GRAAL's alignments to predict functions of un-annotated proteins in yeast, human and bacteria validating our predictions in the literature. Furthermore, using network alignment scores for PPI networks of different herpes viruses, we reconstruct their phylogenetic relationship. This is the first time that phylogeny is exactly reconstructed from purely topological alignments of PPI networks. Supplementary files and MI-GRAAL executables: http://bio-nets.doc.ic.ac.uk/MI-GRAAL/.

  11. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast.

    PubMed

    Goshima, G; Yanagida, M

    2000-03-17

    Sister kinetochores are bioriented toward the spindle poles in higher eukaryotic prometaphase before chromosome segregation. We show that, in budding yeast, the sister kinetochores are separated in the very early spindle, while the sister arms remain associated. Biorientation of the separated kinetochores is achieved already after replication. Mtw1p, a homolog of fission yeast Mis12 required for biorientation, locates at the centromeres in an Ndc10p-dependent manner. Mtw1p and the sequences 1.8 and 3.8 kb from CEN3 and CEN15, respectively, behave like the precociously separated kinetochores, whereas the sequences 23 and 35 kb distant from CEN3 and CEN5 previously used as the centromere markers behave like a part of the arm. Mtw1p and Ndc10p are identically located except for additional spindle localization of Ndc10p. A model explaining small centromeres and early spindle formation in budding yeast is proposed.

  12. Expression and purification of soluble porcine CTLA-4 in yeast Pichia pastoris

    PubMed Central

    Peraino, Jaclyn; Zhang, Huiping; Hermanrud, Christina E.; Li, Guoying; Sachs, David H.; Huang, Christene A.; Wang, Zhirui

    2012-01-01

    Co-stimulation blockade can be used to modulate the immune response for induction of organ transplantation tolerance, treatment of autoimmune disease as well as cancer treatment. Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4), also known as CD152, is an important co-stimulatory molecule which serves as a negative regulator for T cell proliferation and differentiation. CTLA-4/CD28-CD80/CD86 pathway is a critical co-stimulatory pathway for adaptive immune response. T cell activation through the T cell receptor and CD28 leads to increased expression of CTLA-4, an inhibitory receptor for CD80 and CD86. MGH MHC-defined miniature swine provide a unique large animal model useful for preclinical studies of transplantation tolerance and immune regulation. In this study, we have expressed the codon-optimized soluble porcine CTLA-4 in the yeast Pichia pastoris system. The secreted porcine CTLA-4 was captured using Ni-Sepharose 6 fast flow resin and further purified using strong anion exchange resin Poros 50HQ. Glycosylation analysis using PNGase F demonstrated the N-linked glycosylation on Pichia pastoris expressed soluble porcine CTLA-4. To improve the expression level and facilitate the downstream purification we mutated the two potential N-linked glycosylation sites with non-polarized alanines by site-directed mutagenesis. Removal of the two N-glycosylation sites significantly improved the production level from ~2 mg/L to ~8 mg/L. Biotinylated glycosylated and non-N-glycosylated soluble porcine CTLA-4 both bind to a porcine CD80-expressing B-cell lymphoma cell line (KD = 13 nM) and competitively inhibit the binding of an anti-CD80 monoclonal antibody. The availability of soluble porcine CTLA-4, especially the non-N-glycosylated CTLA-4, will provide a very valuable tool for assessing co-stimulatory blockade treatment for translational studies in the clinically relevant porcine model. PMID:22326797

  13. Wine yeasts for the future.

    PubMed

    Fleet, Graham H

    2008-11-01

    International competition within the wine market, consumer demands for newer styles of wines and increasing concerns about the environmental sustainability of wine production are providing new challenges for innovation in wine fermentation. Within the total production chain, the alcoholic fermentation of grape juice by yeasts is a key process where winemakers can creatively engineer wine character and value through better yeast management and, thereby, strategically tailor wines to a changing market. This review considers the importance of yeast ecology and yeast metabolic reactions in determining wine quality, and then discusses new directions for exploiting yeasts in wine fermentation. It covers criteria for selecting and developing new commercial strains, the possibilities of using yeasts other than those in the genus of Saccharomyces, the prospects for mixed culture fermentations and explores the possibilities for high cell density, continuous fermentations.

  14. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hanna; Kwon, Chang Seob; Choi, Yoonjung, E-mail: jjungii@kaist.ac.kr

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5′ promoter and 3′ termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNAmore » production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.« less

  15. Adaptation of yeasts Saccharomyces cerevisiae and Brettanomyces bruxellensis to winemaking conditions: a comparative study of stress genes expression.

    PubMed

    Nardi, Tiziana; Remize, Fabienne; Alexandre, Hervé

    2010-10-01

    Brettanomyces is the major microbial cause for wine spoilage worldwide and causes significant economic losses. Like Saccharomyces cerevisiae, it is well adapted to winemaking, but molecular pathways involved in this acclimatization are still unknown. In this work, we report a time-scale comparison between the two yeasts coping with alcoholic fermentation. Orthologs of some well-characterized stress genes of S. cerevisiae were searched by sequence alignment in the Dekkera/Brettanomyces partial genome; nine genes were finally selected on the basis on their similarity and involvement in adaptation to wine. Transcript analysis during a model grape juice fermentation indicates that a subset of genes (i.e., ATP1, ERG6, VPS34) shows peculiar expression patterns in Brettanomyces bruxellensis but also that some common regulations of stress response exist between the two yeasts, although with different timing (i.e., for MSN4, SNF1, HSP82, NTH1). This suggests that B. bruxellensis efficient survival in such challenging conditions is due to mechanisms unique to it, together with a conserved yeast stress response. This study, although limited by the poor genetic data available on B. bruxellensis, provides first insights into its gene expression remodeling in winemaking and opens new frames for further investigations.

  16. Big data mining powers fungal research: recent advances in fission yeast systems biology approaches.

    PubMed

    Wang, Zhe

    2017-06-01

    Biology research has entered into big data era. Systems biology approaches therefore become the powerful tools to obtain the whole landscape of how cell separate, grow, and resist the stresses. Fission yeast Schizosaccharomyces pombe is wonderful unicellular eukaryote model, especially studying its division and metabolism can facilitate to understanding the molecular mechanism of cancer and discovering anticancer agents. In this perspective, we discuss the recent advanced fission yeast systems biology tools, mainly focus on metabolomics profiling and metabolic modeling, protein-protein interactome and genetic interaction network, DNA sequencing and applications, and high-throughput phenotypic screening. We therefore hope this review can be useful for interested fungal researchers as well as bioformaticians.

  17. Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5' cap in yeast involves a site partially shared by p20.

    PubMed Central

    Ptushkina, M; von der Haar, T; Vasilescu, S; Frank, R; Birkenhäger, R; McCarthy, J E

    1998-01-01

    Interaction between the mRNA 5'-cap-binding protein eIF4E and the multiadaptor protein eIF4G has been demonstrated in all eukaryotic translation assemblies examined so far. This study uses immunological, genetic and biochemical methods to map the surface amino acids on eIF4E that contribute to eIF4G binding. Cap-analogue chromatography and surface plasmon resonance (SPR) analyses demonstrate that one class of mutations in these surface regions disrupts eIF4E-eIF4G association, and thereby polysome formation and growth. The residues at these positions in wild-type eIF4E mediate positive cooperativity between the binding of eIF4G to eIF4E and the latter's cap-affinity. Moreover, two of the mutations confer temperature sensitivity in eIF4G binding to eIF4E which correlates with the formation of large numbers of inactive ribosome 80S couples in vivo and the loss of cellular protein synthesis activity. The yeast 4E-binding protein p20 is estimated by SPR to have a ten times lower binding affinity than eIF4G for eIF4E. Investigation of a second class of eIF4E mutations reveals that p20 shares only part of eIF4G's binding site on the cap-binding protein. The results presented provide a basis for understanding how cycling of eIF4E and eIF4G occurs in yeast translation and explains how p20 can act as a fine, but not as a coarse, regulator of protein synthesis. PMID:9707439

  18. Transformation of Saccharomyces cerevisiae and Schizosaccharomyces pombe with linear plasmids containing 2 micron sequences.

    PubMed Central

    Guerrini, A M; Ascenzioni, F; Tribioli, C; Donini, P

    1985-01-01

    Linear plasmids were constructed by adding telomeres prepared from Tetrahymena pyriformis rDNA to a circular hybrid Escherichia coli-yeast vector and transforming Saccharomyces cerevisiae. The parental vector contained the entire 2 mu yeast circle and the LEU gene from S. cerevisiae. Three transformed clones were shown to contain linear plasmids which were characterized by restriction analysis and shown to be rearranged versions of the desired linear plasmids. The plasmids obtained were imperfect palindromes: part of the parental vector was present in duplicated form, part as unique sequences and part was absent. The sequences that had been lost included a large portion of the 2 mu circle. The telomeres were approximately 450 bp longer than those of T. pyriformis. DNA prepared from transformed S. cerevisiae clones was used to transform Schizosaccharomyces pombe. The transformed S. pombe clones contained linear plasmids identical in structure to their linear parents in S. cerevisiae. No structural re-arrangements or integration into S. pombe was observed. Little or no telomere growth had occurred after transfer from S. cerevisiae to S. pombe. A model is proposed to explain the genesis of the plasmids. Images Fig. 1. Fig. 2. Fig. 4. PMID:3896773

  19. Potent L-lactic acid assimilation of the fermentative and heterothallic haploid yeast Saccharomyces cerevisiae NAM34-4C.

    PubMed

    Tomitaka, Masataka; Taguchi, Hisataka; Matsuoka, Masayoshi; Morimura, Shigeru; Kida, Kenji; Akamatsu, Takashi

    2014-01-01

    We screened an industrial thermotolerant Saccharomyces cerevisiae strain, KF7, as a potent lactic-acid-assimilating yeast. Heterothallic haploid strains KF7-5C and KF7-4B were obtained from the tetrads of the homothallic yeast strain KF7. The inefficient sporulation and poor spore viability of the haploid strains were improved by two strategies. The first strategy was as follows: (i) the KF7-5C was crossed with the laboratory strain SH6710; (ii) the progenies were backcrossed with KF7-5C three times; and (iii) the progenies were inbred three times to maintain a genetic background close to that of KF7. The NAM12 diploid between the cross of the resultant two strains, NAM11-9C and NAM11-13A, showed efficient sporulation and exhibited excellent growth in YPD medium (pH 3.5) at 35°C with 1.4-h generation time, indicating thermotolerance and acid tolerance. The second strategy was successive intrastrain crosses. The resultant two strains, KFG4-6B and KFG4-4B, showed excellent mating capacity. A spontaneous mutant of KFG4-6B, KFG4-6BD, showed a high growth rate with a generation time of 1.1 h in YPD medium (pH 3.0) at 35°C. The KFG4-6BD strain produced ascospores, which were crossed with NAM11-2C and its progeny to produce tetrads. These tetrads were crossed with KFG4-4B to produce NAM26-14A and NAM26-15A. The latter strain had a generation time of 1.6 h at 35°C in pH 2.5, thus exhibiting further thermotolerance and acid tolerance. A progeny from a cross of NAM26-14A and NAM26-15A yielded the strain NAM34-4C, which showed potent lactic acid assimilation and high transformation efficiency, better than those of a standard laboratory strain. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes

    PubMed Central

    Sliva, Anna; Kuang, Zheng; Meluh, Pamela B.; Boeke, Jef D.

    2016-01-01

    The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported), including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating. PMID:26837954

  1. Molecular and physiological comparison of spoilage wine yeasts.

    PubMed

    Sangorrín, M P; García, V; Lopes, C A; Sáez, J S; Martínez, C; Ganga, M A

    2013-04-01

    Dekkera bruxellensis and Pichia guilliermondii are contaminating yeasts in wine due to the production of phenolic aromas. Although the degradation pathway of cinnamic acids, precursors of these phenolic compounds has been described in D. bruxellensis, no such pathway has been described in P. guilliermondii. A molecular and physiological characterization of 14 D. bruxellensis and 15 P. guilliermondii phenol-producing strains was carried out. Both p-coumarate decarboxylase (CD) and vinyl reductase (VR) activities, responsible for the production of volatile phenols, were quantified and the production of 4-vinylphenol and 4-ethylphenol were measured. All D. bruxellensis and some P. guilliermondii strains showed the two enzymatic activities, whilst 11 of the 15 strains of this latter species showed only CD activity and did not produce 4-EP in the assay conditions. Furthermore, PCR products obtained with degenerated primers showed a low homology with the sequence of the gene for a phenyl acrylic acid decarboxylase activity described in Saccharomyces cerevisiae. D. bruxellensis and P. guilliermondii may share a similar metabolic pathway for the degradation of cinnamic acids. This is the first work that analyses the CD and VR activities in P. guilliermondii, and the results suggest that within this species, there are differences in the metabolization of cinnamic acids. © 2013 The Society for Applied Microbiology.

  2. PomBase: The Scientific Resource for Fission Yeast.

    PubMed

    Lock, Antonia; Rutherford, Kim; Harris, Midori A; Wood, Valerie

    2018-01-01

    The fission yeast Schizosaccharomyces pombe has become well established as a model species for studying conserved cell-level biological processes, especially the mechanics and regulation of cell division. PomBase integrates the S. pombe genome sequence with traditional genetic, molecular, and cell biological experimental data as well as the growing body of large datasets generated by emerging high-throughput methods. This chapter provides insight into the curation philosophy and data organization at PomBase, and provides a guide to using PomBase for infrequent visitors and anyone considering exploring S. pombe in their research.

  3. Natural gene expression variation studies in yeast.

    PubMed

    Thompson, Dawn A; Cubillos, Francisco A

    2017-01-01

    The rise of sequence information across different yeast species and strains is driving an increasing number of studies in the emerging field of genomics to associate polymorphic variants, mRNA abundance and phenotypic differences between individuals. Here, we gathered evidence from recent studies covering several layers that define the genotype-phenotype gap, such as mRNA abundance, allele-specific expression and translation efficiency to demonstrate how genetic variants co-evolve and define an individual's genome. Moreover, we exposed several antecedents where inter- and intra-specific studies led to opposite conclusions, probably owing to genetic divergence. Future studies in this area will benefit from the access to a massive array of well-annotated genomes and new sequencing technologies, which will allow the fine breakdown of the complex layers that delineate the genotype-phenotype map. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Contrasting evolutionary genome dynamics between domesticated and wild yeasts

    PubMed Central

    Yue, Jia-Xing; Li, Jing; Aigrain, Louise; Hallin, Johan; Persson, Karl; Oliver, Karen; Bergström, Anders; Coupland, Paul; Warringer, Jonas; Lagomarsino, Marco Consentino; Fischer, Gilles; Durbin, Richard; Liti, Gianni

    2017-01-01

    Structural rearrangements have long been recognized as an important source of genetic variation with implications in phenotypic diversity and disease, yet their detailed evolutionary dynamics remain elusive. Here, we use long-read sequencing to generate end-to-end genome assemblies for 12 strains representing major subpopulations of the partially domesticated yeast Saccharomyces cerevisiae and its wild relative Saccharomyces paradoxus. These population-level high-quality genomes with comprehensive annotation allow for the first time a precise definition of chromosomal boundaries between cores and subtelomeres and a high-resolution view of evolutionary genome dynamics. In chromosomal cores, S. paradoxus exhibits faster accumulation of balanced rearrangements (inversions, reciprocal translocations and transpositions) whereas S. cerevisiae accumulates unbalanced rearrangements (novel insertions, deletions and duplications) more rapidly. In subtelomeres, both species show extensive interchromosomal reshuffling, with a higher tempo in S. cerevisiae. Such striking contrasts between wild and domesticated yeasts likely reflect the influence of human activities on structural genome evolution. PMID:28416820

  5. Discussion of teleomorphic and anamorphic Ascomycetous yeasts and yeast-like taxa

    USDA-ARS?s Scientific Manuscript database

    The relationship of ascomycetous yeasts with other members of the ascomycete fungi (Ascomycota) has been controversial for over 100 years. Because yeasts are morphologically simple, it was proposed that they represent primitive forms of ascomycetes (e.g., Guilliermond 1912). Alternatively, the ide...

  6. [Genetic system for maintaining the mitochondrial human genome in yeast Yarrowia lipolytica].

    PubMed

    Isakova, E P; Deryabina, Yu I; Velyakova, A V; Biryukova, J K; Teplova, V V; Shevelev, A B

    2016-01-01

    For the first time, the possibility of maintaining an intact human mitochondrial genome in a heterologous system in the mitochondria of yeast Yarrowia lipolytica is shown. A method for introducing directional changes into the structure of the mitochondrial human genome replicating in Y. lipolytica by an artificially induced ability of yeast mitochondria for homologous recombination is proposed. A method of introducing and using phenotypic selection markers for the presence or absence of defects in genes tRNA-Lys and tRNA-Leu of the mitochondrial genome is developed. The proposed system can be used to correct harmful mutations of the human mitochondrial genome associated with mitochondrial diseases and for preparative amplification of intact mitochondrial DNA with an adjusted sequence in yeast cells. The applicability of the new system for the correction of mutations in the genes of Lys- and Leu-specific tRNAs of the human mitochondrial genome associated with serious and widespread human mitochondrial diseases such as myoclonic epilepsy with lactic acidosis (MELAS) and myoclonic epilepsy with ragged-red fibers (MERRF) is shown.

  7. Candida queiroziae sp. nov., a cellobiose-fermenting yeast species isolated from rotting wood in Atlantic Rain Forest.

    PubMed

    Santos, Renata O; Cadete, Raquel M; Badotti, Fernanda; Mouro, Adriane; Wallheim, Daniela O; Gomes, Fátima C O; Stambuk, Boris U; Lachance, Marc-André; Rosa, Carlos A

    2011-03-01

    Eight strains of a novel yeast species were isolated from rotting wood and wood-boring insects in Atlantic Rain Forest ecosystems in Brazil. Sequences of the D1/D2 domains of the large subunit of the rRNA gene showed that the yeast belongs to the Scheffersomyces clade and that it is related to Candida lignicola and Candida coipomoensis. The new species was isolated from rotting wood of three different localities and a wood-boring insect suggesting that these substrates are its ecological niche. This new yeast species is able to assimilate cellobiose and other compounds related to rotting wood. Strong fermentation of cellobiose in Durham tubes was observed for the strains of this new yeast. The new species produced an intracellular β-glucosidase responsible for cellobiose hydrolysis. The novel species, Candida queiroziae sp. nov., is proposed to accommodate these isolates. The type strain of C. queiroziae is UFMG-CLM 5.1(T) (=CBS 11853(T) = NRRL Y-48722(T)).

  8. Human alpha beta hydrolase domain containing protein 11 and its yeast homolog are lipid hydrolases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arya, Madhuri; Srinivasan, Malathi; Rajasekharan, Ram

    Mammalian alpha/beta hydrolase domain (ABHD) family of proteins have emerged as key regulators of lipid metabolism and are found to be associated with human diseases. Human α/β-hydrolase domain containing protein 11 (ABHD11) has recently been predicted as a potential biomarker for human lung adenocarcinoma. In silico analyses of the ABHD11 protein sequence revealed the presence of a conserved lipase motif GXSXG. However, the role of ABHD11 in lipid metabolism is not known. To understand the biological function of ABHD11, we heterologously expressed the human ABHD11 in budding yeast, Saccharomyces cerevisiae. In vivo [{sup 14}C]acetate labeling of cellular lipids in yeast cellsmore » overexpressing ABHD11 showed a decrease in triacylglycerol content. Overexpression of ABHD11 also alters the molecular species of triacylglycerol in yeast. Similar activity was observed in its yeast homolog, Ygr031w. The role of the conserved lipase motif in the hydrolase activity was proven by the mutation of all conserved amino acid residues of GXSXG motif. Collectively, our results demonstrate that human ABHD11 and its yeast homolog YGR031W have a pivotal role in the lipid metabolism. - Highlights: • Overexpression of ABHD11 protein and its yeast homolog Ygr031w cause a reduction in triacylglycerol levels in yeast. • The reduction in triacylglycerol is due to the presence of lipase motif GXSXG. • Overexpression of ABHD11 and Ygr031w alters the molecular species of triacylglycerol.« less

  9. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    PubMed

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities.

  10. Genome Sequencing and Comparative Analysis of Saccharomyces cerevisiae Strains of the Peterhof Genetic Collection

    PubMed Central

    Drozdova, Polina B.; Tarasov, Oleg V.; Matveenko, Andrew G.; Radchenko, Elina A.; Sopova, Julia V.; Polev, Dmitrii E.; Inge-Vechtomov, Sergey G.; Dobrynin, Pavel V.

    2016-01-01

    The Peterhof genetic collection of Saccharomyces cerevisiae strains (PGC) is a large laboratory stock that has accumulated several thousands of strains for over than half a century. It originated independently of other common laboratory stocks from a distillery lineage (race XII). Several PGC strains have been extensively used in certain fields of yeast research but their genomes have not been thoroughly explored yet. Here we employed whole genome sequencing to characterize five selected PGC strains including one of the closest to the progenitor, 15V-P4, and several strains that have been used to study translation termination and prions in yeast (25-25-2V-P3982, 1B-D1606, 74-D694, and 6P-33G-D373). The genetic distance between the PGC progenitor and S288C is comparable to that between two geographically isolated populations. The PGC seems to be closer to two bakery strains than to S288C-related laboratory stocks or European wine strains. In genomes of the PGC strains, we found several loci which are absent from the S288C genome; 15V-P4 harbors a rare combination of the gene cluster characteristic for wine strains and the RTM1 cluster. We closely examined known and previously uncharacterized gene variants of particular strains and were able to establish the molecular basis for known phenotypes including phenylalanine auxotrophy, clumping behavior and galactose utilization. Finally, we made sequencing data and results of the analysis available for the yeast community. Our data widen the knowledge about genetic variation between Saccharomyces cerevisiae strains and can form the basis for planning future work in PGC-related strains and with PGC-derived alleles. PMID:27152522

  11. Low-pH production of D-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7.

    PubMed

    Park, Hyun Joo; Bae, Jung-Hoon; Ko, Hyeok-Jin; Lee, Sun-Hee; Sung, Bong Hyun; Han, Jong-In; Sohn, Jung-Hoon

    2018-06-13

    Lactic acid is a platform chemical for the sustainable production of various materials. To develop a robust yeast platform for low-pH production of D-lactic acid, an acid-tolerant yeast strain was isolated from grape skins and named Pichia kudriavzevii NG7 by ribosomal RNA sequencing. This strain was able to grow at pH 2.0 and 50°C. For the commercial application of P. kudriavzevii NG7 as a lactic acid producer, the ethanol fermentation pathway was redirected to lactic acid by replacing pyruvate decarboxylase 1 gene (PDC1) with D-lactate dehydrogenase gene (D-LDH) derived from Lactobacillus plantarum. To enhance lactic acid tolerance, this engineered strain was adapted to high lactic acid concentrations, and a new transcriptional regulator, PAR1, responsible for acid tolerance, was identified by whole-genome resequencing. The final engineered strain produced 135 g/L and 154 g/L of D-lactic acid with productivity over 3.66 g/L/h at pH 3.6 and 4.16 g/L/h at pH 4.7, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Contribution of Fermentation Yeast to Final Amino Acid Profile in DDGS

    USDA-ARS?s Scientific Manuscript database

    One major factor affecting DDGS quality and market values is amino acid (AA) composition. DDGS proteins come from corn and yeast. Yet, the effect of fermentation yeast on DDGS protein quantity and quality (AA profile) has not been well documented. Based on literature review, there are at least 4 met...

  13. Relationships among genera of the Saccharomycotina from multigene sequence analysis

    USDA-ARS?s Scientific Manuscript database

    Most known species of the subphylum Saccharomycotina (budding ascomycetous yeasts) have now been placed in phylogenetically defined clades following multigene sequence analysis. Terminal clades, which are usually well supported from bootstrap analysis, are viewed as phylogenetically circumscribed ge...

  14. Candida ecuadorensis sp. nov., an ascomycetous yeast species found in two separate regions of Ecuador.

    PubMed

    James, Stephen A; Carvajal Barriga, Enrique Javier; Barahona, Patricia Portero; Cross, Kathryn; Bond, Christopher J; Roberts, Ian N

    2013-01-01

    In the course of an on-going study aimed at cataloguing the natural yeast biodiversity found in Ecuador, two strains (CLQCA 13-025 and CLQCA 20-004(T)) were isolated from samples of cow manure and rotten wood collected in two separate provinces of the country (Orellana and Bolívar). These strains were found to represent a novel yeast species based on the sequences of their D1/D2 domain of the large-subunit (LSU) rRNA gene and their physiological characteristics. Phylogenetic analysis based on LSU D1/D2 sequences revealed this novel species to belong to the Metschnikowia clade and to be most closely related to Candida suratensis, a species recently discovered in a mangrove forest in Thailand. The species name of Candida ecuadorensis sp. nov. is proposed to accommodate these strains, with strain CLQCA 20-004(T) (=CBS 12653(T) = NCYC 3782(T)) designated as the type strain.

  15. Comparison of DNA-based techniques for differentiation of production strains of ale and lager brewing yeast.

    PubMed

    Kopecká, J; Němec, M; Matoulková, D

    2016-06-01

    Brewing yeasts are classified into two species-Saccharomyces pastorianus and Saccharomyces cerevisiae. Most of the brewing yeast strains are natural interspecies hybrids typically polyploids and their identification is thus often difficult giving heterogenous results according to the method used. We performed genetic characterization of a set of the brewing yeast strains coming from several yeast culture collections by combination of various DNA-based techniques. The aim of this study was to select a method for species-specific identification of yeast and discrimination of yeast strains according to their technological classification. A group of 40 yeast strains were characterized using PCR-RFLP analysis of ITS-5·8S, NTS, HIS4 and COX2 genes, multiplex PCR, RAPD-PCR of genomic DNA, mtDNA-RFLP and electrophoretic karyotyping. Reliable differentiation of yeast to the species level was achieved by PCR-RFLP of HIS4 gene. Numerical analysis of the obtained RAPD-fingerprints and karyotype revealed species-specific clustering corresponding with the technological classification of the strains. Taxonomic position and partial hybrid nature of strains were verified by multiplex PCR. Differentiation among species using the PCR-RFLP of ITS-5·8S and NTS region was shown to be unreliable. Karyotyping and RFLP of mitochondrial DNA evinced small inaccuracies in strain categorization. PCR-RFLP of HIS4 gene and RAPD-PCR of genomic DNA are reliable and suitable methods for fast identification of yeast strains. RAPD-PCR with primer 21 is a fast and reliable method applicable for differentiation of brewing yeasts with only 35% similarity of fingerprint profile between the two main technological groups (ale and lager) of brewing strains. It was proved that PCR-RFLP method of HIS4 gene enables precise discrimination among three technologically important Saccharomyces species. Differentiation of brewing yeast to the strain level can be achieved using the RAPD-PCR technique. © 2016 The

  16. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  17. The yeast actin cytoskeleton.

    PubMed

    Mishra, Mithilesh; Huang, Junqi; Balasubramanian, Mohan K

    2014-03-01

    The actin cytoskeleton is a complex network of dynamic polymers, which plays an important role in various fundamental cellular processes, including maintenance of cell shape, polarity, cell division, cell migration, endocytosis, vesicular trafficking, and mechanosensation. Precise spatiotemporal assembly and disassembly of actin structures is regulated by the coordinated activity of about 100 highly conserved accessory proteins, which nucleate, elongate, cross-link, and sever actin filaments. Both in vivo studies in a wide range of organisms from yeast to metazoans and in vitro studies of purified proteins have helped shape the current understanding of actin dynamics and function. Molecular genetics, genome-wide functional analysis, sophisticated real-time imaging, and ultrastructural studies in concert with biochemical analysis have made yeast an attractive model to understand the actin cytoskeleton, its molecular dynamics, and physiological function. Studies of the yeast actin cytoskeleton have contributed substantially in defining the universal mechanism regulating actin assembly and disassembly in eukaryotes. Here, we review some of the important insights generated by the study of actin cytoskeleton in two important yeast models the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.

    PubMed

    Hirayama, Satoru; Shimizu, Masashi; Tsuchiya, Noriko; Furukawa, Soichi; Watanabe, Daisuke; Shimoi, Hitoshi; Takagi, Hiroshi; Ogihara, Hirokazu; Morinaga, Yasushi

    2015-05-01

    We examined mixed-species biofilm formation between Lactobacillus plantarum ML11-11 and both foaming and non-foaming mutant strains of Saccharomyces cerevisiae sake yeasts. Wild-type strains showed significantly lower levels of biofilm formation compared with the non-foaming mutants. Awa1p, a protein involved in foam formation during sake brewing, is a glycosylphosphatidylinositol (GPI)-anchored protein and is associated with the cell wall of sake yeasts. The AWA1 gene of the non-foaming mutant strain Kyokai no. 701 (K701) has lost the C-terminal sequence that includes the GPI anchor signal. Mixed-species biofilm formation and co-aggregation of wild-type strain Kyokai no. 7 (K7) were significantly lower than K701 UT-1 (K701 ura3/ura3 trp1/trp1), while the levels of strain K701 UT-1 carrying the AWA1 on a plasmid were comparable to those of K7. The levels of biofilm formation and co-aggregation of the strain K701 UT-1 harboring AWA1 with a deleted GPI anchor signal were similar to those of K701 UT-1. These results clearly demonstrate that Awa1p present on the surface of sake yeast strain K7 inhibits adhesion between yeast cells and L. plantarum ML11-11, consequently impeding mixed-species biofilm formation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Intra-Genomic Internal Transcribed Spacer Region Sequence Heterogeneity and Molecular Diagnosis in Clinical Microbiology

    PubMed Central

    Zhao, Ying; Tsang, Chi-Ching; Xiao, Meng; Cheng, Jingwei; Xu, Yingchun; Lau, Susanna K. P.; Woo, Patrick C. Y.

    2015-01-01

    Internal transcribed spacer region (ITS) sequencing is the most extensively used technology for accurate molecular identification of fungal pathogens in clinical microbiology laboratories. Intra-genomic ITS sequence heterogeneity, which makes fungal identification based on direct sequencing of PCR products difficult, has rarely been reported in pathogenic fungi. During the process of performing ITS sequencing on 71 yeast strains isolated from various clinical specimens, direct sequencing of the PCR products showed ambiguous sequences in six of them. After cloning the PCR products into plasmids for sequencing, interpretable sequencing electropherograms could be obtained. For each of the six isolates, 10–49 clones were selected for sequencing and two to seven intra-genomic ITS copies were detected. The identities of these six isolates were confirmed to be Candida glabrata (n = 2), Pichia (Candida) norvegensis (n = 2), Candida tropicalis (n = 1) and Saccharomyces cerevisiae (n = 1). Multiple sequence alignment revealed that one to four intra-genomic ITS polymorphic sites were present in the six isolates, and all these polymorphic sites were located in the ITS1 and/or ITS2 regions. We report and describe the first evidence of intra-genomic ITS sequence heterogeneity in four different pathogenic yeasts, which occurred exclusively in the ITS1 and ITS2 spacer regions for the six isolates in this study. PMID:26506340

  20. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses