Science.gov

Sample records for yeast identification system

  1. Evaluation of Automated Yeast Identification System

    NASA Technical Reports Server (NTRS)

    McGinnis, M. R.

    1996-01-01

    One hundred and nine teleomorphic and anamorphic yeast isolates representing approximately 30 taxa were used to evaluate the accuracy of the Biolog yeast identification system. Isolates derived from nomenclatural types, environmental, and clinica isolates of known identity were tested in the Biolog system. Of the isolates tested, 81 were in the Biolog database. The system correctly identified 40, incorrectly identified 29, and was unable to identify 12. Of the 28 isolates not in the database, 18 were given names, whereas 10 were not. The Biolog yeast identification system is inadequate for the identification of yeasts originating from the environment during space program activities.

  2. Evaluation of the Biolog system for the identification of food and beverage yeasts.

    PubMed

    Praphailong, W; Van Gestel, M; Fleet, G H; Heard, G M

    1997-06-01

    The inconvenience of conventional yeast identification methods has resulted in the development of rapid, commercial systems, mainly for clinical yeast species. The Biolog system (Biolog Inc., Hayward, CA, USA) is a new semi-automated, computer-linked technology for rapid identification of clinical and non-clinical yeasts. The system is based around a microtitre tray and includes assimilation and oxidation tests. This paper evaluates the Biolog system for the identification of 21 species (72 strains) of yeasts of food and wine origin. Species correctly identified included Saccharomyces cerevisiae, Debaryomyces hansenii, Yarrowia lipolytica, Kluyveromyces marxianus, Kloeckera apiculata, Dekkera bruxellensis and Schizosaccharomyces pombe. Zygosaccharomyces bailii and Zygosaccharomyces rouxii were identified correctly 50% of the time and Pichia membranaefaciens 20% of the time. PMID:9203401

  3. Comparison of four commercialized biochemical systems for clinical yeast identification by colour-producing reactions.

    PubMed

    Paugam, A; Benchetrit, M; Fiacre, A; Tourte-Schaefer, C; Dupouy-Camet, J

    1999-02-01

    We compared the ability of four commercially available yeast identification systems for routine laboratory hospital use: Auxacolor (AUX) (Sanofi Diagnostics Pasteur, Marne-la-Coquette), Fungichrom I (FUC) and Fungifast I Twin (FUF) (International Microbio, Toulon), Api Candida (API) (bioMérieux, Lyon). These systems are based on obtaining a biochemical profile easily defined by colorimetric reactions. We tested 202 yeasts belonging to 19 species which were included or were not included in the manufacturer's data base of the identification systems. Without extra tests, for all the organisms tested, after 24 h of incubation, the percentage of organisms correctly identified was 48% for AUX, 75% for FUC, 77% for FUF and 81% for API. However, if we consider the ratio of the number of correct identifications without extra tests with the number of yeasts included in the manufacturers' data bases (sensitivity) the results increased to 61% for AUX, 81% for FUC, 91% for FUF and 83% for API. These systems are particularly well adapted to medical use, they are simple to set up, interpret, and have very good efficiency for the yeasts most commonly isolated in clinical specimens. The findings reported here indicate that the most favourable results were obtained with FUF and API systems. PMID:10200929

  4. Evaluation of the Biolog MicroStation system for yeast identification

    NASA Technical Reports Server (NTRS)

    McGinnis, M. R.; Molina, T. C.; Pierson, D. L.; Mishra, S. K.

    1996-01-01

    One hundred and fifty-nine isolates representing 16 genera and 53 species of yeasts were processed with the Biolog MicroStation System for yeast identification. Thirteen genera and 38 species were included in the Biolog database. For these 129 isolates, correct identifications to the species level were 13.2, 39.5 and 48.8% after 24, 48 and 72 hours incubation at 30 degrees C, respectively. Three genera and 15 species which were not included in the Biolog database were also tested. Of the 30 isolates studied, 16.7, 53.3 and 56.7% of the isolates were given incorrect names from the system's database after 24,48 and 72 h incubation at 30 degrees C, respectively. The remaining isolates of this group were not identified.

  5. Evaluation of the API 20C yeast identification system for the differentiation of some dematiaceous fungi.

    PubMed Central

    Espinel-Ingroff, A; McGinnis, M R; Pincus, D H; Goldson, P R; Kerkering, T M

    1989-01-01

    Ninety-seven isolates of Cladosporium spp., Exophiala spp., Fonsecaea spp., Lecythophora hoffmannii, Phaeoannellomyces werneckii, Phialophora spp., Wangiella dermatitidis, and Xylohypha bantiana were used to evaluate the API 20C Yeast Identification System for the differentiation of dematiaceous fungi. Using the API 20C system, we were able to distinguish most species of Phialophora and Cladosporium and to separate L. hoffmannii from the species of Phialophora tested; X. bantiana from C. carrionii, C. resinae, and C. sphaerospermum; and W. dermatitidis from Exophiala jeanselmei and Exophiala spinifera. Ninety-two (60.1%) of 153 possible species-pair combinations were separated. PMID:2808678

  6. [A comparative study between the Vitek YBC and Microscan Walk Away RYID automated systems with conventional phenotypic methods for the identification of yeasts of clinical interest].

    PubMed

    Ferrara, Giuseppe; Mercedes Panizol, Maria; Mazzone, Marja; Delia Pequeneze, Maria; Reviakina, Vera

    2014-12-01

    The aim of this study was to compare the identification of clin- ically relevant yeasts by the Vitek YBC and Microscan Walk Away RYID automated methods with conventional phenotypic methods. One hundred and ninety three yeast strains isolated from clinical samples and five controls strains were used. All the yeasts were identified by the automated methods previously mentioned and conventional phenotypic methods such as carbohydrate assimilation, visualization of microscopic morphology on corn meal agar and the use of chromogenic agar. Variables were assessed by 2 x 2 contingency tables, McNemar's Chi square, the Kappa index, and concordance values were calculated, as well as major and minor errors for the automated methods. Yeasts were divided into two groups: (1) frequent isolation and (2) rare isolation. The Vitek YBC and Microscan Walk Away RYID systems were concordant in 88.4 and 85.9% respectively, when compared to conventional phenotypic methods. Although both automated systems can be used for yeasts identification, the presence of major and minor errors indicates the possibility of misidentifications; therefore, the operator of this equipment must use in parallel, phenotypic tests such as visualization of microscopic morphology on corn meal agar and chromogenic agar, especially against infrequently isolated yeasts. Automated systems are a valuable tool; however, the expertise and judgment of the microbiologist are an important strength to ensure the quality of the results. PMID:25558750

  7. Yeast killer systems.

    PubMed Central

    Magliani, W; Conti, S; Gerloni, M; Bertolotti, D; Polonelli, L

    1997-01-01

    The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed. PMID:9227858

  8. Establishment of a transgenic yeast screening system for estrogenicity and identification of the anti-estrogenic activity of malachite green.

    PubMed

    Jiao, Baowei; Yeung, Eric K C; Chan, Chi Bun; Cheng, Christopher H K

    2008-12-15

    Endocrine disruptors refer to chemical compounds in the environment which interfere with the endocrine systems of organisms. Among them, environmental estrogens pose serious problems to aquatic organisms, in particular fish. It is therefore important and necessary to have a fast and low-cost system to screen the large number of different chemical compounds in the aquatic environment for their potential endocrine disrupting actions. In this study, a screening platform was developed to detect xenoestrogens in the aquatic environment using the fission yeast Schizosaccharomyces pombe, and applied for compound screening. The aim was to demonstrate any significant potential differences between the fish screening system and the human screening system. To this end, a yeast expression vector harboring a fish estrogen receptor alpha and a reporter vector containing the estrogen responsive element fused with the Escherichia coli LacZ gene were constructed. After transformation with these two vectors, the transformed yeast clones were confirmed by Western blotting and selected on the basis of the beta-galactosidase activity. In this transgenic yeast system, the natural estrogen (estradiol) and other known xenoestrogens such as diethylstilbestrol, bisphenol A, genistein and dichloro-diphenyl-trichloroethane exhibited dose-dependent activities. Using this system, more than 40 putative endocrine disruptors including phytoestrogens, pesticides, herbicides, industrial dyes and other industrial chemicals were screened. Ten of them were demonstrated to exhibit estrogenic actions. Industrial dyes such as malachite green (MG) that disrupt thyroid hormone synthesis are extensively used and are widely distributed in the aquatic environment. Using this system, MG did not show any estrogenic action, but was demonstrated to exhibit anti-estrogenic activity. PMID:18980245

  9. Yeast metabolic state identification using micro-fiber optics spectroscopy

    NASA Astrophysics Data System (ADS)

    Silva, J. S.; Castro, C. C.; Vicente, A. A.; Tafulo, P.; Jorge, P. A. S.; Martins, R. C.

    2011-05-01

    Saccharomyces cerevisiae morphology is known to be dependent on the cell physiological state and environmental conditions. On their environment, wild yeasts tend to form complex colonies architectures, such as stress response and pseudohyphal filaments morphologies, far away from the ones found inside bioreactors, where the regular cell cycle is observed under controlled conditions (e.g. budding and flocculating colonies). In this work we explore the feasibility of using micro-fiber optics spectroscopy to classify Saccharomyces cerevisiae S288C colony structures in YPD media, under different growth conditions, such as: i) no alcohol; ii) 1 % (v/v) Ethanol; iii) 1 % (v/v) 1-butanol; iv) 1 % (v/v) Isopropanol; v) 1 % (v/v) Tert-Amyl alcohol (2 Methyl-2-butanol); vi) 0,2 % (v/v) 2-Furaldehyde; vii) 5 % (w/v) 5 (Hydroxymethyl)-furfural; and viii) 1 % (w/v) (-)-Adenosine3', 5'cyclic monophosphate. The microscopy system includes a hyperspectral camera apparatus and a micro fiber (sustained by micro manipulator) optics system for spectroscopy. Results show that micro fiber optics system spectroscopy has the potential for yeasts metabolic state identification once the spectral signatures of colonies differs from each others. This technique associated with others physico-chemical information can benefit the creation of an information system capable of providing extremely detailed information about yeast metabolic state that will aid both scientists and engineers to study and develop new biotechnological products.

  10. Identification of alpha-tubulin as an hsp105alpha-binding protein by the yeast two-hybrid system.

    PubMed

    Saito, Youhei; Yamagishi, Nobuyuki; Ishihara, Keiichi; Hatayama, Takumi

    2003-06-10

    Hsp105alpha is a mammalian stress protein that belongs to the HSP105/110 family. Hsp105alpha prevents stress-induced apoptosis in neuronal cells and binds to Hsp70/Hsc70 and suppresses the Hsp70 chaperone activity in vitro. In this study, to further elucidate the function of Hsp105alpha, we searched for Hsp105alpha-binding proteins by screening a mouse FM3A cell cDNA library with full-length Hsp105alpha using the yeast two-hybrid system and obtained alpha-tubulin as an Hsp105alpha-binding protein. Hsp105alpha bound directly to alpha-tubulin both in vitro and in vivo. Indirect immunofluorescence analysis with anti-Hsp105 and anti-alpha-tubulin antibodies indicated that Hsp105alpha was colocalized with microtubules. Furthermore, the disorganization of microtubules induced by heat shock was prevented in Hsp105alpha-overexpressing COS-7 cells. These findings suggested that Hsp105alpha associates with alpha-tubulin and microtubules in cells and plays a role in protection of microtubules under conditions of stress. PMID:12749852

  11. Enumeration and identification of yeasts associated with commercial poultry processing and spoilage of refrigerated broiler carcasses.

    PubMed

    Hinton, Arthur; Cason, J A; Ingram, Kimberly D

    2002-06-01

    Yeasts associated with broiler carcasses taken from various stages of commercial poultry processing operations and broiler carcasses stored at refrigerated temperatures were enumerated and identified. Whole carcass rinses were performed to recover yeasts from carcasses taken from a processing facility and processed carcasses stored at 4 degrees C for up to 14 days. Yeasts in the carcass rinsates were enumerated on acidified potato dextrose agar and identified with the MIDI Sherlock Microbial Identification System. Dendrograms of fatty acid profiles of yeast were prepared to determine the degree of relatedness of the yeast isolates. Findings indicated that as the carcasses are moved through the processing line, significant decreases in the number of yeasts associated with broiler carcasses usually occur, and the composition of the yeast flora of the carcasses is altered. Significant (P < 0.05) increases in the yeast population of the carcasses generally occur during storage at 4 degrees C, however. Furthermore, it was determined that the same strain of yeast may be recovered from different carcasses at different points in the processing line and that the same strain of yeast may be isolated from carcasses processed on different days in the same processing facility. PMID:12092734

  12. Microfermentation Test For Identification Of Yeast

    NASA Technical Reports Server (NTRS)

    Pierson, D. L.; Mishra, S. K.; Molina, Thomas C.

    1995-01-01

    Microfermentation test developed as supplementary method for use in identifying yeasts, especially in clinical and environmental studies. In comparison with traditional fermentation tests, simpler and easier, and requiries less equipment, material, and laboratory space. Results obtained in days instead of weeks.

  13. YEASTS OF THE WORLD - MORPHOLOGY, PHYSIOLOGY, SEQUENCES AND IDENTIFICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This publication is a CD-ROM prepared by an international team of 12 scientists for the purpose of rapid identification of yeasts. Strains may be characterized from conventional growth tests or from sequences of selected genes. Test results are entered into the computer program where they are comp...

  14. [Yeasts in domestic animals: species identification and susceptibility to antifungals].

    PubMed

    Hamal, Petr; Koukalová, Dagmar

    2010-02-01

    Yeasts frequently colonize various kinds of domestic animals, but may also cause serious diseases. The aim of this study was to identify yeast isolates collected from dogs, cows and pigs, and to determine their in vitro antifungal susceptibility. Fifty-six yeast isolates from dogs (n = 24), cows (n = 20), and pigs (n = 12) were investigated. Appearance of colonies grown on Sabouraud agar, micromorphology on rice agar, as well as assimilation and fermentation of various carbon and nitrogen sources were evaluated. Susceptibility to six antifungals (flucytosine, amphotericin B, miconazole, ketoconazole, itraconazole and fluconazole) was determined semiquantitatively using the commercially available Fungitest kit (Bio-Rad Laboratories). Ten yeast species were identified in dogs with relatively even distribution. On the other hand, cow and pig were clearly dominated by Candida krusei (from 7 species) and Candida rugosa (from 5 species), respectively. Further, most of yeast isolates exhibited good susceptibility to the antifungals tested particularly to amphotericin B, ketoconazole and itraconazole. Based on results, it can be concluded that significant differences in the species spectrum and distribution were documented between groups of yeasts from dogs, cows and pigs. This is probably due to different environmental conditions and the endogenous origin of the yeast isolates. Mostly good susceptibility to systemic antifungals should positively influence the therapy of diseases caused by yeasts in veterinary medicine. PMID:20401831

  15. [Evaluation of Vitek 2 for the identification of Candida yeasts].

    PubMed

    Ochiuzzi, María E; Cataldi, Silvana; Guelfand, Liliana; Maldonado, Ivana; Arechavala, Alicia

    2014-01-01

    The aim of this investigation was to evaluate the performance of Vitek 2 YST cards (bioMérieux, Inc., Hazelwood, MO, USA) for the identification of yeasts of the genus Candida. A total of 168 isolates were analyzed and the results were compared to those of the API 20 C AUX (24%) o API ID 32 C (76%) kits (bioMérieux, Marcy L'Etoile, France). Each isolate was grown in chromogenic agar and in corn meal agar (Oxoid, UK) to observe its micromorphology. C. albicans and C. dublininesis were identified by additional biochemical and molecular tests. The agreement observed was 98.3%. Only three isolates were incorrectly identified by Vitek 2: one strain of C .tropicalis and one strain of C. krusei were identified as C. parapsilosis by YST while one strain of C. krusei was identified with low discrimination. The average time for obtaining results was 18.25 h. Vitek 2 is a simple, safe and useful system for the identification of significant Candida species. PMID:25011593

  16. Identification of Critical Amino Acids Conferring Lethality in VopK, a Type III Effector Protein of Vibrio cholerae: Lessons from Yeast Model System

    PubMed Central

    Bankapalli, Leela Krishna; Mishra, Rahul Chandra; Singh, Balvinder; Raychaudhuri, Saumya

    2015-01-01

    VopK, a type III effector protein, has been implicated in the pathogenesis of Vibrio cholerae strains belonging to diverse serogroups. Ectopic expression of this protein exhibits strong toxicity in yeast model system. In order to map critical residues in VopK, we scanned the primary sequence guided by available data on various toxins and effector proteins. Our in silico analysis of VopK indicated the presence of predicted MCF1-SHE (SHxxxE) serine peptidase domain at the C-terminus region of the protein. Substitution of each of the predicted catalytic triad residues namely Ser314, His353 and Glu357 with alanine resulted in recombinant VopK proteins varying in lethality as evaluated in yeast model system. We observed that replacement of glutamate357 to alanine causes complete loss in toxicity while substitutions of serine314 and histidine353 with alanine exhibited partial loss in toxicity without affecting the stability of variants. In addition, replacement of another conserved serine residue at position 354 (S354) within predicted S314H353E357 did not affect toxicity of VopK. In essence, combined in silico and site directed mutagenesis, we have identified critical amino acids contributing to the lethal activity of VopK in yeast model system. PMID:26488395

  17. Differential identification of Candida species and other yeasts by analysis of (/sup 35/S)methionine-labeled polypeptide profiles

    SciTech Connect

    Shen, H.D.; Choo, K.B.; Tsai, W.C.; Jen, T.M.; Yeh, J.Y.; Han, S.H.

    1988-12-01

    This paper describes a scheme for differential identification of Candida species and other yeasts based on autoradiographic analysis of protein profiles of (/sup 35/S)methionine-labeled cellular proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using ATCC strains as references, protein profile analysis showed that different Candida and other yeast species produced distinctively different patterns. Good agreement in results obtained with this approach and with other conventional systems was observed. Being accurate and reproducible, this approach provides a basis for the development of an alternative method for the identification of yeasts isolated from clinical specimens.

  18. New method for yeast identification using Burrows-Wheeler transform.

    PubMed

    Pokrzywa, Rafal

    2008-04-01

    The explosive growth in biological data in recent years has led to the development of new methods to identify DNA sequences. Many algorithms have recently been developed that search DNA sequences looking for unique DNA sequences. This paper considers the application of the Burrows-Wheeler transform (BWT) to the problem of unique DNA sequence identification. The BWT transforms a block of data into a format that is extremely well suited for compression. This paper presents a time-efficient algorithm to search for unique DNA sequences in a set of genes. This algorithm is applicable to the identification of yeast species and other DNA sequence sets. PMID:18464330

  19. Yeast identification in floral nectar of Mimulus aurantiacus (Invited)

    NASA Astrophysics Data System (ADS)

    Kyauk, C.; Belisle, M.; Fukami, T.

    2009-12-01

    Nectar is such a sugar-rich resource that serves as a natural habitat in which microbes thrive. As a result, yeasts arrive to nectar on the bodies of pollinators such as hummingbirds and bees. Yeasts use the sugar in nectar for their own needs when introduced. This research focuses on the identification of different types of yeast that are found in the nectar of Mimulus aurantiacus (commonly known as sticky monkey-flower). Unopened Mimulus aurantiacus flower buds were tagged at Jasper Ridge and bagged three days later. Floral nectar was then extracted and plated on potato dextrose agar. Colonies on the plates were isolated and DNA was extracted from each sample using QIAGEN DNeasy Plant Mini Kit. The DNA was amplified through PCR and ran through gel electrophoresis. The PCR product was used to clone the nectar samples into an E.coli vector. Finally, a phylogenetic tree was created by BLAST searching sequences in GenBank using the Internal Transcribed Space (ITS) locus. It was found that 18 of the 50 identified species were Candida magnifica, 14 was Candida rancensis, 6 were Crytococcus albidus and there were 3 or less of the following: Starmella bombicola, Candida floricola, Aureobasidium pullulans, Pichia kluyvera, Metschnikowa cibodaserisis, Rhodotorua colostri, and Malassezia globosa. The low diversity of the yeast could have been due to several factors: time of collection, demographics of Jasper Ridge, low variety of pollinators, and sugar concentration of the nectar. The results of this study serve as a necessary first step for a recently started research project on ecological interactions between plants, pollinators, and nectar-living yeast. More generally, this research studies the use of the nectar-living yeast community as a natural microcosm for addressing basic questions about the role of dispersal and competitive and facilitative interactions in ecological succession.

  20. Human heart cell proteins interacting with a C-terminally truncated 2A protein of coxsackie B3 virus: identification by the yeast two-hybrid system.

    PubMed

    Zhao, Tiansheng; Huang, Xiaotian; Xia, Yanhua

    2016-04-01

    Protein 2A is a non-structural protein of coxsackievirus B3 (CVB3), an important human pathogen that can cause a variety of human diseases. Protein 2A not only participates in viral life cycle, but also regulates host cell functions; however, the underlying mechanisms remain poorly understood. In order to better understand the molecular mechanisms of CVB3 2A's function, the yeast two-hybrid (Y2H) system was adopted to screen for CVB3 2A interactive proteins in the human heart cDNA library. Full-length 2A shows strong transcriptional activity in yeast cells, which interferes with the application of Y2H system; therefore, a series of 2A deletion mutants were constructed. Analysis of transcriptional self-activation revealed that 2A lost its transcriptional activity after truncation of 60 amino acids (aa) at the N-terminus or deletion of 17 aa at the C-terminus. Choosing the 2A mutant with 17 aa deletion at the C-terminus as the bait protein, four interactive cellular proteins were identified, including TIMP4, MYL2, COX7C, and ENO1. These proteins are mostly related to protein degradation and metabolism. Although the interactions detected by the Y2H system should be considered as preliminary results, the finding of proteins translated from a human heart cDNA library that interacts with the CVB3 2A will stimulate experiments testing the reactivity of a translational mixture derived from that library with full-length 2A protein, followed by co-immunoprecipitation studies. PMID:26781950

  1. [Automated method for yeast identification: ATB 32 C].

    PubMed

    Hernández-Molina, J M; Coque, M T; Campos, E; Rando, C; Leiva, E F

    1992-05-01

    The aim of this study was to evaluate the ATB 32 C (API system) automatic medium for identifying yeasts in clinical samples. A total of 101 yeasts strains were studied, representing 8 genera and 18 different species, identified by conventional means. All 32 microdomes of the track, including dehydrated substrates, were inoculated in a semi-solid media (C medium). After their incubation at 30 degrees C for 48 hours, the reading device ATB 1520 and the computer of ATB system the reading and automatic interpretation of the results. Using the ATB method, 85 strains were identified (84%) at species level, 9 at genus level and a non-conclusive or unacceptable profile was recorded in 7 strains. From all clinically important yeasts species, a total of 96% were identified by ATB method according to conventional methods. From all non clinically relevant species, ATB 32 C identified correctly 23 strains (78%). ATB 32 C method is a good alternative approach to conventional techniques for identifying yeasts in clinical samples. PMID:1391001

  2. Yeast species associated with orange juice: evaluation of different identification methods.

    PubMed

    Arias, Covadonga R; Burns, Jacqueline K; Friedrich, Lorrie M; Goodrich, Renee M; Parish, Mickey E

    2002-04-01

    Five different methods were used to identify yeast isolates from a variety of citrus juice sources. A total of 99 strains, including reference strains, were identified using a partial sequence of the 26S rRNA gene, restriction pattern analysis of the internal transcribed spacer region (5.8S-ITS), classical methodology, the RapID Yeast Plus system, and API 20C AUX. Twenty-three different species were identified representing 11 different genera. Distribution of the species was considerably different depending on the type of sample. Fourteen different species were identified from pasteurized single-strength orange juice that had been contaminated after pasteurization (PSOJ), while only six species were isolated from fresh-squeezed, unpasteurized orange juice (FSOJ). Among PSOJ isolates, Candida intermedia and Candida parapsilosis were the predominant species. Hanseniaspora occidentalis and Hanseniaspora uvarum represented up to 73% of total FSOJ isolates. Partial sequence of the 26S rRNA gene yielded the best results in terms of correct identification, followed by classical techniques and 5.8S-ITS analysis. The commercial identification kits RapID Yeast Plus system and API 20C AUX were able to correctly identify only 35 and 13% of the isolates, respectively. Six new 5.8S-ITS profiles were described, corresponding to Clavispora lusitaniae, Geotrichum citri-aurantii, H. occidentalis, H. vineae, Pichia fermentans, and Saccharomycopsis crataegensis. With the addition of these new profiles to the existing database, the use of 5.8S-ITS sequence became the best tool for rapid and accurate identification of yeast isolates from orange juice. PMID:11916718

  3. Yeast Species Associated with Orange Juice: Evaluation of Different Identification Methods†

    PubMed Central

    Arias, Covadonga R.; Burns, Jacqueline K.; Friedrich, Lorrie M.; Goodrich, Renee M.; Parish, Mickey E.

    2002-01-01

    Five different methods were used to identify yeast isolates from a variety of citrus juice sources. A total of 99 strains, including reference strains, were identified using a partial sequence of the 26S rRNA gene, restriction pattern analysis of the internal transcribed spacer region (5.8S-ITS), classical methodology, the RapID Yeast Plus system, and API 20C AUX. Twenty-three different species were identified representing 11 different genera. Distribution of the species was considerably different depending on the type of sample. Fourteen different species were identified from pasteurized single-strength orange juice that had been contaminated after pasteurization (PSOJ), while only six species were isolated from fresh-squeezed, unpasteurized orange juice (FSOJ). Among PSOJ isolates, Candida intermedia and Candida parapsilosis were the predominant species. Hanseniaspora occidentalis and Hanseniaspora uvarum represented up to 73% of total FSOJ isolates. Partial sequence of the 26S rRNA gene yielded the best results in terms of correct identification, followed by classical techniques and 5.8S-ITS analysis. The commercial identification kits RapID Yeast Plus system and API 20C AUX were able to correctly identify only 35 and 13% of the isolates, respectively. Six new 5.8S-ITS profiles were described, corresponding to Clavispora lusitaniae, Geotrichum citri-aurantii, H. occidentalis, H. vineae, Pichia fermentans, and Saccharomycopsis crataegensis. With the addition of these new profiles to the existing database, the use of 5.8S-ITS sequence became the best tool for rapid and accurate identification of yeast isolates from orange juice. PMID:11916718

  4. [Novel bioconversion systems using a yeast molecular display system].

    PubMed

    Shibasaki, Seiji

    2010-11-01

    The budding yeast Saccharomyces cerevisiae has been used for the process of fermentation as well as for studies in biochemistry and molecular biology as a eukaryotic model cell or tool for the analysis of gene functions. Thus, yeast is essential in industries and researches. Yeast cells have a cell wall, which is one characteristic that helps distinguish yeast cells from other eukaryotic cells such as mammalian cells. We have developed a molecular display system using the protein of the yeast cell wall as an anchor for foreign proteins. Yeast cells have been designed for use in sensing and metal adsorption, and have been used in vaccines and for screening novel proteins. Currently, yeast is used not only as a tool for analyzing gene or protein function but also in molecular display technology. The phage display system, which is at the forefront of molecular display technologies, is a powerful tool for screening ligands bound to a target molecule and for analyzing protein-protein interactions; however, in some cases, eukaryotic proteins are not easily expressed by this system. On the other hand, yeast cells have the ability to express eukaryotic proteins and proliferate; thus, these cells display various proteins. Yeast cells are more appropriate for white biotechnology. In this review, displays of enzymes that are important in bioconversion, such as lipases and β-glucosidases, are going to be introduced. PMID:21048401

  5. Identification of yeasts isolated from commercial shell eggs stored at refrigerated temperatures.

    PubMed

    Musgrove, M T; Jones, D R; Hinton, A; Ingram, K D; Northcutt, J K

    2008-06-01

    Yeasts and molds can grow on or in eggs, causing spoilage. Washed and unwashed eggs (treatments) were collected aseptically on three separate days (replications) from a commercial processing facility and stored for 10 weeks at 4 degrees C. Ten eggs from each treatment were sampled weekly (110 eggs per treatment per replication). Yeasts and molds were enumerated from external shell rinses by plating onto acidified potato dextrose agar. Yeast colonies were picked randomly and stored for subsequent identification by gas chromatographic analysis of fatty acid methyl esters using the MIDI Microbial Identification System. Of 688 isolates analyzed, 380 were identified to genus or species. Genera identified by this method included Candida, Cryptococcus, Hansenula, Hyphopichia, Metschnikowia, Rhodotorula, Sporobolomyces, and Torulaspora. Candida spp. accounted for 84.5% (321 of 380) of the isolate identifications. Candida famata was the most prevalent species (n = 120), followed by Candida lusitaniae (n = 38). A group of 20 isolates was subjected to molecular or biochemical analyses for comparison with the MIDI results. Biochemical tests were performed using automatic and mini systems. Results of biochemical tests and ribosomal DNA sequencing were in agreement for 11 of the isolates, but only 7 of the 20 MIDI-identified isolates were in agreement with the sequencing results. C. famata, an anamorph of Debaryomyces hansenii var. hansenii, was the most commonly identified isolate by all methods. These data indicate that there was limited correlation between results obtained with the MIDI system and the information obtained from molecular databases. However, both systems were able to correctly identify C. famata, the species most often isolated throughout egg storage. PMID:18592756

  6. Identification of propulsion systems

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Guo, Ten-Huei; Duyar, Ahmet

    1991-01-01

    This paper presents a tutorial on the use of model identification techniques for the identification of propulsion system models. These models are important for control design, simulation, parameter estimation, and fault detection. Propulsion system identification is defined in the context of the classical description of identification as a four step process that is unique because of special considerations of data and error sources. Propulsion system models are described along with the dependence of system operation on the environment. Propulsion system simulation approaches are discussed as well as approaches to propulsion system identification with examples for both air breathing and rocket systems.

  7. A switchable yeast display/secretion system.

    PubMed

    Van Deventer, James A; Kelly, Ryan L; Rajan, Saravanan; Wittrup, K Dane; Sidhu, Sachdev S

    2015-10-01

    Display technologies such as yeast and phage display offer powerful alternatives to traditional immunization-based antibody discovery, but require conversion of displayed proteins into soluble form prior to downstream characterization. Here we utilize amber suppression to implement a yeast-based switchable display/secretion system that enables the immediate production of soluble, antibody-like reagents at the end of screening efforts. Model selections in the switchable format remain efficient, and library screening in the switchable format yields renewable sources of affinity reagents exhibiting nanomolar binding affinities. These results confirm that this system provides a seamless link between display-based screening and the production and evaluation of soluble forms of candidate binding proteins. Switchable display/secretion libraries provide a cloning-free, accessible approach to affinity reagent generation. PMID:26333274

  8. A Comprehensive Evaluation of the Bruker Biotyper MS and Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Systems for Identification of Yeasts, Part of the National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) Study, 2012 to 2013.

    PubMed

    Wang, He; Fan, Yan-Yan; Kudinha, Timothy; Xu, Zhi-Peng; Xiao, Meng; Zhang, Li; Fan, Xin; Kong, Fanrong; Xu, Ying-Chun

    2016-05-01

    Among the 2,683 yeast isolates representing 41 different species (25 Candida and Candida-related species and 16 non-Candida yeast species) collected in the National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) program (2012 to 2013), the Bruker Biotyper MS matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system exhibited significantly higher accuracy rates than the Vitek MS system for identification of all yeast isolates (98.8% versus 95.4%, P <0.001 by Pearson's chi-square test) and for all Candida and Candida-related species isolates (99.4% versus 95.5%, P < 0.001). PMID:26912761

  9. Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process.

    PubMed

    Basílio, A C M; de Araújo, P R L; de Morais, J O F; da Silva Filho, E A; de Morais, M A; Simões, D A

    2008-04-01

    Monitoring for wild yeast contaminants is an essential component of the management of the industrial fuel ethanol manufacturing process. Here we describe the isolation and molecular identification of 24 yeast species present in bioethanol distilleries in northeast Brazil that use sugar cane juice or cane molasses as feeding substrate. Most of the yeast species could be identified readily from their unique amplification-specific polymerase chain reaction (PCR) fingerprint. Yeast of the species Dekkera bruxellensis, Candida tropicalis, Pichia galeiformis, as well as a species of Candida that belongs to the C. intermedia clade, were found to be involved in acute contamination episodes; the remaining 20 species were classified as adventitious. Additional physiologic data confirmed that the presence of these major contaminants cause decreased bioethanol yield. We conclude that PCR fingerprinting can be used in an industrial setting to monitor yeast population dynamics to early identify the presence of the most important contaminant yeasts. PMID:18188645

  10. Routine identification and mixed species detection in 6,192 clinical yeast isolates.

    PubMed

    Cassagne, Carole; Normand, Anne-Cécile; Bonzon, Lucas; L'Ollivier, Coralie; Gautier, Magali; Jeddi, Fakhri; Ranque, Stéphane; Piarroux, Renaud

    2016-03-01

    The clinical laboratory methods used to diagnose yeast infections should be rapid, reliable, and capable of detecting mixed infections with species exhibiting a distinct antifungal susceptibility profile. In this study, we report the performance of a procedure combining the detection of mixed yeast cultures with a chromogenic medium and MALDI-TOF identification of the colonies. We then evaluated the impact that (i) the isolation medium and (ii) lowering the identification log score (LS) threshold value have on yeast identification performance in the routine laboratory.Among 15,661 clinical samples analyzed, 5,671 tested positive and 6,192 yeasts of 42 distinct species were identified. Overall, 6,117 isolates (98.79%) were identified on the first or second MALDI-TOF Mass Spectrometry (MS) attempt, yielding an average yeast species identification turnaround time of 0.346 days (95% CI [0.326 to 0.364]). The 75 remaining isolates were identified via nucleotide sequencing. Mixed infections accounted for 498 (8.78%) of the positive samples. The MALDI-TOF MS identification procedure performed well, regardless of the culture media tested. Lowering the recommended 2.0 LS threshold value to 1.8 would reduce the number of required (i) second MALDI-TOF MS identification attempts (178 vs. 490) and (ii) ITS2 and D1-D2 sequence-based identifications (17 vs. 75), while achieving an adequate identification rate (6,183/6,192, 99.85%).In conclusion, we propose applying a 1.8 LS threshold combined with chromogenic medium subculture to optimize the yeast identification workflow and detect mixed infection in the clinical laboratory. PMID:26613703

  11. Identification of Pathogenic Rare Yeast Species in Clinical Samples: Comparison between Phenotypical and Molecular Methods▿

    PubMed Central

    Cendejas-Bueno, Emilio; Gomez-Lopez, Alicia; Mellado, Emilia; Rodriguez-Tudela, Juan L.; Cuenca-Estrella, Manuel

    2010-01-01

    Species identification using both phenotypic and molecular methods and antifungal susceptibility tests was carried out with 60 uncommon clinical yeasts. Our data show that phenotypic methods were insufficient for correct identification (only 25%) and that most of the wrongly identified strains showed a resistant antifungal profile. PMID:20237094

  12. Identification of Yeasts From the Suwannee River Florida Estuary1

    PubMed Central

    Lazarus, C. R.; Koburger, J. A.

    1974-01-01

    The yeast flora of the Suwannee River estuary in Florida has been studied. The predominant genera were Candida and Rhodotorula; however, the yeast most frequently isolated was Cryptococcus laurentii. Nine ascosporogenous species were isolated, with Hansenula saturnus predominating. The salinity range of the sediments was 0.4 to 20.6%; in the estuary water, 0.07 to 0.25%; and in the open Gulf of Mexico, 18 to 20%. Images PMID:16349995

  13. Rapid and Reliable Identification of Food-Borne Yeasts by Fourier-Transform Infrared Spectroscopy

    PubMed Central

    Kümmerle, Michael; Scherer, Siegfried; Seiler, Herbert

    1998-01-01

    Computer-based Fourier-transform infrared spectroscopy (FT-IR) was used to identify food-borne, predominantly fermentative yeasts. Dried yeast suspensions provided the films suitable for FT-IR measurement. Informative windows in the spectrum were selected and combined to achieve optimal results. A reference spectrum library was assembled, based on 332 defined yeast strains from international yeast collections and our own isolates. All strains were identified with conventional methods using physiological and morphological characteristics. In order to assess identification quality, another 722 unknown yeast isolates not included in the reference spectrum library were identified both by classical methods and by comparison of their FT-IR spectra with those of the reference spectrum library. Ninety-seven and one-half percent of these isolates were identified correctly by FT-IR. Easy handling, rapid identification within 24 h when starting from a single colony, and a high differentiation capacity thus render FT-IR technology clearly superior to other routine methods for the identification of yeasts. PMID:9603836

  14. Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany.

    PubMed

    Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo

    2016-06-01

    The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil. PMID:27116959

  15. [Evaluation of mass spectrometry: MALDI-TOF MS for fast and reliable yeast identification].

    PubMed

    Relloso, María S; Nievas, Jimena; Fares Taie, Santiago; Farquharson, Victoria; Mujica, María T; Romano, Vanesa; Zarate, Mariela S; Smayevsky, Jorgelina

    2015-01-01

    The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique known as MALDI-TOF MS is a tool used for the identification of clinical pathogens by generating a protein spectrum that is unique for a given species. In this study we assessed the identification of clinical yeast isolates by MALDI-TOF MS in a university hospital from Argentina and compared two procedures for protein extraction: a rapid method and a procedure based on the manufacturer's recommendations. A short protein extraction procedure was applied in 100 isolates and the rate of correct identification at genus and species level was 98.0%. In addition, we analyzed 201 isolates, previously identified by conventional methods, using the methodology recommended by the manufacturer and there was 95.38% coincidence in the identification at species level. MALDI TOF MS showed to be a fast, simple and reliable tool for yeast identification. PMID:25882136

  16. Identification and functional analysis of chaperonin 10, the groES homolog from yeast mitochondria.

    PubMed Central

    Rospert, S; Glick, B S; Jenö, P; Schatz, G; Todd, M J; Lorimer, G H; Viitanen, P V

    1993-01-01

    Chaperonin 60 (cpn60) and chaperonin 10 (cpn10) constitute the chaperonin system in prokaryotes, mitochondria, and chloroplasts. In Escherichia coli, these two chaperonins are also termed groEL and groES. We have used a functional assay to identify the groES homolog cpn10 in yeast mitochondria. When dimeric ribulose-1,5-bisphosphate carboxylase (Rubisco) is denatured and allowed to bind to yeast cpn60, subsequent refolding of Rubisco is strictly dependent upon yeast cpn10. The heterologous combination of cpn60 from E. coli plus yeast cpn10 is also functional. In contrast, yeast cpn60 plus E. coli cpn10 do not support refolding of Rubisco. In the presence of MgATP, yeast cpn60 and yeast cpn10 form a stable complex that can be isolated by gel filtration and that facilitates refolding of denatured Rubisco. Although the potassium-dependent ATPase activity of E. coli cpn60 can be inhibited by cpn10 from either E. coli or yeast, neither of these cpn10s inhibits the ATPase activity of yeast cpn60. Amino acid sequencing of yeast cpn10 reveals substantial similarity to the corresponding cpn10 proteins from rat mitochondria and prokaryotes. Images Fig. 1 Fig. 3 Fig. 4 PMID:7902576

  17. Identification of putative regulatory region of insulin-like androgenic gland hormone gene (IAG) in the prawn Macrobrachium nipponense and proteins that interact with IAG by using yeast two-hybrid system.

    PubMed

    Ma, Ke-Yi; Li, Jia-Le; Qiu, Gao-Feng

    2016-04-01

    Insulin-like androgenic gland hormone gene (IAG) is a sex regulator specifically expressed in male crustaceans, controlling the male sexual differentiation, spermatogenesis and reproductive strategy. Our previous study reported the cloning and characterization of the prawn Macrobrachium nipponense IAG (MnIAG). In this study, we further identified a 2214-bp MnIAG 5'-flanking region, and analyzed its transcription factor binding sites and transcriptional activity. The results showed that there were two potential promoter core sequences, three TATA boxes and one CAAT box existing in the MnIAG 5'-flanking region as well as many potential transcription factor binding sites, such as SRY, Sox-5, GATA-1, etc. Notably, the transcriptional activity was weak in this region, and a negative regulatory region was found in -604 to -231bp. In addition, we constructed M. nipponense yeast libraries and identified proteins interacting with the MnIAG protein by yeast two hybridization assay. The yeast two-hybrid screening yielded ten positive clones, of which five were annotated by NCBI database, namely heat shock protein 21, NADH dehydrogenase, zinc finger protein, beta-N-acetylglucosaminidase and a hypothetical protein. The identification of MnIAG putative regulatory region and proteins that interact with IAG will facilitate our understanding of the regulatory role of MnIAG and provide a foundation for deep insight into the prawn sex differentiation mechanism and signaling transduction pathways. PMID:26979275

  18. Author Identification Systems

    ERIC Educational Resources Information Center

    Wagner, A. Ben

    2009-01-01

    Many efforts are currently underway to disambiguate author names and assign unique identification numbers so that publications by a given scholar can be reliably grouped together. This paper reviews a number of operational and in-development services. Some systems like ResearcherId.Com depend on self-registration and self-identification of a…

  19. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries

    PubMed Central

    Bidlingmaier, Scott; Liu, Bin

    2016-01-01

    The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology. PMID:26060076

  20. Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees.

    PubMed

    Rowe, Jeffrey D; Harbertson, James F; Osborne, James P; Freitag, Michael; Lim, Juyun; Bakalinsky, Alan T

    2010-02-24

    Total protein and protein-associated mannan concentrations were measured, and individual proteins were identified during extraction into model wines over 9 months of aging on the yeast lees following completion of fermentations by seven wine strains of Saccharomyces cerevisiae. In aged wines, protein-associated mannan increased about 6-fold (+/-66%), while total protein only increased 2-fold (+/-20%), which resulted in a significantly greater protein-associated mannan/total protein ratio for three strains. A total of 219 proteins were identified among all wine samples taken over the entire time course. Of the 17 "long-lived" proteins detected in all 9 month samples, 13 were cell wall mannoproteins, and four were glycolytic enzymes. Most cytosolic proteins were not detected after 6 months. Native mannosylated yeast invertase was assayed for binding to wine tannin and was found to have a 10-fold lower affinity than nonglycosylated bovine serum albumin. Enrichment of mannoproteins in the aged model wines implies greater solution stability than other yeast proteins and the possibility that their contributions to wine quality may persist long after bottling. PMID:20108898

  1. Identification and functional characterization of yeast zeta-COP.

    PubMed

    Yamazaki, S; Harashima, S; Sakaguchi, M; Mihara, K

    1997-01-01

    Coatomer, the cytosolic protein complex, consists of seven subunits (alpha-, beta-, beta'-, gamma-, delta-, epsilon-, and zeta-COP) and is involved in vesicle trafficking early in the secretory pathway in collaboration with a 20 kDa GTP-binding protein (ARF). In the present study, we have identified a yeast gene which encodes a protein having 39% amino acid sequence identity with bovine zeta-COP. This gene (YZC1 for Yeast Zeta COP) is essential for vegetative growth and the growth defect of delta yzc1 cells was restored by bovine zeta-COP cDNA. We isolated a temperature-sensitive mutant of YZC1 (yzc1ts) and examined its capacity for both the ER-to-Golgi transport and the double lysine motif (KKXX)-mediated retrograde transport from Golgi to ER. At non-permissive temperature, the yzc1ts cells exhibited a weak defect in the anterograde transport, but a strong defect in the retrograde vesicle transport. We conclude that Yzc1p is a yeast homologue of mammalian zeta-COP and participates mainly in the Golgi-to-ER retrograde transport. PMID:9058184

  2. Identification of budding yeast using a fiber-optic imaging bundle

    NASA Astrophysics Data System (ADS)

    Koschwanez, John; Holl, Mark; Marquardt, Brian; Dragavon, Joe; Burgess, Lloyd; Meldrum, Deirdre

    2004-05-01

    A successful imaging system has been designed and built for yeast pedigree analysis. The system uses a fiber-optic imaging bundle to recognize single yeast cells. Image processing software has been developed to accurately classify the cells as either budding or not budding a daughter cell. This system is intended to replace the body of a microscope for the detection of budding in a microfluidic system.

  3. Identification of indigenous yeast flora isolated from the five winegrape varieties harvested in Xiangning, China.

    PubMed

    Sun, Yue; Guo, Jingjing; Liu, Fubing; Liu, Yanlin

    2014-03-01

    Inoculated fermentation by selected indigenous yeast strains from a specific location could provide the wine with unique regional sensory characteristics. The identification and differentiation of local yeasts are the first step to understand the function of yeasts and develop a better strain-selection program for winemaking. The indigenous yeasts in five grape varieties, Chardonnay, Cabernet Franc, Cabernet Sauvignon, Marselan, and Merlot cultivated in Xiangning, Shanxi, China were investigated. Eight species of seven genera including Aureobasidium pullulans, Candida zemplinina, Hanseniaspora uvarum, Hanseniaspora occidentalis, Issatchenkia terricola, Metschnikowia pulcherrima, Pichia kluyveri, and Saccharomyces cerevisiae were identified using Wallerstein Laboratory Nutrient medium with sequencing of the 26S rDNA D1/D2 domain. H. uvarum and S. cerevisiae were the predominant species, while most non-Saccharomyces species were present in the whole fermentation process at different levels among the grape varieties. The genotypes of S. cerevisiae from each microvinification were determined by using interdelta sequence analysis. The 102 isolates showed eight different genotypes, and genotype III was the predominant genotype found. The distribution of S. cerevisiae strains during the fermentation of Marselan was also studied. Six genotypes were observed among the 92 strains with different genotypes of competitiveness at different sampling stages. Genotype V demonstrated the potential for organizing starter strains and avoiding inefficient fermentation. In general, this study explored the yeast species in the grapes grown in Xiangning County and provided important information of relationship of local yeast diversity and its regional wine sensory characteristics. PMID:24395034

  4. Optimized System Identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Longman, Richard W.

    1999-01-01

    In system identification, one usually cares most about finding a model whose outputs are as close as possible to the true system outputs when the same input is applied to both. However, most system identification algorithms do not minimize this output error. Often they minimize model equation error instead, as in typical least-squares fits using a finite-difference model, and it is seen here that this distinction is significant. Here, we develop a set of system identification algorithms that minimize output error for multi-input/multi-output and multi-input/single-output systems. This is done with sequential quadratic programming iterations on the nonlinear least-squares problems, with an eigendecomposition to handle indefinite second partials. This optimization minimizes a nonlinear function of many variables, and hence can converge to local minima. To handle this problem, we start the iterations from the OKID (Observer/Kalman Identification) algorithm result. Not only has OKID proved very effective in practice, it minimizes an output error of an observer which has the property that as the data set gets large, it converges to minimizing the criterion of interest here. Hence, it is a particularly good starting point for the nonlinear iterations here. Examples show that the methods developed here eliminate the bias that is often observed using any system identification methods of either over-estimating or under-estimating the damping of vibration modes in lightly damped structures.

  5. Systematic identification of cell size regulators in budding yeast

    PubMed Central

    Soifer, Ilya; Barkai, Naama

    2014-01-01

    Cell size is determined by a complex interplay between growth and division, involving multiple cellular pathways. To identify systematically processes affecting size control in G1 in budding yeast, we imaged and analyzed the cell cycle of millions of individual cells representing 591 mutants implicated in size control. Quantitative metric distinguished mutants affecting the mechanism of size control from the majority of mutants that have a perturbed size due to indirect effects modulating cell growth. Overall, we identified 17 negative and dozens positive size control regulators, with the negative regulators forming a small network centered on elements of mitotic exit network. Some elements of the translation machinery affected size control with a notable distinction between the deletions of parts of small and large ribosomal subunit: parts of small ribosomal subunit tended to regulate size control, while parts of the large subunit affected cell growth. Analysis of small cells revealed additional size control mechanism that functions in G2/M, complementing the primary size control in G1. Our study provides new insights about size control mechanisms in budding yeast. PMID:25411401

  6. Identification of yeast and human 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) transporters.

    PubMed

    Ceschin, Johanna; Saint-Marc, Christelle; Laporte, Jean; Labriet, Adrien; Philippe, Chloé; Moenner, Michel; Daignan-Fornier, Bertrand; Pinson, Benoît

    2014-06-13

    5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) is the precursor of the active monophosphate form (AICAR), a small molecule with potent anti-proliferative and low energy mimetic properties. The molecular bases for AICAR toxicity at the cellular level are poorly understood. Here, we report the isolation and characterization of several yeast AICAr-hypersensitive mutants. Identification of the cognate genes allowed us to establish that thiamine transporters Thi7 and Thi72 can efficiently take up AICAr under conditions where they are overexpressed. We establish that, under standard growth conditions, Nrt1, the nicotinamide riboside carrier, is the major AICAr transporter in yeast. A study of AICAR accumulation in human cells revealed substantial disparities among cell lines and confirmed that AICAr enters cells via purine nucleoside transporters. Together, our results point to significant differences between yeast and human cells for both AICAr uptake and AICAR accumulation. PMID:24778186

  7. Performance of mass spectrometric identification of bacteria and yeasts routinely isolated in a clinical microbiology laboratory using MALDI-TOF MS

    PubMed Central

    Wang, Weiping; Xi, Haiyan; Huang, Mei; Wang, Jie; Fan, Ming; Chen, Yong; Shao, Haifeng

    2014-01-01

    Background Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is an emerging technology newly applied to identifying bacterial and yeast strains. The aim of this study was to evaluate the clinical performance of the VITEK® MS system in the identification of bacteria and yeast strains routinely isolated from clinical samples. Methods We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacteria and yeasts regardless of phylum or source of isolation. Discordant results were resolved with 16S rDNA or internal transcribed spacer (ITS) gene sequencing. Colonies (a single deposit on a MALDI disposable target without any prior extraction step) were analyzed using the VITEK® MS system. Peptide spectra acquired by the system were compared with the VITEK® MS IVD database Version 2.0, and the identification scores were recorded. Results Of the 1,181 isolates (1,061 bacterial isolates and 120 yeast isolates) analyzed, 99.5% were correctly identified by MALDI-TOF mass spectrometry; 95.7% identified to the species level, 3.6% identified to the genus level, and 0.3% identified within a range of species belonging to different genera. Conversely, 0.1% of isolates were misidentified and 0.4% were unidentified, partly because the species were not included in the database. Re-testing using a second deposit provided a successful identification for 0.5% of isolates unidentified with the first deposit. Our results show that the VITEK® MS system has exceptional performance in identifying bacteria and yeast by comparing acquired peptide spectra to those contained in its database. Conclusions MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive method for bacterial and yeast identification. Our results demonstrate that the VITEK® MS system is a fast and reliable technique, and has the potential to replace conventional phenotypic identification for most bacterial and yeast strains routinely isolated in clinical microbiology laboratories. PMID:24822114

  8. Identification of food and beverage spoilage yeasts from DNA sequence analyses.

    PubMed

    Kurtzman, Cletus P

    2015-11-20

    Detection, identification and classification of yeasts have undergone major changes in the last decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined DNA sequences from domains 1 and 2 (D1/D2) of the nuclear large subunit rRNA gene and from ITS now permits many laboratories to identify species quickly and accurately, thus replacing the laborious and often inaccurate phenotypic tests previously used. Phylogenetic analysis of gene sequences has resulted in a major revision of yeast systematics resulting in redefinition of nearly all genera. This new understanding of species relationships has prompted a change of rules for naming and classifying yeasts and other fungi, and these new rules are presented in the recently implemented International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). The use of molecular methods for species identification and the impact of Code changes on classification will be discussed, especially in the context of food and beverage spoilage yeasts. PMID:26051959

  9. Accurate identification of centromere locations in yeast genomes using Hi-C

    PubMed Central

    Varoquaux, Nelle; Liachko, Ivan; Ay, Ferhat; Burton, Joshua N.; Shendure, Jay; Dunham, Maitreya J.; Vert, Jean-Philippe; Noble, William S.

    2015-01-01

    Centromeres are essential for proper chromosome segregation. Despite extensive research, centromere locations in yeast genomes remain difficult to infer, and in most species they are still unknown. Recently, the chromatin conformation capture assay, Hi-C, has been re-purposed for diverse applications, including de novo genome assembly, deconvolution of metagenomic samples and inference of centromere locations. We describe a method, Centurion, that jointly infers the locations of all centromeres in a single genome from Hi-C data by exploiting the centromeres’ tendency to cluster in three-dimensional space. We first demonstrate the accuracy of Centurion in identifying known centromere locations from high coverage Hi-C data of budding yeast and a human malaria parasite. We then use Centurion to infer centromere locations in 14 yeast species. Across all microbes that we consider, Centurion predicts 89% of centromeres within 5 kb of their known locations. We also demonstrate the robustness of the approach in datasets with low sequencing depth. Finally, we predict centromere coordinates for six yeast species that currently lack centromere annotations. These results show that Centurion can be used for centromere identification for diverse species of yeast and possibly other microorganisms. PMID:25940625

  10. Accurate identification of centromere locations in yeast genomes using Hi-C.

    PubMed

    Varoquaux, Nelle; Liachko, Ivan; Ay, Ferhat; Burton, Joshua N; Shendure, Jay; Dunham, Maitreya J; Vert, Jean-Philippe; Noble, William S

    2015-06-23

    Centromeres are essential for proper chromosome segregation. Despite extensive research, centromere locations in yeast genomes remain difficult to infer, and in most species they are still unknown. Recently, the chromatin conformation capture assay, Hi-C, has been re-purposed for diverse applications, including de novo genome assembly, deconvolution of metagenomic samples and inference of centromere locations. We describe a method, Centurion, that jointly infers the locations of all centromeres in a single genome from Hi-C data by exploiting the centromeres' tendency to cluster in three-dimensional space. We first demonstrate the accuracy of Centurion in identifying known centromere locations from high coverage Hi-C data of budding yeast and a human malaria parasite. We then use Centurion to infer centromere locations in 14 yeast species. Across all microbes that we consider, Centurion predicts 89% of centromeres within 5 kb of their known locations. We also demonstrate the robustness of the approach in datasets with low sequencing depth. Finally, we predict centromere coordinates for six yeast species that currently lack centromere annotations. These results show that Centurion can be used for centromere identification for diverse species of yeast and possibly other microorganisms. PMID:25940625

  11. Isolation of plant transcription factors using a modified yeast one-hybrid system

    PubMed Central

    Lopato, Sergiy; Bazanova, Natalia; Morran, Sarah; Milligan, Andrew S; Shirley, Neil; Langridge, Peter

    2006-01-01

    Background The preparation of expressional cDNA libraries for use in the yeast two-hybrid system is quick and efficient when using the dedicated Clontech™ product, the MATCHMAKER Library Construction and Screening Kit 3. This kit employs SMART technology for the amplification of full-length cDNAs, in combination with cloning using homologous recombination. Unfortunately, such cDNA libraries prepared directly in yeast can not be used for the efficient recovery of purified plasmids and thus are incompatible with existing yeast one-hybrid systems, which use yeast transformation for the library screen. Results Here we propose an adaptation of the yeast one-hybrid system for identification and cloning of transcription factors using a MATCHMAKER cDNA library. The procedure is demonstrated using a cDNA library prepared from the liquid part of the multinucleate coenocyte of wheat endosperm. The method is a modification of a standard one-hybrid screening protocol, utilising a mating step to introduce the library construct and reporter construct into the same cell. Several novel full length transcription factors from the homeodomain, AP2 domain and E2F families of transcription factors were identified and isolated. Conclusion In this paper we propose a method to extend the compatibility of MATCHMAKER cDNA libraries from yeast two-hybrid screens to one-hybrid screens. The utility of the new yeast one-hybrid technology is demonstrated by the successful cloning from wheat of full-length cDNAs encoding several transcription factors from three different families. PMID:16504065

  12. Automated Microbiological Detection/Identification System

    PubMed Central

    Aldridge, C.; Jones, P. W.; Gibson, S.; Lanham, J.; Meyer, M.; Vannest, R.; Charles, R.

    1977-01-01

    An automated, computerized system, the AutoMicrobic System, has been developed for the detection, enumeration, and identification of bacteria and yeasts in clinical specimens. The biological basis for the system resides in lyophilized, highly selective and specific media enclosed in wells of a disposable plastic cuvette; introduction of a suitable specimen rehydrates and inoculates the media in the wells. An automated optical system monitors, and the computer interprets, changes in the media, with enumeration and identification results automatically obtained in 13 h. Sixteen different selective media were developed and tested with a variety of seeded (simulated) and clinical specimens. The AutoMicrobic System has been extensively tested with urine specimens, using a urine test kit (Identi-Pak) that contains selective media for Escherichia coli, Proteus species, Pseudomonas aeruginosa, Klebsiella-Enterobacter species, Serratia species, Citrobacter freundii, group D enterococci, Staphylococcus aureus, and yeasts (Candida species and Torulopsis glabrata). The system has been tested with 3,370 seeded urine specimens and 1,486 clinical urines. Agreement with simultaneous conventional (manual) cultures, at levels of 70,000 colony-forming units per ml (or more), was 92% or better for seeded specimens; clinical specimens yielded results of 93% or better for all organisms except P. aeruginosa, where agreement was 86%. System expansion in progress includes antibiotic susceptibility testing and compatibility with most types of clinical specimens. Images PMID:334798

  13. Fourier-Transform Infrared Microspectroscopy, a Novel and Rapid Tool for Identification of Yeasts

    PubMed Central

    Wenning, Mareike; Seiler, Herbert; Scherer, Siegfried

    2002-01-01

    Fourier-transform infrared (FT-IR) microspectroscopy was used in this study to identify yeasts. Cells were grown to microcolonies of 70 to 250 μm in diameter and transferred from the agar plate by replica stamping to an IR-transparent ZnSe carrier. IR spectra of the replicas on the carrier were recorded using an IR microscope coupled to an IR spectrometer, and identification was performed by comparison to reference spectra. The method was tested by using small model libraries comprising reference spectra of 45 strains from 9 genera and 13 species, recorded with both FT-IR microspectroscopy and FT-IR macrospectroscopy. The results show that identification by FT-IR microspectroscopy is equivalent to that achieved by FT-IR macrospectroscopy but the time-consuming isolation of the organisms prior to identification is not necessary. Therefore, this method also provides a rapid tool to analyze mixed populations. Furthermore, identification of 21 Debaryomyces hansenii and 9 Saccharomyces cerevisiae strains resulted in 92% correct identification at the strain level for S. cerevisiae and 91% for D. hansenii, which demonstrates that the resolution power of FT-IR microspectroscopy may also be used for yeast typing at the strain level. PMID:12324312

  14. Polyphasic identification of yeasts isolated from bark of cork oak during the manufacturing process of cork stoppers.

    PubMed

    Villa-Carvajal, Mercedes; Coque, Juan José R; Alvarez-Rodríguez, María Luísa; Uruburu, Federico; Belloch, Carmela

    2004-05-01

    A two-step protocol was used for the identification of 52 yeasts isolated from bark of cork oak at initial stages of the manufacturing process of cork stoppers. The first step in the identification was the separation of the isolates into groups by their physiological properties and RFLPs of the ITS-5.8S rRNA gene. The second step was the sequencing of the D1/D2 domains of the 26S rRNA gene of selected isolates representing the different groups. The results revealed a predominance of basidiomycetous yeasts (11 species), while only two species represented the ascomycetous yeasts. Among the basidiomycetous yeasts, members representing the species Rhodosporidium kratochvilovae and Rhodotorula nothofagi, that have been previously isolated from plant material, were the most abundant. Yeasts pertaining to the species Debaryomyces hansenii var. fabryii, Rhodotorula mucilaginosa and Trichosporon mucoides were isolated in small numbers. PMID:15093778

  15. Improved Identification of Yeast Species Directly from Positive Blood Culture Media by Combining Sepsityper Specimen Processing and Microflex Analysis with the Matrix-Assisted Laser Desorption Ionization Biotyper System▿

    PubMed Central

    Yan, Yingjun; He, Ying; Maier, Thomas; Quinn, Criziel; Shi, Gongyi; Li, Haijing; Stratton, Charles W.; Kostrzewa, Markus; Tang, Yi-Wei

    2011-01-01

    Current methods for identification of yeast from blood cultures may take several days after these microorganisms have been observed by Gram stain smears from positive blood cultures. We explored the use of a matrix-assisted laser desorption ionization (MALDI) Biotyper system in combination with Sepsityper specimen processing and Microflex analysis for improved detection and identification of yeast species directly from positive blood culture specimens demonstrating yeast-like organisms by Gram stain. The limit of detection of yeast species in blood culture medium was determined to be 5.9 × 105 CFU, with intra- and interstrain coefficients of variation of 1.8 to 3.6% and 2.9%, respectively. A total of 42 yeast-containing positive blood culture specimens were processed, and the identification results were compared to those obtained by routinely used phenotypic methods. Specimens with discrepant results between the Biotyper and phenotypic methods were identified on the basis of internal transcribed spacer region sequencing. The MALDI Biotyper system correctly identified the 42 specimens to species level, including 28 (66.7%) Candida albicans, 8 (19.0%) Candida parapsilosis, and 5 (11.9%) Candida tropicalis isolates and 1 (2.4%) Cryptococcus neoformans isolate. The entire procedure, from specimen extraction to final result reporting, can be completed within 1 h. Our data indicated that the Sepsityper specimen processing and Microflex analysis by the MALDI Biotyper system provide a rapid and reliable tool for yeast species identification directly from positive blood culture media. PMID:21543564

  16. Are the Conventional Commercial Yeast Identification Methods Still Helpful in the Era of New Clinical Microbiology Diagnostics? A Meta-Analysis of Their Accuracy

    PubMed Central

    Efremov, Ljupcho; Leoncini, Emanuele; Amore, Rosarita; Posteraro, Patrizia; Ricciardi, Walter

    2015-01-01

    Accurate identification of pathogenic species is important for early appropriate patient management, but growing diversity of infectious species/strains makes the identification of clinical yeasts increasingly difficult. Among conventional methods that are commercially available, the API ID32C, AuxaColor, and Vitek 2 systems are currently the most used systems in routine clinical microbiology. We performed a systematic review and meta-analysis to estimate and to compare the accuracy of the three systems, in order to assess whether they are still of value for the species-level identification of medically relevant yeasts. After adopting rigorous selection criteria, we included 26 published studies involving Candida and non-Candida yeasts that were tested with the API ID32C (674 isolates), AuxaColor (1,740 isolates), and Vitek 2 (2,853 isolates) systems. The random-effects pooled identification ratios at the species level were 0.89 (95% confidence interval [CI], 0.80 to 0.95) for the API ID32C system, 0.89 (95% CI, 0.83 to 0.93) for the AuxaColor system, and 0.93 (95% CI, 0.89 to 0.96) for the Vitek 2 system (P for heterogeneity, 0.255). Overall, the accuracy of studies using phenotypic analysis-based comparison methods was comparable to that of studies using molecular analysis-based comparison methods. Subanalysis of studies conducted on Candida yeasts showed that the Vitek 2 system was significantly more accurate (pooled ratio, 0.94 [95% CI, 0.85 to 0.99]) than the API ID32C system (pooled ratio, 0.84 [95% CI, 0.61 to 0.99]) and the AuxaColor system (pooled ratio, 0.76 [95% CI, 0.67 to 0.84]) with respect to uncommon species (P for heterogeneity, <0.05). Subanalysis of studies conducted on non-Candida yeasts (i.e., Cryptococcus, Rhodotorula, Saccharomyces, and Trichosporon) revealed pooled identification accuracies of ≥98% for the Vitek 2, API ID32C (excluding Cryptococcus), and AuxaColor (only Rhodotorula) systems, with significant low or null levels of heterogeneity (P > 0.05). Nonetheless, clinical microbiologists should reconsider the usefulness of these systems, particularly in light of new diagnostic tools such as matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry, which allow for considerably shortened turnaround times and/or avoid the requirement for additional tests for species identity confirmation. PMID:25994160

  17. Are the Conventional Commercial Yeast Identification Methods Still Helpful in the Era of New Clinical Microbiology Diagnostics? A Meta-Analysis of Their Accuracy.

    PubMed

    Posteraro, Brunella; Efremov, Ljupcho; Leoncini, Emanuele; Amore, Rosarita; Posteraro, Patrizia; Ricciardi, Walter; Sanguinetti, Maurizio

    2015-08-01

    Accurate identification of pathogenic species is important for early appropriate patient management, but growing diversity of infectious species/strains makes the identification of clinical yeasts increasingly difficult. Among conventional methods that are commercially available, the API ID32C, AuxaColor, and Vitek 2 systems are currently the most used systems in routine clinical microbiology. We performed a systematic review and meta-analysis to estimate and to compare the accuracy of the three systems, in order to assess whether they are still of value for the species-level identification of medically relevant yeasts. After adopting rigorous selection criteria, we included 26 published studies involving Candida and non-Candida yeasts that were tested with the API ID32C (674 isolates), AuxaColor (1,740 isolates), and Vitek 2 (2,853 isolates) systems. The random-effects pooled identification ratios at the species level were 0.89 (95% confidence interval [CI], 0.80 to 0.95) for the API ID32C system, 0.89 (95% CI, 0.83 to 0.93) for the AuxaColor system, and 0.93 (95% CI, 0.89 to 0.96) for the Vitek 2 system (P for heterogeneity, 0.255). Overall, the accuracy of studies using phenotypic analysis-based comparison methods was comparable to that of studies using molecular analysis-based comparison methods. Subanalysis of studies conducted on Candida yeasts showed that the Vitek 2 system was significantly more accurate (pooled ratio, 0.94 [95% CI, 0.85 to 0.99]) than the API ID32C system (pooled ratio, 0.84 [95% CI, 0.61 to 0.99]) and the AuxaColor system (pooled ratio, 0.76 [95% CI, 0.67 to 0.84]) with respect to uncommon species (P for heterogeneity, <0.05). Subanalysis of studies conducted on non-Candida yeasts (i.e., Cryptococcus, Rhodotorula, Saccharomyces, and Trichosporon) revealed pooled identification accuracies of ≥98% for the Vitek 2, API ID32C (excluding Cryptococcus), and AuxaColor (only Rhodotorula) systems, with significant low or null levels of heterogeneity (P > 0.05). Nonetheless, clinical microbiologists should reconsider the usefulness of these systems, particularly in light of new diagnostic tools such as matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, which allow for considerably shortened turnaround times and/or avoid the requirement for additional tests for species identity confirmation. PMID:25994160

  18. Yeast Prions: Structure, Biology, and Prion-Handling Systems

    PubMed Central

    Shewmaker, Frank P.; Bateman, David A.; Edskes, Herman K.; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E.

    2015-01-01

    SUMMARY A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. PMID:25631286

  19. High-Throughput Identification of Bacteria and Yeast by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry in Conventional Medical Microbiology Laboratories ▿

    PubMed Central

    van Veen, S. Q.; Claas, E. C. J.; Kuijper, Ed J.

    2010-01-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory. PMID:20053859

  20. Identification of predominant yeasts associated with artisan Mexican cocoa fermentations using culture-dependent and culture-independent approaches.

    PubMed

    Arana-Sánchez, A; Segura-García, L E; Kirchmayr, M; Orozco-Ávila, I; Lugo-Cervantes, E; Gschaedler-Mathis, A

    2015-02-01

    The process of cocoa fermentation is a very important step for the generation or aromatic compounds, which are attributable to the metabolism of the microorganisms involved. There are some reports about this process and the identification of microorganisms; however, there are no reports identifying the yeasts involved in a Mexican cocoa fermentation process using molecular biology techniques, including restricted fragment length polymorphism (RFLP) and denaturing gradient gel electrophoresis (DGGE). The aim of this study was to identify the main yeast species associated with Mexican cocoa fermentations employing culture-dependent and -independent techniques achieving two samplings with a 1 year time difference at the same site. Isolation of the microorganisms was performed in situ. Molecular identification of yeast isolates was achieved by RFLP analysis and rDNA sequencing. Total DNA from the microorganisms on the cocoa beans was utilized for the DGGE analysis. Bands from the DGGE gels were excised and sequenced. Nineteen isolated yeasts were identified (al specie level), three of which had never before been associated with cocoa fermentations worldwide. The detected predominant yeast varied from one technique to another. Hanseniaspora sp. resulted dominant in DGGE however Saccharomyces cerevisiae was the principal isolated species. In conclusion, the culture-dependent and -independent techniques complement each other showing differences in the main yeasts involved in spontaneous cocoa fermentation, probably due to the physiological states of the viable but non culturable yeasts. Furthermore important differences between the species detected in the two samplings were detected. PMID:25566818

  1. Molecular identification and osmotolerant profile of wine yeasts that ferment a high sugar grape must.

    PubMed

    Tofalo, Rosanna; Chaves-López, Clemencia; Di Fabio, Federico; Schirone, Maria; Felis, Giovanna E; Torriani, Sandra; Paparella, Antonello; Suzzi, Giovanna

    2009-04-15

    The objective of this study was to examine the Saccharomyces and non-Saccharomyces yeast populations involved in a spontaneous fermentation of a traditional high sugar must (Vino cotto) produced in central Italy. Molecular identification of a total of 78 isolates was achieved by a combination of PCR-RFLP of the 5.8S ITS rRNA region and sequencing of the D1/D2 domain of the 26S rRNA gene. In addition, the isolates were differentiated by RAPD-PCR. Only a restricted number of osmotolerant yeast species, i.e. Candida apicola, Candida zemplinina and Zygosaccharomyces bailii, were found throughout all the fermentation process, while Saccharomyces cerevisiae prevailed after 15 days of fermentation. A physiological characterization of isolates was performed in relation to the resistance to osmotic stress and ethanol concentration. The osmotolerant features of C. apicola, C. zemplinina and Z. bailii were confirmed, while S. cerevisiae strains showed three patterns of growth in response to different glucose concentrations (2%, 20%, 40% and 60% w/v). The ability of some C. apicola and C. zemplinina strains to grow at 14% v/v ethanol is noteworthy. The finding that some yeast biotypes with higher multiple stress tolerance can persist in the entire winemaking process suggests possible future candidates as starter for Vino cotto production. PMID:19230999

  2. Uniform power plant identification system

    SciTech Connect

    Christiansen, W. ); Pannenbacker, K. ); Popp, H. ); Seltmann, A. )

    1990-01-01

    In the seventies in the Federal Republic of Germany a uniform power plant identification system (Kraftwerks-Kennzeichen-System, KKS) was developed and introduced. It allows to keep the identification by all engineering disciplines from planning to waste management for any type of power plant. The paper explains the historical development, the structure and the application of this system.

  3. Clinical Evaluation of the FilmArray Blood Culture Identification Panel in Identification of Bacteria and Yeasts from Positive Blood Culture Bottles

    PubMed Central

    Altun, Osman; Almuhayawi, Mohammed; Ullberg, Måns

    2013-01-01

    The FilmArray platform (FA; BioFire, Salt Lake City, UT) is a closed diagnostic system allowing high-order multiplex PCR analysis with automated readout of results directly from positive blood cultures in 1 h. In the present study, we evaluated the clinical performance of the FilmArray blood culture identification (BCID) panel, which includes 19 bacteria, five yeasts, and three antibiotic resistance genes. In total, 206 blood culture bottles were included in the study. The FilmArray could identify microorganisms in 153/167 (91.6%) samples with monomicrobial growth. Thirteen of the 167 (7.8%) microorganisms were not covered by the FilmArray BCID panel. In 6/167 (3.6%) samples, the FilmArray detected an additional microorganism compared to blood culture. When polymicrobial growth was analyzed, the FilmArray could detect all target microorganisms in 17/24 (71%) samples. Twelve blood culture bottles that yielded a positive signal but showed no growth were also negative by FilmArray. In 3/206 (1.5%) bottles, the FilmArray results were invalid. The results of the FilmArray were reproducible, as demonstrated by the testing and retesting of five bottles in the same day and a longitudinal follow-up of five other blood cultures up to 4 weeks. The present study shows that the FilmArray is a rapid identification method with high performance in direct identification of bacteria and yeasts from positive blood culture bottles. PMID:24088863

  4. Detection and identification of wild yeasts in Champs, a fermented Colombian maize beverage.

    PubMed

    Osorio-Cadavid, Esteban; Chaves-Lpez, Clemencia; Tofalo, Rosanna; Paparella, Antonello; Suzzi, Giovanna

    2008-09-01

    The aim of this study was to identify and characterise the predominant yeasts in Champs, a traditional Colombian cereal-based beverage with a low alcoholic content. Samples of Champs from 20 production sites in the Cauca Valley region were analysed. A total of 235 yeast isolates were identified by conventional microbiological analyses and by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of ITS1-5.8S rDNA-ITS2. The dominant species were: Saccharomyces cerevisiae, Issatchenkia orientalis, Pichia fermentans, Pichia kluyveri var. kluyveri, Zygosaccharomyces fermentati, Torulospora delbruekii, Galactomyces geotrichum and Hanseniaspora spp. Model Champs systems were inoculated with single strains of some isolated sporogenus species and the aromatic profiles were analysed by SPME. Analysis of data showed that Champs strains produced high amounts of esters. The aromatic compounds produced by Saccharomyces and non-Saccharomyces yeasts from Champs can exert a relevant influence on the sensory characteristics of the fermented beverage. The Champs strains could thus represent an important source for new yeast biotypes with potential industrial applications. PMID:18620968

  5. Dietary Yeasts Reduce Inflammation in Central Nerve System via Microflora

    PubMed Central

    Takata, Kazushiro; Tomita, Takayuki; Okuno, Tatsusada; Kinoshita, Makoto; Koda, Toru; Honorat, Josephe A; Takei, Masaya; Hagihara, Kouichiro; Sugimoto, Tomoyuki; Mochizuki, Hideki; Sakoda, Saburo; Nakatsuji, Yuji

    2015-01-01

    Objectives The intestinal microflora affects the pathogenesis of several autoimmune diseases by influencing immune system function. Some bacteria, such as lactic acid bacteria, have been reported to have beneficial effects on immune function. However, little is known about the effects of yeasts. Here, we aimed to investigate the effects of various dietary yeasts contained in fermented foods on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), and to elucidate the mechanisms underlying these effects. Methods The effects of eight yeasts selected from 18 types of yeasts contained in fermented foods were examined using an EAE model. Of these, Candida kefyr was investigated by analyzing the intestinal microflora and its effects on intestinal and systemic immune states. Results Administration of C. kefyr ameliorated the severity of EAE. Reduced numbers of Th17 cells, suppressed interleukin (IL)-6 production by intestinal explants, and increased Tregs and CD103-positive regulatory dendritic cells in mesenteric lymph nodes (MLNs) were observed. Analysis of 16s-rDNA from feces of C. kefyr-treated mice demonstrated increased Lactobacillales and decreased Bacteroides compared to control flora. Transfer of intestinal microbiota also resulted in decreased Bacteroides and ameliorated symptoms of EAE. Thus, oral administration of C. kefyr ameliorated EAE by altering the microflora, accompanied by increased Tregs and CD103-positive regulatory dendritic cells in MLNs and decreased Th17 cells in the intestinal lamina propria. Interpretation Oral ingestion of C. kefyr may have beneficial effects on MS by modifying microflora. In addition, our findings also suggested the potential health benefits of dietary yeasts. PMID:25642435

  6. RAPID IDENTIFICATION OF CANDIDA ALBICANS DIRECTLY FROM YEAST POSITIVE BLOOD CULTURE BOTTLES BY FLUORESCENCE IN SITU HYBRIDIZATION USING PNA PROBES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new fluorescence in situ hybridization (FISH) method using peptide nucleic acid (PNA) probes for identification of Candida albicans directly from yeast-positive blood culture bottles is described. The test (C. albicans PNA FISH) is based on a fluorescein-labeled PNA probe targeting C. albicans 26...

  7. Identification of multivariate linear systems

    SciTech Connect

    Griffith, J.M.

    1982-04-01

    Multivariate identification problems are treated with a least-squares approach. A chapter on scalar problems focuses attention on the classical parameter-estimate bias problem caused by measurement noise and develops a straightforward and effective way to remove the bias. A chapter on multivariate problems generalizes the bias removal method and develops a form selection procedure. The form selection procedure generally ensures more accurate identification than is possible with identification methods which rely on a fixed form. The concept of a form selection procedure is new to this work. A results chapter presents four example problems. Each example illustrates specific features of the identification technique. As a collection the examples emphasize the complexity of system identification and demonstrate that identification techniques will perform well when carefully applied.

  8. Killer systems of the yeast Saccharomyces cerevisiae

    SciTech Connect

    Nesterova, G.F.

    1989-01-01

    The killer systems of Saccharomyces cerevisiae are an unusual class of cytoplasmic symbionts of primitive eukaryotes. The genetic material of these symbionts is double-stranded RNA. They are characterized by the linearity of the genome, its fragmentation into a major and a minor fraction, which replicate separately, and their ability to control the synthesis of secretory mycocin proteins possessing a toxic action on closely related strains. The secretion of mycocins at the same time ensures acquiring of resistance to them. Strains containing killer symbionts are toxigenic and resistant to the action of their own toxin, but strains that are free of killer double-stranded RNAs are sensitive to the action of mycocins. The killer systems of S. cerevisiae have retained features relating them to viruses and are apparently the result of evolution of infectious viruses. The occurrences of such systems among monocellular eukaryotic organisms is an example of complication of the genome by means of its assembly from virus-like components. We discuss the unusual features of replication and the expression of killer systems and their utilization in the construction of vector molecules.

  9. Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast.

    PubMed

    Sun, Xiaoying; Hirai, Go; Ueki, Masashi; Hirota, Hiroshi; Wang, Qianqian; Hongo, Yayoi; Nakamura, Takemichi; Hitora, Yuki; Takahashi, Hidekazu; Sodeoka, Mikiko; Osada, Hiroyuki; Hamamoto, Makiko; Yoshida, Minoru; Yashiroda, Yoko

    2016-01-01

    Uptake of poor nitrogen sources such as branched-chain amino acids is repressed in the presence of high-quality nitrogen sources such as NH4(+) and glutamate (Glu), which is called nitrogen catabolite repression. Amino acid auxotrophic mutants of the fission yeast Schizosaccharomyces pombe were unable to grow on minimal medium containing NH4Cl or Glu even when adequate amounts of required amino acids were supplied. However, growth of these mutant cells was recovered in the vicinity of colonies of the prototrophic strain, suggesting that the prototrophic cells secrete some substances that can restore uptake of amino acids by an unknown mechanism. We identified the novel fatty acids, 10(R)-acetoxy-8(Z)-octadecenoic acid and 10(R)-hydroxy-8(Z)-octadecenoic acid, as secreted active substances, referred to as Nitrogen Signaling Factors (NSFs). Synthetic NSFs were also able to shift nitrogen source utilization from high-quality to poor nitrogen sources to allow adaptive growth of the fission yeast amino acid auxotrophic mutants in the presence of high-quality nitrogen sources. Finally, we demonstrated that the Agp3 amino acid transporter was involved in the adaptive growth. The data highlight a novel intra-species communication system for adaptation to environmental nutritional conditions in fission yeast. PMID:26892493

  10. Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast

    PubMed Central

    Sun, Xiaoying; Hirai, Go; Ueki, Masashi; Hirota, Hiroshi; Wang, Qianqian; Hongo, Yayoi; Nakamura, Takemichi; Hitora, Yuki; Takahashi, Hidekazu; Sodeoka, Mikiko; Osada, Hiroyuki; Hamamoto, Makiko; Yoshida, Minoru; Yashiroda, Yoko

    2016-01-01

    Uptake of poor nitrogen sources such as branched-chain amino acids is repressed in the presence of high-quality nitrogen sources such as NH4+ and glutamate (Glu), which is called nitrogen catabolite repression. Amino acid auxotrophic mutants of the fission yeast Schizosaccharomyces pombe were unable to grow on minimal medium containing NH4Cl or Glu even when adequate amounts of required amino acids were supplied. However, growth of these mutant cells was recovered in the vicinity of colonies of the prototrophic strain, suggesting that the prototrophic cells secrete some substances that can restore uptake of amino acids by an unknown mechanism. We identified the novel fatty acids, 10(R)-acetoxy-8(Z)-octadecenoic acid and 10(R)-hydroxy-8(Z)-octadecenoic acid, as secreted active substances, referred to as Nitrogen Signaling Factors (NSFs). Synthetic NSFs were also able to shift nitrogen source utilization from high-quality to poor nitrogen sources to allow adaptive growth of the fission yeast amino acid auxotrophic mutants in the presence of high-quality nitrogen sources. Finally, we demonstrated that the Agp3 amino acid transporter was involved in the adaptive growth. The data highlight a novel intra-species communication system for adaptation to environmental nutritional conditions in fission yeast. PMID:26892493

  11. NADP Regulates the Yeast GAL Induction System

    SciTech Connect

    Kumar,P.; Yao, Y.; Sternglanz, R.; Johnston, S.; Joshua-Tor, L.

    2008-01-01

    Transcriptional regulation of the galactose-metabolizing genes in Saccharomyces cerevisiae depends on three core proteins: Gal4p, the transcriptional activator that binds to upstream activating DNA sequences (UASGAL); Gal80p, a repressor that binds to the carboxyl terminus of Gal4p and inhibits transcription; and Gal3p, a cytoplasmic transducer that, upon binding galactose and adenosine 5'-triphosphate, relieves Gal80p repression. The current model of induction relies on Gal3p sequestering Gal80p in the cytoplasm. However, the rapid induction of this system implies that there is a missing factor. Our structure of Gal80p in complex with a peptide from the carboxyl-terminal activation domain of Gal4p reveals the existence of a dinucleotide that mediates the interaction between the two. Biochemical and in vivo experiments suggests that nicotinamide adenine dinucleotide phosphate (NADP) plays a key role in the initial induction event.

  12. Running title: Yeasts from refrigerated commercial shell eggs Identification of yeasts isolated from commercial shell eggs stored at refrigerated temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts and molds can grow on or in eggs, causing spoilage. Washed and unwashed eggs (treatments) were collected aseptically on three separate days (replications) from a commercial processing facility and stored for 10 weeks at 4ºC. Ten eggs from each treatment were sampled weekly (110 eggs/treatme...

  13. Development and characterization of a reconstituted yeast translation initiation system.

    PubMed Central

    Algire, Mikkel A; Maag, David; Savio, Peter; Acker, Michael G; Tarun, Salvador Z; Sachs, Alan B; Asano, Katsura; Nielsen, Klaus H; Olsen, Deanne S; Phan, Lon; Hinnebusch, Alan G; Lorsch, Jon R

    2002-01-01

    To provide a bridge between in vivo and in vitro studies of eukaryotic translation initiation, we have developed a reconstituted translation initiation system using components from the yeast Saccharomyces cerevisiae. We have purified a minimal set of initiation factors (elFs) that, together with yeast 80S ribosomes, GTP, and initiator methionyl-tRNA, are sufficient to assemble active initiation complexes on a minimal mRNA template. The kinetics of various steps in the pathway of initiation complex assembly and the formation of the first peptide bond in vitro have been explored. The formation of active initiation complexes in this system is dependent on ribosomes, mRNA, Met-tRNAi, GTP hydrolysis, elF1, elF1A, elF2, elF5, and elF5B. Our data indicate that elF1 and elF1A both facilitate the binding of the elF2 x GTP x Met-tRNAi complex to the 40S ribosomal subunit to form the 43S complex. elF5 stimulates a step after 43S complex formation, consistent with its proposed role in activating GTP hydrolysis by elF2 upon initiation codon recognition. The presence of elF5B is required for the joining of the 40S and 60S subunits to form the 80S initiation complex. The step at which each of these factors acts in this reconstituted system is in agreement with previous data from in vivo studies and work using reconstituted mammalian systems, indicating that the system recapitulates fundamental events in translation initiation in eukaryotic cells. This system should allow us to couple powerful yeast genetic and molecular biological experiments with in vitro kinetic and biophysical experiments, yielding a better understanding of the molecular mechanics of this central, complex process. PMID:12008673

  14. Identification of gene encoding Plasmodium knowlesi phosphatidylserine decarboxylase by genetic complementation in yeast and characterization of in vitro maturation of encoded enzyme.

    PubMed

    Choi, Jae-Yeon; Augagneur, Yoann; Ben Mamoun, Choukri; Voelker, Dennis R

    2012-01-01

    The 23-megabase genome of Plasmodium falciparum, the causative agent of severe human malaria, contains ∼5300 genes, most of unknown function or lacking homologs in other organisms. Identification of these gene functions will help in the discovery of novel targets for the development of antimalarial drugs and vaccines. The P. falciparum genome is unusually A+T-rich, which hampers cloning and expressing these genes in heterologous systems for functional analysis. The large repertoire of genetic tools available for Saccharomyces cerevisiae makes this yeast an ideal system for large scale functional complementation analyses of parasite genes. Here, we report the construction of a cDNA library from P. knowlesi, which has a lower A+T content compared with P. falciparum. This library was applied in a yeast complementation assay to identify malaria genes involved in the decarboxylation of phosphatidylserine. Transformation of a psd1Δpsd2Δdpl1Δ yeast strain, defective in phosphatidylethanolamine synthesis, with the P. knowlesi library led to identification of a new parasite phosphatidylserine decarboxylase (PkPSD). Unlike phosphatidylserine decarboxylase enzymes from other eukaryotes that are tightly associated with membranes, the PkPSD enzyme expressed in yeast was equally distributed between membrane and soluble fractions. In vitro studies reveal that truncated forms of PkPSD are soluble and undergo auto-endoproteolytic maturation in a phosphatidylserine-dependent reaction that is inhibited by other anionic phospholipids. This study defines a new system for probing the function of Plasmodium genes by library-based genetic complementation and its usefulness in revealing new biochemical properties of encoded proteins. PMID:22057268

  15. Rapid Identification of Chemoresistance Mechanisms Using Yeast DNA Mismatch Repair Mutants

    PubMed Central

    Ojini, Irene; Gammie, Alison

    2015-01-01

    Resistance to cancer therapy is a major obstacle in the long-term treatment of cancer. A greater understanding of drug resistance mechanisms will ultimately lead to the development of effective therapeutic strategies to prevent resistance from occurring. Here, we exploit the mutator phenotype of mismatch repair defective yeast cells combined with whole genome sequencing to identify drug resistance mutations in key pathways involved in the development of chemoresistance. The utility of this approach was demonstrated via the identification of the known CAN1 and TOP1 resistance targets for two compounds, canavanine and camptothecin, respectively. We have also experimentally validated the plasma membrane transporter HNM1 as the primary drug resistance target of mechlorethamine. Furthermore, the sequencing of mitoxantrone-resistant strains identified inactivating mutations within IPT1, a gene encoding inositolphosphotransferase, an enzyme involved in sphingolipid biosynthesis. In the case of bactobolin, a promising anticancer drug, the endocytosis pathway was identified as the drug resistance target responsible for conferring resistance. Finally, we show that that rapamycin, an mTOR inhibitor previously shown to alter the fitness of the ipt1 mutant, can effectively prevent the formation of mitoxantrone resistance. The rapid and robust nature of these techniques, using Saccharomyces cerevisiae as a model organism, should accelerate the identification of drug resistance targets and guide the development of novel therapeutic combination strategies to prevent the development of chemoresistance in various cancers. PMID:26199284

  16. 49 CFR 1542.211 - Identification systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Identification systems. 1542.211 Section 1542.211... systems. (a) Personnel identification system. The personnel identification system under §§ 1542.201(b)(3... identification media stock and supplies. (iv) Auditing the system at a minimum of once a year or sooner,...

  17. 49 CFR 1542.211 - Identification systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Identification systems. 1542.211 Section 1542.211... systems. (a) Personnel identification system. The personnel identification system under §§ 1542.201(b)(3... identification media stock and supplies. (iv) Auditing the system at a minimum of once a year or sooner,...

  18. 49 CFR 1542.211 - Identification systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Identification systems. 1542.211 Section 1542.211... systems. (a) Personnel identification system. The personnel identification system under §§ 1542.201(b)(3... identification media stock and supplies. (iv) Auditing the system at a minimum of once a year or sooner,...

  19. 49 CFR 1542.211 - Identification systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Identification systems. 1542.211 Section 1542.211... systems. (a) Personnel identification system. The personnel identification system under §§ 1542.201(b)(3... identification media stock and supplies. (iv) Auditing the system at a minimum of once a year or sooner,...

  20. Assessment of Reproducibility of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Bacterial and Yeast Identification.

    PubMed

    Westblade, Lars F; Garner, Omai B; MacDonald, Karen; Bradford, Constance; Pincus, David H; Mochon, A Brian; Jennemann, Rebecca; Manji, Ryhana; Bythrow, Maureen; Lewinski, Michael A; Burnham, Carey-Ann D; Ginocchio, Christine C

    2015-07-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has revolutionized the identification of clinical bacterial and yeast isolates. However, data describing the reproducibility of MALDI-TOF MS for microbial identification are scarce. In this study, we show that MALDI-TOF MS-based microbial identification is highly reproducible and can tolerate numerous variables, including differences in testing environments, instruments, operators, reagent lots, and sample positioning patterns. Finally, we reveal that samples of bacterial and yeast isolates prepared for MALDI-TOF MS identification can be repeatedly analyzed without compromising organism identification. PMID:25926486

  1. Assessment of Reproducibility of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Bacterial and Yeast Identification

    PubMed Central

    Westblade, Lars F.; Garner, Omai B.; MacDonald, Karen; Bradford, Constance; Pincus, David H.; Mochon, A. Brian; Jennemann, Rebecca; Manji, Ryhana; Bythrow, Maureen; Lewinski, Michael A.; Burnham, Carey-Ann D.

    2015-01-01

    Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) has revolutionized the identification of clinical bacterial and yeast isolates. However, data describing the reproducibility of MALDI-TOF MS for microbial identification are scarce. In this study, we show that MALDI-TOF MS-based microbial identification is highly reproducible and can tolerate numerous variables, including differences in testing environments, instruments, operators, reagent lots, and sample positioning patterns. Finally, we reveal that samples of bacterial and yeast isolates prepared for MALDI-TOF MS identification can be repeatedly analyzed without compromising organism identification. PMID:25926486

  2. Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels

    PubMed Central

    Shevchenko, Andrej; Jensen, Ole N.; Podtelejnikov, Alexandre V.; Sagliocco, Francis; Wilm, Matthias; Vorm, Ole; Mortensen, Peter; Shevchenko, Anna; Boucherie, Helian; Mann, Matthias

    1996-01-01

    The function of many of the uncharacterized open reading frames discovered by genomic sequencing can be determined at the level of expressed gene products, the proteome. However, identifying the cognate gene from minute amounts of protein has been one of the major problems in molecular biology. Using yeast as an example, we demonstrate here that mass spectrometric protein identification is a general solution to this problem given a completely sequenced genome. As a first screen, our strategy uses automated laser desorption ionization mass spectrometry of the peptide mixtures produced by in-gel tryptic digestion of a protein. Up to 90% of proteins are identified by searching sequence data bases by lists of peptide masses obtained with high accuracy. The remaining proteins are identified by partially sequencing several peptides of the unseparated mixture by nanoelectrospray tandem mass spectrometry followed by data base searching with multiple peptide sequence tags. In blind trials, the method led to unambiguous identification in all cases. In the largest individual protein identification project to date, a total of 150 gel spots—many of them at subpicomole amounts—were successfully analyzed, greatly enlarging a yeast two-dimensional gel data base. More than 32 proteins were novel and matched to previously uncharacterized open reading frames in the yeast genome. This study establishes that mass spectrometry provides the required throughput, the certainty of identification, and the general applicability to serve as the method of choice to connect genome and proteome. PMID:8962070

  3. Presumptive identification of an emerging yeast pathogen: Candida dubliniensis (sp. nov.) reduces 2,3,5-triphenyltetrazolium chloride.

    PubMed

    Velegraki, A; Logotheti, M

    1998-03-01

    Developments in medical intervention and the increasing population of patients with immunodeficiencies and transient or long-term immunosuppression have increased the list of yeast species that can cause disease. Candida dubliniensis is a novel species with close genetic relatedness to C. albicans. The two species share many common physiological and biochemical properties thus making their distinction cumbrous. A rapid and inexpensive way to presumptively differentiate between the two species, having previously performed a germ tube test, is the ability of C. dubliniensis to reduce the tetrazolium salt and it is reported for the first time. Microbiological information about new and emerging yeast pathogens, including rapid means for their identification, equips medical microbiologists with the means to identify and physicians to treat effectively infections attributed to unusual yeasts. PMID:9566495

  4. Identification of benzoquinones in pretreated lignocellulosic feedstocks and inhibitory effects on yeast.

    PubMed

    Stagge, Stefan; Cavka, Adnan; Jönsson, Leif J

    2015-12-01

    Pretreatment of lignocellulosic biomass under acidic conditions gives rise to by-products that inhibit fermenting microorganisms. An analytical procedure for identification of p-benzoquinone (BQ) and 2,6-dimethoxybenzoquinone (DMBQ) in pretreated biomass was developed, and the inhibitory effects of BQ and DMBQ on the yeast Saccharomyces cerevisiae were assessed. The benzoquinones were analyzed using ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole-mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine. Pretreatment liquids examined with regard to the presence of BQ and DMBQ originated from six different lignocellulosic feedstocks covering agricultural residues, hardwood, and softwood, and were produced through impregnation with sulfuric acid or sulfur dioxide at varying pretreatment temperature (165-204 °C) and residence time (6-20 min). BQ was detected in all six pretreatment liquids in concentrations ranging up to 6 mg/l, while DMBQ was detected in four pretreatment liquids in concentrations ranging up to 0.5 mg/l. The result indicates that benzoquinones are ubiquitous as by-products of acid pretreatment of lignocellulose, regardless of feedstock and pretreatment conditions. Fermentation experiments with BQ and DMBQ covered the concentration ranges 2 mg/l to 1 g/l and 20 mg/l to 1 g/l, respectively. Even the lowest BQ concentration tested (2 mg/l) was strongly inhibitory to yeast, while 20 mg/l DMBQ gave a slight negative effect on ethanol formation. This work shows that benzoquinones should be regarded as potent and widespread inhibitors in lignocellulosic hydrolysates, and that they warrant attention besides more well-studied inhibitory substances, such as aliphatic carboxylic acids, phenols, and furan aldehydes. PMID:26384342

  5. Presumptive identification of Clostridium difficile by detection of p-cresol in prepared peptone yeast glucose broth supplemented with p-hydroxyphenylacetic acid.

    PubMed Central

    Sivsammye, G; Sims, H V

    1990-01-01

    Prereduced, anaerobically sterilized peptone yeast glucose broth was supplemented with p-hydroxyphenylacetic acid and used for the presumptive identification of Clostridium difficile. Two hundred eighty-two organisms were grown in this medium for 18 h and tested for p-cresol production by gas-liquid chromatography. All 49 stock and reference strains of C. difficile and 19 organisms confirmed as C. difficile produced p-cresol. p-Cresol was not produced by 53 negative control or 161 test organisms. The system was convenient and effective. PMID:2394806

  6. Presumptive identification of Clostridium difficile by detection of p-cresol in prepared peptone yeast glucose broth supplemented with p-hydroxyphenylacetic acid.

    PubMed

    Sivsammye, G; Sims, H V

    1990-08-01

    Prereduced, anaerobically sterilized peptone yeast glucose broth was supplemented with p-hydroxyphenylacetic acid and used for the presumptive identification of Clostridium difficile. Two hundred eighty-two organisms were grown in this medium for 18 h and tested for p-cresol production by gas-liquid chromatography. All 49 stock and reference strains of C. difficile and 19 organisms confirmed as C. difficile produced p-cresol. p-Cresol was not produced by 53 negative control or 161 test organisms. The system was convenient and effective. PMID:2394806

  7. System identification. [of space structures

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    1993-01-01

    Major issues in system identification are summarized and recent advances are reviewed. Modal testing and system identification used in control theory are examined, and the mathematical relationships and conversions of the models appropriate to modal testing and those appropriate to modern control design methods are discussed. The importance of obtaining input and output matrices in modal testing is emphasized, and the changes that may be needed in modal testing procedures to meet the needs of the control system designer are addressed. Directions for future research are considered.

  8. Identification of a putative RNA helicase (HRH1), a human homolog of yeast Prp22.

    PubMed Central

    Ono, Y; Ohno, M; Shimura, Y

    1994-01-01

    In the budding yeast Saccharomyces cerevisiae, a number of PRP genes known to be involved in pre-mRNA processing have been genetically identified and cloned. Three PRP genes (PRP2, PRP16, and PRP22) were shown to encode putative RNA helicases of the family of proteins with DEAH boxes. However, any such splicing factor containing the helicase motifs in vertebrates has not been identified. To identify human homologs of this family, we designed PCR primers corresponding to the highly conserved region of the DEAH box protein family and successfully amplified five cDNA fragments, using HeLa poly(A)+ RNA as a substrate. One fragment, designated HRH1 (human RNA helicase 1), is highly homologous to Prp22, which was previously shown to be involved in the release of spliced mRNAs from the spliceosomes. Expression of HRH1 in a S. cerevisiae prp22 mutant can partially rescue its temperature-sensitive phenotype. These results strongly suggest that HRH1 is a functional human homolog of the yeast Prp22 protein. Interestingly, HRH1 but not Prp22 contains an arginine- and serine-rich domain (RS domain) which is characteristic of some splicing factors, such as members of the SR protein family. We could show that HRH1 can interact in vitro and in the yeast two-hybrid system with members of the SR protein family through its RS domain. We speculate that HRH1 might be targeted to the spliceosome through this interaction. Images PMID:7935475

  9. Systems identification - reprise and projections

    NASA Technical Reports Server (NTRS)

    Taylor, L. W., Jr.

    1974-01-01

    A state-of-the-arts review is given for the field of system identification. Progress in the field is traced from the early models of dynamic systems by Sir Isaac Newton up to the present day use of advanced techniques for numerous applications.

  10. Identification of a rice APETALA3 homologue by yeast two-hybrid screening.

    PubMed

    Moon, Y H; Jung, J Y; Kang, H G; An, G

    1999-05-01

    A cDNA clone OsMADS16 was isolated from the rice young inflorescence cDNA expression library by the yeast two-hybrid screening method with OsMADS4 as bait. We have previously shown that the OsMADS4 gene is a member of the PI family and that the MADS-box gene is involved in controlling development of the second and third whorls of rice flowers. The sequence comparison indicated that OsMADS16 belongs to the AP3 family. The OsMADS16 protein contains a PI-derived motif, FAFRVVPSQPNLH, that is a conserved sequence in AP3 family genes at the C-terminal region. In addition, OsMADS16 contains a paleoAP3 motif, YGGNHDLRLG, downstream of the PI-derived motif. The paleoAP3 motif is a consensus sequence in the C-terminal region of the AP3 family genes of lower eudicot and magnolid dicot species. RNA blot analysis showed that the OsMADS16 gene was expressed in the second and third whorls, whereas the OsMADS4 transcripts were present in the second, third, and fourth whorls. These expression patterns of the OsMADS16 and OsMADS4 genes are very similar to those of AP3 and PI, respectively. In the yeast two-hybrid system, OsMADS4 interacted only with OsMADS16 among several rice MADS genes investigated, suggesting that OsMADS4 and OsMADS16 function as a heterodimer in specifying sepal and petal identities. The OsMADS16 protein displayed transcription activation ability in yeast, whereas AP3 did not. It was also shown in yeast that OsMADS16 interacted with PI whereas OsMADS4 did not interact with AP3. These differences between OsMADS16 and AP3 indicate that the functions of the AP3 family genes of monocots and dicots diverged during molecular evolution processes of the B function genes. Deletion analysis showed that the 155-200 amino acid region of the OsMADS16 protein plays an important role in the transcription activation ability. PMID:10394955

  11. Yeast as a model system for mammalian seven-transmembrane segment receptors

    SciTech Connect

    Jeansonne, N.E.

    1994-05-01

    Investigators have used the budding yeast Saccharomyces cerevisiae as a model system in which to study the {beta}-adrenergic receptor, the T-cell receptor pathway, initiation of mammalian DNA replication, initiation of mammalian transcription, secretion, the CDC2 kinase system, cell cycle control, and aging, as well as the function of oncogenes. This list continues to growth with the discovery of an immunoglobulin heavy-chain binding homologue in yeast, an Rb binding protein homologue, and a possible yeast arrestin. Yeast is relatively easy to maintain, to grow, and to genetically manipulate. A single gene can be overexpressed, selectively mutated or deleted from its chromosomal location. In this way, the in vivo function of a gene can be studied. It has become reasonable to consider yeast as a model system for studying the seven transmembrane segments (7-TMS) receptor family. Currently, subtypes of the {beta}-adrenergic receptor are being studied in yeast. The receptor and its G{sub {alpha}}-G-protein, trigger the mating pheromone receptor pathway. This provides a powerful assay for determining receptor function. Studies expressing the muscarinic cholinergic receptor in yeast are underway. The yeast pheromone receptor belongs to this receptor family, sharing sequences and secondary structure homology. An effective strategy has been to identify a yeast pathway or process which is homologous to a mammalian system. The pathway is delineated in yeast, identifying other genetic components. Then yeast genes are used to screen for human homologues of these components. The putative human homologues are then expressed in yeast and in mammalian cells to determine function. When this type of {open_quotes}mixing and matching{close_quotes} works, yeast genetics can be a powerful tool. 115 refs.

  12. Automated drug identification system

    NASA Technical Reports Server (NTRS)

    Campen, C. F., Jr.

    1974-01-01

    System speeds up analysis of blood and urine and is capable of identifying 100 commonly abused drugs. System includes computer that controls entire analytical process by ordering various steps in specific sequences. Computer processes data output and has readout of identified drugs.

  13. Raman spectroscopy and chemometrics for identification and strain discrimination of the wine spoilage yeasts Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Brettanomyces bruxellensis.

    PubMed

    Rodriguez, Susan B; Thornton, Mark A; Thornton, Roy J

    2013-10-01

    The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%. PMID:23913433

  14. Raman Spectroscopy and Chemometrics for Identification and Strain Discrimination of the Wine Spoilage Yeasts Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Brettanomyces bruxellensis

    PubMed Central

    Thornton, Mark A.; Thornton, Roy J.

    2013-01-01

    The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%. PMID:23913433

  15. [Identification of C(2)M interacting proteins by yeast two-hybrid screening].

    PubMed

    Shanshan, Yue; Laixin, Xia

    2015-11-01

    The synaptonemal complex (SC) is a huge structure which assembles between the homologous chromosomes during meiotic prophase I. Drosophila germ cell-specific nucleoprotein C(2)M clustering at chromosomes can induce SC formation. To further study the molecular function and mechanism of C(2)M in meiosis, we constructed a bait vector for C(2)M and used the yeast two-hybrid system to identify C(2)M interacting proteins. Forty interacting proteins were obtained, including many DNA and histone binding proteins, ATP synthases and transcription factors. Gene silencing assays in Drosophila showed that two genes, wech and Psf1, may delay the disappearance of SC. These results indicate that Wech and Psf1 may form a complex with C(2)M to participate in the formation or stabilization of the SC complex. PMID:26582530

  16. Sex-determination system in the diploid yeast Zygosaccharomyces sapae.

    PubMed

    Solieri, Lisa; Dakal, Tikam Chand; Giudici, Paolo; Cassanelli, Stefano

    2014-06-01

    Sexual reproduction and breeding systems are driving forces for genetic diversity. The mating-type (MAT) locus represents a mutation and chromosome rearrangement hotspot in yeasts. Zygosaccharomyces rouxii complex yeasts are naturally faced with hostile low water activity (aw) environments and are characterized by gene copy number variation, genome instability, and aneuploidy/allodiploidy. Here, we investigated sex-determination system in Zygosaccharomyces sapae diploid strain ABT301(T), a member of the Z. rouxii complex. We cloned three divergent mating type-like (MTL) α-idiomorph sequences and designated them as ZsMTLα copies 1, 2, and 3. They encode homologs of Z. rouxii CBS 732(T) MATα2 (amino acid sequence identities spanning from 67.0 to 99.5%) and MATα1 (identity range 81.5-99.5%). ABT301(T) possesses two divergent HO genes encoding distinct endonucleases 100% and 92.3% identical to Z. rouxii HO. Cloning of MATA: -idiomorph resulted in a single ZsMTLA: locus encoding two Z. rouxii-like proteins MATA: 1 and MATA: 2. To assign the cloned ZsMTLα and ZsMTLA: idiomorphs as MAT, HML, and HMR cassettes, we analyzed their flanking regions. Three ZsMTLα loci exhibited the DIC1-MAT-SLA2 gene order canonical for MAT expression loci. Furthermore, four putative HML cassettes were identified, two containing the ZsMTLα copy 1 and the remaining harboring ZsMTLα copies 2 and 3. Finally, the ZsMTLA: locus was 3'-flanked by SLA2, suggesting the status of MAT expression locus. In conclusion, Z. sapae ABT301(T) displays an aααα genotype missing of the HMR silent cassette. Our results demonstrated that mating-type switching is a hypermutagenic process in Z. rouxii complex that generates genetic diversity de novo. This error-prone mechanism could be suitable to generate progenies more rapidly adaptable to hostile environments. PMID:24939186

  17. A bimodal biometric identification system

    NASA Astrophysics Data System (ADS)

    Laghari, Mohammad S.; Khuwaja, Gulzar A.

    2013-03-01

    Biometrics consists of methods for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits. Physicals are related to the shape of the body. Behavioral are related to the behavior of a person. However, biometric authentication systems suffer from imprecision and difficulty in person recognition due to a number of reasons and no single biometrics is expected to effectively satisfy the requirements of all verification and/or identification applications. Bimodal biometric systems are expected to be more reliable due to the presence of two pieces of evidence and also be able to meet the severe performance requirements imposed by various applications. This paper presents a neural network based bimodal biometric identification system by using human face and handwritten signature features.

  18. RAPID IDENTFICATION OF ASCOMYCETOUS YEASTS FROM CLINICAL SPECIMENS BY A MOLECULAR-BASED FLOW CYTOMETRY METHOD AND COMPARISION WITH IDENTIFICATIONS FROM PHENOTYPIC ASSAYS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to compare the identification of ascomycetous yeasts recovered from clinical specimens by using phenotypic assays (PA) and a molecular flow cytometric (FC) method. LSU rRNA D1/D2 gene sequence analysis was also performed and served as the reference for correct strain identif...

  19. Random amplified polymorphic DNA and restriction enzyme analysis of PCR amplified rDNA in taxonomy: two identification techniques for food-borne yeasts.

    PubMed

    Baleiras Couto, M M; Vogels, J T; Hofstra, H; Huis in't Veld, J H; van der Vossen, J M

    1995-11-01

    The random amplified polymorphic DNA (RAPD) assay and the restriction enzyme analysis of PCR amplified rDNA are compared for the identification of the common spoilage yeasts Zygosaccharomyces bailii, Z. rouxii, Saccharomyces cerevisiae, Candida valida and C. lipolytica. Both techniques proved to be adequate tools for yeast identification. Since the RAPD does provide less stable patterns than restriction enzyme analysis of PCR amplified rDNA, and a large amount of data had to be compared without data reduction, Principal Component Analysis (PCA) was applied successfully for clustering the RAPD patterns. The success of PCA is highly influenced by the primer used in RAPD and the amount of reference samples. A large amount of reference samples improves the performance of clustering in PCA. The primer of choice was shown to be important with respect to the discriminatory power of the RAPD method. Some primers used enabled discrimination on the subspecies level. The results collected with both typing methods justify the conclusion that the present typing system can be applied for taxonomical purposes. PMID:8567491

  20. Structural Aspects of System Identification

    NASA Technical Reports Server (NTRS)

    Glover, Keith

    1973-01-01

    The problem of identifying linear dynamical systems is studied by considering structural and deterministic properties of linear systems that have an impact on stochastic identification algorithms. In particular considered is parametrization of linear systems so that there is a unique solution and all systems in appropriate class can be represented. It is assumed that a parametrization of system matrices has been established from a priori knowledge of the system, and the question is considered of when the unknown parameters of this system can be identified from input/output observations. It is assumed that the transfer function can be asymptotically identified, and the conditions are derived for the local, global and partial identifiability of the parametrization. Then it is shown that, with the right formulation, identifiability in the presence of feedback can be treated in the same way. Similarly the identifiability of parametrizations of systems driven by unobserved white noise is considered using the results from the theory of spectral factorization.

  1. In-Flight System Identification

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1998-01-01

    A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.

  2. On-Orbit System Identification

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Milman, M. H.; Bayard, D.; Eldred, D. B.

    1987-01-01

    Information derived from accelerometer readings benefits important engineering and control functions. Report discusses methodology for detection, identification, and analysis of motions within space station. Techniques of vibration and rotation analyses, control theory, statistics, filter theory, and transform methods integrated to form system for generating models and model parameters that characterize total motion of complicated space station, with respect to both control-induced and random mechanical disturbances.

  3. Automated systems for identification of microorganisms.

    PubMed Central

    Stager, C E; Davis, J R

    1992-01-01

    Automated instruments for the identification of microorganisms were introduced into clinical microbiology laboratories in the 1970s. During the past two decades, the capabilities and performance characteristics of automated identification systems have steadily progressed and improved. This article explores the development of the various automated identification systems available in the United States and reviews their performance for identification of microorganisms. Observations regarding deficiencies and suggested improvements for these systems are provided. PMID:1498768

  4. Budding Yeast for Budding Geneticists: A Primer on the Saccharomyces cerevisiae Model System

    PubMed Central

    Duina, Andrea A.; Miller, Mary E.; Keeney, Jill B.

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans. PMID:24807111

  5. The MICE Particle Identification System

    NASA Astrophysics Data System (ADS)

    Bogomilov, M.; MICE Collaboration

    2011-06-01

    The Muon Ionization Cooling Experiment (MICE) at the ISIS accelerator located at the Rutherford Appleton Laboratory, UK, will be the first experiment to study muon cooling at high precision. Demonstration of muon ionization cooling is a major technological step towards the construction of a neutrino factory or a muon collider. A muon beam is produced via pion decay in the MICE beam line within a range of emittances and momenta. Muon purity is assured by a system of detectors for particle identification (PID). We describe briefly the PID system here.

  6. Use of yeast as a system to study amyloid toxicity.

    PubMed

    Summers, Daniel W; Cyr, Douglas M

    2011-03-01

    The formation of amyloid-like fibrils is a hallmark of several neurodegenerative diseases. How the assembly of amyloid-like fibrils contributes to cell death is a major unresolved question in the field. The budding yeast Saccharomyces cerevisiae is a powerful model organism to study basic mechanisms for how cellular pathways regulate amyloid assembly and proteotoxicity. For example, studies of the amyloidogenic yeast prion [RNQ(+)] have revealed novel roles by which molecular chaperones protect cells from the accumulation of cytotoxic protein species. In budding yeast there are a variety of cellular assays that can be employed to analyze the assembly of amyloid-like aggregates and mechanistically dissect how cellular pathways influence proteotoxicity. In this review, we describe several assays that are routinely used to investigate aggregation and toxicity of the [RNQ(+)] prion in yeast. PMID:21115125

  7. Sex-Determination System in the Diploid Yeast Zygosaccharomyces sapae

    PubMed Central

    Solieri, Lisa; Dakal, Tikam Chand; Giudici, Paolo; Cassanelli, Stefano

    2014-01-01

    Sexual reproduction and breeding systems are driving forces for genetic diversity. The mating-type (MAT) locus represents a mutation and chromosome rearrangement hotspot in yeasts. Zygosaccharomyces rouxii complex yeasts are naturally faced with hostile low water activity (aw) environments and are characterized by gene copy number variation, genome instability, and aneuploidy/allodiploidy. Here, we investigated sex-determination system in Zygosaccharomyces sapae diploid strain ABT301T, a member of the Z. rouxii complex. We cloned three divergent mating type-like (MTL) α-idiomorph sequences and designated them as ZsMTLα copies 1, 2, and 3. They encode homologs of Z. rouxii CBS 732T MATα2 (amino acid sequence identities spanning from 67.0 to 99.5%) and MATα1 (identity range 81.5–99.5%). ABT301T possesses two divergent HO genes encoding distinct endonucleases 100% and 92.3% identical to Z. rouxii HO. Cloning of MATa-idiomorph resulted in a single ZsMTLa locus encoding two Z. rouxii-like proteins MATa1 and MATa2. To assign the cloned ZsMTLα and ZsMTLa idiomorphs as MAT, HML, and HMR cassettes, we analyzed their flanking regions. Three ZsMTLα loci exhibited the DIC1-MAT-SLA2 gene order canonical for MAT expression loci. Furthermore, four putative HML cassettes were identified, two containing the ZsMTLα copy 1 and the remaining harboring ZsMTLα copies 2 and 3. Finally, the ZsMTLa locus was 3′-flanked by SLA2, suggesting the status of MAT expression locus. In conclusion, Z. sapae ABT301T displays an aααα genotype missing of the HMR silent cassette. Our results demonstrated that mating-type switching is a hypermutagenic process in Z. rouxii complex that generates genetic diversity de novo. This error-prone mechanism could be suitable to generate progenies more rapidly adaptable to hostile environments. PMID:24939186

  8. Yeast as a Heterologous Model System to Uncover Type III Effector Function

    PubMed Central

    Popa, Crina; Coll, Núria S.; Valls, Marc; Sessa, Guido

    2016-01-01

    Type III effectors (T3E) are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. “Favourite” targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK) signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure–function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations of S. cerevisiae as a model system and its most promising future applications. PMID:26914889

  9. Yeast as a Heterologous Model System to Uncover Type III Effector Function.

    PubMed

    Popa, Crina; Coll, Núria S; Valls, Marc; Sessa, Guido

    2016-02-01

    Type III effectors (T3E) are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. "Favourite" targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK) signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure-function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations of S. cerevisiae as a model system and its most promising future applications. PMID:26914889

  10. Combining SELEX and the yeast three-hybrid system for in vivo selection and classification of RNA aptamers

    PubMed Central

    König, Julian; Julius, Christian; Baumann, Sebastian; Homann, Matthias; Göringer, H. Ulrich; Feldbrügge, Michael

    2007-01-01

    Aptamers are small nucleic acid ligands that bind to their targets with specificity and high affinity. They are generated by a combinatorial technology, known as SELEX. This in vitro approach uses iterative cycles of enrichment and amplification to select binders from nucleic acid libraries of high complexity. Here we combine SELEX with the yeast three-hybrid system in order to select for RNA aptamers with in vivo binding activity. As a target molecule, we chose the RNA recognition motif-containing RNA-binding protein Rrm4 from the corn pathogen Ustilago maydis. Rrm4 is an ELAV-like protein containing three N-terminal RNA recognition motifs (RRMs). It has been implicated in microtubule-dependent RNA transport during pathogenic development. After 11 SELEX cycles, four aptamer classes were identified. These sequences were further screened for their in vivo binding activity applying the yeast three-hybrid system. Of the initial aptamer classes only members of two classes were capable of binding in vivo. Testing representatives of both classes against Rrm4 variants mutated in one of the three RRM domains revealed that these aptamers interacted with the third RRM. Thus, the yeast three-hybrid system is a useful extension to the SELEX protocol for the identification and characterization of aptamers with in vivo binding activity. PMID:17283213

  11. Direct identification and recognition of yeast species from clinical material by using albicans ID and CHROMagar Candida plates.

    PubMed Central

    Baumgartner, C; Freydiere, A M; Gille, Y

    1996-01-01

    Two chromogenic media, Albicans ID and CHROMagar Candida agar plates, were compared with a reference medium, Sabouraud-chloramphenicol agar, and standard methods for the identification of yeast species. This study involved 951 clinical specimens. The detection rates for the two chromogenic media for polymicrobial specimens were 20% higher than that for the Sabouraud-chloramphenicol agar plates. The rates of identification of Candida albicans for Albicans ID and CHROMagar Candida agar plates were, respectively, 37.0 and 6.0% after 24 h of incubation and 93.6 and 92.2% after 72 h of incubation, with specificities of 99.8 and 100%. Furthermore, CHROMagar Candida plates identified 13 of 14 Candida tropicalis and 9 of 12 Candida krusei strains after 48 h of incubation. PMID:8789038

  12. Comparison of enteric identification systems.

    PubMed

    Borchardt, K A; Gibson, J

    1977-01-01

    An evaluation of methods for identification of Enterobacteriaceae was made employing the new commercial Micro-Media Enteric System (MMES) with that of the Analytab Products Incorporated (API) and the Conventional tube media schema as suggested by the Center for Disease Control (CDS). The MMES system employed 20 biochemical tests, the API 21, and the CDC procedure 25. Sixteen of these were identical biochemical tests. Two hundred clinical isolates of Enterobacteriaceae were tested employing procedures recommended by the manufacturers of MMES and API, and methods suggested by CDC. Among the sixteen identical biochemical tests the agreement was 98.0% (Conventional), 98.2% (API), and 97.98% (MMES). Bacteria misidentified by the API system totaled 5 (2.5%), 12 (6%) for the Conventional, and 13 (6.5%) for the MMES. Five of the bacteria misidentified with the MMES procedure were due to false positive citrate tests. This problem was subsequently eliminated. The results of this study indicated that the new MMES method for identification of Enterobacteriaceae compared favorably with both the API and Conventional procedures. However, significant advantages of the MMES method were evident in initial purchase price, utilization of technology time, and less tedium performing the test. PMID:319082

  13. Identification and Partial Characterization of Antilisterial Compounds Produced by Dairy Yeasts.

    PubMed

    Hatoum, Rima; Labrie, Steve; Fliss, Ismail

    2013-03-01

    Food-grade yeasts make significant contributions to flavor development in fermented foods. Some yeast species also inhibit undesirable bacteria, yeasts and molds, apparently by producing antimicrobial compounds called mycocins. The aim of this study was to evaluate the ability of wild yeasts, isolated from raw milk and cheese in the Quebec province area, to produce antilisterial compounds. Based on an agar-membrane screening test, 22 of 95 isolates, namely one Candida catenulata, one Candida parapsilosis, five Candida tropicalis, four Debaryomyces hansenii, one Geotrichum candidum, nine Pichia fermentans and one Pichia anomala, exhibited a significant inhibitory effect against Listeria ivanovii HPB28. Four in particular, namely C. tropicalis LMA-693, D. hansenii LMA-916, P. fermentans LMA-256 and P. anomala LMA-827, produced substances extractable from culture supernatant and capable of decreasing 18-h growth of L. ivanovii by, respectively, 97, 92, 84 and 78 %. Heating the extracted material (100 °C for 10 min) decreased these values to 72, 62, 58 and 31 %, respectively, while treatment with trypsin or pronase E decreased them to as little as 27 %. The extracts reduced the numbers of viable Listeria monocytogenes by as much as four log cycles within an hour. Transmission electron microscopy revealed a high proportion of lysis among the cells, apparently due to pore formation. This study clearly shows the potential of these four yeast isolates for use as bio-preservatives in a variety of dairy products. PMID:26782600

  14. Identification of two-dimensional gel electrophoresis resolved yeast proteins by matrix-assisted laser desorption ionization mass spectrometry.

    PubMed

    Larsson, T; Norbeck, J; Karlsson, H; Karlsson, K A; Blomberg, A

    1997-01-01

    Protein extract from yeast cells growing exponentially in saline medium was separated by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), with the separation in the first dimension on a wide range immobilized pH (3-10) gradient. From one preparative 2-D gel a number of previously identified proteins were used as test material for our initial matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) efforts on large scale rapid protein spot identification. Sample preparation via in-gel trypsin digestion was slightly modified to be compatible to MS analysis, and via this modified procedure MS generated peptide mass profiles could, in most cases with good precision, identify the protein in question. Preferential ionization was tested on a yeast aldehyde dehydrogenase (ALD7), and it was shown that the ionization of some peptides was clearly suppressed by the presence of others. Roughly 50% of the observed peptide masses was found by the search routines in the database, and the mass measurement accuracy of the peptides was within 0.5 Da. Silver-stained gels could be used with good results for the generation of peptides to be analyzed by MALDI-MS. For one of the 2-D resolved proteins, glycerol 3-phosphatase (GPP1), the post-source decay (PSD) spectrum proved crucial in identification. PMID:9150920

  15. Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfural tolerance for ethanologenic yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composed of linear difference equations, a discrete dynamic system model was designed to reconstruct transcriptional regulations in gene regulatory networks in response to 5-hydroxymethylfurfural, a bioethanol conversion inhibitor for ethanologenic yeast Saccharomyces cerevisiae. The modeling aims ...

  16. System/observer/controller identification toolbox

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Horta, Lucas G.; Phan, Minh

    1992-01-01

    System Identification is the process of constructing a mathematical model from input and output data for a system under testing, and characterizing the system uncertainties and measurement noises. The mathematical model structure can take various forms depending upon the intended use. The SYSTEM/OBSERVER/CONTROLLER IDENTIFICATION TOOLBOX (SOCIT) is a collection of functions, written in MATLAB language and expressed in M-files, that implements a variety of modern system identification techniques. For an open loop system, the central features of the SOCIT are functions for identification of a system model and its corresponding forward and backward observers directly from input and output data. The system and observers are represented by a discrete model. The identified model and observers may be used for controller design of linear systems as well as identification of modal parameters such as dampings, frequencies, and mode shapes. For a closed-loop system, an observer and its corresponding controller gain directly from input and output data.

  17. Identification of novel noncoding transcripts in telomerase-negative yeast using RNA-seq

    PubMed Central

    Niederer, Rachel O.; Papadopoulos, Nickolas; Zappulla, David C.

    2016-01-01

    Telomerase is a ribonucleoprotein that maintains the ends of linear chromosomes in most eukaryotes. Loss of telomerase activity results in shortening of telomeric DNA and eventually a specific G2/M cell-cycle arrest known as senescence. In humans, telomere shortening occurs during aging, while inappropriate activation of telomerase is associated with approximately 90% of cancers. Previous studies have identified several classes of noncoding RNAs (ncRNA) also associated with aging-related senescence and cancer, but whether ncRNAs are also involved in short-telomere-induced senescence in yeast is unknown. Here, we report 112 putative novel lncRNAs in the yeast Saccharomyces cerevisiae, 41 of which are only expressed in telomerase-negative yeast. Expression of approximately half of the lncRNAs is strongly correlated with that of adjacent genes, suggesting this subset may influence transcription of neighboring genes. Our results reveal a new potential mechanism governing adaptive changes in senescing and post-senescent survivor yeast cells. PMID:26786024

  18. Identification of Yju3p as functional orthologue of mammalian monoglyceride lipase in the yeast Saccharomycescerevisiae.

    PubMed

    Heier, Christoph; Taschler, Ulrike; Rengachari, Srinivasan; Oberer, Monika; Wolinski, Heimo; Natter, Klaus; Kohlwein, Sepp D; Leber, Regina; Zimmermann, Robert

    2010-09-01

    Monoacylglycerols (MAGs) are short-lived intermediates of glycerolipid metabolism. Specific molecular species, such as 2-arachidonoylglycerol, which is a potent activator of cannabinoid receptors, may also function as lipid signaling molecules. In mammals, enzymes hydrolyzing MAG to glycerol and fatty acids, resembling the final step in lipolysis, or esterifying MAG to diacylglycerol, are well known; however, despite the high level of conservation of lipolysis, the corresponding activities in yeast have not been characterized yet. Here we provide evidence that the protein Yju3p functions as a potent MAG hydrolase in yeast. Cellular MAG hydrolase activity was decreased by more than 90% in extracts of Yju3p-deficient cells, indicating that Yju3p accounts for the vast majority of this activity in yeast. Loss of this activity was restored by heterologous expression of murine monoglyceride lipase (MGL). Since yju3Delta mutants accumulated MAG in vivo only at very low concentrations, we considered the possibility that MAGs are re-esterified into DAG by acyltransferases. Indeed, cellular MAG levels were further increased in mutant cells lacking Yju3p and Dga1p or Lro1p acyltransferase activities. In conclusion, our studies suggest that catabolic and anabolic reactions affect cellular MAG levels. Yju3p is the functional orthologue of mammalian MGL and is required for efficient degradation of MAG in yeast. PMID:20554061

  19. Identification of Yju3p as functional orthologue of mammalian monoglyceride lipase in the yeast Saccharomycescerevisiae

    PubMed Central

    Heier, Christoph; Taschler, Ulrike; Rengachari, Srinivasan; Oberer, Monika; Wolinski, Heimo; Natter, Klaus; Kohlwein, Sepp D.; Leber, Regina; Zimmermann, Robert

    2010-01-01

    Monoacylglycerols (MAGs) are short-lived intermediates of glycerolipid metabolism. Specific molecular species, such as 2-arachidonoylglycerol, which is a potent activator of cannabinoid receptors, may also function as lipid signaling molecules. In mammals, enzymes hydrolyzing MAG to glycerol and fatty acids, resembling the final step in lipolysis, or esterifying MAG to diacylglycerol, are well known; however, despite the high level of conservation of lipolysis, the corresponding activities in yeast have not been characterized yet. Here we provide evidence that the protein Yju3p functions as a potent MAG hydrolase in yeast. Cellular MAG hydrolase activity was decreased by more than 90% in extracts of Yju3p-deficient cells, indicating that Yju3p accounts for the vast majority of this activity in yeast. Loss of this activity was restored by heterologous expression of murine monoglyceride lipase (MGL). Since yju3Δ mutants accumulated MAG in vivo only at very low concentrations, we considered the possibility that MAGs are re-esterified into DAG by acyltransferases. Indeed, cellular MAG levels were further increased in mutant cells lacking Yju3p and Dga1p or Lro1p acyltransferase activities. In conclusion, our studies suggest that catabolic and anabolic reactions affect cellular MAG levels. Yju3p is the functional orthologue of mammalian MGL and is required for efficient degradation of MAG in yeast. PMID:20554061

  20. Saccharomyces cerevisiae Produces a Yeast Substance that Exhibits Estrogenic Activity in Mammalian Systems

    NASA Astrophysics Data System (ADS)

    Feldman, David; Stathis, Peter A.; Hirst, Margaret A.; Price Stover, E.; Do, Yung S.; Kurz, Walter

    1984-06-01

    Partially purified lipid extracts of Saccharomyces cerevisiae contain a substance that displaces tritiated estradiol from rat uterine cytosol estrogen receptors. The yeast product induces estrogenic bioresponses in mammalian systems as measured by induction of progesterone receptors in cultured MCF-7 human breast cancer cells and by a uterotrophic response and progesterone receptor induction after administration to ovariectomized mice. The findings raise the possibility that bakers' yeast may be a source of environmental estrogens.

  1. Yeast Infection

    MedlinePlus

    ... a yeast infection and what causes it?  Yeast vaginitis is the second most common vaginal infection after ... risk for yeast Signs and symptoms of yeast vaginitis  Yeast infections may cause no symptoms  Sometimes yeast ...

  2. Identification of mass disaster victims: the Swiss identification system.

    PubMed

    Mühlemann, H R; Steiner, E; Brandestini, M

    1979-01-01

    A new, simple, and reliable forensic identification system has been described. It permits the rapid and positive identification of victims of catastrophies such as airplane accidents, battles, floods, and fires. An electronic microprocessing unit directs a mechanical engraver to encode up to 13 alphanumeric characters on a small gold disk 0.25 mm thick and 2.0 mm in diameter. The identification chip is sealed in a 0.8-mm deep cavity prepared with a specially designed diamond burr in the lingual enamel of a molar tooth. The sealant is a stained composite material shown experimentally to be leakage proof, fire resistant, and readily detectable in teeth exposed to high temperatures. At the identification center the gold disk can easily be recovered and the victim positively identified without recourse to time-consuming comparison of dental records. Minimal training is required for the forensic personnel. PMID:512601

  3. Sequencer-Based Capillary Gel Electrophoresis (SCGE) Targeting the rDNA Internal Transcribed Spacer (ITS) Regions for Accurate Identification of Clinically Important Yeast Species

    PubMed Central

    Chen, Sharon C.-A.; Wang, He; Zhang, Li; Fan, Xin; Xu, Zhi-Peng; Cheng, Jing-Wei; Kong, Fanrong; Zhao, Yu-Pei; Xu, Ying-Chun

    2016-01-01

    Accurate species identification of Candida, Cryptococcus, Trichosporon and other yeast pathogens is important for clinical management. In the present study, we developed and evaluated a yeast species identification scheme by determining the rDNA internal transcribed spacer (ITS) region length types (LTs) using a sequencer-based capillary gel electrophoresis (SCGE) approach. A total of 156 yeast isolates encompassing 32 species were first used to establish a reference SCGE ITS LT database. Evaluation of the ITS LT database was then performed on (i) a separate set of (n = 97) clinical isolates by SCGE, and (ii) 41 isolates of 41 additional yeast species from GenBank by in silico analysis. Of 156 isolates used to build the reference database, 41 ITS LTs were identified, which correctly identified 29 of the 32 (90.6%) species, with the exception of Trichosporon asahii, Trichosporon japonicum and Trichosporon asteroides. In addition, eight of the 32 species revealed different electropherograms and were subtyped into 2–3 different ITS LTs each. Of the 97 test isolates used to evaluate the ITS LT scheme, 96 (99.0%) were correctly identified to species level, with the remaining isolate having a novel ITS LT. Of the additional 41 isolates for in silico analysis, none was misidentified by the ITS LT database except for Trichosporon mucoides whose ITS LT profile was identical to that of Trichosporon dermatis. In conclusion, yeast identification by the present SCGE ITS LT assay is a fast, reproducible and accurate alternative for the identification of clinically important yeasts with the exception of Trichosporon species. PMID:27105313

  4. Aniline blue-containing buffered charcoal-yeast extract medium for presumptive identification of Legionella species

    SciTech Connect

    Holmes, R.L.

    1982-04-01

    By utilizing buffered charcoal-yeast extract medium containing 0.01% aniline blue in conjunction with a long-wave UV light, the differentiation of five species of Legionella was facilitated. L. pneumophila, when grown on this medium, did not absorb the aniline blue dye; however, L. micdadei, L. dumoffii, L. bozemanii, and L. gormanii absorbed the dye in varying amounts and produced colonies of various shades of blue.

  5. Direct identification of clinically relevant bacterial and yeast microcolonies and macrocolonies on solid culture media by Raman spectroscopy.

    PubMed

    Espagnon, Isabelle; Ostrovskii, Denis; Mathey, Raphaël; Dupoy, Mathieu; Joly, Pierre L; Novelli-Rousseau, Armelle; Pinston, Frédéric; Gal, Olivier; Mallard, Frédéric; Leroux, Denis F

    2014-02-01

    Decreasing turnaround time is a paramount objective in clinical diagnosis. We evaluated the discrimination power of Raman spectroscopy when analyzing colonies from 80 strains belonging to nine bacterial and one yeast species directly on solid culture medium after 24-h (macrocolonies) and 6-h (microcolonies) incubation. This approach, that minimizes sample preparation and culture time, would allow resuming culture after identification to perform downstream antibiotic susceptibility testing. Correct identification rates measured for macrocolonies and microcolonies reached 94.1% and 91.5%, respectively, in a leave-one-strain-out cross-validation mode without any correction for possible medium interference. Large spectral differences were observed between macrocolonies and microcolonies, that were attributed to true biological differences. Our results, conducted on a very diversified panel of species and strains, were obtained by using simple and robust sample preparation and preprocessing procedures, while still confirming published results obtained by using more complex elaborated protocols. Instrumentation is simplified by the use of 532-nm laser excitation yielding a Raman signal in the visible range. It is, to our knowledge, the first side-by-side full classification study of microorganisms in the exponential and stationary phases confirming the excellent performance of Raman spectroscopy for early species-level identification of microorganisms directly from an agar culture. PMID:24522809

  6. In silico identification and functional annotation of yeast E3 ubiquitin ligase Rsp5 substrates.

    PubMed

    Song, Xiaofeng; Hu, Lizhen; Han, Ping; Guo, Xuejiang; Sha, Jiahao

    2015-01-01

    Rsp5, E3 ligases conserved from yeast to mammals, plays a key role in diverse processes in yeast. However, many of Rsp5 substrates are still unclear. Therefore we proposed an in silico method to recognise new substrates of Rsp5. To investigate the molecular determinants that affect the interaction between Rsp5 and its substrate, we have systematically analysed many features that perhaps correlated with the Rsp5 substrate recognition. It is found that PPxY motif, transmembrane region, disorder region and N-linked glycosylation modification are the most important features for substrate recognition. We have constructed an SVM-based classifier to recognise Rsp5 substrates, obtaining 81.5% sensitivity and 74.1% specificity averagely on ten independent testing dataset. We also applied the model on the whole yeast proteome, and identified -66 new Rsp5 substrates. Functional annotation reveals that half of these novel substrates function in the Rsp5 involved cell processes as Rsp5-interacting proteins. PMID:26547982

  7. Identification and characterization of genes related to the production of organic acids in yeast.

    PubMed

    Yoshida, Satoshi; Yokoyama, Aki

    2012-05-01

    Organic acids contribute to the flavor of many foods and drinks including alcoholic beverages. To study the cellular processes affecting organic acid production, here we screened collections of Saccharomyces cerevisiae deletion mutants and identified 36 yeast mutants forming a yellow halo on YPD plates containing bromocresol purple, indicating that the pH of the medium had been lowered. The disrupted genes encoded TCA cycle enzymes, transcription factors, signal transducers, and ubiquitin-related proteins. Acetate, pyruvate, and succinate are produced by yeast fermentation in rich medium, and their production was affected by mutations of the genes GTR1, GTR2, LIP5, LSM1, PHO85, PLM2, RTG1, RTG2 and UBP3, and also succinate dehydrogenase-related genes including EMI5, SDH1, SDH2, SDH4, TCM62 and YDR379C-A. Among the genes identified, overexpression of only LIP5 affected the production of acetate in S. cerevisiae. However, overexpression of EMI5, LIP5, RTG2 and UBP3 had a significant effect on the production of acetate, citrate, lactate, and succinate in the bottom-fermenting yeast Saccharomyces pastorianus. Furthermore, phenotypic analysis of the S. cerevisiae disruptants involved in organic acid production showed that azaserine, citrate, ethionine, and sulfite are useful compounds by which mutants with altered organic acid production might be selected. Taken together, these results suggest that the regulation of many organic acids might be simultaneously achieved by activation or inactivation of a single gene. PMID:22277779

  8. Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast.

    PubMed Central

    Mullen, J R; Kayne, P S; Moerschell, R P; Tsunasawa, S; Gribskov, M; Colavito-Shepanski, M; Grunstein, M; Sherman, F; Sternglanz, R

    1989-01-01

    A gene from Saccharomyces cerevisiae has been mapped, cloned, sequenced and shown to encode a catalytic subunit of an N-terminal acetyltransferase. Regions of this gene, NAT1, and the chloramphenicol acetyltransferase genes of bacteria have limited but significant homology. A nat1 null mutant is viable but exhibits a variety of phenotypes, including reduced acetyltransferase activity, derepression of a silent mating type locus (HML) and failure to enter G0. All these phenotypes are identical to those of a previously characterized mutant, ard1. NAT1 and ARD1 are distinct genes that encode proteins with no obvious similarity. Concomitant overexpression of both NAT1 and ARD1 in yeast causes a 20-fold increase in acetyltransferase activity in vitro, whereas overexpression of either NAT1 or ARD1 alone does not raise activity over basal levels. A functional iso-1-cytochrome c protein, which is N-terminally acetylated in a NAT1 strain, is not acetylated in an isogenic nat1 mutant. At least 20 other yeast proteins, including histone H2B, are not N-terminally acetylated in either nat1 or ard1 mutants. These results suggest that NAT1 and ARD1 proteins function together to catalyze the N-terminal acetylation of a subset of yeast proteins. Images PMID:2551674

  9. Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis

    SciTech Connect

    Himelblau, E.; Amasino, R.M.; Mira, H.; Penarrubia, L.; Lin, S.J.; Culotta, V.C.

    1998-08-01

    A cDNA clone encoding a homolog of the yeast (Saccharomyces cerevisiae) gene Anti-oxidant 1 (ATX1) has been identified from Arabidopsis. This gene, referred to as Copper CHaperone (CCH), encodes a protein that is 36% identical to the amino acid sequence of ATX1 and has a 48-amino acid extension at the C-terminal end, which is absent from ATX1 homologs identified in animals. ATX1-deficient yeast (atx1) displayed a loss of high-affinity iron uptake. Expression of CCH in the atx1 strain restored high-affinity iron uptake, demonstrating that CCH is a functional homolog of ATX1. When overexpressed in yeast lacking the superoxide dismutase gene SOD1, both ATX1 and CCH protected the cell from the reactive oxygen toxicity that results from superoxide dismutase deficiency. CCH was unable to rescue the sod1 phenotype in the absence of copper, indicating that CCH function is copper dependent. In Arabidopsis CCH mRNA is present in the root, leaf, and in fluorescence and is up-regulated 7-fold in leaves undergoing senescence. In plants treated with 800 nL/L ozone for 30 min, CCH mRNA levels increased by 30%. In excised leaves and whole plants treated with high levels of exogenous CuSO{sub 4}, CCH mRNA levels decreased, indicating that CCH is regulated differently than characterized metallothionein proteins in Arabidopsis.

  10. PCR-based method for the rapid identification of astaxanthin-accumulating yeasts (Phaffia spp.).

    PubMed

    Colabella, Fernando; Libkind, Diego

    2016-01-01

    It has been recently found that the natural distribution, habitat, and genetic diversity of astaxanthin-producing yeasts (i.e. Phaffia rhodozyma, synonym Xanthophyllomyces dendrorhous) is much greater than previously thought. P. rhodozyma is biotechnologically exploited due to its ability to produce the carotenoid pigment astaxanthin and thus, it is used as a natural source of this pigment for aquaculture. P. rhodozyma was also capable of synthesizing the potent UVB sunscreen mycosporine-glutaminol-glucoside (MGG). Therefore, further environmental studies are needed to elucidate its ecological aspects and detect new potential strains for the production of astaxanthin and MGG. However, obtaining new isolates of P. rhodozyma and related species is not always easy due to its low abundance and the presence of other sympatric and pigmented yeasts. In this work we report a successful development of a species-specific primer which has the ability to quickly and accurately detecting isolates representing all known lineages of the genus Phaffia (including novel species of the genus) and excluding closely related taxa. For this purpose, a primer of 20 nucleotides (called PhR) was designed to be used in combination with universal primers ITS3 and NL4 in a multiplex amplification. The proposed method has the sensitivity and specificity required for the precise detection of new isolates, and therefore represents an important tool for the environmental search for novel astaxanthin-producing yeasts. PMID:26922472

  11. Yeast protein synthesis. Preparation and analysis of a highly active cell-free system

    PubMed Central

    Sissons, Christopher H.

    1974-01-01

    A detailed description is given of the techniques for preparing, handling and assaying a cell-free protein-synthesizing system from yeast, analogous to crude (S-30) Escherichia coli extracts. Its basic characteristics are described. The rate of poly(U)-directed polyphenylalanine synthesis was at least fivefold higher than in previously reported yeast cell-free systems, approaching that of crude mammalian cell-free systems. Fractionation of the S-30 extracts lowered activity. Organelles and their fragments present in the S-30 extract neither contributed to nor inhibited cytoplasmic protein synthesis. There was a component localized in the high-speed supernatant that caused an inhibition of polyphenylalanine synthesis. Poly(U) programmed the synthesis of long-chain polyphenylalanine, in contrast with the only other yeast system in which this has been examined (Bretthauer & Golichowski, 1968). Preincubation techniques inactivated the system and probably a small proportion only of the ribosomes was active. PMID:4618478

  12. Stochastic system identification in structural dynamics

    USGS Publications Warehouse

    Safak, Erdal

    1988-01-01

    Recently, new identification methods have been developed by using the concept of optimal-recursive filtering and stochastic approximation. These methods, known as stochastic identification, are based on the statistical properties of the signal and noise, and do not require the assumptions of current methods. The criterion for stochastic system identification is that the difference between the recorded output and the output from the identified system (i.e., the residual of the identification) should be equal to white noise. In this paper, first a brief review of the theory is given. Then, an application of the method is presented by using ambient vibration data from a nine-story building.

  13. Optimization of the preanalytical steps of matrix-assisted laser desorption ionization-time of flight mass spectrometry identification provides a flexible and efficient tool for identification of clinical yeast isolates in medical laboratories.

    PubMed

    Goyer, Marianne; Lucchi, Geraldine; Ducoroy, Patrick; Vagner, Odile; Bonnin, Alain; Dalle, Frederic

    2012-09-01

    We report here that modifications of the preanalytical steps of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identification of yeasts, with regard to the original protocol provided by the manufacturers, appear to be efficient for the reliable routine identification of clinical yeast isolates in medical laboratories. Indeed, when one colony was sampled instead of five and the protein extraction protocol was modified, the performance of MALDI-TOF MS was superior to that of the API ID 32C method (discrepancies were confirmed by using molecular identification), allowing the correct identification of 94% of the 335 clinical isolates prospectively tested. We then demonstrated that the time for which the primary cultures were preincubated on CHROMagar did not impact the identification of yeasts by MALDI-TOF MS, since 95.1 and 96.2% of the 183 clinical yeast isolates prospectively tested were correctly identified after 48 and 72 h of preincubation, respectively. PMID:22718939

  14. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast.

    PubMed

    Hébrard, Géraldine; Hoffart, Valérie; Beyssac, Eric; Cardot, Jean-Michel; Alric, Monique; Subirade, Muriel

    2010-01-01

    Viable Saccharomyces boulardii, used as a biotherapeutic agent, was encapsulated in food-grade whey protein isolate (WP) and alginate (ALG) microparticles, in order to protect and vehicle them in gastrointestinal environment. Yeast-loaded microparticles with a WP/ALG ratio of 62/38 were produced with high encapsulation efficiency (95%) using an extrusion/cold gelation method and coated with ALG or WP by a simple immersion method. Swelling, yeast survival, WP loss and yeast release in simulated gastric and intestinal fluids (SGF and SIF, pH 1.2 and 7.5) with and without their respective digestive enzymes (pepsin and pancreatin) were investigated. In SGF, ALG network shrinkage limited enzyme diffusion into the WP/ALG matrix. Coated and uncoated WP/ALG microparticles were resistant in SGF even with pepsin. Survival of yeast cells in microparticles was 40% compared to 10% for free yeast cells and was improved to 60% by coating. In SIF, yeast cell release followed coated microparticle swelling with a desirable delay. Coated WP/ALG microparticles appear to have potential as oral delivery systems for Saccharomyces boulardii or as encapsulation means for probiotic cells in pharmaceutical or food processing applications. PMID:20163284

  15. Molecular identification of wine yeasts at species or strain level: a case study with strains from two vine-growing areas of Greece.

    PubMed

    Pramateftaki, P V; Lanaridis, P; Typas, M A

    2000-08-01

    The composition of wine yeast populations, present during spontaneous fermentation of musts from two wine-producing areas of Greece (Amyndeon and Santorini) and followed for two consecutive years, were studied using a range of molecular techniques. Internal Transcribed Spacer (ITS) ribotyping was convincingly applied for yeast species identification, proving its usefulness as a reliable tool for the rapid characterization of species composition in yeast population studies. Restriction Fragment Length Polymorphism (RFLP) of mitochondrial DNA (mtDNA) was shown to be a convenient criterion for the detection of intraspecies genetic diversity of both Saccharomyces and non-Saccharomyces isolate populations. Similarly, polymorphism of amplified delta interspersed element sequences provided an additional criterion for S. cerevisiae strain differentiation. Comparative analysis of S. cerevisiae genetic diversity, using mtDNA restriction patterns and delta-amplification profiles, showed a similar discriminative power of the two techniques. However, by combining these approaches it was possible to distinguish/characterize strains of the same species and draw useful conclusions about yeast diversity during alcoholic fermentation. The most significant findings in population dynamics of yeasts in the spontaneous fermentations were (i) almost complete absence of non-S.cerevisiae species from fermentations of must originating from the island Santorini, (ii) a well recorded strain polymorphism in populations of non-Saccharomyces species originating from Amyndeon and (iii) an unexpected polymorphism concerning S. cerevisiae populations, much greater than ever reported before in similar studies with wine yeasts of other geographical regions. PMID:10971755

  16. Telomeric and dispersed repeat sequences in Candida yeasts and their use in strain identification.

    PubMed Central

    Sadhu, C; McEachern, M J; Rustchenko-Bulgac, E P; Schmid, J; Soll, D R; Hicks, J B

    1991-01-01

    Several different repetitive DNA sequences have been isolated from the pathogenic yeast Candida albicans. These include two families of large dispersed repeat sequences (Ca3, Ca24) and a short (23-bp) tandemly repeated element (Ca7) associated with C. albicans telomeres. In addition, a large subtelomeric repeat (WOL17) has been cloned. DNA fragments containing the telomeric repeats are highly variable among different C. albicans strains. We have shown that the Ca3 repeat is relatively more stable and is suitable for use as a species-specific and strain-specific probe for C. albicans. Images PMID:1987167

  17. Identification and characterization of endo-β-N-acetylglucosaminidase from methylotrophic yeast Ogataea minuta.

    PubMed

    Murakami, Satoshi; Takaoka, Yuki; Ashida, Hisashi; Yamamoto, Kenji; Narimatsu, Hisashi; Chiba, Yasunori

    2013-06-01

    In four yeast strains, Ogataea minuta, Candida parapolymorpha, Pichia anomala and Zygosaccharomyces rouxii, we identified endo-β-N-acetylglucosaminidase (ENGase) homologous sequences by database searches; in each of the four species, a corresponding enzyme activity was also confirmed in crude cell extract obtained from each strain. The O. minuta ENGase (Endo-Om)-encoding gene was directly amplified from O. minuta genomic DNA and sequenced. The Endo-Om-encoding gene contained a 2319-bp open-reading frame; the deduced amino acid sequence indicated that the putative protein belonged to glycoside hydrolase family 85. The gene was introduced into O. minuta, and the recombinant Endo-Om was overexpressed and purified. When the enzyme assay was performed using an agalacto-biantennary oligosaccharide as a substrate, Endo-Om exhibited both hydrolysis and transglycosylation activities. Endo-Om exhibited hydrolytic activity for high-mannose, hybrid, biantennary and (2,6)-branched triantennary N-linked oligosaccharides, but not for tetraantennary, (2,4)-branched triantennary, bisecting N-acetylglucosamine structure and core-fucosylated biantennary N-linked oligosaccharides. Endo-Om also was able to hydrolyze N-glycans attached to RNase B and human transferrin under both denaturing and nondenaturing conditions. Thus, the present study reports the detection and characterization of a novel yeast ENGase. PMID:23436287

  18. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast.

    PubMed

    Libkind, Diego; Hittinger, Chris Todd; Valério, Elisabete; Gonçalves, Carla; Dover, Jim; Johnston, Mark; Gonçalves, Paula; Sampaio, José Paulo

    2011-08-30

    Domestication of plants and animals promoted humanity's transition from nomadic to sedentary lifestyles, demographic expansion, and the emergence of civilizations. In contrast to the well-documented successes of crop and livestock breeding, processes of microbe domestication remain obscure, despite the importance of microbes to the production of food, beverages, and biofuels. Lager-beer, first brewed in the 15th century, employs an allotetraploid hybrid yeast, Saccharomyces pastorianus (syn. Saccharomyces carlsbergensis), a domesticated species created by the fusion of a Saccharomyces cerevisiae ale-yeast with an unknown cryotolerant Saccharomyces species. We report the isolation of that species and designate it Saccharomyces eubayanus sp. nov. because of its resemblance to Saccharomyces bayanus (a complex hybrid of S. eubayanus, Saccharomyces uvarum, and S. cerevisiae found only in the brewing environment). Individuals from populations of S. eubayanus and its sister species, S. uvarum, exist in apparent sympatry in Nothofagus (Southern beech) forests in Patagonia, but are isolated genetically through intrinsic postzygotic barriers, and ecologically through host-preference. The draft genome sequence of S. eubayanus is 99.5% identical to the non-S. cerevisiae portion of the S. pastorianus genome sequence and suggests specific changes in sugar and sulfite metabolism that were crucial for domestication in the lager-brewing environment. This study shows that combining microbial ecology with comparative genomics facilitates the discovery and preservation of wild genetic stocks of domesticated microbes to trace their history, identify genetic changes, and suggest paths to further industrial improvement. PMID:21873232

  19. Isolation and Identification of Yeasts from Wild Flowers Collected around Jangseong Lake in Jeollanam-do, Republic of Korea, and Characterization of the Unrecorded Yeast Bullera coprosmaensis

    PubMed Central

    Han, Sang-Min; Hyun, Se-Hee; Lee, Hyang Burm; Lee, Hye Won; Kim, Ha-Kun

    2015-01-01

    Several types of yeasts were isolated from wild flowers around Jangseong Lake in Jeollanam-do, Republic of Korea and identified by comparing the nucleotide sequences of the PCR amplicons for the D1/D2 variable domain of the 26S ribosomal DNA using Basic Local Alignment Search Tool (BLAST) analysis. In total, 60 strains from 18 species were isolated, and Pseudozyma spp. (27 strains), which included Pseudozyma rugulosa (7 strains) and Pseudozyma aphidis (6 strains), was dominant species. Among the 60 strains, Bullera coprosmaensis JS00600 represented a newly recorded yeast strain in Korea, and its microbiological characteristics were investigated. The yeast cell has an oval-shaped morphology measuring 1.4 × 1.7 µm in size. Bullera coprosmaensis JS00600 is an asporous yeast that exhibits no pseudomycelium formation. It grew well in vitamin-free medium as well as in yeast extract-malt extract broth and yeast extract-peptone-dextrose (YPD) broth, and it is halotolerant growing in 10% NaCl-containing YPD broth. PMID:26539042

  20. Misidentification of clinical yeast isolates by using the updated Vitek Yeast Biochemical Card.

    PubMed Central

    Dooley, D P; Beckius, M L; Jeffrey, B S

    1994-01-01

    The Vitek Yeast Biochemical Card (YBC) is widely used as a rapid identification (RI) (within 48 h) system for clinical yeast isolates. We compared the RI results obtained by the YBC technique with matched results obtained with the API 20C system. The RI of germ tube-negative yeasts isolated from 222 clinical specimens was performed with the YBC system, and the results were compared with those of standard identifications obtained by using the API 20C system and morphology, with additional biochemical reactions performed as required. Commonly isolated yeasts (Candida albicans [n = 29], Candida tropicalis [n = 40], Torulopsis [Candida] glabrata [n = 28], Candida parapsilosis [n = 12], and Cryptococcus neoformans [n = 14]) were generally well identified (115 of 123 [93%] identified correctly, with only C. albicans, C. tropicalis, and C. neoformans mis- or unidentified more than once). The RI of less commonly isolated yeasts included in the YBC database, however, was less successful (54 of 99 [55%] correct). The YBC card failed to identify 42% (10 of 24) of Candida krusei isolates, 80% (4 of 5) of Candida lambica isolates, 88% (7 of 8) of Trichosporon beigelii isolates, and 83% (10 of 12) of Cryptococcus isolates (non-C. neoformans species). For most identification failures (79%; 42 of 53) there was no identification by the end of 48 h; the other identification failures (21%; 11 of 53) gave definite but incorrect identifications. Of eight rare clinical yeast isolates not included in the Vitek database, six were correctly, not identified, while two (25%) were falsely assigned a definite RI (one Hansenula fabianii isolate was identified as Rhodotorula glutinis, and one Hansenula isolate [non-Hansenula anomala] was identified as Hansenula anomala). While the Vitek YBC rapidly and adequately identifies common yeast isolates, it fails in the RI of more unusual organisms. PMID:7883873

  1. Use of The Yeast Two-Hybrid System to Identify Targets of Fungal Effectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yeast-two hybrid (Y2H) system is a binary method widely used to determine direct interactions between paired proteins. Although having certain limitations, this method has become one of the two main systemic tools (along with affinity purification/mass spectrometry) for interactome mapping in mo...

  2. Isolation and Identification of Black Yeasts by Enrichment on Atmospheres of Monoaromatic Hydrocarbons

    PubMed Central

    Zhao, Jingjun; Zeng, Jingsi; de Hoog, G. Sybren; Attili-Angelis, Derlene

    2010-01-01

    Black yeast members of the Herpotrichiellaceae present a complex ecological behavior: They are often isolated from rather extreme environments polluted with aromatic hydrocarbons, while they are also regularly involved in human opportunistic infections. A selective technique to promote the in vitro growth of herpotrichiellaceous fungi was applied to investigate their ecophysiology. Samples from natural ecological niches and man-made environments that might contain black yeasts were enriched on an inert solid support at low humidity and under a controlled atmosphere rich in volatile aromatic hydrocarbons. Benzene, toluene, and xylene were provided separately as the sole carbon and energy source via the gas phase. The assayed isolation protocol was highly specific toward mesophilic Exophiala species (70 strains of this genus out of 71 isolates). Those were obtained predominantly from creosote-treated railway ties (53 strains), but isolates were also found on wild berries (11 strains) and in guano-rich soil samples (six strains). Most of the isolates were obtained on toluene (43 strains), but enrichments on xylene and benzene also yielded herpotrichiellaceous fungi (17 and 10 isolates, respectively). Based upon morphological characterizations and DNA sequences of the full internal transcriber spacers (ITS) and the 8.5S rRNA genes, the majority of the obtained isolates were affiliated to the recently described species Exophiala xenobiotica (32 strains) and Exophiala bergeri (nine strains). Members of two other phylogenetic groups (24 and two strains, respectively) somewhat related to E. bergeri were also found, and a last group (three strains) corresponded to an undescribed Exophiala species. PMID:20333373

  3. Identification of proteins associated with the yeast mitochondrial RNA polymerase by tandem affinity purification

    PubMed Central

    Markov, Dmitriy A; Savkina, Maria; Anikin, Michael; Del Campo, Mark; Ecker, Karen; Lambowitz, Alan M; De Gnore, Jon P; McAllister, William T

    2009-01-01

    The abundance of mitochondrial (mt) transcripts varies under different conditions, and is thought to depend upon rates of transcription initiation, transcription termination/attenuation and RNA processing/degradation. The requirement to maintain the balance between RNA synthesis and processing may involve coordination between these processes; however, little is known about factors that regulate the activity of mtRNA polymerase (mtRNAP). Recent attempts to identify mtRNAP–protein interactions in yeast by means of a generalized tandem affinity purification (TAP) protocol were not successful, most likely because they involved a C-terminal mtRNAP–TAP fusion (which is incompatible with mtRNAP function) and because of the use of whole-cell solubilization protocols that did not preserve the integrity of mt protein complexes. Based upon the structure of T7 RNAP (to which mtRNAPs show high sequence similarity), we identified positions in yeast mtRNAP that allow insertion of a small affinity tag, confirmed the mature N-terminus, constructed a functional N-terminal TAP–mtRNAP fusion, pulled down associated proteins, and identified them by LC–MS–MS. Among the proteins found in the pull-down were a DEAD-box protein (Mss116p) and an RNA-binding protein (Pet127p). Previous genetic experiments suggested a role for these proteins in linking transcription and RNA degradation, in that a defect in the mt degradadosome could be suppressed by overexpression of either of these proteins or, independently, by mutations in either mtRNAP or its initiation factor Mtf1p. Further, we found that Mss116p inhibits transcription by mtRNAP in vitro in a steady-state reaction. Our results support the hypothesis that Mss116p and Pet127p are involved in modulation of mtRNAP activity. Copyright © 2009 John Wiley & Sons, Ltd. PMID:19536766

  4. Study of amyloids using yeast

    PubMed Central

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.

    2012-01-01

    Summary Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, the emphasis of this chapter will be on genetic, biochemical, cell biological and physical methods particularly useful in the study of yeast prions and other amyloids studied in yeast. We limit our description of these methods to those aspects which have been most useful in studying yeast prions, citing more detailed expositions in the literature. Volumes on yeast genetics methods (2–4), and on amyloids and prions (5, 6) are useful, and Masison has edited a volume of Methods on “Identification, analysis and characterization of fungal prions” which covers some of this territory (7). We also outline some useful physical methods, pointing the reader to more extensive and authoratative descriptions. PMID:22528100

  5. Performance characterization of material identification systems

    NASA Astrophysics Data System (ADS)

    Brown, Christopher D.; Green, Robert L.

    2006-10-01

    In recent years a number of analytical devices have been proposed and marketed specifically to enable field-based material identification. Technologies reliant on mass, near- and mid-infrared, and Raman spectroscopies are available today, and other platforms are imminent. These systems tend to perform material recognition based on an on-board library of material signatures. While figures of merit for traditional quantitative analytical sensors are broadly established (e.g., SNR, selectivity, sensitivity, limit of detection/decision), measures of performance for material identification systems have not been systematically discussed. In this paper we present an approach to performance characterization similar in spirit to ROC curves, but including elements of precision-recall curves and specialized for the intended-use of material identification systems. Important experimental considerations are discussed, including study design, sources of bias, uncertainty estimation, and cross-validation and the approach as a whole is illustrated using a commercially available handheld Raman material identification system.

  6. MALDI-TOF MS-based identification of black yeasts of the genus Exophiala.

    PubMed

    Özhak-Baysan, Betil; Öğünç, Dilara; Döğen, Aylin; Ilkit, Macit; de Hoog, G Sybren

    2015-05-01

    In this study, we investigated the applicability of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of Exophiala species. The analysis included a total of 110 Exophiala isolates, including 15 CBS strains representing 4 species, Exophiala dermatitidis (61), E. phaeomuriformis (36), E. crusticola (9), and E. heteromorpha (4), that had been previously identified based on internal transcribed spacer (ITS) regions. We also compared the relative efficacies of Sabouraud glucose agar (SGA) and Columbia agar (CA) for use in MALDI-TOF MS. Remarkably, we obtained a log-score value ≥2.0 by using either SGA or CA for all 15 CBS strains, indicating species-level identification. The remaining 95 Exophiala strains were identified to the genus or species levels, with identification rates of 96.8% and 90.5%, using SGA or CA, respectively. Most of the E. dermatitidis (100% and 92.9%), E. phaeomuriformis (80.6% and 83.9%), E. crusticola (50% and 100%), and E. heteromorpha (100% and 100%) isolates were correctly identified using SGA or CA, respectively. Furthermore, 58.9% and 26.3% of the strains had log-score values of ≥2.0 by using SGA and CA, respectively. Our results indicate that MALDI-TOF MS is a rapid and reliable technique with high rates of correct taxonomic identification. PMID:25851261

  7. Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems.

    PubMed

    Yang, Qingxiang; Zhang, Hao; Li, Xueling; Wang, Zhe; Xu, Ying; Ren, Siwei; Chen, Xuanyu; Xu, Yuanyuan; Hao, Hongxin; Wang, Hailei

    2013-02-01

    The abilities of yeasts to produce different extracellular enzymes and their distribution characteristics were studied in municipal, inosine fermentation, papermaking, antibiotic fermentation, and printing and dyeing wastewater treatment systems. The results indicated that of the 257 yeasts, 16, 14, 55, and 11 produced lipase, protease, manganese dependant peroxidase (MnP), and lignin peroxidase (LiP), respectively. They were distributed in 12 identified and four unidentified genera, in which Candida rugosa (AA-M17) and an unidentified Saccharomycetales (AA-Y5), Pseudozyma sp. (PH-M15), Candida sp. (MO-Y11), and Trichosporon montevideense (MO-M16) were shown to have the highest activity of lipase, protease, Mnp, and LiP, respectively. No yeast had amylase, cellulose, phytase, or laccase activity. Although only 60 isolates produced ligninolytic enzymes, 249 of the 257 yeasts could decolorize different dyes through the mechanism of biodegradation (222 isolates) or bio-sorption. The types of extracellular enzymes that the yeasts produced were significantly shaped by the types of wastewater treated. PMID:23261999

  8. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology.

    PubMed

    Wickner, R B; Edskes, H K; Gorkovskiy, A; Bezsonov, E E; Stroobant, E E

    2016-01-01

    Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far. PMID:26915272

  9. Flavor encapsulation in yeasts: limonene used as a model system for characterization of the release mechanism.

    PubMed

    Normand, Valery; Dardelle, Gregory; Bouquerand, Pierre-Etienne; Nicolas, Laetitia; Johnston, David J

    2005-09-21

    Empty yeast cells are used as a new delivery system for flavor encapsulation. The flavor release mechanism from yeast cells is characterized using a series of analytical techniques, and limonene is used as a model representing a hydrophobic flavor. Furthermore, the thermal stability of the capsules was assessed. The characterization of the cell wall structure gives rise to the development of an empirical model explaining water adsorption as well as the desorption singularities observed on drying. The study of the rate of flavor release as a function of temperature and water uptake in the cell wall clearly demonstrated a particular behavior of the yeast cell wall permeability. Below a water activity around 0.7, no flavor release is permitted whereas release occurs above it. Surface analysis on dry or wet cells using atomic force microscopy is discussed. PMID:16159183

  10. Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS) using chemogenomics

    PubMed Central

    2012-01-01

    Background Chitosan oligosaccharide (COS), a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results Three different chemogenomic fitness assays, haploinsufficiency (HIP), homozygous deletion (HOP), and multicopy suppression (MSP) profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms), membrane functions (e.g. signalling, transport and targeting), membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress) and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. Conclusions Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane trafficking, provides protection against COS-induced cell membrane permeability and damage. We found that the ARL1 COS-resistant over-expression strain was as sensitive to Amphotericin B, Fluconazole and Terbinafine as the wild type cells and that when COS and Fluconazole are used in combination they act in a synergistic fashion. The gene targets of COS identified in this study indicate that COS’s mechanism of action is different from other commonly studied fungicides that target membranes, suggesting that COS may be an effective fungicide for drug-resistant fungal pathogens. PMID:22727066

  11. Identification of neuroglobin-interacting proteins using yeast two-hybrid screening.

    PubMed

    Yu, Z; Liu, N; Wang, Y; Li, X; Wang, X

    2012-01-01

    Neuroglobin (Ngb) is a globin protein that is highly and specifically expressed in brain neurons. A large volume of evidence has proven that Ngb is a neuroprotective molecule against hypoxic/ischemic brain injury and other related neurological disorder; however, the underlying mechanisms remain poorly understood. Aiming to provide more clues in understanding the molecular mechanisms of Ngb's neuroprotection, we performed yeast two-hybrid screening to search for proteins that interact with Ngb. From a mouse brain cDNA library, we found totally 36 proteins that potentially interact with Ngb, and 10 of them were each identified in multiple positive clones. The shared sequences within these multiple clones are more likely to be Ngb-interacting domains. In primary cultured mouse cortical neurons, immuno-precipitation was performed to confirm the interactions of selected proteins with Ngb. The discovered Ngb-interacting proteins in this study include those involved in energy metabolism, mitochondria function, and signaling pathways for cell survival and proliferation. Our findings provide molecular targets for investigating protein interaction-based biological functions and neuroprotective mechanisms of Ngb. PMID:22079573

  12. Identification of Neuroglobin-interacting Proteins Using Yeast Two-hybrid Screening

    PubMed Central

    Yu, Zhanyang; Liu, Ning; Wang, Yi; Li, Xiaokun; Wang, Xiaoying

    2011-01-01

    Neuroglobin (Ngb) is a globin protein that is highly and specifically expressed in brain neurons. A large volume of evidence has proven that Ngb is a neuroprotective molecule against hypoxic/ischemic brain injury and other related neurological disorder; however, the underlying mechanisms remain poorly understood. Aiming to provide more clues in understanding the molecular mechanisms of Ngb’s neuroprotection, we performed yeast two-hybrid screening to search for proteins that interact with Ngb. From a mouse brain cDNA library, we found totally 36 proteins that potentially interact with Ngb, and 10 of them were each identified in multiple positive clones. The shared sequences within these multiple clones are more likely to be Ngb-interacting domains. In primary cultured mouse cortical neurons, immuno-precipitation was performed to confirm the interactions of selected proteins with Ngb. The discovered Ngb-interacting proteins in this study include those involved in energy metabolism, mitochondria function and signaling pathways for cell survival and proliferation. Our findings provide molecular targets for investigating protein interaction-based biological functions and neuroprotective mechanisms of Ngb. PMID:22079573

  13. The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds.

    PubMed

    Lahav, R; Fareleira, P; Nejidat, A; Abeliovich, A

    2002-04-01

    Ramat Hovav is a major chemical industrial park manufacturing pharmaceuticals, pesticides, and various aliphatic and aromatic halogens. All wastewater streams are collected in large evaporation ponds. Salinity in the evaporation ponds fluctuates between 3% (w/v) and saturation and pH values range between 2.0 and 10.0. We looked for microorganisms surviving in these extreme environmental conditions and found that 2 yeast strains dominate this biotope. 18S rDNA sequence analysis identified the isolates as Pichia guilliermondii and Rhodotorula mucilaginosa. Both isolates grew in NaCl concentrations ranging up to 3.5 M and 2.5 M, respectively, and at a pH range of 2-10. There was a distinct difference between the Rhodotorula and Pichia strains and S. cerevisiae RS16 that served as a control strain with respect to accumulation of osmoregulators and internal ion concentrations when exposed to osmotic stress. The Pichia and Rhodotorula strains maintained high glycerol concentration also in media low in NaCl. Utilization of various carbon sources was examined. Using a tetrazolium-based assay we show that the Rhodotorula and Pichia strains are capable of utilizing a wide range of different carbon sources including anthracene, phenanthrene, and other cyclic aromatic hydrocarbons. PMID:12037616

  14. Identification and Dissection of a Complex DNA Repair Sensitivity Phenotype in Baker's Yeast

    PubMed Central

    Demogines, Ann; Smith, Erin; Kruglyak, Leonid; Alani, Eric

    2008-01-01

    Complex traits typically involve the contribution of multiple gene variants. In this study, we took advantage of a high-density genotyping analysis of the BY (S288c) and RM strains of Saccharomyces cerevisiae and of 123 derived spore progeny to identify the genetic loci that underlie a complex DNA repair sensitivity phenotype. This was accomplished by screening hybrid yeast progeny for sensitivity to a variety of DNA damaging agents. Both the BY and RM strains are resistant to the ultraviolet lightmimetic agent 4-nitroquinoline 1-oxide (4-NQO); however, hybrid progeny from a BYRM cross displayed varying sensitivities to the drug. We mapped a major quantitative trait locus (QTL), RAD5, and identified the exact polymorphism within this locus responsible for 4-NQO sensitivity. By using a backcrossing strategy along with array-assisted bulk segregant analysis, we identified one other locus, MKT1, and a QTL on Chromosome VII that also link to the hybrid 4-NQOsensitive phenotype but confer more minor effects. This work suggests an additive model for sensitivity to 4-NQO and provides a strategy for mapping both major and minor QTL that confer background-specific phenotypes. It also provides tools for understanding the effect of genetic background on sensitivity to genotoxic agents. PMID:18617998

  15. Multi-level RF identification system

    DOEpatents

    Steele, Kerry D.; Anderson, Gordon A.; Gilbert, Ronald W.

    2004-07-20

    A radio frequency identification system having a radio frequency transceiver for generating a continuous wave RF interrogation signal that impinges upon an RF identification tag. An oscillation circuit in the RF identification tag modulates the interrogation signal with a subcarrier of a predetermined frequency and modulates the frequency-modulated signal back to the transmitting interrogator. The interrogator recovers and analyzes the subcarrier signal and determines its frequency. The interrogator generates an output indicative of the frequency of the subcarrier frequency, thereby identifying the responding RFID tag as one of a "class" of RFID tags configured to respond with a subcarrier signal of a predetermined frequency.

  16. Modeling, system identification, and control of ASTREX

    NASA Technical Reports Server (NTRS)

    Abhyankar, Nandu S.; Ramakrishnan, J.; Byun, K. W.; Das, A.; Cossey, Derek F.; Berg, J.

    1993-01-01

    The modeling, system identification and controller design aspects of the ASTREX precision space structure are presented in this work. Modeling of ASTREX is performed using NASTRAN, TREETOPS and I-DEAS. The models generated range from simple linear time-invariant models to nonlinear models used for large angle simulations. Identification in both the time and frequency domains are presented. The experimental set up and the results from the identification experiments are included. Finally, controller design for ASTREX is presented. Simulation results using this optimal controller demonstrate the controller performance. Finally the future directions and plans for the facility are addressed.

  17. Nuclear Materials Identification System Operational Manual

    SciTech Connect

    Chiang, L.G.

    2001-04-10

    This report describes the operation and setup of the Nuclear Materials Identification System (NMIS) with a {sup 252}Cf neutron source at the Oak Ridge Y-12 Plant. The components of the system are described with a description of the setup of the system along with an overview of the NMIS measurements for scanning, calibration, and confirmation of inventory items.

  18. Choosing Between Yeast and Bacterial Expression Systems: Yield Dependent

    NASA Technical Reports Server (NTRS)

    Miller, Rebecca S.; Malone, Christine C.; Moore, Blake P.; Burk, Melissa; Crawford, Lisa; Karr, Laurel J.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Green fluorescent protein (GFP) is a naturally occurring fluorescent protein isolated from the jellyfish Aequorea victoria. The intrinsic fluorescence of the protein is due to a chromophore located in the center of the molecule. Its usefulness has been established as a marker for gene expression and localization of gene products. GFP has recently been utilized as a model protein for crystallization studies at NASA/MSFC, both in earth-based and in microgravity experiments. Because large quantities of purified protein were needed, the cDNA of GFP was cloned into the Pichia pastoris pPICZ(alpha) C strain, with very little protein secreted into the media. Microscopic analysis prior to harvest showed gigantic green fluorescent yeast, but upon harvesting most protein was degraded. Trial fermentations of GFP cloned into pPICZ A for intracellular expression provided unsatisfactory yield. GFP cloned into E, coli was overexpressed at greater than 150 mg/liter, with purification yields at greater than 100mg/liter.

  19. Reverse Engineering the Yeast RNR1 Transcriptional Control System

    PubMed Central

    Mao, Grace; Brody, James P.

    2010-01-01

    Transcription is controlled by multi-protein complexes binding to short non-coding regions of genomic DNA. These complexes interact combinatorially. A major goal of modern biology is to provide simple models that predict this complex behavior. The yeast gene RNR1 is transcribed periodically during the cell cycle. Here, we present a pilot study to demonstrate a new method of deciphering the logic behind transcriptional regulation. We took regular samples from cell cycle synchronized cultures of Saccharomyces cerevisiae and extracted nuclear protein. We tested these samples to measure the amount of protein that bound to seven different 16 base pair sequences of DNA that have been previously identified as protein binding locations in the promoter of the RNR1 gene. These tests were performed using surface plasmon resonance. We found that the surface plasmon resonance signals showed significant variation throughout the cell cycle. We correlated the protein binding data with previously published mRNA expression data and interpreted this to show that transcription requires protein bound to a particular site and either five different sites or one additional sites. We conclude that this demonstrates the feasibility of this approach to decipher the combinatorial logic of transcription. PMID:21103376

  20. Encapsulated yeast cells inside Paramecium primaurelia: a model system for protection capability of polyelectrolyte shells.

    PubMed

    Krol, S; Cavalleri, O; Ramoino, P; Gliozzi, A; Diaspro, A

    2003-12-01

    One of the most promising applications of encapsulated living cells is their use as protected transplanted tissue into the human body. A suitable system for the protection of living cells is the use of nano- or microcapsules of polyelectrolytes. These shells can be deposited easily on top of the cells by means of a layer-by-layer technique. An interesting feature of the capsules is the possibility to control their properties on a nanometre level, tuning their wall texture via the preparation conditions. Here we introduce a model system to test the protection ability of polyelectrolyte capsules. Common bakery yeast cells were encapsulated. They were coated with a fluorescently labelled shell at conditions known to guarantee cell survival, and the cell interior was stained with DAPI. The protozoan Paramecium primaurelia was incubated with this double-stained living yeast and visualized by means of two-photon excitation fluorescence microscopy. Cross-sections of the dye-stained material as well as autofluorescence of the fixed protozoan allowed us to follow the digestion of the coated yeast with time. Our investigation reveals that capsules prepared under these deposition conditions are permeable to lysosomal enzymes, leading to degradation of the yeast inside the intact capsules. Our preliminary results indicate the suitability of the introduced model as a test system of this permeability. PMID:14629549

  1. Identification of the Transcription Factor Znc1p, which Regulates the Yeast-to-Hypha Transition in the Dimorphic Yeast Yarrowia lipolytica

    PubMed Central

    Martinez-Vazquez, Azul; Gonzalez-Hernandez, Angelica; Domínguez, Ángel; Rachubinski, Richard; Riquelme, Meritxell; Cuellar-Mata, Patricia; Guzman, Juan Carlos Torres

    2013-01-01

    The dimorphic yeast Yarrowia lipolytica is used as a model to study fungal differentiation because it grows as yeast-like cells or forms hyphal cells in response to changes in environmental conditions. Here, we report the isolation and characterization of a gene, ZNC1, involved in the dimorphic transition in Y. lipolytica. The ZNC1 gene encodes a 782 amino acid protein that contains a Zn(II)2C6 fungal-type zinc finger DNA-binding domain and a leucine zipper domain. ZNC1 transcription is elevated during yeast growth and decreases during the formation of mycelium. Cells in which ZNC1 has been deleted show increased hyphal cell formation. Znc1p-GFP localizes to the nucleus, but mutations within the leucine zipper domain of Znc1p, and to a lesser extent within the Zn(II)2C6 domain, result in a mislocalization of Znc1p to the cytoplasm. Microarrays comparing gene expression between znc1::URA3 and wild-type cells during both exponential growth and the induction of the yeast-to-hypha transition revealed 1,214 genes whose expression was changed by 2-fold or more under at least one of the conditions analyzed. Our results suggest that Znc1p acts as a transcription factor repressing hyphal cell formation and functions as part of a complex network regulating mycelial growth in Y. lipolytica. PMID:23826133

  2. On Markov parameters in system identification

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Longman, Richard W.

    1991-01-01

    A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.

  3. Identification of structurally distinct catalytic intermediates of the H+-ATPase from yeast plasma membranes.

    PubMed

    Perlin, D S; Brown, C L

    1987-05-15

    Mild trypsin proteolysis of the H+-ATPase from yeast plasma membranes has been used to identify structurally distinct catalytic intermediates. In the absence of substrate, trypsin treatment resulted in rapid inactivation of enzyme activity. By contrast, trypsin treatment of enzyme in the presence of MgATP or MgATP plus vanadate resulted in enhanced rates of ATP hydrolysis accompanied by protection from extensive inactivation. High concentrations of Pi also induced strong protection from trypsin-induced inactivation, although enhancement of enzyme activity was not observed. Western blot analysis of peptide fragment profiles following tryptic digestion indicated that at least 15 prominent fragments of identical size, ranging from Mr = 12,800 to 48,000, were generated irrespective of digestion conditions. However, fragments from protected enzyme were resistant to further proteolysis, whereas fragments from unprotected enzyme were extensively degraded. These data have been interpreted in terms of a published catalytic reaction pathway (Amory, A., Goffeau, A., McIntosh, D.B., and Boyer, P.D. (1982) J. Biol. Chem. 257, 12509-12516) and are consistent with unprotected and protected enzyme conformations representing E1 and E2 X Pi catalytic intermediates, respectively. Trypsin proteolysis proved an effective tool for evaluating preferred enzyme conformational states and with this approach, it was found that ATPase inhibitors N-ethylmaleimide and fluorescein isothiocyanate locked the enzyme in an E1 conformation. The enhanced rate of ATP hydrolysis by trypsin-treated enzyme was fully coupled to proton transport, and all fragments generated by proteolysis were firmly bound to the membrane. These results, coupled with the fact that initial peptide fragmentation profiles were independent of enzyme conformation, suggest that the different conformational states, E1, and E2 X Pi, are not related to gross changes in overall enzyme structure but likely reflect localized changes in intramolecular bonding. PMID:2883188

  4. Identification and characterization of critical cis-acting sequences within the yeast Ty1 retrotransposon

    PubMed Central

    BOLTON, ERIC C.; COOMBES, CANDICE; EBY, YOLANDA; CARDELL, MATTIAS; BOEKE, JEF D.

    2005-01-01

    The yeast long terminal repeat (LTR) retrotransposon Ty1, like retroviruses, encodes a terminally redundant RNA, which is packaged into virus-like particles (VLPs) and is converted to a DNA copy by the process of reverse transcription. Mutations predicted to interfere with the priming events during reverse transcription and hence inhibit replication are known to dramatically decrease transposition of Ty1. However, additional cis-acting sequences responsible for Ty1 replication and RNA dimerization and packaging have remained elusive. Here we describe a modular mini-Ty1 element encoding the minimal sequence that can be retrotransposed by the Ty1 proteins, supplied in trans by a helper construct. Using a mutagenic screening strategy, we recovered transposition-deficient modular mini-Ty1-HIS3 elements with mutations in sequences required in cis for Ty1 replication and integration. Two distinct clusters of mutations mapped near the 5′-end of the Ty1 RNA. The clusters define a GAGGAGA sequence at the extreme 5′-end of the Ty1 transcript and a complementary downstream UCUCCUC sequence, 264 nt into the RNA. Disruption of the reverse complementarity of these two sequences decreased transposition and restoration of complementarity rescued transposition to wild-type levels. Ty1 cDNA was reduced in cells expressing RNAs with mutations in either of these short sequences, despite nearly normal levels of Ty1 RNA and VLPs. Our results suggest that the intramolecular interaction between the 5′-GAGGAGA and UCUCCUC sequences stabilizes an RNA structure required for efficient initiation of reverse transcription. PMID:15661848

  5. Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-plasmid yeast expression system utilizing the portable small ubiquitin-like modifier (SUMO) vector set combined with the efficient endogenous yeast protease Ulp1 was developed for production of large amounts of soluble functional protein in Saccharomyces cerevisiae. Each vector has a differ...

  6. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies

    PubMed Central

    Lasserre, Jean-Paul; Dautant, Alain; Aiyar, Raeka S.; Kucharczyk, Roza; Glatigny, Annie; Tribouillard-Tanvier, Déborah; Rytka, Joanna; Blondel, Marc; Skoczen, Natalia; Reynier, Pascal; Pitayu, Laras; Rötig, Agnès; Delahodde, Agnès; Steinmetz, Lars M.; Dujardin, Geneviève; Procaccio, Vincent; di Rago, Jean-Paul

    2015-01-01

    ABSTRACT Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’), and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast. PMID:26035862

  7. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies.

    PubMed

    Lasserre, Jean-Paul; Dautant, Alain; Aiyar, Raeka S; Kucharczyk, Roza; Glatigny, Annie; Tribouillard-Tanvier, Déborah; Rytka, Joanna; Blondel, Marc; Skoczen, Natalia; Reynier, Pascal; Pitayu, Laras; Rötig, Agnès; Delahodde, Agnès; Steinmetz, Lars M; Dujardin, Geneviève; Procaccio, Vincent; di Rago, Jean-Paul

    2015-06-01

    Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as 'petite-positivity'), and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast. PMID:26035862

  8. Subcritical flutter testing and system identification

    NASA Technical Reports Server (NTRS)

    Houbolt, J. C.

    1974-01-01

    Treatment is given of system response evaluation, especially in application to subcritical flight and wind tunnel flutter testing of aircraft. An evaluation is made of various existing techniques, in conjuction with a companion survey which reports theoretical and analog experiments made to study the identification of system response characteristics. Various input excitations are considered, and new techniques for analyzing response are explored, particularly in reference to the prevalent practical case where unwanted input noise is present, such as caused by gusts or wind tunnel turbulence. Further developments are also made of system parameter identification techniques.

  9. Identification of PDE6D as a molecular target of anecortave acetate via a methotrexate-anchored yeast three-hybrid screen.

    PubMed

    Shepard, Allan R; Conrow, Raymond E; Pang, Iok-Hou; Jacobson, Nasreen; Rezwan, Mandana; Rutschmann, Katrin; Auerbach, Daniel; Sriramaratnam, Rohitha; Cornish, Virginia W

    2013-03-15

    Glaucoma and age-related macular degeneration are ocular diseases targeted clinically by anecortave acetate (AA). AA and its deacetylated metabolite, anecortave desacetate (AdesA), are intraocular pressure (IOP)-lowering and angiostatic cortisenes devoid of glucocorticoid activity but with an unknown mechanism of action. We used a methotrexate-anchored yeast three-hybrid (Y3H) technology to search for binding targets for AA in human trabecular meshwork (TM) cells, the target cell type that controls IOP, a major risk factor in glaucoma. Y3H hits were filtered by competitive Y3H screens and coimmunoprecipitation experiments and verified by surface plasmon resonance analysis to yield a single target, phosphodiesterase 6-delta (PDE6D). PDE6D is a prenyl-binding protein with additional function outside the PDE6 phototransduction system. Overexpression of PDE6D in mouse eyes caused elevated IOP, and this elevation was reversed by topical ocular application of either AA or AdesA. The identification of PDE6D as the molecular binding partner of AA provides insight into the role of this drug candidate in treating glaucoma. PMID:23301619

  10. Identification and functional reconstitution of yeast mitochondrial carrier for S-adenosylmethionine

    PubMed Central

    Marobbio, C.M.T.; Agrimi, G.; Lasorsa, F.M.; Palmieri, F.

    2003-01-01

    The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier protein family, most of which have not yet been functionally identified. Here the identification of the mitochondrial carrier for S-adenosylmethionine (SAM) Sam5p is described. The corresponding gene has been overexpressed in bacteria and the protein has been reconstituted into phospholipid vesicles and identified by its transport properties. In confirmation of its identity, (i) the Sam5p–GFP protein was found to be targeted to mitochondria; (ii) the cells lacking the gene for this carrier showed auxotrophy for biotin (which is synthesized in the mitochondria by the SAM-requiring Bio2p) on fermentable carbon sources and a petite phenotype on non-fermentable substrates; and (iii) both phenotypes of the knock-out mutant were overcome by expressing the cytosolic SAM synthetase (Sam1p) inside the mitochondria. PMID:14609944

  11. Distributed GA for large system identification problems

    NASA Astrophysics Data System (ADS)

    Koh, Chan G.; Wu, L. P.; Liaw, C. Y.

    2002-06-01

    Non-destructive monitoring of structures may be achieved by system identification to evaluate key parameters. Unfortunately many system identification methods that work for small systems do not necessarily give convergence for large systems. In recent years, the use of genetic algorithms (GA) has shown promising potential for parameter identification of complex systems owing to its many inherent advantages. For large systems involving many degrees of freedom and unknown parameters, the computational effort required by the GA approach may still be prohibitive. The main bulk of computational time lies in the numerous forward analyses that need to be carried out. With rapid advances in computer hardware, especially networking technology, nevertheless, the feasibility of applying the GA approach to large system identification problems has become closer to reality even by using low-cost personal computers. Distributed computing can be easily employed to expedite the GA search, thanks to the high concurrency of the GA approach. In this study, a parallel version of a hybrid algorithm of GA and local search is developed for distributed computing. The implementation involves a manager computer running the main algorithm, which distributes data files to many worker computers connected on the network. Each worker computer carries out the forward analysis with the assigned parameter set and, when completed, sends the output file to the manager computer, Numerical examples are presented to show that this approach is generally workable and robust.

  12. GENE ENGINEERING IN YEAST FOR BIODEGRADATION: IMMUNOLOGICAL CROSS-REACTIVITY AMONG CYTOCHROME P-450 SYSTEM PROTEINS OF SACCHAROMYCES CEREVISIAE AND CANDIDA TROPICALIS

    EPA Science Inventory

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monoxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. e are examining the molecular genetic properties of strains of bakers yeast, Sa...

  13. Identification of impact odorants in Bordeaux red grape juice, in the commercial yeast used for its fermentation, and in the produced wine.

    PubMed

    Kotseridis, Y; Baumes, R

    2000-02-01

    The aroma extract dilution analysis method was used to detect the impact odorants of Bordeaux Cabernet Sauvignon and Merlot wines extracts, as well as those of the extracts of the corresponding Cabernet Sauvignon juice and dry yeasts used for its fermentation. The wines and the yeasts were extracted using dichloromethane, and the juice was extracted using Amberlite XAD-2. Structural identification of the impact odorants using gas chromatography-mass spectrometry and atomic emission detection (sulfur acquisition) was achieved after enrichment of these extracts by silica gel and Affi-Gel 501 chromatography. The same odorants (with the exception of dimethyl sulfide among 48) were detected in both wine extracts, with about the same flavor dilution (FD) factors. The 18 impact odorants detected in the Cabernet Sauvignon juice and dry yeast extracts were also found in the wine extracts. The odorants with the highest FD factors were 3-(methylsulfanyl)propanal, (E,Z)-nona-2, 6-dienal, and decanal in the juice extract, 2-methyl-3-sulfanylfuran, 3-(methylsulfanyl)propanal, 2-/3-methylbutanoic acids, and phenylethanal in the dry yeast extract, and 2-/3-methylbutanols, 2-phenylethanol, 2-methyl-3-sulfanylfuran, acetic acid, 3-(methylsulfanyl)propanal, 2-/3-methylbutanoic acids, beta-damascenone, 3-sulfanylhexan-1-ol, Furaneol, and homofuraneol in the wine extracts. Determination of the odor thresholds of some of these impact odorants was carried out. PMID:10691647

  14. Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast

    PubMed Central

    Pang, Wei; Coghill, George M.

    2015-01-01

    In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. PMID:25864377

  15. Species-specific PCR primers for the rapid identification of yeasts of the genus Zygosaccharomyces.

    PubMed

    Harrison, Elizabeth; Muir, Alastair; Stratford, Malcolm; Wheals, Alan

    2011-06-01

    Species-specific primer pairs that produce a single band of known product size have been developed for members of the Zygosaccharomyces clade including Zygosaccharomyces bailii, Zygosaccharomyces bisporus, Zygosaccharomyces kombuchaensis, Zygosaccharomyces lentus, Zygosaccharomyces machadoi, Zygosaccharomyces mellis and Zygosaccharomyces rouxii. An existing primer pair for the provisional new species Zygosaccharomyces pseudorouxii has been confirmed as specific. The HIS3 gene, encoding imidazole-glycerolphosphate dehydratase, was used as the target gene. This housekeeping gene evolves slowly and is thus well conserved among different isolates, but shows a significant number of base pair changes between even closely related species, sufficient for species-specific primer design. The primers were tested on type and wild strains of the genus Zygosaccharomyces and on members of the Saccharomycetaceae. Sequencing of the D1/D2 region of rDNA was used to confirm the identification of all nonculture collection isolates. This approach used extracted genomic DNA, but in practice, it can be used efficiently with a rapid colony PCR protocol. The method also successfully detected known and new hybrid strains of Z. rouxii and Z. pseudorouxii. The method is rapid, robust and inexpensive. It requires little expertise by the user and is thus useful for preliminary, large-scale screens. PMID:21332639

  16. Molecular comparisons for identification of food spoilage yeasts and prediction of species that may develop in different food products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spoilage of foods and beverages by yeasts is often characterized by objectionable odors, appearance, taste, texture or build-up of gas in packaging containers, resulting in loss of the product. Seldom is human health compromised by products spoiled by yeasts even though some spoilage is caused by sp...

  17. Continuous-Time Bilinear System Identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2003-01-01

    The objective of this paper is to describe a new method for identification of a continuous-time multi-input and multi-output bilinear system. The approach is to make judicious use of the linear-model properties of the bilinear system when subjected to a constant input. Two steps are required in the identification process. The first step is to use a set of pulse responses resulting from a constant input of one sample period to identify the state matrix, the output matrix, and the direct transmission matrix. The second step is to use another set of pulse responses with the same constant input over multiple sample periods to identify the input matrix and the coefficient matrices associated with the coupling terms between the state and the inputs. Numerical examples are given to illustrate the concept and the computational algorithm for the identification method.

  18. Robust orthogonal recombination system for versatile genomic elements rearrangement in yeast Saccharomyces Cerevisiae

    PubMed Central

    Lin, Qiuhui; Qi, Hao; Wu, Yi; Yuan, Yingjin

    2015-01-01

    Rearrangement of genomic DNA elements in a dynamic controlled fashion is a fundamental challenge. Site-specific DNA recombinases have been tamed as a powerful tool in genome editing. Here, we reported a DNA element rearrangement on the basis of a pairwise orthogonal recombination system which is comprised of two site-specific recombinases of Vika/vox and Cre/loxp in yeast Saccharomyces Creevisiae. Taking the advantage of the robust pairwise orthogonality, we showed that multi gene elements could be organized in a programmed way, in which rationally designed pattern of loxP and vox determined the final genotype after expressing corresponding recombinases. Finally, it was demonstrated that the pairwise orthogonal recombination system could be utilized to refine synthetic chromosome rearrangement and modification by loxP-mediated evolution, SCRaMbLE, in yeast cell carrying a completely synthesized chromosome III. PMID:26477943

  19. Optical disk uses in criminal identification systems

    NASA Astrophysics Data System (ADS)

    Sypherd, Allen D.

    1990-08-01

    A significant advancement in law enforcement tools has been made possible by the rapid and innovative development of electronic imaging for criminal identification systems. In particular, development of optical disks capable of high-capacity and random-access storage has provided a unique marriage of application and technology. Fast random access to any record, non-destructive reading of stored images, electronic sorting and transmission of images and an accepted legal basis for evidence are a few of the advantages derived from optical disk technology. This paper discusses the application of optical disk technology to both Automated Fingerprint Identification Systems (AFIS) and Automated Mugshot Retrieval Systems (AMRS). The following topics are addressed in light of AFIS and AMRS user requirements and system capabilities: Write once vs. rewritable, gray level and storage requirements, multi-volume library systems, data organization and capacity trends.

  20. Stabilization of the yeast desaturase system by low levels of oxygen

    NASA Technical Reports Server (NTRS)

    Volkmann, C. M.; Klein, H. P.

    1983-01-01

    The stability of particulate palmitoyl-CoA desaturase preparations from anaerobically grown yeast cells was increased by exposure to low levels of oxygen. The stabilizing effect of oxygen may be based upon the increased amounts of palmitoleic acid and ergosterol that become available to the cells. These results suggest the evolutinary appearance of this system at a time when atmospheric oxygen was at a low level.

  1. Production of ?-linolenic acid using a novel heterologous expression system in the oleaginous yeast Lipomyces kononenkoae.

    PubMed

    Wang, Ping; Wan, Xia; Zhang, Yinbo; Jiang, Mulan

    2011-10-01

    A novel expression system was established in the oleaginous yeast, Lipomyces kononenkoae. The expression vector pLK-rhPHG of L. kononenkoae was constructed and using the hygromycin phosphotransferase gene and green fluorescent protein gene as reporter genes. A delta 6-fatty acid desaturase gene (D6DM) from Cunninghamella echinulata MIAN6 was then expressed in this strain. The recombinant strain accumulated about 1.2% ?-linolenic acid in the total fatty acids. PMID:21681556

  2. Analysis of the structure and function of EMRE in a yeast expression system.

    PubMed

    Yamamoto, Takenori; Yamagoshi, Ryohei; Harada, Kazuki; Kawano, Mayu; Minami, Naoki; Ido, Yusuke; Kuwahara, Kana; Fujita, Atsushi; Ozono, Mizune; Watanabe, Akira; Yamada, Akiko; Terada, Hiroshi; Shinohara, Yasuo

    2016-06-01

    The mitochondrial calcium uniporter (MCU) complex is a highly-selective calcium channel, and this complex is believed to consist of a pore-forming subunit, MCU, and its regulatory subunits. As yeast cells lack orthologues of the mammalian proteins, the yeast expression system for the mammalian calcium uniporter subunits is useful for investigating their functions. We here established a yeast expression system for the native-form mouse MCU and 4 other subunits. This expression system enabled us to precisely reconstitute the properties of the mammalian MCU complex in yeast mitochondria. Using this expression system, we analyzed the essential MCU regulator (EMRE), which is a key subunit for Ca(2+) uptake but whose functions and structure remain unclear. The topology of EMRE was revealed: its N- and C-termini projected into the matrix and the inter membrane space, respectively. The expression of EMRE alone was insufficient for Ca(2+) uptake; and co-expression of MCU with EMRE was necessary. EMRE was independent of the protein levels of other subunits, indicating that EMRE was not a protein-stabilizing factor. Deletion of acidic amino acids conserved in EMRE did not significantly affect Ca(2+) uptake; thus, EMRE did not have basic properties of ion channels such as ion-selectivity filtration and ion concentration. Meanwhile, EMRE closely interacted with the MCU on both sides of the inner membrane, and this interaction was essential for Ca(2+) uptake. This close interaction suggested that EMRE might be a structural factor for opening of the MCU-forming pore. PMID:27001609

  3. 78 FR 58785 - Unique Device Identification System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... device identification system, as required by section 519(f) of the FD&C Act (see 77 FR 40736). On July 9...(f) of the FD&C Act (see 77 FR 69393). The preamble to the July 2012 proposal describes the objectives of the rule (see 77 FR 40736 at 40740 through 40743), and we refer readers to that preamble...

  4. In vitro evaluation of atmospheric particulate matter and sedimentation particles using yeast bioassay system.

    PubMed

    Mori, Taiki; Inudo, Makiko; Takao, Yuji; Koga, Minoru; Takemasa, Takehiro; Shinohara, Ryota; Arizono, Koji

    2007-01-01

    Little information on the evaluation of airborne particulate matter (APM) and sedimentation particles from subway stations is available. The thermal metamorphism of train wheels generating toxic particles in subway stations is a possibility. In this study, the toxicity and physiological effects of particles from subway stations were evaluated using a yeast bioassay system. Estrogenic and antiestrogenic activities of APM in APM extracts from subway stations were determined. No estrogenic activity was found in the APM fractions and their S9-activated APM samples. Sedimentation dust samples also showed no estrogen activity. In contrast, extracts from sedimentation dust samples showed antiestrogen activity. Marked yeast toxicity was observed in the samples extracted from sedimentation dust. Potent yeast toxicity was also found in the S9-activated extracts from sedimentation dust. The results suggest that sedimentation dust from a semiclosed area of a subway system has antiestrogen activity, although both the origin and generation system of this activity are uncertain. These pollutants in sedimentation dust may change to a more toxic form in vivo by S9 activation. PMID:17762843

  5. Tandem-yeast expression system for engineering and producing unspecific peroxygenase.

    PubMed

    Molina-Espeja, Patricia; Ma, Su; Mate, Diana M; Ludwig, Roland; Alcalde, Miguel

    2015-06-01

    Unspecific peroxygenase (UPO) is a highly efficient biocatalyst with a peroxide dependent monooxygenase activity and many biotechnological applications, but the absence of suitable heterologous expression systems has precluded its use in different industrial settings. Recently, the UPO from Agrocybe aegerita was evolved for secretion and activity in Saccharomyces cerevisiae [8]. In the current work, we describe a tandem-yeast expression system for UPO engineering and large scale production. By harnessing the directed evolution process in S. cerevisiae, the beneficial mutations for secretion enabled Pichia pastoris to express the evolved UPO under the control of the methanol inducible alcohol oxidase 1 promoter. Whilst secretion levels were found similar for both yeasts in flask fermentation (∼8mg/L), the recombinant UPO from P. pastoris showed a 27-fold enhanced production in fed-batch fermentation (217mg/L). The P. pastoris UPO variant maintained similar biochemical properties of the S. cerevisiae counterpart in terms of catalytic constants, pH activity profiles and thermostability. Thus, this tandem-yeast expression system ensures the engineering of UPOs to use them in future industrial applications as well as large scale production. PMID:26002501

  6. Kinetics of enzymatic lysis and disruption of yeast cells: I. Evaluation of two lytic systems with different properties.

    PubMed

    Hunter, J B; Asenjo, J A

    1987-09-01

    Many microorganisms produce enzymes which lyse the walls of yeasts, fungi, and bacteria. The proportions of different enzyme activities present in the lytic system, their action patterns, synergism, and dependence on inhibitors, constitute the activity profile of the lytic system. Taken together, the activity profile and process conditions for lysis determine the reaction rate and the distribution of products from lysis of any given type of cells. Kinetics of glucan hydrolysis, proteolysis, and lysis of brewer's yeast were compared for two extracellular yeast-lytic enzyme systems with different properties. The enzyme sources used were filtered culture broths from Cytophaga sp. NCIB 9497 grown in batch culture and from Oerskovia xanthineolytica LL-G109, grown under carbon limitation in continuous culture. Rate and extent of cell hydrolysis, and the accumulation of soluble proteins, peptides, and carbohydrates from the lysed yeast cells, are discussed in terms of the activity profiles and potential applications of the two enzyme systems. PMID:18581424

  7. Identification of Metabolic Pathway Systems

    PubMed Central

    Dolatshahi, Sepideh; Voit, Eberhard O.

    2016-01-01

    The estimation of parameters in even moderately large biological systems is a significant challenge. This challenge is greatly exacerbated if the mathematical formats of appropriate process descriptions are unknown. To address this challenge, the method of dynamic flux estimation (DFE) was proposed for the analysis of metabolic time series data. Under ideal conditions, the first phase of DFE yields numerical representations of all fluxes within a metabolic pathway system, either as values at each time point or as plots against their substrates and modulators. However, this numerical result does not reveal the mathematical format of each flux. Thus, the second phase of DFE selects functional formats that are consistent with the numerical trends obtained from the first phase. While greatly facilitating metabolic data analysis, DFE is only directly applicable if the pathway system contains as many dependent variables as fluxes. Because most actual systems contain more fluxes than metabolite pools, this requirement is seldom satisfied. Auxiliary methods have been proposed to alleviate this issue, but they are not general. Here we propose strategies that extend DFE toward general, slightly underdetermined pathway systems. PMID:26904095

  8. Identification of multivariate linear systems

    SciTech Connect

    Griffith, J.M.

    1981-01-01

    This paper considers the problem of modeling multivariate linear systems where noisy output measurements are the only available data. The techniques presented are valid for a class of canonical forms. Results from several simulations demonstrate the capability for structure and parameter estimation.

  9. Analysis of modeling errors in system identification

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Bekey, G. A.

    1986-01-01

    This paper is concerned with the identification of a system in the presence of several error sources. Following some basic definitions, the notion of 'near-equivalence in probability' is introduced using the concept of near-equivalence between a model and process. Necessary and sufficient conditions for the identifiability of system parameters are given. The effect of structural error on the parameter estimates for both deterministic and stochastic cases are considered.

  10. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    PubMed Central

    Herrgård, Markus J.; Swainston, Neil; Dobson, Paul; Dunn, Warwick B.; Arga, K. Yalçin; Arvas, Mikko; Blüthgen, Nils; Borger, Simon; Costenoble, Roeland; Heinemann, Matthias; Hucka, Michael; Le Novère, Nicolas; Li, Peter; Liebermeister, Wolfram; Mo, Monica L.; Oliveira, Ana Paula; Petranovic, Dina; Pettifer, Stephen; Simeonidis, Evangelos; Smallbone, Kieran; Spasić, Irena; Weichart, Dieter; Brent, Roger; Broomhead, David S.; Westerhoff, Hans V.; Kırdar, Betül; Penttilä, Merja; Klipp, Edda; Palsson, Bernhard Ø.; Sauer, Uwe; Oliver, Stephen G.; Mendes, Pedro; Nielsen, Jens; Kell, Douglas B.

    2014-01-01

    Genomic data now allow the large-scale manual or semi-automated reconstruction of metabolic networks. A network reconstruction represents a highly curated organism-specific knowledge base. A few genome-scale network reconstructions have appeared for metabolism in the baker’s yeast Saccharomyces cerevisiae. These alternative network reconstructions differ in scope and content, and further have used different terminologies to describe the same chemical entities, thus making comparisons between them difficult. The formulation of a ‘community consensus’ network that collects and formalizes the ‘community knowledge’ of yeast metabolism is thus highly desirable. We describe how we have produced a consensus metabolic network reconstruction for S. cerevisiae. Special emphasis is laid on referencing molecules to persistent databases or using database-independent forms such as SMILES or InChI strings, since this permits their chemical structure to be represented unambiguously and in a manner that permits automated reasoning. The reconstruction is readily available via a publicly accessible database and in the Systems Biology Markup Language, and we describe the manner in which it can be maintained as a community resource. It should serve as a common denominator for system biology studies of yeast. Similar strategies will be of benefit to communities studying genome-scale metabolic networks of other organisms. PMID:18846089

  11. Identification of cultured isolates of clinically important yeast species using fluorescent fragment length analysis of the amplified internally transcribed rRNA spacer 2 region

    PubMed Central

    De Baere, Thierry; Claeys, Geert; Swinne, Danielle; Massonet, Caroline; Verschraegen, Gerda; Muylaert, An; Vaneechoutte, Mario

    2002-01-01

    Background The number of patients with yeast infection has increased during the last years. Also the variety of species of clinical importance has increased. Correct species identification is often important for efficient therapy, but is currently mostly based on phenotypic features and is sometimes time-consuming and depends largely on the expertise of technicians. Therefore, we evaluated the feasibility of PCR-based amplification of the internally transcribed spacer region 2 (ITS2), followed by fragment size analysis on the ABI Prism 310 for the identification of clinically important yeasts. Results A rapid DNA-extraction method, based on simple boiling-freezing was introduced. Of the 26 species tested, 22 could be identified unambiguously by scoring the length of the ITS2-region. No distinction could be made between the species Trichosporon asteroides and T. inkin or between T. mucoides and T. ovoides. The two varieties of Cryptococcus neoformans (var. neoformans and var. gattii) could be differentiated from each other due to a one bp length difference of the ITS2 fragment. The three Cryptococcus laurentii isolates were split into two groups according to their ITS2-fragment lengths, in correspondence with the phylogenetic groups described previously. Since the obtained fragment lengths compare well to those described previously and could be exchanged between two laboratories, an internationally usable library of ITS2 fragment lengths can be constructed. Conclusions The existing ITS2 size based library enables identification of most of the clinically important yeast species within 6 hours starting from a single colony and can be easily updated when new species are described. Data can be exchanged between laboratories. PMID:12139769

  12. Selective systems for obtaining recessive ribosomal suppressors in Saccharomyces yeast

    SciTech Connect

    Inge-Vechtomov, S.G.; Tichodeev, O.N.; Karpova, T.S.

    1989-01-01

    The absolute selectivity of the system used for the selection of recessive mutations in only two genes (ribosomal suppressors sup1 and sup2) is based on the obtaining of simultaneous reversions to prototrophy for adenine and histidine in Saccharomyces cerevisiae haploids carrying two different nonsense mutations: his7-1 (UAA) and adel-14 (UGA, identified in this study). The selectivity of the system is determined not only by the use of different types of nonsense but also by the selection of actual nonsense alleles, and also by the genotypic background of the culture. The lys2 mutants were induced by UV irradiation (dose 300 J/m/sup 2/) of the strains on the AAA medium, selective for the growth of these mutants.

  13. Structural system identification: Structural dynamics model validation

    SciTech Connect

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  14. Parameter identification for nonlinear aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Pearson, Allan E.

    1990-01-01

    Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.

  15. A program for identification of linear systems

    NASA Technical Reports Server (NTRS)

    Buell, J.; Kalaba, R.; Ruspini, E.; Yakush, A.

    1971-01-01

    A program has been written for the identification of parameters in certain linear systems. These systems appear in biomedical problems, particularly in compartmental models of pharmacokinetics. The method presented here assumes that some of the state variables are regularly modified by jump conditions. This simulates administration of drugs following some prescribed drug regime. Parameters are identified by a least-square fit of the linear differential system to a set of experimental observations. The method is especially suited when the interval of observation of the system is very long.

  16. Microbial identification system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Brown, Harlan D.; Scarlett, Janie B.; Skweres, Joyce A.; Fortune, Russell L.; Staples, John L.; Pierson, Duane L.

    1989-01-01

    The Environmental Health System (EHS) and Health Maintenance Facility (HMF) on Space Station Freedom will require a comprehensive microbiology capability. This requirement entails the development of an automated system to perform microbial identifications on isolates from a variety of environmental and clinical sources and, when required, to perform antimicrobial sensitivity testing. The unit currently undergoing development and testing is the Automated Microbiology System II (AMS II) built by Vitek Systems, Inc. The AMS II has successfully completed 12 months of laboratory testing and evaluation for compatibility with microgravity operation. The AMS II is a promising technology for use on Space Station Freedom.

  17. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover

    PubMed Central

    Sitepu, Irnayuli R.; Jin, Mingjie; Fernandez, J. Enrique; da Costa Sousa, Leonardo; Balan, Venkatesh; Boundy-Mills, Kyria L.

    2015-01-01

    Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX™)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40% of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Pre-culturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals. PMID:25052467

  18. Interference of chromium with biological systems in yeasts and fungi: a review.

    PubMed

    Poljsak, Borut; Pócsi, István; Raspor, Peter; Pesti, Miklós

    2010-02-01

    This paper deals with the interactions of chromium (Cr) with biological systems, focusing in particular on yeasts and fungi. These interactions are analysed with primarily regard to biochemical functions, but higher levels of organization are also considered. Thus, the morphological and cytological characteristics of selected microorganisms in response to exposure to chromium ions are evaluated. The different oxidation states of chromium and reactive oxygen species (ROS) generated in redox reactions with chromium ions are presented and characterized. The interactions of the most exposed subcellular structures, including the cell wall, plasma membrane and nuclei, have been deeply investigated in recent years, for two major reasons. The first is the toxicity of chromium ions and their strong impact on the metabolism of many species, ranging from microbes to humans. The second is the still disputed usefulness of chromium ions, and in particular trivalent chromium, in the glucose and fat metabolisms. Chromium pollution is still an important issue in many regions of the world, and various solutions have been proposed for the bioremediation of soil and water with selected microbial species. Yeasts and especially moulds have been most widely investigated from this aspect, and the biosorption and bioaccumulation of chromium for bioremediation purposes have been demonstrated. Accordingly, the mechanisms of chromium tolerance or resistance of selected microbes are of particular importance in both bioremediation and waste water treatment technologies. The mechanisms of chromium toxicity and detoxification have been studied extensively in yeasts and fungi, and some promising results have emerged in this area. PMID:19810050

  19. Identification of a CAP (adenylyl-cyclase-associated protein) homologous gene in Lentinus edodes and its functional complementation of yeast CAP mutants.

    PubMed

    Zhou, G L; Miyazaki, Y; Nakagawa, T; Tanaka, K; Shishido, K; Matsuda, H; Kawamukai, M

    1998-04-01

    The adenylyl-cyclase-associated protein, CAP, was originally identified in yeasts as a protein that functions in both signal transduction and cytoskeletal organization. This paper reports the identification of a cDNA and genomic DNA that encodes a CAP homologue from the mushroom Lentinus edodes. The L. edodes cap gene contains eight introns and an ORF encoding a 518 amino acid protein. The L. edodes CAP is 35.5% and 40.9% identical at the amino acid level with Saccharomyces cerevisiae CAP and Schizosaccharomyces pombe CAP, respectively. The C-terminal domain shows greater homology (39-46% identity) with yeast CAPs than does the N-terminal domain (27-35% identity). Southern blotting and Northern blotting results suggest that L. edodes cap is a single-copy gene and uniformly expressed. Expression of the L. edodes CAP in both Schiz. pombe and Sacch. cerevisiae complemented defects associated with the loss of the C-terminal domain function of the endogenous CAP. By using a yeast two-hybrid assay, an interaction was demonstrated between the L. edodes CAP and Schiz. pombe actin. This result and the functional complementation test indicate that CAP from L. edodes has a conserved C-terminal domain function. PMID:9579081

  20. Evaluation of the Mitochondrial Respiratory Chain and Oxidative Phosphorylation System Using Yeast Models of OXPHOS Deficiencies

    PubMed Central

    Fontanesi, Flavia; Diaz, Francisca; Barrientos, Antoni

    2009-01-01

    The oxidative phosphorylation (OXPHOS) system consists of five multimeric complexes embedded in the mitochondrial inner membrane. They work in concert to drive the aerobic synthesis of ATP. Mitochondrial and nuclear DNA mutations affecting the accumulation and function of these enzymes are the most common cause of mitochondrial diseases and have also been associated with neurodegeneration and aging. Several approaches for the assessment of the OXPHOS system enzymes have been developed. Based on the methods described elsewhere, we present here the creation and study of yeast models of mitochondrial OXPHOS deficiencies. PMID:19806592

  1. Identification of dynamic systems, theory and formulation

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Iliff, K. W.

    1985-01-01

    The problem of estimating parameters of dynamic systems is addressed in order to present the theoretical basis of system identification and parameter estimation in a manner that is complete and rigorous, yet understandable with minimal prerequisites. Maximum likelihood and related estimators are highlighted. The approach used requires familiarity with calculus, linear algebra, and probability, but does not require knowledge of stochastic processes or functional analysis. The treatment emphasizes unification of the various areas in estimation in dynamic systems is treated as a direct outgrowth of the static system theory. Topics covered include basic concepts and definitions; numerical optimization methods; probability; statistical estimators; estimation in static systems; stochastic processes; state estimation in dynamic systems; output error, filter error, and equation error methods of parameter estimation in dynamic systems, and the accuracy of the estimates.

  2. System identification of Drosophila olfactory sensory neurons.

    PubMed

    Kim, Anmo J; Lazar, Aurel A; Slutskiy, Yevgeniy B

    2011-02-01

    The lack of a deeper understanding of how olfactory sensory neurons (OSNs) encode odors has hindered the progress in understanding the olfactory signal processing in higher brain centers. Here we employ methods of system identification to investigate the encoding of time-varying odor stimuli and their representation for further processing in the spike domain by Drosophila OSNs. In order to apply system identification techniques, we built a novel low-turbulence odor delivery system that allowed us to deliver airborne stimuli in a precise and reproducible fashion. The system provides a 1% tolerance in stimulus reproducibility and an exact control of odor concentration and concentration gradient on a millisecond time scale. Using this novel setup, we recorded and analyzed the in-vivo response of OSNs to a wide range of time-varying odor waveforms. We report for the first time that across trials the response of OR59b OSNs is very precise and reproducible. Further, we empirically show that the response of an OSN depends not only on the concentration, but also on the rate of change of the odor concentration. Moreover, we demonstrate that a two-dimensional (2D) Encoding Manifold in a concentration-concentration gradient space provides a quantitative description of the neuron's response. We then use the white noise system identification methodology to construct one-dimensional (1D) and two-dimensional (2D) Linear-Nonlinear-Poisson (LNP) cascade models of the sensory neuron for a fixed mean odor concentration and fixed contrast. We show that in terms of predicting the intensity rate of the spike train, the 2D LNP model performs on par with the 1D LNP model, with a root mean-square error (RMSE) increase of about 5 to 10%. Surprisingly, we find that for a fixed contrast of the white noise odor waveforms, the nonlinear block of each of the two models changes with the mean input concentration. The shape of the nonlinearities of both the 1D and the 2D LNP model appears to be, for a fixed mean of the odor waveform, independent of the stimulus contrast. This suggests that white noise system identification of Or59b OSNs only depends on the first moment of the odor concentration. Finally, by comparing the 2D Encoding Manifold and the 2D LNP model, we demonstrate that the OSN identification results depend on the particular type of the employed test odor waveforms. This suggests an adaptive neural encoding model for Or59b OSNs that changes its nonlinearity in response to the odor concentration waveforms. PMID:20730480

  3. The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters.

    PubMed

    Leandro, Maria José; Sychrová, Hana; Prista, Catarina; Loureiro-Dias, Maria C

    2011-02-01

    Owing to its high resistance to weak-acid preservatives and extreme osmotolerance, Zygosaccharomyces rouxii is one of the main spoilage yeasts of sweet foods and beverages. In contrast with Saccharomyces cerevisiae, Z. rouxii is a fructophilic yeast; it consumes fructose faster than glucose. So far, to our knowledge, no specific Z. rouxii proteins responsible for this fructophilic behaviour have been characterized. We have identified two genes encoding putative fructose transporters in the Z. rouxii CBS 732 genome. Heterologous expression of these two Z. rouxii ORFs in a S. cerevisiae strain lacking its own hexose transporters (hxt-null) and subsequent kinetic analysis of sugar transport showed that both proteins are functionally expressed at the plasma membrane: ZrFfz1 is a high-capacity fructose-specific facilitator (K(m)∼400 mM and V(max)∼13 mmol h(-1) g(-1)) and ZrFfz2 is a facilitator transporting glucose and fructose with similar capacity and affinity (K(m)∼200 mM and V(max)∼4 mmol h(-1) g(-1)). These two proteins together with the Zygosaccharomyces bailii Ffz1 fructose-specific transporter belong to a new family of sugar transport systems mediating the uptake of hexoses via the facilitated diffusion mechanism, and are more homologous to drug/H(+) antiporters (regarding their primary protein structure) than to other yeast sugar transporters of the Sugar Porter family. PMID:21051487

  4. Antifungal properties of the immunosuppressant FK-506: identification of an FK-506-responsive yeast gene distinct from FKB1.

    PubMed Central

    Brizuela, L; Chrebet, G; Bostian, K A; Parent, S A

    1991-01-01

    FK-506 is a novel and potent antagonist of T-cell activation and an inhibitor of fungal growth. Its immunosuppressive activity can be antagonized by the structurally related antibiotic rapamycin, and both compounds interact with cytoplasmic FK-506-binding proteins (FKBPs) in T cells and yeast cells. In this paper, we show that FK-506 and two analogs inhibit vegetative growth of Saccharomyces cerevisiae in a fashion that parallels the immunosuppressive activity of these compounds. Yeast mutants resistant to FK-506 were isolated, and at least three complementation groups (fkr1, fkr2, and fkr3) were defined. These fkr mutants show no alteration in their levels of FK-506-binding activity. Likewise, strains carrying null alleles of FKB1 (the yeast gene coding for the FKBP) remain FK-506 sensitive, indicating that depletion of yeast FKBP is not sufficient to confer an FK-506 resistance phenotype, although fkb1 null mutants are resistant to rapamycin. FKB1 does not map to the three fkr loci defined here. These results suggest that yeast FKBP mediates the inhibitory effect of rapamycin but that at least one other protein is directly involved in mediating the activity of FK-506. Interestingly, the ability of FK-506 to rescue a temperature-sensitive growth defect of the fkr3 mutant suggests that the FKR3 gene may define such a protein. Images PMID:1715022

  5. Biodiversity of yeast mycobiota in "sucuk," a traditional Turkish fermented dry sausage: phenotypic and genotypic identification, functional and technological properties.

    PubMed

    Ozturk, Ismet; Sagdic, Osman

    2014-11-01

    In this study, yeasts from Turkish fermented sucuks were identified and their functional and technological properties were evaluated. Two hundred fifty-five yeast isolates were obtained from 35 different sucuk samples from different regions of Turkey. The yeast isolates were determined as genotypic using 2 different polymerase chain reaction (PCR) methods (rep-PCR and RAPD-PCR). Functional and technological properties of including proteolytic, lipolytic, and catalase activities, tolerance to NaCl and bile, as well as growing rates at different temperature and pH conditions selected yeast strains were also evaluated. Candida zeylanoides and Debaryomyces hansenii were dominant strains in sucuk samples. All C. zeylanoides and D. hansenii tested could grow at the condition of 15% NaCl and 0.3% bile salt. However, none of the strains were able to grow at 37 °C, even though catalase activity, weak proteolytic and lipolytic activities was still observed. D. hansenii were able to grow only at pH 3, while some of C. zeylanoides could grow at lower pH levels (pH 2). Three and 4 strains of C. zeylanoides showed β-hemolysis activity and nitrate reduction ability to nitrite, respectively. D. hansenii did not have properties, which are β-hemolysis, nitrate reduction, or hydrogen sulfide production. Overall, diverse yeast mycobiota present in Turkish fermented sucuk and their functional and technological properties were revealed with this study. PMID:25273925

  6. Design and evaluation of a microfluidic system for inhibition studies of yeast cell signaling

    NASA Astrophysics Data System (ADS)

    Hamngren, Charlotte; Dinr, Peter; Grtli, Morten; Goksr, Mattias; Adiels, Caroline B.

    2012-10-01

    In cell signaling, different perturbations lead to different responses and using traditional biological techniques that result in averaged data may obscure important cell-to-cell variations. The aim of this study was to develop and evaluate a four-inlet microfluidic system that enables single-cell analysis by investigating the effect on Hog1 localization post a selective Hog1 inhibitor treatment during osmotic stress. Optical tweezers was used to position yeast cells in an array of desired size and density inside the microfluidic system. By changing the flow rates through the inlet channels, controlled and rapid introduction of two different perturbations over the cell array was enabled. The placement of the cells was determined by diffusion rates flow simulations. The system was evaluated by monitoring the subcellular localization of a fluorescently tagged kinase of the yeast "High Osmolarity Glycerol" (HOG) pathway, Hog1-GFP. By sequential treatment of the yeast cells with a selective Hog1 kinase inhibitor and sorbitol, the subcellular localization of Hog1-GFP was analysed on a single-cell level. The results showed impaired Hog1-GFP nuclear localization, providing evidence of a congenial design. The setup made it possible to remove and add an agent within 2 seconds, which is valuable for investigating the dynamic signal transduction pathways and cannot be done using traditional methods. We are confident that the features of the four-inlet microfluidic system will be a valuable tool and hence contribute significantly to unravel the mechanisms of the HOG pathway and similar dynamic signal transduction pathways.

  7. Power system identification toolbox: Phase two progress

    SciTech Connect

    Trudnowski, D.J.

    1994-08-01

    This report describes current progress on a project funded by the Bonneville Power Administration (BPA) to develop a set of state-of-the-art analysis software (termed the Power System Identification [PSI] Toolbox) for fitting dynamic models to measured data. The project is being conducted as a three-phase effort. The first phase, completed in late 1992, involved investigating the characteristics of the analysis techniques by evaluating existing software and developing guidelines for best use. Phase Two includes extending current software, developing new analysis algorithms and software, and demonstrating and developing applications. The final phase will focus on reorganizing the software into a modular collection of documented computer programs and developing user manuals with instruction and application guidelines. Phase Two is approximately 50% complete; progress to date and a vision for the final product of the PSI Toolbox are described. The needs of the power industry for specialized system identification methods are particularly acute. The industry is currently pushing to operate transmission systems much closer to theoretical limits by using real-time, large-scale control systems to dictate power flows and maintain dynamic stability. Reliably maintaining stability requires extensive system-dynamic modeling and analysis capability, including measurement-based methods. To serve this need, the BPA has developed specialized system-identification computer codes through in-house efforts and university contract research over the last several years. To make full integrated use of the codes, as well as other techniques, the BPA has commissioned Pacific Northwest Laboratory (PNL) to further develop the codes and techniques into the PSI Toolbox.

  8. Realization-Based System Identification with Applications

    NASA Astrophysics Data System (ADS)

    Miller, Daniel N.

    The identification of dynamic system behavior from experimentally measured or computationally simulated data is fundamental to the fields of control system design, modal analysis, and defect detection. In this dissertation, methods for system identification are developed based on classical linear system realization theory. The common methods of state-space realization from a measured, discrete-time impulse response are generalized to the following additional types of experiments: measured step responses, arbitrary sets of input-output data, and estimated cross-covariance functions of input-output data. The methods are particularly well suited to systems with large input and/or output dimension, for which classical system identification methods based on maximum likelihood estimation may fail due to their reliance on non-convex optimizations. The realization-based methods by themselves require a finite number of linear algebraic operations. Because these methods implicitly optimize cost functions that are linear in state-space parameters, they may be augmented with convex constraints to form convex optimization problems. Several common behavioral constraints are translated into eigenvalue constraints stated as linear matrix inequalities, and the realization-based methods are converted into semidefinite programming problems. Some additional constraints on transient and steady-state behavior are derived and incorporated into a quadratic program, which is solved following the semidefinite program. The newly developed realization-based methods are applied to two experiments: the aeroelastic response of a fighter aircraft and the transient thermal behavior of a light-emitting diode. The algorithms for each experiment are implemented in two freely available software packages.

  9. Intellectual system of identification of Arabic graphics

    NASA Astrophysics Data System (ADS)

    Abdoullayeva, Gulchin G.; Aliyev, Telman A.; Gurbanova, Nazakat G.

    2001-08-01

    The studies made by using the domain of graphic images allowed creating facilities of the artificial intelligence for letters, letter combinations etc. for various graphics and prints. The work proposes a system of recognition and identification of symbols of the Arabic graphics, which has its own specificity as compared to Latin and Cyrillic ones. The starting stage of the recognition and the identification is coding with further entry of information into a computer. Here the problem of entry is one of the essentials. For entry of a large volume of information in the unit of time a scanner is usually employed. Along with the scanner the authors suggest their elaboration of technical facilities for effective input and coding of the information. For refinement of symbols not identified from the scanner mostly for a small bulk of information the developed coding devices are used directly in the process of writing. The functional design of the software is elaborated on the basis of the heuristic model of the creative activity of a researcher and experts in the description and estimation of states of the weakly formalizable systems on the strength of the methods of identification and of selection of geometric features.

  10. Research on fingerprint identification algorithm based on embedded system

    NASA Astrophysics Data System (ADS)

    Lou, Tongtong; Du, Xue; Yang, Shanglin; Yu, Peng

    2015-07-01

    Through the in-depth study on the existing fingerprint identification technologies, combined with the actual characteristics of the embedded system, this paper improves the existing fingerprint identification algorithm, reducing the time complexity of the matching algorithm. The experimental results show that the fingerprint identification algorithm proposed in this paper can perfectly meet the requirements of embedded system, therefore has high practical value.

  11. Identification of a novel pathway involving a GATA transcription factor in yeast and possibly plant Zn uptake and homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain a better understanding of the regulation of Zn homeostasis in plants and the degree of conservation of Zn homeostasis between plants and yeast, a cDNA library from the Zn/Cd hyperaccumulating plant species, Nocceae caerulescens, was screened for its ability to restore growth under Zn limitin...

  12. Identification and functional study of a new FLO10-derivative gene from the industrial flocculating yeast SPSC01.

    PubMed

    He, Lei-Yu; Zhao, Xin-Qing; Ge, Xu-Meng; Bai, Feng-Wu

    2012-08-01

    Yeast flocculation is an important property for the brewing industry as well as for ethanol fermentation to facilitate biomass recovery by sedimentation from the fermentation broth, which is cost-effective. In this study, a new flocculating gene FLO10 (spsc) of 4,221 bp homologous to FLO10 was identified in the industrial flocculating yeast SPSC01. Sequence analysis indicated that the N- and C-terminus of the deduced protein of this new FLO gene are 99 % identical to that of FLO10, but more intragenic repeats are included. The study on the function of FLO10 (spsc) by its integrative expression in the non-flocculating industrial yeast indicated severe inhibition in the flocculation of the transformant by mannose and maltose, moderate inhibition by sucrose and glucose and no inhibition by xylose and galactose, and thus the NewFlo type was established. Meanwhile, the flocculation of the transformant was stable when the temperature was below 50 °C and the pH was in the range of 4.0-6.0. Furthermore, the medium containing 250 g/l glucose was completely fermented within 48 h by the transformant, with about 110 g/l ethanol and 5.5 g(DCW)/l biomass produced, and no significant difference in ethanol fermentation performance was observed compared to its wide-type strain. Therefore, the FLO gene and corresponding transformation strategy provide a platform for engineering yeast strains with the flocculation phenotype to facilitate biomass recovery. PMID:22466447

  13. Genomics and the making of yeast biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  14. Automated Firearms Identification System (AFIDS), phase 1

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.; Framan, E. P.

    1974-01-01

    Items critical to the future development of an automated firearms identification system (AFIDS) have been examined, with the following specific results: (1) Types of objective data, that can be utilized to help establish a more factual basis for determining identity and nonidentity between pairs of fired bullets, have been identified. (2) A simulation study has indicated that randomly produced lines, similar in nature to the individual striations on a fired bullet, can be modeled and that random sequences, when compared to each other, have predictable relationships. (3) A schematic diagram of the general concept for AFIDS has been developed and individual elements of this system have been briefly tested for feasibility. Future implementation of such a proposed system will depend on such factors as speed, utility, projected total cost and user requirements for growth. The success of the proposed system, when operational, would depend heavily on existing firearms examiners.

  15. Pexophagy in yeasts.

    PubMed

    Oku, Masahide; Sakai, Yasuyoshi

    2016-05-01

    Pexophagy, selective degradation of peroxisomes via autophagy, is the main system for reducing organelle abundance. Elucidation of the molecular machinery of pexophagy has been pioneered in studies of the budding yeast Saccharomyces cerevisiae and the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha. Recent analyses using these yeasts have elucidated the molecular machineries of pexophagy, especially in terms of the interactions and modifications of the so-called adaptor proteins required for guiding autophagic membrane biogenesis on the organelle surface. Based on the recent findings, functional relevance of pexophagy and another autophagic pathway, mitophagy (selective autophagy of mitochondria), is discussed. We also discuss the physiological importance of pexophagy in these yeast systems. PMID:26409485

  16. Identification of a small molecule yeast TORC1 inhibitor with a multiplex screen based on flow cytometry.

    PubMed

    Chen, Jun; Young, Susan M; Allen, Chris; Seeber, Andrew; Péli-Gulli, Marie-Pierre; Panchaud, Nicolas; Waller, Anna; Ursu, Oleg; Yao, Tuanli; Golden, Jennifer E; Strouse, J Jacob; Carter, Mark B; Kang, Huining; Bologa, Cristian G; Foutz, Terry D; Edwards, Bruce S; Peterson, Blake R; Aubé, Jeffrey; Werner-Washburne, Margaret; Loewith, Robbie J; De Virgilio, Claudio; Sklar, Larry A

    2012-04-20

    TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high-throughput flow cytometry multiplexed screen using five GFP-tagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded, and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high-throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in a manner analogous to that of rapamycin. We have shown that CID 3528206 inhibited yeast cell growth and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC(50)'s of 150 nM and 3.9 μM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors. PMID:22260433

  17. Parameter identification for nonlinear aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Pearson, Allan E.

    1993-01-01

    This final technical report covers a three and one-half year period preceding February 28, 1993 during which support was provided under NASA Grant NAG-1-1065. Following a general description of the system identification problem and a brief survey of methods to attack it, the basic ideas behind the approach taken in this research effort are presented. The results obtained are described with reference to the published work, including the five semiannual progress reports previously submitted and two interim technical reports.

  18. Networked Dynamic Systems: Identification, Controllability, and Randomness

    NASA Astrophysics Data System (ADS)

    Nabi-Abdolyousefi, Marzieh

    The presented dissertation aims to develop a graph-centric framework for the analysis and synthesis of networked dynamic systems (NDS) consisting of multiple dynamic units that interact via an interconnection topology. We examined three categories of network problems, namely, identification, controllability, and randomness. In network identification, as a subclass of inverse problems, we made an explicit relation between the input-output behavior of an NDS and the underlying interacting network. In network controllability, we provided structural and algebraic insights into features of the network that enable external signal(s) to control the state of the nodes in the network for certain classes of interconnections, namely, path, circulant, and Cartesian networks. We also examined the relation between network controllability and the symmetry structure of the graph. Motivated by the analysis results for the controllability and observability of deterministic networks, a natural question is whether randomness in the network layer or in the layer of inputs and outputs generically leads to favorable system theoretic properties. In this direction, we examined system theoretic properties of random networks including controllability, observability, and performance of optimal feedback controllers and estimators. We explored some of the ramifications of such an analysis framework in opinion dynamics over social networks and sensor networks in estimating the real-time position of a Seaglider from experimental data.

  19. A piggyBac transposon-based mutagenesis system for the fission yeast Schizosaccharomyces pombe

    PubMed Central

    Li, Jun; Zhang, Jia-Min; Li, Xin; Suo, Fang; Zhang, Mei-Jun; Hou, Wenru; Han, Jinghua; Du, Li-Lin

    2011-01-01

    The TTAA-specific transposon piggyBac (PB), originally isolated from the cabbage looper moth, Trichoplusia ni, has been utilized as an insertional mutagenesis tool in various eukaryotic organisms. Here, we show that PB transposes in the fission yeast Schizosaccharomyces pombe and leaves almost no footprints. We developed a PB-based mutagenesis system for S. pombe by constructing a strain with a selectable transposon excision marker and an integrated transposase gene. PB transposition in this strain has low chromosomal distribution bias as shown by deep sequencing-based insertion site mapping. Using this system, we obtained loss-of-function alleles of klp5 and klp6, and a gain-of-function allele of dam1 from a screen for mutants resistant to the microtubule-destabilizing drug thiabendazole. From another screen for cdc25-22 suppressors, we obtained multiple alleles of wee1 as expected. The success of these two screens demonstrated the usefulness of this PB-mediated mutagenesis tool for fission yeast. PMID:21247877

  20. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    PubMed Central

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  1. An Efficient Genome-Wide Fusion Partner Screening System for Secretion of Recombinant Proteins in Yeast.

    PubMed

    Bae, Jung-Hoon; Sung, Bong Hyun; Kim, Hyun-Jin; Park, Soon-Ho; Lim, Kwang-Mook; Kim, Mi-Jin; Lee, Cho-Ryong; Sohn, Jung-Hoon

    2015-01-01

    To produce rarely secreted recombinant proteins in the yeast Saccharomyces cerevisiae, we developed a novel genome-wide optimal translational fusion partner (TFP) screening system that involves recruitment of an optimal secretion signal and fusion partner. A TFP library was constructed from a genomic and truncated cDNA library by using the invertase-based signal sequence trap technique. The efficiency of the system was demonstrated using two rarely secreted proteins, human interleukin (hIL)-2 and hIL-32. Optimal TFPs for secretion of hIL-2 and hIL-32 were easily selected, yielding secretion of these proteins up to hundreds of mg/L. Moreover, numerous uncovered yeast secretion signals and fusion partners were identified, leading to efficient secretion of various recombinant proteins. Selected TFPs were found to be useful for the hypersecretion of other recombinant proteins at yields of up to several g/L. This screening technique could provide new methods for the production of various types of difficult-to-express proteins. PMID:26195161

  2. A piggyBac transposon-based mutagenesis system for the fission yeast Schizosaccharomyces pombe.

    PubMed

    Li, Jun; Zhang, Jia-Min; Li, Xin; Suo, Fang; Zhang, Mei-Jun; Hou, Wenru; Han, Jinghua; Du, Li-Lin

    2011-03-01

    The TTAA-specific transposon piggyBac (PB), originally isolated from the cabbage looper moth, Trichoplusia ni, has been utilized as an insertional mutagenesis tool in various eukaryotic organisms. Here, we show that PB transposes in the fission yeast Schizosaccharomyces pombe and leaves almost no footprints. We developed a PB-based mutagenesis system for S. pombe by constructing a strain with a selectable transposon excision marker and an integrated transposase gene. PB transposition in this strain has low chromosomal distribution bias as shown by deep sequencing-based insertion site mapping. Using this system, we obtained loss-of-function alleles of klp5 and klp6, and a gain-of-function allele of dam1 from a screen for mutants resistant to the microtubule-destabilizing drug thiabendazole. From another screen for cdc25-22 suppressors, we obtained multiple alleles of wee1 as expected. The success of these two screens demonstrated the usefulness of this PB-mediated mutagenesis tool for fission yeast. PMID:21247877

  3. An Efficient Genome-Wide Fusion Partner Screening System for Secretion of Recombinant Proteins in Yeast

    PubMed Central

    Bae, Jung-Hoon; Hyun Sung, Bong; Kim, Hyun-Jin; Park, Soon-Ho; Lim, Kwang-Mook; Kim, Mi-Jin; Lee, Cho-Ryong; Sohn, Jung-Hoon

    2015-01-01

    To produce rarely secreted recombinant proteins in the yeast Saccharomyces cerevisiae, we developed a novel genome-wide optimal translational fusion partner (TFP) screening system that involves recruitment of an optimal secretion signal and fusion partner. A TFP library was constructed from a genomic and truncated cDNA library by using the invertase-based signal sequence trap technique. The efficiency of the system was demonstrated using two rarely secreted proteins, human interleukin (hIL)-2 and hIL-32. Optimal TFPs for secretion of hIL-2 and hIL-32 were easily selected, yielding secretion of these proteins up to hundreds of mg/L. Moreover, numerous uncovered yeast secretion signals and fusion partners were identified, leading to efficient secretion of various recombinant proteins. Selected TFPs were found to be useful for the hypersecretion of other recombinant proteins at yields of up to several g/L. This screening technique could provide new methods for the production of various types of difficult-to-express proteins. PMID:26195161

  4. MIMO system identification using frequency response data

    NASA Technical Reports Server (NTRS)

    Medina, Enrique A.; Irwin, R. D.; Mitchell, Jerrel R.; Bukley, Angelia P.

    1992-01-01

    A solution to the problem of obtaining a multi-input, multi-output statespace model of a system from its individual input/output frequency responses is presented. The Residue Identification Algorithm (RID) identifies the system poles from a transfer function model of the determinant of the frequency response data matrix. Next, the residue matrices of the modes are computed guaranteeing that each input/output frequency response is fitted in the least squares sense. Finally, a realization of the system is computed. Results of the application of RID to experimental frequency responses of a large space structure ground test facility are presented and compared to those obtained via the Eigensystem Realization Algorithm.

  5. Saccharomyces cerivisiae as a model system for kidney disease: what can yeast tell us about renal function?

    PubMed

    Kolb, Alexander R; Buck, Teresa M; Brodsky, Jeffrey L

    2011-07-01

    Ion channels, solute transporters, aquaporins, and factors required for signal transduction are vital for kidney function. Because mutations in these proteins or in associated regulatory factors can lead to disease, an investigation into their biogenesis, activities, and interplay with other proteins is essential. To this end, the yeast, Saccharomyces cerevisiae, represents a powerful experimental system. Proteins expressed in yeast include the following: 1) ion channels, including the epithelial sodium channel, members of the inward rectifying potassium channel family, and cystic fibrosis transmembrane conductance regulator; 2) plasma membrane transporters, such as the Na(+)-K(+)-ATPase, the Na(+)-phosphate cotransporter, and the Na(+)-H(+) ATPase; 3) aquaporins 1-4; and 4) proteins such as serum/glucocorticoid-induced kinase 1, phosphoinositide-dependent kinase 1, Rh glycoprotein kidney, and trehalase. The variety of proteins expressed and studied emphasizes the versatility of yeast, and, because of the many available tools in this organism, results can be obtained rapidly and economically. In most cases, data gathered using yeast have been substantiated in higher cell types. These attributes validate yeast as a model system to explore renal physiology and suggest that research initiated using this system may lead to novel therapeutics. PMID:21490136

  6. Whole Pichia pastoris yeast expressing measles virus nucleoprotein as a production and delivery system to multimerize Plasmodium antigens.

    PubMed

    Jacob, Daria; Ruffie, Claude; Dubois, Myriam; Combredet, Chantal; Amino, Rogerio; Formaglio, Pauline; Gorgette, Olivier; Pehau-Arnaudet, Gérard; Guery, Charline; Puijalon, Odile; Barale, Jean-Christophe; Ménard, Robert; Tangy, Frédéric; Sala, Monica

    2014-01-01

    Yeasts are largely used as bioreactors for vaccine production. Usually, antigens are produced in yeast then purified and mixed with adjuvants before immunization. However, the purification costs and the safety concerns recently raised by the use of new adjuvants argue for alternative strategies. To this end, the use of whole yeast as both production and delivery system appears attractive. Here, we evaluated Pichia pastoris yeast as an alternative vaccine production and delivery system for the circumsporozoite protein (CS) of Plasmodium, the etiologic agent of malaria. The CS protein from Plasmodium berghei (Pb) was selected given the availability of the stringent C57Bl/6 mouse model of infection by Pb sporozoites, allowing the evaluation of vaccine efficacy in vivo. PbCS was multimerized by fusion to the measles virus (MV) nucleoprotein (N) known to auto-assemble in yeast in large-size ribonucleoprotein rods (RNPs). Expressed in P. pastoris, the N-PbCS protein generated highly multimeric and heterogenic RNPs bearing PbCS on their surface. Electron microscopy and immunofluorescence analyses revealed the shape of these RNPs and their localization in peripheral cytoplasmic inclusions. Subcutaneous immunization of C57Bl/6 mice with heat-inactivated whole P. pastoris expressing N-PbCS RNPs provided significant reduction of parasitemia after intradermal challenge with a high dose of parasites. Thus, in the absence of accessory adjuvants, a very low amount of PbCS expressed in whole yeast significantly decreased clinical damages associated with Pb infection in a highly stringent challenge model, providing a proof of concept of the intrinsic adjuvancy of this vaccine strategy. In addition to PbCS multimerization, the N protein contributed by itself to parasitemia delay and long-term mice survival. In the future, mixtures of whole recombinant yeasts expressing relevant Plasmodium antigens would provide a multivalent formulation applicable for antigen combination screening and possibly for large-scale production, distribution and delivery of a malaria vaccine in developing countries. PMID:24475165

  7. Whole Pichia pastoris Yeast Expressing Measles Virus Nucleoprotein as a Production and Delivery System to Multimerize Plasmodium Antigens

    PubMed Central

    Jacob, Daria; Ruffie, Claude; Dubois, Myriam; Combredet, Chantal; Amino, Rogerio; Formaglio, Pauline; Gorgette, Olivier; Pehau-Arnaudet, Gérard; Guery, Charline; Puijalon, Odile; Barale, Jean-Christophe; Ménard, Robert; Tangy, Frédéric; Sala, Monica

    2014-01-01

    Yeasts are largely used as bioreactors for vaccine production. Usually, antigens are produced in yeast then purified and mixed with adjuvants before immunization. However, the purification costs and the safety concerns recently raised by the use of new adjuvants argue for alternative strategies. To this end, the use of whole yeast as both production and delivery system appears attractive. Here, we evaluated Pichia pastoris yeast as an alternative vaccine production and delivery system for the circumsporozoite protein (CS) of Plasmodium, the etiologic agent of malaria. The CS protein from Plasmodium berghei (Pb) was selected given the availability of the stringent C57Bl/6 mouse model of infection by Pb sporozoites, allowing the evaluation of vaccine efficacy in vivo. PbCS was multimerized by fusion to the measles virus (MV) nucleoprotein (N) known to auto-assemble in yeast in large-size ribonucleoprotein rods (RNPs). Expressed in P. pastoris, the N-PbCS protein generated highly multimeric and heterogenic RNPs bearing PbCS on their surface. Electron microscopy and immunofluorescence analyses revealed the shape of these RNPs and their localization in peripheral cytoplasmic inclusions. Subcutaneous immunization of C57Bl/6 mice with heat-inactivated whole P. pastoris expressing N-PbCS RNPs provided significant reduction of parasitemia after intradermal challenge with a high dose of parasites. Thus, in the absence of accessory adjuvants, a very low amount of PbCS expressed in whole yeast significantly decreased clinical damages associated with Pb infection in a highly stringent challenge model, providing a proof of concept of the intrinsic adjuvancy of this vaccine strategy. In addition to PbCS multimerization, the N protein contributed by itself to parasitemia delay and long-term mice survival. In the future, mixtures of whole recombinant yeasts expressing relevant Plasmodium antigens would provide a multivalent formulation applicable for antigen combination screening and possibly for large-scale production, distribution and delivery of a malaria vaccine in developing countries. PMID:24475165

  8. [Rapid genetic identification system of mycobacteria].

    PubMed

    Ezaki, T

    1992-12-01

    Rapid colorimetric hybridization method was applied for the identification of mycobacteria and phylogenetic detection and identification system of mycobacteria of polymerase chain reaction method was designed. Quantitative DNA-DNA hybridization in microdilution plate was used to identify 22 mycobacterial species. This method could identify 90% (178 among 194 trials) of clinical isolates within 3 hr. Ten percent of clinical isolates did not belong to any of the established 22 species. Through this work, we found Mycobacterium abscessus is genetically independent from M. chelonae and proposed M. abscessus as a distinct species. M. pregrinum had been classified as M. fortuitum, however, it was also found as a independent species. Thus the name M. peregrinum was officially revived and acquired the taxonomic position. Highly sensitive genetic detection system of mycobacteria was designed by using polymerase chain reaction (PCR) method. Common mycobacterial sequence of 16S ribosomal RNA gene was first amplified by a single pair of PCR primers from staining negative sputum and the amplified DNA was identified by species specific DNA probe because the amplified fragment contained species specific sequence. PMID:1294787

  9. Identification of Candidate Substrates for the Golgi Tul1 E3 Ligase Using Quantitative diGly Proteomics in Yeast*

    PubMed Central

    Tong, Zongtian; Kim, Min-Sik; Pandey, Akhilesh; Espenshade, Peter J.

    2014-01-01

    Maintenance of protein homeostasis is essential for cellular survival. Central to this regulation are mechanisms of protein quality control in which misfolded proteins are recognized and degraded by the ubiquitin-proteasome system. One well-studied protein quality control pathway requires endoplasmic reticulum (ER)-resident, multi-subunit E3 ubiquitin ligases that function in ER-associated degradation. Using fission yeast, our lab identified the Golgi Dsc E3 ligase as required for proteolytic activation of fungal sterol regulatory element-binding protein transcription factors. The Dsc E3 ligase contains five integral membrane subunits and structurally resembles ER-associated degradation E3 ligases. Saccharomyces cerevisiae codes for homologs of Dsc E3 ligase subunits, including the Dsc1 E3 ligase homolog Tul1 that functions in Golgi protein quality control. Interestingly, S. cerevisiae lacks sterol regulatory element-binding protein homologs, indicating that novel Tul1 E3 ligase substrates exist. Here, we show that the S. cerevisiae Tul1 E3 ligase consists of Tul1, Dsc2, Dsc3, and Ubx3 and define Tul1 complex architecture. Tul1 E3 ligase function required each subunit as judged by vacuolar sorting of the artificial substrate Pep12D. Genetic studies demonstrated that Tul1 E3 ligase was required in cells lacking the multivesicular body pathway and under conditions of ubiquitin depletion. To identify candidate substrates, we performed quantitative diGly proteomics using stable isotope labeling by amino acids in cell culture to survey ubiquitylation in wild-type and tul1Δ cells. We identified 3116 non-redundant ubiquitylation sites, including 10 sites in candidate substrates. Quantitative proteomics found 4.5% of quantified proteins (53/1172) to be differentially expressed in tul1Δ cells. Correcting the diGly dataset for these differences increased the number of Tul1-dependent ubiquitylation sites. Together, our data demonstrate that the Tul1 E3 ligase functions in protein homeostasis under non-stress conditions and support a role in protein quality control. This quantitative diGly proteomics methodology will serve as a robust platform for screening for stress conditions that require Tul1 E3 ligase activity. PMID:25078903

  10. System Identification of X-33 Neural Network

    NASA Technical Reports Server (NTRS)

    Aggarwal, Shiv

    2003-01-01

    Modern flight control research has improved spacecraft survivability as its goal. To this end we need to have a failure detection system on board. In case the spacecraft is performing imperfectly, reconfiguration of control is needed. For that purpose we need to have parameter identification of spacecraft dynamics. Parameter identification of a system is called system identification. We treat the system as a black box which receives some inputs that lead to some outputs. The question is: what kind of parameters for a particular black box can correlate the observed inputs and outputs? Can these parameters help us to predict the outputs for a new given set of inputs? This is the basic problem of system identification. The X33 was supposed to have the onboard capability of evaluating the current performance and if needed to take the corrective measures to adapt to desired performance. The X33 is comprised of both rocket and aircraft vehicle design characteristics and requires, in general, analytical methods for evaluating its flight performance. Its flight consists of four phases: ascent, transition, entry and TAEM (Terminal Area Energy Management). It spends about 200 seconds in ascent phase, reaching an altitude of about 180,000 feet and a speed of about 10 to 15 Mach. During the transition phase which lasts only about 30 seconds, its altitude may increase to about 190,000 feet but its speed is reduced to about 9 Mach. At the beginning of this phase, the Main Engine is Cut Off (MECO) and the control is reconfigured with the help of aerosurfaces (four elevons, two flaps and two rudders) and reaction control system (RCS). The entry phase brings down the altitude of X33 to about 90,000 feet and its speed to about Mach 3. It spends about 250 seconds in this phase. Main engine is still cut off and the vehicle is controlled by complex maneuvers of aerosurfaces. The last phase TAEM lasts for about 450 seconds and the altitude and speed, both are reduced to zero. The present attempt, as a start, focuses only on the entry phase. Since the main engine remains cut off in this phase, there is no thrust acting on the system. This considerably simplifies the equations of motion. We introduce another simplification by assuming the system to be linear after some non-linearities are removed analytically from our consideration. Under these assumptions, the problem could be solved by Classical Statistics by employing the least sum of squares approach. Instead we chose to use the Neural Network method. This method has many advantages. It is modern, more efficient, can be adapted to work even when the assumptions are diluted. In fact, Neural Networks try to model the human brain and are capable of pattern recognition.

  11. Identification of the gene PaEMT1 for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast Pseudozyma antarctica.

    PubMed

    Morita, Tomotake; Ito, Emi; Kitamoto, Hiroko K; Takegawa, Kaoru; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2010-11-01

    The yeast Pseudozyma antarctica produces a large amount of glycolipid biosurfactants known as mannosylerythritol lipids (MELs), which show not only excellent surface-active properties but also versatile biochemical actions. To investigate the biosynthesis of MELs in the yeast, we recently reported expressed sequence tag (EST) analysis and estimated genes expressing under MEL production conditions. Among the genes, a contiguous sequence of 938 bp, PA_004, showed high sequence identity to the gene emt1, encoding an erythritol/mannose transferase of Ustilago maydis, which is essential for MEL biosynthesis. The predicted translation product of the extended PA_004 containing the two introns and a stop codon was aligned with Emt1 of U. maydis. The predicted amino acid sequence shared high identity (72%) with Emt1 of U. maydis, although the amino-terminal was incomplete. To identify the gene as PaEMT1 encoding an erythritol/mannose transferase of P. antarctica, the gene-disrupted strain was developed by the method for targeted gene disruption, using hygromycin B resistance as the selection marker. The obtained ΔPaEMT1 strain failed to produce MELs, while its growth was the same as that of the parental strain. The additional mannosylerythritol into culture allowed ΔPaEMT1 strain to form MELs regardless of the carbon source supplied, indicating a defect of the erythritol/mannose transferase activity. Furthermore, we found that MEL formation is associated with the morphology and low-temperature tolerance of the yeast. PMID:20564650

  12. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    PubMed

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. PMID:26524089

  13. Cytokinesis and the contractile ring in fission yeast: towards a systems-level understanding

    PubMed Central

    2009-01-01

    Cytokinesis is the final stage of cell division in which the cytoplasm of a cell divides to form two daughter cells. In eukaryotes, it includes the placement, assembly and contraction of an actomyosin-based contractile ring. A highly conserved set of proteins and pathways involved in the process have been identified and characterized. Additionally, fluorescent protein fusion technology enables high-resolution imaging of protein dynamics in living cells. Thus, the study of cytokinesis is now ripe for quantitative, systems-level approaches. Here, we review our current understanding of the molecular mechanisms of contractile ring dynamics in the model organism Schizosaccharomyces pombe (fission yeast), focusing on recent examples that illustrate a synergistic integration of quantitative experimental data with computational modeling. A picture of a highly dynamic and integrated system consisting of overlapping networks is beginning to emerge, the detailed nature of which remains to be elucidated. PMID:19959363

  14. Rapid identification of fungi by sequencing the ITS1 and ITS2 regions using an automated capillary electrophoresis system.

    PubMed

    Pryce, T M; Palladino, S; Kay, I D; Coombs, G W

    2003-10-01

    We developed a standardized DNA sequence-based approach for the accurate and timely identification of medically important fungi by sequencing polymerase chain reaction (PCR) products with a rapid automated capillary electrophoresis system. A simple DNA extraction method and PCR amplification using universal fungal primers was used to amplify ribosomal DNA from a range of clinical isolates and reference strains. The entire internal transcribed spacer (ITS) 1-5.8S-ITS2 ribosomal DNA region was sequenced using automated dye termination sequencing for 89 clinical isolates. These had previously been identified by traditional methods and included 12 ascomycetous yeast species, three basidiomycetous yeast species, eight dermatophyte species and two thermally dimorphic fungi, Scedosporium prolificans and S. apiospermum. Furthermore, 21 reference strains representing 19 different Candida species, Geotrichum candidum and Malassezia furfur were also sequenced as part of this study and were used either as standards for sequence-based comparisons, or as assay controls. Sequence-based identification was compared to traditional identification in a blinded manner. Of the clinical isolates tested, 88/89 had DNA sequences that were highly homologous to those of reference strains accessioned in GenBank, and 87/89 gave a sequence-based identification result that correlated with the traditional identification. In contrast to relatively slow conventional methods of identification, a sequence-based identification from a pure culture can be obtained within 24 h of a DNA extraction carried out after a minimal period of culture growth. We conclude that this approach is rapid, and may be a more accurate cost-effective alternative than most phenotypic methods for identification of many medically important fungi frequently encountered in a routine diagnostic microbiology laboratory. PMID:14653513

  15. System Identification of a Vortex Lattice Aerodynamic Model

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Kholodar, Denis; Dowell, Earl H.

    2001-01-01

    The state-space presentation of an aerodynamic vortex model is considered from a classical and system identification perspective. Using an aerodynamic vortex model as a numerical simulator of a wing tunnel experiment, both full state and limited state data or measurements are considered. Two possible approaches for system identification are presented and modal controllability and observability are also considered. The theory then is applied to the system identification of a flow over an aerodynamic delta wing and typical results are presented.

  16. Nonlinear identification of ionic polymer actuator systems

    NASA Astrophysics Data System (ADS)

    Kothera, Curt S.; Lacy, Seth L.; Erwin, R. Scott; Leo, Donald J.

    2004-07-01

    Ionic polymers are a class of electromechanically coupled materials that can be used as flexible transducers. When set up in the cantilever configuration, the actuators exhibit a large bending deflection when an electric field is applied across their thickness. Being a relatively new research topic, the governing physical and chemical mechanisms are not yet fully understood. Experimental results have demonstrated nonlinear dynamic behavior. The nonlinear dynamics can be seen in the response of current, displacement, and velocity of the actuator. This work presents results for the nonlinear identification of ionic polymer actuator systems driven at a specific frequency. Identification results using a 5th-degree Volterra expansion show that the nonlinear distortion can be accurately modeled. Using such a high power in the series expansion is necessary to capture the most dominant harmonics, as evidenced when examining the power spectral density of the response. An investigation of how nonlinearities enter into the response is also performed. By analyzing both the actuation current and tip velocity, results show that both the voltage to current and current to velocity stages influence the nonlinear response, but the voltage to current stage is more dominantly nonlinear.

  17. A homologous cell-free system for studying protein translocation across the endoplasmic reticulum membrane in fission yeast.

    PubMed

    Brennwald, P; Wise, J A

    1994-02-01

    We report the development of a homologous in vitro assay system for analysing translocation of proteins across the endoplasmic reticulum (ER) membrane of the fission yeast Schizosaccharomyces pombe. Our protocol for preparing an S. pombe extract capable of translating natural messenger RNAs was modified from a procedure previously used for Saccharomyces cerevisiae, in which cells are lysed in a bead-beater. However, we were unable to prepare fission yeast microsomes active in protein translocation using existing budding yeast protocols. Instead, our most efficient preparations were isolated by fractionating spheroplasts, followed by extensive washing and size exclusion chromatography of the crude membranes. Translocation of two ER-targeted proteins, pre-acid phosphatase from S. pombe and prepro-alpha-factor from S. cerevisiae, was monitored using two distinct assays. First, evidence that a fraction of both proteins was sequestered within membrane-enclosed vesicles was provided by resistance to exogenously added protease. Second, the protected fraction of each protein was converted to a higher molecular weight, glycosylated form; attachment of carbohydrate to the translocated proteins was confirmed by their ability to bind Concanavalin A-Sepharose. Finally, we examined whether proteins could be translocated across fission yeast microsomal membranes after their synthesis was complete. Our results indicate that S. cerevisiae prepro-alpha-factor can be post-translationally imported into the fission yeast ER, while S. pombe pre-acid phosphatase crosses the membrane only by a co-translational mechanism. PMID:8203158

  18. The yeast Wickerhamomyces anomalus (Pichia anomala) inhabits the midgut and reproductive system of the Asian malaria vector Anopheles stephensi.

    PubMed

    Ricci, Irene; Damiani, Claudia; Scuppa, Patrizia; Mosca, Michela; Crotti, Elena; Rossi, Paolo; Rizzi, Aurora; Capone, Aida; Gonella, Elena; Ballarini, Patrizia; Chouaia, Bessem; Sagnon, N'fale; Esposito, Fulvio; Alma, Alberto; Mandrioli, Mauro; Sacchi, Luciano; Bandi, Claudio; Daffonchio, Daniele; Favia, Guido

    2011-04-01

    While symbiosis between bacteria and insects has been thoroughly investigated in the last two decades, investments on the study of yeasts associated with insects have been limited. Insect-associated yeasts are placed on different branches of the phylogenetic tree of fungi, indicating that these associations evolved independently on several occasions. Isolation of yeasts is frequently reported from insect habitats, and in some cases yeasts have been detected in the insect gut and in other organs/tissues. Here we show that the yeast Wickerhamomyces anomalus, previously known as Pichia anomala, is stably associated with the mosquito Anopheles stephensi, a main vector of malaria in Asia. Wickerhamomyces anomalus colonized pre-adult stages (larvae L(1)-L(4) and pupae) and adults of different sex and age and could be isolated in pure culture. By a combination of transmission electron microscopy and fluorescent in situ hybridization techniques, W. anomalus was shown to localize in the midgut and in both the male and female reproductive systems, suggesting multiple transmission patterns. PMID:21208355

  19. Inactivation of yeast and filamentous fungi by the lactoperoxidase-hydrogen peroxide-thiocyanate-system.

    PubMed

    Popper, L; Knorr, D

    1997-02-01

    The antifungal activity of the lactoperoxidase (LPO) system with glucose oxidase (GOD) as source of hydrogen peroxide was determined in salt solution and in apple juice. The test organisms Rhodutorula rubra and Saccharomyces cerevisiae were cultivated aerobically in apple juice, Mucor rouxii was grown on wort agar adjusted to pH 4.5. Aspergillus niger and Byssochlamys fulva were kept on malt extract agar. Spores of the filamentous fungi were harvested by suspension in salt solution supplemented with Tween 80 and checked microscopically. The antifungal activity of the combined enzyme system was tested with initial counts of approx. 10(5) cfu.ml-1 (yeast cells or spores) suspended in salt solution supplemented with 25 mg.l-1 thiocyanate and 20 g.l-1 glucose or in apple juice supplemented with the same amount of thiocyanate. The tests were performed with 25 ml of the medium in 100 ml Erlenmeyer flasks shaken at 28 degrees C under aerobic conditions. Inactivation was achieved for all test organisms in both media. The yeast strains were found to be least stable while B. fulva was most resistant. A combination of 5 U.ml-1 LPO with 0.5 to 1 U.ml-1 GOD was sufficient for complete inactivation of this mold in salt solution within 2 h. The enzyme system also showed antifungal activity in apple juice at acid pH (3.2), although its effectiveness was reduced. In this medium, B. fulva was inactivated by 20 U.ml-1 LPD and 1 U.ml-1 GOD within 4 h. R. rubra and S. cerevisfiae were unable to survive in apple juice at 5 U.ml-1 LPO combined with 1 U.ml-1 GOD. For inhibition by GOD alone, higher amounts of this enzyme were needed and even then only M. rouxii and R. rubra have been affected within the concentration range tested (maximum 3 U.ml-1). PMID:9113668

  20. Fractional System Identification: An Approach Using Continuous Order-Distributions

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    1999-01-01

    This paper discusses the identification of fractional- and integer-order systems using the concept of continuous order-distribution. Based on the ability to define systems using continuous order-distributions, it is shown that frequency domain system identification can be performed using least squares techniques after discretizing the order-distribution.

  1. Thermal Signature Identification System (TheSIS)

    NASA Technical Reports Server (NTRS)

    Merritt, Scott; Bean, Brian

    2015-01-01

    We characterize both nonlinear and high order linear responses of fiber-optic and optoelectronic components using spread spectrum temperature cycling methods. This Thermal Signature Identification System (TheSIS) provides much more detail than conventional narrowband or quasi-static temperature profiling methods. This detail allows us to match components more thoroughly, detect subtle reversible shifts in performance, and investigate the cause of instabilities or irreversible changes. In particular, we create parameterized models of athermal fiber Bragg gratings (FBGs), delay line interferometers (DLIs), and distributed feedback (DFB) lasers, then subject the alternative models to selection via the Akaike Information Criterion (AIC). Detailed pairing of components, e.g. FBGs, is accomplished by means of weighted distance metrics or norms, rather than on the basis of a single parameter, such as center wavelength.

  2. A Microfluidic System for Studying Ageing and Dynamic Single-Cell Responses in Budding Yeast

    PubMed Central

    Bakker, Elco; Smith, Stewart; Swain, Peter S.

    2014-01-01

    Recognition of the importance of cell-to-cell variability in cellular decision-making and a growing interest in stochastic modeling of cellular processes has led to an increased demand for high density, reproducible, single-cell measurements in time-varying surroundings. We present ALCATRAS (A Long-term Culturing And TRApping System), a microfluidic device that can quantitatively monitor up to 1000 cells of budding yeast in a well-defined and controlled environment. Daughter cells are removed by fluid flow to avoid crowding allowing experiments to run for over 60 hours, and the extracellular media may be changed repeatedly and in seconds. We illustrate use of the device by measuring ageing through replicative life span curves, following the dynamics of the cell cycle, and examining history-dependent behaviour in the general stress response. PMID:24950344

  3. The yeast model system as a tool towards the understanding of apoptosis regulation by sphingolipids.

    PubMed

    Rego, António; Trindade, Dário; Chaves, Susana R; Manon, Stéphen; Costa, Vítor; Sousa, Maria João; Côrte-Real, Manuela

    2014-02-01

    It has been established that sphingolipids are engaged in the regulation of apoptosis both as direct executors and as signalling molecules. However, the peculiarities of this class of bioactive lipids, namely the interconnectivity of their metabolic pathways, the specific subcellular localization where they are generated and the transport mechanisms involved, introduce a considerably high level of complexity in deciphering their role in the signalling and regulation of programmed cell death. Although yeast is undeniably a simple model, the conservation of the sphingolipid metabolism and of the core machinery engaged in regulated cell death has already provided valuable clues to the understanding of metabolic pathways involved in distinct cellular processes, including apoptosis. It can be anticipated that studies using this model system will further unravel mechanisms underlying the regulation of apoptosis by sphingolipids and contribute to novel therapeutic strategies against serious human diseases associated with dysfunction of sphingolipid-dependent cell death programmes. PMID:24103214

  4. Distinct Signaling Roles of Ceramide Species in Yeast Revealed Through Systematic Perturbation and Systems Biology Analyses

    PubMed Central

    Montefusco, David J.; Chen, Lujia; Matmati, Nabil; Lu, Songjian; Newcomb, Benjamin; Cooper, Gregory F.; Hannun, Yusuf A.; Lu, Xinghua

    2014-01-01

    Ceramide, the central molecule of sphingolipid metabolism, is an important bioactive molecule participating in cellular regulatory events and having implications for disease. A challenge in deciphering ceramide signaling emanates from the myriad of ceramide species that exist and the possibility that many of them may have distinct functions. Here, we applied systems biology and molecular approaches to perturb ceramide metabolism in the yeast (Saccharomyces cerevisiae) and inferred causal relationships between ceramide species and their potential targets by combining lipidomic, genomic, and transcriptomic analyses. We find that during heat stress distinct metabolic mechanisms control the abundance of different groups of ceramide species. Additionally, distinct groups of ceramide species regulated different sets of functionally related genes, indicating that specific sub-groups of lipids participated in different regulatory pathways. These results indicate a previously unrecognized complexity and versatility of lipid-mediated cell regulation. PMID:24170935

  5. Yeast central nervous system infection in a critically ill patient: a case report

    PubMed Central

    2014-01-01

    Introduction Invasive fungal infections are alarmingly common in intensive care unit patients; invasive fungal infections are associated with increased morbidity and mortality. Risk factors are the increased use of indwelling central venous catheters, the use of broad spectrum antibiotics, parenteral nutrition, renal replacement therapy and immunosuppression. Diagnosis of these infections might be complicated, requiring tissue cultures. In addition, therapy of invasive fungal infections might be difficult, given the rising resistance of fungi to antifungal agents. Case presentation We describe the case of a 28-year-old Greek man with yeast central nervous system infection. Conclusions Difficult-to-treat fungal infections may complicate the clinical course of critically ill patients and render their prognosis unfavorable. This report presents a case that was rare and difficult to treat, along with a thorough review of the investigation and treatment of these kinds of fungal infections in critically ill patients. PMID:25026870

  6. Proteome-wide Identification of Novel Ceramide-binding Proteins by Yeast Surface cDNA Display and Deep Sequencing.

    PubMed

    Bidlingmaier, Scott; Ha, Kevin; Lee, Nam-Kyung; Su, Yang; Liu, Bin

    2016-04-01

    Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands. PMID:26729710

  7. An overview of recent advances in system identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    1994-01-01

    This paper presents an overview of the recent advances in system identification for modal testing and control of large flexible structures. Several techniques are discussed including the Observer/Kalman Filter Identification, the Observer/Controller Identification, and the State-Space System Identification in the Frequency Domain. The System/Observer/Controller Toolbox developed at NASA Langley Research Center is used to show the applications of these techniques to real aerospace structures such as the Hubble spacecraft telescope and the active flexible aircraft wing.

  8. System of Personal Identification by Using Tactile Stimuli

    NASA Astrophysics Data System (ADS)

    Park, Young-Il; Uchida, Masafumi

    In present, personal identfication system have been used to input identification-numbers and passwords by keyboards and touch panels. When a user enters their identification-numbers and passwords an observer could easily see the user's secret details. In this report, new personal identification, which system constitutes tactile sense information using tactile stimuli and based on the cardinal trait of the tactile sense, is proposed.

  9. Lightweight autonomous chemical identification system (LACIS)

    NASA Astrophysics Data System (ADS)

    Lozos, George; Lin, Hai; Burch, Timothy

    2012-06-01

    Smiths Detection and Intelligent Optical Systems have developed prototypes for the Lightweight Autonomous Chemical Identification System (LACIS) for the US Department of Homeland Security. LACIS is to be a handheld detection system for Chemical Warfare Agents (CWAs) and Toxic Industrial Chemicals (TICs). LACIS is designed to have a low limit of detection and rapid response time for use by emergency responders and could allow determination of areas having dangerous concentration levels and if protective garments will be required. Procedures for protection of responders from hazardous materials incidents require the use of protective equipment until such time as the hazard can be assessed. Such accurate analysis can accelerate operations and increase effectiveness. LACIS is to be an improved point detector employing novel CBRNE detection modalities that includes a militaryproven ruggedized ion mobility spectrometer (IMS) with an array of electro-resistive sensors to extend the range of chemical threats detected in a single device. It uses a novel sensor data fusion and threat classification architecture to interpret the independent sensor responses and provide robust detection at low levels in complex backgrounds with minimal false alarms. The performance of LACIS prototypes have been characterized in independent third party laboratory tests at the Battelle Memorial Institute (BMI, Columbus, OH) and indoor and outdoor field tests at the Nevada National Security Site (NNSS). LACIS prototypes will be entering operational assessment by key government emergency response groups to determine its capabilities versus requirements.

  10. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain

    PubMed Central

    Heer, Dominik; Sauer, Uwe

    2008-01-01

    Summary The production of fuel ethanol from low?cost lignocellulosic biomass currently suffers from several limitations. One of them is the presence of inhibitors in lignocellulosic hydrolysates that are released during pre?treatment. These compounds inhibit growth and hamper the production of ethanol, thereby affecting process economics. To delineate the effects of such complex mixtures, we conducted a chemical analysis of four different real?world lignocellulosic hydrolysates and determined their toxicological effect on yeast. By correlating the potential inhibitor abundance to the growth?inhibiting properties of the corresponding hydrolysates, we identified furfural as an important contributor to hydrolysate toxicity for yeast. Subsequently, we conducted a targeted evolution experiment to improve growth behaviour of the half industrial Saccharomyces cerevisiae strain TMB3400 in the hydrolysates. After about 300 generations, representative clones from these evolved populations exhibited significantly reduced lag phases in medium containing the single inhibitor furfural, but also in hydrolysate?supplemented medium. Furthermore, these strains were able to grow at concentrations of hydrolysates that effectively killed the parental strain and exhibited significantly improved bioconversion characteristics under industrially relevant conditions. The improved resistance of our evolved strains was based on their capacity to remain viable in a toxic environment during the prolonged, furfural induced lag phase. PMID:21261870

  11. Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki).

    PubMed

    Hidalgo, C; Mateo, E; Mas, A; Torija, M J

    2012-05-01

    Persimmon (Diospyros kaki) is a seasonal fruit with important health benefits. In this study, persimmon use in wine and condiment production was investigated using molecular methods to identify the yeast and acetic acid bacteria (AAB) isolated from the alcoholic fermentation and acetification of the fruit. Alcoholic fermentation was allowed to occur either spontaneously, or by inoculation with a commercial Saccharomyces cerevisiae wine strain, while acetification was always spontaneous; all these processes were performed in triplicates. Non-Saccharomyces yeast species were particularly abundant during the initial and mid-alcoholic fermentation stages, but S. cerevisiae became dominant toward the end of these processes. During spontaneous fermentation, S. cerevisiae Sc1 was the predominant strain isolated throughout, while the commercial strain of S. cerevisiae was the most common strain isolated from the inoculated fermentations. The main non-Saccharomyces strains isolated included Pichia guilliermondii, Hanseniaspora uvarum, Zygosaccharomyces florentinus and Cryptococcus sp. A distinct succession of AAB was observed during the acetification process. Acetobacter malorun was abundant during the initial and mid-stages, while Gluconacetobacter saccharivorans was the main species during the final stages of these acetifications. Four additional AAB species, Acetobacter pasteurianus, Acetobacter syzygii, Gluconacetobacter intermedius and Gluconacetobacter europaeus, were also detected. We observed 28 different AAB genotypes, though only 6 of these were present in high numbers (between 25%-60%), resulting in a high biodiversity index. PMID:22265289

  12. Identification of Rbd2 as a candidate protease for sterol regulatory element binding protein (SREBP) cleavage in fission yeast.

    PubMed

    Kim, Jinsil; Ha, Hye-Jeong; Kim, Sujin; Choi, Ah-Reum; Lee, Sook-Jeong; Hoe, Kwang-Lae; Kim, Dong-Uk

    2015-12-25

    Lipid homeostasis in mammalian cells is regulated by sterol regulatory element-binding protein (SREBP) transcription factors that are activated through sequential cleavage by Golgi Site-1 and Site-2 proteases. Fission yeast SREBP, Sre1, engages a different mechanism involving the Golgi Dsc E3 ligase complex, but it is not clearly understood exactly how Sre1 is proteolytically cleaved and activated. In this study, we screened the Schizosaccharomyces pombe non-essential haploid deletion collection to identify missing components of the Sre1 cleavage machinery. Our screen identified an additional component of the SREBP pathway required for Sre1 proteolysis named rhomboid protein 2 (Rbd2). We show that an rbd2 deletion mutant fails to grow under hypoxic and hypoxia-mimetic conditions due to lack of Sre1 activity and that this growth phenotype is rescued by Sre1N, a cleaved active form of Sre1. We found that the growth inhibition phenotype under low oxygen conditions is specific to the strain with deletion of rbd2, not any other fission yeast rhomboid-encoding genes. Our study also identified conserved residues of Rbd2 that are required for Sre1 proteolytic cleavage. All together, our results suggest that Rbd2 is a functional SREBP protease with conserved residues required for Sre1 cleavage and provide an important piece of the puzzle to understand the mechanisms for Sre1 activation and the regulation of various biological and pathological processes involving SREBPs. PMID:26545776

  13. Identification of Lethal Mutations in Yeast Threonyl-tRNA Synthetase Revealing Critical Residues in Its Human Homolog*

    PubMed Central

    Ruan, Zhi-Rong; Fang, Zhi-Peng; Ye, Qing; Lei, Hui-Yan; Eriani, Gilbert; Zhou, Xiao-Long; Wang, En-Duo

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs. PMID:25416776

  14. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain.

    PubMed

    Heer, Dominik; Sauer, Uwe

    2008-11-01

    The production of fuel ethanol from low-cost lignocellulosic biomass currently suffers from several limitations. One of them is the presence of inhibitors in lignocellulosic hydrolysates that are released during pre-treatment. These compounds inhibit growth and hamper the production of ethanol, thereby affecting process economics. To delineate the effects of such complex mixtures, we conducted a chemical analysis of four different real-world lignocellulosic hydrolysates and determined their toxicological effect on yeast. By correlating the potential inhibitor abundance to the growth-inhibiting properties of the corresponding hydrolysates, we identified furfural as an important contributor to hydrolysate toxicity for yeast. Subsequently, we conducted a targeted evolution experiment to improve growth behaviour of the half industrial Saccharomyces cerevisiae strain TMB3400 in the hydrolysates. After about 300 generations, representative clones from these evolved populations exhibited significantly reduced lag phases in medium containing the single inhibitor furfural, but also in hydrolysate-supplemented medium. Furthermore, these strains were able to grow at concentrations of hydrolysates that effectively killed the parental strain and exhibited significantly improved bioconversion characteristics under industrially relevant conditions. The improved resistance of our evolved strains was based on their capacity to remain viable in a toxic environment during the prolonged, furfural induced lag phase. PMID:21261870

  15. Identification of Small Aliphatic Aldehydes in Pretreated Lignocellulosic Feedstocks and Evaluation of Their Inhibitory Effects on Yeast.

    PubMed

    Cavka, Adnan; Stagge, Stefan; Jnsson, Leif J

    2015-11-11

    Six lignocellulosic hydrolysates produced through acid pretreatment were analyzed for the occurrence of formaldehyde, acetaldehyde, and glycolaldehyde. Acetaldehyde was found in all six (0.3-1.6 mM) and formaldehyde in four (? 4.4 mM), whereas glycolaldehyde was not detected. To assess the relevance of these findings, fermentations with yeast and formaldehyde or acetaldehyde were performed in the concentration interval 0.5-10 mM. Formaldehyde already inhibited at 1.0 mM, whereas 5.0 mM acetaldehyde was needed to obtain a clear inhibitory effect. After 24 h of fermentation, 1.5 mM formaldehyde reduced the glucose consumption by 85%, the balanced ethanol yield by 92%, and the volumetric productivity by 91%. The results show that formaldehyde and acetaldehyde are prevalent in pretreated lignocellulose and that formaldehyde in some cases could explain a large part of the inhibitory effects on yeast by lignocellulosic hydrolysates, as three of six hydrolysates contained ? 1.9 mM formaldehyde, which was shown to be strongly inhibitory. PMID:26528761

  16. Identification of revertants for the cystic fibrosis delta F508 mutation using STE6-CFTR chimeras in yeast.

    PubMed

    Teem, J L; Berger, H A; Ostedgaard, L S; Rich, D P; Tsui, L C; Welsh, M J

    1993-04-23

    Mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis; the most common mutation is deletion of phenylalanine at position 508 (delta F508). We constructed STE6-CFTR chimeras with portions of the first nucleotide-binding domain (NBD1) of the yeast STE6 a-factor transporter replaced by portions of CFTR NBD1. The chimeras were functional in yeast, but mating efficiency decreased when delta F508 was introduced into NBD1. We isolated two delta F508 revertant mutations (R553M and R553Q) that restored mating; both were located within the CFTR NBD1 sequence. Introduction of these revertant mutations into human CFTR partially corrected the processing and Cl- channel gating defects caused by the delta F508 mutation. These results suggest that the NBD1s of CFTR and STE6 share a similar structure and function and that, in CFTR, the regions containing F508 and R553 interact. They also indicate that the abnormal conformation produced by delta F508 can be partially corrected by additional alterations in the protein. PMID:7682896

  17. Interaction of a mixed yeast culture in an "autotroph-heterotroph" system with a closed atmosphere cycle and spatially separated components.

    PubMed

    Pisman, T I; Somova, L A

    2003-01-01

    The study considers an experimental model of the "autotroph-heterotroph" system with a closed atmosphere cycle, in which the heterotrophic link is a mixed yeast population. The autotrophic link is represented by the algae Chlorella vulgaris and the heterotrophic link by the yeasts Candida utilis and Candida guilliermondii. The controls are populations of Chlorella and the same yeasts isolated from the atmosphere. It has been shown that the outcome of competition in the heterotrophic link depends on the strategy of the yeast population towards the substrate and oxygen. The C. utilis population quickly utilizes the substrate as it is an r-strategist and is less sensitive to oxygen deficiency. The C. guilliermondii population consumes low concentrations of the substrate because it is a K-strategist, but it is more sensitive to oxygen deficiency. That is why, in the "autotroph-heterotroph" system with a closed gas cycle, after a considerable amount of the substrate has been consumed, the C. guilliermondii population becomes more competitive that the C. utilis population. In the culture of yeasts, isolated from the atmosphere, the C. utilis population finds itself in more favorable conditions due to oxygen deficiency. The system with a complex heterotrophic component survive longer than a system whose heterotrophic component is represented by only one yeast species. This is explained for by the positive metabolite interaction of yeasts and a more complete utilization of the substrate by a mixed culture of yeasts featuring different strategies towards the substrate. PMID:14503513

  18. 49 CFR 1542.211 - Identification systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... secured area or SIDA continuously displays the identification medium issued to that individual on the... individual who has authorized unescorted access to secured areas and SIDA's to ascertain the authority of any... approved identification media. The procedure must— (1) Apply uniformly in secured areas, SIDAs,...

  19. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system.

    PubMed

    Gostimskaya, Irina; Grant, Chris M

    2016-05-01

    Glutathione is an abundant, low-molecular-weight tripeptide whose biological importance is dependent upon its redox-active free sulphydryl moiety. Its role as the main determinant of thiol-redox control has been challenged such that it has been proposed to play a crucial role in iron-sulphur clusters maturation, and only a minor role in thiol redox regulation, predominantly as a back-up system for the cytoplasmic thioredoxin system. Here, we have tested the importance of mitochondrial glutathione in thiol-redox regulation. Glutathione reductase (Glr1) is an oxidoreductase which converts oxidized glutathione to its reduced form. Yeast Glr1 localizes to both the cytosol and mitochondria and we have used a Glr1(M1L) mutant that is constitutively localized to the cytosol to test the requirement for mitochondrial Glr1. We show that the loss of mitochondrial Glr1 specifically accounts for oxidant sensitivity of a glr1 mutant. Loss of mitochondrial Glr1 does not influence iron-sulphur cluster maturation and we have used targeted roGFP2 fluorescent probes to show that oxidant sensitivity is linked to an altered redox environment. Our data indicate mitochondrial glutathione is crucial for mitochondrial thiol-redox regulation, and the mitochondrial thioredoxin system provides a back-up system, but cannot bear the redox load of the mitochondria on its own. PMID:26898146

  20. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system

    PubMed Central

    Gostimskaya, Irina; Grant, Chris M.

    2016-01-01

    Glutathione is an abundant, low-molecular-weight tripeptide whose biological importance is dependent upon its redox-active free sulphydryl moiety. Its role as the main determinant of thiol-redox control has been challenged such that it has been proposed to play a crucial role in iron–sulphur clusters maturation, and only a minor role in thiol redox regulation, predominantly as a back-up system for the cytoplasmic thioredoxin system. Here, we have tested the importance of mitochondrial glutathione in thiol-redox regulation. Glutathione reductase (Glr1) is an oxidoreductase which converts oxidized glutathione to its reduced form. Yeast Glr1 localizes to both the cytosol and mitochondria and we have used a Glr1M1L mutant that is constitutively localized to the cytosol to test the requirement for mitochondrial Glr1. We show that the loss of mitochondrial Glr1 specifically accounts for oxidant sensitivity of a glr1 mutant. Loss of mitochondrial Glr1 does not influence iron–sulphur cluster maturation and we have used targeted roGFP2 fluorescent probes to show that oxidant sensitivity is linked to an altered redox environment. Our data indicate mitochondrial glutathione is crucial for mitochondrial thiol-redox regulation, and the mitochondrial thioredoxin system provides a back-up system, but cannot bear the redox load of the mitochondria on its own. PMID:26898146

  1. A system identification model for adaptive nonlinear control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis J.; Stengel, Robert F.

    1991-01-01

    A system identification model that combines generalized-spline function approximation with a nonlinear control system is described. The complete control system contains three main elements: a nonlinear-inverse-dynamic control law that depends on a comprehensive model of the plant, a state estimator whose outputs drive the control law, and a function approximation scheme that models the system dynamics. The system-identification task, which combines an extended Kalman filter with a function approximator modeled as an artificial neural network, is considered. The results of an application of the identification techniques to a nonlinear transport aircraft model are presented.

  2. Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and the two internal transcribed spacers.

    PubMed

    Las Heras-Vazquez, Francisco Javier; Mingorance-Cazorla, Lydia; Clemente-Jimenez, Josefa María; Rodriguez-Vico, Felipe

    2003-03-01

    Yeast isolates from orange fruit and juice in a spontaneous fermentation were identified and classified by two molecular techniques. The first was analysis of the restriction pattern generated from the polymerase chain reaction (PCR)-amplified 5.8S rRNA gene and the two internal transcribed spacers (ITS) using specific primers. The second technique was sequence analysis of the ITS regions using the same two primers. Nine different restriction profiles were obtained from the size of the PCR products and the restriction analyses with three endonucleases (CfoI, HaeIII and HinfI). These groups were identified as Candida tropicalis, Clavispora lusitaniae, Hanseniaspora uvarum, Pichia anomala, Pichia fermentans, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Saccharomyces unisporus, and Trichosporon asahii. Checking against identification according to morphological, physiological and biochemical traits corroborated this molecular identification. A total concordance was found in the identification with PCR-restriction fragment length polymorphism of the ITS region after analysing certified yeast strains from two different culture collections. Consequently, a rapid and reliable identification of the yeast populations was achieved by using molecular techniques. PMID:12702240

  3. Linear system identification - The application of Lion's identification scheme to a third order system with noisy input-output measurements

    NASA Technical Reports Server (NTRS)

    Brown, C. M., Jr.; Monopoli, R. V.

    1974-01-01

    A linear system identification technique developed by Lion is adapted for use on a third-order system with six unknown parameters and noisy input-output measurements. A digital computer is employed so that rapid identification takes place with only two state variable filters. Bias in the parameter estimates is partially eliminated by a signal-to-noise ratio testing procedure.

  4. Entropy-based separation of yeast cells using a microfluidic system of conjoined spheres

    SciTech Connect

    Huang, Kai-Jian; Qin, S.-J. Bai, Zhong-Chen; Zhang, Xin; Mai, John D.

    2013-11-21

    A physical model is derived to create a biological cell separator that is based on controlling the entropy in a microfluidic system having conjoined spherical structures. A one-dimensional simplified model of this three-dimensional problem in terms of the corresponding effects of entropy on the Brownian motion of particles is presented. This dynamic mechanism is based on the Langevin equation from statistical thermodynamics and takes advantage of the characteristics of the Fokker-Planck equation. This mechanism can be applied to manipulate biological particles inside a microfluidic system with identical, conjoined, spherical compartments. This theoretical analysis is verified by performing a rapid and a simple technique for separating yeast cells in these conjoined, spherical microfluidic structures. The experimental results basically match with our theoretical model and we further analyze the parameters which can be used to control this separation mechanism. Both numerical simulations and experimental results show that the motion of the particles depends on the geometrical boundary conditions of the microfluidic system and the initial concentration of the diffusing material. This theoretical model can be implemented in future biophysics devices for the optimized design of passive cell sorters.

  5. Assessing Systems Properties of Yeast Mitochondria through an Interaction Map of the Organelle

    PubMed Central

    Perocchi, Fabiana; Jensen, Lars J; Gagneur, Julien; Ahting, Uwe; von Mering, Christian; Bork, Peer; Prokisch, Holger; Steinmetz, Lars M

    2006-01-01

    Mitochondria carry out specialized functions; compartmentalized, yet integrated into the metabolic and signaling processes of the cell. Although many mitochondrial proteins have been identified, understanding their functional interrelationships has been a challenge. Here we construct a comprehensive network of the mitochondrial system. We integrated genome-wide datasets to generate an accurate and inclusive mitochondrial parts list. Together with benchmarked measures of protein interactions, a network of mitochondria was constructed in their cellular context, including extra-mitochondrial proteins. This network also integrates data from different organisms to expand the known mitochondrial biology beyond the information in the existing databases. Our network brings together annotated and predicted functions into a single framework. This enabled, for the entire system, a survey of mutant phenotypes, gene regulation, evolution, and disease susceptibility. Furthermore, we experimentally validated the localization of several candidate proteins and derived novel functional contexts for hundreds of uncharacterized proteins. Our network thus advances the understanding of the mitochondrial system in yeast and identifies properties of genes underlying human mitochondrial disorders. PMID:17054397

  6. A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast.

    PubMed

    Stökl, Johannes; Strutz, Antonia; Dafni, Amots; Svatos, Ales; Doubsky, Jan; Knaden, Markus; Sachse, Silke; Hansson, Bill S; Stensmyr, Marcus C

    2010-10-26

    In deceptive pollination, insects are bamboozled into performing nonrewarded pollination. A prerequisite for the evolutionary stability in such systems is that the plants manage to generate a perfect sensory impression of a desirable object in the insect nervous system [1]. The study of these plants can provide important insights into sensory preference of their visiting insects. Here, we present the first description of a deceptive pollination system that specifically targets drosophilid flies. We show that the examined plant (Arum palaestinum) accomplishes its deception through olfactory mimicry of fermentation, a strategy that represents a novel pollination syndrome. The lily odor is composed of volatiles characteristic of yeast, and produces in Drosophila melanogaster an antennal detection pattern similar to that elicited by a range of fermentation products. By functional imaging, we show that the lily odors target a specific subset of odorant receptors (ORs), which include the most conserved OR genes in the drosophilid olfactome. Furthermore, seven of eight visiting drosophilid species show a congruent olfactory response pattern to the lily, in spite of comprising species pairs separated by ∼40 million years [2], showing that the lily targets a basal function of the fly nose, shared by species with similar ecological preference. PMID:20933425

  7. Heterologous expression systems for P-glycoprotein: E. coli, yeast, and baculovirus.

    PubMed

    Evans, G L; Ni, B; Hrycyna, C A; Chen, D; Ambudkar, S V; Pastan, I; Germann, U A; Gottesman, M M

    1995-02-01

    Chemotherapy, though it remains one of the front-line weapons used to treat human cancer, is often ineffective due to drug resistance mechanisms manifest in tumor cells. One common pattern of drug resistance, characterized by simultaneous resistance to multiple amphipathic, but otherwise structurally dissimilar anticancer drugs, is termed multidrug resistance. Multidrug resistance in various model systems, covering the phylogenetic range from bacteria to man, can be conferred by mammalian P-glycoproteins (PGPs), often termed multidrug transporters. PGPs are 170-kD polytopic membrane proteins, predicted to consist of two homologous halves, each with six membrane spanning regions and one ATP binding site. They are members of the ATP-binding cassette (ABC) superfamily of transporters, and are known to function biochemically as energy-dependent drug efflux pumps. However, much remains to be learned about PGP structure-function relationships, membrane topology, posttranslational regulation, and bioenergetics of drug transport. Much of the recent progress in the study of the human and mouse PGPs has come from heterologous expression systems which offer the benefits of ease of genetic selection and manipulation, and/or short generation times of the organism in which PGPs are expressed, and/or high-level expression of recombinant PGP. Here we review recent studies of PGP in E. coli, baculovirus, and yeast systems and evaluate their utility for the study of PGPs, as well as other higher eukaryotic membrane proteins. PMID:7629051

  8. Detecting Protein-Protein Interactions in Vesicular Stomatitis Virus Using a Cytoplasmic Yeast Two Hybrid System

    PubMed Central

    Moerdyk-Schauwecker, Megan; DeStephanis, Darla; Hastie, Eric; Grdzelishvili, Valery Z.

    2011-01-01

    Summary Protein-protein interactions play an important role in many virus-encoded functions and in virus-host interactions. While a “classical” yeast two-hybrid system (Y2H) is one of the most common techniques to detect such interactions, it has a number of limitations, including a requirement for the proteins of interest to be relocated to the nucleus. Modified Y2H, such as the Sos recruitment system (SRS), which detect interactions occurring in the cytoplasm rather than the nucleus, allow proteins from viruses replicating in the cytoplasm to be tested in a more natural context. In this study, a SRS was used to detect interactions involving proteins from vesicular stomatitis virus (VSV), a prototypic non-segmented negative strand RNA (NNS) virus. All five full-length VSV proteins, as well as several truncated proteins, were screened against each other. Using the SRS, most interactions demonstrated previously involving VSV phosphoprotein, nucleocapsid (N) and large polymerase proteins were confirmed independently, while difficulties were encountered using the membrane associated matrix and glycoproteins. A human cDNA library was also screened against VSV N protein and one cellular protein, SFRS18, was identified which interacted with N in this context. The system presented can be redesigned easily for studies in other less tractable NNS viruses. PMID:21320532

  9. Identification of human ferritin, heavy polypeptide 1 (FTH1) and yeast RGI1 (YER067W) as pro-survival sequences that counteract the effects of Bax and copper in Saccharomyces cerevisiae.

    PubMed

    Eid, Rawan; Boucher, Eric; Gharib, Nada; Khoury, Chamel; Arab, Nagla T T; Murray, Alistair; Young, Paul G; Mandato, Craig A; Greenwood, Michael T

    2016-03-01

    Ferritin is a sub-family of iron binding proteins that form multi-subunit nanotype iron storage structures and prevent oxidative stress induced apoptosis. Here we describe the identification and characterization of human ferritin, heavy polypeptide 1 (FTH1) as a suppressor of the pro-apoptotic murine Bax sequence in yeast. In addition we demonstrate that FTH1 is a general pro-survival sequence since it also prevents the cell death inducing effects of copper when heterologously expressed in yeast. Although ferritins are phylogenetically widely distributed and are present in most species of Bacteria, Archaea and Eukarya, ferritin is conspicuously absent in most fungal species including Saccharomyces cerevisiae. An in silico analysis of the yeast proteome lead to the identification of the 161 residue RGI1 (YER067W) encoded protein as a candidate for being a yeast ferritin. In addition to sharing 20% sequence identity with the 183 residue FTH1, RGI1 also has similar pro-survival properties as ferritin when overexpressed in yeast. Analysis of recombinant protein by SDS-PAGE and by electron microscopy revealed the expected formation of higher-order structures for FTH1 that was not observed with Rgi1p. Further analysis revealed that cells overexpressing RGI1 do not show increased resistance to iron toxicity and do not have enhanced capacity to store iron. In contrast, cells lacking RGI1 were found to be hypersensitive to the toxic effects of iron. Overall, our results suggest that Rgi1p is a novel pro-survival protein whose function is not related to ferritin but nevertheless it may have a role in regulating yeast sensitivity to iron stress. PMID:26886577

  10. Neural system prediction and identification challenge

    PubMed Central

    Vlachos, Ioannis; Zaytsev, Yury V.; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind

    2013-01-01

    Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered. PMID:24399966

  11. Marked for Success?: Identification Systems Impact Poultry Welfare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Individual identification is a common method used in animal research. This study was designed to examine if various common identification systems, i.e., leg bands (LB), wing bands (WB), neck tags (ST), and livestock marker (LM), have different effects on hens' behavioral and physiological homeostasi...

  12. [Application of fingerprint identification technology in EMR system].

    PubMed

    Dai, Liang-liang; Li, Chuan-fu; Zhou, Bao-zhuo; Feng, Huan-qing

    2009-03-01

    Based on the deep analysis of existing fingerprint identification algorithms, this article proposes an integrative solution to adopt the fingerprint identification technology into EMRS Electronic Medical Records System. It may improve the security of EMRS and raise the working efficiency of physicians effectively. PMID:19771889

  13. A minimax approach to the parametric identification of dynamic systems

    NASA Astrophysics Data System (ADS)

    Zbrutskii, A. V.; Prokopchuk, T. V.

    An algorithm for the identification of dynamic systems is developed using the minimax approach, and a method for implementing the algorithm in the most efficient manner is proposed. The efficiency of the identification algorithm proposed here is demonstrated by applying it to the determination of the parameters of a dynamically tunable gyroscope.

  14. Application of system identification techniques to simulation model abstraction

    NASA Astrophysics Data System (ADS)

    Popken, Douglas A.

    1999-06-01

    This paper describes preliminary research into the applicability of system identification techniques to simulation model abstraction. Model abstraction enables the construction of a valid, low-resolution surrogate to a more detailed, high-resolution simulation model. When rapid, approximate results will suffice, we can also apply system identification directly to actual system data, bypassing the simulation stage. Four non-traditional system identification techniques are discussed in relation to their ability to produce linear, time-invariant, state-space formulations of multivariable random systems. A simple example is provided in which one of the techniques, Hidden Markov Models, is used to identify the transition probabilities within a simulated Markov Chain. The example is used to illustrate the challenges in general simulation model abstraction caused by model transformation procedures, problem size, uncertainty, and computational complexity. At this stage, we can say that the application of systems identification to simulation model abstraction is promising, yet challenging.

  15. An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System

    PubMed Central

    Hoffman, Charles S.; Wood, Valerie; Fantes, Peter A.

    2015-01-01

    The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name but a few processes. However, since the divergence of the two species approximately 350 million years ago, S. pombe appears to have evolved less rapidly than S. cerevisiae so that it retains more characteristics of the common ancient yeast ancestor, causing it to share more features with metazoan cells. This Primer introduces S. pombe by describing the yeast itself, providing a brief description of the origins of fission yeast research, and illustrating some genetic and bioinformatics tools used to study protein function in fission yeast. In addition, a section on some key differences between S. pombe and S. cerevisiae is included for readers with some familiarity with budding yeast research but who may have an interest in developing research projects using S. pombe. PMID:26447128

  16. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection

    PubMed Central

    Tipper, Donald J.; Szomolanyi-Tsuda, Eva

    2016-01-01

    Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP) or U65-Apolipoprotein A1 (ApoA1) subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%. PMID:27213160

  17. An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System.

    PubMed

    Hoffman, Charles S; Wood, Valerie; Fantes, Peter A

    2015-10-01

    The fission yeast Schizosaccharomyces pombe is an important model organism for the study of eukaryotic molecular and cellular biology. Studies of S. pombe, together with studies of its distant cousin, Saccharomyces cerevisiae, have led to the discovery of genes involved in fundamental mechanisms of transcription, translation, DNA replication, cell cycle control, and signal transduction, to name but a few processes. However, since the divergence of the two species approximately 350 million years ago, S. pombe appears to have evolved less rapidly than S. cerevisiae so that it retains more characteristics of the common ancient yeast ancestor, causing it to share more features with metazoan cells. This Primer introduces S. pombe by describing the yeast itself, providing a brief description of the origins of fission yeast research, and illustrating some genetic and bioinformatics tools used to study protein function in fission yeast. In addition, a section on some key differences between S. pombe and S. cerevisiae is included for readers with some familiarity with budding yeast research but who may have an interest in developing research projects using S. pombe. PMID:26447128

  18. Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection.

    PubMed

    Tipper, Donald J; Szomolanyi-Tsuda, Eva

    2016-01-01

    Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP) or U65-Apolipoprotein A1 (ApoA1) subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%. PMID:27213160

  19. Substructure System Identification for Finite Element Model Updating

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Blades, Eric L.

    1997-01-01

    This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.

  20. Quantum parameter identification for a chaotic atom ensemble system

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-02-01

    We propose an indirect method based on an adaptive technique for analyzing the chaos behavior of a general quantum system with complex nonlinear evolution. Using this method, we design an identification function that effectively recognizes the uncertain parameters in a chaotic quantum system only by measuring the system outputs. As an example, we study an atom ensemble in an optical cavity and we obtain a specific parameter identification scheme after analyzing the chaos behaviors. We also verify the accuracy of the identification scheme using numerical simulations and we discuss the influence of different types of errors on the accuracy.

  1. Identification, purification, and molecular cloning of autonomously replicating sequence-binding protein 1 from fission yeast Schizosaccharomyces pombe.

    PubMed

    Murakami, Y; Huberman, J A; Hurwitz, J

    1996-01-01

    Autonomously replicating sequence (ARS) elements of the fission yeast Schizosaccharomyces pombe contain multiple imperfect copies of the consensus sequence reported by Maundrell et al. [Maundrell K., Hutchison, A. & Shall, S. (1988) EMBO J. 7, 2203-2209]. When cell free extracts of S. pombe were incubated with a dimer or tetramer of an oligonucleotide containing the ARS consensus sequence, several complexes were detected using a gel mobility-shift assay. The proteins forming these complexes also bind ars3002, which is the most active origin in the ura4 region of chromosome III of S. pombe. One protein, partly responsible for the binding activity observed with crude extracts, was purified to near homogeneity. It is a 60-kDa protein and was named ARS-binding protein 1 (Abp1). Abp1 preferentially binds to multiple sites in ARS 3002 and to the DNA polymer poly[d(A.T)]. The cloning and sequence of the gene coding for Abp1 revealed that it encodes a protein of 59.8 kDa (522 amino acids). Abp1 has significant homology (25% identity, 50% similarity) to the N-terminal region (approximately 300 amino acids) of the human and mouse centromere DNA-binding protein CENP-B. Because centromeres of S. pombe contain a high density of ARS elements, Abp1 may play a role connecting DNA replication and chromosome segregation. PMID:8552670

  2. High Throughput Identification of Monoclonal Antibodies to Membrane Bound and Secreted Proteins Using Yeast and Phage Display

    PubMed Central

    Zhao, Lequn; Qu, Liang; Zhou, Jing; Sun, Zhengda; Zou, Hao; Chen, Yunn-Yi; Marks, James D.; Zhou, Yu

    2014-01-01

    Antibodies are ubiquitous and essential reagents for biomedical research. Uses of antibodies include quantifying proteins, identifying the temporal and spatial pattern of expression in cells and tissue, and determining how proteins function under normal or pathological conditions. Specific antibodies are only available for a small portion of the proteome, limiting study of those proteins for which antibodies do not exist. The technologies to generate target-specific antibodies need to be improved to obtain high quality antibodies to the proteome at reasonable cost. Here we show that renewable, validated, and standardized monoclonal antibodies can be generated at high throughput, without the need for antigen production or animal immunizations. In this study, 60 protein domains from 24 selected secreted proteins were expressed on the surface of yeast and used for selection of phage antibodies, over 400 monoclonal antibodies were identified within 3 weeks. A subset of these antibodies was validated for binding to cancer cells that overexpress the target protein by flow cytometry or immunohistochemistry. This approach will be applicable to many of the membrane-bound and the secreted proteins, 20–40% of the proteome, accelerating the timeline for Ab generation while reducing the cost. PMID:25353955

  3. Identification and Characterization of Two Novel Proteins Affecting Fission Yeast γ-tubulin Complex FunctionV⃞

    PubMed Central

    Venkatram, Srinivas; Tasto, Joseph J.; Feoktistova, Anna; Jennings, Jennifer L.; Link, Andrew J.; Gould, Kathleen L.

    2004-01-01

    The γ-tubulin complex, via its ability to organize microtubules, is critical for accurate chromosome segregation and cytokinesis in the fission yeast, Schizosaccharomyces pombe. To better understand its roles, we have purified the S. pombe γ-tubulin complex. Mass spectrometric analyses of the purified complex revealed known components and identified two novel proteins (i.e., Mbo1p and Gfh1p) with homology to γ-tubulin–associated proteins from other organisms. We show that both Mbo1p and Gfh1p localize to microtubule organizing centers. Although cells deleted for either mbo1+ or gfh1+ are viable, they exhibit a number of defects associated with altered microtubule function such as defects in cell polarity, nuclear positioning, spindle orientation, and cleavage site specification. In addition, mbo1Δ and gfh1Δ cells exhibit defects in astral microtubule formation and anchoring, suggesting that these proteins have specific roles in astral microtubule function. This study expands the known roles of γ-tubulin complex components in organizing different types of microtubule structures in S. pombe. PMID:15004232

  4. Parameter estimation techniques for LTP system identification

    NASA Astrophysics Data System (ADS)

    Nofrarias Serra, Miquel

    LISA Pathfinder (LPF) is the precursor mission of LISA (Laser Interferometer Space Antenna) and the first step towards gravitational waves detection in space. The main instrument onboard the mission is the LTP (LISA Technology Package) whose scientific goal is to test LISA's drag-free control loop by reaching a differential acceleration noise level between two masses in √ geodesic motion of 3 × 10-14 ms-2 / Hz in the milliHertz band. The mission is not only challenging in terms of technology readiness but also in terms of data analysis. As with any gravitational wave detector, attaining the instrument performance goals will require an extensive noise hunting campaign to measure all contributions with high accuracy. But, opposite to on-ground experiments, LTP characterisation will be only possible by setting parameters via telecommands and getting a selected amount of information through the available telemetry downlink. These two conditions, high accuracy and high reliability, are the main restrictions that the LTP data analysis must overcome. A dedicated object oriented Matlab Toolbox (LTPDA) has been set up by the LTP analysis team for this purpose. Among the different toolbox methods, an essential part for the mission are the parameter estimation tools that will be used for system identification during operations: Linear Least Squares, Non-linear Least Squares and Monte Carlo Markov Chain methods have been implemented as LTPDA methods. The data analysis team has been testing those methods with a series of mock data exercises with the following objectives: to cross-check parameter estimation methods and compare the achievable accuracy for each of them, and to develop the best strategies to describe the physics underlying a complex controlled experiment as the LTP. In this contribution we describe how these methods were tested with simulated LTP-like data to recover the parameters of the model and we report on the latest results of these mock data exercises.

  5. Characterization of the Probiotic Yeast Saccharomyces boulardii in the Healthy Mucosal Immune System.

    PubMed

    Hudson, Lauren E; McDermott, Courtney D; Stewart, Taryn P; Hudson, William H; Rios, Daniel; Fasken, Milo B; Corbett, Anita H; Lamb, Tracey J

    2016-01-01

    The probiotic yeast Saccharomyces boulardii has been shown to ameliorate disease severity in the context of many infectious and inflammatory conditions. However, use of S. boulardii as a prophylactic agent or therapeutic delivery vector would require delivery of S. boulardii to a healthy, uninflamed intestine. In contrast to inflamed mucosal tissue, the diverse microbiota, intact epithelial barrier, and fewer inflammatory immune cells within the healthy intestine may all limit the degree to which S. boulardii contacts and influences the host mucosal immune system. Understanding the nature of these interactions is crucial for application of S. boulardii as a prophylactic agent or therapeutic delivery vehicle. In this study, we explore both intrinsic and immunomodulatory properties of S. boulardii in the healthy mucosal immune system. Genomic sequencing and morphological analysis of S. boulardii reveals changes in cell wall components compared to non-probiotic S. cerevisiae that may partially account for probiotic functions of S. boulardii. Flow cytometry and immunohistochemistry demonstrate limited S. boulardii association with murine Peyer's patches. We also show that although S. boulardii induces a systemic humoral immune response, this response is small in magnitude and not directed against S. boulardii itself. RNA-seq of the draining mesenteric lymph nodes indicates that even repeated administration of S. boulardii induces few transcriptional changes in the healthy intestine. Together these data strongly suggest that interaction between S. boulardii and the mucosal immune system in the healthy intestine is limited, with important implications for future work examining S. boulardii as a prophylactic agent and therapeutic delivery vehicle. PMID:27064405

  6. Characterization of the Probiotic Yeast Saccharomyces boulardii in the Healthy Mucosal Immune System

    PubMed Central

    Hudson, Lauren E.; McDermott, Courtney D.; Stewart, Taryn P.; Hudson, William H.; Rios, Daniel; Fasken, Milo B.; Corbett, Anita H.; Lamb, Tracey J.

    2016-01-01

    The probiotic yeast Saccharomyces boulardii has been shown to ameliorate disease severity in the context of many infectious and inflammatory conditions. However, use of S. boulardii as a prophylactic agent or therapeutic delivery vector would require delivery of S. boulardii to a healthy, uninflamed intestine. In contrast to inflamed mucosal tissue, the diverse microbiota, intact epithelial barrier, and fewer inflammatory immune cells within the healthy intestine may all limit the degree to which S. boulardii contacts and influences the host mucosal immune system. Understanding the nature of these interactions is crucial for application of S. boulardii as a prophylactic agent or therapeutic delivery vehicle. In this study, we explore both intrinsic and immunomodulatory properties of S. boulardii in the healthy mucosal immune system. Genomic sequencing and morphological analysis of S. boulardii reveals changes in cell wall components compared to non-probiotic S. cerevisiae that may partially account for probiotic functions of S. boulardii. Flow cytometry and immunohistochemistry demonstrate limited S. boulardii association with murine Peyer’s patches. We also show that although S. boulardii induces a systemic humoral immune response, this response is small in magnitude and not directed against S. boulardii itself. RNA-seq of the draining mesenteric lymph nodes indicates that even repeated administration of S. boulardii induces few transcriptional changes in the healthy intestine. Together these data strongly suggest that interaction between S. boulardii and the mucosal immune system in the healthy intestine is limited, with important implications for future work examining S. boulardii as a prophylactic agent and therapeutic delivery vehicle. PMID:27064405

  7. A Method of Visualizing Three-Dimensional Distribution of Yeast in Bread Dough

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Shiraga, Seizaburou; Ueda, Mitsuyoshi; Takeya, Koji; Endo, Shigeru

    A novel technique was developed to monitor the change in three-dimensional (3D) distribution of yeast in frozen bread dough samples in accordance with the progress of mixing process. Application of a surface engineering technology allowed the identification of yeast in bread dough by bonding EGFP (Enhanced Green Fluorescent Protein) to the surface of yeast cells. The fluorescent yeast (a biomarker) was recognized as bright spots at the wavelength of 520 nm. A Micro-Slicer Image Processing System (MSIPS) with a fluorescence microscope was utilized to acquire cross-sectional images of frozen dough samples sliced at intervals of 1 μm. A set of successive two-dimensional images was reconstructed to analyze 3D distribution of yeast. Samples were taken from each of four normal mixing stages (i.e., pick up, clean up, development, and final stages) and also from over mixing stage. In the pick up stage yeast distribution was uneven with local areas of dense yeast. As the mixing progressed from clean up to final stages, the yeast became more evenly distributed throughout the dough sample. However, the uniformity in yeast distribution was lost in the over mixing stage possibly due to the breakdown of gluten structure within the dough sample.

  8. Estrogenic activity of pharmaceuticals and pharmaceutical mixtures in a yeast reporter gene system.

    PubMed

    Fent, Karl; Escher, Claudia; Caminada, Daniel

    2006-08-01

    Pharmaceuticals enter aquatic environments in unchanged form or as metabolites. Little is known about their potential hormonal activity, which is of particular interest due to potential long-term effects on fertility and reproduction in aquatic organisms. Moreover, there is a need to assess the combined activity of pharmaceutical mixtures. In this study, 37 pharmaceuticals have been analysed in vitro for estrogenic activity using a recombinant yeast system expressing the human estrogen receptor alpha. Six pharmaceuticals belonging to different therapeutic classes, cimetidine, fenofibrate, furosemide, paracetamol, phenazone and tamoxifen, exhibited weak estrogenic activity. Furosemide showed an almost full concentration-response curve, whereas the other compounds showed low efficacy. The half-maximal activities of the pharmaceuticals were in the range of 0.66-25.53 mM. Furthermore, binary mixtures of furosemide and 17beta-estradiol (E2), and furosemide and phenazone, and mixtures of up to five active pharmaceuticals were assessed for their combinatory activity at different equipotent concentrations. The estrogenic activity of binary mixtures of furosemide with E2 and phenazone, respectively, followed the model of concentration addition (CA). Mixtures of other pharmaceuticals often deviated from the CA model, because extrapolations become inaccurate with only partial and non-parallel concentration-response curves having low efficacy. This demonstrates that full and parallel concentration-response curves are a prerequisite for accurate predictions of mixture activity. Our study demonstrates for the first time weak estrogenic activity in vitro of some common pharmaceuticals and their mixtures. PMID:16781844

  9. A combined database related and de novo MS-identification of yeast mannose-1-phosphate guanyltransferase PSA1 interaction partners at different phases of batch cultivation

    NASA Astrophysics Data System (ADS)

    Parviainen, Ville; Joenväärä, Sakari; Peltoniemi, Hannu; Mattila, Pirkko; Renkonen, Risto

    2009-04-01

    Mass spectrometry-based proteomic research has become one of the main methods in protein-protein interaction research. Several high throughput studies have established an interaction landscape of exponentially growing Baker's yeast culture. However, many of the protein-protein interactions are likely to change in different environmental conditions. In order to examine the dynamic nature of the protein interactions we isolated the protein complexes of mannose-1-phosphate guanyltransferase PSA1 from Saccharomyces cerevisiae at four different time points during batch cultivation. We used the tandem affinity purification (TAP)-method to purify the complexes and subjected the tryptic peptides to LC-MS/MS. The resulting peak lists were analyzed with two different methods: the database related protein identification program X!Tandem and the de novo sequencing program Lutefisk. We observed significant changes in the interactome of PSA1 during the batch cultivation and identified altogether 74 proteins interacting with PSA1 of which only six were found to interact during all time points. All the other proteins showed a more dynamic nature of binding activity. In this study we also demonstrate the benefit of using both database related and de novo methods in the protein interaction research to enhance both the quality and the quantity of observations.

  10. Identification and cloning in yeast artificial chromosomes of a region of elevated loss of heterozygosity on chromosome 1p31.1 in human breast cancer

    SciTech Connect

    Hoggard, N.; Hey, Y.; Brintnell, B.; James, L.

    1995-11-20

    We have mapped a region of high loss of heterozygosity in breast cancer to a 2-cM interval between the loci D1S430 and D1S465 on chromosome 1p31.1. This region shows allelic imbalance in around 60% of breast tumors. As part of a strategy to clone the target gene(s) within this interval, we have generated a yeast artificial chromosome contig spanning over 7 Mb. YACs from the CEPH and Zeneca (formerly ICI) libraries have been obtained by screening with PCR-based STSs from the region for both previously identified loci and newly isolated STSs. The YACs have been assembled into a contig by a combination of approaches, including analysis of their STS content, generation of new STSs from the ends of key YACs, and long-range restriction mapping. These YAC clones provide the basis for complete characterization of the region of high loss in breast cancer and for the ultimate identification of the target gene(s). 84 refs., 3 figs., 3 tabs.

  11. In vivo identification of essential nucleotides in tRNALeu to its functions by using a constructed yeast tRNALeu knockout strain

    PubMed Central

    Huang, Qian; Yao, Peng; Eriani, Gilbert; Wang, En-Duo

    2012-01-01

    The fidelity of protein biosynthesis requires the aminoacylation of tRNA with its cognate amino acid catalyzed by aminoacyl-tRNA synthetase with high levels of accuracy and efficiency. Crucial bases in tRNALeu to aminoacylation or editing functions of leucyl-tRNA synthetase have been extensively studied mainly by in vitro methods. In the present study, we constructed two Saccharomyces cerevisiae tRNALeu knockout strains carrying deletions of the genes for tRNALeu(GAG) and tRNALeu(UAG). Disrupting the single gene encoding tRNALeu(GAG) had no phenotypic consequence when compared to the wild-type strain. While disrupting the three genes for tRNALeu(UAG) had a lethal effect on the yeast strain, indicating that tRNALeu(UAG) decoding capacity could not be compensated by another tRNALeu isoacceptor. Using the triple tRNA knockout strain and a randomly mutated library of tRNALeu(UAG), a selection to identify critical tRNALeu elements was performed. In this way, mutations inducing in vivo decreases of tRNA levels or aminoacylation or editing ability by leucyl-tRNA synthetase were identified. Overall, the data showed that the triple tRNA knockout strain is a suitable tool for in vivo studies and identification of essential nucleotides of the tRNA. PMID:22917587

  12. Mapping Yeast Transcriptional Networks

    PubMed Central

    Hughes, Timothy R.; de Boer, Carl G.

    2013-01-01

    The term transcriptional network refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms. PMID:24018767

  13. 47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.281 Automatic Transmitter Identification System (ATIS). All satellite uplink transmissions carrying broadband video information shall be...) Effective March 1, 1991, all satellite video uplink facilities shall be equipped with an ATIS...

  14. 47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.281 Automatic Transmitter Identification System (ATIS). All satellite uplink transmissions carrying broadband video information shall be...) Effective March 1, 1991, all satellite video uplink facilities shall be equipped with an ATIS...

  15. 47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.281 Automatic Transmitter Identification System (ATIS). All satellite uplink transmissions carrying broadband video information shall be...) Effective March 1, 1991, all satellite video uplink facilities shall be equipped with an ATIS...

  16. 47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.281 Automatic Transmitter Identification System (ATIS). All satellite uplink transmissions carrying broadband video information shall be...) Effective March 1, 1991, all satellite video uplink facilities shall be equipped with an ATIS...

  17. Modeling of Biometric Identification System Using the Colored Petri Nets

    NASA Astrophysics Data System (ADS)

    Petrosyan, G. R.; Ter-Vardanyan, L. A.; Gaboutchian, A. V.

    2015-05-01

    In this paper we present a model of biometric identification system transformed into Petri Nets. Petri Nets, as a graphical and mathematical tool, provide a uniform environment for modelling, formal analysis, and design of discrete event systems. The main objective of this paper is to introduce the fundamental concepts of Petri Nets to the researchers and practitioners, both from identification systems, who are involved in the work in the areas of modelling and analysis of biometric identification types of systems, as well as those who may potentially be involved in these areas. In addition, the paper introduces high-level Petri Nets, as Colored Petri Nets (CPN). In this paper the model of Colored Petri Net describes the identification process much simpler.

  18. A novel yeast system for in vivo selection of recognition sequences: defining an optimal c-Myb-responsive element

    PubMed Central

    Berge, Tone; Bergholtz, Stine L.; Andersson, Kristin Brevik; Gabrielsen, Odd S.

    2001-01-01

    Yeast (Saccharomyces cerevisiae) has proved to be a highly valuable tool in a range of screening methods. We present in this work the design and use of a novel yeast effector–reporter system for selection of sequences recognised by DNA-binding proteins in vivo. A dual HIS3–lacZ reporter under the control of a single randomised response element facilitates both positive growth selection of binding sequences and subsequent quantification of the strength of the selected sequence. A galactose-inducible effector allows discrimination between reporter activation caused by the protein under study and activation due to endogenous factors. The system mimics the physiological gene dosage relationship between transcription factor and target genes in vivo by using a low copy effector plasmid and a high copy reporter plasmid, favouring sequence selectivity. The utility of the novel yeast screening system was demonstrated by using it to refine the definition of an optimal recognition element for the c-Myb transcription factor (MRE). We present screening data supporting an extended MRE consensus closely mimicking known strong response elements and where a sequence of 11 nt influences activity. Novel features include a more strict sequence requirement in the second half-site of the MRE where a T-rich sequence is preferred in vivo. PMID:11600718

  19. A linear discrete dynamic system model for temporal gene interaction and regulatory network influence in response to bioethanol conversion inhibitor HMF for ethanologenic yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A linear discrete dynamic system model is constructed to represent the temporal interactions among significantly expressed genes in response to bioethanol conversion inhibitor 5-hydroxymethylfurfural for ethanologenic yeast Saccharomyces cerevisiae. This study identifies the most significant linear...

  20. Finite difference identification of noisy distributed systems using scanning measurements

    NASA Technical Reports Server (NTRS)

    Hughes, R. O.

    1975-01-01

    Most of the present-day literature concerned with identification theory and techniques is directed toward lumped parameter systems, and many comprehensive surveys of the field are available. Relatively little has appeared in the literature concerning distributed identification, and even more noticeable is the scarcity of papers dealing with systems described by the one-dimensional wave equation. Perdeauville and Goodson were perhaps the first researchers with a workable but time consuming method for the identification of coefficients of the wave equation. Fairman and Shen, also considering the wave equation, used the technique of finite differencing to approximate spatial derivatives, and Poisson filter chains to approximate temporal derivatives.

  1. Development of an Automatic Identification System Autonomous Positioning System.

    PubMed

    Hu, Qing; Jiang, Yi; Zhang, Jingbo; Sun, Xiaowen; Zhang, Shufang

    2015-01-01

    In order to overcome the vulnerability of the global navigation satellite system (GNSS) and provide robust position, navigation and time (PNT) information in marine navigation, the autonomous positioning system based on ranging-mode Automatic Identification System (AIS) is presented in the paper. The principle of the AIS autonomous positioning system (AAPS) is investigated, including the position algorithm, the signal measurement technique, the geometric dilution of precision, the time synchronization technique and the additional secondary factor correction technique. In order to validate the proposed AAPS, a verification system has been established in the Xinghai sea region of Dalian (China). Static and dynamic positioning experiments are performed. The original function of the AIS in the AAPS is not influenced. The experimental results show that the positioning precision of the AAPS is better than 10 m in the area with good geometric dilution of precision (GDOP) by the additional secondary factor correction technology. This is the most economical solution for a land-based positioning system to complement the GNSS for the navigation safety of vessels sailing along coasts. PMID:26569258

  2. Development of an Automatic Identification System Autonomous Positioning System

    PubMed Central

    Hu, Qing; Jiang, Yi; Zhang, Jingbo; Sun, Xiaowen; Zhang, Shufang

    2015-01-01

    In order to overcome the vulnerability of the global navigation satellite system (GNSS) and provide robust position, navigation and time (PNT) information in marine navigation, the autonomous positioning system based on ranging-mode Automatic Identification System (AIS) is presented in the paper. The principle of the AIS autonomous positioning system (AAPS) is investigated, including the position algorithm, the signal measurement technique, the geometric dilution of precision, the time synchronization technique and the additional secondary factor correction technique. In order to validate the proposed AAPS, a verification system has been established in the Xinghai sea region of Dalian (China). Static and dynamic positioning experiments are performed. The original function of the AIS in the AAPS is not influenced. The experimental results show that the positioning precision of the AAPS is better than 10 m in the area with good geometric dilution of precision (GDOP) by the additional secondary factor correction technology. This is the most economical solution for a land-based positioning system to complement the GNSS for the navigation safety of vessels sailing along coasts. PMID:26569258

  3. High-throughput analysis of yeast replicative aging using a microfluidic system

    PubMed Central

    Jo, Myeong Chan; Liu, Wei; Gu, Liang; Dang, Weiwei; Qin, Lidong

    2015-01-01

    Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction. PMID:26170317

  4. High-throughput analysis of yeast replicative aging using a microfluidic system.

    PubMed

    Jo, Myeong Chan; Liu, Wei; Gu, Liang; Dang, Weiwei; Qin, Lidong

    2015-07-28

    Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction. PMID:26170317

  5. Research of Uncertainty Reasoning in Pineapple Disease Identification System

    NASA Astrophysics Data System (ADS)

    Liu, Liqun; Fan, Haifeng

    In order to deal with the uncertainty of evidences mostly existing in pineapple disease identification system, a reasoning model based on evidence credibility factor was established. The uncertainty reasoning method is discussed,including: uncertain representation of knowledge, uncertain representation of rules, uncertain representation of multi-evidences and update of reasoning rules. The reasoning can fully reflect the uncertainty in disease identification and reduce the influence of subjective factors on the accuracy of the system.

  6. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast

    PubMed Central

    2015-01-01

    Background Transcriptional regulation of gene expression in eukaryotes is usually accomplished by cooperative transcription factors (TFs). Computational identification of cooperative TF pairs has become a hot research topic and many algorithms have been proposed in the literature. A typical algorithm for predicting cooperative TF pairs has two steps. (Step 1) Define the targets of each TF under study. (Step 2) Design a measure for calculating the cooperativity of a TF pair based on the targets of these two TFs. While different algorithms have distinct sophisticated cooperativity measures, the targets of a TF are usually defined using ChIP-chip data. However, there is an inherent weakness in using ChIP-chip data to define the targets of a TF. ChIP-chip analysis can only identify the binding targets of a TF but it cannot distinguish the true regulatory from the binding but non-regulatory targets of a TF. Results This work is the first study which aims to investigate whether the performance of computational identification of cooperative TF pairs could be improved by using a more biologically relevant way to define the targets of a TF. For this purpose, we propose four simple algorithms, all of which consist of two steps. (Step 1) Define the targets of a TF using (i) ChIP-chip data in the first algorithm, (ii) TF binding data in the second algorithm, (iii) TF perturbation data in the third algorithm, and (iv) the intersection of TF binding and TF perturbation data in the fourth algorithm. Compared with the first three algorithms, the fourth algorithm uses a more biologically relevant way to define the targets of a TF. (Step 2) Measure the cooperativity of a TF pair by the statistical significance of the overlap of the targets of these two TFs using the hypergeometric test. By adopting four existing performance indices, we show that the fourth proposed algorithm (PA4) significantly out performs the other three proposed algorithms. This suggests that the computational identification of cooperative TF pairs is indeed improved when using a more biologically relevant way to define the targets of a TF. Strikingly, the prediction results of our simple PA4 are more biologically meaningful than those of the 12 existing sophisticated algorithms in the literature, all of which used ChIP-chip data to define the targets of a TF. This suggests that properly defining the targets of a TF may be more important than designing sophisticated cooperativity measures. In addition, our PA4 has the power to predict several experimentally validated cooperative TF pairs, which have not been successfully predicted by any existing algorithms in the literature. Conclusions This study shows that the performance of computational identification of cooperative TF pairs could be improved by using a more biologically relevant way to define the targets of a TF. The main contribution of this study is not to propose another new algorithm but to provide a new thinking for the research of computational identification of cooperative TF pairs. Researchers should put more effort on properly defining the targets of a TF (i.e. Step 1) rather than totally focus on designing sophisticated cooperativity measures (i.e. Step 2). The lists of TF target genes, the Matlab codes and the prediction results of the four proposed algorithms could be downloaded from our companion website http://cosbi3.ee.ncku.edu.tw/TFI/ PMID:26679776

  7. Selection of Intracellular Single-Domain Antibodies Targeting the HIV-1 Vpr Protein by Cytoplasmic Yeast Two-Hybrid System

    PubMed Central

    Matz, Julie; Hérate, Cécile; Bouchet, Jérôme; Dusetti, Nelson; Gayet, Odile; Baty, Daniel; Benichou, Serge; Chames, Patrick

    2014-01-01

    The targeting of HIV-1 using antibodies is of high interest as molecular tools to better understand the biology of the virus or as a first step toward the design of new inhibitors targeting critical viral intracellular proteins. Small and highly stable llama-derived single-domain antibodies can often be functionally expressed as intracellular antibodies in the cytoplasm of eukaryotic cells. Using a selection method based on the Sos Recruitment System, a cytoplasmic yeast two-hybrid approach, we have isolated single-domain antibodies able to bind HIV-1 Vpr and Capside proteins in the yeast cytoplasm. One anti-Vpr single domain antibody was able to bind the HIV-1 regulatory Vpr protein in the cytoplasm of eukaryotic cells, leading to its delocalization from the nucleus to the cytoplasm. To our knowledge, this is the first description of a functional single-domain intrabody targeting HIV-1 Vpr, isolated using an in vivo cytoplasmic selection method that alleviates some limitations of the conventional yeast two-hybrid system. PMID:25436999

  8. System identification of the Arabidopsis plant circadian system

    NASA Astrophysics Data System (ADS)

    Foo, Mathias; Somers, David E.; Kim, Pan-Jun

    2015-02-01

    The circadian system generates an endogenous oscillatory rhythm that governs the daily activities of organisms in nature. It offers adaptive advantages to organisms through a coordination of their biological functions with the optimal time of day. In this paper, a model of the circadian system in the plant Arabidopsis (species thaliana) is built by using system identification techniques. Prior knowledge about the physical interactions of the genes and the proteins in the plant circadian system is incorporated in the model building exercise. The model is built by using primarily experimentally-verified direct interactions between the genes and the proteins with the available data on mRNA and protein abundances from the circadian system. Our analysis reveals a great performance of the model in predicting the dynamics of the plant circadian system through the effect of diverse internal and external perturbations (gene knockouts and day-length changes). Furthermore, we found that the circadian oscillatory rhythm is robust and does not vary much with the biochemical parameters except those of a light-sensitive protein P and a transcription factor TOC1. In other words, the circadian rhythmic profile is largely a consequence of the network's architecture rather than its particular parameters. Our work suggests that the current experimental knowledge of the gene-to-protein interactions in the plant Arabidopsis, without considering any additional hypothetical interactions, seems to suffice for system-level modeling of the circadian system of this plant and to present an exemplary platform for the control of network dynamics in complex living organisms.

  9. A portable air jet actuator device for mechanical system identification

    NASA Astrophysics Data System (ADS)

    Belden, Jesse; Staats, Wayne L.; Mazumdar, Anirban; Hunter, Ian W.

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon—the Coandă effect—is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.

  10. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  11. Identification of a 14-3-3 protein from Lentinus edodes that interacts with CAP (adenylyl cyclase-associated protein), and conservation of this interaction in fission yeast.

    PubMed

    Zhou, G L; Yamamoto, T; Ozoe, F; Yano, D; Tanaka, K; Matsuda, H; Kawamukai, M

    2000-01-01

    We previously identified a gene encoding a CAP (adenylyl cyclase-associated protein) homologue from the edible Basidiomycete Lentinus edodes. To further discover the cellular functions of the CAP protein, we searched for CAP-interacting proteins using a yeast two-hybrid system. Among the candidates thus obtained, many clones encoded the C-terminal half of an L. edodes 14-3-3 homologue (designated cip3). Southern blot analysis indicated that L. edodes contains only one 14-3-3 gene. Overexpression of the L. edodes 14-3-3 protein in the fission yeast Schizosaccharomyces pombe rad24 null cells complemented the loss of endogenous 14-3-3 protein functions in cell morphology and UV sensitivity, suggesting functional conservation of 14-3-3 proteins between L. edodes and S. pombe. The interaction between L. edodes CAP and 14-3-3 protein was restricted to the N-terminal domain of CAP and was confirmed by in vitro co-precipitation. Results from both the two-hybrid system and in vivo co-precipitation experiments showed the conservation of this interaction in S. pombe. The observation that a 14-3-3 protein interacts with the N-terminal portion of CAP but not with full-length CAP in L. edodes and S. pombe suggests that the C-terminal region of CAP may have a negative effect on the interaction between CAP and 14-3-3 proteins, and 14-3-3 proteins may play a role in regulation of CAP function. PMID:10705460

  12. Design of enzyme systems for selective product release from microbial cells; isolation of a recombinant protein from yeast.

    PubMed

    Asenjo, J A; Andrews, B A; Pitts, J M

    1988-01-01

    The development of expression systems for recombinant proteins and recombinant protein particles that cannot be secreted and that are located in specific cell locations necessitates the development of novel, more selective, techniques for cell disruption. Mechanical cell disruption methods do not discriminate the release of the desired product from among a host of other contaminating molecules and cell debris, and they also may damage the protein product. In contrast, the use of lytic enzyme systems, which can provide biological specificity to the process of cell lysis and disruption, shows an interesting potential for controlled lysis. In this report, the design and the use of lytic enzyme systems for differential product release from microbial cells have been reviewed. Lytic enzyme systems are usually specific either for yeast or for different types of bacteria. Moreover, the activity profile of a lytic system will have an effect on the product distribution. This profile can be manipulated at the genetic, physiological, production reactor, enzyme purification, and lysis reactor levels. Alternative process designs that will allow the sequential release of products from different cell locations have been reviewed and discussed. Alternatives have been explored by process modeling, process simulation, and optimization techniques. These studies show that the use of lytic enzyme systems has tremendous promise as a method of controlled lysis and differential product release. Finally, the release of a specific recombinant protein, human serum albumin (HSA) from yeast cells, has been investigated. The low levels of wall-lytic protease present in the Oerskovia lytic enzyme system have no deleterious effect on the protein product, and the level of HSA extracted from two positive yeast clones using lytic enzymes is similar to that extracted after bead breakage. PMID:3067631

  13. Patulin biodegradation by marine yeast Kodameae ohmeri.

    PubMed

    Dong, Xiaoyan; Jiang, Wei; Li, Chunsheng; Ma, Ning; Xu, Ying; Meng, Xianghong

    2015-01-01

    Patulin contamination of fruit- and vegetable-based products had become a major challenge for the food industry. Biological methods of patulin control can play an important role due to their safety and high efficiency. In this study, a strain of marine yeast with high patulin degradation ability was screened. The yeast was identified as Kodameae ohmeri by the BioLog identification system and partial 26S rRNA gene sequencing. The degradation products of patulin were identified as (E)- and (Z)-ascladiol through HPLC and LC-TOF/MS. High patulin tolerance at 100 μg ml(-1) and a high degradation rate at 35°C at a pH between 3 and 6 indicates the potential application of K. ohmeri for patulin detoxification of apple-derived products. PMID:25585640

  14. A modular and hybrid connectionist system for speaker identification.

    PubMed

    Bennani, Y

    1995-07-01

    This paper presents and evaluates a modular/hybrid connectionist system for speaker identification. Modularity has emerged as a powerful technique for reducing the complexity of connectionist systems, and allowing a priori knowledge to be incorporated into their design. Text-independent speaker identification is an inherently complex task where the amount of training data is often limited. It thus provides an ideal domain to test the validity of the modular/hybrid connectionist approach. To achieve such identification, we develop, in this paper, an architecture based upon the cooperation of several connectionist modules, and a Hidden Markov Model module. When tested on a population of 102 speakers extracted from the DARPA-TIMIT database, perfect identification was obtained. PMID:7584887

  15. Biology of the Heat Shock Response and Protein Chaperones: Budding Yeast (Saccharomyces cerevisiae) as a Model System

    PubMed Central

    Verghese, Jacob; Abrams, Jennifer; Wang, Yanyu

    2012-01-01

    Summary: The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast. PMID:22688810

  16. Molecular cloning of amphioxus uncoupling protein and assessment of its uncoupling activity using a yeast heterologous expression system

    SciTech Connect

    Chen, Kun; Sun, Guoxun; Lv, Zhiyuan; Wang, Chen; Jiang, Xueyuan; Li, Donghai; Zhang, Chenyu

    2010-10-01

    Research highlights: {yields} Invertebrates, for example amphioxus, do express uncoupling proteins. {yields} Both the sequence and the uncoupling activity of amphioxus UCP resemble UCP2. {yields} UCP1 is the only UCP that can form dimer on yeast mitochondria. -- Abstract: The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functional similarity of amphioxus UCP to mammalian UCP1 and -2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.

  17. Gene engineering in yeast for biodegradation: Immunological cross-reactivity among cytochrome p-450 system proteins of saccharomyces cerevisiae and candida tropicalis

    SciTech Connect

    Loper, J.C.; Chen, C.; Dey, C.R.

    1993-01-01

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monooxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. The molecular genetic properties of strains of bakers yeast, Saccharomyces cerevisiae, and an n-alkane utilizing yeast, Candida tropicalis ATCC750 are examined. Standard methods were used to purify cytochrome P-450 and NADPH-cytochrome c (P-450) reductase proteins from cells cultured by semi-anaerobic glucose fermentation (S. cerevisiae, C. tropicalis) and by growth on tetradecane (C. tropicalis). Polyvalent antisera prepared in rabbits to some of these proteins were used in tests of immunological relatedness among the purified proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose filter immunoblots. The results provide evidence for gene relationships which should prove useful in gene isolation and subsequent engineering of P-450 enzyme systems in yeast.

  18. Simple method to detect triacylglycerol biosynthesis in a yeast-based recombinant system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standard methods to quantify the activity of triacylglycerol (TAG) synthesizing enzymes DGAT and PDAT (TAG-SE) require a sensitive but rather arduous laboratory assay based on radio-labeled substrates. Here we describe two straightforward methods to detect TAG production in baker’s yeast Saccharomyc...

  19. MAC, A System for Automatically IPR Identification, Collection and Distribution

    NASA Astrophysics Data System (ADS)

    Serrão, Carlos

    Controlling Intellectual Property Rights (IPR) in the Digital World is a very hard challenge. The facility to create multiple bit-by-bit identical copies from original IPR works creates the opportunities for digital piracy. One of the most affected industries by this fact is the Music Industry. The Music Industry has supported huge losses during the last few years due to this fact. Moreover, this fact is also affecting the way that music rights collecting and distributing societies are operating to assure a correct music IPR identification, collection and distribution. In this article a system for automating this IPR identification, collection and distribution is presented and described. This system makes usage of advanced automatic audio identification system based on audio fingerprinting technology. This paper will present the details of the system and present a use-case scenario where this system is being used.

  20. Evaluation of the Biolog automated microbial identification system

    NASA Technical Reports Server (NTRS)

    Klingler, J. M.; Stowe, R. P.; Obenhuber, D. C.; Groves, T. O.; Mishra, S. K.; Pierson, D. L.

    1992-01-01

    Biolog's identification system was used to identify 39 American Type Culture Collection reference taxa and 45 gram-negative isolates from water samples. Of the reference strains, 98% were identified to genus level and 76% to species level within 4 to 24 h. Identification of some authentic strains of Enterobacter, Klebsiella, and Serratia was unreliable. A total of 93% of the water isolates were identified.

  1. 78 FR 6732 - Changes to Standard Numbering System, Vessel Identification System, and Boating Accident Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... SECURITY Coast Guard 33 CFR Parts 173, 174, 181, and 187 RIN 1625-AB45 Changes to Standard Numbering System, Vessel Identification System, and Boating Accident Report Database AGENCY: Coast Guard, DHS. ACTION: Rule... Numbering System, Vessel Identification System, and Boating Accident Report Database rule became...

  2. Improved Stochastic Subspace System Identification for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ming; Loh, Chin-Hsiung

    2015-07-01

    Structural health monitoring acquires structural information through numerous sensor measurements. Vibrational measurement data render the dynamic characteristics of structures to be extracted, in particular of the modal properties such as natural frequencies, damping, and mode shapes. The stochastic subspace system identification has been recognized as a power tool which can present a structure in the modal coordinates. To obtain qualitative identified data, this tool needs to spend computational expense on a large set of measurements. In study, a stochastic system identification framework is proposed to improve the efficiency and quality of the conventional stochastic subspace system identification. This framework includes 1) measured signal processing, 2) efficient space projection, 3) system order selection, and 4) modal property derivation. The measured signal processing employs the singular spectrum analysis algorithm to lower the noise components as well as to present a data set in a reduced dimension. The subspace is subsequently derived from the data set presented in a delayed coordinate. With the proposed order selection criteria, the number of structural modes is determined, resulting in the modal properties. This system identification framework is applied to a real-world bridge for exploring the feasibility in real-time applications. The results show that this improved system identification method significantly decreases computational time, while qualitative modal parameters are still attained.

  3. Counting Yeast.

    ERIC Educational Resources Information Center

    Bealer, Jonathan; Welton, Briana

    1998-01-01

    Describes changes to a traditional study of population in yeast colonies. Changes to the procedures include: (1) only one culture per student team; (2) cultures are inoculated only once; and (3) the same tube is sampled daily. (DDR)

  4. Yeast Infections

    MedlinePlus

    Candida is the scientific name for yeast. It is a fungus that lives almost everywhere, including in ... infection that causes white patches in your mouth Candida esophagitis is thrush that spreads to your esophagus, ...

  5. Online identification of nonlinear spatiotemporal systems using kernel learning approach.

    PubMed

    Ning, Hanwen; Jing, Xingjian; Cheng, Li

    2011-09-01

    The identification of nonlinear spatiotemporal systems is of significance to engineering practice, since it can always provide useful insight into the underlying nonlinear mechanism and physical characteristics under study. In this paper, nonlinear spatiotemporal system models are transformed into a class of multi-input-multi-output (MIMO) partially linear systems (PLSs), and an effective online identification algorithm is therefore proposed by using a pruning error minimization principle and least square support vector machines. It is shown that many benchmark physical and engineering systems can be transformed into MIMO-PLSs which keep some important physical spatiotemporal relationships and are very helpful in the identification and analysis of the underlying system. Compared with several existing methods, the advantages of the proposed method are that it can make full use of some prior structural information about system physical models, can realize online estimation of the system dynamics, and achieve accurate characterization of some important nonlinear physical characteristics of the system. This would provide an important basis for state estimation, control, optimal analysis, and design of nonlinear distributed parameter systems. The proposed algorithm can also be applied to identification problems of stochastic spatiotemporal dynamical systems. Numeral examples and comparisons are given to demonstrate our results. PMID:21788186

  6. Nitrile Metabolizing Yeasts

    NASA Astrophysics Data System (ADS)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing enzymes of yeasts.

  7. Isolation and Identification of Pathogenic Filamentous Fungi and Yeasts From Adult House Fly (Diptera: Muscidae) Captured From the Hospital Environments in Ahvaz City, Southwestern Iran.

    PubMed

    Kassiri, Hamid; Zarrin, Majid; Veys-Behbahani, Rahele; Faramarzi, Sama; Kasiri, Ali

    2015-11-01

    Musca domestica L., 1758 is capable of transferring a number of pathogenic viruses, bacteria, fungi, and parasites to animals and humans. The objective of this study was to isolate and identify medically important filamentous fungi and yeasts from adult M. domestica collected from two wards of three hospital environments in Ahvaz city, Khuzestan Province, southwestern Iran. The common house flies were caught by a sterile net. These insects were washed in a solution of 1% sodium hypochlorite for 3 min and twice in sterile distilled water for 1 min. The flies were individually crushed with sterile swabs in sterile test tubes. Then 2 ml of sterile normal saline (0.85%) was added to each tube, and the tube was centrifuged for 5 min. The supernatant was then discarded, and the remaining sediment was inoculated with a sterile swab in the Sabouraud's dextrose agar medium containing chloramphenicol. Isolation and identification of fungi were made by standard mycological methods. In this research, totally 190 M. domestica from hospital environments were captured. In total, 28 fungal species were isolated. The main fungi isolated were Aspergillus spp. (67.4%), Penicillium sp. (11.6%), Mucorales sp. (11%), Candida spp. (10.5%), and Rhodotorula sp. (8.4%). Among the house flies caught at the hospitals, about 80% were found to carry one or more medically important species of fungi. This study has established that common house flies carry pathogenic fungi in the hospital environments of Ahvaz. The control of M. domestica in hospitals is essential in order to control the nosocomial fungal infections in patients. PMID:26405077

  8. Digital system identification and its application to digital flight control

    NASA Technical Reports Server (NTRS)

    Kotob, S.; Kaufman, H.

    1974-01-01

    On-line system identification of linear discrete systems for implementation in a digital adaptive flight controller is considered by the conventional extended Kalman filter and a decoupling process in which the linear state estimation problem and the linear parameter identification problem are each treated separately and alternately. Input requirements for parameter identifiability are established using the standard conditions of observability for a time variant system. Experimental results for simulated linearized lateral aircraft motion are included along with the effect of different initialization and updating procedures for the priming trajectory used by the filter.

  9. Decentralized System Identification Using Stochastic Subspace Identification for Wireless Sensor Networks

    PubMed Central

    Cho, Soojin; Park, Jong-Woong; Sim, Sung-Han

    2015-01-01

    Wireless sensor networks (WSNs) facilitate a new paradigm to structural identification and monitoring for civil infrastructure. Conventional structural monitoring systems based on wired sensors and centralized data acquisition systems are costly for installation as well as maintenance. WSNs have emerged as a technology that can overcome such difficulties, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing is common practice, WSNs require decentralized computing algorithms to reduce data transmission due to the limitation associated with wireless communication. In this paper, the stochastic subspace identification (SSI) technique is selected for system identification, and SSI-based decentralized system identification (SDSI) is proposed to be implemented in a WSN composed of Imote2 wireless sensors that measure acceleration. The SDSI is tightly scheduled in the hierarchical WSN, and its performance is experimentally verified in a laboratory test using a 5-story shear building model. PMID:25856325

  10. Decentralized system identification using stochastic subspace identification for wireless sensor networks.

    PubMed

    Cho, Soojin; Park, Jong-Woong; Sim, Sung-Han

    2015-01-01

    Wireless sensor networks (WSNs) facilitate a new paradigm to structural identification and monitoring for civil infrastructure. Conventional structural monitoring systems based on wired sensors and centralized data acquisition systems are costly for installation as well as maintenance. WSNs have emerged as a technology that can overcome such difficulties, making deployment of a dense array of sensors on large civil structures both feasible and economical. However, as opposed to wired sensor networks in which centralized data acquisition and processing is common practice, WSNs require decentralized computing algorithms to reduce data transmission due to the limitation associated with wireless communication. In this paper, the stochastic subspace identification (SSI) technique is selected for system identification, and SSI-based decentralized system identification (SDSI) is proposed to be implemented in a WSN composed of Imote2 wireless sensors that measure acceleration. The SDSI is tightly scheduled in the hierarchical WSN, and its performance is experimentally verified in a laboratory test using a 5-story shear building model. PMID:25856325

  11. Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system

    SciTech Connect

    Shen, Zhiyuan; Pardington-Purtymun, P.E.; Comeaux, J.C.

    1996-10-15

    The yeast RAD52-dependent pathway is involved in DNA recombination and double-strand break repair. Yeast ubiquitin-conjugating enzyme UBC9 participates in S- and M-phase cyclin degradation and mitotic control. Using the human RAD52 protein as the bait in a yeast two-hybrid system, we have identified a human homolog of yeast UBC9, designated UBE2I, that interacts with RAD52, RAD51, p53, and a ubiquitin-like protein UBL1. These interactions are UBE2I-specific, since another DNA repair-related ubiquitin-conjugating enzyme, RAD6 (UBC2), does not interact with these proteins. The interaction of UBE2I with RAD52 is mediated by RAD52`s self-association region. These results suggest that the RAD52-dependent processes, cell cycle control, p53-mediated pathway(s), and ubiquitination interact through human UBE2I. 22 refs., 3 figs.

  12. Screening of randomly mutagenized glucagon-like peptide-1 library by using an integrated yeast-mammalian assay system.

    PubMed

    Shigemori, Tomohiro; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2015-09-10

    Glucagon-like peptide-1 (GLP1) is a 30-amino acid peptide hormone activating the GLP1 receptor (GLP1R), a class B G-protein coupled receptor (GPCR), and is considered to be effective for treating diabetes and other metabolic diseases. Phage display is the first innovative technology in order to prepare and screen a large polypeptide library including GLP1R agonists, but this methodology is not as effective in discovering functional peptides such as activators for GPCRs. Here, we report a novel functional screening system for GPCR-acting peptides, which integrates a yeast peptide secretion system into a biological detection system with GPCR-producing mammalian cells. Using this screening system, we found attractive GLP1R agonists with several substitutions from a random mutant GLP1 library which was secreted by yeast, Saccharomyces cerevisiae. This system established here not only enables peptides to be analyzed in the soluble form but also needs no chemical synthesis, purification, and condensation of peptides of interests, and therefore, can be widely applied to the discovery of novel bioactive peptides acting on GPCRs. PMID:26087314

  13. 40 CFR 72.33 - Identification of dispatch system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... otherwise required under a petition as approved under 40 CFR 72.33(f), the units and generators listed... dispatch system under 40 CFR 72.91 and 72.92, during the period that this identification of dispatch system... in any submissions under 40 CFR 72.91 and 72.92 by me and the other designated representatives...

  14. 40 CFR 72.33 - Identification of dispatch system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... otherwise required under a petition as approved under 40 CFR 72.33(f), the units and generators listed... dispatch system under 40 CFR 72.91 and 72.92, during the period that this identification of dispatch system... in any submissions under 40 CFR 72.91 and 72.92 by me and the other designated representatives...

  15. 40 CFR 72.33 - Identification of dispatch system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... otherwise required under a petition as approved under 40 CFR 72.33(f), the units and generators listed... dispatch system under 40 CFR 72.91 and 72.92, during the period that this identification of dispatch system... in any submissions under 40 CFR 72.91 and 72.92 by me and the other designated representatives...

  16. 40 CFR 72.33 - Identification of dispatch system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... otherwise required under a petition as approved under 40 CFR 72.33(f), the units and generators listed... dispatch system under 40 CFR 72.91 and 72.92, during the period that this identification of dispatch system... in any submissions under 40 CFR 72.91 and 72.92 by me and the other designated representatives...

  17. 40 CFR 72.33 - Identification of dispatch system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... otherwise required under a petition as approved under 40 CFR 72.33(f), the units and generators listed... dispatch system under 40 CFR 72.91 and 72.92, during the period that this identification of dispatch system... in any submissions under 40 CFR 72.91 and 72.92 by me and the other designated representatives...

  18. Early Identification System: Year Two. Research Report 80-15.

    ERIC Educational Resources Information Center

    Stennett, R. G.; Earl, L. M.

    During the academic year 1978-79, school teams implemented a newly developed early identification system in all kindergarten and grade one classes in London, Ontario schools. After analysis and revision of the system, the internal consistency and concurrent validity of the process and a test of its short-term predictive validity were investigated.…

  19. 75 FR 49869 - Changes to Standard Numbering System, Vessel Identification System, and Boating Accident Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... SECURITY Coast Guard 33 CFR Parts 173, 174, 181, and 187 RIN 1625-AB45 Changes to Standard Numbering System, Vessel Identification System, and Boating Accident Report Database AGENCY: Coast Guard, DHS. ACTION..., Vessel Identification System, and Boating Accident Report Database. DATES: Comments and related...

  20. Fatty acid profiling: a feasible typing system to trace yeast contamination in wine bottling plants.

    PubMed

    Malfeito-Ferreira, M; Tareco, M; Loureiro, V

    1997-09-16

    The long-chain fatty acid composition of yeast strains was determined for several species associated with the wine industry. The Saccharomyces cerevisiae, Zygosaccharomyces bailii, Saccharomycodes ludwigii, Schizosaccharomyces pombe, Brettanomyces/Dekkera spp., Pichia anomala, Pichia membranaefaciens and Lodderomyces elongisporus species presented distinct fatty acid profiles after multivariate statistical analysis. The Zygosaccharomyces rouxii species showed profiles similar to Zygosaccharomyces bailii. The use of fatty acid profiling in wine bottling plants and wines makes it possible to trace the origin of the strains responsible for spoiling the final product. In one case the origin was found at the outlet of the finishing filter and identified as Zygosaccharomyces bailii. In the other case the source of contamination was discovered in the heads of the filling machine and assigned to the Pichia membranaefaciens species. The results point out the discriminating power and the industrial applicability of the technique described in this work to analyse yeast long-chain fatty acid compositions. PMID:9506280

  1. Numerical studies of identification in nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.

  2. Production of recombinant proteins and metabolites in yeasts: when are these systems better than bacterial production systems?

    PubMed

    Porro, Danilo; Gasser, Brigitte; Fossati, Tiziana; Maurer, Michael; Branduardi, Paola; Sauer, Michael; Mattanovich, Diethard

    2011-02-01

    Recombinant DNA (rDNA) technologies allow the production of a wide range of peptides, proteins and metabolites from naturally non-producing cells. Since human insulin was the first heterologous compound produced in a laboratory in 1977, rDNA technology has become one of the most important technologies developed in the 20th century. Recombinant protein and metabolites production is a multi-billion dollar market. The development of a new product begins with the choice of the cell factory. The final application of the compound dictates the main criteria that should be taken into consideration: (1) quality, (2) quantity, (3) yield and (4) space time yield of the desired product. Quantity and quality are the most predominant requirements that must be considered for the commercial production of a protein. Quantity and yield are the requirements for the production of a metabolite. Finally, space time yield is crucial for any production process. It therefore becomes clear why the perfect host does not exist yet, and why-despite important advances in rDNA applications in higher eukaryotic cells-microbial biodiversity continues to represent a potential source of attractive cell factories. In this review, we compare the advantages and limitations of the principal yeast and bacterial workhorse systems. PMID:21125266

  3. Identification of open quantum systems from observable time traces

    DOE PAGESBeta

    Zhang, Jun; Sarovar, Mohan

    2015-05-27

    Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.

  4. Yeast Mitochondria as a Model System to Study the Biogenesis of Bacterial β-Barrel Proteins.

    PubMed

    Ulrich, Thomas; Oberhettinger, Philipp; Autenrieth, Ingo B; Rapaport, Doron

    2015-01-01

    Beta-barrel proteins are found in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. The evolutionary conservation in the biogenesis of these proteins allows mitochondria to assemble bacterial β-barrel proteins in their functional form. In this chapter, we describe exemplarily how the capacity of yeast mitochondria to process the trimeric autotransporter YadA can be used to study the role of bacterial periplasmic chaperones in this process. PMID:26427673

  5. Yeast and Mammals Utilize Similar Cytosolic Components to Drive Protein Transport through the Golgi Complex

    NASA Astrophysics Data System (ADS)

    Dunphy, William G.; Pfeffer, Suzanne R.; Clary, Douglas O.; Wattenberg, Binks W.; Glick, Benjamin S.; Rothman, James E.

    1986-03-01

    Vesicular transport between successive compartments of the mammalian Golgi apparatus has recently been reconstituted in a cell-free system. In addition to ATP, transport requires both membrane-bound and cytosolic proteins. Here we report that the cytosol fraction from yeast will efficiently substitute for mammalian cytosol. Mammalian cytosol contains several distinct transport factors, which we have distinguished on the basis of gel filtration and ion-exchange chromatography. Yeast cytosol appears to contain the same collection of transport factors. Resolved cytosol factors from yeast and mammals complement each other in a synergistic manner. These findings suggest that the molecular mechanisms of intracellular protein transport have been conserved throughout evolution. Moreover, this hybrid cell-free system will enable the application of yeast genetics to the identification and isolation of cytosolic proteins that sustain intracellular protein transport.

  6. System identification using a wavelet-based approach

    SciTech Connect

    Schoenwald, D.A.

    1993-11-01

    In this paper, an approach to system identification using the wavelet transform is outlined. The method is based on system identification algorithms that belong to the class of modulating function methods. In particular, the Pearson-Lee method is modified to make use of wavelet basis functions which provide a more precise time window to process the plant input-output data. It is proposed here that replacing these modulating functions with wavelet basis functions will provide data filtering which is less sensitive to noise and initial conditions.

  7. Immune System Toxicity and Immunotoxicity Hazard Identification

    EPA Science Inventory

    Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...

  8. Modeling and Identification of a Large Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Cox, David E. (Editor); Groom, Nelson J. (Editor); Hsiao, Min-Hung; Huang, Jen-Kuang

    1996-01-01

    This paper presents the results of modeling and system identification efforts on the NASA Large-Angle Magnetic Suspension Test Fixture (LAMSTF). The LAMSTF consists of a cylindrical permanent magnet which is levitated above a planar array of five electromagnets mounted in a circular configuration. The analytical model is first developed and open-loop characteristics are described. The system is shown to be highly unstable and requires feedback control in order to apply system identification. Limitations on modeling accuracy due to the effect of eddy-currents on the system are discussed. An algorithm is derived to identify a state-space model for the system from input/output data acquired during closed-loop operation. The algorithm is tested on both the baseline system and a perturbed system which has an increased presence of eddy currents. It is found that for the baseline system the analytic model adequately captures the dynamics, although the identified model improves the simulation accuracy. For the system perturbed by additional unmodeled eddy-currents the analytic model is no longer adequate and a higher-order model, determined through system identification, is required to accurately predict the system's time response.

  9. A Versatile Overexpression Strategy in the Pathogenic Yeast Candida albicans: Identification of Regulators of Morphogenesis and Fitness

    PubMed Central

    Cabral, Vitor; Znaidi, Sadri; Goyard, Sophie; Bachellier-Bassi, Sophie; Firon, Arnaud; Legrand, Mélanie; Diogo, Dorothée; Naulleau, Claire; Rossignol, Tristan; d’Enfert, Christophe

    2012-01-01

    Candida albicans is the most frequently encountered human fungal pathogen, causing both superficial infections and life-threatening systemic diseases. Functional genomic studies performed in this organism have mainly used knock-out mutants and extensive collections of overexpression mutants are still lacking. Here, we report the development of a first generation C. albicans ORFeome, the improvement of overexpression systems and the construction of two new libraries of C. albicans strains overexpressing genes for components of signaling networks, in particular protein kinases, protein phosphatases and transcription factors. As a proof of concept, we screened these collections for genes whose overexpression impacts morphogenesis or growth rates in C. albicans. Our screens identified genes previously described for their role in these biological processes, demonstrating the functionality of our strategy, as well as genes that have not been previously associated to these processes. This article emphasizes the potential of systematic overexpression strategies to improve our knowledge of regulatory networks in C. albicans. The C. albicans plasmid and strain collections described here are available at the Fungal Genetics Stock Center. Their extension to a genome-wide scale will represent important resources for the C. albicans community. PMID:23049891

  10. Tris-sucrose buffer system: a new specially designed medium for extracellular invertase production by immobilized cells of isolated yeast Cryptococcus laurentii MT-61.

    PubMed

    Aydogan, Mehmet Nuri; Taskin, Mesut; Canli, Ozden; Arslan, Nazli Pinar; Ortucu, Serkan

    2014-01-01

    The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris-sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated. PMID:23722276

  11. Molecular Phylogeny of the Yeasts: Impact on Classification and Prediction of Biotechnological Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA sequence analysis and other DNA-based methodologies have transformed the way in which yeasts are identified and classified. Development of species-specific gene sequence databases has provided a barcode system for rapid identification of known species and the recognition of undescribed species. ...

  12. Flight test planning and parameter extraction for rotorcraft system identification

    NASA Technical Reports Server (NTRS)

    Wang, J. C.; Demiroz, M. Y.; Talbot, P. D.

    1986-01-01

    The present study is concerned with the mathematical modelling of aircraft dynamics on the basis of an investigation conducted with the aid of the Rotor System Research Aircraft (RSRA). The particular characteristics of RSRA make it possible to investigate aircraft properties which cannot be readily studied elsewhere, for example in the wind tunnel. The considered experiment had mainly the objective to develop an improved understanding of the physics of rotor flapping dynamics and rotor loads in maneuvers. The employed approach is based on a utilization of parameter identification methodology (PID) with application to helicopters. A better understanding of the contribution of the main rotor to the overall aircraft forces and moments is also to be obtained. Attention is given to the mathematical model of a rotorcraft system, an integrated identification method, flight data processing, and the identification of RSRA mathematical models.

  13. Subtask 1 report: emission control system identification. Task 25

    SciTech Connect

    Not Available

    1982-10-22

    The emphasis here is the identification of emission control systems through information contained in the vehicle identification number (VIN). The data base which maps each combination of carline and engine symbol into the possible engine families is described in detail. The methods used in developing this data base are summarized. The instances in which major features of the emission control system can not be determined unambiguously from the VIN are identified. Recommendations are presented for resolving the ambiguities with the assistance of auto manufacturers. The ability of the several manufacturers to assist in further decoding of VINs and is reported and the information presently available on costs of doing so is provided. Data files that will be used to extract manufacturer, carline, and engine symbols from VINs and then access the master VIN/engine family data base are listed. The master data base is listed in its entirety. The cases of ambiguous emission control identification are listed. (MHR)

  14. A network identity authentication system based on Fingerprint identification technology

    NASA Astrophysics Data System (ADS)

    Xia, Hong-Bin; Xu, Wen-Bo; Liu, Yuan

    2005-10-01

    Fingerprint verification is one of the most reliable personal identification methods. However, most of the automatic fingerprint identification system (AFIS) is not run via Internet/Intranet environment to meet today's increasing Electric commerce requirements. This paper describes the design and implementation of the archetype system of identity authentication based on fingerprint biometrics technology, and the system can run via Internet environment. And in our system the COM and ASP technology are used to integrate Fingerprint technology with Web database technology, The Fingerprint image preprocessing algorithms are programmed into COM, which deployed on the internet information server. The system's design and structure are proposed, and the key points are discussed. The prototype system of identity authentication based on Fingerprint have been successfully tested and evaluated on our university's distant education applications in an internet environment.

  15. Music identification system using MPEG-7 audio signature descriptors.

    PubMed

    You, Shingchern D; Chen, Wei-Hwa; Chen, Woei-Kae

    2013-01-01

    This paper describes a multiresolution system based on MPEG-7 audio signature descriptors for music identification. Such an identification system may be used to detect illegally copied music circulated over the Internet. In the proposed system, low-resolution descriptors are used to search likely candidates, and then full-resolution descriptors are used to identify the unknown (query) audio. With this arrangement, the proposed system achieves both high speed and high accuracy. To deal with the problem that a piece of query audio may not be inside the system's database, we suggest two different methods to find the decision threshold. Simulation results show that the proposed method II can achieve an accuracy of 99.4% for query inputs both inside and outside the database. Overall, it is highly possible to use the proposed system for copyright control. PMID:23533359

  16. Music Identification System Using MPEG-7 Audio Signature Descriptors

    PubMed Central

    You, Shingchern D.; Chen, Wei-Hwa; Chen, Woei-Kae

    2013-01-01

    This paper describes a multiresolution system based on MPEG-7 audio signature descriptors for music identification. Such an identification system may be used to detect illegally copied music circulated over the Internet. In the proposed system, low-resolution descriptors are used to search likely candidates, and then full-resolution descriptors are used to identify the unknown (query) audio. With this arrangement, the proposed system achieves both high speed and high accuracy. To deal with the problem that a piece of query audio may not be inside the system's database, we suggest two different methods to find the decision threshold. Simulation results show that the proposed method II can achieve an accuracy of 99.4% for query inputs both inside and outside the database. Overall, it is highly possible to use the proposed system for copyright control. PMID:23533359

  17. Agroforestry Systems In Poland A Preliminary Identification

    NASA Astrophysics Data System (ADS)

    Borek, Robert

    2015-01-01

    This paper seeks to use state-of-the-art knowledge to depict the foundations and prospects for agroforestry systems in Poland to develop, in line with political, legal, historical and environmental conditions pertaining in the country. The main legal provisions concerning the presence of trees in agriculture are presented prior to a first-ever defining of key traditional agroforestry systems in Poland.

  18. 75 FR 25137 - Changes to Standard Numbering System, Vessel Identification System, and Boating Accident Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ...The Coast Guard proposes to amend its rules related to numbering of undocumented vessels and reporting of casualties. These changes would align and modernize terminology used in the Standard Numbering System (SNS), the Vessel Identification System (VIS), and casualty reporting; require validation of vessel hull identification numbers; require SNS vessel owners to provide personally......

  19. Early identification systems for emerging foodborne hazards.

    PubMed

    Marvin, H J P; Kleter, G A; Prandini, A; Dekkers, S; Bolton, D J

    2009-05-01

    This paper provides a non-exhausting overview of early warning systems for emerging foodborne hazards that are operating in the various places in the world. Special attention is given to endpoint-focussed early warning systems (i.e. ECDC, ISIS and GPHIN) and hazard-focussed early warning systems (i.e. FVO, RASFF and OIE) and their merit to successfully identify a food safety problem in an early stage is discussed. Besides these early warning systems which are based on monitoring of either disease symptoms or hazards, also early warning systems and/or activities that intend to predict the occurrence of a food safety hazard in its very beginning of development or before that are described. Examples are trend analysis, horizon scanning, early warning systems for mycotoxins in maize and/or wheat and information exchange networks (e.g. OIE and GIEWS). Furthermore, recent initiatives that aim to develop predictive early warning systems based on the holistic principle are discussed. The assumption of the researchers applying this principle is that developments outside the food production chain that are either directly or indirectly related to the development of a particular food safety hazard may also provide valuable information to predict the development of this hazard. PMID:18272277

  20. On neural networks in identification and control of dynamic systems

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Hyland, David C.

    1993-01-01

    This paper presents a discussion of the applicability of neural networks in the identification and control of dynamic systems. Emphasis is placed on the understanding of how the neural networks handle linear systems and how the new approach is related to conventional system identification and control methods. Extensions of the approach to nonlinear systems are then made. The paper explains the fundamental concepts of neural networks in their simplest terms. Among the topics discussed are feed forward and recurrent networks in relation to the standard state-space and observer models, linear and nonlinear auto-regressive models, linear, predictors, one-step ahead control, and model reference adaptive control for linear and nonlinear systems. Numerical examples are presented to illustrate the application of these important concepts.

  1. Interaction of CSFV E2 Protein with Swine Host Factors as Detected by Yeast Two-Hybrid System

    PubMed Central

    Gladue, Douglas P.; Baker-Bransetter, Ryan; Holinka, Lauren G.; Fernandez-Sainz, Ignacio J.; O’Donnell, Vivian; Fletcher, Paige; Lu, Zhiqiang; Borca, Manuel V.

    2014-01-01

    E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV). E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. However, there is no information regarding any host binding partners for the E2 proteins. Here, we utilized the yeast two-hybrid system and identified fifty-seven host proteins as positive binding partners which bound E2 from both CSFV and BVDV with the exception of two proteins that were found to be positive for binding only to CSFV E2. Alanine scanning of CSFV E2 demonstrated that the binding sites for these cellular proteins on E2 are likely non-linear binding sites. The possible roles of the identified host proteins are discussed as the results presented here will be important for future studies to elucidate mechanisms of host protein-virus interactions during pestivirus infection. However, due to the limitations of the yeast two hybrid system, the proteins identified is not exhaustive and each interaction identified needs to be confirmed by independent experimental approaches in the context of virus-infected cells before any definitive conclusion can be drawn on relevance for the virus life cycle. PMID:24416391

  2. Training Sessions Provide Working Knowledge of National Animal Identification System

    ERIC Educational Resources Information Center

    Glaze, J. Benton, Jr.; Ahola, Jason K.

    2010-01-01

    One in-service and two train-the-trainer workshops were conducted by University of Idaho Extension faculty, Idaho State Department of Agriculture personnel, and allied industry representatives to increase Extension educators' knowledge and awareness of the National Animal Identification System (NAIS) and related topics. Training sessions included…

  3. Training Sessions Provide Working Knowledge of National Animal Identification System

    ERIC Educational Resources Information Center

    Glaze, J. Benton, Jr.; Ahola, Jason K.

    2010-01-01

    One in-service and two train-the-trainer workshops were conducted by University of Idaho Extension faculty, Idaho State Department of Agriculture personnel, and allied industry representatives to increase Extension educators' knowledge and awareness of the National Animal Identification System (NAIS) and related topics. Training sessions included

  4. System identification requirements for high-bandwidth rotorcraft flight control system design

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1991-01-01

    The application of system identification methods to high-bandwidth rotorcraft flight control system design is examined. Flight test and modeling requirements are illustrated using flight test data from a BO-105 hingeless rotor helicopter. The proposed approach involves the identification of nonparametric (transfer function and state space) model identification. Results for the BO-105 show the need for including coupled body/rotor flapping and lead-lag dynamics in the identification model structure to allow the accurate prediction of control ssytem bandwidth limitations.

  5. Yeast: A Research Organism for Teaching Genetics.

    ERIC Educational Resources Information Center

    Manney, Thomas R.; Manney, Monta L.

    1992-01-01

    Explains why laboratory strains of bakers yeast, Saccharomyces cerevisiae, are particularly suited for classroom science activities. Describes the sexual life cycle of yeast and the genetic system with visible mutations. Presents an overview of activities that can be done with yeast and gives a source for teachers to obtain more information. (PR)

  6. Identification of barriers to rotation of DNA segments in yeast from the topology of DNA rings excised by an inducible site-specific recombinase.

    PubMed Central

    Gartenberg, M R; Wang, J C

    1993-01-01

    Controlled excision of DNA segments to yield intracellular DNA rings of well-defined sequences was utilized to study the determinants of transcriptional supercoiling of closed circular DNA in the yeast Saccharomyces cerevisiae. In delta top1 top2ts strains of S. cerevisiae expressing Escherichia coli DNA topoisomerase I, accumulation of positive supercoils in intracellular DNA normally occurs upon thermal inactivation of DNA topoisomerase II because of the simultaneous generation of positively and negatively supercoiled domains by transcription and the preferential relaxation of the latter by the bacterial enzyme. Positive supercoil accumulation in DNA rings is shown to depend on the presence of specific sequence elements; one likely cause of this dependence is that the persistence of oppositely supercoiled domains in an intracellular DNA ring requires the presence of barriers to rotation of the DNA segments connecting the domains. Analysis of the S. cerevisiae 2-microns plasmid partition system by this approach suggests that the plasmid-encoded REP1 and REP2 proteins are involved in forming such a barrier in DNA containing the REP3 sequence. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8248138

  7. Identification of Protective Antigens for Vaccination against Systemic Salmonellosis

    PubMed Central

    Bumann, Dirk

    2014-01-01

    There is an urgent medical need for improved vaccines with broad serovar coverage and high efficacy against systemic salmonellosis. Subunit vaccines offer excellent safety profiles but require identification of protective antigens, which remains a challenging task. Here, I review crucial properties of Salmonella antigens that might help to narrow down the number of potential candidates from more than 4000 proteins encoded in Salmonella genomes, to a more manageable number of 50–200 most promising antigens. I also discuss complementary approaches for antigen identification and potential limitations of current pre-clinical vaccine testing. PMID:25157252

  8. Hydrogenerator system identification using a simple genetic algorithm

    SciTech Connect

    Wrate, C.A.; Wozniak, L.

    1997-03-01

    This paper investigates an identification procedure for a hydrogenerator plant using an adaptive technique. The procedure operates on field data consisting of sampled gate position and electrical frequency. The field data was recorded while the plant was operating under various load conditions. The procedure adapted to ongoing plant changes by continuously updating the identification results. It is shown that the adaptive technique, in this case genetic algorithm based, was capable of identifying the hydrogenerator system and following plant parameter changes while the plant operated under conditions of sufficient frequency excursions. These conditions include off-line and isolated network operation where effective control is critical.

  9. Biometric identification systems: the science of transaction facilitation

    NASA Astrophysics Data System (ADS)

    Rogers, Robert R.

    1994-10-01

    The future ofthe "secure transaction" and the success ofall undertakings that depend on absolute certainty that the individuals involved really are who and what they represent themselves to be is dependent upon the successful development of absolutely accurate, low-cost and easy-to-operate Biometric Identification Systems. Whether these transactions are political, military, financial or administrative (e.g. health cards, drivers licenses, welfare entitlement, national identification cards, credit card transactions, etc.), the need for such secure and positive identification has never been greater -and yet we are only at the beginning ofan era in which we will see the emergence and proliferation of Biometric Identification Systems in nearly every field ofhuman endeavor. Proper application ofthese systems will change the way the world operates, and that is precisely the goal ofComparator Systems Corporation. Just as with the photo-copier 40 years ago and the personal computer 20 years ago, the potential applications for positive personal identification are going to make the Biometric Identification System a commonplace component in the standard practice ofbusiness, and in interhuman relationships ofall kinds. The development of new and specific application hardware, as well as the necessary algorithms and related software required for integration into existing operating procedures and newly developed systems alike, has been a more-than-a-decade-long process at Comparator -and we are now on the verge of delivering these systems to the world markets so urgently in need of them. An individual could feel extremely confident and satisfied ifhe could present his credit, debit, or ATM card at any point of sale and, after inserting his card, could simply place his finger on a glass panel and in less than a second be positively accepted as being the person that the card purported him to be; not to mention the security and satisfaction of the vendor involved in knowing that his fraud risk had been reduced to virtually zero. In highly sensitive security applications, such a system would be imperative -and when combined, if necessary, with other biometric identifiers such as signature and/or voice recognition for simultaneous verification, one would have a nearly foolproof system. These are the tools of what we call Transaction Facilitation, and this is the realm of Comparator Systems Corp. Our technological developments over the last ten years have moved our Company forward into a position of potential leadership in what is fast becoming a worldwide market, and it is toward this end that we have applied all of our efforts.

  10. Performance metrics for the evaluation of hyperspectral chemical identification systems

    NASA Astrophysics Data System (ADS)

    Truslow, Eric; Golowich, Steven; Manolakis, Dimitris; Ingle, Vinay

    2016-02-01

    Remote sensing of chemical vapor plumes is a difficult but important task for many military and civilian applications. Hyperspectral sensors operating in the long-wave infrared regime have well-demonstrated detection capabilities. However, the identification of a plume's chemical constituents, based on a chemical library, is a multiple hypothesis testing problem which standard detection metrics do not fully describe. We propose using an additional performance metric for identification based on the so-called Dice index. Our approach partitions and weights a confusion matrix to develop both the standard detection metrics and identification metric. Using the proposed metrics, we demonstrate that the intuitive system design of a detector bank followed by an identifier is indeed justified when incorporating performance information beyond the standard detection metrics.

  11. Development of an integrated electrochemical system for in vitro yeast viability testing.

    PubMed

    Adami, Andrea; Ress, Cristina; Collini, Cristian; Pedrotti, Severino; Lorenzelli, Leandro

    2013-02-15

    This work describes the development and testing of a microfabricated sensor for rapid cell growth monitoring, especially focused on yeast quality assessment for wine applications. The device consists of a NMOS ISFET sensor with Si(3)N(4) gate, able to indirectly monitor extracellular metabolism through pH variation of the medium, and a solid-state reference electrode implemented with PVC membranes doped with lipophilic salts (tetrabutylammonium-tetrabutylborate (TBA-TBB) and Potassium tetrakis(4-chlorphenyl)borate (KTClpB)). The use of a solid state reference electrode enables the implementation of a large number of cell assays in parallel, without the need of external conventional reference electrodes. Microbial growth testing has been performed both in standard culture conditions and on chip at different concentrations of ethanol in order to carry out a commonly used screening of wine yeast strains. Cell growth tests can be performed in few hours, providing a fast, sensitive and low cost analysis with respect to the conventional procedures. PMID:22944021

  12. Development of pilot scale nanofiltration system for yeast industry wastewater treatment

    PubMed Central

    2014-01-01

    The treatment of the yeast industry wastewater was investigated by nanofiltration (NF) membrane process on a pilot scale. Two wastewaters were used as feed: (i) dilute wastewater with COD 2000 mg/L and (ii) concentrate wastewater with COD 8000 mg/L. The permeate flux, COD retention, color and electrical conductivity (EC) removal were evaluated in relation to trans-membrane pressure and long-term filtration. A linear growth in permeate flux was found with increasing in trans-membrane pressure for wastewaters. In addition, the COD retention, color and EC removal increased with trans-membrane pressure enhancement. The results obtained from the long-term nanofiltration of dilute wastewater indicated that the permeate flux decreased from 2300 L/day to 1250 L/day and COD retention increased from 86% to 92%. The quality of the permeate in term of COD is lower than the discharge standard in river (200 mg/L). Thus, this process is useful for treatment of wastewaters produced by yeast industry. PMID:24593865

  13. Identification of Backlash Type Hysteretic Systems Based on Particle Filter

    NASA Astrophysics Data System (ADS)

    Masuda, Tetsuya; Sugie, Toshiharu

    This paper considers the system identification problem for hysteresis systems. This problem plays an important role in achieving better control performance, because many actuators have hysteresis property. This paper proposes a method to identify linear dynamical systems having input hysteresis property of backlash type. The method is based on particle filter, which is known for its applicability to a wide class of nonlinear systems. Numerical examples are given to demonstrate the effectiveness of the proposed method in detail. Furthermore, experimental validation is performed for a DC servo motor system.

  14. System identification requirements for high-bandwidth rotorcraft flight control system design

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1990-01-01

    The application of system identification methods to high-bandwidth rotorcraft flight control system design is examined. Flight test and modeling requirements are illustrated using flight test data from a BO-105 hingeless rotor helicopter. The proposed approach involves the identification of nonparametric frequency-response models followed by parametric (transfer funtion and state space) model identification. Results for the BO-105 show the need for including coupled body/rotor flapping and lead-lag dynamics in the identification model structure to allow the accurate prediction of control system bandwidth limitations. Lower-order models are useful for estimating nominal control system performance only when the flight data used for the identification are band-limited to be consistent with the frequency range of applicability of the model. The flight test results presented in this paper are consistent with theoretical studies by previous researchers.

  15. Frequency domain state-space system identification

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Wen; Juang, Jer-Nan; Lee, Gordon

    1992-01-01

    An algorithm for identifying state-space models from frequency response data of linear systems is presented. A matrix-fraction description of the transfer function is employed to curve-fit the frequency response data, using the least-squares method. The parameters of the matrix-fraction representation are then used to construct the Markov parameters of the system. Finally, state-space models are obtained through the Eigensystem Realization Algorithm using Markov parameters. The main advantage of this approach is that the curve-fitting and the Markov parameter construction are linear problems which avoid the difficulties of nonlinear optimization of other approaches. Another advantage is that it avoids windowing distortions associated with other frequency domain methods.

  16. Closed Loop System Identification with Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  17. Linear antigenic mapping of flagellin (FliC) from Salmonella enterica serovar Enteritidis with yeast surface expression system.

    PubMed

    Wang, Gaoling; Shi, Bingtian; Li, Tao; Zuo, Teng; Wang, Bin; Si, Wei; Xin, Jiuqing; Yang, Kongbin; Shi, Xuanlin; Liu, Siguo; Liu, Henggui

    2016-02-29

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne illness around the world and can have significant health implications in humans, poultry and other animals. Flagellin (FliC) is the primary component of bacterial flagella. It has been shown that the FliC of S. Enteritidis is a significant antigenic structure and can elicit strong humoral responses against S. Enteritidis infection in chickens. Here, we constructed a FliC antigen library using a yeast surface expression system. Yeast cells expressing FliC peptide antigens were labeled with chicken sera against S. Enteritidis and sorted using FACS. The analyses of FliC peptides revealed that the FliC linear antigenicity in chickens resided on three domains which were able to elicit strong humoral responses in vivo. Animal experiments further revealed that the antibodies elicited by these antigenic domains were able to significantly inhibit the invasion of S. Enteritidis into the liver and spleen of chickens. These findings will facilitate our better understanding of the humoral responses elicited by FliC in chickens upon infection by S. Enteritidis. PMID:26854340

  18. Biosynthesis of polyhydroxyalkanotes in wild type yeasts.

    PubMed

    Abd-El-Haleem, Desouky A M

    2009-01-01

    Biosynthesis of biodegradable polymers polyhydroxyalkanotes (PHAs) have been studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHAs in wild type yeasts is not well documented. The purpose of this study was to screen yeast isolates collected from different ecosystems for their ability to accumulate PHAs. Identification of the isolates and characterization of PHAs produced by the positive isolates were investigated. One positive isolate (strain Y4) was identified by both API20C system and 18S rDNA sequencing. The data revealed that isolate Y4 belongs to the yeast genus Rhodotorula and exhibits 18S rDNA similarity value >99% to the species Rhodotorula minuta. Quantification of PHAs yield of strain Y4 in glucose, oleic acid and tween 60 containing medium for over a growth period of 96 h gave 2% of PHAs in biomass. The nature of produced PHAs was analyzed by infrared spectroscopy and nuclear magnetic resonance (1H and 13C NMR) and found to contain polyhydroxybutyrate and polyhydroxyvalerate (PHBV). PMID:19469284

  19. Generation of arming yeasts with active proteins and peptides via cell surface display system: cell surface engineering, bio-arming technology.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2014-01-01

    The cell surface display system in yeast enables the innovative strategy for improving cellular functions in a wide range of applications such as biofuel production, bioremediation, synthesis of valuable chemicals, recovery of rare metal ions, development of biosensors, and high-throughput screening of proteins/peptides library. Display of enzymes for polysaccharide degradation enables the construction of metabolically engineered whole-cell biocatalyst owing to the accessibility of the displayed enzymes to high-molecular-weight polysaccharides. In addition, along with fluorescence-based activity evaluation, fluorescence-activated cell sorting (FACS), and yeast cell chip, the cell surface display system is an effective molecular tool for high-throughput screening of mutated proteins/peptides library. In this article, we describe the methods for cell surface display of proteins/peptides of interest on yeast, evaluation of display efficiency, and harvesting of the displayed proteins/peptides from cell surface. PMID:24744031

  20. Prefire identification for pulse-power systems

    DOEpatents

    Longmire, J.L.; Thuot, M.E.; Warren, D.S.

    1982-08-23

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  1. Prefire identification for pulse power systems

    DOEpatents

    Longmire, Jerry L.; Thuot, Michael E.; Warren, David S.

    1985-01-01

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  2. Material Outgassing, Identification and Deposition, MOLIDEP System

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.; Montoya, Alex F.

    2002-01-01

    The outgassing tests are performed employing a modified vacuum operated Cahn analytical microbalance, identified as the MOLIDEP system. The test measures under high vacuum, the time varying Molecular mass loss of a material sample held at a chosen temperature; it Identifies the outgassing molecular components using an inline SRS 300 amu Residual Gas Analyzer (RGA) and employs a temperature controlled 10 MHz Quartz Crystal Microbalance (QCM) to measure the condensable DEPosits. Both the QCM and the RGA intercept within the conductive passage the outgassing products being evacuated by a turbomolecular pump. The continuous measurements of the mass loss, the rate of loss, the sample temperature, the rate of temperature change, the QCM temperature and the QCM recorded condensable deposits or rate of deposits are saved to an Excel spreadsheet. A separate computer controls the RGA.

  3. Identification of open quantum systems from observable time traces

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Sarovar, Mohan

    2015-05-01

    Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In this paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. The method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters [Phys. Rev. Lett. 113, 080401 (2014), 10.1103/PhysRevLett.113.080401].

  4. System Identification for Nonlinear Control Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.; Linse, Dennis J.

    1990-01-01

    An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.

  5. Establishing the yeast Saccharomyces cerevisiae as a system for expression of human proteins on a proteome-scale.

    PubMed

    Holz, Caterina; Prinz, Bianka; Bolotina, Natalia; Sievert, Volker; Büssow, Konrad; Simon, Bernd; Stahl, Ulf; Lang, Christine

    2003-01-01

    Structural genomics requires the application of a standardised process for overexpression of soluble proteins that allows high-throughput purification and analysis of protein products. We have developed a highly parallel approach to protein expression, including the simultaneous expression screening of a large number of cDNA clones in an appropriate vector system and the use of a protease-deficient host strain. A set of 221 human genes coding for proteins of various sizes with unknown structures was selected to evaluate the system. We transferred the cDNAs from an E. coli vector to the yeast expression vector by recombinational cloning, avoiding time-consuming recloning steps and the use of restriction enzymes in the cloning process. The subcloning yield was 95%, provided that a PCR fragment of the correct size could be obtained. Sixty percent of these proteins were expressed as soluble products at detectable levels and 48% were successfully purified under native conditions using the His6 tag fusion. The advantages of the developed yeast-based expression system are the ease of manipulation and cultivation of S. cerevisiae in the same way as with prokaryotic hosts and the ability to introduce post-translational modifications of proteins if required, thus being an attractive system for heterologous expression of mammalian proteins. The expression clones selected in this screening process are passed on to the fermentation process in order to provide milligram amounts of proteins for structure analysis within the 'Berlin Protein Structure Factory'. All data generated is stored in a relational database and is available on our website (http://www.proteinstrukturfabrik.de). PMID:14649293

  6. On the identification of hysteretic systems. Part I: Fitness landscapes and evolutionary identification

    NASA Astrophysics Data System (ADS)

    Worden, K.; Manson, G.

    2012-05-01

    Fairly recent work has shown that evolutionary optimisation schemes (genetic algorithms and differential evolution) offer an effective means of identifying nonlinear dynamical systems, even when the parameter estimation problem is complicated by nonlinearity in the parameters and/or the presence of unmeasured states. In particular, an evolutionary approach to the parameter estimation problem for hysteretic systems has shown promise. The current paper considers aspects of the parameter estimation problem for systems of Bouc-Wen type. In the first place, an investigation into the nature of the objective or cost function for the optimisation is made with the aim of better understanding the performance of the identification scheme. The first part of the paper also discusses the issue of setting initial estimates or ranges for the system parameters. The data on which the analysis is based are generated by computer simulation; the specific evolutionary algorithm considered is Differential Evolution (DE). Although the DE algorithm has proved to be very effective in the identification context, a minor disadvantage manifests itself in the need to set algorithm hyperparameters for the optimisation. This observation leads to the second main objective of the current paper which is to present a recently developed variant of the DE algorithm - the Self-Adaptive Differential Evolution (SADE) algorithm - which learns and adapts a subset of its own hyperparameters throughout the optimisation process. The use of the algorithm for the hysteretic system identification problem is illustrated using the simulated data and it is shown that the algorithm can provide several orders-of-magnitude improvement on the minimisation of the problem objective function.

  7. System Identification in Presence of Outliers.

    PubMed

    Yu, Chao; Wang, Qing-Guo; Zhang, Dan; Wang, Lei; Huang, Jiangshuai

    2016-05-01

    The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low rank and sparse matrices, and further recast as a semidefinite programming problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low-rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers, and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered "clean" data from the proposed method can give much better parameter estimation compared with that based on the raw data. PMID:26011875

  8. System identification methods for metal rubber devices

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Lang, Z. Q.; Billings, S. A.; Tomlinson, G. R.; Rongong, J. A.

    2013-08-01

    Metal rubber (MR) devices, a new wire mesh material, have been extensively used in recent years due to several unique properties especially in adverse environments. Although many practical studies have been completed, the related theoretical research on metal rubber is still in its infancy. In this paper, a semi-constitutive dynamic model that involves nonlinear elastic stiffness, nonlinear viscous damping and bilinear hysteresis Coulomb damping is adopted to model MR devices. The model is first approximated by representing the bilinear hysteresis damping as Chebyshev polynomials of the first kind and then generalised by taking into account the effects of noises. A very efficient systematic procedure based on the orthogonal least squares (OLS) algorithm, the adjustable prediction error sum of squares (APRESS) criterion and the nonlinear model validity tests is proposed for model structure detection and parameter estimation of MR devices for the first time. The OLS algorithm provides a powerful tool to effectively select the significant model terms step by step, one at a time, by orthogonalising the associated terms and maximising the error reduction ratio, in a forward stepwise manner. The APRESS statistic regularises the OLS algorithm to facilitate the determination of the optimal number of model terms that should be included into the model. And whether the final identified dynamic model is adequate and acceptable is determined by the model validity tests. Because of the orthogonal property of the OLS algorithm, the selection of the dynamic model terms and noise model terms are totally decoupled and the approach also leads to a parsimonious model. Numerical ill-conditioning problems which can arise in the conventional least squares algorithm can be avoided as well. The methods of choosing the sampling interval for nonlinear systems are also incorporated into the approach. Finally by utilising the response of a cylindrical MR specimen, it is shown how the model structure can be detected in a practical application.

  9. System Identification and POD Method Applied to Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Tang, Deman; Kholodar, Denis; Juang, Jer-Nan; Dowell, Earl H.

    2001-01-01

    The representation of unsteady aerodynamic flow fields in terms of global aerodynamic modes has proven to be a useful method for reducing the size of the aerodynamic model over those representations that use local variables at discrete grid points in the flow field. Eigenmodes and Proper Orthogonal Decomposition (POD) modes have been used for this purpose with good effect. This suggests that system identification models may also be used to represent the aerodynamic flow field. Implicit in the use of a systems identification technique is the notion that a relative small state space model can be useful in describing a dynamical system. The POD model is first used to show that indeed a reduced order model can be obtained from a much larger numerical aerodynamical model (the vortex lattice method is used for illustrative purposes) and the results from the POD and the system identification methods are then compared. For the example considered, the two methods are shown to give comparable results in terms of accuracy and reduced model size. The advantages and limitations of each approach are briefly discussed. Both appear promising and complementary in their characteristics.

  10. An experimental study of nonlinear dynamic system identification

    NASA Technical Reports Server (NTRS)

    Stry, Greselda I.; Mook, D. Joseph

    1990-01-01

    A technique for robust identification of nonlinear dynamic systems is developed and illustrated using both simulations and analog experiments. The technique is based on the Minimum Model Error optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature of the current work is the ability to identify nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities, in constrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.

  11. SSNN toolbox for non-linear system identification

    NASA Astrophysics Data System (ADS)

    Luzar, Marcel; Czajkowski, Andrzej

    2015-11-01

    The aim of this paper is to develop and design a State Space Neural Network toolbox for a non-linear system identification with an artificial state-space neural networks, which can be used in a model-based robust fault diagnosis and control. Such toolbox is implemented in the MATLAB environment and it uses some of its predefined functions. It is designed in the way that any non-linear multi-input multi-output system is identified and represented in the classical state-space form. The novelty of the proposed approach is that the final result of the identification process is the state, input and output matrices, not only the neural network parameters. Moreover, the toolbox is equipped with the graphical user interface, which makes it useful for the users not familiar with the neural networks theory.

  12. A frequency domain identification scheme for damped distributed parameter systems

    NASA Astrophysics Data System (ADS)

    Chander, R.; Meyyappa, M.; Hanagud, S.

    A parameter identification technique in the frequency domain is discussed. For this purpose, a distributed parameter model of a dynamic system within the framework of Euler-Bernoulli beam theory is assumed to be known. Internal material damping and external viscous damping are included in the model. The parameters are approximated using cubic cardinal splines, and their derivatives are evaluated from such approximations. For a given input, the response is assumed to be measured at discrete locations in the system. Quintic B-splines are used to obtain approximate spatial representations of the response and its derivatives from these measurements. A Galerkin-type approach in conjunction with an equation error technique is used to estimate the unknown parameters. Numerically simulated responses obtained from an independent finite element model of an Euler-Bernoulli beam is used to validate the identification technique. Estimated values of the mass, stiffness and damping distributions are discussed.

  13. Continuous-Time System Identification of a Smoking Cessation Intervention.

    PubMed

    Timms, Kevin P; Rivera, Daniel E; Collins, Linda M; Piper, Megan E

    2014-01-01

    Cigarette smoking is a major global public health issue and the leading cause of preventable death in the United States. Toward a goal of designing better smoking cessation treatments, system identification techniques are applied to intervention data to describe smoking cessation as a process of behavior change. System identification problems that draw from two modeling paradigms in quantitative psychology (statistical mediation and self-regulation) are considered, consisting of a series of continuous-time estimation problems. A continuous-time dynamic modeling approach is employed to describe the response of craving and smoking rates during a quit attempt, as captured in data from a smoking cessation clinical trial. The use of continuous-time models provide benefits of parsimony, ease of interpretation, and the opportunity to work with uneven or missing data. PMID:25382865

  14. Continuous-Time System Identification of a Smoking Cessation Intervention

    PubMed Central

    Timms, Kevin P.; Rivera, Daniel E.; Collins, Linda M.; Piper, Megan E.

    2014-01-01

    Cigarette smoking is a major global public health issue and the leading cause of preventable death in the United States. Toward a goal of designing better smoking cessation treatments, system identification techniques are applied to intervention data to describe smoking cessation as a process of behavior change. System identification problems that draw from two modeling paradigms in quantitative psychology (statistical mediation and self-regulation) are considered, consisting of a series of continuous-time estimation problems. A continuous-time dynamic modeling approach is employed to describe the response of craving and smoking rates during a quit attempt, as captured in data from a smoking cessation clinical trial. The use of continuous-time models provide benefits of parsimony, ease of interpretation, and the opportunity to work with uneven or missing data. PMID:25382865

  15. Effect of sterol metabolism in the yeast-Drosophila system on the frequency of radiation-induced aneuploidy in the Drosophila melanogaster oocytes

    SciTech Connect

    Savitskii, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.G.

    1986-01-01

    The effect of sterol metabolism on induced mutagenesis of Drosophila melanogaster was studied in the ecogenetic system of yeast-Drosophila. Sterol deficiency was created in Drosophila by using the biomass of live cells of Saccharomyces cerevisiae strain 9-2-P712 till mutation in locus nys/sup r1/ blocking the synthesis of ergosterol as the food. It was found that rearing of Drosophila females on the mutant yeast increases the frequency of loss and nondisjunction of X chromosomes induced in mature oocytes by X rays (1000 R). Addition of 0.1% of cholesterol solution in 10% ethanol to the yeast biomass restores the resistance of oocyte to X irradiation to the control level. The possible hormonal effect on membrane leading to increased radiation-induced aneuploidy in Drosophila and the role of sterol metabolism in determining the resistance to various damaging factors are discussed.

  16. Identification of Novel Protein–Ligand Interactions by Exon Microarray Analysis of Yeast Surface Displayed cDNA Library Selection Outputs

    PubMed Central

    Bidlingmaier, Scott; Liu, Bin

    2016-01-01

    Yeast surface display is widely utilized to screen large libraries for proteins or protein fragments with specific binding properties. We have previously constructed and utilized yeast surface displayed human cDNA libraries to identify protein fragments that bind to various target ligands. Conventional approaches employ monoclonal screening and sequencing of polyclonal outputs that have been enriched for binding to a target molecule by several rounds of affinity-based selection. Frequently, a small number of clones will dominate the selection output, making it difficult to comprehensively identify potentially important interactions due to low representation in the selection output. We have developed a novel method to address this problem. By analyzing selection outputs using high-density human exon microarrays, the full potential of selection output diversity can be revealed in one experiment. FACS-based selection using yeast surface displayed human cDNA libraries combined with exon microarray analysis of the selection outputs is a powerful way of rapidly identifying protein fragments with affinity for any soluble ligand that can be fluorescently detected, including small biological molecules and drugs. In this report we present protocols for exon microarray-based analysis of yeast surface display human cDNA library selection outputs. PMID:26060075

  17. Identification of Novel Host Factors via Conserved Domain Search: Cns1 Cochaperone Is a Novel Restriction Factor of Tombusvirus Replication in Yeast

    PubMed Central

    Lin, Jing-Yi

    2013-01-01

    A large number of host-encoded proteins affect the replication of plus-stranded RNA viruses by acting as susceptibility factors. Many other cellular proteins are known to function as restriction factors of viral infections. Previous studies with tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the inhibitory function of TPR (tetratricopeptide repeat) domain-containing cyclophilins, which are members of the large family of host prolyl isomerases, in TBSV replication. In this paper, we tested additional TPR-containing yeast proteins in a cell-free TBSV replication assay and identified the Cns1p cochaperone for heat shock protein 70 (Hsp70) and Hsp90 chaperones as a strong inhibitor of TBSV replication. Cns1p interacted with the viral replication proteins and inhibited the assembly of the viral replicase complex and viral RNA synthesis in vitro. Overexpression of Cns1p inhibited TBSV replication in yeast. The use of a temperature-sensitive (TS) mutant of Cns1p in yeast revealed that at a semipermissive temperature, TS Cns1p could not inhibit TBSV replication. Interestingly, Cns1p and the TPR-containing Cpr7p cyclophilin have similar inhibitory functions during TBSV replication, although some of the details of their viral restriction mechanisms are different. Our observations indicate that TPR-containing cellular proteins could act as virus restriction factors. PMID:24027337

  18. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 GENE FAMILY

    EPA Science Inventory

    The P450ALK gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. tructural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures a...

  19. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    EPA Science Inventory

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  20. 21 CFR 880.6300 - Implantable radiofrequency transponder system for patient identification and health information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implantable radiofrequency transponder system for... radiofrequency transponder system for patient identification and health information. (a) Identification. An implantable radiofrequency transponder system for patient identification and health information is a...

  1. 21 CFR 880.6300 - Implantable radiofrequency transponder system for patient identification and health information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... radiofrequency transponder system for patient identification and health information. (a) Identification. An implantable radiofrequency transponder system for patient identification and health information is a device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable radiofrequency transponder system...

  2. From yeast genetics to biotechnology.

    PubMed

    Maráz, Anna

    2002-01-01

    Roots of classical yeast genetics go back to the early work of Lindegreen in the 1930s, who studied thallism, sporulation and inheritance of wine yeast strains belonging to S. cerevisiae. Consequent mutation and hybridization of heterothallic S. cerevisae strains resulted in the discovery of life cycle and mating type system, as well as construction of the genetic map. Elaboration of induced mutation and controlled hybridization of yeast strains opened up new possibilities for the genetic analysis of technologically important properties and for the production of improved industrial strains, but a big drawback was the widely different genetic properties of laboratory and industrial yeast strains. Genetic analysis and mapping of industrial strains were generally hindered because of homothallism, poor sporulation and/or low spore viability of brewing and wine yeast strains [1, 2]. In spite of this, there are a few examples of the application of sexual hybridization in the study of genetic control of important technological properties, e.g. sugar utilization, flocculation and flavor production in brewing yeast strains [3] or in the improvement of ethanol producing S. cerevisiae strains [4]. Rare mating and application of karyogamy deficient (kar-) mutants also proved useful in strain improvement [5]. Importance of yeasts in biotechnology is enormous. This includes food and beverage fermentation processes where a wide range of yeast species are playing role, but S. cerevisiae is undoubtedly the most important species among them. New biotechnology is aiming to improve these technologies, but besides this, a completely new area of yeast utilization has been emerged, especially in the pharmaceutical and medical areas. Without decreasing the importance of S. cerevisiae, numerous other yeast species, e.g. Kluyveromyces lactis, Hansenula polymorpha, Pichia pastoris, Schizosaccharomyces pombe and Yarrowia lipolytica have gained increasing potentialities in the modern fermentation biotechnology [6]. Developments in yeast genetics, biochemistry, physiology and process engineering provided bases of rapid development in modern biotechnology, but elaboration of the recombinant DNA technique is far the most important milestone in this field. Other molecular genetic techniques, as molecular genotyping of yeast strains proved also very beneficial in yeast fermentation technologies, because dynamics of both the natural and inoculated yeast biota could be followed by these versatile DNA-based techniques. PMID:12512257

  3. Rapid identification of Listeria spp.: an AOAC performance test of the MIT 1000 rapid microbial identification system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods that rapidly confirm the identification of foodborne pathogens are highly desired. The Micro Imaging Technology (MIT) 1000 Rapid Microbial Identification (RMID) System is a benchtop instrument that detects laser light scattered from individual bacterial cells in solution with an array of 35 ...

  4. TLM modeling and system identification of optimized antenna structures

    NASA Astrophysics Data System (ADS)

    Fichtner, N.; Siart, U.; Kuznetsov, Y.; Baev, A.; Russer, P.

    2008-05-01

    The transmission line matrix (TLM) method in conjunction with the genetic algorithm (GA) is presented for the bandwidth optimization of a low profile patch antenna. The optimization routine is supplemented by a system identification (SI) procedure. By the SI the model parameters of the structure are estimated which is used for a reduction of the total TLM simulation time. The SI utilizes a new stability criterion of the physical poles for the parameter extraction.

  5. Gunshot identification system by integration of open source consumer electronics

    NASA Astrophysics Data System (ADS)

    López R., Juan Manuel; Marulanda B., Jose Ignacio

    2014-05-01

    This work presents a prototype of low-cost gunshots identification system that uses consumer electronics in order to ensure the existence of gunshots and then classify it according to a previously established database. The implementation of this tool in the urban areas is to set records that support the forensics, hence improving law enforcement also on developing countries. An analysis of its effectiveness is presented in comparison with theoretical results obtained with numerical simulations.

  6. Protein interaction matrix of Papaya ringspot virus type P based on a yeast two-hybrid system.

    PubMed

    Shen, W T; Wang, M Q; Yan, P; Gao, L; Zhou, P

    2010-01-01

    Comprehensive analysis of the interactions between 10 mature proteins of Papaya ringspot virus type P (PRSV-P) was carried out based on a yeast two-hybrid system assay (YTHS). We detected 6 interactions between different viral proteins (VPg-P1, VPg-P3, VPg-CI, VPg-CP, NIaPro-CI, and NIb-P3) and 4 self-interactions (HC-Pro, VPg, NIaPro, and CP). These interactions did not show the same directionality as corresponding interactions detected in other potyviruses and consequently, a protein interaction matrix displayed different patterns. This initial map of the protein interactions of PRSV-P allows further study of various viral proteins in order to develop anew strategy to control PRSV-P infection. PMID:20201614

  7. System IDentification Programs for AirCraft (SIDPAC)

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2002-01-01

    A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.

  8. Computational requirements for on-orbit identification of space systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, Fred Y.

    1988-01-01

    For the future space systems, on-orbit identification (ID) capability will be required to complement on-orbit control, due to the fact that the dynamics of large space structures, spacecrafts, and antennas will not be known sufficiently from ground modeling and testing. The computational requirements for ID of flexible structures such as the space station (SS) or the large deployable reflectors (LDR) are however, extensive due to the large number of modes, sensors, and actuators. For these systems the ID algorithm operations need not be computed in real-time, only in near real-time, or an appropriate mission time. Consequently the space systems will need advanced processors and efficient parallel processing algorithm design and architectures to implement the identification algorithms in near real-time. The MAX computer currently being developed may handle such computational requirements. The purpose is to specify the on-board computational requirements for dynamic and static identification for large space structures. The computational requirements for six ID algorithms are presented in the context of three examples: the JPL/AFAL ground antenna facility, the space station (SS), and the large deployable reflector (LDR).

  9. The Yeast Three-Hybrid System as an Experimental Platform to Identify Proteins Interacting with Small Signaling Molecules in Plant Cells: Potential and Limitations

    PubMed Central

    Cottier, Stéphanie; Mönig, Timon; Wang, Zheming; Svoboda, Jiří; Boland, Wilhelm; Kaiser, Markus; Kombrink, Erich

    2011-01-01

    Chemical genetics is a powerful scientific strategy that utilizes small bioactive molecules as experimental tools to unravel biological processes. Bioactive compounds occurring in nature represent an enormous diversity of structures that can be used to dissect functions of biological systems. Once the bioactivity of a natural or synthetic compound has been critically evaluated the challenge remains to identify its molecular target and mode of action, which usually is a time-consuming and labor-intensive process. To facilitate this task, we decided to implement the yeast three-hybrid (Y3H) technology as a general experimental platform to scan the whole Arabidopsis proteome for targets of small signaling molecules. The Y3H technology is based on the yeast two-hybrid system and allows direct cloning of proteins that interact in vivo with a synthetic hybrid ligand, which comprises the biologically active molecule of interest covalently linked to methotrexate (Mtx). In yeast nucleus the hybrid ligand connects two fusion proteins: the Mtx part binding to dihydrofolate reductase fused to a DNA-binding domain (encoded in the yeast strain), and the bioactive molecule part binding to its potential protein target fused to a DNA-activating domain (encoded on a cDNA expression vector). During cDNA library screening, the formation of this ternary, transcriptional activator complex leads to reporter gene activation in yeast cells, and thereby allows selection of the putative targets of small bioactive molecules of interest. Here we present the strategy and experimental details for construction and application of a Y3H platform, including chemical synthesis of different hybrid ligands, construction of suitable cDNA libraries, the choice of yeast strains, and appropriate screening conditions. Based on the results obtained and the current literature we discuss the perspectives and limitations of the Y3H approach for identifying targets of small bioactive molecules. PMID:22639623

  10. Validation of High Resolution Melting Analysis (HRM) of the Amplified ITS2 Region for the Detection and Identification of Yeasts from Clinical Samples: Comparison with Culture and MALDI-TOF Based Identification

    PubMed Central

    Duyvejonck, Hans; Cools, Piet; Decruyenaere, Johan; Roelens, Kristien; Noens, Lucien; Vermeulen, Stefan; Claeys, Geert; Decat, Ellen; Van Mechelen, Els; Vaneechoutte, Mario

    2015-01-01

    Aim Candida species are known as opportunistic pathogens, and a possible cause of invasive infections. Because of their species-specific antimycotic resistance patterns, reliable techniques for their detection, quantification and identification are needed. We validated a DNA amplification method for direct detection of Candida spp. from clinical samples, namely the ITS2-High Resolution Melting Analysis (direct method), by comparing it with a culture and MALDI-TOF Mass Spectrometry based method (indirect method) to establish the presence of Candida species in three different types of clinical samples. Materials and Methods A total of 347 clinical samples, i.e. throat swabs, rectal swabs and vaginal swabs, were collected from the gynaecology/obstetrics, intensive care and haematology wards at the Ghent University Hospital, Belgium. For the direct method, ITS2-HRM was preceded by NucliSENS easyMAG DNA extraction, directly on the clinical samples. For the indirect method, clinical samples were cultured on Candida ID and individual colonies were identified by MALDI-TOF. Results For 83.9% of the samples there was complete concordance between both techniques, i.e. the same Candida species were detected in 31.1% of the samples or no Candida species were detected in 52.8% of the samples. In 16.1% of the clinical samples, discrepant results were obtained, of which only 6.01% were considered as major discrepancies. Discrepancies occurred mostly when overall numbers of Candida cells in the samples were low and/or when multiple species were present in the sample. Discussion Most of the discrepancies could be decided in the advantage of the direct method. This is due to samples in which no yeast could be cultured whereas low amounts could be detected by the direct method and to samples in which high quantities of Candida robusta according to ITS2-HRM were missed by culture on Candida ID agar. It remains to be decided whether the diagnostic advantages of the direct method compensate for its disadvantages. PMID:26295947

  11. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    DOEpatents

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  12. Identification and Analysis of National Airspace System Resource Constraints

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Marien, Ty V.; Viken, Jeffery K.; Neitzke, Kurt W.; Kwa, Tech-Seng; Dollyhigh, Samuel M.; Fenbert, James W.; Hinze, Nicolas K.

    2015-01-01

    This analysis is the deliverable for the Airspace Systems Program, Systems Analysis Integration and Evaluation Project Milestone for the Systems and Portfolio Analysis (SPA) focus area SPA.4.06 Identification and Analysis of National Airspace System (NAS) Resource Constraints and Mitigation Strategies. "Identify choke points in the current and future NAS. Choke points refer to any areas in the en route, terminal, oceanic, airport, and surface operations that constrain actual demand in current and projected future operations. Use the Common Scenarios based on Transportation Systems Analysis Model (TSAM) projections of future demand developed under SPA.4.04 Tools, Methods and Scenarios Development. Analyze causes, including operational and physical constraints." The NASA analysis is complementary to a NASA Research Announcement (NRA) "Development of Tools and Analysis to Evaluate Choke Points in the National Airspace System" Contract # NNA3AB95C awarded to Logistics Management Institute, Sept 2013.

  13. Identification of MIMO systems with sparse transfer function coefficients

    NASA Astrophysics Data System (ADS)

    Qiu, Wanzhi; Saleem, Syed Khusro; Skafidas, Efstratios

    2012-12-01

    We study the problem of estimating transfer functions of multivariable (multiple-input multiple-output--MIMO) systems with sparse coefficients. We note that subspace identification methods are powerful and convenient tools in dealing with MIMO systems since they neither require nonlinear optimization nor impose any canonical form on the systems. However, subspace-based methods are inefficient for systems with sparse transfer function coefficients since they work on state space models. We propose a two-step algorithm where the first step identifies the system order using the subspace principle in a state space format, while the second step estimates coefficients of the transfer functions via L1-norm convex optimization. The proposed algorithm retains good features of subspace methods with improved noise-robustness for sparse systems.

  14. Protein-protein interactions in two potyviruses using the yeast two-hybrid system.

    PubMed

    Lin, Lin; Shi, Yuhong; Luo, Zhaopeng; Lu, Yuwen; Zheng, Hongying; Yan, Fei; Chen, Jiong; Chen, Jianping; Adams, M J; Wu, Yunfeng

    2009-06-01

    Interactions between all ten mature proteins of the potyviruses Soybean mosaic virus (Pinellia ternata isolate) and Shallot yellow stripe virus were investigated using yeast two-hybrid (Y2H) assays. Consistently strong self-interactions were found between the pairs of HC-Pro, VPg, NIa-Pro, NIb and CP in both viruses. Apart from the NIb, such interactions have been previously reported for some other potyviruses. The 6K1/NIa-Pro combination gave a consistently moderate to strong interaction in both directions for both viruses. This interaction occurred even when the 6K1 of SMV-P was truncated to eliminate the C-terminal motif that acts as a recognition site for cleavage by the NIa-Pro. Many other interactions occurred only in one direction or only for one of the two viruses. When taken together with other published reports, the data suggest that interactions detected by Y2H should be regarded as only preliminary indications. PMID:19189854

  15. Mutagenesis of the yeast plasma membrane H(+)-ATPase. A novel expression system.

    PubMed

    Rao, R; Slayman, C W

    1992-04-01

    The plasma membrane H(+)-ATPase of the yeast Saccharomyces cerevisiae is a prototype for the mutagenic analysis of structure-function relationships in P-type cation pumps. Because a functional H+ pump is required for viability, wild-type ATPase must be maintained in the plasma membrane for normal cell growth. Our expression strategy involves a rapid switch in expression from the wild-type ATPase gene to a mutant allele followed by entrapment of the newly synthesized mutant enzyme in an internal, secretory vesicle pool. The isolated vesicles prove to be ideally suited for the study of the catalytic and transport properties of the ATPase. Work to date has focused on conserved residues in the vicinity of the aspartyl-phosphate reaction intermediate. Substitution of Asp378 with Glu, Ser, or Asn and of Lys379 with Gln prevents normal biogenesis of the mutant ATPase. The more conservative Lys379----Arg mutation was tolerated, but with a sixfold loss of activity and substantial alterations in Km for ATP and Ki for vanadate. Nonconservative replacement of Thr380, Thr382, or Thr384 with Ala led to inactive enzyme, whereas the conservative change to Ser caused a two to threefold reduction in ATP hydrolysis and H(+)-pumping. Taken together, the results are consistent with an essential role for these invariant residues in phosphate-binding and ATP hydrolysis. PMID:1534699

  16. An approximation theory for the identification of linear thermoelastic systems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.; Su, Chien-Hua Frank

    1990-01-01

    An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.

  17. Identification of targeting optical systems by multiwavelength retroreflection

    NASA Astrophysics Data System (ADS)

    Auclair, Michel; Sheng, Yunlong; Fortin, Jean

    2013-05-01

    A method based on time-gated multiwavelength retroreflection is described to identify optical systems (OS) and discriminate false alarms. A test-bed consisting of a combination of a pulsed laser synchronized with a gated camera and a laser rangefinder was developed for detecting retro-reflection. The proposed method is based on the chromatic aberrations of the OSs of interest, which retro-reflect multiple interrogation wavelength signals. A calibration formula to evaluate the optical cross section from the system signature at the selected wavelengths is used for identification of and discrimination against false alarms.

  18. Direct Identification of Urinary Tract Pathogens From Urine Samples Using the Vitek MS System Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

    PubMed Central

    Kim, Yeongsic; Park, Kang Gyun; Lee, Kyungwon

    2015-01-01

    Background We evaluated the coincidence rate between Vitek MS system (bioMrieux, France) and Vitek 2 in identifying uropathogens directly from urine specimens. Methods Urine specimens submitted to our microbiology laboratory between July and September 2013 for Gram staining and bacterial culture were analyzed. Bacterial identification was performed by using the conventional method. Urine specimens showing a single morphotype by Gram staining were processed by culturing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Of 2,370 urine specimens, 251 showed a single morphotype on Gram staining, and among them, 202 were available for MALDI-TOF MS. Results In these 202 specimens, colony growth was observed in 189 specimens, and 145 specimens had significant growth of single-colony morphotype in culture. One hundred and ten (75.9%) of them had colony counts of ?105 colony-forming units (CFU)/mL and included 71 enteric gram-negative bacteria (GNB), 5 glucose-non-fermenting GNB, 9 gram-positive cocci (GPC), and 25 yeasts. Furthermore, 70 (98.6%), 3 (60.0%), 4 (44.4%), and 5 (20.0%), respectively, of these were correctly identified by Vitek MS. Thirty-one specimens (21.4%; 11 GNB, 7 GPC, 12 yeasts, and 1 gram-positive bacillus) had colony counts of 104-105 CFU/mL. Four specimens (2.8%) yielded colony counts of 103-104 CFU/mL. Conclusions Vitek MS showed high rate of accuracy for the identification of GNB in urine specimens (?105 CFU/mL). This could become a rapid and accurate diagnostic method for urinary tract infection caused by GNB. However, for the identification of GPC and yeasts, further studies on appropriate pre-treatment are warranted. PMID:26131413

  19. Nonlinear stochastic system identification of skin using volterra kernels.

    PubMed

    Chen, Yi; Hunter, Ian W

    2013-04-01

    Volterra kernel stochastic system identification is a technique that can be used to capture and model nonlinear dynamics in biological systems, including the nonlinear properties of skin during indentation. A high bandwidth and high stroke Lorentz force linear actuator system was developed and used to test the mechanical properties of bulk skin and underlying tissue in vivo using a non-white input force and measuring an output position. These short tests (5 s) were conducted in an indentation configuration normal to the skin surface and in an extension configuration tangent to the skin surface. Volterra kernel solution methods were used including a fast least squares procedure and an orthogonalization solution method. The practical modifications, such as frequency domain filtering, necessary for working with low-pass filtered inputs are also described. A simple linear stochastic system identification technique had a variance accounted for (VAF) of less than 75%. Representations using the first and second Volterra kernels had a much higher VAF (90-97%) as well as a lower Akaike information criteria (AICc) indicating that the Volterra kernel models were more efficient. The experimental second Volterra kernel matches well with results from a dynamic-parameter nonlinearity model with fixed mass as a function of depth as well as stiffness and damping that increase with depth into the skin. A study with 16 subjects showed that the kernel peak values have mean coefficients of variation (CV) that ranged from 3 to 8% and showed that the kernel principal components were correlated with location on the body, subject mass, body mass index (BMI), and gender. These fast and robust methods for Volterra kernel stochastic system identification can be applied to the characterization of biological tissues, diagnosis of skin diseases, and determination of consumer product efficacy. PMID:23264003

  20. Sensor network based vehicle classification and license plate identification system

    SciTech Connect

    Frigo, Janette Rose; Brennan, Sean M; Rosten, Edward J; Raby, Eric Y; Kulathumani, Vinod K

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  1. Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids.

    PubMed

    Huang, Hongzhi; Guo, Xinyan; Li, Dongmin; Liu, Mengmeng; Wu, Jiafang; Ren, Haiyu

    2011-08-01

    Compounds inhibitory to enzymatic hydrolysis and fermentation are generated from neutral steam exploded corn stover in the process of producing bio-ethanol. In this study, weak acids were identified as main yeast inhibitors, while phenols and aldehyde contribute to the inhibition to a lower degree. Main weak acids in hydrolysates are acetic acid and formic acid, for which critical levels for yeast inhibition are 6 and 4g/L, respectively. The inhibitory effect of these compounds can be greatly overcome by increasing pH of hydrolysates to 6.0-9.0, but there is a risk of bacterial contamination when fermenting at high pH. The relationship of pH, total solids of hydrolysates, fermentation and contamination was studied in detail. Results indicate that the contamination by bacteria when fermenting at high pH can be prevented effectively using hydrolysates with total solids of more than 20%. Meanwhile, ethanol yield is improved significantly. PMID:21624827

  2. Alu-primed polymerase chain reaction for regional assignment of 110 yeast artificial chromosome clones from the human X chromosome: Identification of clones associated with a disease locus

    SciTech Connect

    Nelson, D.L.; Ballabio, A.; Victoria, M.F.; Pieretti, M.; Bies, R.D.; Gibbs, R.A.; Maley, J.A.; Chinault, A.C.; Webster, T.D.; Caskey, C.T. )

    1991-07-15

    Over 400 yeast artificial chromosome (YAC) clones were isolated from the human X chromosome, and 110 of these were assigned to regions defined by chromosome translocation and deletion breakpoints. Polymerase chain reaction using Alu primers was applied to YAC clones in order to generate probes, to identify overlapping clones, and to derive fingerprints and sequence data directly from total yeast DNA. Several clones were identified in regions of medical interest. One set of three overlapping clones was found to cross a chromsomal translocation implicated in Lowe syndrome. The regional assignment of groups of YAC clones provides initiation points for further attempts to develop large cloned contiguous sequences, as well as material for investigation of regions involved in genetic diseases.

  3. Interaction Between Yeasts and Zinc

    NASA Astrophysics Data System (ADS)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  4. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis

    PubMed Central

    Swinnen, Steve; Schaerlaekens, Kristien; Pais, Thiago; Claesen, Jürgen; Hubmann, Georg; Yang, Yudi; Demeke, Mekonnen; Foulquié-Moreno, María R.; Goovaerts, Annelies; Souvereyns, Kris; Clement, Lieven; Dumortier, Françoise; Thevelein, Johan M.

    2012-01-01

    High ethanol tolerance is an exquisite characteristic of the yeast Saccharomyces cerevisiae, which enables this microorganism to dominate in natural and industrial fermentations. Up to now, ethanol tolerance has only been analyzed in laboratory yeast strains with moderate ethanol tolerance. The genetic basis of the much higher ethanol tolerance in natural and industrial yeast strains is unknown. We have applied pooled-segregant whole-genome sequence analysis to map all quantitative trait loci (QTL) determining high ethanol tolerance. We crossed a highly ethanol-tolerant segregant of a Brazilian bioethanol production strain with a laboratory strain with moderate ethanol tolerance. Out of 5974 segregants, we pooled 136 segregants tolerant to at least 16% ethanol and 31 segregants tolerant to at least 17%. Scoring of SNPs using whole-genome sequence analysis of DNA from the two pools and parents revealed three major loci and additional minor loci. The latter were more pronounced or only present in the 17% pool compared to the 16% pool. In the locus with the strongest linkage, we identified three closely located genes affecting ethanol tolerance: MKT1, SWS2, and APJ1, with SWS2 being a negative allele located in between two positive alleles. SWS2 and APJ1 probably contained significant polymorphisms only outside the ORF, and lower expression of APJ1 may be linked to higher ethanol tolerance. This work has identified the first causative genes involved in high ethanol tolerance of yeast. It also reveals the strong potential of pooled-segregant sequence analysis using relatively small numbers of selected segregants for identifying QTL on a genome-wide scale. PMID:22399573

  5. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis.

    PubMed

    Swinnen, Steve; Schaerlaekens, Kristien; Pais, Thiago; Claesen, Jürgen; Hubmann, Georg; Yang, Yudi; Demeke, Mekonnen; Foulquié-Moreno, María R; Goovaerts, Annelies; Souvereyns, Kris; Clement, Lieven; Dumortier, Françoise; Thevelein, Johan M

    2012-05-01

    High ethanol tolerance is an exquisite characteristic of the yeast Saccharomyces cerevisiae, which enables this microorganism to dominate in natural and industrial fermentations. Up to now, ethanol tolerance has only been analyzed in laboratory yeast strains with moderate ethanol tolerance. The genetic basis of the much higher ethanol tolerance in natural and industrial yeast strains is unknown. We have applied pooled-segregant whole-genome sequence analysis to map all quantitative trait loci (QTL) determining high ethanol tolerance. We crossed a highly ethanol-tolerant segregant of a Brazilian bioethanol production strain with a laboratory strain with moderate ethanol tolerance. Out of 5974 segregants, we pooled 136 segregants tolerant to at least 16% ethanol and 31 segregants tolerant to at least 17%. Scoring of SNPs using whole-genome sequence analysis of DNA from the two pools and parents revealed three major loci and additional minor loci. The latter were more pronounced or only present in the 17% pool compared to the 16% pool. In the locus with the strongest linkage, we identified three closely located genes affecting ethanol tolerance: MKT1, SWS2, and APJ1, with SWS2 being a negative allele located in between two positive alleles. SWS2 and APJ1 probably contained significant polymorphisms only outside the ORF, and lower expression of APJ1 may be linked to higher ethanol tolerance. This work has identified the first causative genes involved in high ethanol tolerance of yeast. It also reveals the strong potential of pooled-segregant sequence analysis using relatively small numbers of selected segregants for identifying QTL on a genome-wide scale. PMID:22399573

  6. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    PubMed

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-01

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product. PMID:26425801

  7. Construction and analysis of the cDNA subtraction library of yeast and mycelial phases of Sporothrix globosa isolated in China: identification of differentially expressed genes.

    PubMed

    Hu, Qing-Bi; He, Yu; Zhou, Xun

    2015-12-01

    Species included in the Sporothrix schenckii complex are temperature-dependent with dimorphic growth and cause sporotrichosis that is characterized by chronic and fatal lymphocutaneous lesions. The putative species included in the Sporothrix complex are S. brasiliensis, S. globosa, S. mexicana, S. pallida, S. schenckii, and S. lurei. S. globosa is the causal agent of sporotrichosis in China, and its pathogenicity appears to be closely related to the dimorphic transition, i.e. from the mycelial to the yeast phase, it adapts to changing environmental conditions. To determine the molecular mechanisms of the switching process that mediates the dimorphic transition of S. globosa, suppression subtractive hybridization (SSH) was used to prepare a complementary DNA (cDNA) subtraction library from the yeast and mycelial phases. Bioinformatics analysis was performed to profile the relationship between differently expressed genes and the dimorphic transition. Two genes that were expressed at higher levels by the yeast form were selected, and their differential expression levels were verified using a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). It is believed that these differently expressed genes are involved in the pathogenesis of S. globosa infection in China. PMID:26642182

  8. Construction and analysis of the cDNA subtraction library of yeast and mycelial phases of Sporothrix globosa isolated in China: identification of differentially expressed genes*

    PubMed Central

    Hu, Qing-bi; He, Yu; Zhou, Xun

    2015-01-01

    Species included in the Sporothrix schenckii complex are temperature-dependent with dimorphic growth and cause sporotrichosis that is characterized by chronic and fatal lymphocutaneous lesions. The putative species included in the Sporothrix complex are S. brasiliensis, S. globosa, S. mexicana, S. pallida, S. schenckii, and S. lurei. S. globosa is the causal agent of sporotrichosis in China, and its pathogenicity appears to be closely related to the dimorphic transition, i.e. from the mycelial to the yeast phase, it adapts to changing environmental conditions. To determine the molecular mechanisms of the switching process that mediates the dimorphic transition of S. globosa, suppression subtractive hybridization (SSH) was used to prepare a complementary DNA (cDNA) subtraction library from the yeast and mycelial phases. Bioinformatics analysis was performed to profile the relationship between differently expressed genes and the dimorphic transition. Two genes that were expressed at higher levels by the yeast form were selected, and their differential expression levels were verified using a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). It is believed that these differently expressed genes are involved in the pathogenesis of S. globosa infection in China. PMID:26642182

  9. Spatiotemporal System Identification With Continuous Spatial Maps and Sparse Estimation.

    PubMed

    Aram, Parham; Kadirkamanathan, Visakan; Anderson, Sean R

    2015-11-01

    We present a framework for the identification of spatiotemporal linear dynamical systems. We use a state-space model representation that has the following attributes: 1) the number of spatial observation locations are decoupled from the model order; 2) the model allows for spatial heterogeneity; 3) the model representation is continuous over space; and 4) the model parameters can be identified in a simple and sparse estimation procedure. The model identification procedure we propose has four steps: 1) decomposition of the continuous spatial field using a finite set of basis functions where spatial frequency analysis is used to determine basis function width and spacing, such that the main spatial frequency contents of the underlying field can be captured; 2) initialization of states in closed form; 3) initialization of state-transition and input matrix model parameters using sparse regression-the least absolute shrinkage and selection operator method; and 4) joint state and parameter estimation using an iterative Kalman-filter/sparse-regression algorithm. To investigate the performance of the proposed algorithm we use data generated by the Kuramoto model of spatiotemporal cortical dynamics. The identification algorithm performs successfully, predicting the spatiotemporal field with high accuracy, whilst the sparse regression leads to a compact model. PMID:25647667

  10. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  11. Digital Instrumentation Analysis and Navigation System (DIANS) for system identification

    NASA Technical Reports Server (NTRS)

    Smyth, R. K.; Smyth, D. E.; Taylor, L. W., Jr.

    1983-01-01

    Hardware, software, and performance features of the Digital Instrumentation and Navigation System (DIANS) designed for NASA research to collect flight data as a strap-down system are detailed. The support software for the system has a cross compiler, a linkage editor, and cross assembler, extended communication capabilities, postflight processing applications, and compilers for PASCAL, FORTRAN, CBASIC and MT. The DIANS microcomputer has a 1 Mbyte RAM module, a fast floating point processor board, a 68000 monoboard computer with 64 RAM, a 128 Kbyte bubble memory card, and a navigation radio. The system also carries a battery for full system operation for over an hour. The support software is also stored on a host mainframe computer, which has a CP/M operating system. Pitch, roll, and heading data are gathered from the on-board system, and communication is possible between the airborne and ground-based computer.

  12. Methods, Systems and Apparatuses for Radio Frequency Identification

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor); Brown, Dewey T. (Inventor); Byerly, Diane (Inventor); Boose, Haley C. (Inventor)

    2015-01-01

    A system for radio frequency identification (RFID) includes an enclosure defining an interior region interior to the enclosure, and a feed for generating an electromagnetic field in the interior region in response to a signal received from an RFID reader via a radio frequency (RF) transmission line and, in response to the electromagnetic field, receiving a signal from an RFID sensor attached to an item in the interior region. The structure of the enclosure may be conductive and may include a metamaterial portion, an electromagnetically absorbing portion, or a wall extending in the interior region. Related apparatuses and methods for performing RFID are provided.

  13. Identification and robust control of linear parameter-varying systems

    NASA Astrophysics Data System (ADS)

    Lee, Lawton Hubert

    This dissertation deals with linear parameter-varying (LPV) systems: linear dynamic systems that depend on time-varying parameters. These systems appear in gain scheduling problems, and much recent research has been devoted to their prospective usefulness for systematic gain scheduling. We primarily focus on robust control of uncertain LPV systems and identification of LPV systems that are modelable as linear-fractional transformations (LFTs). Using parameter-dependent quadratic Lyapunov functions, linear matrix inequalities (LMIs), and scaled small-gain arguments, we define notions of stability and induced-{cal L}sb2 performance for uncertain LPV systems whose parameters and rates of parameter variation satisfy given bounds. The performance criterion involves integral quadratic constraints and implies naturally parameter-dependent induced-{cal L}sb2 norm bounds. We formulate and solve an {cal H}sb{infty}-like control problem for an LPV plant with measurable parameters and an "Output/State Feedback" structure: the feedback outputs include some noiselessly measured states. Necessary and sufficient solvability conditions reduce to LMIs that can be solved approximately using finite-dimensional convex programming. Reduced-order LPV controllers are constructed from the LMI solutions. A D-K iteration-like procedure provides robustness to structured, time-varying, parametric uncertainty. The design method is applied to a motivating example: flight control for the F-16 VISTA throughout its subsonic flight envelope. Parameter-dependent weights and {cal H}sb{infty} design principles describe the performance objectives. Closed-loop responses exhibited by nonlinear simulations indicate satisfactory flying qualities. Identification of linear-fractional LPV systems is treated using maximum-likelihood parameter estimation. Computing the gradient and Hessian of a maximum-likelihood cost function reduces to simulating one LPV filter per identified parameter. We use nonlinear programming to (locally) minimize the cost function, paying careful attention to the need for good initial estimates. This identification scheme generalizes to all linear systems that can be written as LFTs (e.g., time-invariant, parameter-varying, multidimensional, uncertain). We also address the critical issue of identifiability. We characterize the well-known redundancy of LFT models by manifolds (generated by structured similarity transformations) in the parameter space. Restricting the nonlinear programming for iterative parameter estimation to directions that are orthogonal to the corresponding tangent spaces produces an identifiable local canonical form that greatly reduces the computational burden.

  14. Nonlinear damage identification of breathing cracks in Truss system

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; DeSmidt, Hans

    2014-03-01

    The breathing cracks in truss system are detected by Frequency Response Function (FRF) based damage identification method. This method utilizes damage-induced changes of frequency response functions to estimate the severity and location of structural damage. This approach enables the possibility of arbitrary interrogation frequency and multiple inputs/outputs which greatly enrich the dataset for damage identification. The dynamical model of truss system is built using the finite element method and the crack model is based on fracture mechanics. Since the crack is driven by tensional and compressive forces of truss member, only one damage parameter is needed to represent the stiffness reduction of each truss member. Assuming that the crack constantly breathes with the exciting frequency, the linear damage detection algorithm is developed in frequency/time domain using Least Square and Newton Raphson methods. Then, the dynamic response of the truss system with breathing cracks is simulated in the time domain and meanwhile the crack breathing status for each member is determined by the feedback from real-time displacements of member's nodes. Harmonic Fourier Coefficients (HFCs) of dynamical response are computed by processing the data through convolution and moving average filters. Finally, the results show the effectiveness of linear damage detection algorithm in identifying the nonlinear breathing cracks using different combinations of HFCs and sensors.

  15. A forward model-based validation of cardiovascular system identification

    NASA Technical Reports Server (NTRS)

    Mukkamala, R.; Cohen, R. J.

    2001-01-01

    We present a theoretical evaluation of a cardiovascular system identification method that we previously developed for the analysis of beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure, and instantaneous lung volume. The method provides a dynamical characterization of the important autonomic and mechanical mechanisms responsible for coupling the fluctuations (inverse modeling). To carry out the evaluation, we developed a computational model of the cardiovascular system capable of generating realistic beat-to-beat variability (forward modeling). We applied the method to data generated from the forward model and compared the resulting estimated dynamics with the actual dynamics of the forward model, which were either precisely known or easily determined. We found that the estimated dynamics corresponded to the actual dynamics and that this correspondence was robust to forward model uncertainty. We also demonstrated the sensitivity of the method in detecting small changes in parameters characterizing autonomic function in the forward model. These results provide confidence in the performance of the cardiovascular system identification method when applied to experimental data.

  16. Ultra-rapid preparation of total genomic DNA from isolates of yeast and mould using Whatman FTA filter paper technology - a reusable DNA archiving system.

    PubMed

    Borman, Andrew M; Linton, Christopher J; Miles, Sarah-Jane; Campbell, Colin K; Johnson, Elizabeth M

    2006-08-01

    Conventional methods for purifying PCR-grade fungal genomic DNA typically require cell disruption (either physical or enzymatic) coupled with laborious organic extraction and precipitation stages, or expensive column-based technologies. Here we present an easy and extremely rapid method of preparing yeast and mould genomic DNAs from living cultures using Whatman FTA filter matrix technology. Aqueous suspensions of yeast cells or hyphal fragments and conidia (in the case of moulds) are applied directly (or after freeze-thawing) to dry FTA filters. Inoculated filters are then subjected to brief microwave treatment, to dry the filters and inactivate the organisms. Filter punches are removed, washed rapidly, dried and placed directly into PCR reactions. We show that this procedure inactivated all of the 38 yeast and 75 mould species tested, and generated PCR-grade DNA preparations in around 15 minutes. A total of 218 out of 226 fungal isolates tested liberated amplifiable DNA after application to FTA filters. Detection limits with yeast cultures were approximately 10 colony-forming units per punch. Moreover, we demonstrate that filter punches can be recovered after PCR, washed and used in fresh PCR reactions without detectable cross-contamination. Whatman FTA technology thus represents a cheap, ultra-rapid method of fungal genomic DNA preparation, and also potentially represents a powerful fungal DNA archiving and storage system. PMID:16882605

  17. Part identification in robotic assembly using vision system

    NASA Astrophysics Data System (ADS)

    Balabantaray, Bunil Kumar; Biswal, Bibhuti Bhusan

    2013-12-01

    Machine vision system acts an important role in making robotic assembly system autonomous. Identification of the correct part is an important task which needs to be carefully done by a vision system to feed the robot with correct information for further processing. This process consists of many sub-processes wherein, the image capturing, digitizing and enhancing, etc. do account for reconstructive the part for subsequent operations. Interest point detection of the grabbed image, therefore, plays an important role in the entire image processing activity. Thus it needs to choose the correct tool for the process with respect to the given environment. In this paper analysis of three major corner detection algorithms is performed on the basis of their accuracy, speed and robustness to noise. The work is performed on the Matlab R2012a. An attempt has been made to find the best algorithm for the problem.

  18. A Gamma Memory Neural Network for System Identification

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; Principe, Jose C.

    1992-01-01

    A gamma neural network topology is investigated for a system identification application. A discrete gamma memory structure is used in the input layer, providing delayed values of both the control inputs and the network output to the input layer. The discrete gamma memory structure implements a tapped dispersive delay line, with the amount of dispersion regulated by a single, adaptable parameter. The network is trained using static back propagation, but captures significant features of the system dynamics. The system dynamics identified with the network are the Mach number dynamics of the 16 Foot Transonic Tunnel at NASA Langley Research Center, Hampton, Virginia. The training data spans an operating range of Mach numbers from 0.4 to 1.3.

  19. A Multimicroprocessor System for Myoelectric Signal Analysis/Identification

    PubMed Central

    Ganesan, S.; Ahmad, M.O.; Swamy, M.N.S.

    1985-01-01

    Use of Myoelectric signal as a control signal has found numerous applications for the disabled. A multimicroprocessor system which is useful for the analysis and identification of myoelectric signals is described. This system is also useful for the development of a controller which can provide the motion of prosthetic or orthotic limbs. In this paper, the theory, software and hardware design of a tightly coupled multimicroprocessor system with distributed common memory and private memory modules, to compute the values of auto-and crosscorrelation functions, to recover signals buried in noise, to compute cross and auto power spectral density at 128 points simultaneously on the time delay axis or frequency axis, are also described. Using these functions, EMG signals are identified and the motion of artificial limbs controlled.

  20. Experimental evaluation of a modal parameter based system identification procedure

    NASA Astrophysics Data System (ADS)

    Yu, Minli; Feng, Ningsheng; Hahn, Eric J.

    2016-02-01

    Correct modelling of the foundation of a rotor bearing foundation system (RBFS) is an invaluable asset for the balancing and efficient running of turbomachinery. Numerical experiments have shown that a modal parameter based identification approach could be feasible for this purpose but there is a lack of experimental verification of the suitability of such a modal approach for even the simplest systems. In this paper the approach is tested on a simple experimental rig comprising a clamped horizontal bar with lumped masses. It is shown that apart from damping, the proposed approach can identify reasonably accurately the relevant modal parameters of the rig; and that the resulting equivalent system can predict reasonably well the frequency response of the rig. Hence, the proposed approach shows promise but further testing is required, since application to identifying the foundation of an RBFS involves the additional problem of accurately obtaining the force excitation from motion measurements.

  1. Genome and Transcriptome Analysis of the Food-Yeast Candida utilis

    PubMed Central

    Tomita, Yasuyuki; Ikeo, Kazuho; Tamakawa, Hideyuki; Gojobori, Takashi; Ikushima, Shigehito

    2012-01-01

    The industrially important food-yeast Candida utilis is a Crabtree effect-negative yeast used to produce valuable chemicals and recombinant proteins. In the present study, we conducted whole genome sequencing and phylogenetic analysis of C. utilis, which showed that this yeast diverged long before the formation of the CUG and Saccharomyces/Kluyveromyces clades. In addition, we performed comparative genome and transcriptome analyses using next-generation sequencing, which resulted in the identification of genes important for characteristic phenotypes of C. utilis such as those involved in nitrate assimilation, in addition to the gene encoding the functional hexose transporter. We also found that an antisense transcript of the alcohol dehydrogenase gene, which in silico analysis did not predict to be a functional gene, was transcribed in the stationary-phase, suggesting a novel system of repression of ethanol production. These findings should facilitate the development of more sophisticated systems for the production of useful reagents using C. utilis. PMID:22629373

  2. Regulation of the antioxidant system in cells of the fission yeast Schizosaccharomyces pombe after combined treatment with patulin and citrinin.

    PubMed

    Papp, Gábor; Máté, Gábor; Mike, Nóra; Gazdag, Zoltán; Pesti, Miklós

    2016-03-01

    The effects of combined treatment with patulin (PAT) and citrinin (CTN) on Schizosaccharomyces pombe cells were investigated in acute toxicity tests. In comparison with the controls the exposure of fission yeast cells (10(7) cells ml(-1)) to PAT + CTN (250 μM each) for 1 h at a survival rate of 66.6% significantly elevated the concentration of total reactive oxygen species (ROS) via increased levels of peroxides without affecting the concentrations of superoxides or the hydroxyl radical. This treatment induced a 3.08-fold increase in the specific concentration of glutathione and elevated specific activities of catalase and glutathione S-transferase, while at the same time the activity of glutathione reductase decreased. The pattern of the ROS was the same as that induced by CTN (Máté et al., 2014), while the presence of PAT in the PAT + CTN combination treatment modified the activities of the antioxidant system (Papp et al., 2012) in comparison with the individual PAT or CTN treatment, suggesting toxin-specific regulation of glutathione and the enzymes of the antioxidant system and the possibility that the transcription factor (pap1 and atf1) -regulated processes might be influenced directly by ROS. PMID:26752674

  3. Yeast cytochrome c oxidase: A model system to study mitochondrial forms of the haem–copper oxidase superfamily☆

    PubMed Central

    Maréchal, Amandine; Meunier, Brigitte; Lee, David; Orengo, Christine; Rich, Peter R.

    2015-01-01

    The known subunits of yeast mitochondrial cytochrome c oxidase are reviewed. The structures of all eleven of its subunits are explored by building homology models based on the published structures of the homologous bovine subunits and similarities and differences are highlighted, particularly of the core functional subunit I. Yeast genetic techniques to enable introduction of mutations into the three core mitochondrially-encoded subunits are reviewed. This article is part of a Special Issue entitled: Respiratory Oxidases. PMID:21925484

  4. Identification of a yeast artificial chromosome clone encoding an accessory factor for the human interferon [gamma] receptor: Evidence for multiple accessory factors

    SciTech Connect

    Soh, J.; Donnelly, R.J.; Mariano, T.M.; Cook, J.R.; Schwartz, B.; Pestka, S. )

    1993-09-15

    Human chromosomes 6 and 21 are both necessary to confer sensitivity to human interferon [gamma](Hu-IFN-[gamma]), as measured by the induction of human HLA class I antigen. Human chromosome 6 encodes the receptor for Hu-IFN-[gamma], and human chromosome 21 encodes accessory factors for generating biological activity through the Hu-IFN-[gamma] receptor. A small region of human chromosome 21 that is responsible for encoding such factors was localized with hamster-human somatic cell hybrids carrying an irradiation-reduced fragment of human chromosome 21. The cell line with the minimum chromosome 21-specific DNA is Chinese hamster ovary 3x1S. To localize the genes further, 10 different yeast artificial chromosome clones from six different loci in the vicinity of the 3x1S region were fused to a human-hamster hybrid cell line (designated 16-9) that contains human chromosome 6q (supplying the Hy-IFN-[gamma] receptor) and the human HLA-B7 gene. These transformed 16-9 cells were assayed for induction of class I HLA antigens upon treatment with Hu-IFN-[gamma]. Here the authors report that a 540-kb yeast artificial chromosome encodes the necessary species-specific factor(s) and can substitute for human chromosome 21 to reconstitute the Hu-IFN-[gamma]-receptor-mediated induction of class I HLA antigens. However, the factor encoded on the yeast artificial chromosome does not confer antiviral protection against encephalomyocarditis virus, demonstrating that an additional factor encoded on human chromosome 21 is required for the antiviral activity. 51 refs., 3 figs., 2 tabs.

  5. Identification of protein secretion systems in bacterial genomes

    PubMed Central

    Abby, Sophie S.; Cury, Jean; Guglielmini, Julien; Néron, Bertrand; Touchon, Marie; Rocha, Eduardo P. C.

    2016-01-01

    Bacteria with two cell membranes (diderms) have evolved complex systems for protein secretion. These systems were extensively studied in some model bacteria, but the characterisation of their diversity has lagged behind due to lack of standard annotation tools. We built online and standalone computational tools to accurately predict protein secretion systems and related appendages in bacteria with LPS-containing outer membranes. They consist of models describing the systems’ components and genetic organization to be used with MacSyFinder to search for T1SS-T6SS, T9SS, flagella, Type IV pili and Tad pili. We identified ~10,000 candidate systems in bacterial genomes, where T1SS and T5SS were by far the most abundant and widespread. All these data are made available in a public database. The recently described T6SSiii and T9SS were restricted to Bacteroidetes, and T6SSii to Francisella. The T2SS, T3SS, and T4SS were frequently encoded in single-copy in one locus, whereas most T1SS were encoded in two loci. The secretion systems of diderm Firmicutes were similar to those found in other diderms. Novel systems may remain to be discovered, since some clades of environmental bacteria lacked all known protein secretion systems. Our models can be fully customized, which should facilitate the identification of novel systems. PMID:26979785

  6. iAID: an improved auxin-inducible degron system for the construction of a 'tight' conditional mutant in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Tanaka, Seiji; Miyazawa-Onami, Mayumi; Iida, Tetsushi; Araki, Hiroyuki

    2015-08-01

    Isolation of a 'tight' conditional mutant of a gene of interest is an effective way of studying the functions of essential genes. Strategies that use ubiquitin-mediated protein degradation to eliminate the product of a gene of interest, such as heat-inducible degron (td) and auxin-inducible degron (AID), are powerful methods for constructing conditional mutants. However, these methods do not work with some genes. Here, we describe an improved AID system (iAID) for isolating tight conditional mutants in the budding yeast Saccharomyces cerevisiae. In this method, transcriptional repression by the 'Tet-OFF' promoter is combined with proteolytic elimination of the target protein by the AID system. To provide examples, we describe the construction of tight mutants of the replication factors Dpb11 and Mcm10, dpb11-iAID, and mcm10-iAID. Because Dpb11 and Mcm10 are required for the initiation of DNA replication, their tight mutants are unable to enter S phase. This is the case for dpb11-iAID and mcm10-iAID cells after the addition of tetracycline and auxin. Both the 'Tet-OFF' promoter and the AID system have been shown to work in model eukaryotes other than budding yeast. Therefore, the iAID system is not only useful in budding yeast, but also can be applied to other model systems to isolate tight conditional mutants. PMID:26081484

  7. DIRC - The Particle Identification System for BaBar

    SciTech Connect

    Leith, David

    2002-08-19

    I have the pleasure of reporting on the status of the DIRC particle identification sub-system(2) of the BaBar Detector, running at the asymmetric B Factory at SLAC. The acronym DIRC stands for ''Detection of Internally Reflected Cherenkov Light.'' This device grows out of our group's experience with ring-imaging Cherenkov devices founded on a long partnership with Tom Ypsilantis and in particular with the CRID device for the SLD experiment. Blair Ratcliff had the brilliant idea of using the totally internally reflected Cherenkov light created in quartz bars, and transported out to the photon detectors by those same quartz bars, to provide excellent {pi}, K, p particle identification in the momentum range important for the B Factory. His naming of this new instrument was aptly ''CRID'' spelled backwards. The detailed design, building and commissioning of the DIRC sub-system was the work of a large international collaboration of French and U.S. groups. The device has proven to be a very robust detector, with the promised performance essentially fully realized, and is being effectively utilized in almost all of the current BaBar physics analysis.

  8. Human identification by FSS system adapted to cephalometric radiographs.

    PubMed

    Rabelo, Katharina Alves; Dos Anjos Pontual, Maria Luiza; de Queiroz Jordão, Nathalie; de Paiva, Kariny Milfont; de Moraes Ramos-Perez, Flavia Maria; Dos Santos, Marcelo Soares; Dos Anjos Pontual, Andrea

    2016-05-01

    The aim of this study was to verify the applicability and reproducibility of the FSS system [8] adapted for frontal and lateral cephalometric radiographs of the frontal sinus for human identification purposes. Eighty lateral and frontal digital cephalometric radiographs from a private Dental Radiology service's database were evaluated. Evaluations were performed in a dimmed lighting room, using a 4.200 lux lightbox with mask, ultrafan paper and pencil with a 0.5 diameter tip. The sheet of paper was superimposed on the radiograph to obtain the outlines of the frontal sinus and two examiners made the drawings independently at two different times, with a minimum period interval between evaluations. To obtain the linear physical measurements of the frontal sinus, a digital pachymeter was used. Later, all the discrete variables were codded for the statistical analysis. All variables were tested by means of the Cohen's Kappa test. The intraexaminer agreement ranged from good to perfect (p<0.001), while the interexaminer agreement ranged from regular to perfect (p<0.001). The use of frontal and lateral cephalometric radiographs was found to be reproducible and reliable for human identification by an adaptation of FSS system. PMID:27045380

  9. A Frequency-Domain Substructure System Identification Algorithm

    NASA Technical Reports Server (NTRS)

    Blades, Eric L.; Craig, Roy R., Jr.

    1996-01-01

    A new frequency-domain system identification algorithm is presented for system identification of substructures, such as payloads to be flown aboard the Space Shuttle. In the vibration test, all interface degrees of freedom where the substructure is connected to the carrier structure are either subjected to active excitation or are supported by a test stand with the reaction forces measured. The measured frequency-response data is used to obtain a linear, viscous-damped model with all interface-degree of freedom entries included. This model can then be used to validate analytical substructure models. This procedure makes it possible to obtain not only the fixed-interface modal data associated with a Craig-Bampton substructure model, but also the data associated with constraint modes. With this proposed algorithm, multiple-boundary-condition tests are not required, and test-stand dynamics is accounted for without requiring a separate modal test or finite element modeling of the test stand. Numerical simulations are used in examining the algorithm's ability to estimate valid reduced-order structural models. The algorithm's performance when frequency-response data covering narrow and broad frequency bandwidths is used as input is explored. Its performance when noise is added to the frequency-response data and the use of different least squares solution techniques are also examined. The identified reduced-order models are also compared for accuracy with other test-analysis models and a formulation for a Craig-Bampton test-analysis model is also presented.

  10. Nonlinear System Identification for Aeroelastic Systems with Application to Experimental Data

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  11. Non-Linear System Identification for Aeroelastic Systems with Application to Experimental Data

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NARMAX class is considered. A non-linear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  12. Biopharmaceutical discovery and production in yeast.

    PubMed

    Meehl, Michael A; Stadheim, Terrance A

    2014-12-01

    The selection of an expression platform for recombinant biopharmaceuticals is often centered upon suitable product titers and critical quality attributes, including post-translational modifications. Although notable differences between microbial, yeast, plant, and mammalian host systems exist, recent advances have greatly mitigated any inherent liabilities of yeasts. Yeast expression platforms are important to both the supply of marketed biopharmaceuticals and the pipelines of novel therapeutics. In this review, recent advances in yeast-based expression of biopharmaceuticals will be discussed. The advantages of using glycoengineered yeast as a production host and in the discovery space will be illustrated. These advancements, in turn, are transforming yeast platforms from simple production systems to key technological assets in the discovery and selection of biopharmaceutical lead candidates. PMID:25014890

  13. On the orthogonalised reverse path method for nonlinear system identification

    NASA Astrophysics Data System (ADS)

    Muhamad, P.; Sims, N. D.; Worden, K.

    2012-09-01

    The problem of obtaining the underlying linear dynamic compliance matrix in the presence of nonlinearities in a general multi-degree-of-freedom (MDOF) system can be solved using the conditioned reverse path (CRP) method introduced by Richards and Singh (1998 Journal of Sound and Vibration, 213(4): pp. 673-708). The CRP method also provides a means of identifying the coefficients of any nonlinear terms which can be specified a priori in the candidate equations of motion. Although the CRP has proved extremely useful in the context of nonlinear system identification, it has a number of small issues associated with it. One of these issues is the fact that the nonlinear coefficients are actually returned in the form of spectra which need to be averaged over frequency in order to generate parameter estimates. The parameter spectra are typically polluted by artefacts from the identification of the underlying linear system which manifest themselves at the resonance and anti-resonance frequencies. A further problem is associated with the fact that the parameter estimates are extracted in a recursive fashion which leads to an accumulation of errors. The first minor objective of this paper is to suggest ways to alleviate these problems without major modification to the algorithm. The results are demonstrated on numerically-simulated responses from MDOF systems. In the second part of the paper, a more radical suggestion is made, to replace the conditioned spectral analysis (which is the basis of the CRP method) with an alternative time domain decorrelation method. The suggested approach - the orthogonalised reverse path (ORP) method - is illustrated here using data from simulated single-degree-of-freedom (SDOF) and MDOF systems.

  14. 33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (AISSE) system consisting of a: (1) Twelve-channel all-in-view Differential Global Positioning System (d... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Automatic Identification System... Automatic Identification System Shipborne Equipment—Prince William Sound. (a) Until December 31, 2004,...

  15. 33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (AISSE) system consisting of a: (1) Twelve-channel all-in-view Differential Global Positioning System (d... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Automatic Identification System... Automatic Identification System Shipborne Equipment—Prince William Sound. (a) Until December 31, 2004,...

  16. 33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (AISSE) system consisting of a: (1) Twelve-channel all-in-view Differential Global Positioning System (d... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Automatic Identification System... Automatic Identification System Shipborne Equipment—Prince William Sound. (a) Until December 31, 2004,...

  17. 33 CFR 164.43 - Automatic Identification System Shipborne Equipment-Prince William Sound.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (AISSE) system consisting of a: (1) Twelve-channel all-in-view Differential Global Positioning System (d... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Automatic Identification System... Automatic Identification System Shipborne Equipment—Prince William Sound. (a) Until December 31, 2004,...

  18. A unified process for systems identification based on performance assessment

    NASA Technical Reports Server (NTRS)

    Hyland, C.; Shipley, J. W.

    1988-01-01

    Many modern spacecraft are complex multi-body dynamic systems where the bodies are connected by several active control systems for pointing and isolation. Mission requirements indicate that many structural modes and possibly some nonlinear effects will require characterization. Thus, even characterization at the subsystem level will become more difficult than usual. System level characterization difficulties will be compounded by the fact that only limited ground testing will be possible on the full up system, and flight testing will be restricted by an extremely limited measurements set. The object of the present discussion is the application of matrix majorant theory to the problem of assessing dynamic system performance when knowledge of the system is uncertain. We show how majorants provide an effective tool to relate required performance output to system identification test quality in terms of residual uncertainty in input-output relations, parameter values, nonlinearities, and interactions. The underlying machinery consists of the block-norm matrix which is a nonnegative matrix each of whose elements is the norm of a block of a suitably partitioned matrix. A matrix which bounds the block-norm matrix in the sense of nonnegative matrices, i.e., element by element is known as a majorant.

  19. The MeSsI (Merging Systems Identification) Algorithm & Catalogue

    NASA Astrophysics Data System (ADS)

    de los Rios, Martín; Domínguez, R. Mariano J.; Paz, Dante; Merchán., Manuel

    2016-01-01

    Merging galaxy systems provide observational evidence of the existence of dark matter and constraints on its properties. Therefore, statisticaly uniform samples of merging systems would be a powerful tool for several studies. In this work we present a new methodology for the identification of merging systems and the results of its application to galaxy redshift surveys. We use as a starting point a mock catalogue of galaxy systems, identified using FoF algorithms, which experienced a major merger as indicated by its merger tree. Applying machine learning techniques in this training sample, and using several features computed from the observable properties of galaxy members, it is possible to select galaxy groups with a high probability of having experienced a major merger. Next we apply a mixture of Gaussian technique on galaxy members in order to reconstruct the properties of the haloes involved in such merger. This methodology provides a highly reliable sample of merging systems with low contamination and precisely recovered properties. We apply our techniques to samples of galaxy systems obtained from SDSS-DR7, WINGS and HeCS. Our results recover previously known merging systems and provide several new candidates. We present their measured properties and discuss future analysis on current and forthcoming samples.

  20. SISO nonlinear system identification using a fuzzy-neural hybrid system.

    PubMed

    Lin, C J

    1997-06-01

    This paper describes a fuzzy-neural hybrid system for the identification of nonlinear dynamic systems with unknown parameters. The proposed model takes the form of a context-sensitive module in which a fuzzy system is used as a function module and a multilayer neural network is used as a context module. Fuzzy-neural hybrid systems with a decomposed structure reduce complexity and thus accelerate the learning process. Also, the parameters of a fuzzy system have clear physical meanings, which makes it possible to incorporate a priori knowledge into the selection of initial parameter values and constraints among parameter values. Since hybrid systems correspond to networks, it is feasible to construct fast, parallel devices to implement these models for practical applications. The gradient descent method for the adjustment of parameters in hybrid systems is discussed. Simulations demonstrate that the hybrid identification models suggested here for SISO dynamic systems are quite effective. PMID:9427106

  1. The 32nd CDC: System identification using interval dynamic models

    NASA Technical Reports Server (NTRS)

    Keel, L. H.; Lew, J. S.; Bhattacharyya, S. P.

    1992-01-01

    Motivated by the recent explosive development of results in the area of parametric robust control, a new technique to identify a family of uncertain systems is identified. The new technique takes the frequency domain input and output data obtained from experimental test signals and produces an 'interval transfer function' that contains the complete frequency domain behavior with respect to the test signals. This interval transfer function is one of the key concepts in the parametric robust control approach and identification with such an interval model allows one to predict the worst case performance and stability margins using recent results on interval systems. The algorithm is illustrated by applying it to an 18 bay Mini-Mast truss structure.

  2. Mapping chromosome band 11q23 in human acute leukemia with biotinylated probes: Identification of 11q23 translocation breakpoints with a yeast artificial chromosome

    SciTech Connect

    Rowley, J.D.; Diaz, M.O.; Espinosa, R. III; Patel, Y.D.; van Melle, E.; Ziemin, S.; Le Beau, M.M. ); Taillon-Miller, P.; Domer, P.H. ); Lichter, P.; Ward, D.C. ); Evans, G.A. ); Kersey, J.H. )

    1990-12-01

    Translocations involving chromosome 11, band q23, are frequent recurring abnormalities in human acute lymphoblastic and acute myeloid leukemia. The authors used 19 biotin labeled probes derived from genes and anonymous cosmids for hybridization to metaphase chromosomes from leukemia cells that contained four translocations involving band 11q23: t(4;11)(q21;q23), t(6;11)(q27;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13). The location of the cosmid probes relative to the breakpoint in 11q23 was the same in all translocation. Of the cosmid clones containing known genes, CD3D was proximal and PBGD, THY1, SRPR, and ETS1 were distal to the breakpoint on 11q23. Hybridization of genomic DNA from a yeast clone containing yeast artificial chromosomes (YACs), that carry 320 kilobases (kb) of human DNA including CD3D and CD3G genes, showed that the YACs were split in all four translocations. These results indicate that the breakpoint at 11q23 in each of these translocations occurs within the 320 kb encompassed by these YACs; whether the breakpoint within the YACs is precisely the same in the different translocation is presently unknown.

  3. Screening and identification of proteins interacting with IL-24 by the yeast two-hybrid screen, Co-IP, and FRET assays.

    PubMed

    Hu, Hui; Wang, Tao; Chen, Jiaojiao; Yu, Fang; Liu, Huilin; Zuo, Zhenyu; Yang, Zhonghua; Fan, Handong

    2016-04-01

    Interleukin-24 (IL-24) is an ideal tumor-suppressor gene, but the mechanisms underlying its antitumor specificity remain to be elucidated. The best way to investigate these problems is to begin from the initiation of corresponding signaling cascades activated by IL-24 with screening and identifying those proteins that interacted with IL-24. With the aim of identifying these initial interactions, a yeast two-hybrid screening was performed by transforming AH109 cells containing PGBKT7-IL-24 with a liver cDNA plasmid library. These cells were then plated on synthetic nutrient medium (SD/-Trp/-Leu/-His) for the first screening and on quadruple dropout medium containing X-α-gal for the second screening. Positive colonies were further verified by repeating the MATE experiments, co-immunoprecipitation (Co-IP) analysis, and fluorescence resonance energy transfer (FRET) assays in vitro. Following the yeast two-hybrid screening, 15 genes were selected for sequencing, with two genes, HLA-C and NDUFA13, further verified using Co-IP assays and FRET assays. Both HLA-C and NDUFA13 were found to interact with IL-24. We found that HLA-C and NDUFA13 could interact with IL-24 and it may be involved in the signal induced by IL-24. Overall, this study contributes further insight into the cancer-specific apoptosis-inducing abilities of IL-24 to potentially enhance its therapeutic potential, and it also provides outlets for other biological functions of IL-24. PMID:26930462

  4. Detection of yeast species also occurring in substrates associated with animals and identification of a novel dimorphic species in Verbascum flowers from Georgia.

    PubMed

    Sipiczki, Matthias

    2013-03-01

    The molecular taxonomic analysis of yeasts isolated from Verbascum flowers collected in central Georgia identified strains that could be assigned to the species Cryptococcus adeliensis, Cryptococcus magnus and Moniliella megachiliensis detected previously also in substrates associated with insects and other animals and a hitherto undescribed species for which the name Candida verbasci is proposed. The new species forms slightly pink colonies, propagates by mostly unipolar budding, forms invasive pseudomycelium, and the sequences of its D1/D2 LSU rRNA genes and ITS1-5.8S-ITS2 regions indicate close phylogenetic relationship with a group of species that form a cluster basal to the Candida albicans/Lodderomyces elongisporus clade. The type strain is 11-1055(T). It has been deposited in Centralbureau voor Schimmelcultures (Utrecht, the Netherlands) as CBS 12699(T), the National Collection of Agricultural and Industrial Microorganisms (Budapest, Hungary) as NCAIM Y.02048(T) and the Culture Collection of Yeasts (Bratislava, Slovakia) as CCY 29-185-1(T). The GenBank accession numbers for nucleotide sequences of the C. verbasci type strain are: JX515981 (D1/D2 domain of the 26S rRNA gene) and JX515982 (ITS1-5.8S-ITS2). Mycobank: MB 801391. PMID:23114573

  5. Mapping chromosome band 11q23 in human acute leukemia with biotinylated probes: identification of 11q23 translocation breakpoints with a yeast artificial chromosome.

    PubMed Central

    Rowley, J D; Diaz, M O; Espinosa, R; Patel, Y D; van Melle, E; Ziemin, S; Taillon-Miller, P; Lichter, P; Evans, G A; Kersey, J H

    1990-01-01

    Translocations involving chromosome 11, band q23, are frequent recurring abnormalities in human acute lymphoblastic and acute myeloid leukemia. We used 19 biotin-labeled probes derived from genes and anonymous cosmids for hybridization to metaphase chromosomes from leukemia cells that contained four translocations involving band 11q23: t(4;11)(q21;q23), t(6;11)(q27;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13). The location of the cosmid probes relative to the breakpoint in 11q23 was the same in all translocations. Of the cosmid clones containing known genes, CD3D was proximal and PBGD, THY1, SRPR, and ETS1 were distal to the breakpoint on 11q23. Hybridization of genomic DNA from a yeast clone containing yeast artificial chromosomes (YACs), that carry 320 kilobases (kb) of human DNA including CD3D and CD3G genes, showed that the YACs were split in all four translocations. These results indicate that the breakpoint at 11q23 in each of these translocations occurs within the 320 kb encompassed by these YACs; whether the breakpoint within the YACs is precisely the same in the different translocations is presently unknown. Images PMID:2251277

  6. A Link between Aurora Kinase and Clp1/Cdc14 Regulation Uncovered by the Identification of a Fission Yeast Borealin-Like Protein

    PubMed Central

    Bohnert, K. Adam; Chen, Jun-Song; Clifford, Dawn M.; Vander Kooi, Craig W.

    2009-01-01

    The chromosomal passenger complex (CPC) regulates various events in cell division. This complex is composed of a catalytic subunit, Aurora B kinase, and three nonenzymatic subunits, INCENP, Survivin, and Borealin. Together, these four subunits interdependently regulate CPC function, and they are highly conserved among eukaryotes. However, a Borealin homologue has never been characterized in the fission yeast, Schizosaccharomyces pombe. Here, we isolate a previously uncharacterized S. pombe protein through association with the Cdc14 phosphatase homologue, Clp1/Flp1, and identify it as a Borealin-like member of the CPC. Nbl1 (novel Borealin-like 1) physically associates with known CPC components, affects the kinase activity and stability of the S. pombe Aurora B homologue, Ark1, colocalizes with known CPC subunits during mitosis, and shows sequence similarity to human Borealin. Further analysis of the Clp1–Nbl1 interaction indicates that Clp1 requires CPC activity for proper accumulation at the contractile ring (CR). Consistent with this, we describe negative genetic interactions between mutant alleles of CPC and CR components. Thus, this study characterizes a fission yeast Borealin homologue and reveals a previously unrecognized connection between the CPC and the process of cytokinesis in S. pombe. PMID:19570910

  7. Similar subunit interactions contribute to assembly of clathrin adaptor complexes and COPI complex: analysis using yeast three-hybrid system.

    PubMed

    Takatsu, H; Futatsumori, M; Yoshino, K; Yoshida, Y; Shin, H W; Nakayama, K

    2001-06-22

    Clathrin adaptor protein (AP) complexes are heterotetramers composed of two large, one medium, and one small subunits. By exploiting the yeast three-hybrid system, we have found that an interaction between the two large subunits of the AP-1 complex, gamma-adaptin and beta1-adaptin, is markedly enhanced in the presence of the small subunit, sigma1. Similarly, two large subunits of the AP-4 complex, epsilon-adaptin and beta4-adaptin, are found to interact with each other only in the presence of the small subunit, sigma4. Furthermore, we have found that an interaction between two large subunits of the COPI F subcomplex, gamma-COP and beta-COP, is detectable only in the presence of zeta-COP. Because these COPI subunits have common ancestral origins to the corresponding AP subunits, these three-hybrid data, taken together with the previous two-hybrid data, suggest that the AP complexes and the COPI F subcomplex assemble by virtue of similar subunit interactions. PMID:11409905

  8. Characterization of a yeast D-amino acid oxidase microbiosensor for D-serine detection in the central nervous system.

    PubMed

    Pernot, Pierre; Mothet, Jean-Pierre; Schuvailo, Oleg; Soldatkin, Alexey; Pollegioni, Loredano; Pilone, Mirella; Adeline, Marie-Thrse; Cespuglio, Raymond; Marinesco, Stphane

    2008-03-01

    d-Serine is an endogenous ligand for N-methyl-d-aspartate (NMDA) receptors, and alterations in its concentration have been related to several brain disorders, especially schizophrenia. It is therefore an important target neuromodulator for the pharmaceutical industry. To monitor d-serine levels in vivo, we have developed a microbiosensor based on cylindrical platinum microelectrodes, covered with a membrane of poly-m-phenylenediamine (PPD) and a layer of immobilized d-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO). By detecting the hydrogen peroxide produced by enzymatic degradation of d-serine, this microbiosensor shows a detection limit of 16 nM and a mean response time of 2 s. Interferences by ascorbic acid, uric acid, l-cysteine, and by biogenic amines and their metabolites are rejected at more than 97% by the PPD layer. Although several d-amino acids are potential substrates for RgDAAO, d-serine was the only endogenous substrate present in sufficient concentration to be detected by our microbiosensor in the central nervous system. When implanted in the cortex of anesthetized rats, this microbiosensor detected the increase in concentration of d-serine resulting from its diffusion across the blood-brain barrier after an intraperitoneal injection. This new device will make it possible to investigate in vivo the variations in d-serine concentrations occurring under normal and pathological conditions and to assess the pharmacological potency of new drugs designed to impact d-serine metabolism. PMID:18229946

  9. Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system.

    PubMed

    Ohrt, Thomas; Odenwälder, Peter; Dannenberg, Julia; Prior, Mira; Warkocki, Zbigniew; Schmitzová, Jana; Karaduman, Ramazan; Gregor, Ingo; Enderlein, Jörg; Fabrizio, Patrizia; Lührmann, Reinhard

    2013-07-01

    Step 2 catalysis of pre-mRNA splicing entails the excision of the intron and ligation of the 5' and 3' exons. The tasks of the splicing factors Prp16, Slu7, Prp18, and Prp22 in the formation of the step 2 active site of the spliceosome and in exon ligation, and the timing of their recruitment, remain poorly understood. Using a purified yeast in vitro splicing system, we show that only the DEAH-box ATPase Prp16 is required for formation of a functional step 2 active site and for exon ligation. Efficient docking of the 3' splice site (3'SS) to the active site requires only Slu7/Prp18 but not Prp22. Spliceosome remodeling by Prp16 appears to be subtle as only the step 1 factor Cwc25 is dissociated prior to step 2 catalysis, with its release dependent on docking of the 3'SS to the active site and Prp16 action. We show by fluorescence cross-correlation spectroscopy that Slu7/Prp18 and Prp16 bind early to distinct, low-affinity binding sites on the step-1-activated B* spliceosome, which are subsequently converted into high-affinity sites. Our results shed new light on the factor requirements for step 2 catalysis and the dynamics of step 1 and 2 factors during the catalytic steps of splicing. PMID:23685439

  10. Identification of linear multivariable systems from a single set of data by identification of observers with assigned real eigenvalues

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Longman, Richard W.

    1991-01-01

    This paper presents a formulation for identification of linear multivariable systems from a single set of input-output data. The identification method is formulated with the mathematical framework of learning identification, by extension of the repetition domain concept to include shifting time intervals. This contrasts existing learning approaches that require data from multiple experiments. In this method, the system input-output relationship is expressed in terms of an observer, which is made asymptotically stable by an embedded real eigenvalue assignment procedure. Through this relationship, the Markov parameters of the observer are identified. The Markov parameters of the actual system are recovered from those of the observer, and then used to obtain a state space model of the system by standard realization techniques. The basic mathematical formulation is derived, and numerical examples presented to illustrate the proposed method.

  11. A System Identification and Change Detection Methodology for Stochastic Nonlinear Dynamic Systems

    SciTech Connect

    Yun, Hae-Bum; Masri, Sami F.; Caffrey, John P.

    2008-07-08

    In this paper a component-level detection methodology for system identification and change detection is discussed. The methodology is based on non-parametric, data-driven, stochastic system identification classifications using statistical pattern recognition techniques. In order to validate the methodology discussed in this paper an experimental study was performed using a complex nonlinear magneto-rheological (MR) damper. The results of this study show that the proposed methodology is very promising to detect interpret changes in critical structural components such as nonlinear springs joints as well as various types of dampers.

  12. Using the Yeast Three-Hybrid System to Identify Proteins that Interact with a Phloem-Mobile mRNA

    PubMed Central

    Cho, Sung Ki; Kang, Il-Ho; Carr, Tyrell; Hannapel, David J.

    2012-01-01

    Heterografting and RNA transport experiments have demonstrated the long-distance mobility of StBEL5 RNA, its role in controlling tuber formation, and the function of the 503-nt 3′ untranslated region (UTR) of the RNA in mediating transport. Because the 3′ UTR of StBEL5 is a key element in regulating several aspects of RNA metabolism, a potato leaf cDNA library was screened using the 3′ UTR of StBEL5 as bait in the yeast three-hybrid (Y3H) system to identify putative partner RNA-binding proteins (RBPs). From this screen, 116 positive cDNA clones were isolated based on nutrient selection, HIS3 activation, and lacZ induction and were sequenced and classified. Thirty-five proteins that were predicted to function in either RNA- or DNA-binding were selected from this pool. Seven were monitored for their expression profiles and further evaluated for their capacity to bind to the 3′ UTR of StBEL5 using β-galactosidase assays in the Y3H system and RNA gel-shift assays. Among the final selections were two RBPs, a zinc finger protein, and one protein, StLSH10, from a family involved in light signaling. In this study, the Y3H system is presented as a valuable tool to screen and verify interactions between target RNAs and putative RBPs. These results can shed light on the dynamics and composition of plant RNA-protein complexes that function to regulate RNA metabolism. PMID:22969782

  13. Construction of a Highly Active Xylanase Displaying Oleaginous Yeast: Comparison of Anchoring Systems

    PubMed Central

    Duquesne, Sophie; Bozonnet, Sophie; Bordes, Florence; Dumon, Claire; Nicaud, Jean-Marc; Marty, Alain

    2014-01-01

    Three Yarrowia lipolytica cell wall proteins (YlPir, YlCWP1 and YlCBM) were evaluated for their ability to display the xylanase TxXYN from Thermobacillus xylanilyticus on the cell surface of Y. lipolytica. The fusion proteins were produced in Y. lipolytica JMY1212, a strain engineered for mono-copy chromosomal insertion, and enabling accurate comparison of anchoring systems. The construction using YlPir enabled cell bound xylanase activity to be maximised (71.6 U/g). Although 48% of the activity was released in the supernatant, probably due to proteolysis at the fusion zone, this system is three times more efficient for the anchoring of TxXYN than the YlCWP1 system formerly developed for Y. lipolytica. As far as we know it represents the best displayed xylanase activity ever published. It could be an attractive alternative anchoring system to display enzymes in Y. lipolytica. PMID:24743311

  14. Yeast Genetics and Biotechnological Applications

    NASA Astrophysics Data System (ADS)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  15. Orthonormal filters for identification in active control systems

    NASA Astrophysics Data System (ADS)

    Mayer, Dirk

    2015-12-01

    Many active noise and vibration control systems require models of the control paths. When the controlled system changes slightly over time, adaptive digital filters for the identification of the models are useful. This paper aims at the investigation of a special class of adaptive digital filters: orthonormal filter banks possess the robust and simple adaptation of the widely applied finite impulse response (FIR) filters, but at a lower model order, which is important when considering implementation on embedded systems. However, the filter banks require prior knowledge about the resonance frequencies and damping of the structure. This knowledge can be supposed to be of limited precision, since in many practical systems, uncertainties in the structural parameters exist. In this work, a procedure using a number of training systems to find the fixed parameters for the filter banks is applied. The effect of uncertainties in the prior knowledge on the model error is examined both with a basic example and in an experiment. Furthermore, the possibilities to compensate for the imprecise prior knowledge by a higher filter order are investigated. Also comparisons with FIR filters are implemented in order to assess the possible advantages of the orthonormal filter banks. Numerical and experimental investigations show that significantly lower computational effort can be reached by the filter banks under certain conditions.

  16. Image processing and classification algorithm for yeast cell morphology in a microfluidic chip

    NASA Astrophysics Data System (ADS)

    Yang Yu, Bo; Elbuken, Caglar; Ren, Carolyn L.; Huissoon, Jan P.

    2011-06-01

    The study of yeast cell morphology requires consistent identification of cell cycle phases based on cell bud size. A computer-based image processing algorithm is designed to automatically classify microscopic images of yeast cells in a microfluidic channel environment. The images were enhanced to reduce background noise, and a robust segmentation algorithm is developed to extract geometrical features including compactness, axis ratio, and bud size. The features are then used for classification, and the accuracy of various machine-learning classifiers is compared. The linear support vector machine, distance-based classification, and k-nearest-neighbor algorithm were the classifiers used in this experiment. The performance of the system under various illumination and focusing conditions were also tested. The results suggest it is possible to automatically classify yeast cells based on their morphological characteristics with noisy and low-contrast images.

  17. Quantitative description of ion transport via plasma membrane of yeast and small cells

    PubMed Central

    Volkov, Vadim

    2015-01-01

    Modeling of ion transport via plasma membrane needs identification and quantitative understanding of the involved processes. Brief characterization of main ion transport systems of a yeast cell (Pma1, Ena1, TOK1, Nha1, Trk1, Trk2, non-selective cation conductance) and determining the exact number of molecules of each transporter per a typical cell allow us to predict the corresponding ion flows. In this review a comparison of ion transport in small yeast cell and several animal cell types is provided. The importance of cell volume to surface ratio is emphasized. The role of cell wall and lipid rafts is discussed in respect to required increase in spatial and temporary resolution of measurements. Conclusions are formulated to describe specific features of ion transport in a yeast cell. Potential directions of future research are outlined based on the assumptions. PMID:26113853

  18. Identification of linear multivariable systems from a single set of data by identification of observers with assigned real eigenvalues

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Longman, Richard W.

    1991-01-01

    A formulation is presented for identification of linear multivariable from a single set of input-output data. The identification method is formulated with the mathematical framework of learning identifications, by extension of the repetition domain concept to include shifting time intervals. This method contrasts with existing learning approaches that require data from multiple experiments. In this method, the system input-output relationship is expressed in terms of an observer, which is made asymptotically stable by an embedded real eigenvalue assignment procedure. Through this relationship, the Markov parameters of the observer are identified. The Markov parameters of the actual system are recovered from those of the observer, and then used to obtain a state space model of the system by standard realization techniques. The basic mathematical formulation is derived, and numerical examples presented to illustrate.

  19. [Isolated yeast species in urine samples in a Spanish regional hospital].

    PubMed

    Heras-Cañas, Victor; Ros, Luis; Sorlózano, Antonio; Gutiérrez-Soto, Blanca; Navarro-Marí, José María; Gutiérrez-Fernández, José

    2015-01-01

    Candiduria detection in hospitalized or immunocompromised patients is of great clinical significance. The aim of our study was to describe the isolation frequency of significant species of yeasts in urine samples processed in our hospital during the period 2010- 2013, and to analyze their susceptibility to commonly used antifungal agents. Species identification was performed by seeding on a chromogenic medium, the filamentation test and automated systems (ASM Vitek and MALDI Biotyper), while susceptibility was determined using the ASM Vitek system. Of the 632 yeast isolates in urine, 371 were Candida albicans species and 261 non-C. albicans Candida spp. The species with the highest number of resistant isolates were Candida glabrata and Candida krusei. Based on the results obtained, we believe that species identification and the susceptibility study should be current practice in the laboratories when species other than C. albicans are isolated. PMID:26507634

  20. Studying Functions of All Yeast Genes Simultaneously

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Eason, Robert G.; Poumand, Nader; Herman, Zelek S.; Davis, Ronald W.; Anthony Kevin; Jejelowo, Olufisayo

    2006-01-01

    A method of studying the functions of all the genes of a given species of microorganism simultaneously has been developed in experiments on Saccharomyces cerevisiae (commonly known as baker's or brewer's yeast). It is already known that many yeast genes perform functions similar to those of corresponding human genes; therefore, by facilitating understanding of yeast genes, the method may ultimately also contribute to the knowledge needed to treat some diseases in humans. Because of the complexity of the method and the highly specialized nature of the underlying knowledge, it is possible to give only a brief and sketchy summary here. The method involves the use of unique synthetic deoxyribonucleic acid (DNA) sequences that are denoted as DNA bar codes because of their utility as molecular labels. The method also involves the disruption of gene functions through deletion of genes. Saccharomyces cerevisiae is a particularly powerful experimental system in that multiple deletion strains easily can be pooled for parallel growth assays. Individual deletion strains recently have been created for 5,918 open reading frames, representing nearly all of the estimated 6,000 genetic loci of Saccharomyces cerevisiae. Tagging of each deletion strain with one or two unique 20-nucleotide sequences enables identification of genes affected by specific growth conditions, without prior knowledge of gene functions. Hybridization of bar-code DNA to oligonucleotide arrays can be used to measure the growth rate of each strain over several cell-division generations. The growth rate thus measured serves as an index of the fitness of the strain.

  1. Identification and characterization of ENA ATPases HwENA1 and HwENA2 from the halophilic black yeast Hortaea werneckii.

    PubMed

    Gorjan, Alenka; Plemenitas, Ana

    2006-12-01

    Two genes, HwENA1 and HwENA2, which encode ENA-like ATPases in the extremely halotolerant black yeast Hortaea werneckii, were cloned and sequenced. Although the expression of both genes is responsive to salt, the transcription of the HwENA1 gene was induced at a higher level when the cells were exposed to salt stress, and the expression of HwENA2 gene was higher in the adapted cells, suggesting their different roles in maintaining alkali cation homeostasis. According to the phylogenetic tree based on the amino acid sequences, they represent a new group of fungal P-type ATPases. The comparison of both amino acid sequences with other fungal ENA ATPases, together with salt- and pH-responsive gene expression, suggests that newly identified ENA genes could be involved in maintaining low Na(+)/K(+) content in H. werneckii. PMID:17034413

  2. Deterministic-stochastic subspace identification method for identification of nonlinear structures as time-varying linear systems

    NASA Astrophysics Data System (ADS)

    Moaveni, Babak; Asgarieh, Eliyar

    2012-08-01

    This paper proposes the use of the deterministic-stochastic subspace identification (DSI) method, an input-output parametric linear system identification method, for characterization of nonlinear dynamic structural systems based on their time-varying amplitude-dependent instantaneous (i.e., based on short time-windows) modal parameters. Performance of the DSI method for estimation of instantaneous modal parameters of nonlinear systems is investigated using numerical as well as experimental data. In this study, DSI is used for extracting instantaneous modal parameters of single degree-of-freedom (SDOF) as well as 7-DOF systems with different hysteretic material behavior. Nonlinear responses of the SDOF and 7-DOF systems are simulated due to different seismic excitations using the OpenSees structural analysis software. Modal identification results are compared with those obtained using wavelet transform and the exact values. Effects of four input factors are studied on the variability of identified instantaneous modal parameters: (1) type of material nonlinearity, (2) level of nonlinearity, (3) input excitation, and (4) length of data windows used in the identification. The accuracy of the identified instantaneous modal parameters is evaluated along the response time history while varying the above mentioned input factors. Overall, DSI outperforms the wavelet transform for short-time/instantaneous modal identification of nonlinear structural systems and provides reasonably accurate results especially when the material hysteretic behavior is smooth such as the considered Giuffré-Menegotto-Pinto hysteretic model. Finally, DSI has been applied for short-time modal identification of a full-scale seven-story reinforced concrete shear wall structure based on its measured response to different seismic base excitations on a shake table. The identified instantaneous natural frequencies of the first vibration mode can accurately track the variation in the structure's effective stiffness along its response.

  3. Actin structure and function: roles in mitochondrial organization and morphogenesis in budding yeast and identification of the phalloidin-binding site.

    PubMed Central

    Drubin, D G; Jones, H D; Wertman, K F

    1993-01-01

    To further elucidate the functions of actin in budding yeast and to relate actin structure to specific roles and interactions in vivo, we determined the phenotypes caused by 13 charged-to-alanine mutations isolated previously in the single Saccharomyces cerevisiae actin gene. Defects in actin organization, morphogenesis, budding pattern, chitin deposition, septation, nuclear segregation, and mitochondrial organization were observed. In wild-type cells, mitochondria were found to be aligned along actin cables. Many of the amino acid substitutions that had the most severe effects on mitochondrial organization are located under the myosin "footprint" on the actin monomer, suggesting that actin-myosin interactions might underlie mitochondrial organization in yeast. In addition, one mutant (act1-129; R177A, D179A) produced an actin that assembled into cables and patches that could be visualized by anti-actin immunofluorescence in situ and that assembled into microfilaments of normal appearance in vitro as judged by electron microscopy but which could not be labeled by rhodamine-phalloidin in situ or in vitro. Rhodamine-phalloidin could label actin filaments assembled from all of the other mutant actins, including one (act1-119; R116A, E117A, K118A) that is altered at a residue (E117) that can be chemically cross-linked to phalloidin. The implication of residues R177 and/or D179 in phalloidin binding is in close agreement with a recently reported molecular model in which the phalloidin-binding site is proposed to be at the junction of two or three actin monomers in the filament. Images PMID:8167410

  4. Construction of a High-Quality Yeast Two-Hybrid Library and Its Application in Identification of Interacting Proteins with Brn1 in Curvularia lunata

    PubMed Central

    Gao, Jin-Xin; Jing, Jing; Yu, Chuan-Jin; Chen, Jie

    2015-01-01

    Curvularia lunata is an important maize foliar fungal pathogen that distributes widely in maize growing area in China, and several key pathogenic factors have been isolated. An yeast two-hybrid (Y2H) library is a very useful platform to further unravel novel pathogenic factors in C. lunata. To construct a high-quality full length-expression cDNA library from the C. lunata for application to pathogenesis-related protein-protein interaction screening, total RNA was extracted. The SMART (Switching Mechanism At 5′ end of the RNA Transcript) technique was used for cDNA synthesis. Double-stranded cDNA was ligated into the pGADT7-Rec vector with Herring Testes Carrier DNA using homologous recombination method. The ligation mixture was transformed into competent yeast AH109 cells to construct the primary cDNA library. Eventually, a high qualitative library was successfully established according to an evaluation on quality. The transformation efficiency was about 6.39 ×105 transformants/3 μg pGADT7-Rec. The titer of the primary cDNA library was 2.5×108 cfu/mL. The numbers for the cDNA library was 2.46×105. Randomly picked clones show that the recombination rate was 88.24%. Gel electrophoresis results indicated that the fragments ranged from 0.4 kb to 3.0 kb. Melanin synthesis protein Brn1 (1,3,8-hydroxynaphthalene reductase) was used as a “bait” to test the sufficiency of the Y2H library. As a result, a cDNA clone encoding VelB protein that was known to be involved in the regulation of diverse cellular processes, including control of secondary metabolism containing melanin and toxin production in many filamentous fungi was identified. Further study on the exact role of the VelB gene is underway. PMID:26060429

  5. An Analog-sensitive Version of the Protein Kinase Slt2 Allows Identification of Novel Targets of the Yeast Cell Wall Integrity Pathway.

    PubMed

    Alonso-Rodríguez, Esmeralda; Fernández-Piñar, Pablo; Sacristán-Reviriego, Almudena; Molina, María; Martín, Humberto

    2016-03-11

    The yeast cell wall integrity MAPK Slt2 mediates the transcriptional response to cell wall alterations through phosphorylation of transcription factors Rlm1 and SBF. However, the variety of cellular functions regulated by Slt2 suggests the existence of a significant number of still unknown substrates for this kinase. To identify novel Slt2 targets, we generated and characterized an analog-sensitive mutant of Slt2 (Slt2-as) that can be specifically inhibited by bulky kinase inhibitor analogs. We demonstrated that Slt2-as is able to use adenosine 5'-[γ-thio]triphosphate analogs to thiophosphorylate its substrates in yeast cell extracts as well as when produced as recombinant proteins in Escherichia coli. Taking advantage of this chemical-genetic approach, we found that Slt2 phosphorylates the MAPK phosphatase Msg5 both in the N-terminal regulatory and C-terminal catalytic domains. Moreover, we identified the calcineurin regulator Rcn2, the 4E-BP (translation initiation factor eIF4E-binding protein) translation repressor protein Caf20, and the Golgi-associated adaptor Gga1 as novel targets for Slt2. The Slt2 phosphorylation sites on Rcn2 and Caf20 were determined. We also demonstrated that, in the absence of SLT2, the GGA1 paralog GGA2 is essential for cells to survive under cell wall stress and for proper protein sorting through the carboxypeptidase Y pathway. Therefore, Slt2-as provides a powerful tool that can expand our knowledge of the outputs of the cell wall integrity MAPK pathway. PMID:26786099

  6. Construction of a High-Quality Yeast Two-Hybrid Library and Its Application in Identification of Interacting Proteins with Brn1 in Curvularia lunata.

    PubMed

    Gao, Jin-Xin; Jing, Jing; Yu, Chuan-Jin; Chen, Jie

    2015-06-01

    Curvularia lunata is an important maize foliar fungal pathogen that distributes widely in maize growing area in China, and several key pathogenic factors have been isolated. An yeast two-hybrid (Y2H) library is a very useful platform to further unravel novel pathogenic factors in C. lunata. To construct a high-quality full length-expression cDNA library from the C. lunata for application to pathogenesis-related protein-protein interaction screening, total RNA was extracted. The SMART (Switching Mechanism At 5' end of the RNA Transcript) technique was used for cDNA synthesis. Double-stranded cDNA was ligated into the pGADT7-Rec vector with Herring Testes Carrier DNA using homologous recombination method. The ligation mixture was transformed into competent yeast AH109 cells to construct the primary cDNA library. Eventually, a high qualitative library was successfully established according to an evaluation on quality. The transformation efficiency was about 6.39 ×10(5) transformants/3 μg pGADT7-Rec. The titer of the primary cDNA library was 2.5×10(8) cfu/mL. The numbers for the cDNA library was 2.46×10(5). Randomly picked clones show that the recombination rate was 88.24%. Gel electrophoresis results indicated that the fragments ranged from 0.4 kb to 3.0 kb. Melanin synthesis protein Brn1 (1,3,8-hydroxynaphthalene reductase) was used as a "bait" to test the sufficiency of the Y2H library. As a result, a cDNA clone encoding VelB protein that was known to be involved in the regulation of diverse cellular processes, including control of secondary metabolism containing melanin and toxin production in many filamentous fungi was identified. Further study on the exact role of the VelB gene is underway. PMID:26060429

  7. Prevention of Yeast Spoilage in Feed and Food by the Yeast Mycocin HMK

    PubMed Central

    Lowes, K. F.; Shearman, C. A.; Payne, J.; MacKenzie, D.; Archer, D. B.; Merry, R. J.; Gasson, M. J.

    2000-01-01

    The yeast Williopsis mrakii produces a mycocin or yeast killer toxin designated HMK; this toxin exhibits high thermal stability, high pH stability, and a broad spectrum of activity against other yeasts. We describe construction of a synthetic gene for mycocin HMK and heterologous expression of this toxin in Aspergillus niger. Mycocin HMK was fused to a glucoamylase protein carrier, which resulted in secretion of biologically active mycocin into the culture media. A partial purification protocol was developed, and a comparison with native W. mrakii mycocin showed that the heterologously expressed mycocin had similar physiological properties and an almost identical spectrum of biological activity against a number of yeasts isolated from silage and yoghurt. Two food and feed production systems prone to yeast spoilage were used as models to assess the ability of mycocin HMK to act as a biocontrol agent. The onset of aerobic spoilage in mature maize silage was delayed by application of A. niger mycocin HMK on opening because the toxin inhibited growth of the indigenous spoilage yeasts. This helped maintain both higher lactic acid levels and a lower pH. In yoghurt spiked with dairy spoilage yeasts, A. niger mycocin HMK was active at all of the storage temperatures tested at which yeast growth occurred, and there was no resurgence of resistant yeasts. The higher the yeast growth rate, the more effective the killing action of the mycocin. Thus, mycocin HMK has potential applications in controlling both silage spoilage and yoghurt spoilage caused by yeasts. PMID:10698773

  8. Glucuronidation does not suppress the estrogenic activity of quercetin in yeast and human breast cancer cell model systems.

    PubMed

    Ruotolo, Roberta; Calani, Luca; Brighenti, Furio; Crozier, Alan; Ottonello, Simone; Del Rio, Daniele

    2014-10-01

    Several plant-derived molecules, referred to as phytoestrogens, are thought to mimic the actions of endogenous estrogens. Among these, quercetin, one of the most widespread flavonoids in the plant kingdom, has been reported as estrogenic in some occasions. However, quercetin occurs in substantial amounts as glycosides such as quercetin-3-O-glucoside (isoquercitrin) and quercetin-3-O-rutinoside (rutin) in dietary sources. It is now well established that quercetin undergoes substantial phase II metabolism after ingestion by humans, with plasma metabolites after a normal dietary intake rarely exceeding nmol/L concentrations. Therefore, attributing phytoestrogenic activity to flavonoids without taking into account the fact that it is their phase II metabolites that enter the circulatory system, will almost certainly lead to misleading conclusions. With the aim of clarifying the above issue, the goal of the present study was to determine if plant-associated quercetin glycosides and human phase II quercetin metabolites, actually found in human biological fluids after intake of quercetin containing foods, are capable of interacting with the estrogen receptors (ER). To this end, we used a yeast-based two-hybrid system and an estrogen response element-luciferase reporter assay in an ER-positive human cell line (MCF-7) to probe the ER interaction capacities of quercetin and its derivatives. Our results show that quercetin-3-O-glucuronide, one of the main human phase II metabolites produced after intake of dietary quercetin, displays ER?- and ER?-dependent estrogenic activity, the functional consequences of which might be related to the protective activity of diets rich in quercetin glycosides. PMID:24657077

  9. System identification methods for dynamic structural models of electronic packages

    SciTech Connect

    Martinez, D.R.; Red-Horse, J.R.; Allen, J.J.

    1991-01-01

    In this paper we discuss two methodologies for system identification of structure models. Finite element software is coupled with optimization and estimation software to implement the techniques. Both methods update physical parameters in the finite element model and utilize iterative solution techniques. The first method integrates MSC/NASTRAN with a Bayes estimation software tool which is being developed for use with general finite element models. The second method utilizes a math programming optimization technique. Both methods were applied to a finite element model of an electronics package using both simulated and measured data. Results are presented using both eigenvalue and eigenvector data. The results showed the importance of using both eigenvalue and eigenvector data for the model of the electronics package. A discussion of the features of each method is included. 24 refs., 8 figs., 5 tabs.

  10. Medical isotope identification with large mobile detection systems

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard

    2012-10-01

    The Remote Sensing laboratory (RSL) of National Security Technologies Inc. has built an array of large (5.08 - cm x 10.16 - cm x 40.6 - cm) thallium doped sodium iodide (NaI: Tl) scintillators to locate and screen gamma-ray emitting radioisotopes that are of interests to radiological emergency responders [1]. These vehicle mounted detectors provide the operators with rapid, simple, specific information for radiological threat assessment. Applications include large area inspection, customs inspection, border protection, emergency response, and monitoring of radiological facilities. These RSL mobile units are currently being upgraded to meet the Defense Threat Reduction Agency mission requirements for a next-generation system capable of detecting and identifying nuclear threat materials. One of the challenging problems faced by these gamma-ray detectors is the unambiguous identification of medical isotopes like 131I (364.49 keV [81.7%], 636.99 keV [7.17%]), 99Tcm (140.51 keV [89.1%]) and 67Ga (184.6 keV [19.7%], 300.2 [16.0%], 393.5 [4.5%] that are used in radionuclide therapy and often have overlapping gamma-ray energy regions of interest (ROI). The problem is made worse by short (about 5 seconds) acquisition time of the spectral data necessary for dynamic mobile detectors. This article describes attempts to identify medical isotopes from data collected from this mobile detection system in a short period of time (not exceeding 5 secs) and a large standoff distance (typically ~ 10 meters) The mobile units offer identification capabilities that are based on hardware auto stabilization of the amplifier gain. The 1461 keV gamma-energy line from 40K is tracked. It uses gamma-ray energy windowing along with embedded mobile Gamma Detector Response and Analysis Software (GADRAS) [2] simultaneously to deconvolve any overlapping gamma-energy ROIs. These high sensitivity detectors are capable of resolving complex masking scenarios and exceed all ANSI N42.34 (2006) requirements for the identification of bare, shielded and multiple isotopes.

  11. CFRP damage identification system based on FBG sensors and ELM method

    NASA Astrophysics Data System (ADS)

    Lu, Shizeng; Jiang, Mingshun; Jia, Lei; Sui, Qingmei; Sai, Yaozhang

    2015-02-01

    The identification of the damage state of Carbon fiber-reinforced plastic (CFRP) structure is the necessary information for ensuring the safety of CFRP structure. In this paper, the structural damage identification system using fiber Bragg grating (FBG) sensors and the damage identification method were investigated. FBG sensors were used to detect the structural dynamic response signal, which was generated by an active actuation way. Fourier transform and principal component analysis (PCA) were used to extract the damage characteristic. After that, the structural damage identification model was constructed based on extreme learning machine (ELM), whose input is the damage characteristic and output is the damage state. Finally, the damage identification system was established and verified on a CFRP plate with 160 mm160 mm experiment area. The experimental results showed that the identification accuracy was more than 90 %. This paper provided a reliable method for CFRP structural damage identification.

  12. Engineering of self-sustaining systems: substituting the yeast glucose transporter plus hexokinase for the Lactococcus lactis phosphotransferase system in a Lactococcus lactis network in silico.

    PubMed

    Adamczyk, Malgorzata; Westerhoff, Hans V

    2012-07-01

    The success rate of introducing new functions into a living species is still rather unsatisfactory. Much of this is due to the very essence of the living state, i.e. its robustness towards perturbations. Living cells are bound to notice that metabolic engineering is being effected, through changes in metabolite concentrations. In this study, we asked whether one could engage in such engineering without changing metabolite concentrations. We have illustrated that, in silico, one can do so in principle. We have done this for the case of substituting the yeast glucose transporter plus hexokinase for the Lactococcus lactis phosphotransferase system, in an L. lactis network, this engineering is 'silent' in terms of metabolite concentrations and almost all fluxes. PMID:22700394

  13. System identification and model reduction using modulating function techniques

    NASA Technical Reports Server (NTRS)

    Shen, Yan

    1993-01-01

    Weighted least squares (WLS) and adaptive weighted least squares (AWLS) algorithms are initiated for continuous-time system identification using Fourier type modulating function techniques. Two stochastic signal models are examined using the mean square properties of the stochastic calculus: an equation error signal model with white noise residuals, and a more realistic white measurement noise signal model. The covariance matrices in each model are shown to be banded and sparse, and a joint likelihood cost function is developed which links the real and imaginary parts of the modulated quantities. The superior performance of above algorithms is demonstrated by comparing them with the LS/MFT and popular predicting error method (PEM) through 200 Monte Carlo simulations. A model reduction problem is formulated with the AWLS/MFT algorithm, and comparisons are made via six examples with a variety of model reduction techniques, including the well-known balanced realization method. Here the AWLS/MFT algorithm manifests higher accuracy in almost all cases, and exhibits its unique flexibility and versatility. Armed with this model reduction, the AWLS/MFT algorithm is extended into MIMO transfer function system identification problems. The impact due to the discrepancy in bandwidths and gains among subsystem is explored through five examples. Finally, as a comprehensive application, the stability derivatives of the longitudinal and lateral dynamics of an F-18 aircraft are identified using physical flight data provided by NASA. A pole-constrained SIMO and MIMO AWLS/MFT algorithm is devised and analyzed. Monte Carlo simulations illustrate its high-noise rejecting properties. Utilizing the flight data, comparisons among different MFT algorithms are tabulated and the AWLS is found to be strongly favored in almost all facets.

  14. A Markov Chain Monte Carlo Based Method for System Identification

    SciTech Connect

    Glaser, R E; Lee, C L; Nitao, J J; Hanley, W G

    2002-10-22

    This paper describes a novel methodology for the identification of mechanical systems and structures from vibration response measurements. It combines prior information, observational data and predictive finite element models to produce configurations and system parameter values that are most consistent with the available data and model. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. The resulting process enables the estimation of distributions of both individual parameters and system-wide states. Attractive features of this approach include its ability to: (1) provide quantitative measures of the uncertainty of a generated estimate; (2) function effectively when exposed to degraded conditions including: noisy data, incomplete data sets and model misspecification; (3) allow alternative estimates to be produced and compared, and (4) incrementally update initial estimates and analysis as more data becomes available. A series of test cases based on a simple fixed-free cantilever beam is presented. These results demonstrate that the algorithm is able to identify the system, based on the stiffness matrix, given applied force and resultant nodal displacements. Moreover, it effectively identifies locations on the beam where damage (represented by a change in elastic modulus) was specified.

  15. Identification of dominant modes in random dynamical and aeroelastic systems

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Nurtaj; Sarkar, Soumyadipta; Ghosh, Debraj

    2015-11-01

    Identification of dominant modes is an important step in studying linearly vibrating systems, including flow-induced vibrations. In the presence of uncertainty, when some of the system parameters and the external excitation are modeled as random quantities, this step becomes more difficult. This work is aimed at giving a systematic treatment to this end. The ability to capture the time-averaged kinetic energy is chosen as the primary criterion for selection of modes. Accordingly, a methodology is proposed based on the overlap of probability density functions (pdf) of the natural and excitation frequencies, proximity of the natural frequencies of the mean or baseline system, modal participation factor, and stochastic variation of mode shapes in terms of the modes of the baseline system - termed here as statistical modal overlapping. The probabilistic descriptors of the natural frequencies and mode shapes are found by solving a random eigenvalue problem. Three distinct vibration scenarios are considered: (i) undamped and damped free vibrations of a bladed disk assembly, (ii) forced vibration of a building, and (iii) flutter of a bridge model. Through numerical studies, it is observed that the proposed methodology gives an accurate selection of modes.

  16. Identification of the Unstable Human Postural Control System

    PubMed Central

    Hwang, Sungjae; Agada, Peter; Kiemel, Tim; Jeka, John J.

    2016-01-01

    Maintaining upright bipedal posture requires a control system that continually adapts to changing environmental conditions, such as different support surfaces. Behavioral changes associated with different support surfaces, such as the predominance of an ankle or hip strategy, is considered to reflect a change in the control strategy. However, tracing such behavioral changes to a specific component in a closed loop control system is challenging. Here we used the joint input–output (JIO) method of closed-loop system identification to identify the musculoskeletal and neural feedback components of the human postural control loop. The goal was to establish changes in the control loop corresponding to behavioral changes observed on different support surfaces. Subjects were simultaneously perturbed by two independent mechanical and two independent sensory perturbations while standing on a normal or short support surface. The results show a dramatic phase reversal between visual input and body kinematics due to the change in surface condition from trunk leads legs to legs lead trunk with increasing frequency of the visual perturbation. Through decomposition of the control loop, we found that behavioral change is not necessarily due to a change in control strategy, but in the case of different support surfaces, is linked to changes in properties of the plant. The JIO method is an important tool to identify the contribution of specific components within a closed loop control system to overall postural behavior and may be useful to devise better treatment of balance disorders. PMID:27013990

  17. Identification of the Unstable Human Postural Control System.

    PubMed

    Hwang, Sungjae; Agada, Peter; Kiemel, Tim; Jeka, John J

    2016-01-01

    Maintaining upright bipedal posture requires a control system that continually adapts to changing environmental conditions, such as different support surfaces. Behavioral changes associated with different support surfaces, such as the predominance of an ankle or hip strategy, is considered to reflect a change in the control strategy. However, tracing such behavioral changes to a specific component in a closed loop control system is challenging. Here we used the joint input-output (JIO) method of closed-loop system identification to identify the musculoskeletal and neural feedback components of the human postural control loop. The goal was to establish changes in the control loop corresponding to behavioral changes observed on different support surfaces. Subjects were simultaneously perturbed by two independent mechanical and two independent sensory perturbations while standing on a normal or short support surface. The results show a dramatic phase reversal between visual input and body kinematics due to the change in surface condition from trunk leads legs to legs lead trunk with increasing frequency of the visual perturbation. Through decomposition of the control loop, we found that behavioral change is not necessarily due to a change in control strategy, but in the case of different support surfaces, is linked to changes in properties of the plant. The JIO method is an important tool to identify the contribution of specific components within a closed loop control system to overall postural behavior and may be useful to devise better treatment of balance disorders. PMID:27013990

  18. [Regulation of gene expression in methylotrophic yeasts].

    PubMed

    Grabek-Lejko, Dorota; Sibirny, Vladimir; Sibirny, Andriy

    2013-01-01

    Methylotrophic yeasts are unique eukaryotic organisms, that can metabolize toxic one-carbon substrate, methyl alcohol or methanol. About 50 species of methylotrophic yeasts is known, among them 4 species are the best studied: Pichia methanolica, Hansenula polymorpha, Pichia pastoris i Candida boidinii. These organisms, especially P. pastoris i H. polymorpha appeared to be very perspective overproducers of heterologous proteins and nowadays are used for industrial production of some of them. In this review, we provide information on the organization of the genome, mechanisms of regulation of gene expression and the use of strong promoters of these yeast species to construct the producers of heterologous proteins. In more details, we analyze genetic control of carbon and nitrogen catabolic repression in H. polymorpha and also the identification of metabolites inducing catabolite repression or peroxisome selective autophagy in the medium with ethanol in the Pichia methanolica yeast. PMID:23821948

  19. Functional adaptation between yeast actin and its cognate myosin motors.

    PubMed

    Stark, Benjamin C; Wen, Kuo-Kuang; Allingham, John S; Rubenstein, Peter A; Lord, Matthew

    2011-09-01

    We employed budding yeast and skeletal muscle actin to examine the contribution of the actin isoform to myosin motor function. While yeast and muscle actin are highly homologous, they exhibit different charge density at their N termini (a proposed myosin-binding interface). Muscle myosin-II actin-activated ATPase activity is significantly higher with muscle versus yeast actin. Whether this reflects inefficiency in the ability of yeast actin to activate myosin is not known. Here we optimized the isolation of two yeast myosins to assess actin function in a homogenous system. Yeast myosin-II (Myo1p) and myosin-V (Myo2p) accommodate the reduced N-terminal charge density of yeast actin, showing greater activity with yeast over muscle actin. Increasing the number of negative charges at the N terminus of yeast actin from two to four (as in muscle) had little effect on yeast myosin activity, while other substitutions of charged residues at the myosin interface of yeast actin reduced activity. Thus, yeast actin functions most effectively with its native myosins, which in part relies on associations mediated by its outer domain. Compared with yeast myosin-II and myosin-V, muscle myosin-II activity was very sensitive to salt. Collectively, our findings suggest differing degrees of reliance on electrostatic interactions during weak actomyosin binding in yeast versus muscle. Our study also highlights the importance of native actin isoforms when considering the function of myosins. PMID:21757693

  20. Phosphoproteomic Analysis Reveals Interconnected System-Wide Responses to Perturbations of Kinases and Phosphatases in Yeast

    PubMed Central

    Bodenmiller, Bernd; Wanka, Stefanie; Kraft, Claudine; Urban, Jörg; Campbell, David; Pedrioli, Patrick G.; Gerrits, Bertran; Picotti, Paola; Lam, Henry; Vitek, Olga; Brusniak, Mi-Youn; Roschitzki, Bernd; Zhang, Chao; Shokat, Kevan M.; Schlapbach, Ralph; Colman-Lerner, Alejandro; Nolan, Garry P.; Nesvizhskii, Alexey I.; Peter, Matthias; Loewith, Robbie; von Mering, Christian; Aebersold, Ruedi

    2011-01-01

    The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an essential regulatory network in eukaryotic cells. This network supports the flow of information from sensors through signaling systems to effector molecules, and ultimately drives the phenotype and function of cells, tissues, and organisms. Dysregulation of this process has severe consequences and is one of the main factors in the emergence and progression of diseases, including cancer. Thus, major efforts have been invested in developing specific inhibitors that modulate the activity of individual kinases or phosphatases; however, it has been difficult to assess how such pharmacological interventions would affect the cellular signaling network as a whole. Here, we used label-free, quantitative phosphoproteomics in a systematically perturbed model organism (Saccharomyces cerevisiae) to determine the relationships between 97 kinases, 27 phosphatases, and more than 1000 phosphoproteins. We identified 8814 regulated phosphorylation events, describing the first system-wide protein phosphorylation network in vivo. Our results show that, at steady state, inactivation of most kinases and phosphatases affected large parts of the phosphorylation-modulated signal transduction machinery, and not only the immediate downstream targets. The observed cellular growth phenotype was often well maintained despite the perturbations, arguing for considerable robustness in the system. Our results serve to constrain future models of cellular signaling and reinforce the idea that simple linear representations of signaling pathways might be insufficient for drug development and for describing organismal homeostasis. PMID:21177495