Science.gov

Sample records for yeast extract sucrose

  1. Purification and full characterisation of citreoviridin produced by Penicillium citreonigrum in yeast extract sucrose (YES) medium.

    PubMed

    da Rocha, Mariana Wagner; Resck, Inês Sabioni; Caldas, Eloisa Dutra

    2015-01-01

    The mycotoxin citreoviridin has been associated with the 'yellow rice' disease, which caused cardiac beriberi in Japan. In Brazil, the consumption of contaminated rice was suspected to be involved in a recent beriberi outbreak. In this work, citreoviridin was produced by Penicillium citreonigrum, cultivated in 500 ml yeast extract sucrose (YES) liquid medium for 8 days at 25ºC, and the toxin extracted with chloroform from the liquid medium and the mycelium. A total of 15.3 g of crude extract was obtained from 48 culture flasks, with an estimated citreoviridin contend of 5.54 g, 74.3% being present in the mycelia. Semi-preparative HPLC of the crude extract yielded 27.1% citreoviridin. The HPLC-purified citreoviridin fraction was fully characterised by UV/VIS, FT-IR, (1)H- and (13)C-NMR, LC-MS/MS and LC-MSD TOF, and purity confirmed by gravimetric analysis. Isocitreoviridin was also produced by P. citreonigrum, accounting for about 10% of the citreoviridin present in the crude extract, most transformed into citreoviridin after 10 months under freezing conditions protected from light. Citreoviridin was shown to be stable under the same conditions, although it can suffer isomerisation after a longer storage period. Isomerisation is a potential source of variability in toxicological studies and purity of the material should be checked before study initiation. PMID:25190053

  2. Methyl jasmonate, yeast extract and sucrose stimulate phenolic acids accumulation in Eryngium planum L. shoot cultures.

    PubMed

    Kikowska, Małgorzata; Kędziora, Izabela; Krawczyk, Aldona; Thiem, Barbara

    2015-01-01

    Eryngium planum L. has been reported as a medicinal plant used in traditional medicine in Europe. The tissue cultures may be an alternative source of the biomass rich in desired bioactive compounds. The purpose of this study was to investigate the influence of the biotechnological techniques on the selected phenolic acids accumulation in the agitated shoot cultures of E. planum. Qualitative and quantitative analyses of those compounds in 50% aqueous - methanolic extracts from the biomass were conducted by applying the HPLC method. Methyl jasmonate (MeJA), yeast extract (YE) and sucrose (Suc) stimulated accumulation of the phenolic acids: rosmarinic (RA), chlorogenic (CGA) and caffeic (CA) in in vitro shoot cultures. Cultivation of shoots in liquid MS media supplemented with 1.0 mg L(-1) 6-benzyladenine and 0.1 mg L(-1) indole-3-acetic acid in the presence of 100 µM MeJA for 48h was an optimum condition of elicitation and resulted in approximately 4.5-fold increased content of RA + CGA + CA in plant material compared to the control (19.795 mg g(-1) DW, 4.36 mg g(-1) DW, respectively). The results provide the first evidence that the selected phenolic acids can be synthesized in elicited shoot cultures of flat sea holly in higher amount than in untreated shoots. PMID:25856557

  3. Malt-yeast extract-sucrose agar, a suitable medium for enumeration and isolation of fungi from silage.

    PubMed Central

    Skaar, I; Stenwig, H

    1996-01-01

    A general medium named malt-yeast extract-sucrose agar (MYSA) containing oxgall was designed. The medium was intended for the enumeration and isolation of molds and yeasts in routine examinations of animal feed stuffs. In this study MYSA was tested as a general medium for mycological examination of silage. The medium was compared with dichloran-rose bengal medium (DRBC) in an examination of more than 500 specimens of big bale grass silage. Selected characteristics of known fungal species commonly isolated from feeds were examined after growth on MYSA and DRBC and on malt extract agar, used as a noninhibitory control medium. MYSA suppressed bacterial growth, without affecting the growth of fungi common in feeds. The fungi growing on MYSA were easily recognized, and the medium seemed to slow radial growth of fungal colonies, which permitted, easy counting. The number of species found was higher on MYSA than on DRBC. When we compared MYSA with DRBC for mycological examination of grass silage samples, MYSA was found to be the medium of choice. PMID:8837416

  4. Yeast Extract: Sucrose Ratio Effects on Egg Load, Survival, and Mortality Caused by GF-120 in Western Cherry Fruit Fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extrinsic sources of nitrogen are needed by tephritid fruit flies for optimal nutrition. In this study, relationships between yeast extract diets containing 0, 0.109, 0.545, 1.09, 2.18, 3.27, and 5.45% nitrogen (N) and diet intake, survival, egg production, and responses to spinosad bait in western...

  5. Sucrose-fueled, energy dissipative, transient formation of molecular hydrogels mediated by yeast activity.

    PubMed

    Angulo-Pachón, César A; Miravet, Juan F

    2016-04-01

    A biologically mediated, energy dissipative, reversible formation of fibrillar networks is reported. The process of gelation is linked to sucrose-fueled production of CO2 by baker's yeast (Saccharomyces cerevisiae). Continuous fueling of the system is required to maintain the self-assembled fibrillar network. PMID:27009800

  6. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout extract, as described in this section, may... produced by partial hydrolysis of yeast extract (derived from Saccharomyces cereviseae,...

  7. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  8. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  9. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  10. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  11. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  12. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  13. 21 CFR 172.590 - Yeast-malt sprout extract.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived...

  14. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast extract. 184.1983 Section 184.1983... GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract is the food ingredient resulting from concentration of the solubles of mechanically ruptured cells of a selected strain of yeast,...

  15. 21 CFR 184.1983 - Bakers yeast extract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b)...

  16. Supplemental diets containing yeast, sucrose, and soy powder enhance the survivorship, growth, and development of prey-limited cursorial spiders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the effects of a food spray mixture (‘wheast’) and its individual ingredients (sucrose, yeast, and toasted soy flour) on the survivorship, growth, and development of a cursorial spider, Hibana futilis Banks (Anyphaenidae). Some treatments included eggs of Helicoverpa zea, a favored prey...

  17. Games microbes play: The game theory behind cooperative sucrose metabolism in yeast

    NASA Astrophysics Data System (ADS)

    Gore, Jeff

    2010-03-01

    The origin of cooperation is a central challenge to our understanding of evolution. Microbial interactions can be manipulated in ways that animal interactions cannot, thus leading to growing interest in microbial models of cooperation and competition. In order for the budding yeast S. cerevisiae to grow on sucrose, the disaccharide must first be hydrolyzed by the enzyme invertase. This hydrolysis reaction is performed outside of the cytoplasm in the periplasmic space between the plasma membrane and the cell wall. Here we demonstrate that the vast majority (˜99%) of the monosaccharides created by sucrose hydrolysis diffuse away before they can be imported into the cell, thus making invertase production and secretion a cooperative behavior [1]. A mutant cheater strain that does not produce invertase is able to take advantage of and invade a population of wildtype cooperator cells. However, over a wide range of conditions, the wildtype cooperator can also invade a population of cheater cells. Therefore, we observe coexistence between the two strains in well-mixed culture at steady state resulting from the fact that rare strategies outperform common strategies---the defining features of what game theorists call the snowdrift game. A simple model of the cooperative interaction incorporating nonlinear benefits explains the origin of this coexistence. Glucose repression of invertase expression in wildtype cells produces a strategy which is optimal for the snowdrift game---wildtype cells cooperate only when competing against cheater cells. In disagreement with recent theory [2], we find that spatial structure always aids the evolution of cooperation in our experimental snowdrift game. [4pt] [1] Gore, J., Youk, H. & van Oudenaarden, A., Nature 459, 253 -- 256 (2009) [0pt] [2] Hauert, C. & Doebeli, M., Nature 428, 643 -- 646 (2004)

  18. Quality assessment of lager brewery yeast samples and strains using barley malt extracts with anti-yeast activity.

    PubMed

    van Nierop, Sandra N E; Axcell, Barry C; Cantrell, Ian C; Rautenbach, Marina

    2009-04-01

    Membrane active anti-yeast compounds, such as antimicrobial peptides and proteins, cause yeast membrane damage which is likely to affect yeast vitality and fermentation performance, parameters which are notoriously difficult to analyse. In this work the sensitivity of lager brewery yeast strains towards barley malt extracts with anti-yeast activity was assessed with an optimised assay. It was found that yeast, obtained directly from a brewery, was much more sensitive towards the malt extracts than the same yeast strain propagated in the laboratory. Sensitivity to the malt extracts increased during the course of a laboratory scale fermentation when inoculated with brewery yeast. As the assay was able to differentiate yeast samples with different histories, it shows promise as a yeast quality assay measuring the yeast's ability to withstand stress which can be equated to vitality. The assay was also able to differentiate between different lager yeast strains of Saccharomyces cerevisiae propagated in the laboratory when challenged with a number of malt extracts of varying anti-yeast activity. The assessment of yeast strains in the presence of malt extracts will lead to the identification of yeast strains with improved quality/vitality that can withstand malt-associated anti-yeast activity during brewery fermentations. PMID:19171262

  19. Sucrose, glucose, and fructose extraction in aqueous carrot root extracts prepared at different temperatures by means of direct NMR measurements.

    PubMed

    Cazor, Anne; Deborde, Catherine; Moing, Annick; Rolin, Dominique; This, Hervé

    2006-06-28

    Solutions obtained by heating carrot roots in water (stocks) are widely used in the food industry, but little information is available regarding the metabolites (intermediates and products of metabolism) found in the stock. The effect of treatment temperature and duration on the sugar composition of stocks was investigated directly by quantitative (1)H NMR spectroscopy, to understand the extraction mechanism when processing at 100 degrees C. Stocks prepared at three different temperatures (50, 75, and 100 degrees C) were investigated for up to 36 h. Three sugars (sucrose, glucose, and fructose) were detected and quantified. The concentrations of these three sugars reached a maximum after 9 h when the temperature of treatment was 50 or 75 degrees C. At 100 degrees C, the sucrose concentration reached a maximum after 3 h, whereas the concentration of glucose and fructose was still increasing at that time. Comparison of the kinetic composition of these carrot stocks with that of model sugar solutions leads to the proposal that the changes in stock composition result from sugar diffusion, sucrose hydrolysis, and hydroxymethylfurfural (HMF) formation. PMID:16787015

  20. Spent brewer's yeast extract as an ingredient in cooked hams.

    PubMed

    Pancrazio, Gaston; Cunha, Sara C; de Pinho, Paula Guedes; Loureiro, Mónica; Meireles, Sónia; Ferreira, Isabel M P L V O; Pinho, Olívia

    2016-11-01

    This work describes the effect of the incorporation of 1% spent yeast extract into cooked hams. Physical/chemical/sensorial characteristics and changes during 12 and 90days storage were evaluated on control and treated cooked hams processed for 1.5, 2.0, 2.5 or 3h. Spent yeast extract addition increased hardness, chewiness, ash, protein and free amino acid content. Similar volatile profiles were obtained, although there were some quantitative differences. No advantages were observed for increased cooking time. No significant differences were observed for physical and sensorial parameters of cooked hams with spent yeast extract at 12 and 90days post production, but His, aldehydes and esters increased at the end of storage. This behaviour was similar to that observed for control hams. The higher hardness of cooked ham with 1% yeast extract was due to the stronger gel formed during cooking and was maintained during storage. This additive acts as gel stabilizer for cooked ham production and could potentially improve other processing characteristics. PMID:27449232

  1. Green, oolong and black tea extracts modulate lipid metabolism in hyperlipidemia rats fed high-sucrose diet.

    PubMed

    Yang, M -H.; Wang, C -H.; Chen, H -L.

    2001-01-01

    The main goal of this study was to compare effects of ethanol-soluble fractions prepared from various types of teas on sucrose-induced hyperlipidemia in 5-week old male Sprague-Dawley rats. Rats (n = 6-8 per group) weighed approximately 200 g were randomly divided into control diet, sucrose-rich diet, green tea, oolong tea and black tea groups. Control-diet group was provided with modified AIN-93 diet while the others consumed sucrose-rich diet. Tea extracts (1% w/v) were supplied in the drink for green tea, oolong tea and black tea groups. Results indicated sucrose-rich diet induced hypertriglyceridemia and hypercholesterolemia. Food intake was reduced by oolong tea extract. Consuming oolong and black tea extracts also significantly decreased body weight gains and food efficiency. Hypertriglyceridemia was normalized by green and black tea drink on day 18 and by oolong tea extract on day 25, respectively. Hypercholesterolemia was normalized by green tea on day 18 and by oolong tea and black tea on day 25, respectively. Plasma HDL-cholesterol concentrations were not affected by any tea extract. The triglyeride content in the liver as well as the cholesterol content in the heart of rats fed sucrose-rich diet were elevated and were normalized by all types of tea drink tested. Although green and oolong tea extracts contained similar composition of catechin, our findings suggest green tea exerted greater antihyperlipidemic effect than oolong tea. Apparent fat absorption may be one of the mechanisms by which green tea reduced hyperlipidemia as well as fat storage in the liver and heart of rats consumed sucrose-rich diet. PMID:11179857

  2. Ameliorative Effect of Hydroethanolic Leaf Extract of Byrsocarpus coccineus in Alcohol- and Sucrose-Induced Hypertension in Rats.

    PubMed

    Akindele, Abidemi J; Iyamu, Endurance A; Dutt, Prabhu; Satti, Naresh K; Adeyemi, Olufunmilayo O

    2014-07-01

    Hypertension remains a major health problem worldwide considering the prevalence of morbidity and mortality. Plants remain a reliable source of efficacious and better tolerated drugs and botanicals. This study was designed to investigate the effect of the chemo-profiled hydroethanolic leaf extract of Byrsocarpus coccineus in ethanol- and sucrose-induced hypertension. Groups of rats were treated orally (p.o.) with distilled water (10 ml/kg), ethanol (35%; 3 g/kg), sucrose (5-7%), and B. coccineus (100, 200, and 400 mg/kg), and nifedipine together with ethanol and sucrose separately for 8 weeks. At the end of the treatment period, blood pressure and heart rate of rats were determined. Blood was collected for serum biochemical parameters and lipid profile assessment, and the liver, aorta, kidney, and heart were harvested for estimation of in vivo antioxidants and malondialdehyde (MDA). Results obtained in this study showed that B. coccineus at the various doses administered reduced the systolic, diastolic, and arterial blood pressure elevated by ethanol and sucrose. Also, the extract reversed the reduction in catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) induced by ethanol and sucrose. The level of MDA was reduced compared to the ethanol- and sucrose-induced hypertensive group. With respect to lipid profile, administration of B. coccineus at the various doses reduced the levels of triglycerides, low-density lipoprotein (LDL), cholesterol, and atherogenic indices, compared to the ethanol and sucrose groups. In conclusion the hydroethanolic leaf extract of B. coccineus exerted significant antihypertensive effect and this is probably related to the antioxidant property and improvement of lipid profile observed in this study. PMID:25161923

  3. Ameliorative Effect of Hydroethanolic Leaf Extract of Byrsocarpus coccineus in Alcohol- and Sucrose-Induced Hypertension in Rats

    PubMed Central

    Akindele, Abidemi J.; Iyamu, Endurance A.; Dutt, Prabhu; Satti, Naresh K.; Adeyemi, Olufunmilayo O.

    2014-01-01

    Hypertension remains a major health problem worldwide considering the prevalence of morbidity and mortality. Plants remain a reliable source of efficacious and better tolerated drugs and botanicals. This study was designed to investigate the effect of the chemo-profiled hydroethanolic leaf extract of Byrsocarpus coccineus in ethanol- and sucrose-induced hypertension. Groups of rats were treated orally (p.o.) with distilled water (10 ml/kg), ethanol (35%; 3 g/kg), sucrose (5-7%), and B. coccineus (100, 200, and 400 mg/kg), and nifedipine together with ethanol and sucrose separately for 8 weeks. At the end of the treatment period, blood pressure and heart rate of rats were determined. Blood was collected for serum biochemical parameters and lipid profile assessment, and the liver, aorta, kidney, and heart were harvested for estimation of in vivo antioxidants and malondialdehyde (MDA). Results obtained in this study showed that B. coccineus at the various doses administered reduced the systolic, diastolic, and arterial blood pressure elevated by ethanol and sucrose. Also, the extract reversed the reduction in catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) induced by ethanol and sucrose. The level of MDA was reduced compared to the ethanol- and sucrose-induced hypertensive group. With respect to lipid profile, administration of B. coccineus at the various doses reduced the levels of triglycerides, low-density lipoprotein (LDL), cholesterol, and atherogenic indices, compared to the ethanol and sucrose groups. In conclusion the hydroethanolic leaf extract of B. coccineus exerted significant antihypertensive effect and this is probably related to the antioxidant property and improvement of lipid profile observed in this study. PMID:25161923

  4. Extraction and analysis of soluble inositol polyphosphates from yeast.

    PubMed

    Azevedo, Cristina; Saiardi, Adolfo

    2006-01-01

    Soluble inositol polyphosphates are implicated in the regulation of many important cellular functions. This protocol to extract and separate inositol polyphosphates from Saccharomyces cerevisiae is divided into three steps: labeling of yeast, extraction of soluble inositol polyphosphates and chromatographic separation. Yeast cells are incubated with tritiated inositol, which is taken up and metabolized into different phosphorylated forms. Soluble inositol polyphosphates are then acid-extracted and fractionated by high-performance liquid chromatography. The radioactivity of each fraction is determined by scintillation counting. This highly sensitive and reproducible method allows the accurate detection of subtle changes in the inositol polyphosphate profile and takes less than 48 h. It can easily be applied to other systems and we have included two adaptations of the protocol, one optimized for mammalian cells and the other for Arabidopsis thaliana. PMID:17406485

  5. Mild water stress of Phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity

    SciTech Connect

    Vassey, T.L.; Sharkey, T.D. )

    1989-04-01

    Mild water stress, on the order of {minus}1.0 megapascals xylem water potential, can reduce the rate of photosynthesis and eliminate the inhibition of photosynthesis caused by O{sub 2} in water-stress-sensitive plants such as Phaseolus vulgaris. To investigate the lack of O{sub 2} inhibition of photosynthesis, we measured stromal and cytosolic fructose-1,6-bisphosphatase, sucrose phosphate synthase, and partitioning of newly fixed carbon between starch and sucrose before, during, and after mild water stress. The extractable activity of the fructose bisphosphatases was unaffected by mild water stress. The extractable activity of SPS was inhibited by more than 60% in plants stressed to water potentials of {minus}0.9 megapascals. Water stress caused a decline in the starch/sucrose partitioning ratio indicating that starch synthesis was inhibited more than sucrose synthesis. We conclude that the reduced rate of photosynthesis during water stress is caused by stomatal closure, and that the restriction of CO{sub 2} supply caused by stomatal closure leads to a reduction in the capacity for both starch and sucrose synthesis. This causes the reduced O{sub 2} inhibition and abrupt CO{sub 2} saturation of photosynthesis.

  6. Inhibition of spoiling yeasts of fruit juices through citrus extracts.

    PubMed

    Bevilacqua, Antonio; Speranza, Barbara; Campaniello, Daniela; Corbo, Maria Rosaria; Sinigaglia, Milena

    2013-10-01

    This article reports on the bioactivities of citrus extracts (citrus extract, lemon extract, and neroli) toward Saccharomyces cerevisiae, Zygosaccharomyces bailii, Zygosaccharomyces rouxii, Pichia membranifaciens, and Rhodotorula bacarum. The bioactivities of the extracts (from 10 to 100 ppm) were evaluated through a microdilution method; thereafter, citrus extracts (0 to 80 ppm) were tested in combination with either pH (3.0 to 5.0) or temperature (5 to 25°C). Finally, a confirmatory experiment was run in a commercial drink (referred to as red fruit juice) containing citrus extract (40 ppm) that was inoculated with either S. cerevisiae or Z. bailii (5 log CFU/ml) and stored at 4 and 25°C. Yeasts increased to 7 log CFU/ml (Z. bailii) or 8 log CFU/ml (S. cerevisiae) in the control at 25°C, but the citrus extract addition controlled yeast growth for at least 3 days; under refrigeration, the effect was significant for 10 days. PMID:24112576

  7. Capillary ion chromatography-mass spectrometry for simultaneous determination of glucosylglycerol and sucrose in intracellular extracts of cyanobacteria.

    PubMed

    Fa, Yun; Liang, Wenhui; Cui, He; Duan, Yangkai; Yang, Menglong; Gao, Jun; Liu, Huizhou

    2015-09-15

    A capillary ion chromatography-mass spectrometry (MS) method was proposed to determine glucosylglycerol (GG), sucrose, and five other carbohydrates. MS conditions and make-up flow parameters were optimized. This method is accurate and sensitive for simultaneous analysis of carbohydrates, with mean correlation coefficients of determination greater than 0.99, relative standard deviation of 0.91-2.81% for eight replicates, and average spiked recoveries of 97.3-104.9%. Limits of detection of sodium adduct were obtained with MS detection in selected ion mode for GG (0.006mg/L), sucrose (0.02mg/L), and other carbohydrates (0.03mg/L). This method was successfully applied to determine GG and sucrose in intracellular extracts of salt-stressed cyanobacteria. PMID:26279008

  8. Production of glycolipid biosurfactants, mannosylerythritol lipids, using sucrose by fungal and yeast strains, and their interfacial properties.

    PubMed

    Morita, Tomotake; Ishibashi, Yuko; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2009-10-01

    Glycolipid biosurfactants, mannosylerythritol lipids (MELs), were produced from glucose and sucrose without vegetable oils. Pseudozyma antarctica JCM 10317, Ustilago maydis NBRC 5346, U. scitaminea NBRC 32730, and P. siamensis CBS 9960 produced mainly MEL-A, MEL-A, MEL-B, and MEL-C respectively. The sucrose-derived MELs showed excellent interfacial properties: low critical micelle concentration as well as that of oil-derived MELs. PMID:19809166

  9. Eucalyptus leaf extract suppresses the postprandial elevation of portal, cardiac and peripheral fructose concentrations after sucrose ingestion in rats.

    PubMed

    Sugimoto, Keiichiro; Hosotani, Tetsuro; Kawasaki, Takahiro; Nakagawa, Kazuya; Hayashi, Shuichi; Nakano, Yoshihisa; Inui, Hiroshi; Yamanouchi, Toshikazu

    2010-05-01

    Overintake of sucrose or fructose induces adiposity. Fructose undergoes a strong Maillard reaction, which worsens diabetic complications. To determine whether Eucalyptus globulus leaf extract (ELE) suppresses the postprandial elevation of serum fructose concentrations (SFCs) in the portal, cardiac, and peripheral blood after sucrose ingestion, we performed gas chromatography/mass spectrometry (GC/MS) and measured SFC without any interference by contaminating glucose in the samples. Fasting Wistar rats were orally administered water (control group) or ELE (ELE group) before sucrose ingestion. Blood was collected from the portal vein, heart, and tail. The increase in the SFCs in the portal and cardiac samples 30 min after sucrose ingestion was lower in the ELE group than in the control group. The coefficient of correlation between the SFCs in the portal and cardiac samples was 0.825. The peripheral SFC in the control group progressively increased and was 146 micromol/L at 60 min. This increase was significantly lower in the ELE group. In contrast, the serum glucose concentrations in the 2 groups were similar. ELE suppressed postprandial hyperfructosemia in the portal, cardiac, and peripheral circulations. ELE may counteract glycation caused by high blood fructose concentrations induced by the consumption of fructose-containing foods or drinks. PMID:20490315

  10. Fractionation of Phenolic Compounds Extracted from Propolis and Their Activity in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Petelinc, Tanja; Polak, Tomaž; Demšar, Lea; Jamnik, Polona

    2013-01-01

    We have here investigated the activities of Slovenian propolis extracts in the yeast Saccharomyces cerevisiae, and identified the phenolic compounds that appear to contribute to these activities. We correlated changes in intracellular oxidation and cellular metabolic energy in these yeasts with the individual fractions of the propolis extracts obtained following solid-phase extraction. The most effective fraction was further investigated according to its phenolic compounds. PMID:23409133

  11. Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany.

    PubMed

    Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo

    2016-06-01

    The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil. PMID:27116959

  12. Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62.

    PubMed

    Konishi, Masaaki; Nagahama, Takahiko; Fukuoka, Tokuma; Morita, Tomotake; Imura, Tomohiro; Kitamoto, Dai; Hatada, Yuji

    2011-06-01

    We improved the culture conditions for a biosurfactant producing yeast, Pseudozyma hubeiensis SY62. We found that yeast extract greatly stimulates MEL production. Furthermore, we demonstrated a highly efficient production of MELs in the improved medium by fed-batch cultivation. The final concentration of MELs reached 129 ± 8.2g/l for one week. PMID:21393057

  13. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  14. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  15. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  16. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  17. 40 CFR 180.1246 - Yeast Extract Hydrolysate from Saccharomyces cerevisiae: exemption from the requirement of a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Yeast Extract Hydrolysate from... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1246 Yeast Extract Hydrolysate from... exemption from the requirement of a tolerance for residues of the biochemical pesticide Yeast...

  18. Specific initiation by RNA polymerase I in a whole-cell extract from yeast.

    PubMed Central

    Schultz, M C; Choe, S Y; Reeder, R H

    1991-01-01

    A protocol is described for making a soluble whole-cell extract from yeast (Saccharomyces cerevisiae) that supports active and specific transcription initiation by RNA polymerases I, II, and III. Specific initiation by polymerase I decreases in high-density cultures, paralleling the decrease in abundance of the endogenous 35S rRNA precursor. This extract should be useful for studying the molecular mechanisms that regulate rRNA transcription in yeast. Images PMID:1992452

  19. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation

    PubMed Central

    Kerr, Edward D.

    2016-01-01

    Vegemite is an iconic Australian food spread made from spent brewers’ yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers’ yeast. No fermentation occurred in any condition without addition of extra brewer’s yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers’ yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers’ yeast had been added. We estimate that the real-world cost of home brewed “Vegemite Beer” would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings. PMID:27602264

  20. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation.

    PubMed

    Kerr, Edward D; Schulz, Benjamin L

    2016-01-01

    Vegemite is an iconic Australian food spread made from spent brewers' yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers' yeast. No fermentation occurred in any condition without addition of extra brewer's yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers' yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers' yeast had been added. We estimate that the real-world cost of home brewed "Vegemite Beer" would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings. PMID:27602264

  1. Extraction of genomic DNA from yeasts for PCR-based applications.

    PubMed

    Lõoke, Marko; Kristjuhan, Kersti; Kristjuhan, Arnold

    2011-05-01

    We have developed a quick and low-cost genomic DNA extraction protocol from yeast cells for PCR-based applications. This method does not require any enzymes, hazardous chemicals, or extreme temperatures, and is especially powerful for simultaneous analysis of a large number of samples. DNA can be efficiently extracted from different yeast species (Kluyveromyces lactis, Hansenula polymorpha, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris, and Saccharomyces cerevisiae). The protocol involves lysis of yeast colonies or cells from liquid culture in a lithium acetate (LiOAc)-SDS solution and subsequent precipitation of DNA with ethanol. Approximately 100 nanograms of total genomic DNA can be extracted from 1 × 10(7) cells. DNA extracted by this method is suitable for a variety of PCR-based applications (including colony PCR, real-time qPCR, and DNA sequencing) for amplification of DNA fragments of ≤ 3500 bp. PMID:21548894

  2. Measurement of the relative sweetness of stevia extract, aspartame and cyclamate/saccharin blend as compared to sucrose at different concentrations.

    PubMed

    Cardello, H M; Da Silva, M A; Damasio, M H

    1999-01-01

    Special diets are used to mitigate many human diseases. When these diets require changes in carbohydrate content, then sweetness becomes an important characteristic. The range of low-calorie sweeteners available to the food industry is expanding. It is essential to have an exact knowledge of the relative sweetness of various sweeteners in relation to different sucrose concentrations. The objective of this study was to determine the variation on the relative sweetness of aspartame (APM), stevia [Stevia rebaudiana (Bert.) Bertoni] leaf extract (SrB) and the mixture cyclamate/saccharin--two parts of cyclamate and one part of saccharin--(C/S) with the increase in their concentrations, and in neutral and acid pH in equisweet concentration to 10% sucrose, using magnitude estimation. Sweetness equivalence of SrB in relation to sucrose concentrations of 20% or higher and of APM and C/S to sucrose concentrations of 40% or higher could not be determined, because a bitter taste predominated. The potency of all sweeteners decreased as the level of sweetner increased. In equi-sweet concentration of sucrose at 10%, with pH 7.0 and pH 3.0, the potency was practically the same for all sweeteners evaluated. PMID:10646559

  3. [Study of the Sporothrix schenkii (yeast forms) extract. Electrophoretic and immunoelectrophoretic analyses: characterization of enzymatic activities].

    PubMed

    Walbaum, S; Duriez, T; Dujardin, L; Biguet, J

    1978-07-28

    An extract from living yeast forms of S. schenckii was prepared. The yeasts originated from a shake culture in B.H.I. broth (Difco) incubated for 3 days at 35 degrees C in darkness; they were harvested, washed and disrupted with glass beads in a model MSK Braun mechanical cell homogenizer; a freezing-thawing was added to improve the extract. After electrophoretic separation in agarose gel, the extract's components were characterized by their enzymic activity; with this technique, 30 bands were revealed. These enzymic activities were also investigated on the antigenic fractions of the extract revealed by a rabbit hyperimmunserum: 16 among 22 immunoprecipitates are identified by their catalytic properties. Study of the earliest precipitating antibodies (appearing-order and enzymic caracterization) in rabbits just immunized completes this work. How to ameliorate the quality of the extract by culture and extraction conditions is also specified. PMID:692628

  4. Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts.

    PubMed

    Čolnik, Maja; Primožič, Mateja; Knez, Željko; Leitgeb, Maja

    2016-01-01

    The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum, and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2) by varying pressure at fixed temperature (35°C). The black yeasts cell walls were disrupted, and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase, and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV-Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2-treated cells. The advantages of the proposed method are in a simple use, which is also possible for heat-sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions. PMID:27148527

  5. Use of Non-Conventional Cell Disruption Method for Extraction of Proteins from Black Yeasts

    PubMed Central

    Čolnik, Maja; Primožič, Mateja; Knez, Željko; Leitgeb, Maja

    2016-01-01

    The influence of pressure and treatment time on cells disruption of different black yeasts and on activities of extracted proteins using supercritical carbon dioxide process was studied. The cells of three different black yeasts Phaeotheca triangularis, Trimatostroma salinum, and Wallemia ichthyophaga were exposed to supercritical carbon dioxide (SC CO2) by varying pressure at fixed temperature (35°C). The black yeasts cell walls were disrupted, and the content of the cells was spilled into the liquid medium. The impact of SC CO2 conditions on secretion of enzymes and proteins from black yeast cells suspension was studied. The residual activity of the enzymes cellulase, β-glucosidase, α-amylase, and protease was studied by enzymatic assay. The viability of black yeast cells was determined by measuring the optical density of the cell suspension at 600 nm. The total protein concentration in the suspension was determined on UV–Vis spectrophotometer at 595 nm. The release of intracellular and extracellular products from black yeast cells was achieved. Also, the observation by an environmental scanning electron microscopy shows major morphological changes with SC CO2-treated cells. The advantages of the proposed method are in a simple use, which is also possible for heat-sensitive materials on one hand and on the other hand integration of the extraction of enzymes and their use in biocatalytical reactions. PMID:27148527

  6. GMAX Yeast Background Strain Made from Industrial Tolerant Saccharomyces cerevisiae Engineered to Convert Sucrose, Starch and Cellulosic Sugars Universally to Ethanol Anaerobically with Concurrent Coproduct Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tailored GMAX yeast background strain technology for universal ethanol production industrially. Production of the stable baseline glucose, mannose, arabinose, xylose-utilizing (GMAX) yeast will be evaluated by taking the genes identified in high-throughput screening for a plasmid-based yeast to uti...

  7. Gastrointestinal Maturation is Accelerated in Turkey Poults Supplemented with a Mannan-Oligosaccharide Yeast Extract (Alphamune)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alphamune™, a yeast extract antibiotic alternative, has been shown to stimulate the immune system, increase body weight in pigs, and reduce Salmonella colonization in chickens. The influence of Alphamune™ on gastrointestinal tract development has not been reported. Two trials were conducted to evalu...

  8. Effects of dietary yeast extract on turkey stress response and heterophil oxidative burst activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective nutritional approaches to counteract the negative effects of stress would both improve human health and provide food animal producers with useful alternatives to antibiotics. In this study, turkeys were fed a standard diet or the same diet supplemented with yeast extract (Alphamune™, YE), ...

  9. A single protocol for extraction of gDNA from bacteria and yeast.

    PubMed

    Vingataramin, Laurie; Frost, Eric H

    2015-03-01

    Guanidine thiocyanate breakage of microorganisms has been the standard initial step in genomic DNA (gDNA) extraction of microbial DNA for two decades, despite the requirement for pretreatments to extract DNA from microorganisms other than Gram-negative bacteria. We report a quick and low-cost gDNA extraction protocol called EtNa that is efficient for bacteria and yeast over a broad range of concentrations. EtNa is based on a hot alkaline ethanol lysis. The solution can be immediately centrifuged to yield a crude gDNA extract suitable for PCR, or it can be directly applied to a silica column for purification. PMID:25757544

  10. 21 CFR 184.1854 - Sucrose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1854 Sucrose. (a) Sucrose (C12H22O11, CAS Reg. No. 57-50-11-1) sugar, cane sugar, or beet sugar is the chemical β-D-fructofuranosyl-α-D-glucopyranoside. Sucrose is obtained by crystallization from sugar cane or sugar beet juice that has been extracted by pressing or diffusion,...

  11. Unveiling the potential of novel yeast protein extracts in white wines clarification and stabilization

    PubMed Central

    Fernandes, Joana P.; Neto, Rodrigo; Centeno, Filipe; De Fátima Teixeira, Maria; Gomes, Ana Catarina

    2015-01-01

    Fining agents derived from animal and mineral sources are widely used to clarify and stabilize white wines. Nevertheless, health and environmental problems are being raised, concerning the allergenic and environmental impact of some of those fining products. In this study, our aim is to validate the potential of yeast protein extracts, obtained from an alternative and safe source, naturally present in wine: oenological yeasts. Three untreated white wines were used in this work in order to evaluate the impact of these novel yeast protein extracts (YPE) in terms of the wine clarification and stabilization improvement. Two separated fining trials were thus conducted at laboratory scale and the yeast alternatives were compared with reference fining agents, obtained from mineral, animal and vegetable origins. Our results indicate that YPE were capable to promote (i) brilliance/color improvement, (ii) turbidity reduction (76–89% comparing with the untreated wines), and (iii) production of compact and homogeneous lees (44% smaller volume than obtained with bentonite). Additionally, after submitting wines to natural and forced oxidations, YPE treatments revealed (iv) different forms of colloidal stabilization, by presenting comparable or superior effects when particularly compared to casein. Altogether, this study reveals that YPE represent a promising alternative for white wine fining, since they are resultant from a natural and more sustainable origin, at present not regarded as potential allergenic according to Regulation (EC) No. 1169/2011. PMID:25853122

  12. Unveiling the potential of novel yeast protein extracts in white wines clarification and stabilization.

    PubMed

    Fernandes, Joana P; Neto, Rodrigo; Centeno, Filipe; De Fátima Teixeira, Maria; Gomes, Ana Catarina

    2015-01-01

    Fining agents derived from animal and mineral sources are widely used to clarify and stabilize white wines. Nevertheless, health and environmental problems are being raised, concerning the allergenic and environmental impact of some of those fining products. In this study, our aim is to validate the potential of yeast protein extracts, obtained from an alternative and safe source, naturally present in wine: oenological yeasts. Three untreated white wines were used in this work in order to evaluate the impact of these novel yeast protein extracts (YPE) in terms of the wine clarification and stabilization improvement. Two separated fining trials were thus conducted at laboratory scale and the yeast alternatives were compared with reference fining agents, obtained from mineral, animal and vegetable origins. Our results indicate that YPE were capable to promote (i) brilliance/color improvement, (ii) turbidity reduction (76-89% comparing with the untreated wines), and (iii) production of compact and homogeneous lees (44% smaller volume than obtained with bentonite). Additionally, after submitting wines to natural and forced oxidations, YPE treatments revealed (iv) different forms of colloidal stabilization, by presenting comparable or superior effects when particularly compared to casein. Altogether, this study reveals that YPE represent a promising alternative for white wine fining, since they are resultant from a natural and more sustainable origin, at present not regarded as potential allergenic according to Regulation (EC) No. 1169/2011. PMID:25853122

  13. Absorbable phenylpropenoyl sucroses from Polygala tenuifolia.

    PubMed

    She, Gaimei; Ba, Yinying; Liu, Yang; Lv, Hang; Wang, Wei; Shi, Renbing

    2011-01-01

    Three phenylpropenoyl sucroses--sibiricose A5, A6 and 3',6-disinapoyl sucrose--were isolated from the 30% EtOH extract of Polygala tenuifolia, which displayed antidepressant-like action. HPLC analysis indicated that the three phenylpropenoyl sucroses could be absorbed into serum. From the serum pharmacochemistry point of view, these three phenylpropenoyl sucroses might prevent or relieve depression. PMID:21716172

  14. GC Preps: Fast and Easy Extraction of Stable Yeast Genomic DNA

    PubMed Central

    Blount, Benjamin A.; Driessen, Maureen R. M.; Ellis, Tom

    2016-01-01

    Existing yeast genomic DNA extraction methods are not ideally suited to extensive screening of colonies by PCR, due to being too lengthy, too laborious or yielding poor quality DNA and inconsistent results. We developed the GC prep method as a solution to this problem. Yeast cells from colonies or liquid cultures are lysed by vortex mixing with glass beads and then boiled in the presence of a metal chelating resin. In around 12 minutes, multiple samples can be processed to extract high yields of genomic DNA. These preparations perform as effectively in PCR screening as DNA purified by organic solvent methods, are stable for up to 1 year at room temperature and can be used as the template for PCR amplification of fragments of at least 8 kb. PMID:27240644

  15. Dextransucrase production using cashew apple juice as substrate: effect of phosphate and yeast extract addition.

    PubMed

    Chagas, Clarice M A; Honorato, Talita L; Pinto, Gustavo A S; Maia, Geraldo A; Rodrigues, Sueli

    2007-05-01

    Cashew apples are considered agriculture excess in the Brazilian Northeast because cashew trees are cultivated primarily with the aim of cashew nut production. In this work, the use of cashew apple juice as a substrate for Leuconostoc mesenteroides cultivation was investigated. The effect of yeast extract and phosphate addition was evaluated using factorial planning tools. Both phosphate and yeast extract addition were significant factors for biomass growth, but had no significant effect on maximum enzyme activity. The enzyme activities found in cashew apple juice assays were at least 3.5 times higher than the activity found in the synthetic medium. Assays with pH control (pH = 6.5) were also carried out. The pH-controlled fermentation enhanced biomass growth, but decreased the enzyme activity. Crude enzyme free of cells produced using cashew apple juice was stable for 16 h at 30 degrees C at a pH of 5.0. PMID:17323142

  16. GC Preps: Fast and Easy Extraction of Stable Yeast Genomic DNA.

    PubMed

    Blount, Benjamin A; Driessen, Maureen R M; Ellis, Tom

    2016-01-01

    Existing yeast genomic DNA extraction methods are not ideally suited to extensive screening of colonies by PCR, due to being too lengthy, too laborious or yielding poor quality DNA and inconsistent results. We developed the GC prep method as a solution to this problem. Yeast cells from colonies or liquid cultures are lysed by vortex mixing with glass beads and then boiled in the presence of a metal chelating resin. In around 12 minutes, multiple samples can be processed to extract high yields of genomic DNA. These preparations perform as effectively in PCR screening as DNA purified by organic solvent methods, are stable for up to 1 year at room temperature and can be used as the template for PCR amplification of fragments of at least 8 kb. PMID:27240644

  17. Contributions of Sucrose Synthase and Invertase to the Metabolism of Sucrose in Developing Leaves 1

    PubMed Central

    Schmalstig, J. Gougler; Hitz, William D.

    1987-01-01

    The relative contributions of invertase and sucrose synthase to initial cleavage of phloem-imported sucrose was calculated for sink leaves of soybean (Glycine max L. Merr cv Wye) and sugar beet (Beta vulgaris L. monohybrid). Invertase from yeast hydrolyzed sucrose 4200 times faster than 1′-deoxy-1′-fluorosucrose (FS) while sucrose cleavage by sucrose synthase from developing soybean leaves proceeded only 3.6 times faster than cleavage of FS. [14C]Sucrose and [14C]FS, used as tracers of sucrose, were transported at identical rates to developing leaves through the phloem. The rate of label incorporation into insoluble products varied with leaf age from 3.4 to 8.0 times faster when [14C]sucrose was supplied than when [14C]FS was supplied. The discrimination in metabolism was related to enzymatic discriminations against FS to calculate the relative contributions of invertase and sucrose synthase to sucrose cleavage. In the youngest soybean leaves measured, 4% of final laminar length (FLL), all cleavage was by sucrose synthase. Invertase contribution to sucrose metabolism was 47% by 7.6% FLL, increased to 54% by 11% FLL, then declined to 42% for the remainder of the import phase. In sugar beet sink leaves at 30% FLL invertase contribution to sucrose metabolism was 58%. PMID:16665711

  18. Methyl jasmonate and yeast extract stimulate mitragynine production in Mitragyna speciosa (Roxb.) Korth. shoot culture.

    PubMed

    Wungsintaweekul, Juraithip; Choo-Malee, Jutarat; Charoonratana, Tossaton; Keawpradub, Niwat

    2012-10-01

    Mitragynine is a pharmacologically-active terpenoid indole alkaloid found in Mitragyna speciosa leaves. Treatment with methyl jasmonate (10 μM) for 24 h and yeast extract (0.1 mg/ml) for 12 h were the optimum conditions of elicitation of mitragynine accumulation in a M. speciosa shoot culture. The former elicitor gave 0.11 mg mitragynine/g dry wt. Tryptophan decarboxylase and strictosidine synthase mRNA levels were enhanced in accordance with mitragynine accumulation. PMID:22714271

  19. Ultrasound assisted extraction of carbohydrates from microalgae as feedstock for yeast fermentation.

    PubMed

    Zhao, Guili; Chen, Xue; Wang, Lei; Zhou, Shixiao; Feng, Huixing; Chen, Wei Ning; Lau, Raymond

    2013-01-01

    Recently, carbohydrates biomass from microalgae is considered as a promising and inexpensive feedstock for biofeuls production by microorganism fermentation. The main obstacle of the process is microalgae pretreatment and carbohydrates extraction from algal cell. In this study, comparison of three pretreatment methods was performed and the results showed that ultrasonic assisted extraction (UAE) was very effective. The effects of four parameters (ultrasonic power, extraction time, flow rate and algal cell concentration, respectively) on extraction efficiency were also investigated. Additionally, in order to identify significant factors for glucose yield, combination of these four parameters was examined by using fractional factorial design (FFD) and the regression model was obtained. Meanwhile, the refined model was confirmed as a good fitting model via analysis of variance (ANOVA). After extraction, glucose obtained from microalgae was used as substrate for Rhodosporidium toruloides fermentation and yeast biomass was much higher than that of control culture. PMID:23196255

  20. Microbial dynamics during azo dye degradation in a UASB reactor supplied with yeast extract.

    PubMed

    Silva, S Q; Silva, D C; Lanna, M C S; Baeta, B E L; Aquino, S F

    2014-01-01

    The present work aimed to investigate the microbial dynamics during the anaerobic treatment of the azo dye blue HRFL in bench scale upflow anaerobic sludge bed (UASB) reactor operated at ambient temperature. Sludge samples were collected under distinct operational phases, when the reactor were stable (low variation of color removal), to assess the effect of glucose and yeast extract as source of carbon and redox mediators, respectively. Reactors performance was evaluated based on COD (chemical oxygen demand) and color removal. The microbial dynamics were investigated by PCR-DGGE (Polimerase Chain Reaction - Denaturing Gradient of Gel Electrophoresis) technique by comparing the 16S rDNA profiles among samples. The results suggest that the composition of microorganisms changed from the beginning to the end of the reactor operation, probably in response to the presence of azo dye and/or its degradation byproducts. Despite the highest efficiency of color removal was observed in the presence of 500 mg/L of yeast extract (up to 93%), there were no differences regarding the microbial profiles that could indicate a microbial selection by the yeast extract addition. On the other hand Methosarcina barkeri was detected only in the end of operation when the best efficiencies on color removal occurred. Nevertheless the biomass selection observed in the last stages of UASB operation is probably a result of the washout of the sludge in response of accumulation of aromatic amines which led to tolerant and very active biomass that contributed to high efficiencies on color removal. PMID:25763018

  1. Microbial dynamics during azo dye degradation in a UASB reactor supplied with yeast extract

    PubMed Central

    Silva, S.Q.; Silva, D.C.; Lanna, M.C.S.; Baeta, B.E.L.; Aquino, S.F.

    2014-01-01

    The present work aimed to investigate the microbial dynamics during the anaerobic treatment of the azo dye blue HRFL in bench scale upflow anaerobic sludge bed (UASB) reactor operated at ambient temperature. Sludge samples were collected under distinct operational phases, when the reactor were stable (low variation of color removal), to assess the effect of glucose and yeast extract as source of carbon and redox mediators, respectively. Reactors performance was evaluated based on COD (chemical oxygen demand) and color removal. The microbial dynamics were investigated by PCR-DGGE (Polimerase Chain Reaction - Denaturing Gradient of Gel Electrophoresis) technique by comparing the 16S rDNA profiles among samples. The results suggest that the composition of microorganisms changed from the beginning to the end of the reactor operation, probably in response to the presence of azo dye and/or its degradation byproducts. Despite the highest efficiency of color removal was observed in the presence of 500 mg/L of yeast extract (up to 93%), there were no differences regarding the microbial profiles that could indicate a microbial selection by the yeast extract addition. On the other hand Methosarcina barkeri was detected only in the end of operation when the best efficiencies on color removal occurred. Nevertheless the biomass selection observed in the last stages of UASB operation is probably a result of the washout of the sludge in response of accumulation of aromatic amines which led to tolerant and very active biomass that contributed to high efficiencies on color removal. PMID:25763018

  2. Inaccurate DNA Synthesis in Cell Extracts of Yeast Producing Active Human DNA Polymerase Iota

    PubMed Central

    Makarova, Alena V.; Grabow, Corinn; Gening, Leonid V.; Tarantul, Vyacheslav Z.; Tahirov, Tahir H.; Bessho, Tadayoshi; Pavlov, Youri I.

    2011-01-01

    Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn2+ ions, can bypass some DNA lesions and misincorporates “G” opposite template “T” more frequently than incorporates the correct “A.” We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of “G” versus “A” method of Gening, abbreviated as “misGvA”). We provide unambiguous proof of the “misGvA” approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The “misGvA” activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts. PMID:21304950

  3. Detergent assisted lipid extraction from wet yeast biomass for biodiesel: A response surface methodology approach.

    PubMed

    Yellapu, Sravan Kumar; Bezawada, Jyothi; Kaur, Rajwinder; Kuttiraja, Mathiazhakan; Tyagi, Rajeshwar D

    2016-10-01

    The lipid extraction from the microbial biomass is a tedious and high cost dependent process. In the present study, detergent assisted lipids extraction from the culture of the yeast Yarrowia lipolytica SKY-7 was carried out. Response surface methodology (RSM) was used to investigate the effect of three principle parameters (N-LS concentration, time and temperature) on microbial lipid extraction efficiency % (w/w). The results obtained by statistical analysis showed that the quadratic model fits in all cases. Maximum lipid recovery of 95.3±0.3% w/w was obtained at the optimum level of process variables [N-LS concentration 24.42mg (equal to 48mgN-LS/g dry biomass), treatment time 8.8min and reaction temperature 30.2°C]. Whereas the conventional chloroform and methanol extraction to achieve total lipid recovery required 12h at 60°C. The study confirmed that oleaginous yeast biomass treatment with N-lauroyl sarcosine would be a promising approach for industrial scale microbial lipid recovery. PMID:27416517

  4. A Yeast Metabolite Extraction Protocol Optimised for Time-Series Analyses

    PubMed Central

    Sasidharan, Kalesh; Soga, Tomoyoshi; Tomita, Masaru; Murray, Douglas B.

    2012-01-01

    There is an increasing call for the absolute quantification of time-resolved metabolite data. However, a number of technical issues exist, such as metabolites being modified/degraded either chemically or enzymatically during the extraction process. Additionally, capillary electrophoresis mass spectrometry (CE-MS) is incompatible with high salt concentrations often used in extraction protocols. In microbial systems, metabolite yield is influenced by the extraction protocol used and the cell disruption rate. Here we present a method that rapidly quenches metabolism using dry-ice ethanol bath and methanol N-ethylmaleimide solution (thus stabilising thiols), disrupts cells efficiently using bead-beating and avoids artefacts created by live-cell pelleting. Rapid sample processing minimised metabolite leaching. Cell weight, number and size distribution was used to calculate metabolites to an attomol/cell level. We apply this method to samples obtained from the respiratory oscillation that occurs when yeast are grown continuously. PMID:22952947

  5. Antiulcer and antiproliferative properties of spent brewer's yeast peptide extracts for incorporation into foods.

    PubMed

    Amorim, Maria M; Pereira, Joana O; Monteiro, Karin M; Ruiz, Ana L; Carvalho, João E; Pinheiro, Hélder; Pintado, Manuela

    2016-05-18

    The main objective was to study the antiulcer and antiproliferative potential of yeast peptide extract for further incorporation into functional foods. Peptide concentrates were obtained by hydrolysis of spent brewer's yeast proteins followed by a filtration process. In order to prove the possible protection of gastric mucosa, an animal model with ulcerative lesions caused by oral administration of absolute ethanol was used. The peptide fraction <3 kDa was able to reduce gastric injuries to significant levels (p < 0.001) and the effective dose (DE50) was 816 mg per kg bw. The cytoprotective effect appears to depend on a prostaglandin-mediated mechanism and also on a nonspecific mechanism. The antiproliferative activity of the extract in nine different human tumoral cell lines was tested. The results exhibited a promising antiproliferative activity against the cell line K-562 (leukemia). The results suggest that a new peptide extract can be used to develop new value-added functional food products, although further studies are required. PMID:27125503

  6. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    NASA Technical Reports Server (NTRS)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  7. In vivo antiprostate tumor potential of Vernonia guineensis Benth. (Asteraceae) tuber extract (VGDE) and the cytotoxicity of its major compound pentaisovaleryl sucrose

    PubMed Central

    Toyang, Ngeh J.; Ateh, Eugene N.; Davis, Harry; Tane, Pierre; Sondengam, Luc B.; Bryant, Joseph; Verpoorte, Rob

    2015-01-01

    Ethnopharmacological relevance Vernonia guineensis Benth. (Asteraceae) root decoction is used in folk medicine in Cameroon to treat some ailments including prostate cancer. The aim of this study was to validate the claimed antiprostate cancer activity of Vernonia guineensis Benth. in vivo and to investigate the cytotoxicity of a pentaisovaleryl sucrose isolated from Vernonia guineensis on some cancer cell lines. Materials and methods A crude dichloromethane extract of Vernonia guineensis (VGDE) was used for this study. For in vivo antiprostate cancer efficacy, nude mice (n = 16) were injected subcutaneously with prostate cancer PC-3 cells. Upon the formation of the xenograft tumors, the mice were divided into two equal groups with approximately the same mean tumor volume per group. One group was treated with VGDE orally (500 mg/kg) and the other with a vehicle control for 30 days. Body weight and tumor volumes were measured 2 × a week and on the 33rd day, the mice were euthanized and tumors harvested and weighed. For the cytotoxicity study, the WST-1 assay was used to determine the activity of pentaisovaleryl sucrose previously isolated from VGDE. The cancer cell lines used in the cytotoxicity study included breast, colon, leukemia, lung, melanoma, ovarian and prostate. Results Prostate cancer (PC-3) xenograft tumors treated with VGDE showed a significant decrease in tumor size (P = 0.0295) compared to control. Pentaisovaleryl sucrose also demonstrated cytotoxicity against various cancer cell lines with IC50 values as follows: MDA-MD-231—6.66 µM; MCF-7—7.50 µM; HCT116—14.12 µM; A549—5.76 µM; HL60—6.43 µM; A375—8.64 µM; OVCAR3—9.53 µM; Capan1—7.13 µM; Mia-Paca 6.47 µM. Conclusion VGDE does possess in vivo activity against prostate tumor and has potential for development into a natural product for the treatment of prostate cancer. This study thus provides preliminary validation for the folk use of Vernonia guineensis against prostate

  8. Isomaltulose production from sucrose by Protaminobacter rubrum immobilized in calcium alginate.

    PubMed

    de Oliva-Neto, P; Menão, Paula T P

    2009-09-01

    Different culture conditions for Protaminobacter rubrum and enzymatic reaction parameters were evaluated with the goal of improving isomaltulose production. P. rubrum was grown in a medium with 1% (w/v) cane molasses and 0.5% yeast extract and achieved a maximum cell yield Y(x/s) of 0.295 g of cells/g sucrose and a specific growth rate (mu) of 0.192 h(-1). The immobilization of P. rubrum cells was carried out with calcium alginate, glutaraldehyde and polyethyleneimine. Stabile immobilized cell pellets were obtained and used 24 times in batch processes. Enzymatic conversion was carried out at different sucrose concentrations and in pH 6 medium with 70% (w/v) sucrose at 30 degrees C an isomaltulose yield of 89-94% (w/v) was obtained. The specific activity of the P. rubrum immobilized pellets in calcium alginate at 30 degrees C ranged from 1.6 to 4.0 g isomaltulose g(-1) pellet h(-1), respectively with 70% and 65% sucrose solution, while in lower sucrose concentration had higher specific activities presumably due to substrate inhibition of the isomaltulose synthase in higher sucrose concentrations. PMID:19410450

  9. Chemistry and genotoxicity of caramelized sucrose.

    PubMed

    Kitts, David D; Wu, C H; Kopec, A; Nagasawa, T

    2006-12-01

    Caramelization of a 1% sucrose solution at 180 degrees C accompanied characteristic changes in pH, Mr, UV-absorbance, and fluorescence values as well as increased reducing power activity after 40-60 min. Similar changes occurred to sucrose heated at 150 degrees C, after 150-240 min. Bioactivity of caramelized sucrose samples was tested for mutagenic activity, using Salmonella typhimurium strains TA-98 and TA-100, respectively, as well as the Saccharomyces D7 yeast strain for mitotic recombination and Chinese hamster ovary cells (CHO) to assess clastogenicity. Caramelized sucrose expressed no mutagenicity in the TA-98 strain, but gave positive (p < 0.05) results with the TA-100, base-pair substitution strain. Similarly, mitotic recombination in the Saccharomyces D7 yeast strain and clastogenic activity in CHO cells were induced when exposed to caramelized sucrose. In the all cases, preincubation with S-9 reduced (p < 0.05) the mutagenic activities of caramelized sucrose. Fractionation of the caramelized sucrose into volatile and nonvolatile compounds was performed and tested for clastogenicity using CHO cells. Volatile components contributed approximately 10% to total clastogenicity, which was enhanced by the presence of S-9. Nonvolatile components recovered, consisting of relatively lower Mr, gave highest (p < 0.05) clastogenic activity, denoting that higher Mr caramel colors are relatively free of this property. PMID:17103379

  10. Recovery of spores of Clostridium botulinum in yeast extract agar and pork infusion agar after heat treatment.

    PubMed

    Odlaug, T E; Pflug, I J

    1977-10-01

    Yeast extract agar, pork infusion agar, and modifications of these media were used to recover heated Clostridium botulinum spores. The D- and z-values were determined. Two type A strains and one type B strain of C. botulinum were studied. In all cases the D-values were largest when the spores were recovered in yeast extract agar, compared to the D-values for spores recovered in pork infusion agar. The z-values for strains 62A and A16037 were largest when the spores were recovered in pork infusion agar. The addition of sodium bicarbonate and sodium thioglycolate to pork infusion agar resulted in D-values for C. botulinum 62A spores similar to those for the same spores recovered in yeast extract agar. The results suggest that sodium bicarbonate and sodium thioglycolate should be added to recovery media for heated C. botulinum spores to obtain maximum plate counts. PMID:335970

  11. [Effects of 33% grapefruit extract on the growth of the yeast--like fungi, dermatopytes and moulds].

    PubMed

    Krajewska-Kułak, E; Lukaszuk, C; Niczyporuk, W

    2001-01-01

    Grapefruit seed extract was discovered by Jacob Harich an american immunologist in 1980. Assessment of the influence of grapefruit extract on the yeast-like fungi strains--Candida albicans growth. Material used in this investigation was ATCC test Candida albicans strains no 10231, 200 of Candida albicans strains, 5 of Candida sp. strains isolated from patients with candidiasis symptoms from different ontocenosis and 12 of dermatophytes and moulds isolated from patients. The susceptibility of the Candida was determined by serial dilution method. It seems that 33% grapefruit extract exert a potent antifungal activity against the yeast like fungi strains and had low activity against dermatophytes and moulds. Further studies in vitro and in vivo on greater number of the yeast-like fungi strains and other fungi species are needed. PMID:16886437

  12. 21 CFR 184.1854 - Sucrose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1854 Sucrose. (a) Sucrose (C12H22O11, CAS Reg. No. 57-50-11-1) sugar, cane sugar, or beet sugar is the... sugar beet juice that has been extracted by pressing or diffusion, then clarified and evaporated....

  13. Contributions of sucrose synthase and invertase to the metabolism of sucrose in developing leaves : estimation by alternate substrate utilization.

    PubMed

    Schmalstig, J G; Hitz, W D

    1987-10-01

    The relative contributions of invertase and sucrose synthase to initial cleavage of phloem-imported sucrose was calculated for sink leaves of soybean (Glycine max L. Merr cv Wye) and sugar beet (Beta vulgaris L. monohybrid). Invertase from yeast hydrolyzed sucrose 4200 times faster than 1'-deoxy-1'-fluorosucrose (FS) while sucrose cleavage by sucrose synthase from developing soybean leaves proceeded only 3.6 times faster than cleavage of FS. [(14)C]Sucrose and [(14)C]FS, used as tracers of sucrose, were transported at identical rates to developing leaves through the phloem. The rate of label incorporation into insoluble products varied with leaf age from 3.4 to 8.0 times faster when [(14)C]sucrose was supplied than when [(14)C]FS was supplied. The discrimination in metabolism was related to enzymatic discriminations against FS to calculate the relative contributions of invertase and sucrose synthase to sucrose cleavage. In the youngest soybean leaves measured, 4% of final laminar length (FLL), all cleavage was by sucrose synthase. Invertase contribution to sucrose metabolism was 47% by 7.6% FLL, increased to 54% by 11% FLL, then declined to 42% for the remainder of the import phase. In sugar beet sink leaves at 30% FLL invertase contribution to sucrose metabolism was 58%. PMID:16665711

  14. Contributions of sucrose synthase and invertase to the metabolism of sucrose in developing leaves: estimation by alternate substrate utilization

    SciTech Connect

    Schmalstig, J.G.; Hitz, W.D.

    1987-10-01

    The relative contributions of invertase and sucrose synthase to initial cleavage of phloem-imported sucrose was calculated for sink leaves of soybean (Glycine max L. Merr cv Wye) and sugar beet (Beta vulgaris L. monohybrid). Invertase from yeast hydrolyzed sucrose 4200 times faster than 1'-deoxy-1'-fluorosucrose (FS) while sucrose cleavage by sucrose synthase from developing soybean leaves proceeded only 3.6 times faster than cleavage of FS.(/sup 14/C)Sucrose and (/sup 14/C)FS, used as tracers of sucrose, were transported at identical rates to developing leaves through the phloem. The rate of label incorporation into insoluble products varied with leaf age from 3.4 to 8.0 times faster when (/sup 14/C)sucrose was supplied than when (/sup 14/C)FS was supplied. The discrimination in metabolism was related to enzymatic discriminations against FS to calculate the relative contributions of invertase and sucrose synthase to sucrose cleavage. In the youngest soybean leaves measured, 4% of final laminar length (FLL), all cleavage was by sucrose synthase. Invertase contribution to sucrose metabolism was 47% by 7.6% FLL, increased to 54% by 11% FLL, then declined to 42% for the remainder of the import phase. In sugar beet sink leaves at 30% FLL invertase contribution to sucrose metabolism was 58%.

  15. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast ( Saccharomyces cerevisiae) extract

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-11-01

    Synthesis of metallic and semiconductor nanoparticles through physical and chemical route is quiet common but biological synthesis procedures are gaining momentum due to their simplicity, cost-effectivity and eco-friendliness. Here, we report green synthesis of silver nanoparticles from aqueous solution of silver salts using yeast ( Saccharomyces cerevisiae) extract. The nanoparticles formation was gradually investigated by UV-Vis spectrometer. X-ray diffraction analysis was done to identify different phases of biosynthesized Ag nanoparticles. Transmission electron microscopy was performed to study the particle size and morphology of silver nanoparticles. Fourier transform infrared spectroscopy of the nanoparticles was performed to study the role of biomolecules capped on the surface of Ag nanoparticles during interaction. Photocatalytic activity of these biosynthesized nanoparticles was studied using an organic dye, methylene blue under solar irradiation and these nanoparticles showed efficacy in degrading the dye within a few hours of exposure.

  16. Effect of Yeast Extract and Vitamin B(12) on Ethanol Production from Cellulose by Clostridium thermocellum I-1-B.

    PubMed

    Sato, K; Goto, S; Yonemura, S; Sekine, K; Okuma, E; Takagi, Y; Hon-Nami, K; Saiki, T

    1992-02-01

    Addition to media of yeast extract, a vitamin mixture containing vitamin B(12), biotin, pyridoxamine, and p-aminobenzoic acid, or vitamin B(12) alone enhanced formation of ethanol but decreased lactate production in the fermentation of cellulose by Clostridium thermocellum I-1-B. A similar effect was not observed with C. thermocellum ATCC 27405 and JW20. PMID:16348657

  17. Effects of yeast extract and vitamin D on turkey mortality and cellulitis incidence in a transport stress model.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated yeast extract (YE) and vitamin D (VD) in turkeys treated with dexamethasone (Dex) at intervals designed to simulate transport stress during a 3 stage growout. YE but not VD decreased early mortality (P = 0.001) and mortality at wk 7 (P= 0.02) and wk 12 (P = 0.002) but not wk 16. Celluli...

  18. Use of yeast cell wall extract as a tool to reduce the impact of necrotic enteritis in broilers.

    PubMed

    M'Sadeq, Shawkat A; Wu, Shu-Biao; Choct, Mingan; Forder, Rebecca; Swick, Robert A

    2015-05-01

    The use of a yeast cell wall extract derived from Saccharomyces cerevisiae (Actigen(®)) has been proposed as an alternative to in-feed antibiotics. This experiment was conducted to investigate the efficacy of yeast cell extract as an alternative to zinc bacitracin or salinomycin using a necrotic enteritis challenge model. A feeding study was conducted using 480-day-old male Ross 308 chicks assigned to 48 floor pens. A 2 × 4 factorial arrangement of treatments was employed. The factors were: challenge (- or +) and feed additive (control, zinc bacitracin at 100/50 mg/kg, yeast cell wall extract at 400/800/200 mg/kg, or salinomycin at 60 mg/kg in starter, grower, and finisher, respectively). Diets based on wheat, sorghum, soybean meal, meat and bone meal, and canola meal were formulated according to the Ross 308 nutrient specifications. Birds were challenged using a previously established protocol (attenuated Eimeria spp oocysts) on d 9 and 10(8) to 10(9) Clostridium perfringens (type A strain EHE-NE18) on d 14 and 15). Challenged and unchallenged birds were partitioned to avoid cross contamination. Challenged birds had lower weight gain, feed intake and livability compared to unchallenged birds on d 24 and d 35 (P < 0.05). Birds given zinc bacitracin, yeast cell wall extract, or salinomycin had improved weight gain and livability when compared to control birds given no additives. Challenge × additive interactions were observed for feed intake and weight gain on d 24 and d 35 (P < 0.01). The additives all had a greater positive impact on feed intake, weight gain, and livability in challenged than unchallenged birds. All challenged birds showed higher necrotic enteritis lesion scores in the small intestine sections when compared to unchallenged birds (P < 0.01). Birds fed yeast cell wall extract exhibited increased villus height, decreased crypt depth, and increased villus:crypt ratio when challenged. Yeast cell wall extract, zinc bacitracin, and salinomycin were

  19. 21 CFR 184.1854 - Sucrose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sugar, or beet sugar is the chemical β-D-fructofuranosyl-α-D-glucopyranoside. Sucrose is obtained by crystallization from sugar cane or sugar beet juice that has been extracted by pressing or diffusion,...

  20. 21 CFR 184.1854 - Sucrose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... sugar, or beet sugar is the chemical β-D-fructofuranosyl-α-D-glucopyranoside. Sucrose is obtained by crystallization from sugar cane or sugar beet juice that has been extracted by pressing or diffusion,...

  1. 21 CFR 184.1854 - Sucrose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sugar, or beet sugar is the chemical β-D-fructofuranosyl-α-D-glucopyranoside. Sucrose is obtained by crystallization from sugar cane or sugar beet juice that has been extracted by pressing or diffusion,...

  2. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    PubMed Central

    Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Hussin, Aminuddin bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah

    2014-01-01

    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606

  3. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice.

    PubMed

    Yeap, Swee Keong; Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Mohamad, Nurul Elyani; Hussin, Aminuddin Bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah; Long, Kamariah

    2014-01-01

    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606

  4. The optimized capsid gene of porcine circovirus type 2 expressed in yeast forms virus-like particles and elicits antibody responses in mice fed with recombinant yeast extracts.

    PubMed

    Bucarey, Sergio A; Noriega, Jorge; Reyes, Paulina; Tapia, Cecilia; Sáenz, Leonardo; Zuñiga, Alejandro; Tobar, Jaime A

    2009-09-25

    Porcine circovirus type 2 (PCV2)-associated diseases are considered to be the biggest problem for the worldwide swine industry. The PCV2 capsid protein (Cap) is an important antigen for development of vaccines. At present, most anti-PCV2 vaccines are produced as injectable formulations. Although effective, these vaccines have certain drawbacks, including stress with concomitant immunosuppresion, and involve laborious and time-consuming procedures. In this study, Saccharomyces cerevisiae was used as a vehicle to deliver PCV2 antigen in a preliminary attempt to develop an oral vaccine, and its immunogenic potential in mice was tested after oral gavage-mediated delivery. The cap gene with a yeast-optimized codon usage sequence (opt-cap) was chemically synthesized and cloned into Escherichia coli/Saccharomyces cerevisiae shuttle vector, pYES2, under the control of the Gal1 promoter. Intracellular expression of the Cap protein was confirmed by Western blot analysis and its antigenic properties were compared with those of baculovirus/insect cell-produced Cap protein derived from the native PCV2 cap gene. It was further demonstrated by electron micrography that the yeast-derived PCV2 Cap protein self-assembles into virus-like particles (VLPs) that are morphologically and antigenically similar to insect cell-derived VLPs. Feeding raw yeast extract containing Cap protein to mice elicited both serum- and fecal-specific antibodies against the antigen. These results show that it is feasible to use S. cerevisiae as a safe and simple system to produce PCV2 virus-like particles, and that oral yeast-mediated antigen delivery is an alternative strategy to efficiently induce anti-PCV2 antibodies in a mouse model, which is worthy of further investigation in swine. PMID:19664739

  5. Sucrose and Related Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Eggleston, Gillian

    Sucrose (α-D-glucopyranosyl-(1↔2)-β-D-fructofuranoside) is the most common low-molecular-weight sugar found in the plant kingdom. It is ubiquitously known as common table sugar and primarily produced industrially from sugarcane (Saccharum officinarum) and sugar beet (Beta vulgaris); the basics of the industrial manufacture of sucrose are outlined in this chapter. Commercial sucrose has a very high purity (> 99.9%) making it one of the purest organic substances produced on an industrial scale. Value-addition to sucrose via chemical and biotechnological reactions is becoming more important for the diversification of the sugar industry to maintain the industries' competitiveness in a world increasingly turning to a bio-based economy. The basis for the chemical reactivity of sucrose is the eight hydroxyl groups present on the molecule, although, sucrose chemical reactivity is regarded as difficult. Increasing use of enzymatic biotechnological techniques to derivatize sucrose is expected, to add special functionalities to sucrose products like biodegradability, biocompatibility, and non-toxicity. Analysis of sucrose by colorimetric, enzymatic, oxidation-reduction and chromatography methods are discussed. Oligosaccharides related to sucrose are outlined in detail and include sucrose-based plant, honey and in vitro oligosaccharides.

  6. Preparation and characterization of yeast nuclear extracts for efficient RNA polymerase B (II)-dependent transcription in vitro.

    PubMed Central

    Verdier, J M; Stalder, R; Roberge, M; Amati, B; Sentenac, A; Gasser, S M

    1990-01-01

    We present a reproducible method for the preparation of nuclear extracts from the yeast Saccharomyces cerevisiae that support efficient RNA polymerase B (II)-dependent transcription. Extracts from both a crude nuclear fraction and Percoll-purified nuclei are highly active for site-specific initiation and transcription of a G-free cassette under the Adenovirus major late promoter. At optimal extract concentrations transcription is at least 5 times more efficient with the yeast extracts than with HeLa whole cell extracts. We show that the transcriptional activity is sensitive to alpha-amanitin and to depletion of factor(s) recognizing the TATA-box of the promoter. The in vitro reaction showed maximal activity after 45 min, was very sensitive to Cl-, but was not affected by high concentrations of potassium. We find that the efficiency of in vitro transcription in nuclear extracts is reproducibly high when spheroplasting is performed with a partially purified beta 1,3-glucanase (lyticase). Therefore a simplified method to isolate the lyticase from the supernatant of Oerskovia xanthineolytica is also presented. Images PMID:2263463

  7. Components of yeast (Sacchromyces cervisiae) extract as defined media additives that support the growth and productivity of CHO cells.

    PubMed

    Spearman, Maureen; Chan, Sarah; Jung, Vince; Kowbel, Vanessa; Mendoza, Meg; Miranda, Vivian; Butler, Michael

    2016-09-10

    Yeast and plant hydrolysates are used as media supplements to support the growth and productivity of CHO cultures for biopharmaceutical production. Through fractionation of a yeast lysate and metabolic analysis of a fraction that had bioactivity equivalent to commercial yeast extract (YE), bioactive components were identified that promoted growth and productivity of two recombinant CHO cell lines (CHO-Luc and CHO-hFcEG2) equivalent to or greater than YE-supplemented media. Autolysis of the yeast lysate was not necessary for full activity, suggesting that the active components are present in untreated yeast cells. A bioactive fraction (3KF) of the yeast lysate was isolated from the permeate using a 3kDa molecular weight cut-off (MWCO) filter. Supplementation of this 3KF fraction into the base media supported growth of CHO-Luc cells over eight passages equivalent to YE-supplemented media. The 3KF fraction was fractionated further by a cation exchange spin column using a stepwise pH elution. Metabolomic analysis of a bioactive fraction isolated at high pH identified several arginine and lysine-containing peptides as well as two polyamines, spermine and spermidine, with 3.5× and 4.5× higher levels compared to a fraction showing no bioactivity. The addition of a mixture of polyamines and their precursors (putrescine, spermine, spermidine, ornithine and citrulline) as well as increasing the concentration of some of the components of the original base medium resulted in a chemically-defined (CD) formulation that produced an equivalent viable cell density (VCD) and productivity of the CHO-Luc cells as the YE-supplemented medium. The VCD of the CHO-hFcEG2 culture in the CD medium was 1.9× greater and with equivalent productivity to the YE-supplemented media. PMID:27165505

  8. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus.

    PubMed

    Safaei, Zahra; Karimi, Keikhosro; Zamani, Akram

    2016-01-01

    In this study the effects of phosphate, potassium, yeast extract, and trace metals on the growth of Mucor indicus and chitosan, chitin, and metabolite production by the fungus were investigated. Maximum yield of chitosan (0.32 g/g cell wall) was obtained in a phosphate-free medium. Reversely, cell growth and ethanol formation by the fungus were positively affected in the presence of phosphate. In a phosphate-free medium, the highest chitosan content (0.42 g/g cell wall) and cell growth (0.66 g/g sugar) were obtained at 2.5 g/L of KOH. Potassium concentration had no significant effect on ethanol and glycerol yields. The presence of trace metals significantly increased the chitosan yield at an optimal phosphate and potassium concentration (0.50 g/g cell wall). By contrast, production of ethanol by the fungus was negatively affected (0.33 g/g sugars). A remarkable increase in chitin and decrease in chitosan were observed in the absence of yeast extract and concentrations lower than 2 g/L. The maximum chitosan yield of 51% cell wall was obtained at 5 g/L of yeast extract when the medium contained no phosphate, 2.5 g/L KOH, and 1 mL/L trace metal solution. PMID:27589726

  9. Identification and quantitation of phosphorus metabolites in yeast neutral pH extracts by nuclear magnetic resonance spectroscopy.

    PubMed

    Teleman, A; Richard, P; Toivari, M; Penttilä, M

    1999-07-15

    (31)P NMR spectroscopy offers a possibility to obtain a survey of all low-molecular-weight phosphorylated compounds in yeast. The yeast cells have been extracted using chloroform into a neutral aqueous phase. The use of high fields and the neutral pH extracts, which are suitable for NMR analysis, results in well-resolved (31)P NMR spectra. Two-dimensional NMR experiments, such as proton-detected heteronuclear single quantum ((1)H-(31)P HSQC) and (31)P correlation spectroscopy ((31)P COSY), have been used to assign the resonances. In the phosphomonoester region many of the signals could be assigned to known metabolites in the glycolytic and pentose phosphate pathways, although some signals remain unidentified. Accumulation of ribulose 5-phosphate, xylulose 5-phosphate, and ribose 5-phosphate was observed in a strain lacking transketolase activity when grown in synthetic complete medium. No such accumulation occurred when the cells were grown in yeast-peptone-dextrose medium. Trimetaphosphate (intracellular concentration about 0.2 mM) was detected in both cold methanol-chloroform and perchloric acid extracts. PMID:10405295

  10. Glucosyltransferase production by Klebsiella sp. K18 and conversion of sucrose to palatinose using immobilized cells.

    PubMed

    Orsi, Daniela C; Kawaguti, Haroldo Y; Sato, Hélia H

    2009-01-01

    The strain Klebsiella sp. K18 produces the enzyme glucosyltransferase and catalyses the conversion of sucrose to palatinose, an alternative sugar that presents low cariogenicity. Response Surface Methodology was successfully employed to determine the optimal concentration of culture medium components. Maximum glucosyltransferase production (21.78 U mL(-1)) was achieved using the optimized medium composed by sugar cane molasses (80 g L(-1)), bacteriological peptone (7 g L(-1)) and yeast extract (20 g L(-1)), after 8 hours of fermentation at 28°C. The conversion of sucrose to palatinose was studied utilizing immobilized cells in calcium alginate. The effects of the alginate concentration (2-4%), cell mass concentration (20-40%) and substrate concentration (25-45%) were evaluated and the yield of palatinose was approximately 62.5%. PMID:24031319

  11. Glucosyltransferase production by Klebsiella sp. K18 and conversion of sucrose to palatinose using immobilized cells

    PubMed Central

    Orsi, Daniela C.; Kawaguti, Haroldo Y.; Sato, Hélia H.

    2009-01-01

    The strain Klebsiella sp. K18 produces the enzyme glucosyltransferase and catalyses the conversion of sucrose to palatinose, an alternative sugar that presents low cariogenicity. Response Surface Methodology was successfully employed to determine the optimal concentration of culture medium components. Maximum glucosyltransferase production (21.78 U mL-1) was achieved using the optimized medium composed by sugar cane molasses (80 g L-1), bacteriological peptone (7 g L-1) and yeast extract (20 g L-1), after 8 hours of fermentation at 28°C. The conversion of sucrose to palatinose was studied utilizing immobilized cells in calcium alginate. The effects of the alginate concentration (2-4%), cell mass concentration (20-40%) and substrate concentration (25-45%) were evaluated and the yield of palatinose was approximately 62.5%. PMID:24031319

  12. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture.

    PubMed

    Park, Woo Tae; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Yeo, Sun Kyung; Jeon, Jin; Park, Jong Seok; Lee, Sook Young; Park, Sang Un

    2016-01-01

    The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L) and silver nitrate (30 mg/L) for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to the amount of yeast extract and silver nitrate. The transcript levels of HPPR under yeast extract treatment were 1.84-, 1.97-, and 2.86-fold higher than the control treatments after 3, 6, and 12 h, respectively, whereas PAL expression under silver nitrate treatment was 52.31-fold higher than in the non-treated controls after 24 h of elicitation. The concentration of rosmarinic acid was directly proportional to the concentration of the applied elicitors. Yeast extract supplementation documented the highest amount of rosmarinic acid at 4.98 mg/g, whereas silver nitrate addition resulted in a comparatively lower amount of rosmarinic acid at 0.65 mg/g. In conclusion, addition of yeast extract to the cell cultures enhanced the accumulation of rosmarinic acid, which was evidenced by the expression levels of the phenylpropanoid biosynthetic pathway genes in A. rugosa. PMID:27043507

  13. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes.

    PubMed

    Lutchman, Vicky; Medkour, Younes; Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I

    2016-03-29

    We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729

  14. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes

    PubMed Central

    Samson, Eugenie; Arlia-Ciommo, Anthony; Dakik, Pamela; Cortes, Berly; Feldman, Rachel; Mohtashami, Sadaf; McAuley, Mélissa; Chancharoen, Marisa; Rukundo, Belise; Simard, Éric; Titorenko, Vladimir I.

    2016-01-01

    We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging. PMID:26918729

  15. Sucrose and Saccharomyces cerevisiae: a relationship most sweet.

    PubMed

    Marques, Wesley Leoricy; Raghavendran, Vijayendran; Stambuk, Boris Ugarte; Gombert, Andreas Karoly

    2016-02-01

    Sucrose is an abundant, readily available and inexpensive substrate for industrial biotechnology processes and its use is demonstrated with much success in the production of fuel ethanol in Brazil. Saccharomyces cerevisiae, which naturally evolved to efficiently consume sugars such as sucrose, is one of the most important cell factories due to its robustness, stress tolerance, genetic accessibility, simple nutrient requirements and long history as an industrial workhorse. This minireview is focused on sucrose metabolism in S. cerevisiae, a rather unexplored subject in the scientific literature. An analysis of sucrose availability in nature and yeast sugar metabolism was performed, in order to understand the molecular background that makes S. cerevisiae consume this sugar efficiently. A historical overview on the use of sucrose and S. cerevisiae by humans is also presented considering sugarcane and sugarbeet as the main sources of this carbohydrate. Physiological aspects of sucrose consumption are compared with those concerning other economically relevant sugars. Also, metabolic engineering efforts to alter sucrose catabolism are presented in a chronological manner. In spite of its extensive use in yeast-based industries, a lot of basic and applied research on sucrose metabolism is imperative, mainly in fields such as genetics, physiology and metabolic engineering. PMID:26658003

  16. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster.

    PubMed

    Rovenko, Bohdana M; Kubrak, Olga I; Gospodaryov, Dmytro V; Perkhulyn, Natalia V; Yurkevych, Ihor S; Sanz, Alberto; Lushchak, Oleh V; Lushchak, Volodymyr I

    2015-08-01

    The effects of sucrose in varied concentrations (0.25-20%) with constant amount of yeasts in larval diet on development and metabolic parameters of adult fruit fly Drosophila melanogaster were studied. Larvae consumed more food at low sucrose diet, overeating with yeast. On high sucrose diet, larvae ingested more carbohydrates, despite consuming less food and obtaining less protein derived from yeast. High sucrose diet slowed down pupation and increased pupa mortality, enhanced levels of lipids and glycogen, increased dry body mass, decreased water content, i.e. resulted in obese phenotype. Furthermore, it suppressed reactive oxygen species-induced oxidation of lipids and proteins as well as the activity of superoxide dismutase. The activity of catalase was gender-related. In males, at all sucrose concentrations used catalase activity was higher than at its concentration of 0.25%, whereas in females sucrose concentration virtually did not influence the activity. High sucrose diet increased content of protein thiols and the activity of glucose-6-phosphate dehydrogenase. The increase in sucrose concentration also enhanced uric acid level in females, but caused opposite effects in males. Development on high sucrose diets was accompanied by elevated steady-state insulin-like peptide 3 mRNA level. Finally, carbohydrate starvation at yeast overfeeding on low sucrose diets resulted in oxidative stress reflected by higher levels of oxidized lipids and proteins accompanied by increased superoxide dismutase activity. Potential mechanisms involved in regulation of redox processes by carbohydrates are discussed. PMID:26050918

  17. Interactions of grape tannins and wine polyphenols with a yeast protein extract, mannoproteins and β-glucan.

    PubMed

    Mekoue Nguela, J; Poncet-Legrand, C; Sieczkowski, N; Vernhet, A

    2016-11-01

    At present, there is a great interest in enology for yeast derived products to replace aging on lees in winemaking or as an alternative for wine fining. These are yeast protein extracts (YPE), cell walls and mannoproteins. Our aim was to further understand the mechanisms that drive interactions between these components and red wine polyphenols. To this end, interactions between grape skin tannins or wine polyphenols or tannins and a YPE, a mannoprotein fraction and a β-glucan were monitored by binding experiments, ITC and DLS. Depending on the tannin structure, a different affinity between the polyphenols and the YPE was observed, as well as differences in the stability of the aggregates. This was attributed to the mean degree of polymerization of tannins in the polyphenol fractions and to chemical changes that occur during winemaking. Much lower affinities were found between polyphenols and polysaccharides, with different behaviors between mannoproteins and β-glucans. PMID:27211695

  18. DNA synthesis in yeast cell-free extracts dependent on recombinant DNA plasmids purified from Escherichia coli.

    PubMed Central

    Jong, A Y; Scott, J F

    1985-01-01

    In our attempts to establish a cell-free DNA replication system for the yeast Saccharomyces cerevisiae, we have observed that recombinant DNA plasmids purified from Escherichia coli by a common procedure (lysozyme-detergent lysis and equilibrium banding in cesium chloride ethidium bromide gradients) often serve as templates for DNA synthesis by elongation enzymes. The templates could be elongated equally well by enzymes present in the yeast cell-free extracts, by the large proteolytic fragment of E. coli DNA polymerase I or by T4 DNA polymerase. The template activity of the purified plasmids was dependent on the presence of heterologous DNA segments in the bacterial vectors. The template activity could be diminished by treatment with alkali. We propose that the ability of recombinant plasmids isolated from bacterial hosts to serve as elongation templates may lead to erroneous conclusions when these plasmids are used as templates for in vitro replication or transcription reactions. Images PMID:3889851

  19. Phloem Loading of Sucrose

    PubMed Central

    Giaquinta, Robert

    1977-01-01

    Autoradiographic, plasmolysis, and 14C-metabolite distribution studies indicate that the majority of exogenously supplied 14C-sucrose enters the phloem directly from the apoplast in source leaf discs of Beta vulgaris. Phloem loading of sucrose is pH-dependent, being markedly inhibited at an apoplast pH of 8 compared to pH 5. Kinetic analyses indicate that the apparent Km of the loading process increases at the alkaline pH while the maximum velocity, Vmax, is pH-independent. The pH dependence of sucrose loading into source leaf discs translates to phloem loading in and translocation of sucrose from intact source leaves. Studies using asymmetrically labeled sucrose 14C-fructosyl-sucrose, show that sucrose is accumulated intact from the apoplast and not hydrolyzed to its hexose moieties by invertase prior to uptake. The results are discussed in terms of sucrose loading being coupled to the co-transport of protons (and membrane potential) in a manner consistent with the chemiosmotic hypothesis of nonelectrolyte transport. Images PMID:16659931

  20. Sucrose signaling in plants

    PubMed Central

    Tognetti, Jorge A.; Pontis, Horacio G.; Martínez-Noël, Giselle M.A.

    2013-01-01

    The role of sucrose as a signaling molecule in plants was originally proposed several decades ago. However, recognition of sucrose as a true signal has been largely debated and only recently this role has been fully accepted. The best-studied cases of sucrose signaling involve metabolic processes, such as the induction of fructan or anthocyanin synthesis, but a large volume of scattered information suggests that sucrose signals may control a vast array of developmental processes along the whole life cycle of the plant. Also, wide gaps exist in our current understanding of the intracellular steps that mediate sucrose action. Sucrose concentration in plant tissues tends to be directly related to light intensity, and inversely related to temperature, and accordingly, exogenous sucrose supply often mimics the effect of high light and cold. However, many exceptions to this rule seem to occur due to interactions with other signaling pathways. In conclusion, the sucrose role as a signal molecule in plants is starting to be unveiled and much research is still needed to have a complete map of its significance in plant function. PMID:23333971

  1. Iron Sucrose Injection

    MedlinePlus

    ... stop working). Iron sucrose injection is in a class of medications called iron replacement products. It works ... hands, feet, ankles, or lower legs; loss of consciousness; or seizures. If you experience a severe reaction, ...

  2. Iron Sucrose Injection

    MedlinePlus

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due to too little iron) in people with chronic kidney disease (damage to the kidneys which may worsen over ...

  3. Overcoming the toxicity effects of municipal wastewater sludge and biosolid extracts in the Yeast Estrogen Screen (YES) assay.

    PubMed

    Citulski, Joel; Farahbakhsh, Khosrow

    2012-04-01

    For nearly two decades, the Yeast Estrogen Screen (YES) has been used as a valuable tool for determining the total estrogenic potency of various environmental samples, including influent and effluent streams at municipal wastewater plants. However, applying the YES assay to wastewater sludges and stabilized biosolids has been problematic. This is due to co-extracted compounds from the solids either proving toxic to the yeast or masking the presence of estrogenic substances. The present research describes the development and validation of sample preparation steps that mitigate the toxicity effects of municipal wastewater sludge and biosolid samples in the YES assay, while allowing for reliable dose-dependent expression of estrogenic activity. A copper work-up for sulfur removal and chromatographic cleanup with silica and alumina were required in addition to solid-phase extraction to adequately remove interfering compounds. Sample stabilization methods such as autoclaving, lyophilization and formaldehyde treatment were found to be detrimental to the assay. Hence, heat-drying is recommended to prevent cytotoxicity and the degradation of estrogenic substances. PMID:22277884

  4. Asymmetric bioreduction of acetophenones by Baker's yeast and its cell-free extract encapsulated in sol-gel silica materials

    NASA Astrophysics Data System (ADS)

    Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma

    2014-02-01

    Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.

  5. A procedure for batch separation of sup 14 C-hexose from sup 14 C-sucrose

    SciTech Connect

    Tarpley, L.; Vietor, D.M. )

    1991-05-01

    This presentation describes a method for separating {sup 14}C-hexose from {sup 14}C-sucrose in extracts of plant tissue. Portions of ethanol extracts are treated with activated charcoal in microcentrifuge tubes. Aliquots are removed, ethanol evaporated and replaced with reaction mixture that phosphorylates hexose (HEPPS, K{sub 2}HPO{sub 4}, Mg(C{sub 2}H{sub 3}O{sub 2}){sub 2}, ovalbumen, Na{sub 2}ATP, yeast hexokinase). After a time course, the hexokinase reaction is stopped (slowed considerably) to minimize effects of contamination enzyme activities. The stopping agent used is lyxose, a nonphosphorylable analogue of glucose. The strong anionic charge of phosphate introduced through the hexokinase action results in binding (> 95%) of hexose-phosphate to anion-exchange resin. Sucrose remains unbound (> 95%) in solution. This batch ion-exchange is performed in microcentrifuge tubes to allow many samples to be processed simultaneously. Recovery of radiolabel in extracts is complete (99%), and determinations are repeatable (cv = 23%). This method for routinely separating and quantifying {sup 14}C-hexose and {sup 14}C-sucrose in plant tissue extracts can contribute to the economy and feasibility of studies of {sup 14}C-photoassimilate partitioning to soluble sugars within and among plant tissues.

  6. [Studies on the effects of carbon:nitrogen ratio, inoculum type and yeast extract addition on jasmonic acid production by Botryodiplodia theobromae Pat. strain RC1].

    PubMed

    Eng Sánchez, Felipe; Gutiérrez-Rojas, Mariano; Favela-Torres, Ernesto

    2008-09-30

    Jasmonic acid is a native plant growth regulator produced by algae, microorganisms and higher plants. This regulator is involved in the activation of defence mechanisms against pathogens and wounding in plants. Studies concerning the effects of carbon: nitrogen ratio (C/Nr: 17, 35 and 70), type of inoculum (spores or mycelium) and the yeast extract addition in the media on jasmonic acid production by Botryodiplodia theobromae were evaluated. Jasmonic acid production was stimulated at the carbon: nitrogen ratio of 17. Jasmonic acid productivity was higher in the media inoculated with mycelium and in the media with yeast extract 1.7 and 1.3 times, respectively. PMID:18785793

  7. Bio-Based Solvents for Green Extraction of Lipids from Oleaginous Yeast Biomass for Sustainable Aviation Biofuel.

    PubMed

    Breil, Cassandra; Meullemiestre, Alice; Vian, Maryline; Chemat, Farid

    2016-01-01

    Lipid-based oleaginous microorganisms are potential candidates and resources for the sustainable production of biofuels. This study was designed to evaluate the performance of several alternative bio-based solvents for extracting lipids from yeasts. We used experimental design and simulation with Hansen solubility simulations and the conductor-like screening model for realistic solvation (COSMO-RS) to simulate the solubilization of lipids in each of these solvents. Lipid extracts were analyzed by high performance thin-layer chromatography (HPTLC) to obtain the distribution of lipids classes and gas chromatography coupled with a flame ionization detector (GC/FID) to obtain fatty acid profiles. Our aim was to correlate simulation with experimentation for extraction and solvation of lipids with bio-based solvents in order to make a preliminary evaluation for the replacement of hexane to extract lipids from microorganisms. Differences between theory and practice were noted for several solvents, such as CPME, MeTHF and ethyl acetate, which appeared to be good candidates to replace hexane. PMID:26861274

  8. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking.

    PubMed

    Belda, Ignacio; Conchillo, Lorena B; Ruiz, Javier; Navascués, Eva; Marquina, Domingo; Santos, Antonio

    2016-04-16

    Pectinase enzymes have shown a considerable influence in both, sensitive and technological properties of wines. They can help to improve clarification process, releasing more color and flavor compounds entrapped in grape skin, facilitating the liberation of phenolic compounds. This work aims to find yeasts that, because of their native pectinases, can be applied on combined fermentations with Saccharomyces cerevisiae obtaining significant benefits over single-inoculated traditional fermentations. 462 yeast strains isolated from wineries were identified and tested for several enzymatic activities of recognized interest for enology industry. Considering the 7 identified species, only Aureobasidium pullulans, Metschnikowia pulcherrima and Metschnikowia fructicola showed polygalacturonase activity. Because of its interest in winemaking, due to its reported incidence in wine flavor, the impact of M. pulcherrima as a source of pectinolytic enzymes was analyzed by measuring its influence in filterability, turbidity and the increase on color, anthocyanin and polyphenol content of wines fermented in combination with S. cerevisiae. Among the strains screened, M. pulcherrima NS-EM-34 was selected, due to its polygalacturonase activity, for further characterization in both, laboratory and semi-industrial scale assays. The kinetics concerning several metabolites of enological concern were followed during the entire fermentation process at microvinification scale. Improved results were obtained in the expected parameters when M. pulcherrima NS-EM-34 was used, in comparison to wines fermented with S. cerevisiae alone and combined with other pectinolytic and non-pectinolytic yeasts (A. pullulans and Lachancea thermotolerans, respectively), even working better than commercial enzymes preparations in most parameters. Additionally, M. pulcherrima NS-EM-34 was used at a semi-industrial scale combined with three different S. cerevisiae strains, confirming its potential application for

  9. Optimizing conditions for poly(beta-hydroxybutyrate) production by Halomonas boliviensis LC1 in batch culture with sucrose as carbon source.

    PubMed

    Quillaguamán, Jorge; Muñoz, Marlene; Mattiasson, Bo; Hatti-Kaul, Rajni

    2007-04-01

    Halomonas boliviensis LC1 is able to accumulate poly(beta-hydroxybutyrate) (PHB) under conditions of excess carbon source and depletion of essential nutrients. This study was aimed at an efficient production of PHB by growing H. boliviensis to high cell concentrations in batch cultures. The effect of ammonium, phosphate, and yeast extract concentrations on cell concentration [cell dry weight (CDW)] and PHB content of H. boliviensis cultured in shake flasks was assayed using a factorial design. High concentrations of these nutrients led to increments in cell growth but reduced the PHB content to some extent. Cultivations of H. boliviensis under controlled conditions in a fermentor using 1.5% (w/v) yeast extract as N source, and intermittent addition of sucrose to provide excess C source, resulted in a polymer accumulation of 44 wt.% and 12 g l(-1) CDW after 24 h of cultivation. Batch cultures in a fermentor with initial concentrations of 2.5% (w/v) sucrose and 1.5% (w/v) yeast extract, and with induced oxygen limitation, resulted in an optimum PHB accumulation, PHB concentration and CDW of 54 wt.%, 7.7 g l(-1) and 14 g l(-1), respectively, after 19 h of cultivation. The addition of casaminoacids in the medium increased the CDW to 14.4 g l(-1) in 17 h but reduced the PHB content in the cells to 52 wt.%. PMID:17160681

  10. The effect of a yeast extract feed additive on turkeys challenged with Escherichia coli and Listeria monocytogenes and subjected to transport stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to develop nutritional methods for controlling pathogens in poultry production. A yeast extract supplement, Alphamune™ (YE) was added to the diet of turkeys which were exposed to E. coli and L. monocytogenes Scott A at 16 wks of age using coarse spray and feed inclusion. Positive c...

  11. Sucrose utilization by Zymomonas mobilis: formation of a levan

    PubMed Central

    Dawes, E. A.; Ribbons, D. W.; Rees, D. A.

    1966-01-01

    1. Molar growth-yield coefficients of Zymomonas mobilis for glucose, fructose, glucose plus fructose, and sucrose are reported. Yield coefficients for sucrose are appreciably lower than those for the equivalent concentrations of glucose plus fructose. 2. Only 2·6% of [U-14C]glucose supplied in the growth medium is incorporated into cell substance by Z. mobilis utilizing glucose as the energy source. 3. During growth on sucrose a levan is formed. It has been characterized and shown to resemble other bacterial levans. 4. Levan formation from sucrose could be demonstrated with both washed cell suspensions and cell extracts of Z. mobilis. 5. Sucrose phosphorylase could not be demonstrated in extracts of the organism. PMID:4287843

  12. Photodynamic inactivation of yeast and bacteria by extracts of Alternanthera brasiliana.

    PubMed

    Andreazza, Nathalia L; de Lourenco, Caroline C; Siqueira, Carlos A T; Sawaya, Alexandra C H F; Lapinski, Tadia F; Gasparetto, Adriana; Khouri, Sonia; Zamuner, Stella R; Munin, Egberto; Salvador, Marcos Jose

    2013-08-01

    This study was undertaken to evaluate the effect of Alternathera brasiliana (Amaranthaceae) extracts as photosensitizing agents in photodynamic antimicrobial therapies (PACT) against Staphylococcus aureus, Staphylococcus epidermidis and Candida dubliniensis. The crude hexane and ethanol extracts were obtained from A. brasiliana whole plant and showed absortion from 650 to 700 nm. Also, singlet molecular oxygen (1O2) production (type II photosensitization reaction) was examined, and the results show that 1,3-diphenylisobenzofuran photodegradation was greatly enhanced in the presence of the A. brasiliana extracts. One plate in each assay was irradiated while the other was not irradiated, the number of colony-forming units per milliliter (CFU/mL) was obtained, and data analyzed by the Tukey test. The chemical composition of the extracts was determined by chromatographic and spectrometric techniques; steroids, triterpenes, and flavonoids were identified. Laser irradiation alone at 685 nm using diode laser, output power of 35 mW, and energy of 28 J/cm2, or non-irradiated crude extracts in sub-inhibitory concentration did not reduce the number of CFU/mL significantly, whereas irradiated hexane and ethanol extracts, in sub-inhibitory concentrations, inhibited the growth of these microorganisms. The photoactivation of hexane and ethanol extracts of A. brasiliana, in sub-inhibitory concentrations, using red laser radiation at 685 nm had an antimicrobial effect. PMID:23547779

  13. Effects of bentonite and yeast extract as nutrient on decrease in hydraulic conductivity of porous media due to CaCO3 precipitation induced by Sporosarcina pasteurii.

    PubMed

    Eryürük, Kağan; Yang, Suyin; Suzuki, Daisuke; Sakaguchi, Iwao; Katayama, Arata

    2015-10-01

    The reduction mechanism of hydraulic conductivity was investigated in porous media treated with bentonite and CaCO3 precipitates induced by growing cells of Sporosarcina pasteurii (ATCC 11859). Bentonite, the bacterial cells, and a precipitation solution, composing of 0.5 M CaCl2 and 0.5 M urea with or without 2% weight/volume yeast extract allowing the bacterial growth were sequentially introduced into the continuous-flow columns containing glass beads between 0.05 and 3 mm in diameter. The treatments reduced the hydraulic conductivity of the columns from between 8.4 × 10(-1) and 4.1 × 10(-3) cm/s to between 9.9 × 10(-4) and 2.1 × 10(-6) cm/s as the lowest. With yeast extract, the conductivity continuously decreased during four days of the experiment, while became stable after two days without yeast extract. Introduction of the bacterial cells did not decrease the conductivity. The reduction in hydraulic conductivity was inversely correlated with the volume occupied by the depositions of bentonite and CaCO3 precipitates in column, showing the same efficiency but a larger effect of the CaCO3 precipitates with increasing volume by bacterial growth. The smaller glass beads resulted in larger volume of the depositions. Bentonite increased the deposition of CaCO3 precipitates. Analysis using the Kozeny-Carman equation suggested that without yeast extract, bentonite and the CaCO3 precipitates formed aggregates with glass beads, thus increasing their diameter and consequently decreasing the pore size in the column. With yeast extract, in addition to the aggregates, the individual CaCO3 precipitates formed separately from the aggregates reduced the hydraulic conductivity. PMID:25736267

  14. Simple method for the extraction and reversed-phase high-performance liquid chromatographic analysis of carotenoid pigments from red yeasts (Basidiomycota, Fungi).

    PubMed

    Weber, Roland W S; Anke, Heidrun; Davoli, Paolo

    2007-03-23

    A simple method for the extraction of carotenoid pigments from frozen wet cells of red yeasts (Basidiomycota) and their analysis by reversed-phase HPLC using a C(18) column and a water/acetone solvent system is described. Typical red yeast carotenoids belonging to an oxidative series from the monocyclic gamma-carotene to 2-hydroxytorularhodin and from the bicyclic beta-carotene to astaxanthin were separated. Pigment identity was confirmed by LC-atmospheric pressure chemical ionisation (APCI) mass spectrometry using similar chromatographic conditions. PMID:17266973

  15. Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract.

    PubMed

    Portu, Javier; López, Rosa; Baroja, Elisa; Santamaría, Pilar; Garde-Cerdán, Teresa

    2016-06-15

    Phenolic compounds play a key role in grape and wine organoleptic properties, being therefore a key parameter in wine quality. Elicitor application constitutes an interesting field of research since it is indirectly involved in the accumulation of phenolic compounds. The aim of this study was to compare the effect of the application of three different elicitors on both grape and wine phenolic content. Methyl jasmonate, chitosan, and a commercial yeast extract were applied to the canopy at veraison and one week later. Results showed that foliar treatments carried out with methyl jasmonate and yeast extract achieved the best results, increasing grape and wine anthocyanin content when compared to the control. Moreover, the application of the yeast elicitor also enhanced grape stilbene content. In contrast, the chitosan treatment did not have a substantial impact on the phenolic compounds. The results of this study indicate that methyl jasmonate and yeast extract applications could be a simple practice to increase grape and wine phenolic content. PMID:26868568

  16. Sucrose Synthase: Expanding Protein Function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose synthase (SUS: EC 2.4.1.13), a key enzyme in plant sucrose catabolism, is uniquely able to mobilize sucrose into multiple pathways involved in metabolic, structural, and storage functions. Our research indicates that the biological function of SUS may extend beyond its catalytic activity. Th...

  17. A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation.

    PubMed

    Liu, Z Lewis; Weber, Scott A; Cotta, Michael A; Li, Shi-Zhong

    2012-01-01

    This study reports a new yeast strain of Clavispora NRRL Y-50464 that is able to utilize cellobiose as sole source of carbon and produce sufficient native β-glucosidase enzyme activity for cellulosic ethanol production using SSF. In addition, this yeast is tolerant to the major inhibitors derived from lignocellulosic biomass pre-treatment such as 2-furaldehyde (furfural) and 5-(hydroxymethyl)-2-furaldehyde (HMF), and converted furfural into furan methanol in less than 12h and HMF into furan-2,5-dimethanol within 24h in the presence of 15 mM each of furfural and HMF. Using xylose-extracted corncob residue as cellulosic feedstock, an ethanol production of 23 g/l was obtained using 25% solids loading at 37 °C by SSF without addition of exogenous β-glucosidase. Development of this yeast aids renewable biofuels development efforts for economic consolidated SSF bio-processing. PMID:22133603

  18. Extraction of ethanol with higher carboxylic acid solvents and their toxicity to yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a screening exercise for ethanol-selective extraction solvents, partitioning of ethanol and water from a 5 wt% aqueous solution into several C8 – C18 carboxylic acids was studied. Results for the acids are compared with those from alcohols of similar structure. In all cases studied, the acids exh...

  19. Budding yeast protein extraction and purification for the study of function, interactions, and post-translational modifications.

    PubMed

    Szymanski, Eva Paige; Kerscher, Oliver

    2013-01-01

    Homogenization by bead beating is a fast and efficient way to release DNA, RNA, proteins, and metabolites from budding yeast cells, which are notoriously hard to disrupt. Here we describe the use of a bead mill homogenizer for the extraction of proteins into buffers optimized to maintain the functions, interactions and post-translational modifications of proteins. Logarithmically growing cells expressing the protein of interest are grown in a liquid growth media of choice. The growth media may be supplemented with reagents to induce protein expression from inducible promoters (e.g. galactose), synchronize cell cycle stage (e.g. nocodazole), or inhibit proteasome function (e.g. MG132). Cells are then pelleted and resuspended in a suitable buffer containing protease and/or phosphatase inhibitors and are either processed immediately or frozen in liquid nitrogen for later use. Homogenization is accomplished by six cycles of 20 sec bead-beating (5.5 m/sec), each followed by one minute incubation on ice. The resulting homogenate is cleared by centrifugation and small particulates can be removed by filtration. The resulting cleared whole cell extract (WCE) is precipitated using 20% TCA for direct analysis of total proteins by SDS-PAGE followed by Western blotting. Extracts are also suitable for affinity purification of specific proteins, the detection of post-translational modifications, or the analysis of co-purifying proteins. As is the case for most protein purification protocols, some enzymes and proteins may require unique conditions or buffer compositions for their purification and others may be unstable or insoluble under the conditions stated. In the latter case, the protocol presented may provide a useful starting point to empirically determine the best bead-beating strategy for protein extraction and purification. We show the extraction and purification of an epitope-tagged SUMO E3 ligase, Siz1, a cell cycle regulated protein that becomes both sumoylated and

  20. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.

    PubMed

    Narusaka, Mari; Minami, Taichi; Iwabuchi, Chikako; Hamasaki, Takashi; Takasaki, Satoko; Kawamura, Kimito; Narusaka, Yoshihiro

    2015-01-01

    Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods. PMID:25565273

  1. Yeast Cell Wall Extract Induces Disease Resistance against Bacterial and Fungal Pathogens in Arabidopsis thaliana and Brassica Crop

    PubMed Central

    Narusaka, Mari; Minami, Taichi; Iwabuchi, Chikako; Hamasaki, Takashi; Takasaki, Satoko; Kawamura, Kimito; Narusaka, Yoshihiro

    2015-01-01

    Housaku Monogatari (HM) is a plant activator prepared from a yeast cell wall extract. We examined the efficacy of HM application and observed that HM treatment increased the resistance of Arabidopsis thaliana and Brassica rapa leaves to bacterial and fungal infections. HM reduced the severity of bacterial leaf spot and anthracnose on A. thaliana and Brassica crop leaves with protective effects. In addition, gene expression analysis of A. thaliana plants after treatment with HM indicated increased expression of several plant defense-related genes. HM treatment appears to induce early activation of jasmonate/ethylene and late activation of salicylic acid (SA) pathways. Analysis using signaling mutants revealed that HM required SA accumulation and SA signaling to facilitate resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Colletotrichum higginsianum. In addition, HM-induced resistance conferred chitin-independent disease resistance to bacterial pathogens in A. thaliana. These results suggest that HM contains multiple microbe-associated molecular patterns that activate defense responses in plants. These findings suggest that the application of HM is a useful tool that may facilitate new disease control methods. PMID:25565273

  2. Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. strain IFN4.

    PubMed

    Imran, Muhammad; Arshad, Muhammad; Negm, Fayek; Khalid, Azeem; Shaharoona, Baby; Hussain, Sabir; Mahmood Nadeem, Sajid; Crowley, David E

    2016-02-01

    Biological treatment of azo dyes commonly requires a combined anaerobic-aerobic process in which initial decolorization is achieved by reductive cleavage of azo bonds on the parent molecule. The present study was conducted to examine the relative importance of co-substrates for driving reductive decolorization of azo dyes by Shewanella sp. strain IFN4 using whole cells and enzyme assays. Results showed that the dye decolorization by strain IFN4 was faster in medium containing 1gL(-1) yeast extract (YE) as compared to nine other co-substrates. Moreover, only YE stimulated azoreductase activity (increased from 1.32 to 4.19U/mg protein). Increasing the level of YE up to 8gL(-)(1) resulted into 81% decolorization of the dye in 1h along with an increase in azoreductase activity up to 6.16U/mg protein. Among the components of YE, only riboflavin stimulated the decolorization process as well as enzyme activity. Moreover, strain IFN4 demonstrated flavin reductase activity, and a significant correlation (r(2)=0.98) between flavin reduction and dye reduction by this strain emphasized the involvement of flavin compounds in the decolorization process. The results of this study show that YE serves both as a source of reducing equivalents and an electron shuttle for catalyzing dye reduction. PMID:26454074

  3. Synthesis of yeast extract-stabilized Cu nanoclusters for sensitive fluorescent detection of sulfide ions in water.

    PubMed

    Jin, Lihua; Zhang, Zaihua; Tang, Anwen; Li, Cong; Shen, Yehua

    2016-05-15

    In this work, we have presented a novel strategy to utilize as-synthesized yeast extract-stabilized Cu nanoclusters (Cu NCs) for sensitive and selective detection of S(2-). The fluorescence intensity of Cu NCs was enhanced significantly in the presence of both Na2S2O8 and S(2-). By virtue of this specific response, a Cu NC-based fluorescent turn-on sensor was developed, which allows the detection of S(2-) in the range of 0.02-0.8 μM with a detection limit of 10nM. The enhancing mechanism was also discussed based on fluorescence decay, transmission electron microscopy (TEM) and dynamic light scattering (DLS) studies, indicating that S(2-) enhanced the Cu NCs emission mainly through sulfide-induced aggregation of Cu NCs. Furthermore, we demonstrated the usability of the present approach for the detection of S(2-) in water samples, which illustrates its great potential for the environmental monitoring and water quality inspection fields. PMID:26703988

  4. The evaluation of mixtures of yeast and potato extracts in growth media for biomass production of lactic cultures.

    PubMed

    Gaudreau, H; Renard, N; Champagne, C P; Van Horn, D

    2002-07-01

    The effectiveness of yeast extracts (YE) and potato extracts (PE) to promote growth of seven lactic cultures was evaluated by automated spectrophotometry (AS). Two aspects of the growth curve were analysed: (1) maximum biomass obtained (using ODmax) and (2) highest specific growth rate mu(max)) Eleven lots from the same PE-manufacturing process were examined for lot-to-lot variability. The ODmax values of three of the seven strains were significantly affected by lot source, but mu(max) was not significantly affected. The growth of bacteria was systematically lower in base medium containing 100% PE than in base medium containing 100% YE for both ODmax or mu(max) data, which could be related to the lower content in nitrogen-based compounds in PE. In AS assays, highest OD values for Lactobacillus casei EQ28, Lactobacillus rhamnosus R-011, Lactobacillus plantarum EQ12, and Streptococcus thermophilus R-083 were obtained with a mixture of PE and YE. Fermentations (2 L) were also carried out to determine the accuracy of AS to predict biomass levels obtained under fermentation trials. In these fermentations, replacement of 50% YE with PE was shown to enable good growth of S. thermophilus. With L. rhamnosus R-011, a high correlation (R2 = 0.95) was found between ODmax data obtained in the AS assays and that of the 2-L bioreactor when the same growth medium was used for both series of fermentations. However, AS was not as efficient when industrial media were used for the bioreactor assays. The relationship was still good for ODmax between AS data and that of the bioreactor data with L. rhamnosus R-011 in industrial LBS medium (R2 = 0.87), but was very poor with the S. thermophilus R-083 on Rosell #43 industrial medium (R2 = 0.33). Since PE cost 40% less than YE, there are strong economic advantages in considering such a partial replacement of YE by PE. PMID:12224561

  5. Utilization of waste products of dehydrated onion industry for production of fodder yeast by Saccharomyces cerevisiae.

    PubMed

    Ghonaim, S A; Abou-Zeid, A A; Abd El-Fattah, A F; Farid, M A

    1980-01-01

    One strain of Saccharomyces cerevisiae was selected from different yeasts, isolated from black strap molasses. This microorganism was cultivated on seven fermentation media for the production of protein. Medium I exhibited the highest potentiality for formation of protein. Therefore strain 1 of S. cerevisiae and medium I were used for further studies in the formation of protein. Factors controlling production of protein were explored. The required incubation period for the fermentation process was 72 hrs, while the initial pH value of the medium was 6.0. Sucrose supported the microorganism for higher production of protein (40.96%), while the best concentration of sucrose was shown to be 10.0 g/l. The best inorganic and organic nitrogen sources for protein formation were (NH4)2HPO4, (NH4)3PO4 and yeast extract, respectively. The best concentrations of (NH4)2HPO4 and yeast extract, supporting protein formation, were 5.0 g/l and 10.0 g/l, respectively. Addition of MgSO4, ZnSO4, ferrous ammonium sulphate, copper sulphate, biotin, Ca-pantothenate, thiamine, pyridoxine, and inositol to the synthetic medium did not markedly influence high level of protein formation. Glutamic acid was the best amino acid, supporting protein formation by S. cerevisiae. Onion juice was found to be a good medium, after deletion of inhibitory volatile sulphur organic compounds, for the production of protein by S. cerevisiae. Addition of (NH4)2HPO4 to the best concentration of onion juice assisted the onion medium in production of fodder yeast, containing high level of protein. Addition of MgSO4 to onion juice and (NH4)2HPO4 did not increase the total nitrogen of the biomass. Fodder yeast, produced by onion juice medium, contained more valuable ingredients than fodder yeast, produced by synthetic medium. PMID:6990654

  6. Enhancing isomaltulose production by recombinant Escherichia coli producing sucrose isomerase: culture medium optimization containing agricultural wastes and cell immobilization.

    PubMed

    Li, Sha; Xu, Hong; Yu, Jianguang; Wang, Yanyuan; Feng, Xiaohai; Ouyang, Pingkai

    2013-10-01

    Isomaltulose is a structural isomer of sucrose commercially used in food industries. In this work, recombinant Escherichia coli producing sucrose isomerase (SIase) was used to convert sucrose into isomaltulose. To develop an economical industrial medium, untreated cane molasses (10.63 g l⁻¹), yeast extract (25.93 g l⁻¹), and corn steep liquor (10.45 g l⁻¹) were used as main culture compositions for SIase production. The relatively high SIase activity (14.50 ± 0.11 U mg DCW⁻¹) was obtained by the recombinant cells. To the best of our knowledge, this is the first investigation on SIase production by engineered E. coli using untreated cane molasses. The recombinant E. coli cells expressing the SIase gene were immobilized in calcium alginate gel in order to improve the efficiency of recycling. The immobilization was most effective with 2 % (w/v) sodium alginate and 3 % (w/v) calcium chloride. The optimal initial biomass for immobilization was 20 % (w/v, wet wt.), with a hardening time of 8 h for cell immobilization. The immobilized E. coli cells exhibited good stability for 30 batches with the productivity of 0.45 g isomaltulose g pellet⁻¹ h⁻¹. A continuous isomaltulose formation process using a column reactor remained stable for 40 days with 83 ± 2 % isomaltulose yield, which would be beneficial for economical production of isomaltulose. PMID:23300051

  7. Sucrose Phosphate Synthase and Sucrose Accumulation at Low Temperature 1

    PubMed Central

    Guy, Charles L.; Huber, Joan L. A.; Huber, Steven C.

    1992-01-01

    The influence of growth temperature on the free sugar and sucrose phosphate synthase content and activity of spinach (Spinacia oleracea) leaf tissue was studied. When plants were grown at 25°C for 3 weeks and then transferred to a constant 5°C, sucrose, glucose, and fructose accumulated to high levels during a 14-d period. Predawn sugar levels increased from 14- to 20-fold over the levels present at the outset of the low-temperature treatment. Sucrose was the most abundant free sugar before, during, and after exposure to 5°C. Leaf sucrose phosphate synthase activity was significantly increased by the low-temperature treatment, whereas sucrose synthase and invertases were not. Synthesis of the sucrose phosphate synthase subunit was increased during and after low-temperature exposure and paralleled an increase in the steady-state level of the subunit. The increases in sucrose and its primary biosynthetic enzyme, sucrose phosphate synthase, are discussed in relation to adjustment of metabolism to low nonfreezing temperature and freezing stress tolerance. Images Figure 1 Figure 2 Figure 3 PMID:16652990

  8. Microwave, ultrasound, thermal treatments, and bead milling as intensification techniques for extraction of lipids from oleaginous Yarrowia lipolytica yeast for a biojetfuel application.

    PubMed

    Meullemiestre, Alice; Breil, Cassandra; Abert-Vian, Maryline; Chemat, Farid

    2016-07-01

    In the present work, two different ways of lipids extraction from Yarrowia lipolytica yeast were investigated in order to maximize the extraction yield. Firstly, various modern techniques of extraction including ultrasound, microwave, and bead milling were tested to intensify the efficiency of lipid recovery. Secondly, several pretreatments such as freezing/defrosting, cold drying, bead milling, and microwave prior two washing of mixture solvent of chloroform:methanol (1:2, v/v) were study to evaluate the impact on lipid recovery. All these treatments were compared to conventional maceration, in terms of lipids extraction yield and lipid composition analysis. The main result of this study is the large difference of lipid recovery among treatments and the alteration of lipids profile after microwave and ultrasound techniques. PMID:27017129

  9. Comparative proteomic analysis of the response to silver ions and yeast extract in Salvia miltiorrhiza hairy root cultures.

    PubMed

    Wang, Yajun; Shen, Ye; Shen, Zhuo; Zhao, Le; Ning, Deli; Jiang, Chao; Zhao, Rong; Huang, Luqi

    2016-10-01

    Biotic and abiotic stresses can inhibit plant growth, resulting in losses of crop productivity. However, moderate adverse stress can promote the accumulation of valuable natural products in medicinal plants. Elucidating the underlying molecular mechanisms thus might help optimize the variety of available plant medicinal materials and improve their quality. In this study, Salvia miltiorrhiza hairy root cultures were employed as an in vitro model of the Chinese herb Danshen. A comparative proteomic analysis using 2-dimensional gel electrophoresis and MALDI-TOF-MS was performed. By comparing the gel images of groups exposed to the stress of yeast extract (YE) combined with Ag(+) and controls, 64 proteins were identified that showed significant changes in protein abundance for at least one time point after treatment. According to analysis based on the KEGG and related physiological experimental verification, it was found that YE and Ag(+) stress induced a burst of reactive oxygen species and activated the Ca(2+)/calmodulin signaling pathway. Expression of immune-suppressive proteins increased. Epidermal cells underwent programmed cell death. Energy metabolism was enhanced and carbon metabolism shifted to favor the production of secondary metabolites such as lignin, tanshinone and salvianolic acids. The tanshinone and salvianolic acids were deposited on the collapsed epidermal cells forming a physicochemical barrier. The defense proteins and these natural products together enhanced the stress resistance of the plants. Since higher levels of natural products represent good quality in medicinal materials, this study sheds new light on quality formation mechanisms of medicinal plants and will hopefully encourage further research on how the planting environment affects the efficacy of herbal medicines. PMID:27372730

  10. Sucrose Metabolism in Tubers of Potato (Solanum tuberosum L.)

    PubMed Central

    Ross, H. A.; Davies, H. V.

    1992-01-01

    Excision of developing potato (Solanum tuberosum L.) tubers from the mother plant, followed by storage at 10°C, resulted in a rapid, substantial decrease in sucrose synthase activity and considerable increases in hexose content and acid invertase activity. A comparison of the response of three genotypes, known to accumulate different quantities of hexoses in storage, showed that both sucrose synthase activity and the extent to which activity declined following excision were similar in all cases. However, there was significant genotypic variation in the extent to which acid invertase activity developed, with tubers accumulating the highest hexose content also developing the highest extractable activity of invertase. Similar effects were found in nondetached tubers when growing plants were maintained in total darkness for a prolonged period. Furthermore, supplying sucrose to detached tubers through the cut stolon surface prevented the decline in sucrose synthase activity. Maltose proved to be ineffective. Western blots using antibodies raised against maize sucrose synthase showed that the decline in sucrose synthase activity was associated with the loss of protein rather than the effect of endogenous inhibitors. Although there were indications that maintaining a flux of sucrose into isolated tubers could prevent the increase in acid invertase activity, the results were not conclusive. ImagesFigure 7 PMID:16668626

  11. Citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 and purification of citric acid.

    PubMed

    Wang, Ling-Fei; Wang, Zhi-Peng; Liu, Xiao-Yan; Chi, Zhen-Ming

    2013-11-01

    In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L(-1) total sugars, 68.3 g L(-1) citric acid was produced and the yield of citric acid was 0.91 g g(-1) within 336 h. At the end of the fermentation, 9.2 g L(-1) of residual total sugar and 2.1 g L(-1) of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %. PMID:23584740

  12. Formation of secretory vesicles in permeabilized cells: a salt extract from yeast membranes promotes budding of nascent secretory vesicles from the trans-Golgi network of endocrine cells.

    PubMed Central

    Ling, W L; Shields, D

    1996-01-01

    The mechanism of secretory-vesicle formation from the trans-Golgi network (TGN) of endocrine cells is poorly understood. To identify cytosolic activities that facilitate the formation and fission of nascent secretory vesicles, we treated permeabilized pituitary GH3 cells with high salt to remove endogenous budding factors. Using this cell preparation, secretory-vesicle budding from the TGN required addition of exogenous cytosol and energy. Mammalian cytosols (GH3 cells and bovine brain) promoted post-TGN vesicle formation. Most significantly, a salt extract of membranes from the yeast Saccharomyces cerevisiae, a cell lacking a regulated secretory pathway, stimulated secretory vesicle budding in the absence of mammalian cytosolic factors. These results demonstrate that the factors which promote secretory-vesicle release from the TGN are conserved between yeast and mammalian cells. PMID:8615761

  13. SUT2, a Putative Sucrose Sensor in Sieve Elements

    PubMed Central

    Barker, Laurence; Kühn, Christina; Weise, Andreas; Schulz, Alexander; Gebhardt, Christiane; Hirner, Brigitte; Hellmann, Hanjo; Schulze, Waltraud; Ward, John M.; Frommer, Wolf B.

    2000-01-01

    In leaves, sucrose uptake kinetics involve high- and low-affinity components. A family of low- and high-affinity sucrose transporters (SUT) was identified. SUT1 serves as a high-affinity transporter essential for phloem loading and long-distance transport in solanaceous species. SUT4 is a low-affinity transporter with an expression pattern overlapping that of SUT1. Both SUT1 and SUT4 localize to enucleate sieve elements of tomato. New sucrose transporter–like proteins, named SUT2, from tomato and Arabidopsis contain extended cytoplasmic domains, thus structurally resembling the yeast sugar sensors SNF3 and RGT2. Features common to these sensors are low codon bias, environment of the start codon, low expression, and lack of detectable transport activity. In contrast to LeSUT1, which is induced during the sink-to-source transition of leaves, SUT2 is more highly expressed in sink than in source leaves and is inducible by sucrose. LeSUT2 protein colocalizes with the low- and high-affinity sucrose transporters in sieve elements of tomato petioles, indicating that multiple SUT mRNAs or proteins travel from companion cells to enucleate sieve elements. The SUT2 gene maps on chromosome V of potato and is linked to a major quantitative trait locus for tuber starch content and yield. Thus, the putative sugar sensor identified colocalizes with two other sucrose transporters, differs from them in kinetic properties, and potentially regulates the relative activity of low- and high-affinity sucrose transport into sieve elements. PMID:10899981

  14. Evolution of plant sucrose uptake transporters.

    PubMed

    Reinders, Anke; Sivitz, Alicia B; Ward, John M

    2012-01-01

    In angiosperms, sucrose uptake transporters (SUTs) have important functions especially in vascular tissue. Here we explore the evolutionary origins of SUTs by analysis of angiosperm SUTs and homologous transporters in a vascular early land plant, Selaginella moellendorffii, and a non-vascular plant, the bryophyte Physcomitrella patens, the charophyte algae Chlorokybus atmosphyticus, several red algae and fission yeast, Schizosaccharomyces pombe. Plant SUTs cluster into three types by phylogenetic analysis. Previous studies using angiosperms had shown that types I and II are localized to the plasma membrane while type III SUTs are associated with vacuolar membrane. SUT homologs were not found in the chlorophyte algae Chlamydomonas reinhardtii and Volvox carterii. However, the characean algae Chlorokybus atmosphyticus contains a SUT homolog (CaSUT1) and phylogenetic analysis indicated that it is basal to all other streptophyte SUTs analyzed. SUTs are present in both red algae and S. pombe but they are less related to plant SUTs than CaSUT1. Both Selaginella and Physcomitrella encode type II and III SUTs suggesting that both plasma membrane and vacuolar sucrose transporter activities were present in early land plants. It is likely that SUT transporters are important for scavenging sucrose from the environment and intracellular compartments in charophyte and non-vascular plants. Type I SUTs were only found in eudicots and we conclude that they evolved from type III SUTs, possibly through loss of a vacuolar targeting sequence. Eudicots utilize type I SUTs for phloem (vascular tissue) loading while monocots use type II SUTs for phloem loading. We show that HvSUT1 from barley, a type II SUT, reverted the growth defect of the Arabidopsis atsuc2 (type I) mutant. This indicates that type I and II SUTs evolved similar (and interchangeable) phloem loading transporter capabilities independently. PMID:22639641

  15. Analysis of sucrose esters--insecticides from the surface of tobacco plant leaves.

    PubMed

    Simonovska, Breda; Srbinoska, Marija; Vovk, Irena

    2006-09-15

    Sucrose esters from the surface of leaves of Nicotiana tabacum L. have been shown to possess interesting biological activities. We developed a simple and effective method for their analysis using HPTLC silica gel plates, n-hexane-ethyl acetate (1:3, v/v) as developing solvent and aniline-diphenylamine as a detection reagent. Off-line TLC-MS was also used for the detection and identification of the compounds. Solutions containing sucrose esters upon alkaline hydrolysis give sucrose, which is used for indirect estimation by TLC of the sucrose ester content. The method is applicable for the screening for sucrose esters in plant extracts. The extract obtained from the surface of green leaves of oriental tobacco type Prilep P-23 contains sucrose esters and is effective against Myzus persicae (Sulzer) in laboratory and field experiments. PMID:16820155

  16. Inhibitory Properties of Aqueous Ethanol Extracts of Propolis on Alpha-Glucosidase

    PubMed Central

    Zhang, Hongcheng; Wang, Guangxin; Beta, Trust; Dong, Jie

    2015-01-01

    The objective of the present study was to evaluate the inhibitory properties of various extracts of propolis on alpha-glucosidase from baker's yeast and mammalian intestine. Inhibitory activities of aqueous ethanol extracts of propolis were determined by using 4-nitrophenyl-D-glucopyranoside, sucrose and maltose as substrates, and acarbose as a positive reference. All extracts were significantly effective in inhibiting α-glucosidase from baker's yeast and rat intestinal sucrase in comparison with acarbose (P < 0.05). The 75% ethanol extracts of propolis (75% EEP) showed the highest inhibitory effect on α-glucosidase and sucrase and were a noncompetitive inhibition mode. 50% EEP, 95%, EEP and 100% EEP exhibited a mixed inhibition mode, while water extracts of propolis (WEP) and 25% EEP demonstrated a competitive inhibition mode. Furthermore, WEP presented the highest inhibitory activity against maltase. These results suggest that aqueous ethanol extracts of propolis may be used as nutraceuticals for the regulation of postprandial hyperglycemia. PMID:25767553

  17. A Four-Hour Yeast Bioassay for the Direct Measure of Estrogenic Activity in Wastewater without Sample Extraction, Concentration, or Sterilization

    PubMed Central

    Balsiger, Heather A.; de la Torre, Roberto; Lee, Wen-Yee; Cox, Marc B.

    2010-01-01

    The assay described here represents an improved yeast bioassay that provides a rapid yet sensitive screening method for EDCs with very little hands-on time and without the need for sample preparation. Traditional receptor-mediated reporter assays in yeast were performed twelve to twenty four hours after ligand addition, used colorimetric substrates, and, in many cases, required high, non-physiological concentrations of ligand. With the advent of new chemiluminescent substrates a ligand-induced signal can be detected within thirty minutes using high picomolar to low nanomolar concentrations of estrogen. As a result of the sensitivity (EC50 for estradiol is ~ 0.7 nM) and the very short assay time (2-4 hours) environmental water samples can typically be assayed directly without sterilization, extraction, and concentration. Thus, these assays represent rapid and sensitive approaches for determining the presence of contaminants in environmental samples. As proof of principle, we directly assayed wastewater influent and effluent taken from a wastewater treatment plant in the El Paso, TX area for the presence of estrogenic activity. The data obtained in the four-hour yeast bioassay directly correlated with GC-mass spectrometry analysis of these same water samples. PMID:20074779

  18. Effects of added chelated trace minerals, organic selenium, yeast culture, direct-fed microbials, and Yucca schidigera extract in horses: II. Nutrient excretion and potential environmental impact.

    PubMed

    Gordon, M E; Edwards, M S; Sweeney, C R; Jerina, M L

    2013-08-01

    The objective of this study was to test the hypothesis that an equine diet formulated with chelated trace minerals, organic selenium, yeast culture, direct-fed microbials (DFM) and Yucca schidigera extract would decrease excretion of nutrients that have potential for environmental impact. Horses were acclimated to 100% pelleted diets formulated with (ADD) and without (CTRL) the aforementioned additives. Chelated sources of Cu, Zn, Mn, and Co were included in the ADD diet at a 100% replacement rate of sulfate forms used in the CTRL diet. Additionally, the ADD diet included organic selenium yeast, DFM, and Yucca schidigera extract. Ten horses were fed the 2 experimental diets during two 42-d periods in a crossover design. Total fecal and urine collection occurred during the last 14 d of each period. Results indicate no significant differences between Cu, Zn, Mn, and Co concentrations excreted via urine (P > 0.05) due to dietary treatment. There was no difference between fecal Cu and Mn concentrations (P > 0.05) based on diet consumed. Mean fecal Zn and Co concentrations excreted by horses consuming ADD were greater than CTRL (P < 0.003). Differences due to diet were found for selenium fecal (P < 0.0001) and urine (P < 0.0001) excretions, with decreased concentrations found for horses consuming organic selenium yeast (ADD). In contrast, fecal K (%) was greater (P = 0.0421) for horses consuming ADD, whereas concentrations of fecal solids, total N, ammonia N, P, total ammonia, and fecal output did not differ between dietary treatments (P > 0.05). In feces stockpiled to simulate a crude composting method, no differences (P > 0.05) due to diet were detected for particle size, temperature, moisture, OM, total N, P, phosphate, K, moisture, potash, or ammonia N (P > 0.05). Although no difference (P = 0.2737) in feces stockpile temperature due to diet was found, temperature differences over time were documented (P < 0.0001). In conclusion, the addition of certain chelated

  19. Analysis of sucrose from sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose is a disaccharide composed of the monosaccharides glucose and fructose. Sucrose is a product of photosynthesis and is a key carbohydrate resource for growth and metabolism in many organisms. Economic sources of sucrose include sugar cane and sugar beet, where fresh weight sucrose concentrati...

  20. Phosphoenolpyruvate-dependent phosphorylation of sucrose by Clostridium tyrobutyricum ZJU 8235: evidence for the phosphotransferase transport system.

    PubMed

    Jiang, Ling; Cai, Jin; Wang, Jufang; Liang, Shizhong; Xu, Zhinan; Yang, Shang-Tian

    2010-01-01

    The uptake and metabolism of sucrose, the major sugar in industrial cane molasses, by Clostridium tyrobutyricum ZJU 8235 was investigated and this study provided the first definitive evidence for phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) activity in butyric acid-producing bacteria. Glucose was utilized preferentially to sucrose when both substrates were present in the medium. The PEP-dependent sucrose: PTS was induced by growing C. tyrobutyricum on sucrose (but not glucose) as the sole carbon source. Extract fractionation and PTS reconstitution experiments revealed that both soluble and membrane components were required for bioactivity. Sucrose-6-phosphate hydrolase and fructokinase activities were also detected in sucrose-grown cultures. Based on these findings, a pathway of sucrose metabolism in this organism was proposed that includes the forming of sucrose-6-phosphate via the PTS and its further degradation into glucose-6-phosphate and fructose-6-phosphate. PMID:19726178

  1. Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.

    PubMed

    Yamamura, Y; Mizuguchi, Y; Taura, F; Kurosaki, F

    2014-10-01

    A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells. PMID:25027024

  2. Expression of peach sucrose transporters in heterologous systems points out their different physiological role.

    PubMed

    Zanon, Laura; Falchi, Rachele; Hackel, Aleksandra; Kühn, Christina; Vizzotto, Giannina

    2015-09-01

    Sucrose is the major phloem-translocated component in a number of economically important plant species. The comprehension of the mechanisms involved in sucrose transport in peach fruit appears particularly relevant, since the accumulation of this sugar, during ripening, is crucial for the growth and quality of the fruit. Here, we report the functional characterisation and subcellular localisation of three sucrose transporters (PpSUT1, PpSUT2, PpSUT4) in peach, and we formulate novel hypotheses about their role in accumulation of sugar. We provide evidence, about the capability of both PpSUT1 and PpSUT4, expressed in mutant yeast strains to transport sucrose. The functionality of PpSUT1 at the plasma membrane, and of PpSUT4 at the tonoplast, has been demonstrated. On the other hand, the functionality of PpSUT2 was not confirmed: this protein is unable to complement two sucrose uptake-deficient mutant yeast strains. Our results corroborate the hypotheses that PpSUT1 partakes in phloem loading in leaves, and PpSUT4 sustains cell metabolism by regulating sucrose efflux from the vacuole. PMID:26259193

  3. Relationships among impurity components, sucrose, and sugarbeet processing quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sodium, potassium, amino-nitrogen, and invert sugar are naturally-occurring constituents of the sugarbeet (Beta vulgaris L.) root, referred to as impurities, which impede sucrose extraction during routine factory operations. Three germplasm lines selected for low sodium, potassium, or amino-nitrogen...

  4. Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation

    PubMed Central

    Maloney, Victoria J.; Park, Ji-Young; Unda, Faride; Mansfield, Shawn D.

    2015-01-01

    Bioinformatic analysis indicates that sucrose phosphate synthase (SPS) contains a putative C-terminal sucrose phosphate phosphatase (SPP)-like domain that may facilitates the binding of SPP. If an SPS–SPP enzyme complex exists, it may provide sucrose biosynthesis with an additional level of regulation, forming a direct metabolic channel for sucrose-6-phosphate between these two enzymes. Herein, the formation of an enzyme complex between SPS and SPP was examined, and the results from yeast two-hybrid experiments suggest that there is indeed an association between these proteins. In addition, in planta bioluminescence resonance energy transfer (BRET) was observed in Arabidopsis seedlings, providing physical evidence for a protein interaction in live cells and in real time. Finally, bimolecular fluorescence complementation (BiFC) was employed in an attempt to detect SPS–SPP interactions visually. The findings clearly demonstrated that SPS interacts with SPP and that this interaction impacts soluble carbohydrate pools and affects carbon partitioning to starch. Moreover, a fusion construct between the two genes promotes plant growth in both transgenic Arabidopsis and hybrid poplar. PMID:25873678

  5. Sucrose diffusion in aqueous solution.

    PubMed

    Price, Hannah C; Mattsson, Johan; Murray, Benjamin J

    2016-07-28

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes-Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  6. Identification by mass spectrometry of two-dimensional gel electrophoresis-separated proteins extracted from lager brewing yeast.

    PubMed

    Joubert, R; Strub, J M; Zugmeyer, S; Kobi, D; Carte, N; Van Dorsselaer, A; Boucherie, H; Jaquet-Guffreund, L

    2001-08-01

    As two-dimensional (2-D) electrophoresis allows the separation of several hundred proteins in a single gel, this technique has become an important tool for proteome studies and for investigating the cellular physiology. In order to take advantage of information provided by the comparison of proteome pictures, the mass spectrometry technique is the way chosen for a rapid and an accurate identification of proteins of interest. Unfortunately, in the case of industrial yeasts, due to the high level of complexity of their genome, the whole DNA sequence is not yet available and all encoded protein sequences are still unknown. Nevertheless, this study presents here 30 lager brewing yeast proteins newly identified with matrix assisted laser desorption/ionization-time of flight (MALDI-TOF), tandem mass spectrometry (MS/MS) and database searching against the protein sequences of Saccharomyces cerevisiae. The identified proteins of the industrial strain correspond to proteins which do not comigrate with known proteins of S. cerevisiae separated on 2-D gels. This study presents an application of the MS technique for the identification of industrial yeast proteins which are only homologous to the corresponding S. cerevisiae proteins. PMID:11565791

  7. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration.

    PubMed

    Hernández-Cortés, Guillermo; Valle-Rodríguez, Juan Octavio; Herrera-López, Enrique J; Díaz-Montaño, Dulce María; González-García, Yolanda; Escalona-Buendía, Héctor B; Córdova, Jesús

    2016-12-01

    Agave (Agave tequilana Weber var. azul) fermentations are traditionally carried out employing batch systems in the process of tequila manufacturing; nevertheless, continuous cultures could be an attractive technological alternative to increase productivity and efficiency of sugar to ethanol conversion. However, agave juice (used as a culture medium) has nutritional deficiencies that limit the implementation of yeast continuous fermentations, resulting in high residual sugars and low fermentative rates. In this work, fermentations of agave juice using Saccharomyces cerevisiae were put into operation to prove the necessity of supplementing yeast extract, in order to alleviate nutritional deficiencies of agave juice. Furthermore, continuous fermentations were performed at two different aeration flow rates, and feeding sterilized and non-sterilized media. The obtained fermented musts were subsequently distilled to obtain tequila and the preference level was compared against two commercial tequilas, according to a sensorial analysis. The supplementation of agave juice with air and yeast extract augmented the fermentative capacity of S. cerevisiae S1 and the ethanol productivities, compared to those continuous fermentations non supplemented. In fact, aeration improved ethanol production from 37 to 40 g L(-1), reducing sugars consumption from 73 to 88 g L(-1) and ethanol productivity from 3.0 to 3.2 g (Lh)(-1), for non-aerated and aerated (at 0.02 vvm) cultures, respectively. Supplementation of yeast extract allowed an increase in specific growth rate and dilution rates (0.12 h(-1), compared to 0.08 h(-1) of non-supplemented cultures), ethanol production (47 g L(-1)), reducing sugars consumption (93 g L(-1)) and ethanol productivity [5.6 g (Lh)(-1)] were reached. Additionally, the effect of feeding sterilized or non-sterilized medium to the continuous cultures was compared, finding no significant differences between both types of cultures. The overall effect

  8. Sucrose release from polysaccharide gels.

    PubMed

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed. PMID:26952168

  9. Delipidation-based solid-phase extraction pretreatment technique for plasma broad-coverage metabolomic profiling to reveal the potential pathogenesis of yeast-induced fever in rats.

    PubMed

    Zhang, Zhixin; Qin, Lingling; Guo, Mingxing; Gao, Shanshan; Zhang, Qingqing; Wang, Qing; Lu, Zhiwei; Zhao, Huizhen; Liu, Yuehong; Wang, Meiling; Fu, Shuang; Bai, Xu; Gao, Xiaoyan

    2016-07-01

    During the process of metabolomics profiling by using ultra high performance liquid chromatography coupled with time-of flight mass spectrometry, blood sample pretreatment is a crucial step for biomarker discovery. Herein, in order to prevent the potential loss of metabolites and ion suppression phenomena caused by the proteins and phospholipids contained in blood fluids, a delipidation-based solid-phase extraction pretreatment technique for plasma broad-coverage metabolomic profiling was performed. This technique can be summarized as a single extraction, a single elution of solid-phase extraction plate, followed by four times measuring with electrospray ionization in positive and negative ion mode, respectively. This approach significantly increased the number of features detected in plasma, and 1572 features in positive mode and 1352 features in negative mode were detected, respectively. Besides, the stability and repeatability of the approach were greatly improved. For these advantages, the approach was employed to elucidate the potential pathogenesis of yeast-induced fever in rats. The biomarkers associated with the pathogenesis of fever were shown to be related to amino acids metabolism and lipid metabolism. The delipidation-based solid-phase extraction pretreatment approach can provide a useful tool to reveal the pathological mechanisms of such systemic pathological process. PMID:27173137

  10. Single-cell protein production from Jerusalem artichoke extract by a recently isolated marine yeast Cryptococcus aureus G7a and its nutritive analysis.

    PubMed

    Gao, Lingmei; Chi, Zhenming; Sheng, Jun; Ni, Xiumei; Wang, Lin

    2007-12-01

    After crude protein of the marine yeast strains maintained in this laboratory was estimated by the method of Kjehldahl, we found that the G7a strain which was identified to be a strain of Cryptococcus aureus according to the routine identification and molecular methods contained high level of protein and could grow on a wide range of carbon sources. The optimal medium for single-cell protein production was seawater containing 6.0 g of wet weight of Jerusalem artichoke extract per 100 ml of medium and 4.0 g of the hydrolysate of soybean meal per 100 ml of medium, while the optimal conditions for single-cell protein production were pH 5.0 and 28.0 degrees C. After fermentation for 56 h, 10.1 g of cell dry weight per liter of medium and 53.0 g of crude protein per 100 g of cell dry weight (5.4 g/l of medium) were achieved, leaving 0.05 g of reducing sugar per 100 ml of medium and 0.072 g of total sugar per 100 ml of medium total sugar in the fermented medium. The yeast strain only contained 2.1 g of nucleic acid per 100 g of cell dry weight, but its cells contained a large amount of C(16:0) (19.0%), C(18:0) (46.3%), and C(18:1) (33.3%) fatty acids and had a large amount of essential amino acids, especially lysine (12.6%) and leucine (9.1%), and vitamin C (2.2 mg per 100 g of cell dry weight). These results show that the new marine yeast strain was suitable for single-cell protein production. PMID:17929010

  11. Yeast Infections

    MedlinePlus

    ... antibiotics, it can multiply and cause an infection. Yeast infections affect different parts of the body in different ways: Thrush is a yeast infection that causes white patches in your mouth Candida ...

  12. Gentamicin-Containing Peptone-Yeast Extract Medium for Cocultivation of Hartmannella vermiformis ATCC 50256 and Virulent Strains of Legionella pneumophila

    PubMed Central

    Wadowsky, R. M.; Wang, L.; Laus, S.; Dowling, J. N.; Kuchta, J. M.; States, S. J.; Yee, R. B.

    1995-01-01

    We evaluated the use of peptone-yeast extract (PY) medium, different strains of Hartmannella vermiformis, and gentamicin in a coculture system to improve the discrimination of virulent and avirulent strains of Legionella pneumophila. H. vermiformis ATCC 50256 was unique among four strains of H. vermiformis, in that it multiplied equally well in Medium 1034 and PY medium (Medium 1034 without fetal calf serum, folic acid, hemin, and yeast nucleic acid and with a 50% reduction of peptone). However, both a virulent strain of L. pneumophila and its avirulent derivative strain multiplied in cocultures when PY medium was used. The multiplication of this avirulent strain was greatly reduced by incorporating gentamicin (1 (mu)g/ml) into the cocultivation system. Five virulent-avirulent sets of L. pneumophila strains were then tested for multiplication in cocultures with H. vermiformis ATCC 50256 and the gentamicin-containing PY medium. Only the virulent strains multiplied. The modified cocultivation system can discriminate between virulent and avirulent strains of L. pneumophila. PMID:16535197

  13. Could yeast infections impair recovery from mental illness? A case study using micronutrients and olive leaf extract for the treatment of ADHD and depression.

    PubMed

    Rucklidge, Julia J

    2013-01-01

    Micronutrients are increasingly used to treat psychiatric disorders including attention-deficit/hyperactivity disorder (ADHD), mood disorders, stress, and anxiety. However, a number of factors influence optimal response and absorption of nutrients, including the health of the gut, particularly the presence of yeast infections, such as Candida. As part of a wider investigation into the impact of micronutrients on psychiatric symptoms, many participants who experienced a yeast infection during their treatment showed a diminished response to the micronutrients. One case was followed systematically over a period of 3 y with documentation of deterioration in psychiatric symptoms (ADHD and mood) when infected with Candida and then symptom improvement following successful treatment of the infection with olive leaf extract (OLE) and probiotics. This case outlines that micronutrient treatment might be severely compromised by infections such as Candida and may highlight the importance of gut health when treating psychiatric disorders with nutrients. Given the role that inflammation can play in absorption of nutrients, it was hypothesized that the infection was impairing absorption of the micronutrients. PMID:23784606

  14. Featured Molecules: Sucrose and Vanillin

    NASA Astrophysics Data System (ADS)

    Coleman, William F.; Wildman, Randall J.

    2003-04-01

    The WebWare molecules of the month for April relate to the sense of taste. Apple Fool, the JCE Classroom Activity, mentions sucrose and vanillin and their use as flavorings. Fully manipulable (Chime) versions of these and other molecules are available at Only@JCE Online.

  15. Effects of Sugar (Sucrose) on Children's Behavior.

    ERIC Educational Resources Information Center

    Rosen, Lee A.; And Others

    1988-01-01

    Examined effects of sugar on behavior of 45 preschool and elementary school children. Provided all children with basic breakfast that included drink containing either 50 g of sucrose, a comparably sweet placebo, or very little sucrose. Found some small behavior changes in high-sucrose group. All effects were small in magnitude and not considered…

  16. A yeast bioassay for direct measurement of thyroid hormone disrupting effects in water without sample extraction, concentration, or sterilization.

    PubMed

    Li, Jian; Ren, Shujuan; Han, Shaolun; Li, Na

    2014-04-01

    The present study introduces an improved yeast bioassay for rapid yet sensitive evaluation of thyroid hormone disruption at the level of thyroid receptor (TR) in environmental water samples. This assay does not require water sample preparation and thus requires very little hands-on time. Based on different β-galactosidase substrates, two modified bioassays, a colorimetric bioassay and a chemiluminescent bioassay, were developed. The compounds tested included the known thyroid hormone 3,3',5-triiodo-l-thyronine (T3), the specific TR antagonist amiodarone hydrochloride (AH) and phthalate esters (PAEs), which potentially disrupt thyroid hormone signaling. The EC50 values for T3 were similar to those previously obtained using a 96-well plate bioassay. TR antagonism by AH was studied in the presence of 2.5 × 10(-7)M T3, and the concentration producing 20% of the maximum effect (RIC20) for AH was 3.1 × 10(-7)M and 7.8 × 10(-9)M for the colorimetric bioassay and chemiluminescent bioassay, respectively. None of the tested PAEs induced β-galactosidase expression, but diethylhexyl phthalate, benzyl butyl phthalate and dibutyl phthalate demonstrated TR antagonism. Furthermore, water samples collected from Guanting reservoir in Beijing were evaluated. Although TR agonism was not observed, antagonism was detected in all water samples and is expressed as AH equivalents. The toxicology equivalent quantity values obtained by the chemiluminescent bioassay ranged from 21.2 ± 1.6 to 313.9 ± 28.8 μg L(-1) AH, and similar values were obtained for the colorimetric bioassay. The present study shows that the modified yeast bioassay can be used as a valuable tool for quantification of thyroid hormone disrupting effects in environmental water samples. PMID:24355165

  17. Influence of autochthonous lactic acid bacteria and enzymatic yeast extracts on the microbiological, biochemical and sensorial properties of Lben generic products.

    PubMed

    Mangia, Nicoletta P; Garau, Giovanni; Murgia, Marco A; Bennani, Abdelmajid; Deiana, Pietrino

    2014-05-01

    In this study we identified Lactococcus lactis subsp. lactis, Lc. lactis subsp. lactis biovar diacetylactis, Kluyveromices lactis and Saccharomyces cerevisiae as the dominant microorganisms of traditional Moroccan acid-alcoholic fermented milk named Lben. The low pH (3·8±0·3), lactose (16·8±3·4 mg/l) and lactic acid (8·16±0·6 mg/l) content indicated that a strong fermentation occurred in the traditional product which was also characterised by the substantial presence of ethanol and typical volatile carbonyl compounds (i.e., acetoin, diacetyl and acetaldehyde). Microbiological analyses of experimental Lben manufactured with selected strains (isolated from the traditional product) of Lc. lactis subsp. lactis and Lc. lactis subsp. lactis biovar. diacetylactis alone (batch A) and in combination with enzymatic extract of a K. lactis strain (batch B) indicated a good effectiveness of the starters employed (∼1010 CFU/g of lactococci after 8 h of incubation) and a significant effect of the yeast enzyme extract on lactococci viability. Despite slight changes in the physicochemical characteristics of the two Lben during the 15 d storage period, volatile compounds (i.e. ethanol, acetaldehyde, diacetyl and acetoin) were consistently higher in batch B. Moreover, sensorial analysis performed after 15 d of storage, highlighted higher odour and flavour intensity, vegetable odour and viscosity in batch B while batch A displayed higher astringency. PMID:24642233

  18. Mutations in the membrane anchor of yeast cytochrome c1 compensate for the absence of Oxa1p and generate carbonate-extractable forms of cytochrome c1.

    PubMed Central

    Hamel, P; Lemaire, C; Bonnefoy, N; Brivet-Chevillotte, P; Dujardin, G

    1998-01-01

    Oxa1p is a mitochondrial inner membrane protein that is mainly required for the insertion/assembly of complex IV and ATP synthase and is functionally conserved in yeasts, humans, and plants. We have isolated several independent suppressors that compensate for the absence of Oxa1p. Molecular cloning and sequencing reveal that the suppressor mutations (CYT1-1 to -6) correspond to amino acid substitutions that are all located in the membrane anchor of cytochrome c1 and decrease the hydrophobicity of this anchor. Cytochrome c1 is a catalytic subunit of complex III, but the CYT1-1 mutation does not seem to affect the electron transfer activity. The double-mutant cyt1-1,164, which has a drastically reduced electron transfer activity, still retains the suppressor activity. Altogether, these results suggest that the suppressor function of cytochrome c1 is independent of its electron transfer activity. In addition to the membrane-bound cytochrome c1, carbonate-extractable forms accumulate in all the suppressor strains. We propose that these carbonate-extractable forms of cytochrome c1 are responsible for the suppressor function by preventing the degradation of the respiratory complex subunits that occur in the absence of Oxa1p. PMID:9755193

  19. Vacuolar Acid Hydrolysis as a Physiological Mechanism for Sucrose Breakdown 1

    PubMed Central

    Echeverria, Ed; Burns, Jacqueline K.

    1989-01-01

    Sucrose breakdown in mature acidic `Persian' limes (Citrus aurantifolia [Christm.] Swing.) occurred at a rate of 30.6 picomoles per milliliter per day during 9 weeks storage at 15°C. Neither enzyme of sucrose catabolism (sucrose synthase or acid/alkaline invertase) was present in extracts of mature storage tissue. The average vacuolar pH, estimated by direct measurement of sap from isolated vacuoles and by the methylamine method, was about 2.0 to 2.2. In vitro acid hydrolysis of sucrose at physiological concentrations in a buffered solution (pH 2.2) occurred at identical rates as in matured limes. The results indicate that sucrose breakdown in stored mature acidic limes occurs by acid hydrolysis. PMID:16666803

  20. Selective media for detecting and enumerating foodborne yeasts.

    PubMed

    Beuchat, L R

    1993-06-25

    No one medium is satisfactory for detecting, isolating and enumerating all yeasts in all foods. Antibiotic-supplemented media such as dichloran rose Bengal chloramphenicol agar, tryptone glucose yeast extract chloramphenicol agar, oxytetracycline glucose yeast extract agar and rose Bengal chloramphenicol agar are superior to acidified potato dextrose agar and other acidified media for enumeration of the vast majority of spoilage yeasts. Dichloran glycerol (18%) agar performs well for enumerating moderately xerotolerant yeasts. Malt extract yeast extract glucose (up to 60%) can be used for detecting and enumerating moderate and extreme xerophiles. These media also support the growth of moulds. Lysine agar, Schwarz differential agar and Lin's wild yeast differential agar are used by the brewing industry to differentiate wild yeasts from brewer's strains. Lysine agar is selective for apiculate yeasts and ethanol sulfite yeast extract agar is selective for Saccharomyces. Both have application in wineries. Modified molybdate agar can be used to selectively isolate yeasts from tropical fruits. Preservative-resistant yeasts can be detected on malt acetic agar. The recommended incubation temperature is 25 degrees C, but incubation time between plating and counting colonies ranges from 5 days for determination of general populations of yeasts to 10 days for more for xerotolerant yeasts. There is need for new and improved media for selectively isolating various groups, genera, species and strains of yeasts capable of growing only under specific environmental conditions in specific types of foods and beverages. PMID:8357752

  1. Interaction of structural isomers of sucrose in the reaction between sucrose and glucosyltransferases from mutans streptococci.

    PubMed

    Minami, T; Fujiwara, T; Ooshima, T; Nakajima, Y; Hamada, S

    1990-08-01

    Structural isomers of sucrose, i.e. disaccharides composed of glucose and fructose molecules with different glucosidic linkages, were examined for their effect on the reaction between sucrose and various glucosyltransferases (GTases) from Streptococcus mutans MT8148 and Streptococcus sobrinus 6715. Trehalulose (alpha 1-1), turanose (alpha 1-3), maltulose (alpha 1-4), and palatinose (alpha 1-6) were used as the sucrose analogues. Mutans streptococci were found not to utilize these sucrose analogues. Analysis of enzymatic products of GTase and sucrose with thin layer chromatography clearly revealed that glucan synthesis from [14C]sucrose by the various purified GTase preparations from S. mutans and S. sobrinus was inhibited in the presence of these sucrose analogues except turanose, resulting in the release of increased amounts of [14C]fructose and [14C]oligosaccharides. It was also found that the fructose residues in the oligosaccharides were derived from those of sucrose analogues but not sucrose itself. The Lineweaver-Burk plots of the substrate saturation kinetics of GTase vs sucrose indicated increased Km and Vmax in the presence of sucrose analogue, as compared with sucrose alone. Finally, these sucrose analogues except turanose inhibited sucrose dependent cellular adherence of S. sobrinus 6715 to a glass surface, while they scarcely inhibited the adherence of S. mutans MT8148. Among the analogues, maltulose appeared the most effective inhibitor against GTases in general. PMID:2150553

  2. Sucrose transport into stalk tissue of sugarcane

    SciTech Connect

    Thom, M.; Maretzki, A. )

    1990-05-01

    The productivity of higher plants is, in part, dependent on transport of photosynthate from source to sink (in sugarcane, stalk) and upon its assimilation in cells of the sink tissue. In sugarcane, sucrose has been reported to undergo hydrolysis in the apoplast before uptake into the storage parenchyma, whereas recently, sucrose was reported to be taken up intact. This work was based on lack of randomization of ({sup 14}C)fructosyl sucrose accumulated after feeding tissue slices with this sugar. In this report, we present evidence from slices of stalk tissue that sucrose is taken up intact via a carrier-mediated, energy-dependent process. The evidence includes: (1) uptake of fluorosucrose, an analog of sucrose not subject to hydrolysis by invertase; (2) little or no randomization of ({sup 14}C) fructosyl sucrose taken up; (3) the presence of a saturable as well as a linear component of sucrose uptake; and (4) inhibition of both the saturable and linear components of sucrose uptake by protonophore and sulhydryl agents. Hexoses can also be taken up, and at a greater efficiency than sucrose. It is probable that both hexose and sucrose can be transported across the plasma membrane, depending on the physiological status of the plant.

  3. Effects of added chelated trace minerals, organic selenium, yeast culture, direct-fed microbials, and Yucca schidigera extract in horses. Part I: Blood nutrient concentration and digestibility.

    PubMed

    Gordon, M E; Edwards, M S; Sweeney, C R; Jerina, M L

    2013-08-01

    The objective of this study was to test the hypothesis that feed additives such as chelated minerals, organic Se, yeast culture, direct-fed microbials, and Yucca schidigera extract would improve nutrient digestibility when included in an equine diet. Horses (Quarter Horse geldings 4.5 to 16 yr of age; mean BW 522 kg ± 46 kg) were acclimated to 100% pelleted diets formulated with (ADD) and without (CTRL) commercially available sources of the aforementioned additives followed by a 14-d collection period of feces and urine. Chelated sources of Cu, Zn, Mn and Co were utilized versus sulfated forms, at a 100% replacement rate. No significant differences among apparent the digestibility of DM, ADF, or NDF (P= 0.665, P = 0.866, P = 0.747, respectively) were detected between dietary treatments. Likewise, no differences in apparent digestibility of Cu (P = 0.724), Zn (P = 0.256), Mn (P = 0.888), Co (P = 0.71), or Se (P = 0.588) were observed. No differences were observed in serum Cu, Mn, or Co concentrations between ADD and CTRL at acclimation or collection time points (P > 0.05). While no difference in serum Zn concentrations were observed between ADD and CTRL groups at acclimation (P > 0.05), they were statistically higher at the collection time period for horses consuming CTRL (P < 0.0001). Whole blood Se concentration was greater in the CTRL group versus the ADD group both at acclimation (P = 0.041) and collection (P = 0.005) time periods. In reference to time, serum Cu concentrations increased (P = 0.012) for animals consuming CTRL, but not ADD (P > 0.05). Serum Zn concentrations of horses consuming both ADD (P = 0.021) and CTRL (P < 0.0001) increased over time from acclimation to collection time points. No time differences (P > 0.05) were observed in serum Mn concentrations. Serum Co concentrations increased over time in horses consuming both ADD (P = 0.001) and CTRL (P = 0.021). From acclimation to collection, whole blood Se concentration increased for horses

  4. Molecular Control of Sucrose Utilization in Escherichia coli W, an Efficient Sucrose-Utilizing Strain

    PubMed Central

    Sabri, Suriana; Nielsen, Lars K.

    2013-01-01

    Sucrose is an industrially important carbon source for microbial fermentation. Sucrose utilization in Escherichia coli, however, is poorly understood, and most industrial strains cannot utilize sucrose. The roles of the chromosomally encoded sucrose catabolism (csc) genes in E. coli W were examined by knockout and overexpression experiments. At low sucrose concentrations, the csc genes are repressed and cells cannot grow. Removal of either the repressor protein (cscR) or the fructokinase (cscK) gene facilitated derepression. Furthermore, combinatorial knockout of cscR and cscK conferred an improved growth rate on low sucrose. The invertase (cscA) and sucrose transporter (cscB) genes are essential for sucrose catabolism in E. coli W, demonstrating that no other genes can provide sucrose transport or inversion activities. However, cscK is not essential for sucrose utilization. Fructose is excreted into the medium by the cscK-knockout strain in the presence of high sucrose, whereas at low sucrose (when carbon availability is limiting), fructose is utilized by the cell. Overexpression of cscA, cscAK, or cscAB could complement the WΔcscRKAB knockout mutant or confer growth on a K-12 strain which could not naturally utilize sucrose. However, phenotypic stability and relatively good growth rates were observed in the K-12 strain only when overexpressing cscAB, and full growth rate complementation in WΔcscRKAB also required cscAB. Our understanding of sucrose utilization can be used to improve E. coli W and engineer sucrose utilization in strains which do not naturally utilize sucrose, allowing substitution of sucrose for other, less desirable carbon sources in industrial fermentations. PMID:23124236

  5. Xuezhikang, Extract of Red Yeast Rice, Improved Abnormal Hemorheology, Suppressed Caveolin-1 and Increased eNOS Expression in Atherosclerotic Rats

    PubMed Central

    Yang, Ya-Bing; Liu, Mei-Lin

    2013-01-01

    Background Xuezhikang is the extract of red yeast rice, which has been widely used for the management of atherosclerotic disease, but the molecular basis of its antiatherosclerotic effects has not yet been fully identified. Here we investigated the changes of eNOS in vascular endothelia and RBCs, eNOS regulatory factor Caveolin-1 in endothelia, and hemorheological parameters in atherosclerotic rats to explore the protective effects of Xuezhikang. Methodology/Principal Findings Wistar rats were divided into 4 groups (n = 12/group) group C, controls; group M, high-cholesterol diet (HCD) induced atherosclerotic models; group X, HCD+Xuezhikang; and group L, HCD +Lovastatin. In group X, Xuezhikang inhibited oxidative stress, down-regulated caveolin-1 in aorta wall (P<0.05), up-regulated eNOS expression in vascular endothelia and erythrocytes (P<0.05), increased NOx (nitrite and nitrate) in plasma and cGMP in erythrocyte plasma and aorta wall (P<0.05), increased erythrocyte deformation index (EDI), and decreased whole blood viscosity and plasma viscosity (P<0.05), with the improvement of arterial pathology. Conclusions/Significance Xuezhikang up-regulated eNOS expression in vascular endothelia and RBCs, increased plasma NOx and improved abnormal hemorheology in high cholesterol diet induced atherosclerotic rats. The elevated eNOS/NO and improved hemorheology may be beneficial to atherosclerotic disease. PMID:23675421

  6. Understanding the intracellular effects of yeast extract on the enhancement of Fc-fusion protein production in Chinese hamster ovary cell culture.

    PubMed

    Hu, Dongdong; Sun, Yating; Liu, Xuping; Liu, Jintao; Zhang, Xintao; Zhao, Liang; Wang, Haibin; Tan, Wen-Song; Fan, Li

    2015-10-01

    Yeast extract (YE), as a non-animal source additive for mammalian cell culture medium, has been widely used for manufacturing of therapeutic proteins. In the present study, one particular YE was found to have significantly improved the specific productivity (q p) of Fc-fusion protein in recombinant Chinese hamster ovary (rCHO) cell culture. In order to elucidate the intracellular effects of YE on protein productivity, steps of the target protein synthesis process were investigated to unveil their variations caused by YE addition. Stepwise analysis on Fc-fusion protein synthesis process showed that YE enhanced Fc-fusion protein gene transcription with cell cycle arrest at G1 phase; mammalian target of rapamycin (mTOR) signaling pathway was activated to enhance the translation of Fc-fusion protein, and the block in post-translational steps of Fc-fusion protein was alleviated by YE addition as well. Our results revealed the responses of multiple protein production steps to the addition of YE and provided a practical guidance for the separation and application of active compounds from hydrolysates. PMID:26162671

  7. Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus.

    PubMed

    Li, Ming; Si, Shengli; Hao, Bo; Zha, Yi; Wan, Can; Hong, Shufen; Kang, Yongbo; Jia, Jun; Zhang, Jing; Li, Meng; Zhao, Chunqiao; Tu, Yuanyuan; Zhou, Shiguang; Peng, Liangcai

    2014-10-01

    In this study, various alkali-pretreated lignocellulose enzymatic hydrolyses were evaluated by using three standard pairs of Miscanthus accessions that showed three distinct monolignol (G, S, H) compositions. Mfl26 samples with elevated G-levels exhibited significantly increased hexose yields of up to 1.61-fold compared to paired samples derived from enzymatic hydrolysis, whereas Msa29 samples with high H-levels displayed increased hexose yields of only up to 1.32-fold. In contrast, Mfl30 samples with elevated S-levels showed reduced hexose yields compared to the paired sample of 0.89-0.98 folds at p<0.01. Notably, only the G-rich biomass samples exhibited complete enzymatic hydrolysis under 4% NaOH pretreatment. Furthermore, the G-rich samples showed more effective extraction of lignin-hemicellulose complexes than the S- and H-rich samples upon NaOH pretreatment, resulting in large removal of lignin inhibitors to yeast fermentation. Therefore, this study proposes an optimal approach for minor genetic lignin modification towards cost-effective biomass process in Miscanthus. PMID:25079210

  8. An economic approach to efficient isotope labeling in insect cells using homemade 15N-, 13C- and 2H-labeled yeast extracts.

    PubMed

    Opitz, Christian; Isogai, Shin; Grzesiek, Stephan

    2015-07-01

    Heterologous expression of proteins in insect cells is frequently used for crystallographic structural studies due to the high yields even for challenging proteins requiring the eukaryotic protein processing capabilities of the host. However for NMR studies, the need for isotope labeling poses extreme challenges in eukaryotic hosts. Here, we describe a robust method to achieve uniform protein (15)N and (13)C labeling of up to 90 % in baculovirus-infected insect cells. The approach is based on the production of labeled yeast extract, which is subsequently supplemented to insect cell growth media. The method also allows deuteration at levels of >60 % without decrease in expression yield. The economic implementation of the labeling procedures into a standard structural biology laboratory environment is described in a step-by-step protocol. Applications are demonstrated for a variety of NMR experiments using the Abelson kinase domain, GFP, and the beta-1 adrenergic receptor as examples. Deuterated expression of the latter provides spectra of very high quality of a eukaryotic G-protein coupled receptor. PMID:26070442

  9. Comparing the sugar profiles and primary structures of alkali-extracted water-soluble polysaccharides in cell wall between the yeast and mycelial phases from Tremella fuciformis.

    PubMed

    Zhu, Hanyu; Yuan, Yuan; Liu, Juan; Zheng, Liesheng; Chen, Liguo; Ma, Aimin

    2016-05-01

    To gain insights into dimorphism, cell wall polysaccharides from Tremella fuciformis strains were obtained from alkali-extracted water-soluble fractions PTF-M38 (from the mycelial form), PTF-Y3 and PTF-Y8 (from the yeast form) of T. fuciformis strains were used to gain some insights into dimorphism study. Their chemical properties and structural features were investigated using gel permeation chromatography, gas chromatography, UV and IR spectrophotometry and Congo red binding reactions. The results indicated that the backbones of PTF-M38, PTF-Y3 and PTF-Y8 were configured with α-linkages with average molecular weights of 1.24, 1.08, and 1.19 kDa, respectively. PTF-M38 was mainly composed of xylose, mannose, glucose, and galactose in a ratio of 1:1.47:0.48:0.34, while PTF-Y3 and PTF-Y8 were mainly composed of xylose, mannose and glucose in a ratio of 1:1.65:4.06 and 1:1.21:0.44, respectively. The sugar profiles of PTF-M38, PTF-Y3 and PTF-Y8 were also established for further comparison. These profiles showed that all three polysaccharides contained the same sugars but in different ratios, and the carbon sources (xylose, mannose, glucose, and galactose) affected the sugar ratios within the polysaccharides. PMID:27095457

  10. Vasorelaxant Effect of 5'-Methylthioadenosine Obtained from Candida utilis Yeast Extract through the Suppression of Intracellular Ca(2+) Concentration in Isolated Rat Aorta.

    PubMed

    Kumrungsee, Thanutchaporn; Akiyama, Sayaka; Saiki, Tomomi; Omae, Masato; Hamasawa, Kazuhiro; Matsui, Toshiro

    2016-05-01

    Our study is the first to demonstrate the vasorelaxant effect of Candida utilis yeast extract on rat aorta (EC50 of 7.2 ± 3.2 mg/mL). Among five identified compounds, 5'-methylthioadenosine (MTA) exhibited comparable vasorelaxant effect (EC50 of 190 ± 40 μM) with adenosine, a known vasodilator, on 1 μM phenylephrine (PE)-contracted Sprague-Dawley rat aortic rings. MTA induced vasorelaxation in an endothelium-independent manner and independent of the adenosine receptors. MTA reduced a CaCl2-induced vasocontraction stimulated by 1 μM PE, whereas the effect was abolished in a 60 mM KCl-induced vasocontraction. This indicates that MTA was not involved in the suppression of extracellular Ca(2+) influx. MTA significantly (P < 0.01) attenuated the PE-induced activation of calmodulin-dependent kinase II (CaMK II) in aortic rings and inhibited the phosphorylation of L-type Ca(2+) channel (VDCC). In conclusion, the underlying mechanism(s) of MTA-induced vasorelaxation involves the inhibition of Ca(2+)/CaMK II/VDCC phosphorylation pathway, resulting in the suppression of intracellular Ca(2+) concentration in aortic rings. PMID:27066696

  11. Long-Term n-Caproic Acid Production from Yeast-Fermentation Beer in an Anaerobic Bioreactor with Continuous Product Extraction.

    PubMed

    Ge, Shijian; Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2015-07-01

    Multifunctional reactor microbiomes can elongate short-chain carboxylic acids (SCCAs) to medium-chain carboxylic acids (MCCAs), such as n-caproic acid. However, it is unclear whether this microbiome biotechnology platform is stable enough during long operating periods to consistently produce MCCAs. During a period of 550 days, we improved the operating conditions of an anaerobic bioreactor for the conversion of complex yeast-fermentation beer from the corn kernel-to-ethanol industry into primarily n-caproic acid. We incorporated and improved in-line, membrane liquid-liquid extraction to prevent inhibition due to undissociated MCCAs at a pH of 5.5 and circumvented the addition of methanogenic inhibitors. The microbiome accomplished several functions, including hydrolysis and acidogenesis of complex organic compounds and sugars into SCCAs, subsequent chain elongation with undistilled ethanol in beer, and hydrogenotrophic methanogenesis. The methane yield was 2.40 ± 0.52% based on COD and was limited by the availability of carbon dioxide. We achieved an average n-caproate production rate of 3.38 ± 0.42 g L(-1) d(-1) (7.52 ± 0.94 g COD L(-1) d(-1)) with an n-caproate yield of 70.3 ± 8.81% and an n-caproate/ethanol ratio of 1.19 ± 0.15 based on COD for a period of ∼55 days. The maximum production rate was achieved by increasing the organic loading rates in tandem with elevating the capacity of the extraction system and a change in the complex feedstock batch. PMID:25941741

  12. Characteristics Of Vacuum Deposited Sucrose Thin Films

    NASA Astrophysics Data System (ADS)

    Ungureanu, F.; Predoi, D.; Ghita, R. V.; Vatasescu-Balcan, R. A.; Costache, M.

    Thin films of sucrose (C12H22O11) were deposited on thin cut glass substrates by thermal evaporation technique (p ~ 10-5 torr). The surface morphology was putted into evidence by FT-IR and SEM analysis. The experimental results confirm a uniform deposition of an adherent sucrose layer. The biological tests (e.g., cell morphology and cell viability evaluated by measuring mitochondrial dehydrogenise activity with MTT assay) confirm the properties of sucrose thin films as bioactive material. The human fetal osteoblast system grown on thin sucrose film was used for the determination of cell proliferation, cell viability and cell morphology studies.

  13. Sucrose synthesis in gamma irradiated sweet potato

    SciTech Connect

    Ailouni, S.; Hamdy, M.K.; Toledo, R.T.

    1987-01-01

    Effect of ..cap alpha..-irradiation carbohydrate metabolism was examined to elucidate mechanism of sucrose accumulation in sweet potato (SP). Enzymes examined were: ..beta..-amylase, phosphorylase, phosphoglucomutase, phosphoglucose isomerase, sucrose phosphate synthetase and sucrose synthetase. Irradiated SP (Red Jewell) sucrose was synthesized to yield 10.7% after 4 d PI. Activities of sugar synthesizing enzymes in irradiated SP were enhanced to different degrees using 100-200 Krad and 3 d PI at 24/sup 0/C. Phosphorylase and phosphoglucomutases specific activities reached 2.4 and 1.8 folds, respectively compared to control SP. ..beta..-amylase, phosphoglucose isomerase, sucrose synthetase and sucrose phosphate synthetase were also affected to yield 1.2, 1.3, 1.3 and 1.2 folds, respectively compared to controls. It is believed that amylase hydrolyzed starch to glucose which is converted to fructose by phosphoglucose isomerase. Sucrose is then formed by sucrose phosphate synthetase and/or sucrose synthetase leading to its accumulation. The irradiated SP was used for alcohol fermentation leading to 500 gal. of 200 proof ethanol/acre (from 500-600 bushels tuber/acre).

  14. Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells.

    PubMed

    Zhao, Chun-Hai; Chi, Zhe; Zhang, Fang; Guo, Feng-Jun; Li, Mei; Song, Wei-Bo; Chi, Zhen-Ming

    2011-05-01

    In this study, it was found that the immobilized inulinase-producing cells of Pichia guilliermondii M-30 could produce 169.3 U/ml of inulinase activity while the free cells of the same yeast strain only produced 124.3 U/ml of inulinase activity within 48 h. When the immobilized inulinase-producing yeast cells were co-cultivated with the free cells of Rhodotorula mucilaginosa TJY15a, R. mucilaginosa TJY15a could accumulate 53.2% oil from inulin in its cells and cell dry weight reached 12.2g/l. Under the similar conditions, R. mucilaginosa TJY15a could accumulate 55.4% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weight reached 12.8 g/l within 48 h. When the co-cultures were grown in 2l fermentor, R. mucilaginosa TJY15a could accumulate 56.6% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weight reached 19.6g/l within 48 h. Over 90.0% of the fatty acids from the yeast strain TJY15a grown in the extract of Jerusalem artichoke tubers was C(16:0), C(18:1) and C(18:2), especially C(18:1) (50.6%). PMID:21411313

  15. Beta-glucan-depleted, glycopeptide-rich extracts from Brewer's and Baker's yeast (Saccharomyces cerevisiae) lower interferon-gamma production by stimulated human blood cells in vitro.

    PubMed

    Williams, Roderick; Dias, Daniel A; Jayasinghe, Nirupama; Roessner, Ute; Bennett, Louise E

    2016-04-15

    Regulation of the human immune system requires controlled pro- and anti-inflammatory responses for host defence against infection and disease states. Yeasts (Saccharomyces cerevisiae), as used in brewing and baking, are mostly known for ability to stimulate the human immune-system predominantly reflecting the pro-inflammatory cell wall β-glucans. However, in this study, using food-compatible processing methods, glycopeptide-enriched and β-glucan-depleted products were each prepared from Brewer's and Baker's yeasts, which suppressed production of interferon-γ (IFN-γ) in human whole blood cell assay, signifying that anti-inflammatory factors are also present in yeast. Anti-inflammatory bioactivities of products prepared from Brewer's and Baker's yeast were compared with the commercial yeast product, Epicor®. While unfractionated Epicor was inactive, the C18 resin-binding fractions of Brewer's and Baker's yeast products and Epicor dose-dependently lowered IFN-γ, demonstrating that Epicor also contained both pro-inflammatory (β-glucans) and anti-inflammatory components. Anti-inflammatory activity was attributed to C18 resin-binding species glyco-peptides in Epicor and experimental yeast products. This study demonstrated that pro- and anti-inflammatory factors could be resolved and enriched in yeasts by suitable processing, with potential to improve specific activities. PMID:26617014

  16. A new beta-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional cellulose-to-ethanol conversion by simultaneous saccharification and fermentation (SSF)requires enzymatic saccharification using both cellulase and ß-glucosidase allowing cellulose utilization by common ethanologenic yeast. Here we report a new yeast strain of Clavispora NRRL Y-50464 th...

  17. Sucrose accumulation in mature sweet melon fruits. [Cucumis melo

    SciTech Connect

    Schaffer, A.A.; Aloni, B.

    1987-04-01

    Mesocarp tissue from sucrose-accumulating sweet melon (Cucumis melo cv. Galia) showed sucrose synthase activity (ca 1 nkat/gfw) while soluble acid invertase and sucrose phosphate synthase activities were not observed. Sucrose uptake into mesocarp discs was linear with sucrose concentration (1-500 mM) and unaffected by PCMBS and CCCP. Sucrose compartmentation into the vacuole also increased linearly with sucrose concentration as indicated by compartmental efflux kinetics. Mesocarp discs incubated in /sup 14/C-fructose + UDP-glu synthesized /sup 14/C-sucrose and efflux kinetics indicated that the /sup 14/C-sucrose was compartmentalized. These data support the hypothesis that two mechanisms are involved in sucrose accumulation in sweet melon: (1) compartmentation of intact sucrose and (2) synthesis of sucrose via sucrose synthase and subsequent compartmentation in the vacuole.

  18. Counting Yeast.

    ERIC Educational Resources Information Center

    Bealer, Jonathan; Welton, Briana

    1998-01-01

    Describes changes to a traditional study of population in yeast colonies. Changes to the procedures include: (1) only one culture per student team; (2) cultures are inoculated only once; and (3) the same tube is sampled daily. (DDR)

  19. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  20. Characterization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior

    PubMed Central

    Öner-Sieben, Soner; Rappl, Christine; Sauer, Norbert; Stadler, Ruth; Lohaus, Gertrud

    2015-01-01

    Trees are generally assumed to be symplastic phloem loaders. A typical feature for most wooden species is an open minor vein structure with symplastic connections between mesophyll cells and phloem cells, which allow sucrose to move cell-to-cell through the plasmodesmata into the phloem. Fraxinus excelsior (Oleaceae) also translocates raffinose family oligosaccharides in addition to sucrose. Sucrose concentration was recently shown to be higher in the phloem sap than in the mesophyll cells. This suggests the involvement of apoplastic steps and the activity of sucrose transporters in addition to symplastic phloem-loading processes. In this study, the sucrose transporter FeSUT1 from F. excelsior was analysed. Heterologous expression in baker’s yeast showed that FeSUT1 mediates the uptake of sucrose. Immunohistochemical analyses revealed that FeSUT1 was exclusively located in phloem cells of minor veins and in the transport phloem of F. excelsior. Further characterization identified these cells as sieve elements and possibly ordinary companion cells but not as intermediary cells. The localization and expression pattern point towards functions of FeSUT1 in phloem loading of sucrose as well as in sucrose retrieval. FeSUT1 is most likely responsible for the observed sucrose gradient between mesophyll and phloem. The elevated expression level of FeSUT1 indicated an increased apoplastic carbon export activity from the leaves during spring and late autumn. It is hypothesized that the importance of apoplastic loading is high under low-sucrose conditions and that the availability of two different phloem-loading mechanisms confers advantages for temperate woody species like F. excelsior. PMID:26022258

  1. Characterization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior.

    PubMed

    Öner-Sieben, Soner; Rappl, Christine; Sauer, Norbert; Stadler, Ruth; Lohaus, Gertrud

    2015-08-01

    Trees are generally assumed to be symplastic phloem loaders. A typical feature for most wooden species is an open minor vein structure with symplastic connections between mesophyll cells and phloem cells, which allow sucrose to move cell-to-cell through the plasmodesmata into the phloem. Fraxinus excelsior (Oleaceae) also translocates raffinose family oligosaccharides in addition to sucrose. Sucrose concentration was recently shown to be higher in the phloem sap than in the mesophyll cells. This suggests the involvement of apoplastic steps and the activity of sucrose transporters in addition to symplastic phloem-loading processes. In this study, the sucrose transporter FeSUT1 from F. excelsior was analysed. Heterologous expression in baker's yeast showed that FeSUT1 mediates the uptake of sucrose. Immunohistochemical analyses revealed that FeSUT1 was exclusively located in phloem cells of minor veins and in the transport phloem of F. excelsior. Further characterization identified these cells as sieve elements and possibly ordinary companion cells but not as intermediary cells. The localization and expression pattern point towards functions of FeSUT1 in phloem loading of sucrose as well as in sucrose retrieval. FeSUT1 is most likely responsible for the observed sucrose gradient between mesophyll and phloem. The elevated expression level of FeSUT1 indicated an increased apoplastic carbon export activity from the leaves during spring and late autumn. It is hypothesized that the importance of apoplastic loading is high under low-sucrose conditions and that the availability of two different phloem-loading mechanisms confers advantages for temperate woody species like F. excelsior. PMID:26022258

  2. Characterization of Saccharomyces strains with respect to their ability to grow and ferment in the presence of ethanol and sucrose

    NASA Astrophysics Data System (ADS)

    Benitez, T.; Delcastillo, L.; Aguilera, A.; Conde, J.; Cerda-Olmedo, E.

    1982-12-01

    To optimize the conversion of carbohydrates to ethanol strains of several Saccharomyces species were examined for their ability to grow and ferment in a range of sucrose and ethanol concentrations. Isolated wine yeasts grew in the presence of 10% ethanol to the same final cell density as control cultures without ethanol. The best of these yeast strains grew in the presence of 15% ethanol and fermented in 18%. Ethanol accumulated, although at a reduced rate, after the cells stopped growing. Most yeast strains were highly fermentative in 50% sucrose. Some of them effectively utilized the carbohydrates of the culture, yielding final ethanol concentrations over 14%. Sixteen of the 35 strains were chosen for genetic analysis and breeding because of their capacity to sporulate. These strains are homothallic and their spores are viable.

  3. Roles of sucrose in guard cell regulation.

    PubMed

    Daloso, Danilo M; Dos Anjos, Leticia; Fernie, Alisdair R

    2016-08-01

    The control of stomatal aperture involves reversible changes in the concentration of osmolytes in guard cells. Sucrose has long been proposed to have an osmolytic role in guard cells. However, direct evidence for such a role is lacking. Furthermore, recent evidence suggests that sucrose may perform additional roles in guard cells. Here, we provide an update covering the multiple roles of sucrose in guard cell regulation, highlighting the knowledge accumulated regarding spatiotemporal differences in the synthesis, accumulation, and degradation of sucrose as well as reviewing the role of sucrose as a metabolic connector between mesophyll and guard cells. Analysis of transcriptomic data from previous studies reveals that several genes encoding sucrose and hexose transporters and genes involved in gluconeogenesis, sucrose and trehalose metabolism are highly expressed in guard cells compared with mesophyll cells. Interestingly, this analysis also showed that guard cells have considerably higher expression of C4 -marker genes than mesophyll cells. We discuss the possible roles of these genes in guard cell function and the role of sucrose in stomatal opening and closure. Finally, we provide a perspective for future experiments which are required to fill gaps in our understanding of both guard cell metabolism and stomatal regulation. PMID:27060199

  4. Internalization of Sucrose by Methanococcus thermolithotrophicus

    PubMed Central

    Ciulla, R.; Krishnan, S.; Roberts, M. F.

    1995-01-01

    When sucrose is present in the external medium, it is internalized by Methanococcus thermolithotrophicus. Sucrose internalization, as determined by both natural abundance (sup13)C nuclear magnetic resonance spectroscopy and [(sup14)C]sucrose uptake, is directly proportional to external sucrose levels. The uptake is energy independent and exhibits kinetic behavior consistent with a simple passive diffusion process. In the presence of 0.2 M sucrose, methanogenesis is inhibited as the NaCl concentration in the external medium is increased. Growth, as determined by protein content, is inhibited by 0.2 M sucrose when the external NaCl concentration is 1.4 M. These results are important because they show that (i) sucrose cannot be used as a noncharged solute to replace NaCl in experiments to evaluate how external osmotic strength affects the internal solute composition of M. thermolithotrophicus, and (ii) sucrose cannot be used as an impermeable marker for the extracellular volume in experiments to measure the intracellular volume of M. thermolithotrophicus. PMID:16534924

  5. Flow cytometric detection of wild yeast in lager breweries.

    PubMed

    Jespersen, L; Lassen, S; Jakobsen, M

    1993-02-01

    A flow cytometric method for detection of wild yeast infections in breweries is reported. It is based on selective enrichment in Malt extract Yeast extract Glucose Peptone broth (MYGP) at 37 degrees C and in MYGP with 200 ppm CuSO4 at 25 degrees C, staining with a fluorochrome precursor and flow cytometry. In experiments with several types of wild yeast isolated from breweries and two different strains of lager yeast it has been possible to detect one wild yeast per 10(6) culture yeast after 48-72 h of incubation and, in some cases, after 24 h. PMID:8466805

  6. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem.

    SciTech Connect

    Matt Vaughn Greg Harrington Daniel R Bush

    2002-08-06

    This project was based on our discovery that sucrose acts as a signaling molecule that regulates the activity of a proton-sucrose symporter in sugar beet leaf tissue. A major objective here was determining how sucrose transporter activity is being regulated. When sucrose accumulates in the phloem sucrose transport activity drops dramatically. Western blots of plasma membrane proteins isolated from sucrose treated leaves showed that the loss of sucrose transport activity was proportional to a decline in symporter abundance, demonstrating that sucrose transport is regulated by changes in the amount of BvSUT1 protein. BvSUT1 transcript levels decreased in parallel with the loss of sucrose transport activity. Nuclear run-on experiments demonstrated that BvSUT1 gene transcription was repressed significantly in nuclei from leaves fed 100 mM exogenous sucrose, showing that sucrose-dependent modulation of BvSUT1 mRNA levels is mediated by changes in transcription. To identify which secondary messenger systems might be involved in regulating symporter activity, we used a variety of pharmacological agents to probe for a role of calcium or protein phosphorylation in sucrose signaling. In a detailed analysis, only okadaic acid altered sucrose transport activity. These results suggest a protein phosphatase is involved. We hypothesized that protein kinase inhibitors would have a neutral affect or increase symporter transcription. Transpirational feeding of the protein kinase inhibitor staurosporine had no impact on sucrose transport while calphostin C, an inhibitor of protein kinase C, caused a 60% increase. These data provided good evidence that protein phosphorylation plays a central role in regulating sucrose symporter expression and sucrose transport activity. To determine whether protein phosphorylation is involved in sucrose regulation of proton-sucrose symporter activity, we pre-fed leaves with staurosporine for 4 h and then fed the treated leaves water or 100 mM sucrose

  7. Identification and Characterization of the Sucrose Synthase 2 Gene (Sus2) in Durum Wheat

    PubMed Central

    Volpicella, Mariateresa; Fanizza, Immacolata; Leoni, Claudia; Gadaleta, Agata; Nigro, Domenica; Gattulli, Bruno; Mangini, Giacomo; Blanco, Antonio; Ceci, Luigi R.

    2016-01-01

    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. Sucrose synthase (SUS), which reversibly catalyzes sucrose synthesis and cleavage, represents a key enzyme in the control of the flow of carbon into starch biosynthesis. In the present study the genomic identification and characterization of the Sus2-2A and Sus2-2B genes coding for SUS in durum wheat (cultivars Ciccio and Svevo) is reported. The genes were analyzed for their expression in different tissues and at different seed maturation stages, in four tetraploid wheat genotypes (Svevo, Ciccio, Primadur, and 5-BIL42). The activity of the encoded proteins was evaluated by specific activity assays on endosperm extracts and their structure established by modeling approaches. The combined results of sucrose synthase 2 expression and activity levels were then considered in the light of their possible involvement in starch yield. PMID:27014292

  8. Diverse Exopolysaccharide Producing Bacteria Isolated from Milled Sugarcane: Implications for Cane Spoilage and Sucrose Yield

    PubMed Central

    Bauer, Rolene; Mulako, Inonge; Slabbert, Etienne; Kossmann, Jens; George, Gavin M

    2015-01-01

    Bacterial deterioration of sugarcane during harvesting and processing is correlated with significant loss of sucrose yield and the accumulation of bacterial polysaccharides. Dextran, a homoglucan produced by Leuconostoc mesenteroides, has been cited as the primary polysaccharide associated with sugarcane deterioration. A culture-based approach was used to isolate extracellular polysaccharide (EPS) producing bacterial strains from milled sugarcane stalks. Ribosomal RNA sequencing analysis grouped 25 isolates into 4 genera. This study identified 2 bacterial genera not previously associated with EPS production or sucrose degradation. All isolates produced polysaccharide when grown in the presence of sucrose. Monosaccharide analysis of purified polymers by Gas Chromatography revealed 17 EPSs consisting solely of glucose (homoglucans), while the remainder contained traces of mannose or fructose. Dextranase treatment of polysaccharides yielded full digestion profiles for only 11 extracts. Incomplete hydrolysis profiles of the remaining polysaccharides suggest the release of longer oligosaccharides which may interfere with sucrose crystal formation. PMID:26710215

  9. Diverse Exopolysaccharide Producing Bacteria Isolated from Milled Sugarcane: Implications for Cane Spoilage and Sucrose Yield.

    PubMed

    Hector, Stanton; Willard, Kyle; Bauer, Rolene; Mulako, Inonge; Slabbert, Etienne; Kossmann, Jens; George, Gavin M

    2015-01-01

    Bacterial deterioration of sugarcane during harvesting and processing is correlated with significant loss of sucrose yield and the accumulation of bacterial polysaccharides. Dextran, a homoglucan produced by Leuconostoc mesenteroides, has been cited as the primary polysaccharide associated with sugarcane deterioration. A culture-based approach was used to isolate extracellular polysaccharide (EPS) producing bacterial strains from milled sugarcane stalks. Ribosomal RNA sequencing analysis grouped 25 isolates into 4 genera. This study identified 2 bacterial genera not previously associated with EPS production or sucrose degradation. All isolates produced polysaccharide when grown in the presence of sucrose. Monosaccharide analysis of purified polymers by Gas Chromatography revealed 17 EPSs consisting solely of glucose (homoglucans), while the remainder contained traces of mannose or fructose. Dextranase treatment of polysaccharides yielded full digestion profiles for only 11 extracts. Incomplete hydrolysis profiles of the remaining polysaccharides suggest the release of longer oligosaccharides which may interfere with sucrose crystal formation. PMID:26710215

  10. [Sucrose reward promotes rats' motivation for cocaine].

    PubMed

    Li, Yan-Qing; LE, Qiu-Min; Yu, Xiang-Chen; Ma, Lan; Wang, Fei-Fei

    2016-06-25

    Caloric diet, such as fat and sugar intake, has rewarding effects, and has been indicated to affect the responses to addictive substances in animal experiments. However, the possible association between sucrose reward and the motivation for addictive drugs remains to be elucidated. Thus, we carried out behavioral tests after sucrose self-administration training to determine the effects of sucrose experience on rats' motivation for cocaine, locomotor sensitivity to cocaine, basal locomotor activity, anxiety level, and associative learning ability. The sucrose-experienced (sucrose) group exhibited higher lever press, cocaine infusion and break point, as well as upshift of cocaine dose-response curve in cocaine self-administration test, as compared with the control (chow) group. Additionally, despite similar locomotor activity in open field test and comparable score in cocaine-induced conditioned place preference, the sucrose group showed higher cocaine-induced locomotor sensitivity as compared with the chow group. The anxiety level and the performance in vocal-cue induced fear memory were similar between these two groups in elevated plus maze and fear conditioning tests, respectively. Taken together, our work indicates that sucrose experience promotes the rats' motivation for cocaine. PMID:27350195

  11. Sucrose Metabolism in Lima Bean Seeds 1

    PubMed Central

    Xu, Dian-Peng; Sung, Shi-Jean S.; Black, Clanton C.

    1989-01-01

    Developing and germinating lima bean (Phaseolus lunatus var Cangreen) seeds were used for testing the sucrose synthase pathway, to examine the competition for uridine diphosphate (UDP) and pyrophosphate (PPi), and to identify adaptive and maintenance-type enzymes in glycolysis and gluconeogenesis. In developing seeds, sucrose breakdown was dominated by the sucrose synthase pathway; but in the seedling embryos, both the sucrose synthase pathway and acid invertase were active. UDPase activity was low and seemingly insufficient to compete for UDP during sucrose metabolism in seed development or germination. In contrast, both an acid and alkaline pyrophosphatase were active in seed development and germination. The set of adaptive enzymes identified in developing seeds were sucrose synthase, PPi-dependent phosphofructokinase, plus acid and alkaline pyrophosphatase; and, the adaptive enzymes identified in germinating seeds included the same set of enzymes plus acid invertase. The set of maintenance enzymes identified during development, in the dry seed, and during germination were UDP-glucopyrophosphorylase, neutral invertase, ATP and UTP-dependent fructokinase, glucokinase, phosphoglucomutase, ATP and UTP-dependent phosphofructokinase and sucrose-P synthase. PMID:16666672

  12. Sucrose metabolism in lima bean seeds

    SciTech Connect

    Xu, Dianpeng; Sung, Shijean, S.; Black, C.C. )

    1989-04-01

    Developing and germinating lima bean (Phaseolus lunatus var Cangreen) seeds were used for testing the sucrose synthase pathway, to examine the competition for uridine diphosphate (UDP) and pyrophosphate (PPi), and to identify adaptive and maintenance-type enzymes in glycolysis and gluconeogenesis. In developing seeds, sucrose breakdown was dominated by the sucrose synthase pathway; but in the seedling embryos, both the sucrose synthase pathway and acid invertase were active. UDPase activity was low and seemingly insufficient to compete for UDP during sucrose metabolism in seed development or germination. In contrast, both an acid and alkaline pyrophosphatase were active in seed development and germination. The set of adaptive enzymes identified in developing seeds were sucrose synthase, PPi-dependent phosphofructokinase, plus acid and alkaline pyrophosphatase; and, the adaptive enzymes identified in germinating seeds included the same set of enzymes plus acid invertase. The set of maintenance enzymes identified during development, in the dry seed, and during germination were UDP-glucopyrophosphorylase, neutral invertase, ATP and UTP-dependent fructokinase, glucokinase, phosphoglucomutase, ATP and UTP-dependent phosphofructokinase and sucrose-P synthase.

  13. Functional Analysis of Arabidopsis Sucrose Transporters

    SciTech Connect

    John M. Ward

    2009-03-31

    Sucrose is the main photosynthetic product that is transported in the vasculature of plants. The long-distance transport of carbohydrates is required to support the growth and development of net-importing (sink) tissues such as fruit, seeds and roots. This project is focused on understanding the transport mechanism sucrose transporters (SUTs). These are proton-coupled sucrose uptake transporters (membrane proteins) that are required for transport of sucrose in the vasculature and uptake into sink tissues. The accomplishments of this project included: 1) the first analysis of substrate specificity for any SUT. This was accomplished using electrophysiology to analyze AtSUC2, a sucrose transporter from companion cells in Arabidopsis. 2) the first analysis of the transport activity for a monocot SUT. The transport kinetics and substrate specificity of HvSUT1 from barley were studied. 3) the first analysis of a sucrose transporter from sugarcane. and 4) the first analysis of transport activity of a sugar alcohol transporter homolog from plants, AtPLT5. During this period four primary research papers, funded directly by the project, were published in refereed journals. The characterization of several sucrose transporters was essential for the current effort in the analysis of structure/function for this gene family. In particular, the demonstration of strong differences in substrate specificity between type I and II SUTs was important to identify targets for site-directed mutagenesis.

  14. Yeast Droplets

    NASA Astrophysics Data System (ADS)

    Nguyen, Baochi; Upadhyaya, Arpita; van Oudenaarden, Alexander; Brenner, Michael

    2002-11-01

    It is well known that the Young's law and surface tension govern the shape of liquid droplets on solid surfaces. Here we address through experiments and theory the shape of growing aggregates of yeast on agar substrates, and assess whether these ideas still hold. Experiments are carried out on Baker's yeast, with different levels of expressions of an adhesive protein governing cell-cell and cell-substrate adhesion. Changing either the agar concentration or the expression of this protein modifies the local contact angle of a yeast droplet. When the colony is small, the shape is a spherical cap with the contact angle obeying Young's law. However, above a critical volume this structure is unstable, and the droplet becomes nonspherical. We present a theoretical model where this instability is caused by bulk elastic effects. The model predicts that the transition depends on both volume and contact angle, in a manner quantitatively consistent with our experiments.

  15. Complete sucrose hydrolysis by heat-killed recombinant Pichia pastoris cells entrapped in calcium alginate

    PubMed Central

    2014-01-01

    Background An ideal immobilized biocatalyst for the industrial-scale production of invert sugar should stably operate at elevated temperatures (60-70°C) and high sucrose concentrations (above 60%, w/v). Commercial invertase from the yeast Saccharomyces cerevisiae is thermolabile and suffers from substrate inhibition. Thermotoga maritima β-fructosidase (BfrA) is the most thermoactive and thermostable sucrose-hydrolysing enzyme so far identified and allows complete inversion of the substrate in highly concentrated solutions. Results In this study, heat-killed Pichia pastoris cells bearing N-glycosylated BfrA in the periplasmic space were entrapped in calcium alginate beads. The immobilized recombinant yeast showed maximal sucrose hydrolysis at pH 5–7 and 90°C. BfrA was 65% active at 60°C and had no activity loss after incubation without the substrate at this temperature for 15 h. Complete inversion of cane sugar (2.04 M) at 60°C was achieved in batchwise and continuous operation with respective productivities of 4.37 and 0.88 gram of substrate hydrolysed per gram of dry beads per hour. The half-life values of the biocatalyst were 14 and 20 days when operated at 60°C in the stirred tank and the fixed-bed column, respectively. The reaction with non-viable cells prevented the occurrence of sucrose fermentation and the formation of by-products. Six-month storage of the biocatalyst in 1.46 M sucrose (pH 5.5) at 4°C caused no reduction of the invertase activity. Conclusions The features of the novel thermostable biocatalyst developed in this study are more attractive than those of immobilized S. cerevisiae cells for application in the enzymatic manufacture of inverted sugar syrup in batch and fixed-bed reactors. PMID:24943124

  16. Mediated amperometry reveals different modes of yeast responses to sugars.

    PubMed

    Garjonyte, Rasa; Melvydas, Vytautas; Malinauskas, Albertas

    2016-02-01

    Menadione-mediated amperometry at carbon paste electrodes modified with various yeasts (Saccharomyces cerevisiae, Candida pulcherrima, Pichia guilliermondii and Debaryomyces hansenii) was employed to monitor redox activity inside the yeast cells induced by glucose, fructose, sucrose, maltose or galactose. Continuous measurements revealed distinct modes (transient or gradually increasing) of the current development during the first 2 to 3 min after subjection to glucose, fructose and sucrose at electrodes containing S. cerevisiae and non-Saccharomyces strains. Different modes (increasing or decreasing) of the current development after yeast subjection to galactose at electrodes with S. cerevisiae or D. hansenii and at electrodes with C. pulcherrima and P. guilliermondii suggested different mechanisms of galactose assimilation. PMID:26523505

  17. Structural development of sucrose-sweetened and sucrose-free sponge cakes during baking.

    PubMed

    Baeva, Marianna Rousseva; Terzieva, Vesselina Velichkova; Panchev, Ivan Nedelchev

    2003-06-01

    The influence of sucrose, wheat starch and sorbitol upon the heat- and mass-exchanging processes forming the structure of sponge cake was studied. Under the influence of wheat starch and sorbitol the structure of the sucrose-free sponge cake was formed at more uniform total moisture release. This process was done at lower temperatures and smoother change of the sponge cake height with respect to the sucrose-sweetened sponge cake. The porous and steady structure of both cakes was finally formed at identical time--between 18th and 19th minute, at the applied conditions for baking of each batter (metal pan with diameter 15.4 cm and depth 6.2 cm containing 300 g of batter and placed in an electric oven "Rahovetz-02", Bulgaria for 30 min at 180 degrees C). The water-losses at the end of baking (10.30% and 10.40% for the sucrose-sweetened cake and sucrose-free cake, respectively) and the final temperatures reached in the crumb central layers (96.6 degrees C and 96.3 degrees C for the sucrose-sweetened cake and sucrose-free cake, respectively) during baking of both samples were not statistically different. The addition of wheat starch and sorbitol in sucrose-free sponge cake lead to the statistically different values for the porosity (76.15% and 72.98%) and the volume (1014.17 cm3 and 984.25 cm3) of the sucrose-sweetened and sucrose-free sponge cakes, respectively. As a result, the sucrose-free sponge cake formed during baking had a more homogeneous and finer microstructure with respect to that ofthe sucrose-sweetened one. PMID:12866615

  18. Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156

    PubMed Central

    Huang, Huanhuan; Xie, Sidi; Xiao, Qianlin; Wei, Bin; Zheng, Lanjie; Wang, Yongbin; Cao, Yao; Zhang, Xiangge; Long, Tiandan; Li, Yangping; Hu, Yufeng; Yu, Guowu; Liu, Hanmei; Liu, Yinghong; Huang, Zhi; Zhang, Junjie; Huang, Yubi

    2016-01-01

    Sucrose is not only the carbon source for starch synthesis, but also a signal molecule. Alone or in coordination with ABA, it can regulate the expression of genes involved in starch synthesis. To investigate the molecular mechanisms underlying this effect, maize endosperms were collected from Zea mays L. B73 inbred line 10 d after pollination and treated with sucrose, ABA, or sucrose plus ABA at 28 °C in the dark for 24 h. RNA-sequence analysis of the maize endosperm transcriptome revealed 47 candidate transcription factors among the differentially expressed genes. We therefore speculate that starch synthetic gene expression is regulated by transcription factors induced by the combination of sucrose and ABA. ZmEREB156, a candidate transcription factor, is induced by sucrose plus ABA and is involved in starch biosynthesis. The ZmEREB156-GFP-fused protein was localized in the nuclei of onion epidermal cells, and ZmEREB156 protein possessed strong transcriptional activation activity. Promoter activity of the starch-related genes Zmsh2 and ZmSSIIIa increased after overexpression of ZmEREB156 in maize endosperm. ZmEREB156 could bind to the ZmSSIIIa promoter but not the Zmsh2 promoter in a yeast one-hybrid system. Thus, ZmEREB156 positively modulates starch biosynthetic gene ZmSSIIIa via the synergistic effect of sucrose and ABA. PMID:27282997

  19. Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156.

    PubMed

    Huang, Huanhuan; Xie, Sidi; Xiao, Qianlin; Wei, Bin; Zheng, Lanjie; Wang, Yongbin; Cao, Yao; Zhang, Xiangge; Long, Tiandan; Li, Yangping; Hu, Yufeng; Yu, Guowu; Liu, Hanmei; Liu, Yinghong; Huang, Zhi; Zhang, Junjie; Huang, Yubi

    2016-01-01

    Sucrose is not only the carbon source for starch synthesis, but also a signal molecule. Alone or in coordination with ABA, it can regulate the expression of genes involved in starch synthesis. To investigate the molecular mechanisms underlying this effect, maize endosperms were collected from Zea mays L. B73 inbred line 10 d after pollination and treated with sucrose, ABA, or sucrose plus ABA at 28 °C in the dark for 24 h. RNA-sequence analysis of the maize endosperm transcriptome revealed 47 candidate transcription factors among the differentially expressed genes. We therefore speculate that starch synthetic gene expression is regulated by transcription factors induced by the combination of sucrose and ABA. ZmEREB156, a candidate transcription factor, is induced by sucrose plus ABA and is involved in starch biosynthesis. The ZmEREB156-GFP-fused protein was localized in the nuclei of onion epidermal cells, and ZmEREB156 protein possessed strong transcriptional activation activity. Promoter activity of the starch-related genes Zmsh2 and ZmSSIIIa increased after overexpression of ZmEREB156 in maize endosperm. ZmEREB156 could bind to the ZmSSIIIa promoter but not the Zmsh2 promoter in a yeast one-hybrid system. Thus, ZmEREB156 positively modulates starch biosynthetic gene ZmSSIIIa via the synergistic effect of sucrose and ABA. PMID:27282997

  20. Role of glucose signaling in yeast metabolism

    SciTech Connect

    Dam, K. van

    1996-10-05

    The conversion of glucose to ethanol and carbon dioxide by yeast was the first biochemical pathway to be studied in detail. The initial observation that this process is catalyzed by an extract of yeast led to the discovery of enzymes and coenzymes and laid the foundation for modern biochemistry. In this article, knowledge concerning the relation between uptake of and signaling by glucose in the yeast Saccharomyces cerevisiae is reviewed and compared to the analogous process in prokaryotes. It is concluded that (much) more fundamental knowledge concerning these processes is required before rational redesign of metabolic fluxes from glucose in yeast can be achieved.

  1. Sucrose synthase oligomerization and F-actin association are regulated by sucrose concentration and phosphorylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose synthase (SUS) is a key enzyme in plant metabolism, as it serves to cleave the photosynthetic end product sucrose into UDP-glucose and fructose. SUS is generally assumed to be a tetrameric protein, but results in the present study suggest that SUS can form dimers as well as tetramers and th...

  2. Extended exposure to environmental cues, but not to sucrose, reduces sucrose cue reactivity in rats.

    PubMed

    Harkness, John H; Wells, Jason; Webb, Sierra; Grimm, Jeffrey W

    2016-03-01

    In the present study, we examined the effects of extinction of sucrose-predictive contextual cues and/or sucrose satiation on the expression of sucrose cue reactivity in a rat model of relapse. Context extinction was imposed by housing rats in their home cage or in the operant conditioning chamber for 17 h prior to testing. For sucrose satiation, rats were allowed unlimited access to water or sucrose for 17 h prior to testing. Cue reactivity was assessed after either one (Day 1) or 30 (Day 30) days of forced abstinence from sucrose self-administration. An abstinence-dependent increase in sucrose cue reactivity was observed in all conditions ("incubation of craving"). Context extinction dramatically reduced lever responding on both Day 1 and Day 30. Sucrose satiation had no significant effect on cue reactivity in any condition. These results demonstrate that the context in which self-administration occurs maintains a powerful influence over cue reactivity, even after extended forced abstinence. In contrast, the primary reinforcer has little control over cue reactivity. These findings highlight the important role of conditioned contextual cues in driving relapse behavior. PMID:26169836

  3. SUCROSE SYNTHASE (SUS) OLIGOMERIZATION IS REGULATED BY SUCROSE LEVELS WITHIN PLANT CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sucrose synthase (SUS) is an important plant metabolic enzyme as it cleaves sucrose in the cytoplasm of plant cells. There are three known isoforms of SUS within Zea mays: SUS1, SUS-SH1, and SUS2 (formerly SUS3). It is thought that SUS is predominantly a hetero-tetramer composed of the three isoform...

  4. Transport and sorting of the solanum tuberosum sucrose transporter SUT1 is affected by posttranslational modification.

    PubMed

    Krügel, Undine; Veenhoff, Liesbeth M; Langbein, Jennifer; Wiederhold, Elena; Liesche, Johannes; Friedrich, Thomas; Grimm, Bernhard; Martinoia, Enrico; Poolman, Bert; Kühn, Christina

    2008-09-01

    The plant sucrose transporter SUT1 from Solanum tuberosum revealed a dramatic redox-dependent increase in sucrose transport activity when heterologously expressed in Saccharomyces cerevisiae. Plant plasma membrane vesicles do not show any change in proton flux across the plasma membrane in the presence of redox reagents, indicating a SUT1-specific effect of redox reagents. Redox-dependent sucrose transport activity was confirmed electrophysiologically in Xenopus laevis oocytes with SUT1 from maize (Zea mays). Localization studies of green fluorescent protein fusion constructs showed that an oxidative environment increased the targeting of SUT1 to the plasma membrane where the protein concentrates in 200- to 300-nm raft-like microdomains. Using plant plasma membranes, St SUT1 can be detected in the detergent-resistant membrane fraction. Importantly, in yeast and in plants, oxidative reagents induced a shift in the monomer to dimer equilibrium of the St SUT1 protein and increased the fraction of dimer. Biochemical methods confirmed the capacity of SUT1 to form a dimer in plants and yeast cells in a redox-dependent manner. Blue native PAGE, chemical cross-linking, and immunoprecipitation, as well as the analysis of transgenic plants with reduced expression of St SUT1, confirmed the dimerization of St SUT1 and Sl SUT1 (from Solanum lycopersicum) in planta. The ability to form homodimers in plant cells was analyzed by the split yellow fluorescent protein technique in transiently transformed tobacco (Nicotiana tabacum) leaves and protoplasts. Oligomerization seems to be cell type specific since under native-like conditions, a phloem-specific reduction of the dimeric form of the St SUT1 protein was detectable in SUT1 antisense plants, whereas constitutively inhibited antisense plants showed reduction only of the monomeric form. The role of redox control of sucrose transport in plants is discussed. PMID:18790827

  5. Isotachophoresis of proteins in sucrose density gradients.

    PubMed

    Acevedo, F

    1993-10-01

    The separation of proteins from human serum by isotachophoresis in sucrose density gradients, with mixtures of discrete amphoteric substances as spacers, is described. Open columns and columns with a dialysis membrane to hold the sucrose gradients were used. A simple algorithm based on the Kohlrausch function was used to calculate the amount of each spacer. The pH gradients generated in open columns were found to be in agreement with the calculations. The load was up to two gram proteins. The analysis of the fractions obtained after the separation showed a distribution of components similar to as analytical isotachophoresis. It is concluded that sucrose density gradients are suitable as supporting media for the preparative separation of proteins by isotachophoresis. The high resolution attained and the possibility of scaling-up the separation systems are major advantages of this system. In addition, the sample is easily and completely recoverable. PMID:8125049

  6. Production and characterization of a novel yeast extracellular invertase activity towards improved dibenzothiophene biodesulfurization.

    PubMed

    Arez, Bruno F; Alves, Luís; Paixão, Susana M

    2014-11-01

    The main goal of this work was the production and characterization of a novel invertase activity from Zygosaccharomyces bailii strain Talf1 for further application to biodesulfurization (BDS) in order to expand the exploitable alternative carbon sources to renewable sucrose-rich feedstock. The maximum invertase activity (163 U ml(-1)) was achieved after 7 days of Z. bailii strain Talf1 cultivation at pH 5.5-6.0, 25 °C, and 150 rpm in Yeast Malt Broth with 25 % Jerusalem artichoke pulp as inducer substrate. The optimum pH and temperature for the crude enzyme activity were 5.5 and 50 °C, respectively, and moreover, high stability was observed at 30 °C for pH 5.5-6.5. The application of Talf1 crude invertase extract (1 %) to a BDS process by Gordonia alkanivorans strain 1B at 30 °C and pH 7.5 was carried out through a simultaneous saccharification and fermentation (SSF) approach in which 10 g l(-1) sucrose and 250 μM dibenzothiophene were used as sole carbon and sulfur sources, respectively. Growth and desulfurization profiles were evaluated and compared with those of BDS without invertase addition. Despite its lower stability at pH 7.5 (loss of activity within 24 h), Talf1 invertase was able to catalyze the full hydrolysis of 10 g l(-1) sucrose in culture medium into invert sugar, contributing to a faster uptake of the monosaccharides by strain 1B during BDS. In SSF approach, the desulfurizing bacterium increased its μmax from 0.035 to 0.070 h(-1) and attained a 2-hydroxybiphenyl productivity of 5.80 μM/h in about 3 days instead of 7 days, corresponding to an improvement of 2.6-fold in relation to the productivity obtained in BDS process without invertase addition. PMID:25163885

  7. Screening of novel yeast inulinases and further application to bioprocesses.

    PubMed

    Paixão, Susana M; Teixeira, Pedro D; Silva, Tiago P; Teixeira, Alexandra V; Alves, Luís

    2013-09-25

    Inulin is a carbohydrate composed of linear chains of β-2,1-linked D-fructofuranose molecules terminated by a glucose residue through a sucrose-type linkage at the reducing end. Jerusalem artichoke (JA) is one of the most interesting materials among unconventional and renewable raw materials, with levels of inulin reaching 50-80% of dry matter. Inulin or inulin-rich materials can be actively hydrolyzed by microbial inulinases to produce glucose and fructose syrups that can be used in bioprocesses. In this study, several microbial strains were isolated and their ability to inulinase biosynthesis was evaluated. The novel yeast strain Talf1, identified as Zygosaccharomyces bailii, was the best inulinase producer, attaining 8.67 U/ml of inulinase activity when JA juice was used as the inducer substrate. Z. bailii strain Talf1 and/or its enzymatic crude extract were further applied for bioethanol production and biodesulfurization (BDS) processes, using inulin and JA juice as carbon source. In a consolidated bioprocessing for ethanol production from 200 g/l inulin, Z. bailii strain Talf1 was able to produce 67 g/l of ethanol. This ethanol yield was improved in a simultaneous saccharification and fermentation (SSF) process, with the ethanologenic yeast Saccharomyces cerevisiae CCMI 885 and the Talf1 inulinases, achieving a production of 78 g/l ethanol. However, the highest ethanol yield (∼48%) was obtained in a SSF process from JA juice (∼130 g/l fermentable sugars), where the S. cerevisiae produced 63 g/l ethanol. Relatively to the dibenzothiophene BDS tests, the Gordonia alkanivorans strain 1B achieved a desulfurization rate of 4.8 μM/h within a SSF process using Talf1 inulinases and JA juice, highlighting the potential of JA as a less expensive alternative carbon source. These results showed the high potential of Z. bailii strain Talf1 inulinases as a versatile tool for bioprocesses using inulin-rich materials. PMID:23419675

  8. Structural, thermal, functional, antioxidant & antimicrobial properties of β-d-glucan extracted from baker's yeast (Saccharomyces cereviseae)-Effect of γ-irradiation.

    PubMed

    Khan, Asma Ashraf; Gani, Adil; Masoodi, F A; Amin, Furheen; Wani, Idrees Ahmed; Khanday, Firdous Ahmad; Gani, Asir

    2016-04-20

    This study was carried out to evaluate the effect of γ-irradiation (0, 5, 10, 20, 30 & 50kGy) on the structural, functional, antioxidant and antimicrobial properties of yeast β-d-glucan. The samples were characterized by ATR-FTIR, gel permeation chromatography (GPC) and the thermal properties were studied using DSC. There was a decrease in the average molecular weight of β-d-glucan as the irradiation dose increased. The functional properties of irradiated yeast β-d-glucan were largely influenced by the action of gamma radiation like swelling power and viscosity decreases with increase in the irradiation dose while as fat binding capacity, emulsifying properties, foaming properties and bile acid binding capacity shows an increasing trend. All the antioxidant properties carried out using six different assays increased significantly (p≤0.05) in a dose dependent manner. The antibacterial activity of yeast β-d-glucan also showed an increasing trend with increase in the irradiation dose from 5 to 50kDa. PMID:26876872

  9. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  10. The sim operon facilitates the transport and metabolism of sucrose isomers in Lactobacillus casei ATCC 334.

    PubMed

    Thompson, John; Jakubovics, Nicholas; Abraham, Bindu; Hess, Sonja; Pikis, Andreas

    2008-05-01

    Inspection of the genome sequence of Lactobacillus casei ATCC 334 revealed two operons that might dissimilate the five isomers of sucrose. To test this hypothesis, cells of L. casei ATCC 334 were grown in a defined medium supplemented with various sugars, including each of the five isomeric disaccharides. Extracts prepared from cells grown on the sucrose isomers contained high levels of two polypeptides with M(r)s of approximately 50,000 and approximately 17,500. Neither protein was present in cells grown on glucose, maltose or sucrose. Proteomic, enzymatic, and Western blot analyses identified the approximately 50-kDa protein as an NAD(+)- and metal ion-dependent phospho-alpha-glucosidase. The oligomeric enzyme was purified, and a catalytic mechanism is proposed. The smaller polypeptide represented an EIIA component of the phosphoenolpyruvate-dependent sugar phosphotransferase system. Phospho-alpha-glucosidase and EIIA are encoded by genes at the LSEI_0369 (simA) and LSEI_0374 (simF) loci, respectively, in a block of seven genes comprising the sucrose isomer metabolism (sim) operon. Northern blot analyses provided evidence that three mRNA transcripts were up-regulated during logarithmic growth of L. casei ATCC 334 on sucrose isomers. Internal simA and simF gene probes hybridized to approximately 1.5- and approximately 1.3-kb transcripts, respectively. A 6.8-kb mRNA transcript was detected by both probes, which was indicative of cotranscription of the entire sim operon. PMID:18310337

  11. Attempts to detect lycopersene formation in yeast

    PubMed Central

    Scharf, S. S.; Simpson, K. L.

    1968-01-01

    1. β-Ionone vapour has been shown to cause an increase in the more saturated carotenes and a decrease in the less saturated carotenes of Rhodotorula glutinis. Lycopersene (dihydrophytoene) has been proposed as a precursor to phytoene. Attempts were made to isolate lycopersene from β-ionone-treated cultures of R. glutinis. 2. Large samples of β-ionone-treated cultures were examined for the presence of lycopersene. Spots were detected on silicic acid plates that could not be differentiated from synthetic lycopersene on the basis of column and thin-layer chromatographic separations and staining techniques. The lycopersene-like substance could be obtained from non-treated pigmented yeast as well as baker's yeast. 3. An extraction of bacterial-grade yeast extract also yielded a lycopersene-like substance. The extracts of R. glutinis cells cultured on media not containing yeast extract did not contain the lycopersene-like compound. 4. No significant carbon was incorporated into the lycopersene zone from 14C-labelled mevalonate, acetate and glucose by R. glutinis and baker's yeast. 5. These results indicate that compounds may exist with chromatographic properties similar to lycopersene, but that lycopersene could not be detected in either a pigmented or a non-pigmented yeast. PMID:5753091

  12. Analysis of Protein Oligomeric Species by Sucrose Gradients.

    PubMed

    Tenreiro, Sandra; Macedo, Diana; Marijanovic, Zrinka; Outeiro, Tiago Fleming

    2016-01-01

    Protein misfolding, aggregation, and accumulation are a common hallmark in various neurodegenerative diseases. Invariably, the process of protein aggregation is associated with both a loss of the normal biological function of the protein and a gain of toxic function that ultimately leads to cell death. The precise origin of protein cytotoxicity is presently unclear but the predominant theory posits that smaller oligomeric species are more toxic than larger aggregated forms. While there is still no consensus on this subject, this is a central question that needs to be addressed in order to enable the design of novel and more effective therapeutic strategies. Accordingly, the development and utilization of approaches that allow the biochemical characterization of the formed oligomeric species in a given cellular or animal model will enable the correlation with cytotoxicity and other parameters of interest.Here, we provide a detailed description of a low-cost protocol for the analysis of protein oligomeric species from both yeast and mammalian cell lines models, based on their separation according to sedimentation velocity using high-speed centrifugation in sucrose gradients. This approach is an adaptation of existing protocols that enabled us to overcome existing technical issues and obtain reliable results that are instrumental for the characterization of the types of protein aggregates formed by different proteins of interest in the context of neurodegenerative disorders. PMID:27613047

  13. [Riboflavin transport in cells of riboflavin-dependent yeast mutants].

    PubMed

    Sibirnyĭ, A A; Shavlovskiĭ, G M; Ksheminskaia, G P; Orlovskaia, A G

    1977-01-01

    Riboflavin was transported at a high rate into yeast cells of Pichia guilliermondii and Schwanniomyces occidentalis mutants capable of growth in a medium containing low concentrations of riboflavin, and having multiple susceptibility to some antibiotics and antimetabolites. Sucrose and sodium azide inhibited transport of riboflavin. Other riboflavin dependent mutants of Pichia guilliermondii, Pichia ohmeri, Torulopsis candida, and Saccharomyces cerevisiae, also growing in media containing low concentrations of riboflavin, were not capable of its active transport. PMID:329070

  14. Synthesis & Biological, Physical, & Adhesive Properties of Epoxy Sucroses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raw sugar was converted in two steps to epoxy allyl sucroses (EAS), epoxy crotyl sucroses (ECS), and epoxy methallyl sucroses (EMS) respectively, in 82, 91, and 91.5 % overall yields. EAS, ECS, and EMS are regio and diastereo isomeric epoxy monomers that are liquids at room temperature. The averag...

  15. Gravitational field enhances permeability of biological membranes to sucrose: an experimental refutation of sucrose-space hypothesis.

    PubMed

    Sitaramam, V; Sarma, M K

    1981-06-01

    Isotonic conditions for the integrity of subcellular organelles are shown to be remarkably influenced by the concentration of sucrose present during their isolation by centrifugation. Using the technique of enzyme osmometry, we show that the content of sucrose in synaptosomes reflects nearly total equilibration across the membrane during centrifugation, due to altered permeability of membranes. Presence of sucrose in the matrix space of mitochondria, as demonstrated by enzyme osmometry of matrix enzymes, indicates that the sucrose-space hypothesis is invalid. PMID:6943551

  16. Activation of sucrose transport in defoliated Lolium perenne L.: an example of apoplastic phloem loading plasticity.

    PubMed

    Berthier, Alexandre; Desclos, Marie; Amiard, Véronique; Morvan-Bertrand, Annette; Demmig-Adams, Barbara; Adams, William W; Turgeon, Robert; Prud'homme, Marie-Pascale; Noiraud-Romy, Nathalie

    2009-07-01

    The pathway of carbon phloem loading was examined in leaf tissues of the forage grass Lolium perenne. The effect of defoliation (leaf blade removal) on sucrose transport capacity was assessed in leaf sheaths as the major carbon source for regrowth. The pathway of carbon transport was assessed via a combination of electron microscopy, plasmolysis experiments and plasma membrane vesicles (PMVs) purified by aqueous two-phase partitioning from the microsomal fraction. Results support an apoplastic phloem loading mechanism. Imposition of an artificial proton-motive force to PMVs from leaf sheaths energized an active, transient and saturable uptake of sucrose (Suc). The affinity of Suc carriers for Suc was 580 microM in leaf sheaths of undefoliated plants. Defoliation induced a decrease of K(m) followed by an increase of V(max). A transporter was isolated from stubble (including leaf sheaths) cDNA libraries and functionally expressed in yeast. The level of L.perenne SUcrose Transporter 1 (LpSUT1) expression increased in leaf sheaths in response to defoliation. Taken together, the results indicate that Suc transport capacity increased in leaf sheaths of L. perenne in response to leaf blade removal. This increase might imply de novo synthesis of Suc transporters, including LpSUT1, and may represent one of the mechanisms contributing to rapid refoliation. PMID:19520670

  17. Translocation of labelled sucrose: A student exercise

    SciTech Connect

    Reiss, C. )

    1990-05-01

    Photosynthetic carbohydrates from the leaves are exported through the phloem to growing tips, roots, flowers and fruits. If sucrose labelled with {sup 14}C is applied to the leaves of bean plants, the pathway for sugar movement may be readily observed by autoradiography. Students apply the labelled sucrose during class time and return the next day to press their plants. During the next class, the pressed and dried plants are placed against X-ray film and left in the dark for four weeks. the film is then developed, examined for presence of label and compared to the pressed plants. Source to sink movement is clearly illustrated and information about the mechanism of phloem transport and loading is gained through experimental treatments, which include blocking the phloem pathway and inhibiting energy production.

  18. Transcription of a Drosophila tRNAArg gene in yeast extract: 5'-flanking sequence dependence for transcription in a heterologous system.

    PubMed Central

    Schaack, J; Söll, D

    1985-01-01

    The Drosophila tRNA gene encoded on pArg is efficiently transcribed in extracts of Saccharomyces cerevisiae, but the efficiency is 5'-flanking sequence dependent: deletion to between positions -21 and -17 (relative to position +1 of the mature coding sequence) reduces transcription to a very low level. This demonstrates that requirement for wild-type 5'-flanking sequence exists in the case of a heterologous combination of a tRNA gene and transcription extract. Expression of pArg in vivo in S. cerevisiae is also dependent on the wild-type 5'-flanking sequence, but only with deletion to between -17 and -11 is the steady-state level of pArg transcripts reduced to near zero. The 5'-flanking sequence requirement in S. cerevisiae extract is similar to that found in Drosophila Kc cell extract. However, transcription kinetics distinguish S. cerevisiae extract from that of Drosophila Kc cells. tRNA genes added to S. cerevisiae extract exhibit a lag phase before initiation of active transcription, but this lag is much shorter and much less temperature dependent than is the lag phase in Drosophila Kc cell extract. Images PMID:3889849

  19. Methanogenesis from sucrose by defined immobilized consortia.

    PubMed

    Jones, W J; Guyot, J P; Wolfe, R S

    1984-01-01

    A bacterial consortium capable of sucrose degradation primarily to CH(4) and CO(2) was constructed, with acetate as the key methanogenic precursor. In addition, the effect of agar immobilization on the activity of the consortium was determined. The primary fermentative organism, Escherichia coli, produced acetate, formate, H(2), and CO(2) (known substrates for methanogens), as well as ethanol and lactate, compounds that are not substrates for methanogens. Oxidation of the nonmethanogenic substrates, lactate and ethanol, to acetate was mediated by the addition of Acetobacterium woodii and Desulfovibrio vulgaris. The methanogenic stage was accomplished by the addition of the acetophilic methanogen Methanosarcina barkeri and the hydrogenophilic methanogen Methanobacterium formicicum. Results of studies with low substrate concentrations (0.05 to 0.2% [wt/vol]), a growth-limiting medium, and the five-component consortium indicated efficient conversion (40%) of sucrose carbon to CH(4). Significant decreases in yields of CH(4) and rates of CH(4) production were observed if any component of the consortium was omitted. Approximately 70% of the CH(4) generated occurred via acetate. Agar-immobilized cells of the consortium exhibited yields of CH(4) and rates of CH(4) production from sucrose similar to those of nonimmobilized cells. The rate of CH(4) production decreased by 25% when cysteine was omitted from reaction conditions and by 40% when the immobilized consortium was stored for 1 week at 4 degrees C. PMID:16346452

  20. Methanogenesis from Sucrose by Defined Immobilized Consortia

    PubMed Central

    Jones, W. Jack; Guyot, Jean-Pierre; Wolfe, Ralph S.

    1984-01-01

    A bacterial consortium capable of sucrose degradation primarily to CH4 and CO2 was constructed, with acetate as the key methanogenic precursor. In addition, the effect of agar immobilization on the activity of the consortium was determined. The primary fermentative organism, Escherichia coli, produced acetate, formate, H2, and CO2 (known substrates for methanogens), as well as ethanol and lactate, compounds that are not substrates for methanogens. Oxidation of the nonmethanogenic substrates, lactate and ethanol, to acetate was mediated by the addition of Acetobacterium woodii and Desulfovibrio vulgaris. The methanogenic stage was accomplished by the addition of the acetophilic methanogen Methanosarcina barkeri and the hydrogenophilic methanogen Methanobacterium formicicum. Results of studies with low substrate concentrations (0.05 to 0.2% [wt/vol]), a growth-limiting medium, and the five-component consortium indicated efficient conversion (40%) of sucrose carbon to CH4. Significant decreases in yields of CH4 and rates of CH4 production were observed if any component of the consortium was omitted. Approximately 70% of the CH4 generated occurred via acetate. Agar-immobilized cells of the consortium exhibited yields of CH4 and rates of CH4 production from sucrose similar to those of nonimmobilized cells. The rate of CH4 production decreased by 25% when cysteine was omitted from reaction conditions and by 40% when the immobilized consortium was stored for 1 week at 4°C. PMID:16346452

  1. Vaginal Yeast Infections (For Parents)

    MedlinePlus

    ... Can I Help a Friend Who Cuts? Vaginal Yeast Infections KidsHealth > For Teens > Vaginal Yeast Infections Print ... side effect of taking antibiotics. What Is a Yeast Infection? A yeast infection is a common infection ...

  2. Behavioral economics of concurrent ethanol-sucrose and sucrose reinforcement in the rat: effects of altering variable-ratio requirements.

    PubMed Central

    Petry, N M; Heyman, G M

    1995-01-01

    These experiments examined the own-price and cross-price elasticities of a drug (ethanol mixed with 10% sucrose) and a nondrug (10% sucrose) reinforcer. Rats were presented with ethanol-sucrose and sucrose, both available on concurrent independent variable-ratio (VR) 8 schedules of reinforcement. In Experiment 1, the variable ratio for the ethanol mix was systematically raised to 10, 12, 14, 16, 20, and 30, while the variable ratio for sucrose remained at 8. Five of the 6 rats increased ethanol-reinforced responding at some of the increments and defended baseline levels of ethanol intake. However, the rats eventually ceased ethanol-reinforced responding at the highest variable ratios. Sucrose-reinforced responding was not systematically affected by the changes in variable ratio for ethanol mix. In Experiment 2, the variable ratio for sucrose was systematically increased while the ethanol-sucrose response requirement remained constant. The rats decreased sucrose-reinforced responding and increased ethanol-sucrose-reinforced responding, resulting in a two- to 10-fold increase in ethanol intake. Experiment 3 examined the substitutability of qualitatively identical reinforcers: 10% sucrose versus 10% sucrose. Increases in variable-ratio requirements at the preferred lever resulted in a switch in lever preference. Experiment 4 examined whether 10% ethanol mix substituted for 5% ethanol mix, with increasing variable-ratio requirements of the 5% ethanol. All rats eventually responded predominantly for the 10% ethanol mix, but total amount of ethanol consumed per session did not systematically change. In Experiment 5, the variable-ratio requirements for both ethanol and sucrose were simultaneously raised to VR 120; 7 of 8 rats increased ethanol-reinforced responding while decreasing sucrose-reinforced responding. These data suggest that, within this ethanol-induction procedure and within certain parameters, demand for ethanol-sucrose was relatively inelastic, and sucrose

  3. "Fungal elicitors combined with a sucrose feed significantly enhance triterpene production of a Salvia fruticosa cell suspension".

    PubMed

    Kümmritz, Sibylle; Louis, Marilena; Haas, Christiane; Oehmichen, Franz; Gantz, Stephanie; Delenk, Hubertus; Steudler, Susanne; Bley, Thomas; Steingroewer, Juliane

    2016-08-01

    Oleanolic (OA) and ursolic acid (UA) are plant secondary metabolites with diverse pharmacological properties. To reach reasonable productivities with plant cell suspension cultures, elicitation is a widely used strategy. Within the presented work, the effects of different elicitors on growth and production of OA and UA in a Salvia fruticosa cell suspension culture were examined. Beside commonly used elicitors like jasmonic acid (JA) and yeast extract, the influence of medium filtrates of the endophytic fungi Aspergillus niger and Trichoderma virens was investigated. The best eliciting effects were achieved with JA and fungal medium filtrates. Both increased the triterpene content by approximately 70 %. Since JA showed significant growth inhibition, the volumetric triterpene yield did not increase. But, adding fungal filtrates increased the volumetric triterpene yield by approximately 70 % to 32.6 mgOA l(-1) and 65.9 mgUA l(-1) for T. virens compared to the control with 19.4 mgOA l(-1) and 33.3 mgUA l(-1). An elicitation strategy combining fungal medium filtrate of T. virens with sucrose feeding significantly enhanced cell dry weight concentration to 22.2 g l(-1) as well as triterpene content by approximately 140 %. In total, this led to an approximately 500 % increase of volumetric triterpene yield referring to the control with final values of 112.9 mgOA l(-1) and 210.4 mgUA l(-1). Despite the doubled cultivation duration, productivities of 6.7 mgOA l(-1) day(-1) and 12.4 mgUA l(-1) day(-1) were reached. These results demonstrate methods by which increased productivities of triterpenes can be achieved to attain yields competing with intact plants. PMID:26971493

  4. Vaginal yeast infection

    MedlinePlus

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts in the vagina , ...

  5. Vaginal yeast infection

    MedlinePlus

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts in the ...

  6. Vaginal Yeast Infection

    MedlinePlus

    ... t diagnose this condition by a person’s medical history and physical examination. They usually diagnose yeast infection by examining vaginal secretions under a microscope for evidence of yeast. Treatment Various antifungal vaginal ...

  7. Sucrose and Warmth for Analgesia in Healthy Newborns: An RCT

    PubMed Central

    Garza, Elizabeth; Zageris, Danielle; Heilman, Keri J.; Porges, Stephen W.

    2015-01-01

    BACKGROUND AND OBJECTIVE: Increasing data suggest that neonatal pain has long-term consequences. Nonpharmacologic techniques (sucrose taste, pacifier suckling, breastfeeding) are effective and now widely used to combat minor neonatal pain. This study examined the analgesic effect of sucrose combined with radiant warmth compared with the taste of sucrose alone during a painful procedure in healthy full-term newborns. METHODS: A randomized, controlled trial included 29 healthy, full-term newborns born at the University of Chicago Hospital. Both groups of infants were given 1.0 mL of 25% sucrose solution 2 minutes before the vaccination, and 1 group additionally was given radiant warmth from an infant warmer before the vaccination. We assessed pain by comparing differences in cry, grimace, heart rate variability (ie, respiratory sinus arrhythmia), and heart rate between the groups. RESULTS: The sucrose plus warmer group cried and grimaced for 50% less time after the vaccination than the sucrose alone group (P < .05, respectively). The sucrose plus warmer group had lower heart rate and heart rate variability (ie, respiratory sinus arrhythmia) responses compared with the sucrose alone group (P < .01), reflecting a greater ability to physiologically regulate in response to the painful vaccination. CONCLUSIONS: The combination of sucrose and radiant warmth is an effective analgesic in newborns and reduces pain better than sucrose alone. The ready availability of this practical nonpharmacologic technique has the potential to reduce the burden of newborn pain. PMID:25687147

  8. Single cell protein production from yacon extract using a highly thermosensitive and permeable mutant of the marine yeast Cryptococcus aureus G7a and its nutritive analysis.

    PubMed

    Zhao, Chun-Hai; Zhang, Tong; Chi, Zhen-Ming; Chi, Zhe; Li, Jing; Wang, Xiang-Hong

    2010-06-01

    The intracellular protein in the highly thermosensitive and permeable mutant can be easily released when they are incubated both in the low-osmolarity water and at the non-permissive temperature (usually 37 degrees C). After the mutant was grown in the yacon extract for 45 h, the crude protein content in the highly thermosensitive and permeable mutant Z114 was 59.1% and over 61% of the total protein could be released from the cells treated at 37 degrees C. The mutant cells grown in the yacon extract still contained high level of essential amino acids and other nutrients. This means that the yacon extract could be used as the medium for growth of the highly thermosensitive and permeable mutant which contained high content of crude protein. PMID:19727833

  9. Kinetic model of sucrose accumulation in maturing sugarcane culm tissue.

    PubMed

    Uys, Lafras; Botha, Frederik C; Hofmeyr, Jan-Hendrik S; Rohwer, Johann M

    2007-01-01

    Biochemically, it is not completely understood why or how commercial varieties of sugarcane (Saccharum officinarum) are able to accumulate sucrose in high concentrations. Such concentrations are obtained despite the presence of sucrose synthesis/breakdown cycles (futile cycling) in the culm of the storage parenchyma. Given the complexity of the process, kinetic modelling may help to elucidate the factors governing sucrose accumulation or direct the design of experimental optimisation strategies. This paper describes the extension of an existing model of sucrose accumulation (Rohwer, J.M., Botha, F.C., 2001. Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem. J. 358, 437-445) to account for isoforms of sucrose synthase and fructokinase, carbon partitioning towards fibre formation, and the glycolytic enzymes phosphofructokinase (PFK), pyrophosphate-dependent PFK and aldolase. Moreover, by including data on the maximal activity of the enzymes as measured in different internodes, a growth model was constructed that describes the metabolic behaviour as sugarcane parenchymal tissue matures from internodes 3-10. While there was some discrepancy between modelled and experimentally determined steady-state sucrose concentrations in the cytoplasm, steady-state fluxes showed a better fit. The model supports a hypothesis of vacuolar sucrose accumulation against a concentration gradient. A detailed metabolic control analysis of sucrose synthase showed that each isoform has a unique control profile. Fructose uptake by the cell and sucrose uptake by the vacuole had a negative control on the futile cycling of sucrose and a positive control on sucrose accumulation, while the control profile for neutral invertase was reversed. When the activities of these three enzymes were changed from their reference values, the effects on futile cycling and sucrose accumulation were amplified. The model can be run online at the JWS Online

  10. Membrane perturbing properties of sucrose polyesters.

    PubMed

    McManus, G G; Buchanan, G W; Jarrell, H C; Epand, R M; Epand, R F; Cheetham, J J

    2001-02-01

    Sucrose polyester (SPE), in the form of sucrose octaesters and sucrose hexaesters of palmitic (16:0), stearic (18:0), oleic (18:1cis), and linoleic (18:2cis) acids, have many uses. Applications include: a non-caloric fat substitute, detoxification agent, and oral contrast agent for human abdominal (MRI) magnetic resonance imaging. However, it has been shown that the ingestion of SPE was shown to generate a depletion of physiologically important lipidic vitamins and other lipophilic molecules. In order to better understand, at the molecular level, the type of interaction between SPE and lipid membrane, we have, first synthesized different type of labelled and non-labelled SPEs. Secondly, we have studied the effect of SPEs on multilamellar dispersions of dielaidoylphosphatidylethanolamine (DEPE) and dipalmitoylphosphocholine (DPPC) as a function of temperature, SPE composition and concentration. The effects of SPEs were studied by differential scanning calorimetry (DSC), X-ray diffraction, 2H and 31P NMR spectroscopy. At low concentration (< 1 mol%) all of the SPEs lowered the bilayer to the inverted hexagonal phase transition temperature of DEPE and induced the formation of a cubic phase in a composition dependent manner. At the same low concentration, SPEs in DPPC induce the formation of a non-bilayer phase as seen by 31P NMR. Order parameter measurements of DPPC-d62/SPE mixtures show that the SPE effect on the DPPC monolayer thickness is dependent on the SPE, concentration, chains length and saturation level. At higher concentration (> or = 10 mol%) SPE are very potent DEPE bilayer to HII phase transition promoters, although at that concentration the SPE have lost the ability to form cubic phases. SPEs have profound effects on the phase behaviour of model membrane systems, and may be important to consider when developing current and potential industrial and medical applications. PMID:11269937

  11. Cellulosic Ethanol Production from Xylose-extracted Corncob Residue by SSF Using Inhibitor- and Thermal-tolerant Yeast Clavispora NRRL Y-50339

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylose-extracted corncob residue, a byproduct of the xylose-producing industry using corncobs, is an abundant potential energy resource for cellulosic ethanol production. Simultaneous saccharification and fermentation (SSF) is considered an ideal one-step process for conversion of lignocellulosic b...

  12. Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric.

    PubMed

    Hubbard, N L; Pharr, D M; Huber, S C

    1990-09-01

    During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO(2) respired during ripening was positively correlated with sugar accumulation (R(2) = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO(2) was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP. PMID:16667688

  13. Biosynthesis of Levan, a Bacterial Extracellular Polysaccharide, in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Franken, Jaco; Brandt, Bianca A.; Tai, Siew L.; Bauer, Florian F.

    2013-01-01

    Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS) matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2) null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy) from potato or the spinach sucrose transporter (SUT). The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast. PMID:24147008

  14. Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae.

    PubMed

    Franken, Jaco; Brandt, Bianca A; Tai, Siew L; Bauer, Florian F

    2013-01-01

    Levans are fructose polymers synthesized by a broad range of micro-organisms and a limited number of plant species as non-structural storage carbohydrates. In microbes, these polymers contribute to the formation of the extracellular polysaccharide (EPS) matrix and play a role in microbial biofilm formation. Levans belong to a larger group of commercially important polymers, referred to as fructans, which are used as a source of prebiotic fibre. For levan, specifically, this market remains untapped, since no viable production strategy has been established. Synthesis of levan is catalysed by a group of enzymes, referred to as levansucrases, using sucrose as substrate. Heterologous expression of levansucrases has been notoriously difficult to achieve in Saccharomyces cerevisiae. As a strategy, this study used an invertase (Δsuc2) null mutant and two separate, engineered, sucrose accumulating yeast strains as hosts for the expression of the levansucrase M1FT, previously cloned from Leuconostoc mesenteroides. Intracellular sucrose accumulation was achieved either by expression of a sucrose synthase (Susy) from potato or the spinach sucrose transporter (SUT). The data indicate that in both Δsuc2 and the sucrose accumulating strains, the M1FT was able to catalyse fructose polymerisation. In the absence of the predicted M1FT secretion signal, intracellular levan accumulation was significantly enhanced for both sucrose accumulation strains, when grown on minimal media. Interestingly, co-expression of M1FT and SUT resulted in hyper-production and extracellular build-up of levan when grown in rich medium containing sucrose. This study presents the first report of levan production in S. cerevisiae and opens potential avenues for the production of levan using this well established industrial microbe. Furthermore, the work provides interesting perspectives when considering the heterologous expression of sugar polymerizing enzymes in yeast. PMID:24147008

  15. Comprehensive Mutational Analysis of Sucrose-Metabolizing Pathways in Streptococcus mutans Reveals Novel Roles for the Sucrose Phosphotransferase System Permease

    PubMed Central

    Zeng, Lin

    2013-01-01

    Sucrose is perhaps the most efficient carbohydrate for the promotion of dental caries in humans, and the primary caries pathogen Streptococcus mutans encodes multiple enzymes involved in the metabolism of this disaccharide. Here, we engineered a series of mutants lacking individual or combinations of sucrolytic pathways to understand the control of sucrose catabolism and to determine whether as-yet-undisclosed pathways for sucrose utilization were present in S. mutans. Growth phenotypes indicated that gtfBCD (encoding glucan exopolysaccharide synthases), ftf (encoding the fructan exopolysaccharide synthase), and the scrAB pathway (sugar-phosphotransferase system [PTS] permease and sucrose-6-PO4 hydrolase) constitute the majority of the sucrose-catabolizing activity; however, mutations in any one of these genes alone did not affect planktonic growth on sucrose. The multiple-sugar metabolism pathway (msm) contributed minimally to growth on sucrose. Notably, a mutant lacking gtfBC, which cannot produce water-insoluble glucan, displayed improved planktonic growth on sucrose. Meanwhile, loss of scrA led to growth stimulation on fructooligosaccharides, due in large part to increased expression of the fruAB (fructanase) operon. Using the LevQRST four-component signal transduction system as a model for carbohydrate-dependent gene expression in strains lacking extracellular sucrases, a PlevD-cat (EIIALev) reporter was activated by pulsing with sucrose. Interestingly, ScrA was required for activation of levD expression by sucrose through components of the LevQRST complex, but not for activation by the cognate LevQRST sugars fructose or mannose. Sucrose-dependent catabolite repression was also evident in strains containing an intact sucrose PTS. Collectively, these results reveal a novel regulatory circuitry for the control of sucrose catabolism, with a central role for ScrA. PMID:23222725

  16. Sucrose activates human taste pathways differently from artificial sweetener.

    PubMed

    Frank, Guido K W; Oberndorfer, Tyson A; Simmons, Alan N; Paulus, Martin P; Fudge, Julie L; Yang, Tony T; Kaye, Walter H

    2008-02-15

    Animal models suggest that sucrose activates taste afferents differently than non-caloric sweeteners. Little information exists how artificial sweeteners engage central taste pathways in the human brain. We assessed sucrose and sucralose taste pleasantness across a concentration gradient in 12 healthy control women and applied 10% sucrose and matched sucralose during functional magnet resonance imaging. The results indicate that (1) both sucrose and sucralose activate functionally connected primary taste pathways; (2) taste pleasantness predicts left insula response; (3) sucrose elicits a stronger brain response in the anterior insula, frontal operculum, striatum and anterior cingulate, compared to sucralose; (4) only sucrose, but not sucralose, stimulation engages dopaminergic midbrain areas in relation to the behavioral pleasantness response. Thus, brain response distinguishes the caloric from the non-caloric sweetener, although the conscious mind could not. This could have important implications on how effective artificial sweeteners are in their ability to substitute sugar intake. PMID:18096409

  17. Alcohol production from Jerusalem artichoke using yeasts with inulinase activity

    SciTech Connect

    Guiraud, J.P.; Daurelles, J.; Galzy, P.

    1981-07-01

    The purpose of this article is to show that yeasts with inulinase activity can be used to produce ethanol from the Jerusalem artichoke (Helianthus tuberosus L.). The results show that a fermentable extract can be easily obtained from the Jerusalem artichoke even under cold conditions. Yeasts with inulinase activity can be used to produce ethanol with good profitability. 19 refs.

  18. Effect of salt on the response of birds to sucrose

    USGS Publications Warehouse

    Rogers, J.G., Jr.; Maller, O.

    1973-01-01

    The preference of male red-winged blackbirds for solutions of sucrose and sucrose with 0.03 M sodium chloride was tested, using a two-bottle choice test. Preliminary experiments demonstrated that the birds were indifferent to 0.03 M NaCl in water. Both control and experimental animals exhibited indifference to the solutions at the lowest concentration and aversion at the highest. The data suggest that the added sodium chloride makes the sucrose stimulus more discriminable.

  19. Sucrose and KF quenching system for solution phase parallel synthesis.

    PubMed

    Chavan, Sunil; Watpade, Rahul; Toche, Raghunath

    2016-01-01

    The KF, sucrose (table sugar) exploited as quenching system in solution phase parallel synthesis. Excess of electrophiles were covalently trapped with hydroxyl functionality of sucrose and due to polar nature of sucrose derivative was solubilize in water. Potassium fluoride used to convert various excess electrophilic reagents such as acid chlorides, sulfonyl chlorides, isocyanates to corresponding fluorides, which are less susceptible for hydrolysis and subsequently sucrose traps these fluorides and dissolves them in water thus removing them from reaction mixture. Various excess electrophilic reagents such as acid chlorides, sulfonyl chlorides, and isocyanates were quenched successfully to give pure products in excellent yields. PMID:27462506

  20. Sucrose metabolic pathways in sweetgum and pecan seedlings.

    PubMed

    Sung, S S; Kormanik, P P; Xu, D P; Black, C C

    1989-03-01

    Sucrose metabolism and glycolysis were studied in one- to two-year-old seedlings of sweetgum (Liquidambar styraciflua L.) and pecan (Curya illinoinensis (Wangenh.) C. Koch). The sucrose synthase pathway was identified as the dominant sucrose metabolic activity in sucrose sink tissues such as terminal buds and the root cambial zone. The sucrose synthase pathway was completely dependent on uridine diphosphate and pyrophosphate and it was activated by fructose 2,6-bisphosphate. Both acid and neutral invertases were less active than sucrose synthase in sucrose sink tissues. According to the magnitude of seasonal changes in activity, sucrose synthase, the pyrophosphate-dependent phosphofructokinase, and fructokinase were identified as adaptive enzymes, whereas neutral invertase, uridine diphosphate-glucopyrophosphorylase, phosphoglucomutase, and the nonspecific, nucleotide triphosphate-dependent phosphofructokinase were identified as maintenance enzymes. The periodically high activities of pyrophosphate-dependent phosphofructokinase indicate that pyrophosphate can serve as an energy source in trees. The observations support the hypothesis that sucrose glycolysis and gluconeogenesis in plants proceed by a network of alternative enzymes and substrates. PMID:14972997

  1. Sucrose metabolism in halotolerant methanotroph Methylomicrobium alcaliphilum 20Z.

    PubMed

    But, Sergey Y; Khmelenina, Valentina N; Reshetnikov, Alexander S; Mustakhimov, Ildar I; Kalyuzhnaya, Marina G; Trotsenko, Yuri A

    2015-04-01

    Sucrose accumulation has been observed in some methylotrophic bacteria utilizing methane, methanol, or methylated amines as a carbon and energy source. In this work, we have investigated the biochemical pathways for sucrose metabolism in the model halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. The genes encoding sucrose-phosphate synthase (Sps), sucrose-phosphate phosphatase (Spp), fructokinase (FruK), and amylosucrase (Ams) were co-transcribed and displayed similar expression levels. Functional Spp and Ams were purified after heterologous expression in Escherichia coli. Recombinant Spp exhibited high affinity for sucrose-6-phosphate and stayed active at very high levels of sucrose (K i  = 1.0 ± 0.6 M). The recombinant amylosucrase obeyed the classical Michaelis-Menten kinetics in the reactions of sucrose hydrolysis and transglycosylation. As a result, the complete metabolic network for sucrose biosynthesis and re-utilization in the non-phototrophic organism was reconstructed for the first time. Comparative genomic studies revealed analogous gene clusters in various Proteobacteria, thus indicating that the ability to produce and metabolize sucrose is widespread among prokaryotes. PMID:25577257

  2. Transport and Sorting of the Solanum tuberosum Sucrose Transporter SUT1 Is Affected by Posttranslational Modification[W

    PubMed Central

    Krügel, Undine; Veenhoff, Liesbeth M.; Langbein, Jennifer; Wiederhold, Elena; Liesche, Johannes; Friedrich, Thomas; Grimm, Bernhard; Martinoia, Enrico; Poolman, Bert; Kühn, Christina

    2008-01-01

    The plant sucrose transporter SUT1 from Solanum tuberosum revealed a dramatic redox-dependent increase in sucrose transport activity when heterologously expressed in Saccharomyces cerevisiae. Plant plasma membrane vesicles do not show any change in proton flux across the plasma membrane in the presence of redox reagents, indicating a SUT1-specific effect of redox reagents. Redox-dependent sucrose transport activity was confirmed electrophysiologically in Xenopus laevis oocytes with SUT1 from maize (Zea mays). Localization studies of green fluorescent protein fusion constructs showed that an oxidative environment increased the targeting of SUT1 to the plasma membrane where the protein concentrates in 200- to 300-nm raft-like microdomains. Using plant plasma membranes, St SUT1 can be detected in the detergent-resistant membrane fraction. Importantly, in yeast and in plants, oxidative reagents induced a shift in the monomer to dimer equilibrium of the St SUT1 protein and increased the fraction of dimer. Biochemical methods confirmed the capacity of SUT1 to form a dimer in plants and yeast cells in a redox-dependent manner. Blue native PAGE, chemical cross-linking, and immunoprecipitation, as well as the analysis of transgenic plants with reduced expression of St SUT1, confirmed the dimerization of St SUT1 and Sl SUT1 (from Solanum lycopersicum) in planta. The ability to form homodimers in plant cells was analyzed by the split yellow fluorescent protein technique in transiently transformed tobacco (Nicotiana tabacum) leaves and protoplasts. Oligomerization seems to be cell type specific since under native-like conditions, a phloem-specific reduction of the dimeric form of the St SUT1 protein was detectable in SUT1 antisense plants, whereas constitutively inhibited antisense plants showed reduction only of the monomeric form. The role of redox control of sucrose transport in plants is discussed. PMID:18790827

  3. Production of d-Mannitol and Glycerol by Yeasts

    PubMed Central

    Onishi, Hiroshi; Suzuki, Toshiyuki

    1968-01-01

    D-Mannitol has not so far been known as a major product of sugar metabolism by yeasts. Three yeast strains, a newly isolated yeast from soy-sauce mash, Torulopsis versatilis, and T. anomala, were found to be good mannitol producers. Under optimal conditions, the isolate produced mannitol at good yield of 30% of the sugar consumed. Glucose, fructose, mannose, galactose, maltose, glycerol, and xylitol were suitable substrates for mannitol formation. High concentrations of yeast extract, Casamino Acids, NaCl, and KCl in media affected significantly the mannitol yield, whereas high levels of inorganic phosphate did not show any detrimental effect. PMID:5749751

  4. The Path of Carbon in Photosynthesis IV. The Identity and Sequence of the Intermediates in Sucrose Synthesis

    DOE R&D Accomplishments Database

    Calvin, M.; Benson, A.

    1948-12-14

    The synthesis of sucrose from C{sup 14}0{sub 2} by green algae has been investigated and the intermediates separated by the method of paper chromatography. It is shown that sucrose is the first free sugar appearing during photosynthesis. It is apparently formed by condensation of the glucose-I-phosphate and a fructose phosphate. A series of radioautographs of paper chromatograms of extracts from plants which have photosynthesized for different periods of time has been prepared. The results indicate that 2-phosphoglyceric acid is the first product synthesized from C0{sub 2} during photosynthesis.

  5. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast.

    PubMed

    Lin, Xue; Zhang, Cui-Ying; Bai, Xiao-Wen; Feng, Bing; Xiao, Dong-Guang

    2015-03-16

    During the bread-making process, industrial baker's yeast cells are exposed to multiple baking-associated stresses, such as elevated high-temperature, high-sucrose and freeze-thaw stresses. There is a high demand for baker's yeast strains that could withstand these stresses with high leavening ability. The SNR84 gene encodes H/ACA snoRNA (small nucleolar RNA), which is known to be involved in pseudouridylation of the large subunit rRNA. However, the function of the SNR84 gene in baker's yeast coping with baking-associated stresses remains unclear. In this study, we explored the effect of SNR84 overexpression on baker's yeast which was exposed to high-temperature, high-sucrose and freeze-thaw stresses. These results suggest that overexpression of the SNR84 gene conferred tolerance of baker's yeast cells to high-temperature, high-sucrose and freeze-thaw stresses and enhanced their leavening ability in high-sucrose and freeze-thaw dough. These findings could provide a valuable insight for breeding of novel stress-resistant baker's yeast strains that are useful for baking. PMID:25555226

  6. Compartmentation of sucrose during radial transfer in mature sorghum culm

    PubMed Central

    Tarpley, Lee; Vietor, Donald M

    2007-01-01

    Background The sucrose that accumulates in the culm of sorghum (Sorghum bicolor (L.) Moench) and other large tropical andropogonoid grasses can be of commercial value, and can buffer assimilate supply during development. Previous study conducted with intact plants showed that sucrose can be radially transferred to the intracellular compartment of mature ripening sorghum internode without being hydrolysed. In this study, culm-infused radiolabelled sucrose was traced between cellular compartments and among related metabolites to determine if the compartmental path of sucrose during radial transfer in culm tissue was symplasmic or included an apoplasmic step. This transfer path was evaluated for elongating and ripening culm tissue of intact plants of two semidwarf grain sorghums. The metabolic path in elongating internode tissue was also evaluated. Results On the day after culm infusion of the tracer sucrose, the specific radioactivity of sucrose recovered from the intracellular compartment of growing axillary-branch tissue was greater (nearly twice) than that in the free space, indicating that sucrose was preferentially transferred through symplasmic routes. In contrast, the sucrose specific radioactivity in the intracellular compartment of the mature (ripening) culm tissue was probably less (about 3/4's) than that in free space indicating that sucrose was preferentially transferred through routes that included an apoplasmic step. In growing internodes of the axillary branch of sorghum, the tritium label initially provided in the fructose moiety of sucrose molecules was largely (81%) recovered in the fructose moiety, indicating that a large portion of sucrose molecules is not hydrolysed and resynthesized during radial transfer. Conclusion During radial transfer of sucrose in ripening internodes of intact sorghum plants, much of the sucrose is transferred intact (without hydrolysis and resynthesis) and primarily through a path that includes an apoplasmic step. In

  7. Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber.

    PubMed

    Peng, Jun; Zhang, Lei; Liu, Jingran; Luo, Junyu; Zhao, Xinhua; Dong, Helin; Ma, Yan; Sui, Ning; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Cotton (Gosspium hirsutum L.) is classified as a salt tolerant crop. However, its yield and fiber quality are negatively affected by soil salinity. Studies on the enzymatic differences in sucrose metabolism under different soil salinity levels are lacking. Therefore, field experiments, using two cotton cultivars, CCRI-79 (salt-tolerant) and Simian 3 (salt-sensitive), were conducted in 2013 and 2014 at three different salinity levels (1.15 dS m-1 [low soil salinity], 6.00 dS m-1 [medium soil salinity], and 11.46 dS m-1 [high soil salinity]). The objective was to elucidate the effects of soil salinity on sucrose content and the activity of key enzymes that are related to sucrose metabolism in cotton fiber. Results showed that as the soil salinity increased, cellulose content, sucrose content, and sucrose transformation rate declined; the decreases in cellulose content and sucrose transformation rate caused by the increase in soil salinity were more in Simian 3 than those in CCRI-79. With increase in soil salinity, activities of sucrose metabolism enzymes sucrose phophate synthase (SPS), acidic invertase, and alkaline invertase were decreased, whereas sucrose synthase (SuSy) activity increased. However, the changes displayed in the SuSy and SPS activities in response to increase in soil salinity were different and the differences were large between the two cotton cultivars. These results illustrated that suppressed cellulose synthesis and sucrose metabolism under high soil salinity were mainly due to the change in SPS, SuSy, and invertase activities, and the difference in cellulose synthesis and sucrose metabolism in fiber for the two cotton cultivars in response to soil salinity was determined mainly by both SuSy and SPS activities. PMID:27227773

  8. Graded sucrose/carbohydrate diets in overtly hypertriglyceridemic diabetic patients.

    PubMed

    Jellish, W S; Emanuele, M A; Abraira, C

    1984-12-01

    Overtly hypertriglyceridemic patients with non-insulin-dependent diabetes mellitus were given a control diet containing 120 g of sucrose and 50 percent carbohydrate, and later randomly assigned to receive isocaloric high- (220 g), intermediate- (120 g), or low- (less than 3 g) sucrose/carbohydrate diets for four weeks. The low-sucrose diet group demonstrated a modest but significant decrease in mean fasting serum glucose level in the first week only, although this change was no different from the other two dietary groups and was not sustained. All groups had little change in late postprandial serum glucose levels from control values, and no significant alterations in 24-hour glycosuria. The high-sucrose diet group demonstrated a significant increase in fasting serum triglyceride levels by the second week of the study, whereas the intermediate- and low-sucrose diet groups showed a decrease in mean fasting triglyceride levels. In contrast, the low-sucrose diet group's late postprandial serum triglyceride levels increased by the fourth week, whereas levels fell in the high-sucrose diet group. Mean fasting serum cholesterol concentrations decreased from control values in the high-sucrose diet group. Thus, although very high sucrose and carbohydrate consumption is clearly deleterious to fasting tryglyceride levels in non-insulin-dependent diabetes mellitus with preexisting hypertriglyceridemia, it appears that low dietary sucrose and carbohydrate proportions do not further improve preprandial glycemia and glycosuria and may adversely affect late postprandial serum triglyceride concentration. This study suggests that isocaloric sucrose and carbohydrate restriction below usual daily levels (120 g per day) offers no consistent benefit in glycemia or lipid control in overt type II diabetes. PMID:6391162

  9. Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber

    PubMed Central

    Liu, Jingran; Luo, Junyu; Zhao, Xinhua; Dong, Helin; Ma, Yan; Sui, Ning; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Cotton (Gosspium hirsutum L.) is classified as a salt tolerant crop. However, its yield and fiber quality are negatively affected by soil salinity. Studies on the enzymatic differences in sucrose metabolism under different soil salinity levels are lacking. Therefore, field experiments, using two cotton cultivars, CCRI-79 (salt-tolerant) and Simian 3 (salt-sensitive), were conducted in 2013 and 2014 at three different salinity levels (1.15 dS m-1 [low soil salinity], 6.00 dS m-1 [medium soil salinity], and 11.46 dS m-1 [high soil salinity]). The objective was to elucidate the effects of soil salinity on sucrose content and the activity of key enzymes that are related to sucrose metabolism in cotton fiber. Results showed that as the soil salinity increased, cellulose content, sucrose content, and sucrose transformation rate declined; the decreases in cellulose content and sucrose transformation rate caused by the increase in soil salinity were more in Simian 3 than those in CCRI-79. With increase in soil salinity, activities of sucrose metabolism enzymes sucrose phophate synthase (SPS), acidic invertase, and alkaline invertase were decreased, whereas sucrose synthase (SuSy) activity increased. However, the changes displayed in the SuSy and SPS activities in response to increase in soil salinity were different and the differences were large between the two cotton cultivars. These results illustrated that suppressed cellulose synthesis and sucrose metabolism under high soil salinity were mainly due to the change in SPS, SuSy, and invertase activities, and the difference in cellulose synthesis and sucrose metabolism in fiber for the two cotton cultivars in response to soil salinity was determined mainly by both SuSy and SPS activities. PMID:27227773

  10. (Genetic engineering of yeasts for fermentation of xylose to ethanol). Progress report, April 1-October 31, 1984

    SciTech Connect

    Not Available

    1985-03-31

    This progress report summarizes research on expression of xylose isomerase protein in S. cerevisiae, aggregation of xylose isomerase in yeast extracts, solubilization of yeast-made xylose isomerase, and disulfide bond content compared to the E. coli enzyme.